162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1410 return InLoopReductions;
1421 TTI.preferPredicatedReductionSelect();
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1455 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1456 const unsigned IC)
const;
1464 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1466 Type *VectorTy)
const;
1470 bool shouldConsiderInvariant(
Value *
Op);
1476 unsigned NumPredStores = 0;
1480 std::optional<unsigned> VScaleForTuning;
1485 void initializeVScaleForTuning() {
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1505 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1511 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1512 bool FoldTailByMasking)
const;
1517 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1525 bool isScalableVectorizationAllowed();
1529 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1535 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1556 ElementCount VF)
const;
1560 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1565 MapVector<Instruction *, uint64_t> MinBWs;
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1592 std::optional<bool> IsScalableVectorizationAllowed;
1598 std::optional<unsigned> MaxSafeElements;
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1632 ScalarCostsTy &ScalarCosts,
1644 void collectLoopUniforms(ElementCount VF);
1653 void collectLoopScalars(ElementCount VF);
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1660 DecisionList WideningDecisions;
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1665 CallDecisionList CallWideningDecisions;
1669 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 getWideningDecision(
I, VF) == CM_Scalarize ||
1684 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1689 ElementCount VF)
const {
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1695 !needsExtract(
Op, VF))
1781class GeneratedRTChecks {
1787 Value *SCEVCheckCond =
nullptr;
1794 Value *MemRuntimeCheckCond =
nullptr;
1803 bool CostTooHigh =
false;
1805 Loop *OuterLoop =
nullptr;
1816 : DT(DT), LI(LI),
TTI(
TTI),
1817 SCEVExp(*PSE.
getSE(),
"scev.check",
false),
1818 MemCheckExp(*PSE.
getSE(),
"scev.check",
false),
1826 void create(Loop *L,
const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC,
1828 OptimizationRemarkEmitter &ORE) {
1841 return OptimizationRemarkAnalysisAliasing(
1842 DEBUG_TYPE,
"TooManyMemoryRuntimeChecks",
L->getStartLoc(),
1844 <<
"loop not vectorized: too many memory checks needed";
1859 nullptr,
"vector.scevcheck");
1866 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1867 SCEVCleaner.cleanup();
1872 if (RtPtrChecking.Need) {
1873 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1874 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1877 auto DiffChecks = RtPtrChecking.getDiffChecks();
1879 Value *RuntimeVF =
nullptr;
1882 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1884 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1890 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1893 assert(MemRuntimeCheckCond &&
1894 "no RT checks generated although RtPtrChecking "
1895 "claimed checks are required");
1900 if (!MemCheckBlock && !SCEVCheckBlock)
1910 if (SCEVCheckBlock) {
1913 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1917 if (MemCheckBlock) {
1920 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1926 if (MemCheckBlock) {
1930 if (SCEVCheckBlock) {
1936 OuterLoop =
L->getParentLoop();
1940 if (SCEVCheckBlock || MemCheckBlock)
1952 for (Instruction &
I : *SCEVCheckBlock) {
1953 if (SCEVCheckBlock->getTerminator() == &
I)
1959 if (MemCheckBlock) {
1961 for (Instruction &
I : *MemCheckBlock) {
1962 if (MemCheckBlock->getTerminator() == &
I)
1974 ScalarEvolution *SE = MemCheckExp.
getSE();
1979 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1984 unsigned BestTripCount = 2;
1988 PSE, OuterLoop,
false))
1989 if (EstimatedTC->isFixed())
1990 BestTripCount = EstimatedTC->getFixedValue();
1995 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1996 (InstructionCost::CostType)1);
1998 if (BestTripCount > 1)
2000 <<
"We expect runtime memory checks to be hoisted "
2001 <<
"out of the outer loop. Cost reduced from "
2002 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2004 MemCheckCost = NewMemCheckCost;
2008 RTCheckCost += MemCheckCost;
2011 if (SCEVCheckBlock || MemCheckBlock)
2012 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2020 ~GeneratedRTChecks() {
2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2023 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2024 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2026 SCEVCleaner.markResultUsed();
2028 if (MemChecksUsed) {
2029 MemCheckCleaner.markResultUsed();
2031 auto &SE = *MemCheckExp.
getSE();
2038 I.eraseFromParent();
2041 MemCheckCleaner.cleanup();
2042 SCEVCleaner.cleanup();
2044 if (!SCEVChecksUsed)
2045 SCEVCheckBlock->eraseFromParent();
2047 MemCheckBlock->eraseFromParent();
2052 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2053 using namespace llvm::PatternMatch;
2055 return {
nullptr,
nullptr};
2057 return {SCEVCheckCond, SCEVCheckBlock};
2062 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2063 using namespace llvm::PatternMatch;
2064 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2065 return {
nullptr,
nullptr};
2066 return {MemRuntimeCheckCond, MemCheckBlock};
2070 bool hasChecks()
const {
2071 return getSCEVChecks().first || getMemRuntimeChecks().first;
2114 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2120 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2150 for (
Loop *InnerL : L)
2173 ?
B.CreateSExtOrTrunc(Index, StepTy)
2174 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2175 if (CastedIndex != Index) {
2177 Index = CastedIndex;
2187 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2192 return B.CreateAdd(
X,
Y);
2198 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2199 "Types don't match!");
2206 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2207 return B.CreateMul(
X,
Y);
2210 switch (InductionKind) {
2213 "Vector indices not supported for integer inductions yet");
2215 "Index type does not match StartValue type");
2217 return B.CreateSub(StartValue, Index);
2222 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2225 "Vector indices not supported for FP inductions yet");
2228 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2229 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2230 "Original bin op should be defined for FP induction");
2232 Value *MulExp =
B.CreateFMul(Step, Index);
2233 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2244 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2247 if (
F.hasFnAttribute(Attribute::VScaleRange))
2248 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2250 return std::nullopt;
2259 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2261 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2263 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2269 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2272 std::optional<unsigned> MaxVScale =
2276 MaxVF *= *MaxVScale;
2279 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2293 return TTI.enableMaskedInterleavedAccessVectorization();
2306 PreVectorPH = CheckVPIRBB;
2316 "must have incoming values for all operands");
2317 R.addOperand(R.getOperand(NumPredecessors - 2));
2343 auto CreateStep = [&]() ->
Value * {
2350 if (!
VF.isScalable())
2352 return Builder.CreateBinaryIntrinsic(
2358 Value *Step = CreateStep();
2367 CheckMinIters =
Builder.getTrue();
2369 TripCountSCEV, SE.
getSCEV(Step))) {
2372 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2374 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2382 Value *MaxUIntTripCount =
2389 return CheckMinIters;
2398 VPlan *Plan =
nullptr) {
2402 auto IP = IRVPBB->
begin();
2404 R.moveBefore(*IRVPBB, IP);
2408 R.moveBefore(*IRVPBB, IRVPBB->
end());
2417 assert(VectorPH &&
"Invalid loop structure");
2419 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2420 "loops not exiting via the latch without required epilogue?");
2427 Twine(Prefix) +
"scalar.ph");
2433 const SCEV2ValueTy &ExpandedSCEVs) {
2434 const SCEV *Step =
ID.getStep();
2436 return C->getValue();
2438 return U->getValue();
2439 Value *V = ExpandedSCEVs.lookup(Step);
2440 assert(V &&
"SCEV must be expanded at this point");
2450 auto *Cmp = L->getLatchCmpInst();
2452 InstsToIgnore.
insert(Cmp);
2453 for (
const auto &KV : IL) {
2462 [&](
const User *U) { return U == IV || U == Cmp; }))
2463 InstsToIgnore.
insert(IVInst);
2475struct CSEDenseMapInfo {
2486 return DenseMapInfo<Instruction *>::getTombstoneKey();
2489 static unsigned getHashValue(
const Instruction *
I) {
2490 assert(canHandle(
I) &&
"Unknown instruction!");
2495 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2496 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2497 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2499 return LHS->isIdenticalTo(
RHS);
2511 if (!CSEDenseMapInfo::canHandle(&In))
2517 In.replaceAllUsesWith(V);
2518 In.eraseFromParent();
2531 std::optional<unsigned> VScale) {
2535 EstimatedVF *= *VScale;
2536 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2554 for (
auto &ArgOp : CI->
args())
2565 return ScalarCallCost;
2578 assert(
ID &&
"Expected intrinsic call!");
2582 FMF = FPMO->getFastMathFlags();
2588 std::back_inserter(ParamTys),
2589 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2594 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2608 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2623 Builder.SetInsertPoint(NewPhi);
2625 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2630void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2635 "This function should not be visited twice for the same VF");
2658 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2659 assert(WideningDecision != CM_Unknown &&
2660 "Widening decision should be ready at this moment");
2662 if (Ptr == Store->getValueOperand())
2663 return WideningDecision == CM_Scalarize;
2665 "Ptr is neither a value or pointer operand");
2666 return WideningDecision != CM_GatherScatter;
2671 auto IsLoopVaryingGEP = [&](
Value *
V) {
2682 if (!IsLoopVaryingGEP(Ptr))
2694 if (IsScalarUse(MemAccess, Ptr) &&
2698 PossibleNonScalarPtrs.
insert(
I);
2714 for (
auto *BB : TheLoop->
blocks())
2715 for (
auto &
I : *BB) {
2717 EvaluatePtrUse(Load,
Load->getPointerOperand());
2719 EvaluatePtrUse(Store,
Store->getPointerOperand());
2720 EvaluatePtrUse(Store,
Store->getValueOperand());
2723 for (
auto *
I : ScalarPtrs)
2724 if (!PossibleNonScalarPtrs.
count(
I)) {
2732 auto ForcedScalar = ForcedScalars.
find(VF);
2733 if (ForcedScalar != ForcedScalars.
end())
2734 for (
auto *
I : ForcedScalar->second) {
2735 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2744 while (Idx != Worklist.
size()) {
2746 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2750 auto *J = cast<Instruction>(U);
2751 return !TheLoop->contains(J) || Worklist.count(J) ||
2752 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2753 IsScalarUse(J, Src));
2756 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2762 for (
const auto &Induction :
Legal->getInductionVars()) {
2763 auto *Ind = Induction.first;
2768 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2773 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2775 return Induction.second.getKind() ==
2783 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2795 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2800 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2801 auto *I = cast<Instruction>(U);
2802 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2803 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2805 if (!ScalarIndUpdate)
2810 Worklist.
insert(IndUpdate);
2811 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2812 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2826 switch(
I->getOpcode()) {
2829 case Instruction::Call:
2833 case Instruction::Load:
2834 case Instruction::Store: {
2843 TTI.isLegalMaskedGather(VTy, Alignment))
2845 TTI.isLegalMaskedScatter(VTy, Alignment));
2847 case Instruction::UDiv:
2848 case Instruction::SDiv:
2849 case Instruction::SRem:
2850 case Instruction::URem: {
2871 if (
Legal->blockNeedsPredication(
I->getParent()))
2883 switch(
I->getOpcode()) {
2886 "instruction should have been considered by earlier checks");
2887 case Instruction::Call:
2891 "should have returned earlier for calls not needing a mask");
2893 case Instruction::Load:
2896 case Instruction::Store: {
2904 case Instruction::UDiv:
2905 case Instruction::URem:
2907 return !
