163#define LV_NAME "loop-vectorize"
164#define DEBUG_TYPE LV_NAME
174 "llvm.loop.vectorize.followup_vectorized";
176 "llvm.loop.vectorize.followup_epilogue";
179STATISTIC(LoopsVectorized,
"Number of loops vectorized");
180STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
181STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
185 cl::desc(
"Enable vectorization of epilogue loops."));
189 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
190 "1 is specified, forces the given VF for all applicable epilogue "
195 cl::desc(
"Only loops with vectorization factor equal to or larger than "
196 "the specified value are considered for epilogue vectorization."));
202 cl::desc(
"Loops with a constant trip count that is smaller than this "
203 "value are vectorized only if no scalar iteration overheads "
208 cl::desc(
"The maximum allowed number of runtime memory checks"));
224 "prefer-predicate-over-epilogue",
227 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
231 "Don't tail-predicate loops, create scalar epilogue"),
233 "predicate-else-scalar-epilogue",
234 "prefer tail-folding, create scalar epilogue if tail "
237 "predicate-dont-vectorize",
238 "prefers tail-folding, don't attempt vectorization if "
239 "tail-folding fails.")));
242 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
245 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
247 TailFoldingStyle::Data,
"data",
248 "Create lane mask for data only, using active.lane.mask intrinsic"),
249 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
250 "data-without-lane-mask",
251 "Create lane mask with compare/stepvector"),
252 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
253 "Create lane mask using active.lane.mask intrinsic, and use "
254 "it for both data and control flow"),
255 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
256 "data-and-control-without-rt-check",
257 "Similar to data-and-control, but remove the runtime check"),
258 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
259 "Use predicated EVL instructions for tail folding. If EVL "
260 "is unsupported, fallback to data-without-lane-mask.")));
264 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
265 "will be determined by the smallest type in loop."));
269 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
275 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
279 cl::desc(
"A flag that overrides the target's number of scalar registers."));
283 cl::desc(
"A flag that overrides the target's number of vector registers."));
287 cl::desc(
"A flag that overrides the target's max interleave factor for "
292 cl::desc(
"A flag that overrides the target's max interleave factor for "
293 "vectorized loops."));
297 cl::desc(
"A flag that overrides the target's expected cost for "
298 "an instruction to a single constant value. Mostly "
299 "useful for getting consistent testing."));
304 "Pretend that scalable vectors are supported, even if the target does "
305 "not support them. This flag should only be used for testing."));
310 "The cost of a loop that is considered 'small' by the interleaver."));
314 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
315 "heuristics minimizing code growth in cold regions and being more "
316 "aggressive in hot regions."));
322 "Enable runtime interleaving until load/store ports are saturated"));
327 cl::desc(
"Max number of stores to be predicated behind an if."));
331 cl::desc(
"Count the induction variable only once when interleaving"));
335 cl::desc(
"Enable if predication of stores during vectorization."));
339 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
340 "reduction in a nested loop."));
345 cl::desc(
"Prefer in-loop vector reductions, "
346 "overriding the targets preference."));
350 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
356 "Prefer predicating a reduction operation over an after loop select."));
361 cl::desc(
"Enable VPlan-native vectorization path with "
362 "support for outer loop vectorization."));
372 "Build VPlan for every supported loop nest in the function and bail "
373 "out right after the build (stress test the VPlan H-CFG construction "
374 "in the VPlan-native vectorization path)."));
378 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
381 cl::desc(
"Run the Loop vectorization passes"));
384 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
386 "Override cost based safe divisor widening for div/rem instructions"));
389 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
391 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
410 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
439class GeneratedRTChecks;
483 this->MinProfitableTripCount = VecWidth;
499 virtual std::pair<BasicBlock *, Value *>
531 std::pair<BasicBlock *, Value *> AdditionalBypass = {
nullptr,
nullptr});
591 const SCEV2ValueTy &ExpandedSCEVs,
592 std::pair<BasicBlock *, Value *> AdditionalBypass = {
nullptr,
nullptr});
739 "A high UF for the epilogue loop is likely not beneficial.");
759 GeneratedRTChecks &Checks)
761 EPI.MainLoopVF,
EPI.MainLoopVF,
EPI.MainLoopUF, LVL,
768 const SCEV2ValueTy &ExpandedSCEVs)
final {
775 virtual std::pair<BasicBlock *, Value *>
799 GeneratedRTChecks &Check)
804 std::pair<BasicBlock *, Value *>
828 GeneratedRTChecks &Checks)
835 std::pair<BasicBlock *, Value *>
857 if (
I->getDebugLoc() !=
Empty)
858 return I->getDebugLoc();
860 for (
Use &
Op :
I->operands()) {
862 if (OpInst->getDebugLoc() !=
Empty)
863 return OpInst->getDebugLoc();
866 return I->getDebugLoc();
875 dbgs() <<
"LV: " << Prefix << DebugMsg;
897 if (
I &&
I->getDebugLoc())
898 DL =
I->getDebugLoc();
916 return B.CreateElementCount(Ty, VF);
922 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
"Invalid loop count");
936 <<
"loop not vectorized: " << OREMsg);
959 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
965 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
967 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
1111 "Profitable to scalarize relevant only for VF > 1.");
1114 "cost-model should not be used for outer loops (in VPlan-native path)");
1116 auto Scalars = InstsToScalarize.find(VF);
1117 assert(Scalars != InstsToScalarize.end() &&
1118 "VF not yet analyzed for scalarization profitability");
1119 return Scalars->second.contains(
I);
1126 "cost-model should not be used for outer loops (in VPlan-native path)");
1130 if (isa<PseudoProbeInst>(
I))
1136 auto UniformsPerVF = Uniforms.find(VF);
1137 assert(UniformsPerVF != Uniforms.end() &&
1138 "VF not yet analyzed for uniformity");
1139 return UniformsPerVF->second.count(
I);
1146 "cost-model should not be used for outer loops (in VPlan-native path)");
1150 auto ScalarsPerVF = Scalars.find(VF);
1151 assert(ScalarsPerVF != Scalars.end() &&
1152 "Scalar values are not calculated for VF");
1153 return ScalarsPerVF->second.count(
I);
1159 return VF.
isVector() && MinBWs.contains(
I) &&
1181 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W,
Cost);
1192 for (
unsigned i = 0; i < Grp->
getFactor(); ++i) {
1195 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W,
Cost);
1197 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W, 0);
1209 "cost-model should not be used for outer loops (in VPlan-native path)");
1211 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1212 auto Itr = WideningDecisions.
find(InstOnVF);
1213 if (Itr == WideningDecisions.
end())
1215 return Itr->second.first;
1222 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1224 "The cost is not calculated");
1225 return WideningDecisions[InstOnVF].second;
1238 std::optional<unsigned> MaskPos,
1241 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
1248 return CallWideningDecisions.
at(std::make_pair(CI, VF));
1256 auto *Trunc = dyn_cast<TruncInst>(
I);
1269 Value *
Op = Trunc->getOperand(0);
1289 if (VF.
isScalar() || Uniforms.contains(VF))
1293 collectLoopUniforms(VF);
1294 collectLoopScalars(VF);
1314 bool LI = isa<LoadInst>(V);
1315 bool SI = isa<StoreInst>(V);
1330 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1331 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1342 return ScalarCost < SafeDivisorCost;
1366 std::pair<InstructionCost, InstructionCost>
1394 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1401 dbgs() <<
"LV: Loop requires scalar epilogue: multiple exits\n");
1406 "interleaved group requires scalar epilogue\n");
1409 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1418 auto RequiresScalarEpilogue = [
this](
ElementCount VF) {
1421 bool IsRequired =
all_of(
Range, RequiresScalarEpilogue);
1423 (IsRequired ||
none_of(
Range, RequiresScalarEpilogue)) &&
1424 "all VFs in range must agree on whether a scalar epilogue is required");
1436 if (!ChosenTailFoldingStyle)
1438 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1439 : ChosenTailFoldingStyle->second;
1447 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1449 ChosenTailFoldingStyle =
1455 ChosenTailFoldingStyle = std::make_pair(
1470 IsScalableVF && UserIC <= 1 &&
1479 ChosenTailFoldingStyle =
1484 <<
"LV: Preference for VP intrinsics indicated. Will "
1485 "not try to generate VP Intrinsics "
1487 ?
"since interleave count specified is greater than 1.\n"
1488 :
"due to non-interleaving reasons.\n"));
1514 return InLoopReductions.contains(Phi);
1529 WideningDecisions.
clear();
1530 CallWideningDecisions.
clear();
1554 std::optional<InstructionCost>
1559 unsigned NumPredStores = 0;
1568 bool FoldTailByMasking);
1573 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1574 unsigned SmallestType,
1575 unsigned WidestType,
1577 bool FoldTailByMasking);
1581 bool isScalableVectorizationAllowed();
1585 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1631 PredicatedBBsAfterVectorization;
1644 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1645 ChosenTailFoldingStyle;
1648 std::optional<bool> IsScalableVectorizationAllowed;
1682 ScalarCostsTy &ScalarCosts,
1708 std::pair<InstWidening, InstructionCost>>;
1710 DecisionList WideningDecisions;
1712 using CallDecisionList =
1715 CallDecisionList CallWideningDecisions;
1738 Ops, [
this, VF](
Value *V) {
return this->needsExtract(V, VF); }));
1796class GeneratedRTChecks {
1802 Value *SCEVCheckCond =
nullptr;
1810 Value *MemRuntimeCheckCond =
nullptr;
1819 bool CostTooHigh =
false;
1820 const bool AddBranchWeights;
1822 Loop *OuterLoop =
nullptr;
1827 bool AddBranchWeights)
1828 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(SE,
DL,
"scev.check"),
1829 MemCheckExp(SE,
DL,
"scev.check"), AddBranchWeights(AddBranchWeights) {}
1857 nullptr,
"vector.scevcheck");
1864 if (RtPtrChecking.Need) {
1865 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1866 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1869 auto DiffChecks = RtPtrChecking.getDiffChecks();
1871 Value *RuntimeVF =
nullptr;
1876 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1882 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1885 assert(MemRuntimeCheckCond &&
1886 "no RT checks generated although RtPtrChecking "
1887 "claimed checks are required");
1890 if (!MemCheckBlock && !SCEVCheckBlock)
1900 if (SCEVCheckBlock) {
1905 if (MemCheckBlock) {
1912 if (MemCheckBlock) {
1916 if (SCEVCheckBlock) {
1922 OuterLoop =
L->getParentLoop();
1926 if (SCEVCheckBlock || MemCheckBlock)
1939 if (SCEVCheckBlock->getTerminator() == &
I)
1946 if (MemCheckBlock) {
1949 if (MemCheckBlock->getTerminator() == &
I)
1972 unsigned BestTripCount = 2;
1976 BestTripCount = SmallTC;
1980 BestTripCount = *EstimatedTC;
1983 BestTripCount = std::max(BestTripCount, 1U);
1987 NewMemCheckCost = std::max(*NewMemCheckCost.
getValue(),
1990 if (BestTripCount > 1)
1992 <<
"We expect runtime memory checks to be hoisted "
1993 <<
"out of the outer loop. Cost reduced from "
1994 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1996 MemCheckCost = NewMemCheckCost;
2000 RTCheckCost += MemCheckCost;
2003 if (SCEVCheckBlock || MemCheckBlock)
2004 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2012 ~GeneratedRTChecks() {
2016 SCEVCleaner.markResultUsed();
2018 if (!MemRuntimeCheckCond)
2019 MemCheckCleaner.markResultUsed();
2021 if (MemRuntimeCheckCond) {
2022 auto &SE = *MemCheckExp.
getSE();
2029 I.eraseFromParent();
2032 MemCheckCleaner.cleanup();
2033 SCEVCleaner.cleanup();
2036 SCEVCheckBlock->eraseFromParent();
2037 if (MemRuntimeCheckCond)
2038 MemCheckBlock->eraseFromParent();
2052 SCEVCheckCond =
nullptr;
2053 if (
auto *
C = dyn_cast<ConstantInt>(
Cond))
2064 SCEVCheckBlock->getTerminator()->eraseFromParent();
2065 SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2066 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073 if (AddBranchWeights)
2076 return SCEVCheckBlock;
2085 if (!MemRuntimeCheckCond)
2094 MemCheckBlock->moveBefore(LoopVectorPreHeader);
2101 if (AddBranchWeights) {
2105 MemCheckBlock->getTerminator()->setDebugLoc(
2106 Pred->getTerminator()->getDebugLoc());
2109 MemRuntimeCheckCond =
nullptr;
2110 return MemCheckBlock;
2116 return Style == TailFoldingStyle::Data ||
2117 Style == TailFoldingStyle::DataAndControlFlow ||
2118 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2122 return Style == TailFoldingStyle::DataAndControlFlow ||
2123 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2153 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2159 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2179 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2189 for (
Loop *InnerL : L)
2211 ?
B.CreateSExtOrTrunc(
Index, StepTy)
2212 :
B.CreateCast(Instruction::SIToFP,
Index, StepTy);
2213 if (CastedIndex !=
Index) {
2215 Index = CastedIndex;
2225 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2226 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2229 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2232 return B.CreateAdd(
X,
Y);
2238 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2239 "Types don't match!");
2240 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2243 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2246 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2247 if (XVTy && !isa<VectorType>(
Y->getType()))
2248 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2249 return B.CreateMul(
X,
Y);
2252 switch (InductionKind) {
2255 "Vector indices not supported for integer inductions yet");
2257 "Index type does not match StartValue type");
2258 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2259 return B.CreateSub(StartValue,
Index);
2267 "Vector indices not supported for FP inductions yet");
2270 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2271 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2272 "Original bin op should be defined for FP induction");
2275 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2289 if (
F.hasFnAttribute(Attribute::VScaleRange))
2290 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2292 return std::nullopt;
2301 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2303 unsigned MaxUF = UF ? *UF :
Cost->TTI.getMaxInterleaveFactor(VF);
2305 Type *IdxTy =
Cost->Legal->getWidestInductionType();
2306 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
2312 Cost->PSE.getSE()->getSmallConstantMaxTripCount(
Cost->TheLoop)) {
2315 std::optional<unsigned> MaxVScale =
2319 MaxVF *= *MaxVScale;
2322 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2343 assert(!Instr->getType()->isAggregateType() &&
"Can't handle vectors");
2347 if (isa<NoAliasScopeDeclInst>(Instr))
2352 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2356 Cloned->
setName(Instr->getName() +
".cloned");
2361 "inferred type and type from generated instructions do not match");
2367 if (
auto DL = Instr->getDebugLoc())
2373 auto InputInstance = Instance;
2377 Cloned->
setOperand(
I.index(), State.
get(Operand, InputInstance));
2384 State.
set(RepRecipe, Cloned, Instance);
2387 if (
auto *
II = dyn_cast<AssumeInst>(Cloned))
2392 if (IfPredicateInstr)
2416 if (
Cost->foldTailByMasking()) {
2418 "VF*UF must be a power of 2 when folding tail by masking");
2464 auto CreateStep = [&]() ->
Value * {
2489 Value *MaxUIntTripCount =
2490 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2504 "TC check is expected to dominate Bypass");
2519 if (!SCEVCheckBlock)
2525 "Cannot SCEV check stride or overflow when optimizing for size");
2540 return SCEVCheckBlock;
2559 "Cannot emit memory checks when optimizing for size, unless forced "
2565 <<
"Code-size may be reduced by not forcing "
2566 "vectorization, or by source-code modifications "
2567 "eliminating the need for runtime checks "
2568 "(e.g., adding 'restrict').";
2576 return MemCheckBlock;
2585 "multiple exit loop without required epilogue?");
2589 LI,
nullptr,
Twine(Prefix) +
"middle.block");
2592 nullptr,
Twine(Prefix) +
"scalar.ph");
2598 std::pair<BasicBlock *, Value *> AdditionalBypass) {
2604 Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
2605 if (OrigPhi == OldInduction) {
2612 if (
II.getInductionBinOp() && isa<FPMathOperator>(
II.getInductionBinOp()))
2613 B.setFastMathFlags(
II.getInductionBinOp()->getFastMathFlags());
2616 Step,
II.getKind(),
II.getInductionBinOp());
2620 if (AdditionalBypass.first) {
2621 B.SetInsertPoint(AdditionalBypass.first,
2622 AdditionalBypass.first->getFirstInsertionPt());
2623 EndValueFromAdditionalBypass =
2625 Step,
II.getKind(),
II.getInductionBinOp());
2626 EndValueFromAdditionalBypass->
setName(
"ind.end");
2647 if (AdditionalBypass.first)
2649 EndValueFromAdditionalBypass);
2656 const SCEV2ValueTy &ExpandedSCEVs) {
2657 const SCEV *Step =
ID.getStep();
2658 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2659 return C->getValue();
2660 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2661 return U->getValue();
2662 auto I = ExpandedSCEVs.find(Step);
2663 assert(
I != ExpandedSCEVs.end() &&
"SCEV must be expanded at this point");
2668 const SCEV2ValueTy &ExpandedSCEVs,
2669 std::pair<BasicBlock *, Value *> AdditionalBypass) {
2670 assert(((AdditionalBypass.first && AdditionalBypass.second) ||
2671 (!AdditionalBypass.first && !AdditionalBypass.second)) &&
2672 "Inconsistent information about additional bypass.");
2681 PHINode *OrigPhi = InductionEntry.first;
2690std::pair<BasicBlock *, Value *>
2692 const SCEV2ValueTy &ExpandedSCEVs) {
2778 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2779 MissingVals[UI] = EndValue;
2787 auto *UI = cast<Instruction>(U);
2789 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2793 if (
II.getInductionBinOp() && isa<FPMathOperator>(
II.getInductionBinOp()))
2794 B.setFastMathFlags(
II.getInductionBinOp()->getFastMathFlags());
2796 Value *CountMinusOne =
B.CreateSub(
2798 CountMinusOne->
setName(
"cmo");
2801 assert(StepVPV &&
"step must have been expanded during VPlan execution");
2803 : State.
get(StepVPV, {0, 0});
2806 II.getKind(),
II.getInductionBinOp());
2807 Escape->
setName(
"ind.escape");
2808 MissingVals[UI] = Escape;
2812 for (
auto &
I : MissingVals) {
2819 if (
PHI->getBasicBlockIndex(MiddleBlock) == -1)
2820 PHI->addIncoming(
I.second, MiddleBlock);
2826struct CSEDenseMapInfo {
2828 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2829 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2841 assert(canHandle(
I) &&
"Unknown instruction!");
2843 I->value_op_end()));
2847 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2848 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2850 return LHS->isIdenticalTo(
RHS);
2861 if (!CSEDenseMapInfo::canHandle(&In))
2867 In.replaceAllUsesWith(V);
2868 In.eraseFromParent();
2882 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
2891 for (
auto &ArgOp : CI->
args())
2900 return std::min(ScalarCallCost, IntrinsicCost);
2902 return ScalarCallCost;
2915 assert(
ID &&
"Expected intrinsic call!");
2918 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
2919 FMF = FPMO->getFastMathFlags();
2925 std::back_inserter(ParamTys),
2926 [&](
Type *Ty) { return MaybeVectorizeType(Ty, VF); });
2929 dyn_cast<IntrinsicInst>(CI));
2950 for (
PHINode &PN : Exit->phis())
2978 KV.second->fixPhi(Plan, State);
3018 auto isBlockOfUsePredicated = [&](
Use &U) ->
bool {
3019 auto *
I = cast<Instruction>(U.getUser());
3021 if (
auto *Phi = dyn_cast<PHINode>(
I))
3022 BB = Phi->getIncomingBlock(
3024 return BB == PredBB;
3035 Worklist.
insert(InstsToReanalyze.
begin(), InstsToReanalyze.
end());
3036 InstsToReanalyze.
clear();
3039 while (!Worklist.
empty()) {
3045 if (!
I || isa<PHINode>(
I) || !VectorLoop->contains(
I) ||
3046 I->mayHaveSideEffects() ||
I->mayReadFromMemory())
3054 if (
I->getParent() == PredBB) {
3055 Worklist.
insert(
I->op_begin(),
I->op_end());
3069 I->moveBefore(&*PredBB->getFirstInsertionPt());
3070 Worklist.
insert(
I->op_begin(),
I->op_end());
3082 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3087 PHINode *NewPhi = cast<PHINode>(State.
get(VPPhi, 0));
3099void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
3104 "This function should not be visited twice for the same VF");
3110 Scalars[VF].
insert(Uniforms[VF].begin(), Uniforms[VF].end());
3129 "Widening decision should be ready at this moment");
3130 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
3131 if (
Ptr == Store->getValueOperand())
3134 "Ptr is neither a value or pointer operand");
3140 auto isLoopVaryingGEP = [&](
Value *
V) {
3151 if (!isLoopVaryingGEP(
Ptr))
3156 auto *
I = cast<Instruction>(
Ptr);
3164 return isa<LoadInst>(U) || isa<StoreInst>(U);
3168 PossibleNonScalarPtrs.
insert(
I);
3186 for (
auto &
I : *BB) {
3187 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
3188 evaluatePtrUse(Load,
Load->getPointerOperand());
3189 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
3190 evaluatePtrUse(Store,
Store->getPointerOperand());
3191 evaluatePtrUse(Store,
Store->getValueOperand());
3194 for (
auto *
I : ScalarPtrs)
3195 if (!PossibleNonScalarPtrs.
count(
I)) {
3203 auto ForcedScalar = ForcedScalars.
find(VF);
3204 if (ForcedScalar != ForcedScalars.
end())
3205 for (
auto *
I : ForcedScalar->second) {
3206 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
3215 while (
Idx != Worklist.
size()) {
3217 if (!isLoopVaryingGEP(Dst->getOperand(0)))
3219 auto *Src = cast<Instruction>(Dst->getOperand(0));
3221 auto *J = cast<Instruction>(U);
3222 return !TheLoop->contains(J) || Worklist.count(J) ||
3223 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
3224 isScalarUse(J, Src));
3227 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
3234 auto *Ind = Induction.first;
3235 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3244 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
3246 return Induction.second.getKind() ==
3248 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
3255 auto *I = cast<Instruction>(U);
3256 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3257 IsDirectLoadStoreFromPtrIndvar(Ind, I);
3265 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
3271 auto ScalarIndUpdate =
3273 auto *I = cast<Instruction>(U);
3274 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3275 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
3277 if (!ScalarIndUpdate)
3282 Worklist.
insert(IndUpdate);
3283 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
3284 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
3298 switch(
I->getOpcode()) {
3301 case Instruction::Call:
3304 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(
I), VF))
3306 case Instruction::Load:
3307 case Instruction::Store: {
3319 case Instruction::UDiv:
3320 case Instruction::SDiv:
3321 case Instruction::SRem:
3322 case Instruction::URem: {
3340 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
3353 switch(
I->getOpcode()) {
3356 "instruction should have been considered by earlier checks");
3357 case Instruction::Call:
3361 "should have returned earlier for calls not needing a mask");
3363 case Instruction::Load:
3366 case Instruction::Store: {
3374 case Instruction::UDiv:
3375 case Instruction::SDiv:
3376 case Instruction::SRem:
3377 case Instruction::URem:
3383std::pair<InstructionCost, InstructionCost>
3386 assert(
I->getOpcode() == Instruction::UDiv ||
3387 I->getOpcode() == Instruction::SDiv ||
3388 I->getOpcode() == Instruction::SRem ||
3389 I->getOpcode() == Instruction::URem);
3400 ScalarizationCost = 0;
3415 ScalarizationCost += getScalarizationOverhead(
I, VF,
CostKind);
3429 Instruction::Select, VecTy,
3435 Value *Op2 =
I->getOperand(1);
3444 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
3446 return {ScalarizationCost, SafeDivisorCost};
3453 "Decision should not be set yet.");
3455 assert(Group &&
"Must have a group.");
3459 auto &
DL =
I->getDataLayout();
3466 unsigned InterleaveFactor = Group->getFactor();
3467 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3468 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3473 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
3475 if (MemberNI != ScalarNI) {
3478 }
else if (MemberNI && ScalarNI &&
3479 ScalarTy->getPointerAddressSpace() !=
3480 MemberTy->getPointerAddressSpace()) {
3490 bool PredicatedAccessRequiresMasking =
3493 bool LoadAccessWithGapsRequiresEpilogMasking =
3494 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3496 bool StoreAccessWithGapsRequiresMasking =
3497 isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor());
3498 if (!PredicatedAccessRequiresMasking &&
3499 !LoadAccessWithGapsRequiresEpilogMasking &&
3500 !StoreAccessWithGapsRequiresMasking)
3507 "Masked interleave-groups for predicated accesses are not enabled.");
3509 if (Group->isReverse())
3521 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3537 auto &
DL =
I->getDataLayout();
3544void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3551 "This function should not be visited twice for the same VF");
3555 Uniforms[VF].
clear();
3563 auto isOutOfScope = [&](
Value *V) ->
bool {
3575 auto addToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3576 if (isOutOfScope(
I)) {
3583 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3587 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3597 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3599 addToWorklistIfAllowed(Cmp);
3608 if (PrevVF.isVector()) {
3609 auto Iter = Uniforms.