Legal->isInvariant(
I->getOperand(1));
2908 case Instruction::SDiv:
2909 case Instruction::SRem:
2922 if (!
Legal->blockNeedsPredication(BB))
2929 "Header has smaller block freq than dominated BB?");
2930 return std::round((
double)HeaderFreq /
BBFreq);
2933std::pair<InstructionCost, InstructionCost>
2936 assert(
I->getOpcode() == Instruction::UDiv ||
2937 I->getOpcode() == Instruction::SDiv ||
2938 I->getOpcode() == Instruction::SRem ||
2939 I->getOpcode() == Instruction::URem);
2948 ScalarizationCost = 0;
2954 ScalarizationCost +=
2958 ScalarizationCost +=
2960 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2978 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2983 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2985 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2986 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2988 return {ScalarizationCost, SafeDivisorCost};
2995 "Decision should not be set yet.");
2997 assert(Group &&
"Must have a group.");
2998 unsigned InterleaveFactor = Group->getFactor();
3002 auto &
DL =
I->getDataLayout();
3014 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3015 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3020 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3022 if (MemberNI != ScalarNI)
3025 if (MemberNI && ScalarNI &&
3026 ScalarTy->getPointerAddressSpace() !=
3027 MemberTy->getPointerAddressSpace())
3036 bool PredicatedAccessRequiresMasking =
3038 Legal->isMaskRequired(
I);
3039 bool LoadAccessWithGapsRequiresEpilogMasking =
3042 bool StoreAccessWithGapsRequiresMasking =
3044 if (!PredicatedAccessRequiresMasking &&
3045 !LoadAccessWithGapsRequiresEpilogMasking &&
3046 !StoreAccessWithGapsRequiresMasking)
3053 "Masked interleave-groups for predicated accesses are not enabled.");
3055 if (Group->isReverse())
3059 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3060 StoreAccessWithGapsRequiresMasking;
3068 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3080 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3090 auto &
DL =
I->getDataLayout();
3097void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3104 "This function should not be visited twice for the same VF");
3108 Uniforms[VF].
clear();
3116 auto IsOutOfScope = [&](
Value *V) ->
bool {
3128 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3129 if (IsOutOfScope(
I)) {
3134 if (isPredicatedInst(
I)) {
3136 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3140 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3150 for (BasicBlock *
E : Exiting) {
3154 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3155 AddToWorklistIfAllowed(Cmp);
3164 if (PrevVF.isVector()) {
3165 auto Iter = Uniforms.
find(PrevVF);
3166 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3169 if (!
Legal->isUniformMemOp(*
I, VF))
3179 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3180 InstWidening WideningDecision = getWideningDecision(
I, VF);
3181 assert(WideningDecision != CM_Unknown &&
3182 "Widening decision should be ready at this moment");
3184 if (IsUniformMemOpUse(
I))
3187 return (WideningDecision == CM_Widen ||
3188 WideningDecision == CM_Widen_Reverse ||
3189 WideningDecision == CM_Interleave);
3199 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3207 SetVector<Value *> HasUniformUse;
3211 for (
auto *BB : TheLoop->
blocks())
3212 for (
auto &
I : *BB) {
3214 switch (
II->getIntrinsicID()) {
3215 case Intrinsic::sideeffect:
3216 case Intrinsic::experimental_noalias_scope_decl:
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_start:
3219 case Intrinsic::lifetime_end:
3221 AddToWorklistIfAllowed(&
I);
3229 if (IsOutOfScope(EVI->getAggregateOperand())) {
3230 AddToWorklistIfAllowed(EVI);
3236 "Expected aggregate value to be call return value");
3249 if (IsUniformMemOpUse(&
I))
3250 AddToWorklistIfAllowed(&
I);
3252 if (IsVectorizedMemAccessUse(&
I, Ptr))
3253 HasUniformUse.
insert(Ptr);
3259 for (
auto *V : HasUniformUse) {
3260 if (IsOutOfScope(V))
3263 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3264 auto *UI = cast<Instruction>(U);
3265 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3267 if (UsersAreMemAccesses)
3268 AddToWorklistIfAllowed(
I);
3275 while (Idx != Worklist.
size()) {
3278 for (
auto *OV :
I->operand_values()) {
3280 if (IsOutOfScope(OV))
3285 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3291 auto *J = cast<Instruction>(U);
3292 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3294 AddToWorklistIfAllowed(OI);
3305 for (
const auto &Induction :
Legal->getInductionVars()) {
3306 auto *Ind = Induction.first;
3311 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3312 auto *I = cast<Instruction>(U);
3313 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3314 IsVectorizedMemAccessUse(I, Ind);
3321 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3322 auto *I = cast<Instruction>(U);
3323 return I == Ind || Worklist.count(I) ||
3324 IsVectorizedMemAccessUse(I, IndUpdate);
3326 if (!UniformIndUpdate)
3330 AddToWorklistIfAllowed(Ind);
3331 AddToWorklistIfAllowed(IndUpdate);
3340 if (
Legal->getRuntimePointerChecking()->Need) {
3342 "runtime pointer checks needed. Enable vectorization of this "
3343 "loop with '#pragma clang loop vectorize(enable)' when "
3344 "compiling with -Os/-Oz",
3345 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3349 if (!
PSE.getPredicate().isAlwaysTrue()) {
3351 "runtime SCEV checks needed. Enable vectorization of this "
3352 "loop with '#pragma clang loop vectorize(enable)' when "
3353 "compiling with -Os/-Oz",
3354 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3359 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3361 "runtime stride == 1 checks needed. Enable vectorization of "
3362 "this loop without such check by compiling with -Os/-Oz",
3363 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3370bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3371 if (IsScalableVectorizationAllowed)
3372 return *IsScalableVectorizationAllowed;
3374 IsScalableVectorizationAllowed =
false;
3378 if (Hints->isScalableVectorizationDisabled()) {
3380 "ScalableVectorizationDisabled", ORE, TheLoop);
3384 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3387 std::numeric_limits<ElementCount::ScalarTy>::max());
3396 if (!canVectorizeReductions(MaxScalableVF)) {
3398 "Scalable vectorization not supported for the reduction "
3399 "operations found in this loop.",
3400 "ScalableVFUnfeasible", ORE, TheLoop);
3406 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3411 "for all element types found in this loop.",
3412 "ScalableVFUnfeasible", ORE, TheLoop);
3418 "for safe distance analysis.",
3419 "ScalableVFUnfeasible", ORE, TheLoop);
3423 IsScalableVectorizationAllowed =
true;
3428LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3429 if (!isScalableVectorizationAllowed())
3433 std::numeric_limits<ElementCount::ScalarTy>::max());
3434 if (
Legal->isSafeForAnyVectorWidth())
3435 return MaxScalableVF;
3443 "Max legal vector width too small, scalable vectorization "
3445 "ScalableVFUnfeasible", ORE, TheLoop);
3447 return MaxScalableVF;
3450FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3451 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3453 unsigned SmallestType, WidestType;
3454 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3460 unsigned MaxSafeElementsPowerOf2 =
3462 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3463 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3464 MaxSafeElementsPowerOf2 =
3465 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3468 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3470 if (!
Legal->isSafeForAnyVectorWidth())
3471 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3473 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3475 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3480 auto MaxSafeUserVF =
3481 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3483 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3486 return FixedScalableVFPair(
3492 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3498 <<
" is unsafe, clamping to max safe VF="
3499 << MaxSafeFixedVF <<
".\n");
3501 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3504 <<
"User-specified vectorization factor "
3505 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3506 <<
" is unsafe, clamping to maximum safe vectorization factor "
3507 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3509 return MaxSafeFixedVF;
3514 <<
" is ignored because scalable vectors are not "
3517 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3520 <<
"User-specified vectorization factor "
3521 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3522 <<
" is ignored because the target does not support scalable "
3523 "vectors. The compiler will pick a more suitable value.";
3527 <<
" is unsafe. Ignoring scalable UserVF.\n");
3529 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3532 <<
"User-specified vectorization factor "
3533 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3534 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3535 "more suitable value.";
3540 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3541 <<
" / " << WidestType <<
" bits.\n");
3546 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3547 MaxSafeFixedVF, FoldTailByMasking))
3551 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3552 MaxSafeScalableVF, FoldTailByMasking))
3553 if (MaxVF.isScalable()) {
3554 Result.ScalableVF = MaxVF;
3555 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3564 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3568 "Not inserting runtime ptr check for divergent target",
3569 "runtime pointer checks needed. Not enabled for divergent target",
3570 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3576 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3579 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3582 "loop trip count is one, irrelevant for vectorization",
3593 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3597 "Trip count computation wrapped",
3598 "backedge-taken count is -1, loop trip count wrapped to 0",
3603 switch (ScalarEpilogueStatus) {
3605 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3610 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3611 <<
"LV: Not allowing scalar epilogue, creating predicated "
3612 <<
"vector loop.\n");
3619 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3621 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3637 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3638 "No decisions should have been taken at this point");
3648 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3652 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3653 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3654 *MaxPowerOf2RuntimeVF,
3657 MaxPowerOf2RuntimeVF = std::nullopt;
3660 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3664 !