find(PrevVF);
3610 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3615 if (isa<LoadInst>(
I))
3626 "Widening decision should be ready at this moment");
3628 if (isUniformMemOpUse(
I))
3631 return (WideningDecision ==
CM_Widen ||
3640 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3656 for (
auto &
I : *BB) {
3658 switch (
II->getIntrinsicID()) {
3659 case Intrinsic::sideeffect:
3660 case Intrinsic::experimental_noalias_scope_decl:
3661 case Intrinsic::assume:
3662 case Intrinsic::lifetime_start:
3663 case Intrinsic::lifetime_end:
3665 addToWorklistIfAllowed(&
I);
3674 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3675 assert(isOutOfScope(EVI->getAggregateOperand()) &&
3676 "Expected aggregate value to be loop invariant");
3677 addToWorklistIfAllowed(EVI);
3686 if (isUniformMemOpUse(&
I))
3687 addToWorklistIfAllowed(&
I);
3689 if (isVectorizedMemAccessUse(&
I,
Ptr))
3696 for (
auto *V : HasUniformUse) {
3697 if (isOutOfScope(V))
3699 auto *
I = cast<Instruction>(V);
3700 auto UsersAreMemAccesses =
3702 auto *UI = cast<Instruction>(U);
3703 return TheLoop->contains(UI) && isVectorizedMemAccessUse(UI, V);
3705 if (UsersAreMemAccesses)
3706 addToWorklistIfAllowed(
I);
3713 while (idx != Worklist.
size()) {
3716 for (
auto *OV :
I->operand_values()) {
3718 if (isOutOfScope(OV))
3722 auto *
OP = dyn_cast<PHINode>(OV);
3727 auto *OI = cast<Instruction>(OV);
3729 auto *J = cast<Instruction>(U);
3730 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
3732 addToWorklistIfAllowed(OI);
3744 auto *Ind = Induction.first;
3745 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3750 auto *I = cast<Instruction>(U);
3751 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3752 isVectorizedMemAccessUse(I, Ind);
3759 auto UniformIndUpdate =
3761 auto *I = cast<Instruction>(U);
3762 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3763 isVectorizedMemAccessUse(I, IndUpdate);
3765 if (!UniformIndUpdate)
3769 addToWorklistIfAllowed(Ind);
3770 addToWorklistIfAllowed(IndUpdate);
3781 "runtime pointer checks needed. Enable vectorization of this "
3782 "loop with '#pragma clang loop vectorize(enable)' when "
3783 "compiling with -Os/-Oz",
3784 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3790 "runtime SCEV checks needed. Enable vectorization of this "
3791 "loop with '#pragma clang loop vectorize(enable)' when "
3792 "compiling with -Os/-Oz",
3793 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3800 "runtime stride == 1 checks needed. Enable vectorization of "
3801 "this loop without such check by compiling with -Os/-Oz",
3802 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3809bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3810 if (IsScalableVectorizationAllowed)
3811 return *IsScalableVectorizationAllowed;
3813 IsScalableVectorizationAllowed =
false;
3819 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3823 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3826 std::numeric_limits<ElementCount::ScalarTy>::max());
3837 "Scalable vectorization not supported for the reduction "
3838 "operations found in this loop.",
3850 "for all element types found in this loop.",
3857 "for safe distance analysis.",
3862 IsScalableVectorizationAllowed =
true;
3867LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3868 if (!isScalableVectorizationAllowed())
3872 std::numeric_limits<ElementCount::ScalarTy>::max());
3874 return MaxScalableVF;
3882 "Max legal vector width too small, scalable vectorization "
3886 return MaxScalableVF;
3890 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3892 unsigned SmallestType, WidestType;
3899 unsigned MaxSafeElements =
3903 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
3905 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3907 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3912 auto MaxSafeUserVF =
3913 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3930 <<
" is unsafe, clamping to max safe VF="
3931 << MaxSafeFixedVF <<
".\n");
3936 <<
"User-specified vectorization factor "
3937 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3938 <<
" is unsafe, clamping to maximum safe vectorization factor "
3939 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3941 return MaxSafeFixedVF;
3946 <<
" is ignored because scalable vectors are not "
3952 <<
"User-specified vectorization factor "
3953 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3954 <<
" is ignored because the target does not support scalable "
3955 "vectors. The compiler will pick a more suitable value.";
3959 <<
" is unsafe. Ignoring scalable UserVF.\n");
3964 <<
"User-specified vectorization factor "
3965 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3966 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3967 "more suitable value.";
3972 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3973 <<
" / " << WidestType <<
" bits.\n");
3978 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3979 MaxSafeFixedVF, FoldTailByMasking))
3983 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3984 MaxSafeScalableVF, FoldTailByMasking))
3985 if (MaxVF.isScalable()) {
3986 Result.ScalableVF = MaxVF;
3987 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
4000 "Not inserting runtime ptr check for divergent target",
4001 "runtime pointer checks needed. Not enabled for divergent target",
4002 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
4011 "loop trip count is one, irrelevant for vectorization",
4016 switch (ScalarEpilogueStatus) {
4018 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4023 dbgs() <<
"LV: vector predicate hint/switch found.\n"
4024 <<
"LV: Not allowing scalar epilogue, creating predicated "
4025 <<
"vector loop.\n");
4032 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4034 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
4053 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4054 "scalar epilogue instead.\n");
4056 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4067 "No decisions should have been taken at this point");
4077 std::optional<unsigned> MaxPowerOf2RuntimeVF =
4082 MaxPowerOf2RuntimeVF = std::max<unsigned>(
4083 *MaxPowerOf2RuntimeVF,
4086 MaxPowerOf2RuntimeVF = std::nullopt;
4089 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
4091 "MaxFixedVF must be a power of 2");
4092 unsigned MaxVFtimesIC =
4093 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
4097 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
4103 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
4117 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
4118 "try to generate VP Intrinsics with scalable vector "
4124 "Expected scalable vector factor.");
4134 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4135 "scalar epilogue instead.\n");
4141 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
4147 "Unable to calculate the loop count due to complex control flow",
4148 "unable to calculate the loop count due to complex control flow",
4154 "Cannot optimize for size and vectorize at the same time.",
4155 "cannot optimize for size and vectorize at the same time. "
4156 "Enable vectorization of this loop with '#pragma clang loop "
4157 "vectorize(enable)' when compiling with -Os/-Oz",
4162ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
4163 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
4165 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
4173 "Scalable flags must match");
4181 ComputeScalableMaxVF);
4182 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
4184 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
4186 if (!MaxVectorElementCount) {
4188 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
4189 <<
" vector registers.\n");
4193 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
4194 if (MaxVectorElementCount.isScalable() &&
4198 WidestRegisterMinEC *= Min;
4207 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC &&
4215 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
4216 "exceeding the constant trip count: "
4217 << ClampedUpperTripCount <<
"\n");
4219 ClampedUpperTripCount,
4220 FoldTailByMasking ? MaxVectorElementCount.isScalable() :
false);
4233 ComputeScalableMaxVF);
4234 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
4248 for (
int I = RUs.size() - 1;
I >= 0; --
I) {
4249 const auto &MLU = RUs[
I].MaxLocalUsers;
4250 if (
all_of(MLU, [&](
decltype(MLU.front()) &LU) {
4251 return LU.second <= TTI.getNumberOfRegisters(LU.first);
4261 <<
") with target's minimum: " << MinVF <<
'\n');
4277static std::optional<unsigned>
4279 const Function *Fn = L->getHeader()->getParent();
4283 auto Max = Attr.getVScaleRangeMax();
4284 if (Max && Min == Max)
4291bool LoopVectorizationPlanner::isMoreProfitable(
4299 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
4300 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
4302 if (
A.Width.isScalable())
4303 EstimatedWidthA *= *VScale;
4304 if (
B.Width.isScalable())
4305 EstimatedWidthB *= *VScale;
4312 A.Width.isScalable() && !
B.Width.isScalable();
4323 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
4325 auto GetCostForTC = [MaxTripCount,
this](
unsigned VF,
4337 return VectorCost *
divideCeil(MaxTripCount, VF);
4338 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF);
4341 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
4342 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
4343 return CmpFn(RTCostA, RTCostB);
4348 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
4351 for (
const auto &Plan : VPlans) {
4356 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4357 for (
auto &R : *VPBB) {
4358 if (!R.cost(VF, CostCtx).isValid())
4364 if (InvalidCosts.
empty())
4372 for (
auto &Pair : InvalidCosts)
4373 if (!Numbering.
count(Pair.first))
4374 Numbering[Pair.first] =
I++;
4377 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4378 if (Numbering[
A.first] != Numbering[
B.first])
4379 return Numbering[
A.first] < Numbering[
B.first];
4380 const auto &
LHS =
A.second;
4381 const auto &
RHS =
B.second;
4382 return std::make_tuple(
LHS.isScalable(),
LHS.getKnownMinValue()) <
4383 std::make_tuple(
RHS.isScalable(),
RHS.getKnownMinValue());
4395 Subset =
Tail.take_front(1);
4402 [](
const auto *R) {
return Instruction::PHI; })
4403 .Case<VPWidenSelectRecipe>(
4404 [](
const auto *R) {
return Instruction::Select; })
4405 .Case<VPWidenStoreRecipe>(
4406 [](
const auto *R) {
return Instruction::Store; })
4407 .Case<VPWidenLoadRecipe>(
4408 [](
const auto *R) {
return Instruction::Load; })
4409 .Case<VPWidenCallRecipe>(
4410 [](
const auto *R) {
return Instruction::Call; })
4413 [](
const auto *R) {
return R->getOpcode(); })
4415 return R->getStoredValues().empty() ? Instruction::Load
4416 : Instruction::Store;
4424 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4425 std::string OutString;
4427 assert(!Subset.empty() &&
"Unexpected empty range");
4428 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4429 for (
const auto &Pair : Subset)
4430 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4432 if (Opcode == Instruction::Call) {
4433 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4435 WidenCall ? WidenCall->getCalledScalarFunction()
4436 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4437 ->getLiveInIRValue());
4438 OS <<
" call to " << CalledFn->
getName();
4444 Tail =
Tail.drop_front(Subset.size());
4448 Subset =
Tail.take_front(Subset.size() + 1);
4449 }
while (!
Tail.empty());
4463 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4472 switch (R.getVPDefID()) {
4473 case VPDef::VPDerivedIVSC:
4474 case VPDef::VPScalarIVStepsSC:
4475 case VPDef::VPScalarCastSC:
4476 case VPDef::VPReplicateSC:
4477 case VPDef::VPInstructionSC:
4478 case VPDef::VPCanonicalIVPHISC:
4479 case VPDef::VPVectorPointerSC:
4480 case VPDef::VPExpandSCEVSC:
4481 case VPDef::VPEVLBasedIVPHISC:
4482 case VPDef::VPPredInstPHISC:
4483 case VPDef::VPBranchOnMaskSC:
4485 case VPDef::VPReductionSC:
4486 case VPDef::VPActiveLaneMaskPHISC:
4487 case VPDef::VPWidenCallSC:
4488 case VPDef::VPWidenCanonicalIVSC:
4489 case VPDef::VPWidenCastSC:
4490 case VPDef::VPWidenGEPSC:
4491 case VPDef::VPWidenSC:
4492 case VPDef::VPWidenSelectSC:
4493 case VPDef::VPBlendSC:
4494 case VPDef::VPFirstOrderRecurrencePHISC:
4495 case VPDef::VPWidenPHISC:
4496 case VPDef::VPWidenIntOrFpInductionSC:
4497 case VPDef::VPWidenPointerInductionSC:
4498 case VPDef::VPReductionPHISC:
4499 case VPDef::VPInterleaveSC:
4500 case VPDef::VPWidenLoadEVLSC:
4501 case VPDef::VPWidenLoadSC:
4502 case VPDef::VPWidenStoreEVLSC:
4503 case VPDef::VPWidenStoreSC:
4509 auto WillWiden = [&
TTI, VF](
Type *ScalarTy) {
4527 if (R.getNumDefinedValues() == 0 &&
4528 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4537 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4539 if (!Visited.
insert({ScalarTy}).second)
4541 if (WillWiden(ScalarTy))
4551 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4552 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4554 [](std::unique_ptr<VPlan> &
P) {
4557 "Expected Scalar VF to be a candidate");
4564 if (ForceVectorization &&
4565 (VPlans.
size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4572 for (
auto &
P : VPlans) {
4582 unsigned AssumedMinimumVscale =
4585 Candidate.Width.isScalable()
4586 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
4587 : Candidate.Width.getFixedValue();
4589 <<
" costs: " << (Candidate.Cost / Width));
4590 if (VF.isScalable())
4592 << AssumedMinimumVscale <<
")");
4599 <<
"LV: Not considering vector loop of width " << VF
4600 <<
" because it will not generate any vector instructions.\n");
4604 if (isMoreProfitable(Candidate, ChosenFactor))
4605 ChosenFactor = Candidate;
4611 "There are conditional stores.",
4612 "store that is conditionally executed prevents vectorization",
4613 "ConditionalStore", ORE, OrigLoop);
4614 ChosenFactor = ScalarCost;
4618 !isMoreProfitable(ChosenFactor, ScalarCost))
dbgs()
4619 <<
"LV: Vectorization seems to be not beneficial, "
4620 <<
"but was forced by a user.\n");
4622 return ChosenFactor;
4625bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4630 [&](
PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
4640 if (!OrigLoop->
contains(cast<Instruction>(U)))
4644 if (!OrigLoop->
contains(cast<Instruction>(U)))
4673 unsigned Multiplier = 1;
4685 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4690 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4691 "epilogue is allowed.\n");
4697 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4698 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4699 "is not a supported candidate.\n");
4704 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4707 return {ForcedEC, 0, 0};
4709 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4718 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4723 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4735 EstimatedRuntimeVF *= *VScale;
4740 const SCEV *RemainingIterations =
nullptr;
4741 for (
auto &NextVF : ProfitableVFs) {
4748 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4755 if (!MainLoopVF.
isScalable() && !NextVF.Width.isScalable()) {
4757 if (!RemainingIterations) {
4764 SE.
getConstant(TCType, NextVF.Width.getKnownMinValue()),
4765 RemainingIterations))
4769 if (Result.Width.isScalar() || isMoreProfitable(NextVF, Result))
4775 << Result.Width <<
"\n");
4779std::pair<unsigned, unsigned>
4781 unsigned MinWidth = -1U;
4782 unsigned MaxWidth = 8;
4795 MaxWidth = std::min<unsigned>(
4796 MaxWidth, std::min<unsigned>(
4802 MinWidth = std::min<unsigned>(
4803 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4804 MaxWidth = std::max<unsigned>(
4805 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4808 return {MinWidth, MaxWidth};
4816 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4824 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4829 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
4843 if (
auto *ST = dyn_cast<StoreInst>(&
I))
4844 T = ST->getValueOperand()->getType();
4847 "Expected the load/store/recurrence type to be sized");
4876 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4877 "Unroll factor forced to be 1.\n");
4890 if (LoopCost == 0) {
4892 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4902 for (
auto& pair : R.MaxLocalUsers) {
4903 pair.second = std::max(pair.second, 1U);
4917 unsigned IC = UINT_MAX;
4919 for (
auto& pair : R.MaxLocalUsers) {
4931 unsigned MaxLocalUsers = pair.second;
4932 unsigned LoopInvariantRegs = 0;
4933 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
4934 LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
4936 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4940 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4941 std::max(1U, (MaxLocalUsers - 1)));
4944 IC = std::min(IC, TmpIC);
4962 EstimatedVF *= *VScale;
4964 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
4970 unsigned AvailableTC =
4982 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4983 unsigned InterleaveCountLB =
bit_floor(std::max(
4984 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4985 MaxInterleaveCount = InterleaveCountLB;
4987 if (InterleaveCountUB != InterleaveCountLB) {
4988 unsigned TailTripCountUB =
4989 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4990 unsigned TailTripCountLB =
4991 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4994 if (TailTripCountUB == TailTripCountLB)
4995 MaxInterleaveCount = InterleaveCountUB;
4997 }
else if (BestKnownTC && *BestKnownTC > 0) {
5001 ? (*BestKnownTC) - 1
5009 MaxInterleaveCount =
bit_floor(std::max(
5010 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5013 assert(MaxInterleaveCount > 0 &&
5014 "Maximum interleave count must be greater than 0");
5018 if (IC > MaxInterleaveCount)
5019 IC = MaxInterleaveCount;
5022 IC = std::max(1u, IC);
5024 assert(IC > 0 &&
"Interleave count must be greater than 0.");
5028 if (VF.
isVector() && HasReductions) {
5029 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
5037 bool ScalarInterleavingRequiresPredication =
5039 return Legal->blockNeedsPredication(BB);
5041 bool ScalarInterleavingRequiresRuntimePointerCheck =
5047 <<
"LV: IC is " << IC <<
'\n'
5048 <<
"LV: VF is " << VF <<
'\n');
5049 const bool AggressivelyInterleaveReductions =
5051 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5052 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
5056 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
5063 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5064 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5070 bool HasSelectCmpReductions =
5073 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5074 return RecurrenceDescriptor::isAnyOfRecurrenceKind(
5075 RdxDesc.getRecurrenceKind());
5077 if (HasSelectCmpReductions) {
5078 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
5088 bool HasOrderedReductions =
5090 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5091 return RdxDesc.isOrdered();
5093 if (HasOrderedReductions) {
5095 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
5100 SmallIC = std::min(SmallIC,
F);
5101 StoresIC = std::min(StoresIC,
F);
5102 LoadsIC = std::min(LoadsIC,
F);
5106 std::max(StoresIC, LoadsIC) > SmallIC) {
5108 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
5109 return std::max(StoresIC, LoadsIC);
5114 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
5118 return std::max(IC / 2, SmallIC);
5120 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
5127 if (AggressivelyInterleaveReductions) {
5177 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5181 for (
Value *U :
I.operands()) {
5182 auto *Instr = dyn_cast<Instruction>(U);
5193 LoopInvariants.
insert(Instr);
5198 EndPoint[Instr] = IdxToInstr.
size();
5216 LLVM_DEBUG(
dbgs() <<
"LV(REG): Calculating max register usage:\n");
5218 const auto &TTICapture =
TTI;
5225 for (
unsigned int i = 0, s = IdxToInstr.
size(); i < s; ++i) {
5229 InstrList &
List = TransposeEnds[i];
5244 for (
unsigned j = 0, e = VFs.
size(); j < e; ++j) {
5252 if (VFs[j].isScalar()) {
5253 for (
auto *Inst : OpenIntervals) {
5262 for (
auto *Inst : OpenIntervals) {
5275 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5281 auto &Entry = MaxUsages[j][pair.first];
5282 Entry = std::max(Entry, pair.second);
5287 << OpenIntervals.
size() <<
'\n');
5293 for (
unsigned i = 0, e = VFs.
size(); i < e; ++i) {
5299 for (
auto *Inst : LoopInvariants) {
5302 bool IsScalar =
all_of(Inst->users(), [&](
User *U) {
5303 auto *I = cast<Instruction>(U);
5304 return TheLoop != LI->getLoopFor(I->getParent()) ||
5305 isScalarAfterVectorization(I, VFs[i]);
5311 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
5315 dbgs() <<
"LV(REG): VF = " << VFs[i] <<
'\n';
5316 dbgs() <<
"LV(REG): Found max usage: " << MaxUsages[i].
size()
5318 for (
const auto &pair : MaxUsages[i]) {
5319 dbgs() <<
"LV(REG): RegisterClass: "
5323 dbgs() <<
"LV(REG): Found invariant usage: " << Invariant.
size()
5325 for (
const auto &pair : Invariant) {
5326 dbgs() <<
"LV(REG): RegisterClass: "
5340bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
5351 "Expecting a scalar emulated instruction");
5352 return isa<LoadInst>(
I) ||
5353 (isa<StoreInst>(
I) &&
5370 PredicatedBBsAfterVectorization[VF].
clear();
5387 !useEmulatedMaskMemRefHack(&
I, VF) &&
5388 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0)
5391 PredicatedBBsAfterVectorization[VF].
insert(BB);
5393 if (Pred->getSingleSuccessor() == BB)
5394 PredicatedBBsAfterVectorization[VF].
insert(Pred);
5403 "Instruction marked uniform-after-vectorization will be predicated");
5421 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5440 for (
Use &U :
I->operands())
5441 if (
auto *J = dyn_cast<Instruction>(U.get()))
5453 while (!Worklist.
empty()) {
5457 if (ScalarCosts.contains(
I))
5487 for (
Use &U :
I->operands())
5488 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5490 "Instruction has non-scalar type");
5491 if (canBeScalarized(J))
5493 else if (needsExtract(J, VF)) {
5495 cast<VectorType>(
ToVectorTy(J->getType(), VF)),
5506 Discount += VectorCost - ScalarCost;
5507 ScalarCosts[
I] = ScalarCost;
5521 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5534 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5535 << VF <<
" For instruction: " <<
I <<
'\n');
5563 const Loop *TheLoop) {
5565 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5571 auto SE = PSE.
getSE();
5572 unsigned NumOperands = Gep->getNumOperands();
5573 for (
unsigned i = 1; i < NumOperands; ++i) {
5574 Value *Opd = Gep->getOperand(i);
5576 !
Legal->isInductionVariable(Opd))
5585LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5588 "Scalarization cost of instruction implies vectorization.");
5635 if (useEmulatedMaskMemRefHack(
I, VF))
5645LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5648 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5654 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5655 "Stride should be 1 or -1 for consecutive memory access");
5667 bool Reverse = ConsecutiveStride < 0;
5675LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5680 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5684 if (isa<LoadInst>(
I)) {
5696 (isLoopInvariantStoreValue
5703LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5706 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5717LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5720 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5725 assert(Group &&
"Fail to get an interleaved access group.");
5727 unsigned InterleaveFactor = Group->getFactor();
5732 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5733 if (Group->getMember(IF))
5737 bool UseMaskForGaps =
5739 (isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor()));
5741 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
5744 if (Group->isReverse()) {
5747 "Reverse masked interleaved access not supported.");
5748 Cost += Group->getNumMembers() *
5755std::optional<InstructionCost>
5761 if (InLoopReductions.
empty() || VF.
isScalar() || !isa<VectorType>(Ty))
5762 return std::nullopt;
5763 auto *VectorTy = cast<VectorType>(Ty);
5780 return std::nullopt;
5791 if (!InLoopReductionImmediateChains.
count(RetI))
5792 return std::nullopt;
5796 Instruction *LastChain = InLoopReductionImmediateChains.
at(RetI);
5798 while (!isa<PHINode>(ReductionPhi))
5799 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
5831 : dyn_cast<Instruction>(RetI->
getOperand(1));
5836 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5849 bool IsUnsigned = isa<ZExtInst>(Op0);
5866 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5867 return I == RetI ? RedCost : 0;
5871 bool IsUnsigned = isa<ZExtInst>(RedOp);
5880 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5881 return I == RetI ? RedCost : 0;
5882 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5887 bool IsUnsigned = isa<ZExtInst>(Op0);
5910 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5911 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5919 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5920 return I == RetI ? RedCost : 0;
5929 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5930 return I == RetI ? RedCost : 0;
5934 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5938LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5968 if (!
RetTy->isVoidTy() &&
5990 for (
auto *V : filterExtractingOperands(Ops, VF))
5993 filterExtractingOperands(Ops, VF), Tys,
CostKind);
6015 auto isLegalToScalarize = [&]() {
6029 if (isa<LoadInst>(
I))
6034 auto &SI = cast<StoreInst>(
I);
6052 if (GatherScatterCost < ScalarizationCost)
6064 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6065 "Expected consecutive stride.");
6074 unsigned NumAccesses = 1;
6077 assert(Group &&
"Fail to get an interleaved access group.");
6083 NumAccesses = Group->getNumMembers();
6085 InterleaveCost = getInterleaveGroupCost(&
I, VF);
6090 ? getGatherScatterCost(&
I, VF) * NumAccesses
6094 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
6100 if (InterleaveCost <= GatherScatterCost &&
6101 InterleaveCost < ScalarizationCost) {
6103 Cost = InterleaveCost;
6104 }
else if (GatherScatterCost < ScalarizationCost) {
6106 Cost = GatherScatterCost;
6109 Cost = ScalarizationCost;
6143 while (!Worklist.
empty()) {
6145 for (
auto &
Op :
I->operands())
6146 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
6147 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
6148 AddrDefs.
insert(InstOp).second)
6152 for (
auto *
I : AddrDefs) {
6153 if (isa<LoadInst>(
I)) {
6167 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
6184 "Trying to set a vectorization decision for a scalar VF");
6203 for (
auto &ArgOp : CI->
args())
6208 for (
Type *ScalarTy : ScalarTys)
6217 std::nullopt, *RedCost);
6231 getScalarizationOverhead(CI, VF,
CostKind);
6237 bool UsesMask =
false;
6243 if (
Info.Shape.VF != VF)
6247 if (MaskRequired && !