Legal->hasUncountableEarlyExit())
3666 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3671 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3673 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3674 "Invalid loop count");
3676 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3683 if (MaxPowerOf2RuntimeVF > 0u) {
3685 "MaxFixedVF must be a power of 2");
3686 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3688 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3694 if (ExpectedTC && ExpectedTC->isFixed() &&
3695 ExpectedTC->getFixedValue() <=
3696 TTI.getMinTripCountTailFoldingThreshold()) {
3697 if (MaxPowerOf2RuntimeVF > 0u) {
3703 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3704 "remain for any chosen VF.\n");
3711 "The trip count is below the minial threshold value.",
3712 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3727 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3728 "try to generate VP Intrinsics with scalable vector "
3733 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3743 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3744 "scalar epilogue instead.\n");
3750 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3756 "unable to calculate the loop count due to complex control flow",
3762 "Cannot optimize for size and vectorize at the same time.",
3763 "cannot optimize for size and vectorize at the same time. "
3764 "Enable vectorization of this loop with '#pragma clang loop "
3765 "vectorize(enable)' when compiling with -Os/-Oz",
3777 if (
TTI.shouldConsiderVectorizationRegPressure())
3793 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3795 Legal->hasVectorCallVariants())));
3798ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3799 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3801 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3802 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3803 auto Min = Attr.getVScaleRangeMin();
3810 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3813 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3821 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3822 "exceeding the constant trip count: "
3823 << ClampedUpperTripCount <<
"\n");
3825 FoldTailByMasking ? VF.
isScalable() :
false);
3830ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3831 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3832 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3833 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3839 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3841 "Scalable flags must match");
3849 ComputeScalableMaxVF);
3850 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3852 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3854 if (!MaxVectorElementCount) {
3856 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3857 <<
" vector registers.\n");
3861 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3862 MaxTripCount, FoldTailByMasking);
3865 if (MaxVF != MaxVectorElementCount)
3873 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3875 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3877 if (useMaxBandwidth(RegKind)) {
3880 ComputeScalableMaxVF);
3881 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3883 if (ElementCount MinVF =
3885 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3887 <<
") with target's minimum: " << MinVF <<
'\n');
3892 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3894 if (MaxVectorElementCount != MaxVF) {
3898 invalidateCostModelingDecisions();
3906 const unsigned MaxTripCount,
3908 bool IsEpilogue)
const {
3914 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3915 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3916 if (
A.Width.isScalable())
3917 EstimatedWidthA *= *VScale;
3918 if (
B.Width.isScalable())
3919 EstimatedWidthB *= *VScale;
3926 return CostA < CostB ||
3927 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3933 A.Width.isScalable() && !
B.Width.isScalable();
3944 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3946 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3958 return VectorCost * (MaxTripCount / VF) +
3959 ScalarCost * (MaxTripCount % VF);
3960 return VectorCost *
divideCeil(MaxTripCount, VF);
3963 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3964 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3965 return CmpFn(RTCostA, RTCostB);
3971 bool IsEpilogue)
const {
3973 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3979 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3981 for (
const auto &Plan : VPlans) {
3990 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
3992 precomputeCosts(*Plan, VF, CostCtx);
3995 for (
auto &R : *VPBB) {
3996 if (!R.cost(VF, CostCtx).isValid())
4002 if (InvalidCosts.
empty())
4010 for (
auto &Pair : InvalidCosts)
4015 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4016 unsigned NA = Numbering[
A.first];
4017 unsigned NB = Numbering[
B.first];
4032 Subset =
Tail.take_front(1);
4039 [](
const auto *R) {
return Instruction::PHI; })
4040 .Case<VPWidenStoreRecipe>(
4041 [](
const auto *R) {
return Instruction::Store; })
4042 .Case<VPWidenLoadRecipe>(
4043 [](
const auto *R) {
return Instruction::Load; })
4044 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4045 [](
const auto *R) {
return Instruction::Call; })
4048 [](
const auto *R) {
return R->getOpcode(); })
4050 return R->getStoredValues().empty() ? Instruction::Load
4051 : Instruction::Store;
4053 .Case<VPReductionRecipe>([](
const auto *R) {
4062 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4063 std::string OutString;
4065 assert(!Subset.empty() &&
"Unexpected empty range");
4066 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4067 for (
const auto &Pair : Subset)
4068 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4070 if (Opcode == Instruction::Call) {
4073 Name =
Int->getIntrinsicName();
4077 WidenCall ? WidenCall->getCalledScalarFunction()
4079 ->getLiveInIRValue());
4082 OS <<
" call to " << Name;
4087 Tail =
Tail.drop_front(Subset.size());
4091 Subset =
Tail.take_front(Subset.size() + 1);
4092 }
while (!
Tail.empty());
4114 switch (R.getVPDefID()) {
4115 case VPDef::VPDerivedIVSC:
4116 case VPDef::VPScalarIVStepsSC:
4117 case VPDef::VPReplicateSC:
4118 case VPDef::VPInstructionSC:
4119 case VPDef::VPCanonicalIVPHISC:
4120 case VPDef::VPVectorPointerSC:
4121 case VPDef::VPVectorEndPointerSC:
4122 case VPDef::VPExpandSCEVSC:
4123 case VPDef::VPEVLBasedIVPHISC:
4124 case VPDef::VPPredInstPHISC:
4125 case VPDef::VPBranchOnMaskSC:
4127 case VPDef::VPReductionSC:
4128 case VPDef::VPActiveLaneMaskPHISC:
4129 case VPDef::VPWidenCallSC:
4130 case VPDef::VPWidenCanonicalIVSC:
4131 case VPDef::VPWidenCastSC:
4132 case VPDef::VPWidenGEPSC:
4133 case VPDef::VPWidenIntrinsicSC:
4134 case VPDef::VPWidenSC:
4135 case VPDef::VPBlendSC:
4136 case VPDef::VPFirstOrderRecurrencePHISC:
4137 case VPDef::VPHistogramSC:
4138 case VPDef::VPWidenPHISC:
4139 case VPDef::VPWidenIntOrFpInductionSC:
4140 case VPDef::VPWidenPointerInductionSC:
4141 case VPDef::VPReductionPHISC:
4142 case VPDef::VPInterleaveEVLSC:
4143 case VPDef::VPInterleaveSC:
4144 case VPDef::VPWidenLoadEVLSC:
4145 case VPDef::VPWidenLoadSC:
4146 case VPDef::VPWidenStoreEVLSC:
4147 case VPDef::VPWidenStoreSC:
4153 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4154 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4170 if (R.getNumDefinedValues() == 0 &&
4179 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4181 if (!Visited.
insert({ScalarTy}).second)
4195 [](
auto *VPRB) { return VPRB->isReplicator(); });
4201 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4202 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4205 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4206 "Expected Scalar VF to be a candidate");
4213 if (ForceVectorization &&
4214 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4218 ChosenFactor.
Cost = InstructionCost::getMax();
4221 for (
auto &
P : VPlans) {
4223 P->vectorFactors().end());
4226 if (
any_of(VFs, [
this](ElementCount VF) {
4227 return CM.shouldConsiderRegPressureForVF(VF);
4231 for (
unsigned I = 0;
I < VFs.size();
I++) {
4232 ElementCount VF = VFs[
I];
4240 if (CM.shouldConsiderRegPressureForVF(VF) &&
4248 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind, CM.PSE,
4250 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4251 assert(VectorRegion &&
"Expected to have a vector region!");
4254 for (VPRecipeBase &R : *VPBB) {
4258 switch (VPI->getOpcode()) {
4261 case Instruction::Select: {
4264 switch (WR->getOpcode()) {
4265 case Instruction::UDiv:
4266 case Instruction::SDiv:
4267 case Instruction::URem:
4268 case Instruction::SRem:
4274 C += VPI->cost(VF, CostCtx);
4278 unsigned Multiplier =
4281 C += VPI->cost(VF * Multiplier, CostCtx);
4285 C += VPI->cost(VF, CostCtx);
4297 <<
" costs: " << (Candidate.Cost / Width));
4300 << CM.getVScaleForTuning().value_or(1) <<
")");
4306 <<
"LV: Not considering vector loop of width " << VF
4307 <<
" because it will not generate any vector instructions.\n");
4314 <<
"LV: Not considering vector loop of width " << VF
4315 <<
" because it would cause replicated blocks to be generated,"
4316 <<
" which isn't allowed when optimizing for size.\n");
4320 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4321 ChosenFactor = Candidate;
4327 "There are conditional stores.",
4328 "store that is conditionally executed prevents vectorization",
4329 "ConditionalStore", ORE, OrigLoop);
4330 ChosenFactor = ScalarCost;
4334 !isMoreProfitable(ChosenFactor, ScalarCost,
4335 !CM.foldTailByMasking()))
dbgs()
4336 <<
"LV: Vectorization seems to be not beneficial, "
4337 <<
"but was forced by a user.\n");
4338 return ChosenFactor;
4342bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4343 ElementCount VF)
const {
4346 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4347 if (!Legal->isReductionVariable(&Phi))
4348 return Legal->isFixedOrderRecurrence(&Phi);
4349 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4350 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4356 for (
const auto &Entry :
Legal->getInductionVars()) {
4359 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4360 for (User *U :
PostInc->users())
4364 for (User *U :
Entry.first->users())
4373 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4387 if (!
TTI.preferEpilogueVectorization())
4392 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4397 :
TTI.getEpilogueVectorizationMinVF();
4405 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4409 if (!CM.isScalarEpilogueAllowed()) {
4410 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4411 "epilogue is allowed.\n");
4417 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4418 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4419 "is not a supported candidate.\n");
4424 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4427 return {ForcedEC, 0, 0};
4429 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4434 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4436 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4440 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4441 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4452 Type *TCType = Legal->getWidestInductionType();
4453 const SCEV *RemainingIterations =
nullptr;
4454 unsigned MaxTripCount = 0;
4458 const SCEV *KnownMinTC;
4460 bool ScalableRemIter =
false;
4464 ScalableRemIter = ScalableTC;
4465 RemainingIterations =
4467 }
else if (ScalableTC) {
4470 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4474 RemainingIterations =
4478 if (RemainingIterations->
isZero())
4488 << MaxTripCount <<
"\n");
4491 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4494 for (
auto &NextVF : ProfitableVFs) {
4501 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4503 (NextVF.Width.isScalable() &&
4505 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4514 if (!ScalableRemIter) {
4518 if (NextVF.Width.isScalable())
4525 if (Result.Width.isScalar() ||
4526 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4533 << Result.Width <<
"\n");
4537std::pair<unsigned, unsigned>
4539 unsigned MinWidth = -1U;
4540 unsigned MaxWidth = 8;
4546 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4550 MinWidth = std::min(
4554 MaxWidth = std::max(MaxWidth,
4559 MinWidth = std::min<unsigned>(
4560 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4561 MaxWidth = std::max<unsigned>(
4562 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4565 return {MinWidth, MaxWidth};
4573 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4587 if (!
Legal->isReductionVariable(PN))
4590 Legal->getRecurrenceDescriptor(PN);
4600 T = ST->getValueOperand()->getType();
4603 "Expected the load/store/recurrence type to be sized");
4631 if (!CM.isScalarEpilogueAllowed() &&
4632 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4637 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4638 "Unroll factor forced to be 1.\n");
4643 if (!Legal->isSafeForAnyVectorWidth())
4652 const bool HasReductions =
4658 if (LoopCost == 0) {
4660 LoopCost = CM.expectedCost(VF);
4662 LoopCost = cost(Plan, VF);
4663 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4674 for (
auto &Pair : R.MaxLocalUsers) {
4675 Pair.second = std::max(Pair.second, 1U);
4689 unsigned IC = UINT_MAX;
4691 for (
const auto &Pair : R.MaxLocalUsers) {
4692 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4695 << TTI.getRegisterClassName(Pair.first)
4696 <<
" register class\n");
4704 unsigned MaxLocalUsers = Pair.second;
4705 unsigned LoopInvariantRegs = 0;
4706 if (R.LoopInvariantRegs.contains(Pair.first))
4707 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4709 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4713 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4714 std::max(1U, (MaxLocalUsers - 1)));
4717 IC = std::min(IC, TmpIC);
4721 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4737 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4739 unsigned AvailableTC =
4745 if (CM.requiresScalarEpilogue(VF.
isVector()))
4748 unsigned InterleaveCountLB =
bit_floor(std::max(
4749 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4763 unsigned InterleaveCountUB =
bit_floor(std::max(
4764 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4765 MaxInterleaveCount = InterleaveCountLB;
4767 if (InterleaveCountUB != InterleaveCountLB) {
4768 unsigned TailTripCountUB =
4769 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4770 unsigned TailTripCountLB =
4771 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4774 if (TailTripCountUB == TailTripCountLB)
4775 MaxInterleaveCount = InterleaveCountUB;
4783 MaxInterleaveCount = InterleaveCountLB;
4787 assert(MaxInterleaveCount > 0 &&
4788 "Maximum interleave count must be greater than 0");
4792 if (IC > MaxInterleaveCount)
4793 IC = MaxInterleaveCount;
4796 IC = std::max(1u, IC);
4798 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4802 if (VF.
isVector() && HasReductions) {
4803 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4811 bool ScalarInterleavingRequiresPredication =
4813 return Legal->blockNeedsPredication(BB);
4815 bool ScalarInterleavingRequiresRuntimePointerCheck =
4816 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4821 <<
"LV: IC is " << IC <<
'\n'
4822 <<
"LV: VF is " << VF <<
'\n');
4823 const bool AggressivelyInterleaveReductions =
4824 TTI.enableAggressiveInterleaving(HasReductions);
4825 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4826 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4835 unsigned NumStores = 0;
4836 unsigned NumLoads = 0;
4850 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4851 NumStores += StoreOps;
4853 NumLoads += InterleaveR->getNumDefinedValues();
4868 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4869 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4875 bool HasSelectCmpReductions =
4879 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4880 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4881 RedR->getRecurrenceKind()) ||
4882 RecurrenceDescriptor::isFindIVRecurrenceKind(
4883 RedR->getRecurrenceKind()));
4885 if (HasSelectCmpReductions) {
4886 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4895 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4896 bool HasOrderedReductions =
4899 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4901 return RedR && RedR->isOrdered();
4903 if (HasOrderedReductions) {
4905 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4910 SmallIC = std::min(SmallIC,
F);
4911 StoresIC = std::min(StoresIC,
F);
4912 LoadsIC = std::min(LoadsIC,
F);
4916 std::max(StoresIC, LoadsIC) > SmallIC) {
4918 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4919 return std::max(StoresIC, LoadsIC);
4924 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4928 return std::max(IC / 2, SmallIC);
4931 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4937 if (AggressivelyInterleaveReductions) {
4946bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4956 assert((isPredicatedInst(
I)) &&
4957 "Expecting a scalar emulated instruction");
4970 if (InstsToScalarize.contains(VF) ||
4971 PredicatedBBsAfterVectorization.contains(VF))
4977 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4987 ScalarCostsTy ScalarCosts;
4994 !useEmulatedMaskMemRefHack(&
I, VF) &&
4995 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4996 for (
const auto &[
I, IC] : ScalarCosts)
4997 ScalarCostsVF.
insert({
I, IC});
5000 for (
const auto &[
I,
Cost] : ScalarCosts) {
5002 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5005 CallWideningDecisions[{CI, VF}].Cost =
Cost;
5009 PredicatedBBsAfterVectorization[VF].insert(BB);
5011 if (Pred->getSingleSuccessor() == BB)
5012 PredicatedBBsAfterVectorization[VF].insert(Pred);
5020 assert(!isUniformAfterVectorization(PredInst, VF) &&
5021 "Instruction marked uniform-after-vectorization will be predicated");
5039 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5040 isScalarAfterVectorization(
I, VF))
5045 if (isScalarWithPredication(
I, VF))
5058 for (
Use &U :
I->operands())
5060 if (isUniformAfterVectorization(J, VF))
5071 while (!Worklist.
empty()) {
5075 if (ScalarCosts.contains(
I))
5095 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5098 ScalarCost +=
TTI.getScalarizationOverhead(
5111 for (Use &U :
I->operands())
5114 "Instruction has non-scalar type");
5115 if (CanBeScalarized(J))
5117 else if (needsExtract(J, VF)) {
5129 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5133 Discount += VectorCost - ScalarCost;
5134 ScalarCosts[
I] = ScalarCost;
5150 ValuesToIgnoreForVF);
5157 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5180 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5181 << VF <<
" For instruction: " <<
I <<
'\n');
5209 const Loop *TheLoop) {
5216LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5219 "Scalarization cost of instruction implies vectorization.");
5221 return InstructionCost::getInvalid();
5224 auto *SE = PSE.
getSE();
5255 if (isPredicatedInst(
I)) {
5260 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5266 if (useEmulatedMaskMemRefHack(
I, VF))
5276LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5282 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5284 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5285 "Stride should be 1 or -1 for consecutive memory access");
5288 if (
Legal->isMaskRequired(
I)) {
5289 unsigned IID =
I->getOpcode() == Instruction::Load
5290 ? Intrinsic::masked_load
5291 : Intrinsic::masked_store;
5293 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5300 bool Reverse = ConsecutiveStride < 0;
5308LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5326 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5334 if (!IsLoopInvariantStoreValue)
5341LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5349 if (!
Legal->isUniform(Ptr, VF))
5352 unsigned IID =
I->getOpcode() == Instruction::Load
5353 ? Intrinsic::masked_gather
5354 : Intrinsic::masked_scatter;
5357 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5358 Legal->isMaskRequired(
I), Alignment,
I),
5363LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5365 const auto *Group = getInterleavedAccessGroup(
I);
5366 assert(Group &&
"Fail to get an interleaved access group.");
5373 unsigned InterleaveFactor = Group->getFactor();
5374 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5377 SmallVector<unsigned, 4> Indices;
5378 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5379 if (Group->getMember(IF))
5383 bool UseMaskForGaps =
5384 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5387 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5391 if (Group->isReverse()) {
5394 "Reverse masked interleaved access not supported.");
5395 Cost += Group->getNumMembers() *
5402std::optional<InstructionCost>
5409 return std::nullopt;
5427 return std::nullopt;
5438 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5440 return std::nullopt;
5446 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5455 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5458 BaseCost =
TTI.getArithmeticReductionCost(
5466 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5483 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5489 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5501 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5504 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5506 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5514 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5515 return I == RetI ? RedCost : 0;
5517 !
TheLoop->isLoopInvariant(RedOp)) {
5526 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5528 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5529 return I == RetI ? RedCost : 0;
5530 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5534 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5553 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5559 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5560 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5561 ExtraExtCost =
TTI.getCastInstrCost(
5568 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5569 return I == RetI ? RedCost : 0;
5573 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5579 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5580 return I == RetI ? RedCost : 0;
5584 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5588LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5599 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5600 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5603 return getWideningCost(
I, VF);
5607LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5608 ElementCount VF)
const {
5613 return InstructionCost::getInvalid();
5641 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5646 for (
auto *V : filterExtractingOperands(
Ops, VF))
5669 if (
Legal->isUniformMemOp(
I, VF)) {
5670 auto IsLegalToScalarize = [&]() {
5690 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5702 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5708 if (GatherScatterCost < ScalarizationCost)
5718 int ConsecutiveStride =
Legal->isConsecutivePtr(
5720 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5721 "Expected consecutive stride.");
5730 unsigned NumAccesses = 1;
5733 assert(Group &&
"Fail to get an interleaved access group.");
5739 NumAccesses = Group->getNumMembers();
5741 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5746 ? getGatherScatterCost(&
I, VF) * NumAccesses
5750 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5756 if (InterleaveCost <= GatherScatterCost &&
5757 InterleaveCost < ScalarizationCost) {
5759 Cost = InterleaveCost;
5760 }
else if (GatherScatterCost < ScalarizationCost) {
5762 Cost = GatherScatterCost;
5765 Cost = ScalarizationCost;
5772 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5773 if (
auto *
I = Group->getMember(Idx)) {
5775 getMemInstScalarizationCost(
I, VF));
5791 if (
TTI.prefersVectorizedAddressing())
5800 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5808 while (!Worklist.
empty()) {
5810 for (
auto &
Op :
I->operands())
5813 AddrDefs.
insert(InstOp).second)
5817 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5821 for (
User *U :
LI->users()) {
5831 for (
auto *
I : AddrDefs) {
5852 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5853 if (
Instruction *Member = Group->getMember(Idx)) {
5857 getMemoryInstructionCost(Member,
5859 : getMemInstScalarizationCost(Member, VF);
5872 ForcedScalars[VF].insert(
I);
5879 "Trying to set a vectorization decision for a scalar VF");
5881 auto ForcedScalar = ForcedScalars.find(VF);
5896 for (
auto &ArgOp : CI->
args())
5905 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5915 "Unexpected valid cost for scalarizing scalable vectors");
5922 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5923 ForcedScalar->second.contains(CI)) ||
5931 bool MaskRequired =
Legal->isMaskRequired(CI);
5934 for (
Type *ScalarTy : ScalarTys)
5943 std::nullopt, *RedCost);
5954 if (Info.Shape.VF != VF)
5958 if (MaskRequired && !Info.isMasked())
5962 bool ParamsOk =
true;
5964 switch (Param.ParamKind) {
5970 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6007 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6018 if (VectorCost <=
Cost) {
6040 return !OpI || !