Info.isMasked())
6251 bool ParamsOk =
true;
6253 switch (Param.ParamKind) {
6272 dyn_cast<SCEVAddRecExpr>(SE->
getSCEV(ScalarParam));
6274 if (!SAR || SAR->getLoop() !=
TheLoop) {
6280 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE));
6308 if (VecFunc && UsesMask && !MaskRequired)
6328 if (VectorCost <=
Cost) {
6333 if (IntrinsicCost <=
Cost) {
6334 Cost = IntrinsicCost;
6353 return InstsToScalarize[VF][
I];
6356 auto ForcedScalar = ForcedScalars.
find(VF);
6357 if (VF.
isVector() && ForcedScalar != ForcedScalars.
end()) {
6358 auto InstSet = ForcedScalar->second;
6359 if (InstSet.count(
I))
6370 auto hasSingleCopyAfterVectorization = [
this](
Instruction *
I,
6375 auto Scalarized = InstsToScalarize.
find(VF);
6376 assert(Scalarized != InstsToScalarize.
end() &&
6377 "VF not yet analyzed for scalarization profitability");
6378 return !Scalarized->second.count(
I) &&
6380 auto *UI = cast<Instruction>(U);
6381 return !Scalarized->second.count(UI);
6384 (void) hasSingleCopyAfterVectorization;
6393 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6394 I->getOpcode() == Instruction::PHI ||
6395 (
I->getOpcode() == Instruction::BitCast &&
6396 I->getType()->isPointerTy()) ||
6397 hasSingleCopyAfterVectorization(
I, VF));
6407 switch (
I->getOpcode()) {
6408 case Instruction::GetElementPtr:
6414 case Instruction::Br: {
6421 bool ScalarPredicatedBB =
false;
6427 ScalarPredicatedBB =
true;
6429 if (ScalarPredicatedBB) {
6451 case Instruction::Switch: {
6454 auto *Switch = cast<SwitchInst>(
I);
6455 return Switch->getNumCases() *
6458 ToVectorTy(Switch->getCondition()->getType(), VF),
6462 case Instruction::PHI: {
6463 auto *Phi = cast<PHINode>(
I);
6475 cast<VectorType>(VectorTy), Mask,
CostKind,
6483 return (Phi->getNumIncomingValues() - 1) *
6485 Instruction::Select,
ToVectorTy(Phi->getType(), VF),
6491 case Instruction::UDiv:
6492 case Instruction::SDiv:
6493 case Instruction::URem:
6494 case Instruction::SRem:
6498 ScalarCost : SafeDivisorCost;
6502 case Instruction::Add:
6503 case Instruction::FAdd:
6504 case Instruction::Sub:
6505 case Instruction::FSub:
6506 case Instruction::Mul:
6507 case Instruction::FMul:
6508 case Instruction::FDiv:
6509 case Instruction::FRem:
6510 case Instruction::Shl:
6511 case Instruction::LShr:
6512 case Instruction::AShr:
6513 case Instruction::And:
6514 case Instruction::Or:
6515 case Instruction::Xor: {
6519 if (
I->getOpcode() == Instruction::Mul &&
6530 Value *Op2 =
I->getOperand(1);
6539 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6542 case Instruction::FNeg: {
6545 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6546 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6547 I->getOperand(0),
I);
6549 case Instruction::Select: {
6551 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6554 const Value *Op0, *Op1;
6571 Type *CondTy = SI->getCondition()->getType();
6576 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6577 Pred = Cmp->getPredicate();
6581 case Instruction::ICmp:
6582 case Instruction::FCmp: {
6583 Type *ValTy =
I->getOperand(0)->getType();
6584 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6589 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6592 case Instruction::Store:
6593 case Instruction::Load: {
6598 "CM decision should be taken at this point");
6605 return getMemoryInstructionCost(
I, VF);
6607 case Instruction::BitCast:
6608 if (
I->getType()->isPointerTy())
6611 case Instruction::ZExt:
6612 case Instruction::SExt:
6613 case Instruction::FPToUI:
6614 case Instruction::FPToSI:
6615 case Instruction::FPExt:
6616 case Instruction::PtrToInt:
6617 case Instruction::IntToPtr:
6618 case Instruction::SIToFP:
6619 case Instruction::UIToFP:
6620 case Instruction::Trunc:
6621 case Instruction::FPTrunc: {
6624 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6625 "Expected a load or a store!");
6651 unsigned Opcode =
I->getOpcode();
6654 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6656 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6657 CCH = ComputeCCH(Store);
6660 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6661 Opcode == Instruction::FPExt) {
6662 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6663 CCH = ComputeCCH(Load);
6670 auto *Trunc = cast<TruncInst>(
I);
6672 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6679 Type *SrcScalarTy =
I->getOperand(0)->getType();
6680 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6691 (
I->getOpcode() == Instruction::ZExt ||
6692 I->getOpcode() == Instruction::SExt))
6698 case Instruction::Call:
6700 case Instruction::ExtractValue:
6702 case Instruction::Alloca:
6725 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6726 return RequiresScalarEpilogue &&
6738 if ((SI = dyn_cast<StoreInst>(&
I)) &&
6741 auto I = DeadInvariantStoreOps.
insert({SI->getPointerOperand(), {}});
6742 I.first->second.push_back(SI->getValueOperand());
6751 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6752 return VecValuesToIgnore.contains(U) ||
6753 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6762 if (Group->getInsertPos() == &
I)
6765 DeadInterleavePointerOps.
push_back(PointerOp);
6770 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
6771 if (Br->isConditional())
6778 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6779 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
6781 Instruction *UI = cast<Instruction>(U);
6782 return !VecValuesToIgnore.contains(U) &&
6783 (!isAccessInterleaved(UI) ||
6784 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6788 DeadInterleavePointerOps.
append(
Op->op_begin(),
Op->op_end());
6791 for (
const auto &[
_, Ops] : DeadInvariantStoreOps) {
6805 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
6808 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6809 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
6812 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
6817 if ((ThenEmpty && ElseEmpty) ||
6819 ElseBB->
phis().empty()) ||
6821 ThenBB->
phis().empty())) {
6830 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
6833 return !VecValuesToIgnore.contains(U) &&
6834 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6845 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6849 DeadOps.
append(
Op->op_begin(),
Op->op_end());
6890 bool InLoop = !ReductionOperations.
empty();
6893 InLoopReductions.
insert(Phi);
6896 for (
auto *
I : ReductionOperations) {
6897 InLoopReductionImmediateChains[
I] = LastChain;
6901 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6902 <<
" reduction for phi: " << *Phi <<
"\n");
6910 return tryInsertInstruction(
6923 unsigned WidestType;
6932 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6953 <<
"overriding computed VF.\n");
6958 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6959 <<
"not supported by the target.\n");
6961 "Scalable vectorization requested but not supported by the target",
6962 "the scalable user-specified vectorization width for outer-loop "
6963 "vectorization cannot be used because the target does not support "
6964 "scalable vectors.",
6965 "ScalableVFUnfeasible", ORE, OrigLoop);
6970 "VF needs to be a power of two");
6972 <<
"VF " << VF <<
" to build VPlans.\n");
6979 return {VF, 0 , 0 };
6983 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6984 "VPlan-native path.\n");
6988std::optional<VectorizationFactor>
6996 return std::nullopt;
7003 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
7004 "which requires masked-interleaved support.\n");
7020 "UserVF ignored because it may be larger than the maximal safe VF",
7021 "InvalidUserVF", ORE, OrigLoop);
7024 "VF needs to be a power of two");
7030 buildVPlansWithVPRecipes(UserVF, UserVF);
7033 <<
"LV: No VPlan could be built for " << UserVF <<
".\n");
7034 return std::nullopt;
7038 return {{UserVF, 0, 0}};
7041 "InvalidCost", ORE, OrigLoop);
7055 for (
const auto &VF : VFCandidates) {
7070 return std::nullopt;
7072 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }))
7084 return std::nullopt;
7123 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
7124 for (
Value *
Op : IVInsts[
I]->operands()) {
7125 auto *OpI = dyn_cast<Instruction>(
Op);
7126 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
7132 for (
User *U :
IV->users()) {
7133 auto *CI = cast<Instruction>(U);
7134 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
7139 if (!CostCtx.SkipCostComputation.insert(IVInst).second)
7143 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
7144 <<
": induction instruction " << *IVInst <<
"\n";
7146 Cost += InductionCost;
7159 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
7162 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
7163 ExitInstrs.
insert(CondI);
7167 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
7170 !CostCtx.SkipCostComputation.insert(CondI).second)
7172 Cost += CostCtx.getLegacyCost(CondI, VF);
7174 auto *OpI = dyn_cast<Instruction>(
Op);
7175 if (!OpI ||
any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
7176 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
7177 !ExitInstrs.contains(cast<Instruction>(U));
7193 RdxDesc.getRecurrenceKind()))
7199 RdxDesc.getRecurrenceKind())) {
7201 RedPhi->users(), [](
User *U) { return isa<SelectInst>(U); }));
7202 assert(!CostCtx.SkipCostComputation.contains(
Select) &&
7203 "reduction op visited multiple times");
7204 CostCtx.SkipCostComputation.insert(
Select);
7205 auto ReductionCost = CostCtx.getLegacyCost(
Select, VF);
7206 LLVM_DEBUG(
dbgs() <<
"Cost of " << ReductionCost <<
" for VF " << VF
7207 <<
":\n any-of reduction " << *
Select <<
"\n");
7208 Cost += ReductionCost;
7212 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
7217 for (
auto *ChainOp : ChainOps) {
7218 for (
Value *
Op : ChainOp->operands()) {
7219 if (
auto *
I = dyn_cast<Instruction>(
Op))
7220 ChainOpsAndOperands.insert(
I);
7231 assert(!CostCtx.SkipCostComputation.contains(
I) &&
7232 "reduction op visited multiple times");
7233 CostCtx.SkipCostComputation.insert(
I);
7234 LLVM_DEBUG(
dbgs() <<
"Cost of " << ReductionCost <<
" for VF " << VF
7235 <<
":\n in-loop reduction " << *
I <<
"\n");
7236 Cost += *ReductionCost;
7248 CostCtx.SkipCostComputation.insert(BB->getTerminator());
7249 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
7260 VPlan &FirstPlan = *VPlans[0];
7266 "More than a single plan/VF w/o any plan having scalar VF");
7274 if (ForceVectorization) {
7281 for (
auto &
P : VPlans) {
7288 <<
"LV: Not considering vector loop of width " << VF
7289 <<
" because it will not generate any vector instructions.\n");
7295 if (isMoreProfitable(CurrentFactor, BestFactor))
7296 BestFactor = CurrentFactor;
7299 if (isMoreProfitable(CurrentFactor, ScalarFactor))
7300 ProfitableVFs.push_back(CurrentFactor);
7303 return BestFactor.
Width;
7310 bool IsUnrollMetadata =
false;
7311 MDNode *LoopID = L->getLoopID();
7314 for (
unsigned i = 1, ie = LoopID->
getNumOperands(); i < ie; ++i) {
7315 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(i));
7317 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7319 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7325 if (!IsUnrollMetadata) {
7327 LLVMContext &Context = L->getHeader()->getContext();
7330 MDString::get(Context,
"llvm.loop.unroll.runtime.disable"));
7336 L->setLoopID(NewLoopID);
7346 bool VectorizingEpilogue) {
7351 auto *PhiR = cast<VPReductionPHIRecipe>(RedResult->
getOperand(0));
7357 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
7360 auto *Cmp = cast<ICmpInst>(PhiR->getStartValue()->getUnderlyingValue());
7363 ResumePhi = cast<PHINode>(Cmp->getOperand(0));
7365 assert((!VectorizingEpilogue || ResumePhi) &&
7366 "when vectorizing the epilogue loop, we need a resume phi from main "
7383 BCBlockPhi->addIncoming(FinalValue,
Incoming);
7385 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(
Incoming),
7391 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
7395 int IncomingEdgeBlockIdx =
7397 assert(IncomingEdgeBlockIdx >= 0 &&
"Invalid block index");
7399 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
7400 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
7402 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
7404 ReductionResumeValues[&RdxDesc] = BCBlockPhi;
7407std::pair<DenseMap<const SCEV *, Value *>,
7414 "Trying to execute plan with unsupported VF");
7416 "Trying to execute plan with unsupported UF");
7418 (IsEpilogueVectorization || !ExpandedSCEVs) &&
7419 "expanded SCEVs to reuse can only be used during epilogue vectorization");
7420 (void)IsEpilogueVectorization;
7425 <<
", UF=" << BestUF <<
'\n');
7426 BestVPlan.
setName(
"Final VPlan");
7443 assert(IsEpilogueVectorization &&
"should only re-use the existing trip "
7444 "count during epilogue vectorization");
7448 Value *CanonicalIVStartValue;
7449 std::tie(State.
CFG.
PrevBB, CanonicalIVStartValue) =
7452#ifdef EXPENSIVE_CHECKS
7453 assert(DT->
verify(DominatorTree::VerificationLevel::Fast));
7459 std::unique_ptr<LoopVersioning> LVer =
nullptr;
7467 LVer = std::make_unique<LoopVersioning>(
7470 State.
LVer = &*LVer;
7487 CanonicalIVStartValue, State);
7497 dyn_cast<VPInstruction>(&R), ReductionResumeValues, State, OrigLoop,
7506 std::optional<MDNode *> VectorizedLoopID =
7513 if (VectorizedLoopID)
7514 L->setLoopID(*VectorizedLoopID);
7537 cast<BranchInst>(State.
CFG.
VPBB2IRBB[ExitVPBB]->getTerminator());
7538 if (MiddleTerm->isConditional() &&
7542 assert(TripCount > 0 &&
"trip count should not be zero");
7543 const uint32_t Weights[] = {1, TripCount - 1};
7556std::pair<BasicBlock *, Value *>
7558 const SCEV2ValueTy &ExpandedSCEVs) {
7598 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7608 dbgs() <<
"intermediate fn:\n"
7616 assert(Bypass &&
"Expected valid bypass basic block.");
7637 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7641 DT,
LI,
nullptr,
"vector.ph");
7646 "TC check is expected to dominate Bypass");
7664 return TCCheckBlock;
7673std::pair<BasicBlock *, Value *>
7675 const SCEV2ValueTy &ExpandedSCEVs) {
7683 nullptr,
"vec.epilog.iter.check",
true);
7685 VecEpilogueIterationCountCheck);
7690 "expected this to be saved from the previous pass.");
7708 VecEpilogueIterationCountCheck,
7732 for (
PHINode &Phi : VecEpilogueIterationCountCheck->
phis())
7735 for (
PHINode *Phi : PhisInBlock) {
7737 Phi->replaceIncomingBlockWith(
7739 VecEpilogueIterationCountCheck);
7746 return EPI.EpilogueIterationCountCheck == IncB;
7758 Type *IdxTy =
Legal->getWidestInductionType();
7762 EPResumeVal->
addIncoming(ConstantInt::get(IdxTy, 0),
7773 {VecEpilogueIterationCountCheck,
7784 "Expected trip count to have been safed in the first pass.");
7788 "saved trip count does not dominate insertion point.");
7799 Value *CheckMinIters =
7803 "min.epilog.iters.check");
7809 unsigned EpilogueLoopStep =
7815 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7816 const uint32_t Weights[] = {EstimatedSkipCount,
7817 MainLoopStep - EstimatedSkipCount};
7827 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7842 if (
auto *
I = dyn_cast<Instruction>(
Op)) {
7843 if (
auto *R = Ingredient2Recipe.lookup(
I))
7844 return R->getVPSingleValue();
7858 "unsupported switch either exiting loop or continuing to header");
7863 BasicBlock *DefaultDst = SI->getDefaultDest();
7865 for (
auto &
C : SI->cases()) {
7867 assert(!EdgeMaskCache.
contains({Src, Dst}) &&
"Edge masks already created");
7870 if (Dst == DefaultDst)
7872 auto I = Dst2Compares.
insert({Dst, {}});
7880 VPValue *DefaultMask =
nullptr;
7881 for (
const auto &[Dst, Conds] : Dst2Compares) {
7890 EdgeMaskCache[{Src, Dst}] = Mask;
7896 DefaultMask = DefaultMask ? Builder.
createOr(DefaultMask, Mask) : Mask;
7900 DefaultMask = Builder.
createNot(DefaultMask);
7904 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask;
7911 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7913 if (ECEntryIt != EdgeMaskCache.
end())
7914 return ECEntryIt->second;
7916 if (
auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) {
7918 assert(EdgeMaskCache.
contains(Edge) &&
"Mask for Edge not created?");
7919 return EdgeMaskCache[Edge];
7925 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7926 assert(BI &&
"Unexpected terminator found");
7928 return EdgeMaskCache[Edge] = SrcMask;
7934 return EdgeMaskCache[Edge] = SrcMask;
7937 assert(EdgeMask &&
"No Edge Mask found for condition");
7949 return EdgeMaskCache[Edge] = EdgeMask;
7956 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7958 assert(ECEntryIt != EdgeMaskCache.
end() &&
7959 "looking up mask for edge which has not been created");
7960 return ECEntryIt->second;
7968 BlockMaskCache[Header] =
nullptr;
7980 HeaderVPBB->
insert(
IV, NewInsertionPoint);
7987 BlockMaskCache[Header] = BlockMask;
7993 assert(BCEntryIt != BlockMaskCache.
end() &&
7994 "Trying to access mask for block without one.");
7995 return BCEntryIt->second;
7999 assert(OrigLoop->
contains(BB) &&
"Block is not a part of a loop");
8000 assert(BlockMaskCache.
count(BB) == 0 &&
"Mask for block already computed");
8002 "Loop header must have cached block mask");
8008 for (
auto *Predecessor :
8012 BlockMaskCache[BB] = EdgeMask;
8017 BlockMask = EdgeMask;
8021 BlockMask = Builder.
createOr(BlockMask, EdgeMask, {});
8024 BlockMaskCache[BB] = BlockMask;
8030 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
8031 "Must be called with either a load or store");
8037 "CM decision should be taken at this point.");
8063 auto *
GEP = dyn_cast<GetElementPtrInst>(
8064 Ptr->getUnderlyingValue()->stripPointerCasts());
8071 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
8089 "step must be loop invariant");
8093 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8096 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
8107 *PSE.
getSE(), *OrigLoop);
8133 auto isOptimizableIVTruncate =
8141 isOptimizableIVTruncate(
I),
Range)) {
8143 auto *
Phi = cast<PHINode>(
I->getOperand(0));
8154 unsigned NumIncoming =
Phi->getNumIncomingValues();
8165 for (
unsigned In = 0;
In < NumIncoming;
In++) {
8170 assert(In == 0 &&
"Both null and non-null edge masks found");
8172 "Distinct incoming values with one having a full mask");
8195 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
8196 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
8197 ID == Intrinsic::pseudoprobe ||
8198 ID == Intrinsic::experimental_noalias_scope_decl))
8205 bool ShouldUseVectorIntrinsic =
8212 if (ShouldUseVectorIntrinsic)
8217 std::optional<unsigned> MaskPos;
8239 Variant = Decision.Variant;
8240 MaskPos = Decision.MaskPos;
8247 if (ShouldUseVectorCall) {
8248 if (MaskPos.has_value()) {
8263 Ops.insert(Ops.
begin() + *MaskPos, Mask);
8275 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
8276 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
8291 switch (
I->getOpcode()) {
8294 case Instruction::SDiv:
8295 case Instruction::UDiv:
8296 case Instruction::SRem:
8297 case Instruction::URem: {
8305 auto *SafeRHS = Builder.
createSelect(Mask, Ops[1], One,
I->getDebugLoc());
8311 case Instruction::Add:
8312 case Instruction::And:
8313 case Instruction::AShr:
8314 case Instruction::FAdd:
8315 case Instruction::FCmp:
8316 case Instruction::FDiv:
8317 case Instruction::FMul:
8318 case Instruction::FNeg:
8319 case Instruction::FRem:
8320 case Instruction::FSub:
8321 case Instruction::ICmp:
8322 case Instruction::LShr:
8323 case Instruction::Mul:
8324 case Instruction::Or:
8325 case Instruction::Select:
8326 case Instruction::Shl:
8327 case Instruction::Sub:
8328 case Instruction::Xor:
8329 case Instruction::Freeze:
8337 auto *PN = cast<PHINode>(R->getUnderlyingValue());
8339 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8356 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
8358 case Intrinsic::assume:
8359 case Intrinsic::lifetime_start:
8360 case Intrinsic::lifetime_end:
8382 VPValue *BlockInMask =
nullptr;
8383 if (!IsPredicated) {
8387 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8398 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8399 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
8400 "Should not predicate a uniform recipe");
8402 IsUniform, BlockInMask);
8413 if (
auto Phi = dyn_cast<PHINode>(Instr)) {
8414 if (Phi->getParent() != OrigLoop->
getHeader())
8417 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8423 "can only widen reductions and fixed-order recurrences here");
8441 PhisToFix.push_back(PhiRecipe);
8445 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8454 if (
auto *CI = dyn_cast<CallInst>(Instr))
8457 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8460 if (!shouldWiden(Instr,
Range))
8463 if (
auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8467 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8472 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8477 return tryToWiden(Instr,
Operands, VPBB);
8480void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8484 auto MaxVFTimes2 = MaxVF * 2;
8486 VFRange SubRange = {VF, MaxVFTimes2};
8487 if (
auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) {
8499 VPlans.push_back(std::move(Plan));
8509 Value *StartIdx = ConstantInt::get(IdxTy, 0);
8516 Header->insert(CanonicalIVPHI, Header->begin());
8521 Instruction::Add, {CanonicalIVPHI, &Plan.
getVFxUF()}, {HasNUW,
false},
DL,
8523 CanonicalIVPHI->
addOperand(CanonicalIVIncrement);
8540 if (MiddleVPBB->getNumSuccessors() != 2)
8545 cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0])->getIRBasicBlock();
8548 Value *IncomingValue =
8549 ExitPhi.getIncomingValueForBlock(ExitingBB);
8555 if ((isa<VPWidenIntOrFpInductionRecipe>(V) &&
8556 !cast<VPWidenIntOrFpInductionRecipe>(V)->getTruncInst()) ||
8557 isa<VPWidenPointerInductionRecipe>(V) ||
8558 (isa<Instruction>(IncomingValue) &&
8560 auto *P = dyn_cast<PHINode>(U);
8561 return P && Inductions.contains(P);
8584 if (isa<VPIRBasicBlock>(Succ))
8586 assert(!ScalarPHVPBB &&
"Two candidates for ScalarPHVPBB?");
8587 ScalarPHVPBB = cast<VPBasicBlock>(Succ);
8592 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8596 if (
auto *Terminator = MiddleVPBB->getTerminator()) {
8597 auto *Condition = dyn_cast<VPInstruction>(Terminator->getOperand(0));
8598 assert((!Condition || Condition->getParent() == MiddleVPBB) &&
8599 "Condition expected in MiddleVPBB");
8600 MiddleBuilder.
setInsertPoint(Condition ? Condition : Terminator);
8606 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
8612 {FOR->getBackedgeValue(), OneVPV},
8613 {},
"vector.recur.extract");
8616 "scalar.recur.init");
8617 Plan.
addLiveOut(cast<PHINode>(FOR->getUnderlyingInstr()), ResumePhiRecipe);
8622LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
VFRange &
Range) {
8637 bool RequiresScalarEpilogueCheck =
8652 bool IVUpdateMayOverflow =
false;
8663 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
8683 "Unsupported interleave factor for scalable vectors");
8688 InterleaveGroups.
insert(IG);
8706 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty();
8707 return Legal->blockNeedsPredication(BB) || NeedsBlends;
8712 if (VPBB != HeaderVPBB)
8716 if (VPBB == HeaderVPBB)
8717 RecipeBuilder.createHeaderMask();
8718 else if (NeedsMasks)
8719 RecipeBuilder.createBlockInMask(BB);
8726 auto *
Phi = dyn_cast<PHINode>(Instr);
8727 if (Phi &&
Phi->getParent() == HeaderBB) {
8728 Operands.push_back(Plan->getOrAddLiveIn(
8731 auto OpRange = RecipeBuilder.mapToVPValues(
Instr->operands());
8732 Operands = {OpRange.begin(), OpRange.end()};
8738 if ((SI = dyn_cast<StoreInst>(&
I)) &&
8743 RecipeBuilder.tryToCreateWidenRecipe(Instr,
Operands,
Range, VPBB);
8745 Recipe = RecipeBuilder.handleReplication(Instr,
Range);
8747 RecipeBuilder.setRecipe(Instr, Recipe);
8748 if (isa<VPHeaderPHIRecipe>(Recipe)) {
8759 "unexpected recipe needs moving");
8775 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8776 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8777 "entry block must be set to a VPRegionBlock having a non-empty entry "
8779 RecipeBuilder.fixHeaderPhis();
8789 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8794 for (
const auto *IG : InterleaveGroups) {
8796 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getInsertPos()));
8798 for (
unsigned i = 0; i < IG->getFactor(); ++i)
8799 if (
auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8800 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI));
8801 StoredValues.
push_back(StoreR->getStoredValue());
8804 bool NeedsMaskForGaps =
8807 "masked interleaved groups are not allowed.");
8809 Recipe->getMask(), NeedsMaskForGaps);
8810 VPIG->insertBefore(Recipe);
8812 for (
unsigned i = 0; i < IG->getFactor(); ++i)
8814 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
8815 if (!
Member->getType()->isVoidTy()) {
8826 Plan->setName(
"Initial VPlan");
8831 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
8832 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.
getSCEV(StrideV));
8837 auto *CI = Plan->getOrAddLiveIn(
8838 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
8839 if (
VPValue *StrideVPV = Plan->getLiveIn(StrideV))
8845 if (!isa<SExtInst, ZExtInst>(U))
8847 VPValue *StrideVPV = Plan->getLiveIn(U);
8850 unsigned BW =
U->getType()->getScalarSizeInBits();
8851 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
8852 : ScevStride->getAPInt().zext(BW);
8853 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(
U->getType(),
C));
8871 bool WithoutRuntimeCheck =
8874 WithoutRuntimeCheck);
8890 *PSE.
getSE(),
true,
false, OrigLoop);
8894 HCFGBuilder.buildHierarchicalCFG();
8902 *PSE.
getSE(), *TLI);
8907 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
8908 Term->eraseFromParent();
8932void LoopVectorizationPlanner::adjustRecipesForReductions(
8934 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8941 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
8944 bool HasIntermediateStore =
false;
8949 auto *IS2 =
R2->getRecurrenceDescriptor().IntermediateStore;
8950 HasIntermediateStore |= IS1 || IS2;
8971 if (HasIntermediateStore && ReductionPHIList.
size() > 1)
8973 R->moveBefore(*Header, Header->getFirstNonPhi());
8976 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8977 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8983 "AnyOf reductions are not allowed for in-loop reductions");
8988 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8991 auto *UserRecipe = dyn_cast<VPSingleDefRecipe>(U);
8993 assert(isa<VPLiveOut>(U) &&
8994 "U must either be a VPSingleDef or VPLiveOut");
8997 Worklist.
insert(UserRecipe);
9010 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
9013 unsigned IndexOfFirstOperand;
9021 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9022 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
9023 isa<VPWidenCallRecipe>(CurrentLink)) &&
9024 CurrentLink->getOperand(2) == PreviousLink &&
9025 "expected a call where the previous link is the added operand");
9033 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
9035 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
9038 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink);
9039 if (PhiR->isInLoop() && Blend) {
9040 assert(Blend->getNumIncomingValues() == 2 &&
9041 "Blend must have 2 incoming values");
9042 if (Blend->getIncomingValue(0) == PhiR)
9043 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
9045 assert(Blend->getIncomingValue(1) == PhiR &&
9046 "PhiR must be an operand of the blend");
9047 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
9053 if (isa<VPWidenRecipe>(CurrentLink)) {
9054 assert(isa<CmpInst>(CurrentLinkI) &&
9055 "need to have the compare of the select");
9058 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9059 "must be a select recipe");
9060 IndexOfFirstOperand = 1;
9063 "Expected to replace a VPWidenSC");
9064 IndexOfFirstOperand = 0;
9069 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9070 ? IndexOfFirstOperand + 1
9071 : IndexOfFirstOperand;
9072 VecOp = CurrentLink->getOperand(VecOpId);
9073 assert(VecOp != PreviousLink &&
9074 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9075 (VecOpId - IndexOfFirstOperand)) ==
9077 "PreviousLink must be the operand other than VecOp");
9093 CurrentLink->replaceAllUsesWith(RedRecipe);
9094 PreviousLink = RedRecipe;
9103 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9116 return isa<VPWidenSelectRecipe>(U) ||
9117 (isa<VPReplicateRecipe>(U) &&
9118 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9119 Instruction::Select);
9125 for (
unsigned I = 0;
I != CmpR->getNumOperands(); ++
I)
9126 if (CmpR->getOperand(
I) == PhiR)
9134 if (
Select->getOperand(1) == PhiR)
9137 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9151 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB &&
9152 "reduction recipe must be defined before latch");
9154 std::optional<FastMathFlags> FMFs =
9161 return isa<VPInstruction>(&U) &&
9162 cast<VPInstruction>(&U)->getOpcode() ==
9179 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9188 Trunc->
insertAfter(NewExitingVPV->getDefiningRecipe());
9189 Extnd->insertAfter(Trunc);
9191 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9192 NewExitingVPV = Extnd;
9211 OrigExitingVPV->replaceUsesWithIf(
9212 FinalReductionResult,
9220 assert(!State.
Instance &&
"VPDerivedIVRecipe being replicated.");
9231 Kind, cast_if_present<BinaryOperator>(FPBinOp));
9232 DerivedIV->
setName(
"offset.idx");
9233 assert(DerivedIV != CanonicalIV &&
"IV didn't need transforming?");
9242 "uniform recipe shouldn't be predicated");
9248 if (State.
Instance->Lane.isFirstLane()) {
9262 if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) &&
9264 return Op->isDefinedOutsideVectorRegions();
9268 for (
unsigned Part = 1; Part < State.
UF; ++Part)
9277 for (
unsigned Part = 0; Part < State.
UF; ++Part)
9284 if (isa<StoreInst>(UI) &&
9295 for (
unsigned Part = 0; Part < State.
UF; ++Part)
9296 for (
unsigned Lane = 0; Lane < EndLane; ++Lane)
9305 Value *AllTrueMask =
9307 return Builder.
CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
9308 {Operand, AllTrueMask, EVL},
nullptr,
Name);
9312 assert(State.
UF == 1 &&
"Expected only UF == 1 when vectorizing with "
9313 "explicit vector length.");
9321 auto &Builder = State.
Builder;
9326 Value *Mask =
nullptr;
9328 Mask = State.
get(VPMask, 0);
9332 Mask = Builder.CreateVectorSplat(State.
VF, Builder.getTrue());
9337 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {
Addr, Mask, EVL},
9338 nullptr,
"wide.masked.gather");
9343 Instruction::Load, DataTy,
Addr,
"vp.op.load"));
9351 State.
set(
this, Res, 0);
9355 assert(State.
UF == 1 &&
"Expected only UF == 1 when vectorizing with "
9356 "explicit vector length.");
9363 auto &Builder = State.
Builder;
9367 Value *StoredVal = State.
get(StoredValue, 0);
9371 Value *Mask =
nullptr;
9373 Mask = State.
get(VPMask, 0);
9377 Mask = Builder.CreateVectorSplat(State.
VF, Builder.getTrue());
9380 if (CreateScatter) {
9382 Intrinsic::vp_scatter,
9383 {StoredVal, Addr, Mask, EVL});
9389 {StoredVal, Addr}));
9458 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9462 Function *
F = L->getHeader()->getParent();
9468 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9473 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9493 bool AddBranchWeights =
9495 GeneratedRTChecks Checks(*PSE.
getSE(), DT, LI,
TTI,
9496 F->getDataLayout(), AddBranchWeights);
9498 VF.
Width, 1, LVL, &CM, BFI, PSI, Checks);
9500 << L->getHeader()->getParent()->getName() <<
"\"\n");
9520 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
9521 if (S->getValueOperand()->getType()->isFloatTy())
9531 while (!Worklist.
empty()) {
9533 if (!L->contains(
I))
9535 if (!Visited.
insert(
I).second)
9542 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
9545 I->getDebugLoc(), L->getHeader())
9546 <<
"floating point conversion changes vector width. "
9547 <<
"Mixed floating point precision requires an up/down "
9548 <<
"cast that will negatively impact performance.";
9551 for (
Use &
Op :
I->operands())
9552 if (
auto *OpI = dyn_cast<Instruction>(
Op))
9559 std::optional<unsigned> VScale,
Loop *L,
9572 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9613 unsigned AssumedMinimumVscale = 1;
9615 AssumedMinimumVscale = *VScale;
9616 IntVF *= AssumedMinimumVscale;
9634 uint64_t MinTC = std::max(MinTC1, MinTC2);
9636 MinTC =
alignTo(MinTC, IntVF);
9640 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9648 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9649 "trip count < minimum profitable VF ("
9660 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9662 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9667 "VPlan-native path is not enabled. Only process inner loops.");
9670 << L->getHeader()->getParent()->getName() <<
"' from "
9671 << L->getLocStr() <<
"\n");
9676 dbgs() <<
"LV: Loop hints:"
9687 Function *
F = L->getHeader()->getParent();
9709 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9719 if (!L->isInnermost())
9723 assert(L->isInnermost() &&
"Inner loop expected.");
9745 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9746 <<
"This loop is worth vectorizing only if no scalar "
9747 <<
"iteration overheads are incurred.");
9749 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9762 LLVM_DEBUG(
dbgs() <<
" But the target considers the trip count too "
9763 "small to consider vectorizing.\n");
9765 "The trip count is below the minial threshold value.",
9766 "loop trip count is too low, avoiding vectorization",
9767 "LowTripCount",
ORE, L);
9776 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9778 "Can't vectorize when the NoImplicitFloat attribute is used",
9779 "loop not vectorized due to NoImplicitFloat attribute",
9780 "NoImplicitFloat",
ORE, L);
9792 "Potentially unsafe FP op prevents vectorization",
9793 "loop not vectorized due to unsafe FP support.",
9794 "UnsafeFP",
ORE, L);
9799 bool AllowOrderedReductions;
9809 ExactFPMathInst->getDebugLoc(),
9810 ExactFPMathInst->getParent())
9811 <<
"loop not vectorized: cannot prove it is safe to reorder "
9812 "floating-point operations";
9814 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9815 "reorder floating-point operations\n");
9821 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9824 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9832 std::optional<VectorizationFactor> MaybeVF = LVP.
plan(UserVF, UserIC);
9840 bool AddBranchWeights =
9843 F->getDataLayout(), AddBranchWeights);
9849 unsigned SelectedIC = std::max(IC, UserIC);
9856 bool ForceVectorization =
9858 if (!ForceVectorization &&
9860 *PSE.
getSE(),
SEL)) {
9863 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9865 <<
"loop not vectorized: cannot prove it is safe to reorder "
9866 "memory operations";
9875 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9876 bool VectorizeLoop =
true, InterleaveLoop =
true;
9878 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9879 VecDiagMsg = std::make_pair(
9880 "VectorizationNotBeneficial",
9881 "the cost-model indicates that vectorization is not beneficial");
9882 VectorizeLoop =
false;
9885 if (!MaybeVF && UserIC > 1) {
9888 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
9889 "interleaving should be avoided up front\n");
9890 IntDiagMsg = std::make_pair(
9891 "InterleavingAvoided",
9892 "Ignoring UserIC, because interleaving was avoided up front");
9893 InterleaveLoop =
false;
9894 }
else if (IC == 1 && UserIC <= 1) {
9897 IntDiagMsg = std::make_pair(
9898 "InterleavingNotBeneficial",
9899 "the cost-model indicates that interleaving is not beneficial");
9900 InterleaveLoop =
false;
9902 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
9903 IntDiagMsg.second +=
9904 " and is explicitly disabled or interleave count is set to 1";
9906 }
else if (IC > 1 && UserIC == 1) {
9909 dbgs() <<
"LV: Interleaving is beneficial but is explicitly disabled.");
9910 IntDiagMsg = std::make_pair(
9911 "InterleavingBeneficialButDisabled",
9912 "the cost-model indicates that interleaving is beneficial "
9913 "but is explicitly disabled or interleave count is set to 1");
9914 InterleaveLoop =
false;
9918 IC = UserIC > 0 ? UserIC : IC;
9922 if (!VectorizeLoop && !InterleaveLoop) {
9926 L->getStartLoc(), L->getHeader())
9927 << VecDiagMsg.second;
9931 L->getStartLoc(), L->getHeader())
9932 << IntDiagMsg.second;
9935 }
else if (!VectorizeLoop && InterleaveLoop) {
9939 L->getStartLoc(), L->getHeader())
9940 << VecDiagMsg.second;
9942 }
else if (VectorizeLoop && !InterleaveLoop) {
9944 <<
") in " << L->getLocStr() <<
'\n');
9947 L->getStartLoc(), L->getHeader())
9948 << IntDiagMsg.second;
9950 }
else if (VectorizeLoop && InterleaveLoop) {
9952 <<
") in " << L->getLocStr() <<
'\n');
9956 bool DisableRuntimeUnroll =
false;
9957 MDNode *OrigLoopID = L->getLoopID();
9959 using namespace ore;
9960 if (!VectorizeLoop) {
9961 assert(IC > 1 &&
"interleave count should not be 1 or 0");
9964 InnerLoopUnroller Unroller(L, PSE,
LI,
DT,
TLI,
TTI,
AC,
ORE, IC, &LVL,
9969 "VPlan cost model and legacy cost model disagreed");
9976 <<
"interleaved loop (interleaved count: "
9977 << NV(
"InterleaveCount", IC) <<
")";
9983 LLVM_DEBUG(
dbgs() <<
"VF picked by VPlan cost model: " << BestVF <<
"\n");
9985 "VPlan cost model and legacy cost model disagreed");
9997 EPI, &LVL, &CM,
BFI,
PSI, Checks);
9999 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10000 const auto &[ExpandedSCEVs, ReductionResumeValues] = LVP.
executePlan(
10015 Header->setName(
"vec.epilog.vector.body");
10025 auto *ExpandR = cast<VPExpandSCEVRecipe>(&R);
10027 ExpandedSCEVs.find(ExpandR->getSCEV())->second);
10031 ExpandR->eraseFromParent();
10038 if (isa<VPCanonicalIVPHIRecipe>(&R))
10041 Value *ResumeV =
nullptr;
10043 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10045 ReductionPhi->getRecurrenceDescriptor();
10047 ResumeV = ReductionResumeValues.find(&RdxDesc)->second;
10053 cast<Instruction>(ResumeV)->
getParent()->getFirstNonPHI());
10063 if (
auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) {
10064 IndPhi = cast<PHINode>(Ind->getUnderlyingValue());
10065 ID = &Ind->getInductionDescriptor();
10067 auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R);
10068 IndPhi = WidenInd->getPHINode();
10069 ID = &WidenInd->getInductionDescriptor();
10076 assert(ResumeV &&
"Must have a resume value");
10078 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
10082 "DT not preserved correctly");
10084 DT,
true, &ExpandedSCEVs);
10085 ++LoopsEpilogueVectorized;
10088 DisableRuntimeUnroll =
true;
10100 DisableRuntimeUnroll =
true;
10110 std::optional<MDNode *> RemainderLoopID =
10113 if (RemainderLoopID) {
10114 L->setLoopID(*RemainderLoopID);
10116 if (DisableRuntimeUnroll)
10140 bool Changed =
false, CFGChanged =
false;
10147 for (
const auto &L : *
LI)
10148 Changed |= CFGChanged |=
10159 LoopsAnalyzed += Worklist.
size();
10162 while (!Worklist.
empty()) {
10207 if (!Result.MadeAnyChange)
10221 if (Result.MadeCFGChange) {
10237 OS, MapClassName2PassName);
10240 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10241 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
AMDGPU Lower Kernel Arguments
amdgpu AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static void createAndCollectMergePhiForReduction(VPInstruction *RedResult, DenseMap< const RecurrenceDescriptor *, Value * > &ReductionResumeValues, VPTransformState &State, Loop *OrigLoop, BasicBlock *LoopMiddleBlock, bool VectorizingEpilogue)
static std::optional< unsigned > getSmallBestKnownTC(ScalarEvolution &SE, Loop *L)
Returns "best known" trip count for the specified loop L as defined by the following procedure: 1) Re...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or it's operands.
const char LLVMLoopVectorizeFollowupAll[]
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, DebugLoc DL)
static std::optional< unsigned > getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI)
Convenience function that returns the value of vscale_range iff vscale_range.min == vscale_range....
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static constexpr uint32_t MemCheckBypassWeights[]
static Type * MaybeVectorizeType(Type *Elt, ElementCount VF)
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, std::optional< unsigned > VScale, Loop *L, ScalarEvolution &SE, ScalarEpilogueLowering SEL)
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
const char VerboseDebug[]
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static constexpr uint32_t SCEVCheckBypassWeights[]
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static void addLiveOutsForFirstOrderRecurrences(VPlan &Plan)
Feed a resume value for every FOR from the vector loop to the scalar loop, if middle block branches t...
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static void addUsersInExitBlock(Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan, const MapVector< PHINode *, InductionDescriptor > &Inductions)
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static void AddRuntimeUnrollDisableMetaData(Loop *L)
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
std::pair< uint64_t, uint64_t > Interval
Module.h This file contains the declarations for the Module class.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
int64_t getSExtValue() const
Get sign extended value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
static Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
std::pair< BasicBlock *, Value * > createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (ie the ...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
void printDebugTracesAtEnd() override
std::pair< BasicBlock *, Value * > createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the main loop strategy (ie the firs...
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Common base class shared among various IRBuilders.
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
ConstantInt * getTrue()
Get the constant value for i1 true.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks)
virtual std::pair< BasicBlock *, Value * > createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)=0
The interface for creating a vectorized skeleton using one of two different strategies,...
std::pair< BasicBlock *, Value * > createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
PHINode * createInductionResumeValue(PHINode *OrigPhi, const InductionDescriptor &ID, Value *Step, ArrayRef< BasicBlock * > BypassBlocks, std::pair< BasicBlock *, Value * > AdditionalBypass={nullptr, nullptr})
Create a new phi node for the induction variable OrigPhi to resume iteration count in the scalar epil...
void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPIteration &Instance, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
BasicBlock * LoopScalarBody
The scalar loop body.
Value * TripCount
Trip count of the original loop.
void sinkScalarOperands(Instruction *PredInst)
Iteratively sink the scalarized operands of a predicated instruction into the block that was created ...
const TargetLibraryInfo * TLI
Target Library Info.
DenseMap< PHINode *, Value * > IVEndValues
ElementCount MinProfitableTripCount
const TargetTransformInfo * TTI
Target Transform Info.
Value * VectorTripCount
Trip count of the widened loop (TripCount - TripCount % (VF*UF))
bool areSafetyChecksAdded()
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
BasicBlock * emitSCEVChecks(BasicBlock *Bypass)
Emit a bypass check to see if all of the SCEV assumptions we've had to make are correct.
LoopVectorizationCostModel * Cost
The profitablity analysis.
SmallMapVector< const RecurrenceDescriptor *, PHINode *, 4 > ReductionResumeValues
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
BasicBlock * LoopMiddleBlock
Middle Block between the vector and the scalar.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
SmallVector< Instruction *, 4 > PredicatedInstructions
Store instructions that were predicated.
BasicBlock * completeLoopSkeleton()
Complete the loop skeleton by adding debug MDs, creating appropriate conditional branches in the midd...
void createVectorLoopSkeleton(StringRef Prefix)
Emit basic blocks (prefixed with Prefix) for the iteration check, vector loop preheader,...
BasicBlock * emitMemRuntimeChecks(BasicBlock *Bypass)
Emit bypass checks to check any memory assumptions we may have made.
BasicBlock * LoopScalarPreHeader
The scalar-loop preheader.
LoopVectorizationLegality * Legal
The legality analysis.
void emitIterationCountCheck(BasicBlock *Bypass)
Emit a bypass check to see if the vector trip count is zero, including if it overflows.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, Value *EndValue, BasicBlock *MiddleBlock, BasicBlock *VectorHeader, VPlan &Plan, VPTransformState &State)
Set up the values of the IVs correctly when exiting the vector loop.
void createInductionResumeValues(const SCEV2ValueTy &ExpandedSCEVs, std::pair< BasicBlock *, Value * > AdditionalBypass={nullptr, nullptr})
Create new phi nodes for the induction variables to resume iteration count in the scalar epilogue,...
void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State)
Fix the non-induction PHIs in Plan.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
bool OptForSizeBasedOnProfile
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
Value * getOrCreateVectorTripCount(BasicBlock *InsertBlock)
Returns (and creates if needed) the trip count of the widened loop.
IRBuilder Builder
The builder that we use.
virtual std::pair< BasicBlock *, Value * > createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
unsigned UF
The vectorization unroll factor to use.
void fixVectorizedLoop(VPTransformState &State, VPlan &Plan)
Fix the vectorized code, taking care of header phi's, live-outs, and more.
BasicBlock * LoopExitBlock
The unique ExitBlock of the scalar loop if one exists.
SmallVector< BasicBlock *, 4 > LoopBypassBlocks
A list of all bypass blocks. The first block is the entry of the loop.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
BlockT * getUniqueExitBlock() const
If getUniqueExitBlocks would return exactly one block, return that block.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool requiresScalarEpilogue(VFRange Range) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, TTI::TargetCostKind CostKind) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI)
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallVector< RegisterUsage, 8 > calculateRegisterUsage(ArrayRef< ElementCount > VFs)
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool isEpilogueVectorizationProfitable(const ElementCount VF) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
void collectUniformsAndScalars(ElementCount VF)
Collect Uniform and Scalar values for the given VF.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost)
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
unsigned getNumStores() const
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
uint64_t getMaxSafeVectorWidthInBits() const
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
unsigned getNumLoads() const
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
Type * getWidestInductionType()
Returns the widest induction type.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
std::optional< VectorizationFactor > plan(ElementCount UserVF, unsigned UserIC)
Plan how to best vectorize, return the best VF and its cost, or std::nullopt if vectorization and int...
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
ElementCount computeBestVF()
Compute and return the most profitable vectorization factor.
std::pair< DenseMap< const SCEV *, Value * >, DenseMap< const RecurrenceDescriptor *, Value * > > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool IsEpilogueVectorization, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
void prepareNoAliasMetadata()
Set up the aliasing scopes based on the memchecks.
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static unsigned getIncomingValueNumForOperand(unsigned i)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class represents a constant integer value.
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
unsigned getSmallConstantMaxTripCount(const Loop *L)
Returns the upper bound of the loop trip count as a normal unsigned value.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVMContext & getContext() const
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
ArrayRef< value_type > getArrayRef() const
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
value_type pop_back_val()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
This is a concrete Recipe that models a single VPlan-level instruction.
unsigned getOpcode() const
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getFirstLane()
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getVPValueOrAddLiveIn(Value *V, VPlan &Plan)
VPValue * createEdgeMask(BasicBlock *Src, BasicBlock *Dst)
A helper function that computes the predicate of the edge between SRC and DST.
VPReplicateRecipe * handleReplication(Instruction *I, VFRange &Range)
Build a VPReplicationRecipe for I.
void createSwitchEdgeMasks(SwitchInst *SI)
Create an edge mask for every destination of cases and/or default.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPValue * getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const
A helper that returns the previously computed predicate of the edge between SRC and DST.
iterator_range< mapped_iterator< Use *, std::function< VPValue *(Value *)> > > mapToVPValues(User::op_range Operands)
Returns a range mapping the values of the range Operands to their corresponding VPValues.
void fixHeaderPhis()
Add the incoming values from the backedge to reduction & first-order recurrence cross-iteration phis.
VPRecipeBase * tryToCreateWidenRecipe(Instruction *Instr, ArrayRef< VPValue * > Operands, VFRange &Range, VPBasicBlock *VPBB)
Create and return a widened recipe for I if one can be created within the given VF Range.
void createHeaderMask()
Create the mask for the vector loop header block.
void createBlockInMask(BasicBlock *BB)
A helper function that computes the predicate of the block BB, assuming that the header block of the ...
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
void setFlags(Instruction *I) const
Set the IR flags for I.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
const RecurrenceDescriptor & getRecurrenceDescriptor() const
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute the pointers for widened memory accesses of IndexTy for all parts.
A recipe for widening Call instructions.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
A recipe for handling phis that are widened in the vector loop.
VPValue * getIncomingValue(unsigned I)
Returns the I th incoming VPValue.
VPBasicBlock * getIncomingBlock(unsigned I)
Returns the I th incoming VPBasicBlock.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Main class to build the VPlan H-CFG for an incoming IR.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
void prepareToExecute(Value *TripCount, Value *VectorTripCount, Value *CanonicalIVStartValue, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
void setName(const Twine &newName)
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
void addLiveOut(PHINode *PN, VPValue *V)
VPBasicBlock * getPreheader()
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasVF(ElementCount VF)
bool hasUF(unsigned UF) const
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
static VPlanPtr createInitialVPlan(const SCEV *TripCount, ScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header ) which con...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
const MapVector< PHINode *, VPLiveOut * > & getLiveOuts() const
VPValue * getSCEVExpansion(const SCEV *S) const
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUser() const
Return true if there is exactly one user of this value.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
VectorBuilder & setEVL(Value *NewExplicitVectorLength)
VectorBuilder & setMask(Value *NewMask)
Value * createVectorInstruction(unsigned Opcode, Type *ReturnTy, ArrayRef< Value * > VecOpArray, const Twine &Name=Twine())
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
const_iterator end(StringRef path)
Get end iterator over path.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
This is an optimization pass for GlobalISel generic memory operations.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
pred_iterator pred_end(BasicBlock *BB)
Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
void stable_sort(R &&Range)
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
const SCEV * createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE, Loop *OrigLoop)
std::pair< Instruction *, ElementCount > InstructionVFPair
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
auto map_range(ContainerTy &&C, FuncTy F)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
pred_iterator pred_begin(BasicBlock *BB)
auto reverse(ContainerTy &&C)
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
cl::opt< bool > EnableLoopVectorization
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Type * ToVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
bool verifyVPlanIsValid(const VPlan &Plan)
Verify invariants for general VPlans.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
BasicBlock * SCEVSafetyCheck
BasicBlock * MemSafetyCheck
BasicBlock * MainLoopIterationCountCheck
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF)
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
LoopVectorizeResult runImpl(Function &F)
bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LoopVectorizePass(LoopVectorizeOptions Opts={})
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
A MapVector that performs no allocations if smaller than a certain size.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
VPIteration represents a single point in the iteration space of the output (vectorized and/or unrolle...
bool isFirstIteration() const
void execute(VPTransformState &State) override
Generate the wide load or gather.
VPValue * getEVL() const
Return the EVL operand.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
VPValue * getEVL() const
Return the EVL operand.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static bool HoistRuntimeChecks