TheLoop->contains(OpI) ||
6044 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6056 return InstsToScalarize[VF][
I];
6059 auto ForcedScalar = ForcedScalars.find(VF);
6060 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6061 auto InstSet = ForcedScalar->second;
6062 if (InstSet.count(
I))
6067 Type *RetTy =
I->getType();
6070 auto *SE =
PSE.getSE();
6074 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6079 auto Scalarized = InstsToScalarize.find(VF);
6080 assert(Scalarized != InstsToScalarize.end() &&
6081 "VF not yet analyzed for scalarization profitability");
6082 return !Scalarized->second.count(
I) &&
6084 auto *UI = cast<Instruction>(U);
6085 return !Scalarized->second.count(UI);
6094 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6095 I->getOpcode() == Instruction::PHI ||
6096 (
I->getOpcode() == Instruction::BitCast &&
6097 I->getType()->isPointerTy()) ||
6098 HasSingleCopyAfterVectorization(
I, VF));
6104 !
TTI.getNumberOfParts(VectorTy))
6108 switch (
I->getOpcode()) {
6109 case Instruction::GetElementPtr:
6115 case Instruction::Br: {
6122 bool ScalarPredicatedBB =
false;
6125 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6126 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6128 ScalarPredicatedBB =
true;
6130 if (ScalarPredicatedBB) {
6138 TTI.getScalarizationOverhead(
6146 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6154 case Instruction::Switch: {
6156 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6158 return Switch->getNumCases() *
6159 TTI.getCmpSelInstrCost(
6161 toVectorTy(Switch->getCondition()->getType(), VF),
6165 case Instruction::PHI: {
6182 Type *ResultTy = Phi->getType();
6188 auto *Phi = dyn_cast<PHINode>(U);
6189 if (Phi && Phi->getParent() == TheLoop->getHeader())
6194 auto &ReductionVars =
Legal->getReductionVars();
6195 auto Iter = ReductionVars.find(HeaderUser);
6196 if (Iter != ReductionVars.end() &&
6198 Iter->second.getRecurrenceKind()))
6201 return (Phi->getNumIncomingValues() - 1) *
6202 TTI.getCmpSelInstrCost(
6203 Instruction::Select,
toVectorTy(ResultTy, VF),
6213 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6214 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6218 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6220 case Instruction::UDiv:
6221 case Instruction::SDiv:
6222 case Instruction::URem:
6223 case Instruction::SRem:
6227 ScalarCost : SafeDivisorCost;
6231 case Instruction::Add:
6232 case Instruction::Sub: {
6233 auto Info =
Legal->getHistogramInfo(
I);
6240 if (!RHS || RHS->getZExtValue() != 1)
6242 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6246 Type *ScalarTy =
I->getType();
6250 {PtrTy, ScalarTy, MaskTy});
6253 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6254 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6258 case Instruction::FAdd:
6259 case Instruction::FSub:
6260 case Instruction::Mul:
6261 case Instruction::FMul:
6262 case Instruction::FDiv:
6263 case Instruction::FRem:
6264 case Instruction::Shl:
6265 case Instruction::LShr:
6266 case Instruction::AShr:
6267 case Instruction::And:
6268 case Instruction::Or:
6269 case Instruction::Xor: {
6273 if (
I->getOpcode() == Instruction::Mul &&
6274 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6275 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6276 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6277 PSE.getSCEV(
I->getOperand(1))->isOne())))
6286 Value *Op2 =
I->getOperand(1);
6292 auto Op2Info =
TTI.getOperandInfo(Op2);
6298 return TTI.getArithmeticInstrCost(
6300 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6301 Op2Info, Operands,
I,
TLI);
6303 case Instruction::FNeg: {
6304 return TTI.getArithmeticInstrCost(
6306 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6307 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6308 I->getOperand(0),
I);
6310 case Instruction::Select: {
6315 const Value *Op0, *Op1;
6326 return TTI.getArithmeticInstrCost(
6328 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6331 Type *CondTy =
SI->getCondition()->getType();
6337 Pred = Cmp->getPredicate();
6338 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6339 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6340 {TTI::OK_AnyValue, TTI::OP_None},
I);
6342 case Instruction::ICmp:
6343 case Instruction::FCmp: {
6344 Type *ValTy =
I->getOperand(0)->getType();
6350 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6351 "if both the operand and the compare are marked for "
6352 "truncation, they must have the same bitwidth");
6357 return TTI.getCmpSelInstrCost(
6360 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6362 case Instruction::Store:
6363 case Instruction::Load: {
6368 "CM decision should be taken at this point");
6375 return getMemoryInstructionCost(
I, VF);
6377 case Instruction::BitCast:
6378 if (
I->getType()->isPointerTy())
6381 case Instruction::ZExt:
6382 case Instruction::SExt:
6383 case Instruction::FPToUI:
6384 case Instruction::FPToSI:
6385 case Instruction::FPExt:
6386 case Instruction::PtrToInt:
6387 case Instruction::IntToPtr:
6388 case Instruction::SIToFP:
6389 case Instruction::UIToFP:
6390 case Instruction::Trunc:
6391 case Instruction::FPTrunc: {
6395 "Expected a load or a store!");
6421 unsigned Opcode =
I->getOpcode();
6424 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6427 CCH = ComputeCCH(Store);
6430 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6431 Opcode == Instruction::FPExt) {
6433 CCH = ComputeCCH(Load);
6441 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6442 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6449 Type *SrcScalarTy =
I->getOperand(0)->getType();
6461 (
I->getOpcode() == Instruction::ZExt ||
6462 I->getOpcode() == Instruction::SExt))
6466 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6468 case Instruction::Call:
6470 case Instruction::ExtractValue:
6472 case Instruction::Alloca:
6477 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy,
CostKind);
6480 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6495 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6496 return RequiresScalarEpilogue &&
6510 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6511 return VecValuesToIgnore.contains(U) ||
6512 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6521 if (Group->getInsertPos() == &
I)
6524 DeadInterleavePointerOps.
push_back(PointerOp);
6530 if (Br->isConditional())
6537 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6540 Instruction *UI = cast<Instruction>(U);
6541 return !VecValuesToIgnore.contains(U) &&
6542 (!isAccessInterleaved(UI) ||
6543 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6563 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6575 if ((ThenEmpty && ElseEmpty) ||
6577 ElseBB->
phis().empty()) ||
6579 ThenBB->
phis().empty())) {
6591 return !VecValuesToIgnore.contains(U) &&
6592 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6600 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6609 for (
const auto &Reduction :
Legal->getReductionVars()) {
6616 for (
const auto &Induction :
Legal->getInductionVars()) {
6624 if (!InLoopReductions.empty())
6627 for (
const auto &Reduction :
Legal->getReductionVars()) {
6628 PHINode *Phi = Reduction.first;
6649 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6657 bool InLoop = !ReductionOperations.
empty();
6660 InLoopReductions.insert(Phi);
6663 for (
auto *
I : ReductionOperations) {
6664 InLoopReductionImmediateChains[
I] = LastChain;
6668 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6669 <<
" reduction for phi: " << *Phi <<
"\n");
6682 unsigned WidestType;
6686 TTI.enableScalableVectorization()
6691 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6702 if (!OrigLoop->isInnermost()) {
6712 <<
"overriding computed VF.\n");
6715 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6717 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6718 <<
"not supported by the target.\n");
6720 "Scalable vectorization requested but not supported by the target",
6721 "the scalable user-specified vectorization width for outer-loop "
6722 "vectorization cannot be used because the target does not support "
6723 "scalable vectors.",
6724 "ScalableVFUnfeasible", ORE, OrigLoop);
6729 "VF needs to be a power of two");
6731 <<
"VF " << VF <<
" to build VPlans.\n");
6741 return {VF, 0 , 0 };
6745 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6746 "VPlan-native path.\n");
6751 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6752 CM.collectValuesToIgnore();
6753 CM.collectElementTypesForWidening();
6760 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6764 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6765 "which requires masked-interleaved support.\n");
6766 if (CM.InterleaveInfo.invalidateGroups())
6770 CM.invalidateCostModelingDecisions();
6773 if (CM.foldTailByMasking())
6774 Legal->prepareToFoldTailByMasking();
6781 "UserVF ignored because it may be larger than the maximal safe VF",
6782 "InvalidUserVF", ORE, OrigLoop);
6785 "VF needs to be a power of two");
6788 CM.collectInLoopReductions();
6789 if (CM.selectUserVectorizationFactor(UserVF)) {
6791 buildVPlansWithVPRecipes(UserVF, UserVF);
6796 "InvalidCost", ORE, OrigLoop);
6809 CM.collectInLoopReductions();
6810 for (
const auto &VF : VFCandidates) {
6812 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6831 return CM.isUniformAfterVectorization(
I, VF);
6835 return CM.ValuesToIgnore.contains(UI) ||
6836 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6841 return CM.getPredBlockCostDivisor(
CostKind, BB);
6860 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6862 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6864 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6865 for (
Value *
Op : IVInsts[
I]->operands()) {
6867 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6873 for (User *U :
IV->users()) {
6886 if (TC == VF && !CM.foldTailByMasking())
6890 for (Instruction *IVInst : IVInsts) {
6895 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6896 <<
": induction instruction " << *IVInst <<
"\n";
6898 Cost += InductionCost;
6908 CM.TheLoop->getExitingBlocks(Exiting);
6909 SetVector<Instruction *> ExitInstrs;
6911 for (BasicBlock *EB : Exiting) {
6916 ExitInstrs.
insert(CondI);
6920 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6922 if (!OrigLoop->contains(CondI) ||
6927 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6928 <<
": exit condition instruction " << *CondI <<
"\n";
6934 any_of(OpI->users(), [&ExitInstrs](User *U) {
6935 return !ExitInstrs.contains(cast<Instruction>(U));
6947 for (BasicBlock *BB : OrigLoop->blocks()) {
6951 if (BB == OrigLoop->getLoopLatch())
6953 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6960 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6966 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6967 <<
": forced scalar " << *ForcedScalar <<
"\n";
6971 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6976 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6977 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6986 ElementCount VF)
const {
6987 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
6995 <<
" (Estimated cost per lane: ");
6997 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7020 return &WidenMem->getIngredient();
7029 if (!VPI || VPI->getOpcode() != Instruction::Select)
7033 switch (WR->getOpcode()) {
7034 case Instruction::UDiv:
7035 case Instruction::SDiv:
7036 case Instruction::URem:
7037 case Instruction::SRem:
7050 auto *IG =
IR->getInterleaveGroup();
7051 unsigned NumMembers = IG->getNumMembers();
7052 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7070 if (VPR->isPartialReduction())
7082 if (WidenMemR->isReverse()) {
7088 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7092 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7107 if (RepR->isSingleScalar() &&
7109 RepR->getUnderlyingInstr(), VF))
7112 if (
Instruction *UI = GetInstructionForCost(&R)) {
7117 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7129 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7131 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7134 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7135 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7137 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7147 VPlan &FirstPlan = *VPlans[0];
7153 ?
"Reciprocal Throughput\n"
7155 ?
"Instruction Latency\n"
7158 ?
"Code Size and Latency\n"
7163 "More than a single plan/VF w/o any plan having scalar VF");
7167 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7172 if (ForceVectorization) {
7179 for (
auto &
P : VPlans) {
7181 P->vectorFactors().end());
7185 return CM.shouldConsiderRegPressureForVF(VF);
7189 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7196 <<
"LV: Not considering vector loop of width " << VF
7197 <<
" because it will not generate any vector instructions.\n");
7203 <<
"LV: Not considering vector loop of width " << VF
7204 <<
" because it would cause replicated blocks to be generated,"
7205 <<
" which isn't allowed when optimizing for size.\n");
7212 if (CM.shouldConsiderRegPressureForVF(VF) &&
7214 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7215 << VF <<
" because it uses too many registers\n");
7219 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7220 BestFactor = CurrentFactor;
7223 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7224 ProfitableVFs.push_back(CurrentFactor);
7240 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7242 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7249 bool UsesEVLGatherScatter =
7253 return any_of(*VPBB, [](VPRecipeBase &R) {
7254 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7255 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7259 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7260 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7262 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7264 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7265 " VPlan cost model and legacy cost model disagreed");
7266 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7267 "when vectorizing, the scalar cost must be computed.");
7270 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7276template <
typename PredT>
7280 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
7296 "RdxResult must be ComputeFindIVResult");
7314 if (!EpiRedResult ||
7322 EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7325 if (!EpiRedHeaderPhi) {
7334 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7335 Value *MainResumeValue;
7339 "unexpected start recipe");
7340 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7342 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7344 [[maybe_unused]]
Value *StartV =
7345 EpiRedResult->getOperand(1)->getLiveInIRValue();
7348 "AnyOf expected to start with ICMP_NE");
7349 assert(Cmp->getOperand(1) == StartV &&
7350 "AnyOf expected to start by comparing main resume value to original "
7352 MainResumeValue = Cmp->getOperand(0);
7355 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7357 Value *Cmp, *OrigResumeV, *CmpOp;
7358 [[maybe_unused]]
bool IsExpectedPattern =
7359 match(MainResumeValue,
7365 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7366 MainResumeValue = OrigResumeV;
7381 "Trying to execute plan with unsupported VF");
7383 "Trying to execute plan with unsupported UF");
7385 ++LoopsEarlyExitVectorized;
7393 bool HasBranchWeights =
7395 if (HasBranchWeights) {
7396 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7398 BestVPlan, BestVF, VScale);
7403 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7416 OrigLoop->getStartLoc(),
7417 OrigLoop->getHeader())
7418 <<
"Created vector loop never executes due to insufficient trip "
7442 BestVPlan, VectorPH, CM.foldTailByMasking(),
7443 CM.requiresScalarEpilogue(BestVF.
isVector()));
7455 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7456 "count during epilogue vectorization");
7461 OrigLoop->getParentLoop(),
7462 Legal->getWidestInductionType());
7464#ifdef EXPENSIVE_CHECKS
7465 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7476 "final VPlan is invalid");
7483 if (!Exit->hasPredecessors())
7505 MDNode *LID = OrigLoop->getLoopID();
7506 unsigned OrigLoopInvocationWeight = 0;
7507 std::optional<unsigned> OrigAverageTripCount =
7519 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7521 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7523 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7524 OrigLoopInvocationWeight,
7526 DisableRuntimeUnroll);
7534 return ExpandedSCEVs;
7549 EPI.EpilogueIterationCountCheck =
7551 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7561 EPI.MainLoopIterationCountCheck =
7570 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7571 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7572 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7573 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7574 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7580 dbgs() <<
"intermediate fn:\n"
7581 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7587 assert(Bypass &&
"Expected valid bypass basic block.");
7591 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7592 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7596 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7622 return TCCheckBlock;
7635 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7643 R.moveBefore(*NewEntry, NewEntry->
end());
7647 Plan.setEntry(NewEntry);
7650 return OriginalScalarPH;
7655 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7656 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7657 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7663 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7670 VPI->
getOpcode() == Instruction::Store) &&
7671 "Must be called with either a load or store");
7678 "CM decision should be taken at this point.");
7691 if (
Legal->isMaskRequired(
I))
7716 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7722 GEP ?
GEP->getNoWrapFlags()
7726 Builder.insert(VectorPtr);
7730 if (VPI->
getOpcode() == Instruction::Load) {
7732 auto *LoadR =
new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse,
7733 *VPI,
Load->getDebugLoc());
7735 Builder.insert(LoadR);
7737 LoadR->getDebugLoc());
7746 Store->getDebugLoc());
7747 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7752VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7762 auto IsOptimizableIVTruncate =
7763 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7764 return [=](ElementCount VF) ->
bool {
7765 return CM.isOptimizableIVTruncate(K, VF);
7770 IsOptimizableIVTruncate(
I),
Range))
7777 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7785 return new VPWidenIntOrFpInductionRecipe(
7786 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7793 [
this, CI](ElementCount VF) {
7794 return CM.isScalarWithPredication(CI, VF);
7802 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7803 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7804 ID == Intrinsic::pseudoprobe ||
7805 ID == Intrinsic::experimental_noalias_scope_decl))
7812 bool ShouldUseVectorIntrinsic =
7814 [&](ElementCount VF) ->
bool {
7815 return CM.getCallWideningDecision(CI, VF).Kind ==
7819 if (ShouldUseVectorIntrinsic)
7820 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7824 std::optional<unsigned> MaskPos;
7828 [&](ElementCount VF) ->
bool {
7843 LoopVectorizationCostModel::CallWideningDecision Decision =
7844 CM.getCallWideningDecision(CI, VF);
7854 if (ShouldUseVectorCall) {
7855 if (MaskPos.has_value()) {
7863 VPValue *
Mask = Legal->isMaskRequired(CI)
7867 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7871 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7880 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7883 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7884 return CM.isScalarAfterVectorization(
I, VF) ||
7885 CM.isProfitableToScalarize(
I, VF) ||
7886 CM.isScalarWithPredication(
I, VF);
7897 case Instruction::SDiv:
7898 case Instruction::UDiv:
7899 case Instruction::SRem:
7900 case Instruction::URem: {
7903 if (CM.isPredicatedInst(
I)) {
7906 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7914 case Instruction::Add:
7915 case Instruction::And:
7916 case Instruction::AShr:
7917 case Instruction::FAdd:
7918 case Instruction::FCmp:
7919 case Instruction::FDiv:
7920 case Instruction::FMul:
7921 case Instruction::FNeg:
7922 case Instruction::FRem:
7923 case Instruction::FSub:
7924 case Instruction::ICmp:
7925 case Instruction::LShr:
7926 case Instruction::Mul:
7927 case Instruction::Or:
7928 case Instruction::Select:
7929 case Instruction::Shl:
7930 case Instruction::Sub:
7931 case Instruction::Xor:
7932 case Instruction::Freeze:
7933 return new VPWidenRecipe(*
I, VPI->
operands(), *VPI, *VPI,
7935 case Instruction::ExtractValue: {
7938 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7939 unsigned Idx = EVI->getIndices()[0];
7940 NewOps.push_back(Plan.getConstantInt(32, Idx));
7941 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7949 unsigned Opcode =
HI->Update->getOpcode();
7950 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7951 "Histogram update operation must be an Add or Sub");
7961 if (Legal->isMaskRequired(
HI->Store))
7964 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7971 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7974 bool IsPredicated = CM.isPredicatedInst(
I);
7982 case Intrinsic::assume:
7983 case Intrinsic::lifetime_start:
7984 case Intrinsic::lifetime_end:
8006 VPValue *BlockInMask =
nullptr;
8007 if (!IsPredicated) {
8011 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8022 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8024 "Should not predicate a uniform recipe");
8040 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8041 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8042 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8051 for (
const auto &[
_, Chains] : ChainsByPhi)
8052 for (
const auto &[PartialRdx,
_] : Chains)
8053 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8055 auto ExtendIsOnlyUsedByPartialReductions =
8057 return all_of(Extend->users(), [&](
const User *U) {
8058 return PartialReductionOps.contains(U);
8064 for (
const auto &[
_, Chains] : ChainsByPhi) {
8065 for (
const auto &[Chain, Scale] : Chains) {
8066 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8068 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8069 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8077 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8078 for (
const auto &[Chain, Scale] : Chains) {
8079 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8080 this](
const User *U) {
8082 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8083 return UI == RdxPhi;
8084 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8085 !OrigLoop->contains(UI->getParent());
8090 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8091 for (
const auto &[Chain,
_] : Chains)
8092 ScaledReductionMap.erase(Chain.Reduction);
8099bool VPRecipeBuilder::getScaledReductions(
8101 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8109 Value *
Op = Update->getOperand(0);
8110 Value *PhiOp = Update->getOperand(1);
8120 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8124 Op = Cast->getOperand(0);
8131 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8132 PHI = Chains.rbegin()->first.Reduction;
8134 Op = Update->getOperand(0);
8135 PhiOp = Update->getOperand(1);
8148 std::optional<unsigned> BinOpc;
8149 Type *ExtOpTypes[2] = {
nullptr};
8152 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8153 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8158 ExtOpTypes[
I] = ExtOpTypes[0];
8159 ExtKinds[
I] = ExtKinds[0];
8168 if (!CM.TheLoop->contains(Exts[
I]))
8175 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8190 if (!CollectExtInfo(
Ops))
8193 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8197 if (!CollectExtInfo(
Ops))
8200 ExtendUser = Update;
8201 BinOpc = std::nullopt;
8205 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8207 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8214 [&](ElementCount VF) {
8216 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8217 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8222 Chains.emplace_back(Chain, TargetScaleFactor);
8232 assert(!R->isPhi() &&
"phis must be handled earlier");
8238 if (VPI->
getOpcode() == Instruction::Trunc &&
8239 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8247 if (VPI->
getOpcode() == Instruction::Call)
8248 return tryToWidenCall(VPI,
Range);
8251 if (VPI->
getOpcode() == Instruction::Store)
8253 return tryToWidenHistogram(*HistInfo, VPI);
8255 if (VPI->
getOpcode() == Instruction::Load ||
8257 return tryToWidenMemory(VPI,
Range);
8262 if (!shouldWiden(Instr,
Range))
8265 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8273 CastR->getResultType(), CI, *VPI, *VPI,
8277 return tryToWiden(VPI);
8282 unsigned ScaleFactor) {
8283 assert(Reduction->getNumOperands() == 2 &&
8284 "Unexpected number of operands for partial reduction");
8286 VPValue *BinOp = Reduction->getOperand(0);
8295 RedPhiR->setVFScaleFactor(ScaleFactor);
8299 "all accumulators in chain must have same scale factor");
8301 auto *ReductionI = Reduction->getUnderlyingInstr();
8302 if (Reduction->getOpcode() == Instruction::Sub) {
8304 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8305 Ops.push_back(BinOp);
8312 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8320void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8329 OrigLoop, LI, DT, PSE.
getSE());
8334 LVer.prepareNoAliasMetadata();
8340 OrigLoop, *LI,
Legal->getWidestInductionType(),
8345 *VPlan0, PSE, *OrigLoop,
Legal->getInductionVars(),
8346 Legal->getReductionVars(),
Legal->getFixedOrderRecurrences(),
8349 auto MaxVFTimes2 = MaxVF * 2;
8351 VFRange SubRange = {VF, MaxVFTimes2};
8352 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8353 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8358 *Plan, CM.getMinimalBitwidths());
8361 if (CM.foldTailWithEVL())
8363 *Plan, CM.getMaxSafeElements());
8365 VPlans.push_back(std::move(Plan));
8371VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8374 using namespace llvm::VPlanPatternMatch;
8375 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8382 bool RequiresScalarEpilogueCheck =
8384 [
this](ElementCount VF) {
8385 return !CM.requiresScalarEpilogue(VF.
isVector());
8390 CM.foldTailByMasking());
8398 bool IVUpdateMayOverflow =
false;
8399 for (ElementCount VF :
Range)
8407 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8413 m_VPInstruction<Instruction::Add>(
8415 "Did not find the canonical IV increment");
8428 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8429 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8431 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8436 "Unsupported interleave factor for scalable vectors");
8441 InterleaveGroups.
insert(IG);
8448 *Plan, CM.foldTailByMasking());
8454 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8457 if (!CM.foldTailWithEVL())
8458 RecipeBuilder.collectScaledReductions(
Range);
8463 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8466 auto *MiddleVPBB = Plan->getMiddleBlock();
8470 DenseMap<VPValue *, VPValue *> Old2New;
8473 DenseSet<BasicBlock *> BlocksNeedingPredication;
8474 for (BasicBlock *BB : OrigLoop->blocks())
8475 if (CM.blockNeedsPredicationForAnyReason(BB))
8476 BlocksNeedingPredication.
insert(BB);
8479 *Plan, BlockMaskCache, BlocksNeedingPredication,
Range.Start);
8485 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8497 Builder.setInsertPoint(VPI);
8504 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8506 if (Legal->isInvariantStoreOfReduction(SI)) {
8507 auto *Recipe =
new VPReplicateRecipe(
8508 SI,
R.operands(),
true ,
nullptr , *VPI,
8510 Recipe->insertBefore(*MiddleVPBB, MBIP);
8512 R.eraseFromParent();
8516 VPRecipeBase *Recipe =
8517 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI,
Range);
8522 RecipeBuilder.setRecipe(Instr, Recipe);
8528 Builder.insert(Recipe);
8535 "Unexpected multidef recipe");
8536 R.eraseFromParent();
8545 RecipeBuilder.updateBlockMaskCache(Old2New);
8546 for (VPValue *Old : Old2New.
keys())
8547 Old->getDefiningRecipe()->eraseFromParent();
8551 "entry block must be set to a VPRegionBlock having a non-empty entry "
8557 DenseMap<VPValue *, VPValue *> IVEndValues;
8565 addReductionResultComputation(Plan, RecipeBuilder,
Range.Start);
8582 if (!CM.foldTailWithEVL()) {
8583 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8589 for (ElementCount VF :
Range)
8591 Plan->setName(
"Initial VPlan");
8597 InterleaveGroups, RecipeBuilder,
8598 CM.isScalarEpilogueAllowed());
8602 Legal->getLAI()->getSymbolicStrides());
8604 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8605 return Legal->blockNeedsPredication(BB);
8608 BlockNeedsPredication);
8620 bool WithoutRuntimeCheck =
8623 WithoutRuntimeCheck);
8636 assert(!OrigLoop->isInnermost());
8640 OrigLoop, *LI, Legal->getWidestInductionType(),
8649 for (ElementCount VF :
Range)
8654 [
this](PHINode *
P) {
8655 return Legal->getIntOrFpInductionDescriptor(
P);
8664 DenseMap<VPValue *, VPValue *> IVEndValues;
8671void LoopVectorizationPlanner::addReductionResultComputation(
8673 using namespace VPlanPatternMatch;
8674 VPTypeAnalysis TypeInfo(*Plan);
8675 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8676 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8679 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8681 for (VPRecipeBase &R :
8682 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8687 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8689 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8699 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8700 (!RR || !RR->isPartialReduction())) {
8702 std::optional<FastMathFlags> FMFs =
8707 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8708 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8717 if (CM.usePredicatedReductionSelect())
8728 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8734 VPInstruction *FinalReductionResult;
8735 VPBuilder::InsertPointGuard Guard(Builder);
8736 Builder.setInsertPoint(MiddleVPBB, IP);
8741 FinalReductionResult =
8746 FinalReductionResult =
8748 {PhiR,
Start, NewExitingVPV}, ExitDL);
8754 FinalReductionResult =
8756 {PhiR, NewExitingVPV},
Flags, ExitDL);
8763 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8765 "Unexpected truncated min-max recurrence!");
8767 VPWidenCastRecipe *Trunc;
8769 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8770 VPWidenCastRecipe *Extnd;
8772 VPBuilder::InsertPointGuard Guard(Builder);
8773 Builder.setInsertPoint(
8774 NewExitingVPV->getDefiningRecipe()->getParent(),
8775 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8777 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8778 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8786 FinalReductionResult =
8787 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8792 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8794 if (FinalReductionResult == U || Parent->getParent())
8796 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8813 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8818 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8820 Builder.setInsertPoint(
Select);
8824 if (
Select->getOperand(1) == PhiR)
8825 Cmp = Builder.createNot(Cmp);
8826 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8827 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8847 VPBuilder PHBuilder(Plan->getVectorPreheader());
8848 VPValue *Iden = Plan->getOrAddLiveIn(
8851 unsigned ScaleFactor =
8854 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8855 VPValue *StartV = PHBuilder.createNaryOp(
8863 for (VPRecipeBase *R : ToDelete)
8864 R->eraseFromParent();
8869void LoopVectorizationPlanner::attachRuntimeChecks(
8870 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8871 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8872 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8873 assert((!CM.OptForSize ||
8875 "Cannot SCEV check stride or overflow when optimizing for size");
8879 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8880 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8884 "Runtime checks are not supported for outer loops yet");
8886 if (CM.OptForSize) {
8889 "Cannot emit memory checks when optimizing for size, unless forced "
8892 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
8893 OrigLoop->getStartLoc(),
8894 OrigLoop->getHeader())
8895 <<
"Code-size may be reduced by not forcing "
8896 "vectorization, or by source-code modifications "
8897 "eliminating the need for runtime checks "
8898 "(e.g., adding 'restrict').";
8912 bool IsIndvarOverflowCheckNeededForVF =
8913 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8915 CM.getTailFoldingStyle() !=
8922 Plan, VF, UF, MinProfitableTripCount,
8923 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
8924 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8925 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8929 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
8934 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
8942 State.set(
this, DerivedIV,
VPLane(0));
8955 if (
F->hasOptSize() ||
8981 if (
TTI->preferPredicateOverEpilogue(&TFI))
9000 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9004 Function *
F = L->getHeader()->getParent();
9010 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9011 GetBFI,
F, &Hints, IAI, OptForSize);
9015 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9035 GeneratedRTChecks Checks(PSE, DT, LI,
TTI, CM.
CostKind);
9039 << L->getHeader()->getParent()->getName() <<
"\"\n");
9061 if (S->getValueOperand()->getType()->isFloatTy())
9071 while (!Worklist.
empty()) {
9073 if (!L->contains(
I))
9075 if (!Visited.
insert(
I).second)
9085 I->getDebugLoc(), L->getHeader())
9086 <<
"floating point conversion changes vector width. "
9087 <<
"Mixed floating point precision requires an up/down "
9088 <<
"cast that will negatively impact performance.";
9091 for (
Use &
Op :
I->operands())
9107 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9113 << PredVPBB->getName() <<
":\n");
9114 Cost += PredVPBB->cost(VF, CostCtx);
9134 std::optional<unsigned> VScale) {
9152 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9213 uint64_t MinTC = std::max(MinTC1, MinTC2);
9215 MinTC =
alignTo(MinTC, IntVF);
9219 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9226 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9227 "trip count < minimum profitable VF ("
9238 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9240 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9261 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9280 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9281 bool UpdateResumePhis) {
9291 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9293 if (UpdateResumePhis)
9299 AddFreezeForFindLastIVReductions(MainPlan,
true);
9300 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9307 auto ResumePhiIter =
9309 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9312 VPPhi *ResumePhi =
nullptr;
9313 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9318 {},
"vec.epilog.resume.val");
9321 if (MainScalarPH->
begin() == MainScalarPH->
end())
9323 else if (&*MainScalarPH->
begin() != ResumePhi)
9338 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9343 Header->
setName(
"vec.epilog.vector.body");
9354 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9359 "Must only have a single non-zero incoming value");
9370 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9371 "all incoming values must be 0");
9377 return isa<VPScalarIVStepsRecipe>(U) ||
9378 isa<VPDerivedIVRecipe>(U) ||
9379 cast<VPRecipeBase>(U)->isScalarCast() ||
9380 cast<VPInstruction>(U)->getOpcode() ==
9383 "the canonical IV should only be used by its increment or "
9384 "ScalarIVSteps when resetting the start value");
9385 VPBuilder Builder(Header, Header->getFirstNonPhi());
9387 IV->replaceAllUsesWith(
Add);
9388 Add->setOperand(0,
IV);
9396 Value *ResumeV =
nullptr;
9409 findRecipe(ReductionPhi->getBackedgeValue(), IsReductionResult));
9412 ReductionPhi->getBackedgeValue()) ||
9414 is_contained(RdxResult->operands(), ReductionPhi->getBackedgeValue()
9415 ->getDefiningRecipe()
9416 ->getOperand(0))) ||
9418 "expected to find reduction result via backedge");
9421 ->getIncomingValueForBlock(L->getLoopPreheader());
9422 RecurKind RK = ReductionPhi->getRecurrenceKind();
9430 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9435 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9446 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9449 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9450 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9458 "unexpected start value");
9471 assert(ResumeV &&
"Must have a resume value");
9485 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9502 ExpandR->eraseFromParent();
9506 unsigned MainLoopStep =
9508 unsigned EpilogueLoopStep =
9513 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9524 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9529 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9530 if (OrigPhi != OldInduction) {
9531 auto *BinOp =
II.getInductionBinOp();
9537 EndValueFromAdditionalBypass =
9539 II.getStartValue(), Step,
II.getKind(), BinOp);
9540 EndValueFromAdditionalBypass->
setName(
"ind.end");
9542 return EndValueFromAdditionalBypass;
9548 const SCEV2ValueTy &ExpandedSCEVs,
9549 Value *MainVectorTripCount) {
9554 if (Phi.getBasicBlockIndex(Pred) != -1)
9556 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9560 if (ScalarPH->hasPredecessors()) {
9563 for (
const auto &[R, IRPhi] :
9564 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9573 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9575 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9578 Inc->setIncomingValueForBlock(BypassBlock, V);
9601 "expected this to be saved from the previous pass.");
9604 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9607 VecEpilogueIterationCountCheck},
9609 VecEpiloguePreHeader}});
9614 VecEpilogueIterationCountCheck, ScalarPH);
9617 VecEpilogueIterationCountCheck},
9621 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9622 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9623 if (SCEVCheckBlock) {
9625 VecEpilogueIterationCountCheck, ScalarPH);
9627 VecEpilogueIterationCountCheck},
9630 if (MemCheckBlock) {
9632 VecEpilogueIterationCountCheck, ScalarPH);
9645 for (
PHINode *Phi : PhisInBlock) {
9647 Phi->replaceIncomingBlockWith(
9649 VecEpilogueIterationCountCheck);
9656 return EPI.EpilogueIterationCountCheck == IncB;
9661 Phi->removeIncomingValue(SCEVCheckBlock);
9663 Phi->removeIncomingValue(MemCheckBlock);
9667 for (
auto *
I : InstsToMove)
9679 "VPlan-native path is not enabled. Only process inner loops.");
9682 << L->getHeader()->getParent()->getName() <<
"' from "
9683 << L->getLocStr() <<
"\n");
9688 dbgs() <<
"LV: Loop hints:"
9699 Function *
F = L->getHeader()->getParent();
9719 L->getHeader(),
PSI,
9726 &Requirements, &Hints,
DB,
AC,
9729 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9736 "early exit is not enabled",
9737 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9743 "faulting load is not supported",
9744 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9753 if (!L->isInnermost())
9758 assert(L->isInnermost() &&
"Inner loop expected.");
9761 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9775 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9777 "requiring a scalar epilogue is unsupported",
9778 "UncountableEarlyExitUnsupported",
ORE, L);
9791 if (ExpectedTC && ExpectedTC->isFixed() &&
9793 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9794 <<
"This loop is worth vectorizing only if no scalar "
9795 <<
"iteration overheads are incurred.");
9797 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9813 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9815 "Can't vectorize when the NoImplicitFloat attribute is used",
9816 "loop not vectorized due to NoImplicitFloat attribute",
9817 "NoImplicitFloat",
ORE, L);
9827 TTI->isFPVectorizationPotentiallyUnsafe()) {
9829 "Potentially unsafe FP op prevents vectorization",
9830 "loop not vectorized due to unsafe FP support.",
9831 "UnsafeFP",
ORE, L);
9836 bool AllowOrderedReductions;
9841 AllowOrderedReductions =
TTI->enableOrderedReductions();
9846 ExactFPMathInst->getDebugLoc(),
9847 ExactFPMathInst->getParent())
9848 <<
"loop not vectorized: cannot prove it is safe to reorder "
9849 "floating-point operations";
9851 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9852 "reorder floating-point operations\n");
9858 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9859 GetBFI,
F, &Hints, IAI, OptForSize);
9861 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9871 LVP.
plan(UserVF, UserIC);
9883 unsigned SelectedIC = std::max(IC, UserIC);
9893 if (Checks.getSCEVChecks().first &&
9894 match(Checks.getSCEVChecks().first,
m_One()))
9896 if (Checks.getMemRuntimeChecks().first &&
9897 match(Checks.getMemRuntimeChecks().first,
m_One()))
9902 bool ForceVectorization =
9906 if (!ForceVectorization &&
9912 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9914 <<
"loop not vectorized: cannot prove it is safe to reorder "
9915 "memory operations";
9924 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9925 bool VectorizeLoop =
true, InterleaveLoop =
true;
9927 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9929 "VectorizationNotBeneficial",
9930 "the cost-model indicates that vectorization is not beneficial"};
9931 VectorizeLoop =
false;
9936 "UserIC should only be ignored due to unsafe dependencies");
9937 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
9938 IntDiagMsg = {
"InterleavingUnsafe",
9939 "Ignoring user-specified interleave count due to possibly "
9940 "unsafe dependencies in the loop."};
9941 InterleaveLoop =
false;
9945 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
9946 "interleaving should be avoided up front\n");
9947 IntDiagMsg = {
"InterleavingAvoided",
9948 "Ignoring UserIC, because interleaving was avoided up front"};
9949 InterleaveLoop =
false;
9950 }
else if (IC == 1 && UserIC <= 1) {
9954 "InterleavingNotBeneficial",
9955 "the cost-model indicates that interleaving is not beneficial"};
9956 InterleaveLoop =
false;
9958 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
9959 IntDiagMsg.second +=
9960 " and is explicitly disabled or interleave count is set to 1";
9962 }
else if (IC > 1 && UserIC == 1) {
9964 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
9966 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
9967 "the cost-model indicates that interleaving is beneficial "
9968 "but is explicitly disabled or interleave count is set to 1"};
9969 InterleaveLoop =
false;
9975 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
9976 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
9977 <<
"to histogram operations.\n");
9979 "HistogramPreventsScalarInterleaving",
9980 "Unable to interleave without vectorization due to constraints on "
9981 "the order of histogram operations"};
9982 InterleaveLoop =
false;
9986 IC = UserIC > 0 ? UserIC : IC;
9990 if (!VectorizeLoop && !InterleaveLoop) {
9994 L->getStartLoc(), L->getHeader())
9995 << VecDiagMsg.second;
9999 L->getStartLoc(), L->getHeader())
10000 << IntDiagMsg.second;
10005 if (!VectorizeLoop && InterleaveLoop) {
10009 L->getStartLoc(), L->getHeader())
10010 << VecDiagMsg.second;
10012 }
else if (VectorizeLoop && !InterleaveLoop) {
10014 <<
") in " << L->getLocStr() <<
'\n');
10017 L->getStartLoc(), L->getHeader())
10018 << IntDiagMsg.second;
10020 }
else if (VectorizeLoop && InterleaveLoop) {
10022 <<
") in " << L->getLocStr() <<
'\n');
10028 using namespace ore;
10033 <<
"interleaved loop (interleaved count: "
10034 << NV(
"InterleaveCount", IC) <<
")";
10051 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10063 Checks, *BestMainPlan);
10065 *BestMainPlan, MainILV,
DT,
false);
10071 Checks, BestEpiPlan);
10073 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10077 Checks, InstsToMove);
10078 ++LoopsEpilogueVectorized;
10080 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10094 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10095 "DT not preserved correctly");
10110 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10114 bool Changed =
false, CFGChanged =
false;
10121 for (
const auto &L : *
LI)
10133 LoopsAnalyzed += Worklist.
size();
10136 while (!Worklist.
empty()) {
10182 if (!Result.MadeAnyChange)
10196 if (Result.MadeCFGChange) {
10212 OS, MapClassName2PassName);
10215 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10216 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPIRValue * getStartValue() const
VPValue * getStepValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPSymbolicValue & getVectorTripCount()
The vector trip count.
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks