LLVM 23.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cmath>
150#include <cstdint>
151#include <functional>
152#include <iterator>
153#include <limits>
154#include <memory>
155#include <string>
156#include <tuple>
157#include <utility>
158
159using namespace llvm;
160using namespace SCEVPatternMatch;
161
162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
164
165#ifndef NDEBUG
166const char VerboseDebug[] = DEBUG_TYPE "-verbose";
167#endif
168
169STATISTIC(LoopsVectorized, "Number of loops vectorized");
170STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
173
175 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
176 cl::desc("Enable vectorization of epilogue loops."));
177
179 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
180 cl::desc("When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
182 "loops."));
183
185 "epilogue-vectorization-minimum-VF", cl::Hidden,
186 cl::desc("Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
188
189/// Loops with a known constant trip count below this number are vectorized only
190/// if no scalar iteration overheads are incurred.
192 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
193 cl::desc("Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
195 "are incurred."));
196
198 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
199 cl::desc("The maximum allowed number of runtime memory checks"));
200
201// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
202// that predication is preferred, and this lists all options. I.e., the
203// vectorizer will try to fold the tail-loop (epilogue) into the vector body
204// and predicate the instructions accordingly. If tail-folding fails, there are
205// different fallback strategies depending on these values:
212} // namespace PreferPredicateTy
213
215 "prefer-predicate-over-epilogue",
218 cl::desc("Tail-folding and predication preferences over creating a scalar "
219 "epilogue loop."),
221 "scalar-epilogue",
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
226 "folding fails."),
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
231
233 "force-tail-folding-style", cl::desc("Force the tail folding style"),
236 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
252
254 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
255 cl::desc("Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
257
259 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
260 cl::desc("Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
262
264 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
266
267/// An interleave-group may need masking if it resides in a block that needs
268/// predication, or in order to mask away gaps.
270 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
271 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
272
274 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
275 cl::desc("A flag that overrides the target's number of scalar registers."));
276
278 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
279 cl::desc("A flag that overrides the target's number of vector registers."));
280
282 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
283 cl::desc("A flag that overrides the target's max interleave factor for "
284 "scalar loops."));
285
287 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
288 cl::desc("A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
290
292 "force-target-instruction-cost", cl::init(0), cl::Hidden,
293 cl::desc("A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
296
298 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
299 cl::desc(
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
302
304 "small-loop-cost", cl::init(20), cl::Hidden,
305 cl::desc(
306 "The cost of a loop that is considered 'small' by the interleaver."));
307
309 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
310 cl::desc("Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
313
314// Runtime interleave loops for load/store throughput.
316 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
317 cl::desc(
318 "Enable runtime interleaving until load/store ports are saturated"));
319
320/// The number of stores in a loop that are allowed to need predication.
322 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
323 cl::desc("Max number of stores to be predicated behind an if."));
324
326 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
327 cl::desc("Count the induction variable only once when interleaving"));
328
330 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
331 cl::desc("Enable if predication of stores during vectorization."));
332
334 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
335 cl::desc("The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
337
338static cl::opt<bool>
339 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
341 cl::desc("Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
343
345 "force-ordered-reductions", cl::init(false), cl::Hidden,
346 cl::desc("Enable the vectorisation of loops with in-order (strict) "
347 "FP reductions"));
348
350 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
351 cl::desc(
352 "Prefer predicating a reduction operation over an after loop select."));
353
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358
360 llvm::VerifyEachVPlan("vplan-verify-each",
361#ifdef EXPENSIVE_CHECKS
362 cl::init(true),
363#else
364 cl::init(false),
365#endif
367 cl::desc("Verfiy VPlans after VPlan transforms."));
368
369// This flag enables the stress testing of the VPlan H-CFG construction in the
370// VPlan-native vectorization path. It must be used in conjuction with
371// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
372// verification of the H-CFGs built.
374 "vplan-build-stress-test", cl::init(false), cl::Hidden,
375 cl::desc(
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
379
381 "interleave-loops", cl::init(true), cl::Hidden,
382 cl::desc("Enable loop interleaving in Loop vectorization passes"));
384 "vectorize-loops", cl::init(true), cl::Hidden,
385 cl::desc("Run the Loop vectorization passes"));
386
388 "force-widen-divrem-via-safe-divisor", cl::Hidden,
389 cl::desc(
390 "Override cost based safe divisor widening for div/rem instructions"));
391
393 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
395 cl::desc("Try wider VFs if they enable the use of vector variants"));
396
398 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
399 cl::desc(
400 "Enable vectorization of early exit loops with uncountable exits."));
401
403 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
404 cl::desc("Discard VFs if their register pressure is too high."));
405
406// Likelyhood of bypassing the vectorized loop because there are zero trips left
407// after prolog. See `emitIterationCountCheck`.
408static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
409
410/// A helper function that returns true if the given type is irregular. The
411/// type is irregular if its allocated size doesn't equal the store size of an
412/// element of the corresponding vector type.
413static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
414 // Determine if an array of N elements of type Ty is "bitcast compatible"
415 // with a <N x Ty> vector.
416 // This is only true if there is no padding between the array elements.
417 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
418}
419
420/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
421/// ElementCount to include loops whose trip count is a function of vscale.
423 const Loop *L) {
424 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
425 return ElementCount::getFixed(ExpectedTC);
426
427 const SCEV *BTC = SE->getBackedgeTakenCount(L);
429 return ElementCount::getFixed(0);
430
431 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
432 if (isa<SCEVVScale>(ExitCount))
434
435 const APInt *Scale;
436 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
437 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
438 if (Scale->getActiveBits() <= 32)
440
441 return ElementCount::getFixed(0);
442}
443
444/// Returns "best known" trip count, which is either a valid positive trip count
445/// or std::nullopt when an estimate cannot be made (including when the trip
446/// count would overflow), for the specified loop \p L as defined by the
447/// following procedure:
448/// 1) Returns exact trip count if it is known.
449/// 2) Returns expected trip count according to profile data if any.
450/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
451/// 4) Returns std::nullopt if all of the above failed.
452static std::optional<ElementCount>
454 bool CanUseConstantMax = true) {
455 // Check if exact trip count is known.
456 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
457 return ExpectedTC;
458
459 // Check if there is an expected trip count available from profile data.
461 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
462 return ElementCount::getFixed(*EstimatedTC);
463
464 if (!CanUseConstantMax)
465 return std::nullopt;
466
467 // Check if upper bound estimate is known.
468 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
469 return ElementCount::getFixed(ExpectedTC);
470
471 return std::nullopt;
472}
473
474namespace {
475// Forward declare GeneratedRTChecks.
476class GeneratedRTChecks;
477
478using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
479} // namespace
480
481namespace llvm {
482
484
485/// InnerLoopVectorizer vectorizes loops which contain only one basic
486/// block to a specified vectorization factor (VF).
487/// This class performs the widening of scalars into vectors, or multiple
488/// scalars. This class also implements the following features:
489/// * It inserts an epilogue loop for handling loops that don't have iteration
490/// counts that are known to be a multiple of the vectorization factor.
491/// * It handles the code generation for reduction variables.
492/// * Scalarization (implementation using scalars) of un-vectorizable
493/// instructions.
494/// InnerLoopVectorizer does not perform any vectorization-legality
495/// checks, and relies on the caller to check for the different legality
496/// aspects. The InnerLoopVectorizer relies on the
497/// LoopVectorizationLegality class to provide information about the induction
498/// and reduction variables that were found to a given vectorization factor.
500public:
504 ElementCount VecWidth, unsigned UnrollFactor,
506 GeneratedRTChecks &RTChecks, VPlan &Plan)
507 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
508 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
512
513 virtual ~InnerLoopVectorizer() = default;
514
515 /// Creates a basic block for the scalar preheader. Both
516 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
517 /// the method to create additional blocks and checks needed for epilogue
518 /// vectorization.
520
521 /// Fix the vectorized code, taking care of header phi's, and more.
523
524 /// Fix the non-induction PHIs in \p Plan.
526
527 /// Returns the original loop trip count.
528 Value *getTripCount() const { return TripCount; }
529
530 /// Used to set the trip count after ILV's construction and after the
531 /// preheader block has been executed. Note that this always holds the trip
532 /// count of the original loop for both main loop and epilogue vectorization.
533 void setTripCount(Value *TC) { TripCount = TC; }
534
535protected:
537
538 /// Create and return a new IR basic block for the scalar preheader whose name
539 /// is prefixed with \p Prefix.
541
542 /// Allow subclasses to override and print debug traces before/after vplan
543 /// execution, when trace information is requested.
544 virtual void printDebugTracesAtStart() {}
545 virtual void printDebugTracesAtEnd() {}
546
547 /// The original loop.
549
550 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
551 /// dynamic knowledge to simplify SCEV expressions and converts them to a
552 /// more usable form.
554
555 /// Loop Info.
557
558 /// Dominator Tree.
560
561 /// Target Transform Info.
563
564 /// Assumption Cache.
566
567 /// The vectorization SIMD factor to use. Each vector will have this many
568 /// vector elements.
570
571 /// The vectorization unroll factor to use. Each scalar is vectorized to this
572 /// many different vector instructions.
573 unsigned UF;
574
575 /// The builder that we use
577
578 // --- Vectorization state ---
579
580 /// Trip count of the original loop.
581 Value *TripCount = nullptr;
582
583 /// The profitablity analysis.
585
586 /// Structure to hold information about generated runtime checks, responsible
587 /// for cleaning the checks, if vectorization turns out unprofitable.
588 GeneratedRTChecks &RTChecks;
589
591
592 /// The vector preheader block of \p Plan, used as target for check blocks
593 /// introduced during skeleton creation.
595};
596
597/// Encapsulate information regarding vectorization of a loop and its epilogue.
598/// This information is meant to be updated and used across two stages of
599/// epilogue vectorization.
602 unsigned MainLoopUF = 0;
604 unsigned EpilogueUF = 0;
607 Value *TripCount = nullptr;
610
612 ElementCount EVF, unsigned EUF,
614 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
616 assert(EUF == 1 &&
617 "A high UF for the epilogue loop is likely not beneficial.");
618 }
619};
620
621/// An extension of the inner loop vectorizer that creates a skeleton for a
622/// vectorized loop that has its epilogue (residual) also vectorized.
623/// The idea is to run the vplan on a given loop twice, firstly to setup the
624/// skeleton and vectorize the main loop, and secondly to complete the skeleton
625/// from the first step and vectorize the epilogue. This is achieved by
626/// deriving two concrete strategy classes from this base class and invoking
627/// them in succession from the loop vectorizer planner.
629public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
667 /// Implements the interface for creating a vectorized skeleton using the
668 /// *main loop* strategy (i.e., the first pass of VPlan execution).
670
671protected:
672 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
673 /// vector preheader and its predecessor, also connecting the new block to the
674 /// scalar preheader.
675 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
676
677 // Create a check to see if the main vector loop should be executed
679 unsigned UF) const;
680
681 /// Emits an iteration count bypass check once for the main loop (when \p
682 /// ForEpilogue is false) and once for the epilogue loop (when \p
683 /// ForEpilogue is true).
685 bool ForEpilogue);
686 void printDebugTracesAtStart() override;
687 void printDebugTracesAtEnd() override;
688};
689
690// A specialized derived class of inner loop vectorizer that performs
691// vectorization of *epilogue* loops in the process of vectorizing loops and
692// their epilogues.
694public:
701 GeneratedRTChecks &Checks, VPlan &Plan)
703 Checks, Plan, EPI.EpilogueVF,
704 EPI.EpilogueVF, EPI.EpilogueUF) {}
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
878 std::function<BlockFrequencyInfo &()> GetBFI,
879 const Function *F, const LoopVectorizeHints *Hints,
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), GetBFI(GetBFI),
885 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
886 initializeVScaleForTuning();
888 }
889
890 /// \return An upper bound for the vectorization factors (both fixed and
891 /// scalable). If the factors are 0, vectorization and interleaving should be
892 /// avoided up front.
893 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
894
895 /// \return True if runtime checks are required for vectorization, and false
896 /// otherwise.
897 bool runtimeChecksRequired();
898
899 /// Setup cost-based decisions for user vectorization factor.
900 /// \return true if the UserVF is a feasible VF to be chosen.
903 return expectedCost(UserVF).isValid();
904 }
905
906 /// \return True if maximizing vector bandwidth is enabled by the target or
907 /// user options, for the given register kind.
908 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
909
910 /// \return True if register pressure should be considered for the given VF.
911 bool shouldConsiderRegPressureForVF(ElementCount VF);
912
913 /// \return The size (in bits) of the smallest and widest types in the code
914 /// that needs to be vectorized. We ignore values that remain scalar such as
915 /// 64 bit loop indices.
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
917
918 /// Memory access instruction may be vectorized in more than one way.
919 /// Form of instruction after vectorization depends on cost.
920 /// This function takes cost-based decisions for Load/Store instructions
921 /// and collects them in a map. This decisions map is used for building
922 /// the lists of loop-uniform and loop-scalar instructions.
923 /// The calculated cost is saved with widening decision in order to
924 /// avoid redundant calculations.
925 void setCostBasedWideningDecision(ElementCount VF);
926
927 /// A call may be vectorized in different ways depending on whether we have
928 /// vectorized variants available and whether the target supports masking.
929 /// This function analyzes all calls in the function at the supplied VF,
930 /// makes a decision based on the costs of available options, and stores that
931 /// decision in a map for use in planning and plan execution.
932 void setVectorizedCallDecision(ElementCount VF);
933
934 /// Collect values we want to ignore in the cost model.
935 void collectValuesToIgnore();
936
937 /// Collect all element types in the loop for which widening is needed.
938 void collectElementTypesForWidening();
939
940 /// Split reductions into those that happen in the loop, and those that happen
941 /// outside. In loop reductions are collected into InLoopReductions.
942 void collectInLoopReductions();
943
944 /// Returns true if we should use strict in-order reductions for the given
945 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
946 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
947 /// of FP operations.
948 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
949 return !Hints->allowReordering() && RdxDesc.isOrdered();
950 }
951
952 /// \returns The smallest bitwidth each instruction can be represented with.
953 /// The vector equivalents of these instructions should be truncated to this
954 /// type.
956 return MinBWs;
957 }
958
959 /// \returns True if it is more profitable to scalarize instruction \p I for
960 /// vectorization factor \p VF.
962 assert(VF.isVector() &&
963 "Profitable to scalarize relevant only for VF > 1.");
964 assert(
965 TheLoop->isInnermost() &&
966 "cost-model should not be used for outer loops (in VPlan-native path)");
967
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(I);
972 }
973
974 /// Returns true if \p I is known to be uniform after vectorization.
976 assert(
977 TheLoop->isInnermost() &&
978 "cost-model should not be used for outer loops (in VPlan-native path)");
979 // Pseudo probe needs to be duplicated for each unrolled iteration and
980 // vector lane so that profiled loop trip count can be accurately
981 // accumulated instead of being under counted.
983 return false;
984
985 if (VF.isScalar())
986 return true;
987
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(I);
992 }
993
994 /// Returns true if \p I is known to be scalar after vectorization.
996 assert(
997 TheLoop->isInnermost() &&
998 "cost-model should not be used for outer loops (in VPlan-native path)");
999 if (VF.isScalar())
1000 return true;
1001
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(I);
1006 }
1007
1008 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1009 /// for vectorization factor \p VF.
1011 // Truncs must truncate at most to their destination type.
1012 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1014 return false;
1015 return VF.isVector() && MinBWs.contains(I) &&
1016 !isProfitableToScalarize(I, VF) &&
1018 }
1019
1020 /// Decision that was taken during cost calculation for memory instruction.
1023 CM_Widen, // For consecutive accesses with stride +1.
1024 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1030 };
1031
1032 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1033 /// instruction \p I and vector width \p VF.
1036 assert(VF.isVector() && "Expected VF >=2");
1037 WideningDecisions[{I, VF}] = {W, Cost};
1038 }
1039
1040 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1041 /// interleaving group \p Grp and vector width \p VF.
1045 assert(VF.isVector() && "Expected VF >=2");
1046 /// Broadcast this decicion to all instructions inside the group.
1047 /// When interleaving, the cost will only be assigned one instruction, the
1048 /// insert position. For other cases, add the appropriate fraction of the
1049 /// total cost to each instruction. This ensures accurate costs are used,
1050 /// even if the insert position instruction is not used.
1051 InstructionCost InsertPosCost = Cost;
1052 InstructionCost OtherMemberCost = 0;
1053 if (W != CM_Interleave)
1054 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1055 ;
1056 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1057 if (auto *I = Grp->getMember(Idx)) {
1058 if (Grp->getInsertPos() == I)
1059 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1060 else
1061 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1062 }
1063 }
1064 }
1065
1066 /// Return the cost model decision for the given instruction \p I and vector
1067 /// width \p VF. Return CM_Unknown if this instruction did not pass
1068 /// through the cost modeling.
1070 assert(VF.isVector() && "Expected VF to be a vector VF");
1071 assert(
1072 TheLoop->isInnermost() &&
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1074
1075 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1078 return CM_Unknown;
1079 return Itr->second.first;
1080 }
1081
1082 /// Return the vectorization cost for the given instruction \p I and vector
1083 /// width \p VF.
1085 assert(VF.isVector() && "Expected VF >=2");
1086 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1090 }
1091
1099
1101 Function *Variant, Intrinsic::ID IID,
1102 std::optional<unsigned> MaskPos,
1104 assert(!VF.isScalar() && "Expected vector VF");
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1106 }
1107
1109 ElementCount VF) const {
1110 assert(!VF.isScalar() && "Expected vector VF");
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (I == CallWideningDecisions.end())
1113 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1114 return I->second;
1115 }
1116
1117 /// Return True if instruction \p I is an optimizable truncate whose operand
1118 /// is an induction variable. Such a truncate will be removed by adding a new
1119 /// induction variable with the destination type.
1121 // If the instruction is not a truncate, return false.
1122 auto *Trunc = dyn_cast<TruncInst>(I);
1123 if (!Trunc)
1124 return false;
1125
1126 // Get the source and destination types of the truncate.
1127 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1128 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1129
1130 // If the truncate is free for the given types, return false. Replacing a
1131 // free truncate with an induction variable would add an induction variable
1132 // update instruction to each iteration of the loop. We exclude from this
1133 // check the primary induction variable since it will need an update
1134 // instruction regardless.
1135 Value *Op = Trunc->getOperand(0);
1136 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1137 return false;
1138
1139 // If the truncated value is not an induction variable, return false.
1140 return Legal->isInductionPhi(Op);
1141 }
1142
1143 /// Collects the instructions to scalarize for each predicated instruction in
1144 /// the loop.
1145 void collectInstsToScalarize(ElementCount VF);
1146
1147 /// Collect values that will not be widened, including Uniforms, Scalars, and
1148 /// Instructions to Scalarize for the given \p VF.
1149 /// The sets depend on CM decision for Load/Store instructions
1150 /// that may be vectorized as interleave, gather-scatter or scalarized.
1151 /// Also make a decision on what to do about call instructions in the loop
1152 /// at that VF -- scalarize, call a known vector routine, or call a
1153 /// vector intrinsic.
1155 // Do the analysis once.
1156 if (VF.isScalar() || Uniforms.contains(VF))
1157 return;
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1163 }
1164
1165 /// Returns true if the target machine supports masked store operation
1166 /// for the given \p DataType and kind of access to \p Ptr.
1167 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1168 unsigned AddressSpace) const {
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1170 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1171 }
1172
1173 /// Returns true if the target machine supports masked load operation
1174 /// for the given \p DataType and kind of access to \p Ptr.
1175 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1176 unsigned AddressSpace) const {
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1178 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1179 }
1180
1181 /// Returns true if the target machine can represent \p V as a masked gather
1182 /// or scatter operation.
1184 bool LI = isa<LoadInst>(V);
1185 bool SI = isa<StoreInst>(V);
1186 if (!LI && !SI)
1187 return false;
1188 auto *Ty = getLoadStoreType(V);
1190 if (VF.isVector())
1191 Ty = VectorType::get(Ty, VF);
1192 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1193 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1194 }
1195
1196 /// Returns true if the target machine supports all of the reduction
1197 /// variables found for the given VF.
1199 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1202 }));
1203 }
1204
1205 /// Given costs for both strategies, return true if the scalar predication
1206 /// lowering should be used for div/rem. This incorporates an override
1207 /// option so it is not simply a cost comparison.
1209 InstructionCost SafeDivisorCost) const {
1210 switch (ForceSafeDivisor) {
1211 case cl::BOU_UNSET:
1212 return ScalarCost < SafeDivisorCost;
1213 case cl::BOU_TRUE:
1214 return false;
1215 case cl::BOU_FALSE:
1216 return true;
1217 }
1218 llvm_unreachable("impossible case value");
1219 }
1220
1221 /// Returns true if \p I is an instruction which requires predication and
1222 /// for which our chosen predication strategy is scalarization (i.e. we
1223 /// don't have an alternate strategy such as masking available).
1224 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1225 bool isScalarWithPredication(Instruction *I, ElementCount VF);
1226
1227 /// Returns true if \p I is an instruction that needs to be predicated
1228 /// at runtime. The result is independent of the predication mechanism.
1229 /// Superset of instructions that return true for isScalarWithPredication.
1230 bool isPredicatedInst(Instruction *I) const;
1231
1232 /// A helper function that returns how much we should divide the cost of a
1233 /// predicated block by. Typically this is the reciprocal of the block
1234 /// probability, i.e. if we return X we are assuming the predicated block will
1235 /// execute once for every X iterations of the loop header so the block should
1236 /// only contribute 1/X of its cost to the total cost calculation, but when
1237 /// optimizing for code size it will just be 1 as code size costs don't depend
1238 /// on execution probabilities.
1239 ///
1240 /// Note that if a block wasn't originally predicated but was predicated due
1241 /// to tail folding, the divisor will still be 1 because it will execute for
1242 /// every iteration of the loop header.
1243 inline uint64_t
1244 getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind,
1245 const BasicBlock *BB);
1246
1247 /// Return the costs for our two available strategies for lowering a
1248 /// div/rem operation which requires speculating at least one lane.
1249 /// First result is for scalarization (will be invalid for scalable
1250 /// vectors); second is for the safe-divisor strategy.
1251 std::pair<InstructionCost, InstructionCost>
1252 getDivRemSpeculationCost(Instruction *I, ElementCount VF);
1253
1254 /// Returns true if \p I is a memory instruction with consecutive memory
1255 /// access that can be widened.
1256 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1257
1258 /// Returns true if \p I is a memory instruction in an interleaved-group
1259 /// of memory accesses that can be vectorized with wide vector loads/stores
1260 /// and shuffles.
1261 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1262
1263 /// Check if \p Instr belongs to any interleaved access group.
1265 return InterleaveInfo.isInterleaved(Instr);
1266 }
1267
1268 /// Get the interleaved access group that \p Instr belongs to.
1271 return InterleaveInfo.getInterleaveGroup(Instr);
1272 }
1273
1274 /// Returns true if we're required to use a scalar epilogue for at least
1275 /// the final iteration of the original loop.
1276 bool requiresScalarEpilogue(bool IsVectorizing) const {
1277 if (!isScalarEpilogueAllowed()) {
1278 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1279 return false;
1280 }
1281 // If we might exit from anywhere but the latch and early exit vectorization
1282 // is disabled, we must run the exiting iteration in scalar form.
1283 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1284 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1287 return true;
1288 }
1289 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1290 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1291 "interleaved group requires scalar epilogue\n");
1292 return true;
1293 }
1294 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1295 return false;
1296 }
1297
1298 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1299 /// loop hint annotation.
1301 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1302 }
1303
1304 /// Returns true if tail-folding is preferred over a scalar epilogue.
1306 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1307 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Returns true if the use of wide lane masks is requested and the loop is
1371 /// using tail-folding with a lane mask for control flow.
1380
1381 /// Return maximum safe number of elements to be processed per vector
1382 /// iteration, which do not prevent store-load forwarding and are safe with
1383 /// regard to the memory dependencies. Required for EVL-based VPlans to
1384 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1385 /// MaxSafeElements).
1386 /// TODO: need to consider adjusting cost model to use this value as a
1387 /// vectorization factor for EVL-based vectorization.
1388 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1389
1390 /// Returns true if the instructions in this block requires predication
1391 /// for any reason, e.g. because tail folding now requires a predicate
1392 /// or because the block in the original loop was predicated.
1394 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1395 }
1396
1397 /// Returns true if VP intrinsics with explicit vector length support should
1398 /// be generated in the tail folded loop.
1402
1403 /// Returns true if the Phi is part of an inloop reduction.
1404 bool isInLoopReduction(PHINode *Phi) const {
1405 return InLoopReductions.contains(Phi);
1406 }
1407
1408 /// Returns the set of in-loop reduction PHIs.
1410 return InLoopReductions;
1411 }
1412
1413 /// Returns true if the predicated reduction select should be used to set the
1414 /// incoming value for the reduction phi.
1416 // Force to use predicated reduction select since the EVL of the
1417 // second-to-last iteration might not be VF*UF.
1418 if (foldTailWithEVL())
1419 return true;
1421 TTI.preferPredicatedReductionSelect();
1422 }
1423
1424 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1425 /// with factor VF. Return the cost of the instruction, including
1426 /// scalarization overhead if it's needed.
1427 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1428
1429 /// Estimate cost of a call instruction CI if it were vectorized with factor
1430 /// VF. Return the cost of the instruction, including scalarization overhead
1431 /// if it's needed.
1432 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1433
1434 /// Invalidates decisions already taken by the cost model.
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1438 Uniforms.clear();
1439 Scalars.clear();
1440 }
1441
1442 /// Returns the expected execution cost. The unit of the cost does
1443 /// not matter because we use the 'cost' units to compare different
1444 /// vector widths. The cost that is returned is *not* normalized by
1445 /// the factor width.
1446 InstructionCost expectedCost(ElementCount VF);
1447
1448 bool hasPredStores() const { return NumPredStores > 0; }
1449
1450 /// Returns true if epilogue vectorization is considered profitable, and
1451 /// false otherwise.
1452 /// \p VF is the vectorization factor chosen for the original loop.
1453 /// \p Multiplier is an aditional scaling factor applied to VF before
1454 /// comparing to EpilogueVectorizationMinVF.
1455 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1456 const unsigned IC) const;
1457
1458 /// Returns the execution time cost of an instruction for a given vector
1459 /// width. Vector width of one means scalar.
1460 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1461
1462 /// Return the cost of instructions in an inloop reduction pattern, if I is
1463 /// part of that pattern.
1464 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1465 ElementCount VF,
1466 Type *VectorTy) const;
1467
1468 /// Returns true if \p Op should be considered invariant and if it is
1469 /// trivially hoistable.
1470 bool shouldConsiderInvariant(Value *Op);
1471
1472 /// Return the value of vscale used for tuning the cost model.
1473 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1474
1475private:
1476 unsigned NumPredStores = 0;
1477
1478 /// Used to store the value of vscale used for tuning the cost model. It is
1479 /// initialized during object construction.
1480 std::optional<unsigned> VScaleForTuning;
1481
1482 /// Initializes the value of vscale used for tuning the cost model. If
1483 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1484 /// return the value returned by the corresponding TTI method.
1485 void initializeVScaleForTuning() {
1486 const Function *Fn = TheLoop->getHeader()->getParent();
1487 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1488 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1489 auto Min = Attr.getVScaleRangeMin();
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1493 return;
1494 }
1495 }
1496
1497 VScaleForTuning = TTI.getVScaleForTuning();
1498 }
1499
1500 /// \return An upper bound for the vectorization factors for both
1501 /// fixed and scalable vectorization, where the minimum-known number of
1502 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1503 /// disabled or unsupported, then the scalable part will be equal to
1504 /// ElementCount::getScalable(0).
1505 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1506 ElementCount UserVF, unsigned UserIC,
1507 bool FoldTailByMasking);
1508
1509 /// If \p VF * \p UserIC > MaxTripcount, clamps VF to the next lower VF that
1510 /// results in VF * UserIC <= MaxTripCount.
1511 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1512 unsigned UserIC,
1513 bool FoldTailByMasking) const;
1514
1515 /// \return the maximized element count based on the targets vector
1516 /// registers and the loop trip-count, but limited to a maximum safe VF.
1517 /// This is a helper function of computeFeasibleMaxVF.
1518 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1519 unsigned SmallestType,
1520 unsigned WidestType,
1521 ElementCount MaxSafeVF, unsigned UserIC,
1522 bool FoldTailByMasking);
1523
1524 /// Checks if scalable vectorization is supported and enabled. Caches the
1525 /// result to avoid repeated debug dumps for repeated queries.
1526 bool isScalableVectorizationAllowed();
1527
1528 /// \return the maximum legal scalable VF, based on the safe max number
1529 /// of elements.
1530 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1531
1532 /// Calculate vectorization cost of memory instruction \p I.
1533 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1534
1535 /// The cost computation for scalarized memory instruction.
1536 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1537
1538 /// The cost computation for interleaving group of memory instructions.
1539 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1540
1541 /// The cost computation for Gather/Scatter instruction.
1542 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1543
1544 /// The cost computation for widening instruction \p I with consecutive
1545 /// memory access.
1546 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1547
1548 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1549 /// Load: scalar load + broadcast.
1550 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1551 /// element)
1552 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1553
1554 /// Estimate the overhead of scalarizing an instruction. This is a
1555 /// convenience wrapper for the type-based getScalarizationOverhead API.
1557 ElementCount VF) const;
1558
1559 /// Returns true if an artificially high cost for emulated masked memrefs
1560 /// should be used.
1561 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1562
1563 /// Map of scalar integer values to the smallest bitwidth they can be legally
1564 /// represented as. The vector equivalents of these values should be truncated
1565 /// to this type.
1566 MapVector<Instruction *, uint64_t> MinBWs;
1567
1568 /// A type representing the costs for instructions if they were to be
1569 /// scalarized rather than vectorized. The entries are Instruction-Cost
1570 /// pairs.
1571 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1572
1573 /// A set containing all BasicBlocks that are known to present after
1574 /// vectorization as a predicated block.
1575 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1576 PredicatedBBsAfterVectorization;
1577
1578 /// Records whether it is allowed to have the original scalar loop execute at
1579 /// least once. This may be needed as a fallback loop in case runtime
1580 /// aliasing/dependence checks fail, or to handle the tail/remainder
1581 /// iterations when the trip count is unknown or doesn't divide by the VF,
1582 /// or as a peel-loop to handle gaps in interleave-groups.
1583 /// Under optsize and when the trip count is very small we don't allow any
1584 /// iterations to execute in the scalar loop.
1585 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1586
1587 /// Control finally chosen tail folding style. The first element is used if
1588 /// the IV update may overflow, the second element - if it does not.
1589 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1590 ChosenTailFoldingStyle;
1591
1592 /// true if scalable vectorization is supported and enabled.
1593 std::optional<bool> IsScalableVectorizationAllowed;
1594
1595 /// Maximum safe number of elements to be processed per vector iteration,
1596 /// which do not prevent store-load forwarding and are safe with regard to the
1597 /// memory dependencies. Required for EVL-based veectorization, where this
1598 /// value is used as the upper bound of the safe AVL.
1599 std::optional<unsigned> MaxSafeElements;
1600
1601 /// A map holding scalar costs for different vectorization factors. The
1602 /// presence of a cost for an instruction in the mapping indicates that the
1603 /// instruction will be scalarized when vectorizing with the associated
1604 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1605 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1606
1607 /// Holds the instructions known to be uniform after vectorization.
1608 /// The data is collected per VF.
1609 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1610
1611 /// Holds the instructions known to be scalar after vectorization.
1612 /// The data is collected per VF.
1613 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1614
1615 /// Holds the instructions (address computations) that are forced to be
1616 /// scalarized.
1617 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1618
1619 /// PHINodes of the reductions that should be expanded in-loop.
1620 SmallPtrSet<PHINode *, 4> InLoopReductions;
1621
1622 /// A Map of inloop reduction operations and their immediate chain operand.
1623 /// FIXME: This can be removed once reductions can be costed correctly in
1624 /// VPlan. This was added to allow quick lookup of the inloop operations.
1625 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1626
1627 /// Returns the expected difference in cost from scalarizing the expression
1628 /// feeding a predicated instruction \p PredInst. The instructions to
1629 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1630 /// non-negative return value implies the expression will be scalarized.
1631 /// Currently, only single-use chains are considered for scalarization.
1632 InstructionCost computePredInstDiscount(Instruction *PredInst,
1633 ScalarCostsTy &ScalarCosts,
1634 ElementCount VF);
1635
1636 /// Collect the instructions that are uniform after vectorization. An
1637 /// instruction is uniform if we represent it with a single scalar value in
1638 /// the vectorized loop corresponding to each vector iteration. Examples of
1639 /// uniform instructions include pointer operands of consecutive or
1640 /// interleaved memory accesses. Note that although uniformity implies an
1641 /// instruction will be scalar, the reverse is not true. In general, a
1642 /// scalarized instruction will be represented by VF scalar values in the
1643 /// vectorized loop, each corresponding to an iteration of the original
1644 /// scalar loop.
1645 void collectLoopUniforms(ElementCount VF);
1646
1647 /// Collect the instructions that are scalar after vectorization. An
1648 /// instruction is scalar if it is known to be uniform or will be scalarized
1649 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1650 /// to the list if they are used by a load/store instruction that is marked as
1651 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1652 /// VF values in the vectorized loop, each corresponding to an iteration of
1653 /// the original scalar loop.
1654 void collectLoopScalars(ElementCount VF);
1655
1656 /// Keeps cost model vectorization decision and cost for instructions.
1657 /// Right now it is used for memory instructions only.
1658 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1659 std::pair<InstWidening, InstructionCost>>;
1660
1661 DecisionList WideningDecisions;
1662
1663 using CallDecisionList =
1664 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1665
1666 CallDecisionList CallWideningDecisions;
1667
1668 /// Returns true if \p V is expected to be vectorized and it needs to be
1669 /// extracted.
1670 bool needsExtract(Value *V, ElementCount VF) const {
1672 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1673 TheLoop->isLoopInvariant(I) ||
1674 getWideningDecision(I, VF) == CM_Scalarize ||
1675 (isa<CallInst>(I) &&
1676 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1677 return false;
1678
1679 // Assume we can vectorize V (and hence we need extraction) if the
1680 // scalars are not computed yet. This can happen, because it is called
1681 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1682 // the scalars are collected. That should be a safe assumption in most
1683 // cases, because we check if the operands have vectorizable types
1684 // beforehand in LoopVectorizationLegality.
1685 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1686 };
1687
1688 /// Returns a range containing only operands needing to be extracted.
1689 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1690 ElementCount VF) const {
1691
1692 SmallPtrSet<const Value *, 4> UniqueOperands;
1693 SmallVector<Value *, 4> Res;
1694 for (Value *Op : Ops) {
1695 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1696 !needsExtract(Op, VF))
1697 continue;
1698 Res.push_back(Op);
1699 }
1700 return Res;
1701 }
1702
1703public:
1704 /// The loop that we evaluate.
1706
1707 /// Predicated scalar evolution analysis.
1709
1710 /// Loop Info analysis.
1712
1713 /// Vectorization legality.
1715
1716 /// Vector target information.
1718
1719 /// Target Library Info.
1721
1722 /// Demanded bits analysis.
1724
1725 /// Assumption cache.
1727
1728 /// Interface to emit optimization remarks.
1730
1731 /// A function to lazily fetch BlockFrequencyInfo. This avoids computing it
1732 /// unless necessary, e.g. when the loop isn't legal to vectorize or when
1733 /// there is no predication.
1734 std::function<BlockFrequencyInfo &()> GetBFI;
1735 /// The BlockFrequencyInfo returned from GetBFI.
1737 /// Returns the BlockFrequencyInfo for the function if cached, otherwise
1738 /// fetches it via GetBFI. Avoids an indirect call to the std::function.
1740 if (!BFI)
1741 BFI = &GetBFI();
1742 return *BFI;
1743 }
1744
1746
1747 /// Loop Vectorize Hint.
1749
1750 /// The interleave access information contains groups of interleaved accesses
1751 /// with the same stride and close to each other.
1753
1754 /// Values to ignore in the cost model.
1756
1757 /// Values to ignore in the cost model when VF > 1.
1759
1760 /// All element types found in the loop.
1762
1763 /// The kind of cost that we are calculating
1765
1766 /// Whether this loop should be optimized for size based on function attribute
1767 /// or profile information.
1769
1770 /// The highest VF possible for this loop, without using MaxBandwidth.
1772};
1773} // end namespace llvm
1774
1775namespace {
1776/// Helper struct to manage generating runtime checks for vectorization.
1777///
1778/// The runtime checks are created up-front in temporary blocks to allow better
1779/// estimating the cost and un-linked from the existing IR. After deciding to
1780/// vectorize, the checks are moved back. If deciding not to vectorize, the
1781/// temporary blocks are completely removed.
1782class GeneratedRTChecks {
1783 /// Basic block which contains the generated SCEV checks, if any.
1784 BasicBlock *SCEVCheckBlock = nullptr;
1785
1786 /// The value representing the result of the generated SCEV checks. If it is
1787 /// nullptr no SCEV checks have been generated.
1788 Value *SCEVCheckCond = nullptr;
1789
1790 /// Basic block which contains the generated memory runtime checks, if any.
1791 BasicBlock *MemCheckBlock = nullptr;
1792
1793 /// The value representing the result of the generated memory runtime checks.
1794 /// If it is nullptr no memory runtime checks have been generated.
1795 Value *MemRuntimeCheckCond = nullptr;
1796
1797 DominatorTree *DT;
1798 LoopInfo *LI;
1800
1801 SCEVExpander SCEVExp;
1802 SCEVExpander MemCheckExp;
1803
1804 bool CostTooHigh = false;
1805
1806 Loop *OuterLoop = nullptr;
1807
1809
1810 /// The kind of cost that we are calculating
1812
1813public:
1814 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1817 : DT(DT), LI(LI), TTI(TTI),
1818 SCEVExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1819 MemCheckExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1820 PSE(PSE), CostKind(CostKind) {}
1821
1822 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1823 /// accurately estimate the cost of the runtime checks. The blocks are
1824 /// un-linked from the IR and are added back during vector code generation. If
1825 /// there is no vector code generation, the check blocks are removed
1826 /// completely.
1827 void create(Loop *L, const LoopAccessInfo &LAI,
1828 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC,
1829 OptimizationRemarkEmitter &ORE) {
1830
1831 // Hard cutoff to limit compile-time increase in case a very large number of
1832 // runtime checks needs to be generated.
1833 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1834 // profile info.
1835 CostTooHigh =
1837 if (CostTooHigh) {
1838 // Mark runtime checks as never succeeding when they exceed the threshold.
1839 MemRuntimeCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1840 SCEVCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1841 ORE.emit([&]() {
1842 return OptimizationRemarkAnalysisAliasing(
1843 DEBUG_TYPE, "TooManyMemoryRuntimeChecks", L->getStartLoc(),
1844 L->getHeader())
1845 << "loop not vectorized: too many memory checks needed";
1846 });
1847 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1848 return;
1849 }
1850
1851 BasicBlock *LoopHeader = L->getHeader();
1852 BasicBlock *Preheader = L->getLoopPreheader();
1853
1854 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1855 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1856 // may be used by SCEVExpander. The blocks will be un-linked from their
1857 // predecessors and removed from LI & DT at the end of the function.
1858 if (!UnionPred.isAlwaysTrue()) {
1859 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1860 nullptr, "vector.scevcheck");
1861
1862 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1863 &UnionPred, SCEVCheckBlock->getTerminator());
1864 if (isa<Constant>(SCEVCheckCond)) {
1865 // Clean up directly after expanding the predicate to a constant, to
1866 // avoid further expansions re-using anything left over from SCEVExp.
1867 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1868 SCEVCleaner.cleanup();
1869 }
1870 }
1871
1872 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1873 if (RtPtrChecking.Need) {
1874 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1875 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1876 "vector.memcheck");
1877
1878 auto DiffChecks = RtPtrChecking.getDiffChecks();
1879 if (DiffChecks) {
1880 Value *RuntimeVF = nullptr;
1881 MemRuntimeCheckCond = addDiffRuntimeChecks(
1882 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1883 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1884 if (!RuntimeVF)
1885 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1886 return RuntimeVF;
1887 },
1888 IC);
1889 } else {
1890 MemRuntimeCheckCond = addRuntimeChecks(
1891 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1893 }
1894 assert(MemRuntimeCheckCond &&
1895 "no RT checks generated although RtPtrChecking "
1896 "claimed checks are required");
1897 }
1898
1899 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1900
1901 if (!MemCheckBlock && !SCEVCheckBlock)
1902 return;
1903
1904 // Unhook the temporary block with the checks, update various places
1905 // accordingly.
1906 if (SCEVCheckBlock)
1907 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1908 if (MemCheckBlock)
1909 MemCheckBlock->replaceAllUsesWith(Preheader);
1910
1911 if (SCEVCheckBlock) {
1912 SCEVCheckBlock->getTerminator()->moveBefore(
1913 Preheader->getTerminator()->getIterator());
1914 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1915 UI->setDebugLoc(DebugLoc::getTemporary());
1916 Preheader->getTerminator()->eraseFromParent();
1917 }
1918 if (MemCheckBlock) {
1919 MemCheckBlock->getTerminator()->moveBefore(
1920 Preheader->getTerminator()->getIterator());
1921 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1922 UI->setDebugLoc(DebugLoc::getTemporary());
1923 Preheader->getTerminator()->eraseFromParent();
1924 }
1925
1926 DT->changeImmediateDominator(LoopHeader, Preheader);
1927 if (MemCheckBlock) {
1928 DT->eraseNode(MemCheckBlock);
1929 LI->removeBlock(MemCheckBlock);
1930 }
1931 if (SCEVCheckBlock) {
1932 DT->eraseNode(SCEVCheckBlock);
1933 LI->removeBlock(SCEVCheckBlock);
1934 }
1935
1936 // Outer loop is used as part of the later cost calculations.
1937 OuterLoop = L->getParentLoop();
1938 }
1939
1941 if (SCEVCheckBlock || MemCheckBlock)
1942 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1943
1944 if (CostTooHigh) {
1946 Cost.setInvalid();
1947 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1948 return Cost;
1949 }
1950
1951 InstructionCost RTCheckCost = 0;
1952 if (SCEVCheckBlock)
1953 for (Instruction &I : *SCEVCheckBlock) {
1954 if (SCEVCheckBlock->getTerminator() == &I)
1955 continue;
1957 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1958 RTCheckCost += C;
1959 }
1960 if (MemCheckBlock) {
1961 InstructionCost MemCheckCost = 0;
1962 for (Instruction &I : *MemCheckBlock) {
1963 if (MemCheckBlock->getTerminator() == &I)
1964 continue;
1966 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1967 MemCheckCost += C;
1968 }
1969
1970 // If the runtime memory checks are being created inside an outer loop
1971 // we should find out if these checks are outer loop invariant. If so,
1972 // the checks will likely be hoisted out and so the effective cost will
1973 // reduce according to the outer loop trip count.
1974 if (OuterLoop) {
1975 ScalarEvolution *SE = MemCheckExp.getSE();
1976 // TODO: If profitable, we could refine this further by analysing every
1977 // individual memory check, since there could be a mixture of loop
1978 // variant and invariant checks that mean the final condition is
1979 // variant.
1980 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1981 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1982 // It seems reasonable to assume that we can reduce the effective
1983 // cost of the checks even when we know nothing about the trip
1984 // count. Assume that the outer loop executes at least twice.
1985 unsigned BestTripCount = 2;
1986
1987 // Get the best known TC estimate.
1988 if (auto EstimatedTC = getSmallBestKnownTC(
1989 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1990 if (EstimatedTC->isFixed())
1991 BestTripCount = EstimatedTC->getFixedValue();
1992
1993 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1994
1995 // Let's ensure the cost is always at least 1.
1996 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1997 (InstructionCost::CostType)1);
1998
1999 if (BestTripCount > 1)
2001 << "We expect runtime memory checks to be hoisted "
2002 << "out of the outer loop. Cost reduced from "
2003 << MemCheckCost << " to " << NewMemCheckCost << '\n');
2004
2005 MemCheckCost = NewMemCheckCost;
2006 }
2007 }
2008
2009 RTCheckCost += MemCheckCost;
2010 }
2011
2012 if (SCEVCheckBlock || MemCheckBlock)
2013 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2014 << "\n");
2015
2016 return RTCheckCost;
2017 }
2018
2019 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2020 /// unused.
2021 ~GeneratedRTChecks() {
2022 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2023 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2024 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2025 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2026 if (SCEVChecksUsed)
2027 SCEVCleaner.markResultUsed();
2028
2029 if (MemChecksUsed) {
2030 MemCheckCleaner.markResultUsed();
2031 } else {
2032 auto &SE = *MemCheckExp.getSE();
2033 // Memory runtime check generation creates compares that use expanded
2034 // values. Remove them before running the SCEVExpanderCleaners.
2035 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2036 if (MemCheckExp.isInsertedInstruction(&I))
2037 continue;
2038 SE.forgetValue(&I);
2039 I.eraseFromParent();
2040 }
2041 }
2042 MemCheckCleaner.cleanup();
2043 SCEVCleaner.cleanup();
2044
2045 if (!SCEVChecksUsed)
2046 SCEVCheckBlock->eraseFromParent();
2047 if (!MemChecksUsed)
2048 MemCheckBlock->eraseFromParent();
2049 }
2050
2051 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2052 /// outside VPlan.
2053 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2054 using namespace llvm::PatternMatch;
2055 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2056 return {nullptr, nullptr};
2057
2058 return {SCEVCheckCond, SCEVCheckBlock};
2059 }
2060
2061 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2062 /// outside VPlan.
2063 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2064 using namespace llvm::PatternMatch;
2065 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2066 return {nullptr, nullptr};
2067 return {MemRuntimeCheckCond, MemCheckBlock};
2068 }
2069
2070 /// Return true if any runtime checks have been added
2071 bool hasChecks() const {
2072 return getSCEVChecks().first || getMemRuntimeChecks().first;
2073 }
2074};
2075} // namespace
2076
2082
2087
2088// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2089// vectorization. The loop needs to be annotated with #pragma omp simd
2090// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2091// vector length information is not provided, vectorization is not considered
2092// explicit. Interleave hints are not allowed either. These limitations will be
2093// relaxed in the future.
2094// Please, note that we are currently forced to abuse the pragma 'clang
2095// vectorize' semantics. This pragma provides *auto-vectorization hints*
2096// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2097// provides *explicit vectorization hints* (LV can bypass legal checks and
2098// assume that vectorization is legal). However, both hints are implemented
2099// using the same metadata (llvm.loop.vectorize, processed by
2100// LoopVectorizeHints). This will be fixed in the future when the native IR
2101// representation for pragma 'omp simd' is introduced.
2102static bool isExplicitVecOuterLoop(Loop *OuterLp,
2104 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2105 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2106
2107 // Only outer loops with an explicit vectorization hint are supported.
2108 // Unannotated outer loops are ignored.
2110 return false;
2111
2112 Function *Fn = OuterLp->getHeader()->getParent();
2113 if (!Hints.allowVectorization(Fn, OuterLp,
2114 true /*VectorizeOnlyWhenForced*/)) {
2115 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2116 return false;
2117 }
2118
2119 if (Hints.getInterleave() > 1) {
2120 // TODO: Interleave support is future work.
2121 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2122 "outer loops.\n");
2123 Hints.emitRemarkWithHints();
2124 return false;
2125 }
2126
2127 return true;
2128}
2129
2133 // Collect inner loops and outer loops without irreducible control flow. For
2134 // now, only collect outer loops that have explicit vectorization hints. If we
2135 // are stress testing the VPlan H-CFG construction, we collect the outermost
2136 // loop of every loop nest.
2137 if (L.isInnermost() || VPlanBuildStressTest ||
2139 LoopBlocksRPO RPOT(&L);
2140 RPOT.perform(LI);
2142 V.push_back(&L);
2143 // TODO: Collect inner loops inside marked outer loops in case
2144 // vectorization fails for the outer loop. Do not invoke
2145 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2146 // already known to be reducible. We can use an inherited attribute for
2147 // that.
2148 return;
2149 }
2150 }
2151 for (Loop *InnerL : L)
2152 collectSupportedLoops(*InnerL, LI, ORE, V);
2153}
2154
2155//===----------------------------------------------------------------------===//
2156// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2157// LoopVectorizationCostModel and LoopVectorizationPlanner.
2158//===----------------------------------------------------------------------===//
2159
2160/// FIXME: The newly created binary instructions should contain nsw/nuw
2161/// flags, which can be found from the original scalar operations.
2162Value *
2164 Value *Step,
2166 const BinaryOperator *InductionBinOp) {
2167 using namespace llvm::PatternMatch;
2168 Type *StepTy = Step->getType();
2169 Value *CastedIndex = StepTy->isIntegerTy()
2170 ? B.CreateSExtOrTrunc(Index, StepTy)
2171 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2172 if (CastedIndex != Index) {
2173 CastedIndex->setName(CastedIndex->getName() + ".cast");
2174 Index = CastedIndex;
2175 }
2176
2177 // Note: the IR at this point is broken. We cannot use SE to create any new
2178 // SCEV and then expand it, hoping that SCEV's simplification will give us
2179 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2180 // lead to various SCEV crashes. So all we can do is to use builder and rely
2181 // on InstCombine for future simplifications. Here we handle some trivial
2182 // cases only.
2183 auto CreateAdd = [&B](Value *X, Value *Y) {
2184 assert(X->getType() == Y->getType() && "Types don't match!");
2185 if (match(X, m_ZeroInt()))
2186 return Y;
2187 if (match(Y, m_ZeroInt()))
2188 return X;
2189 return B.CreateAdd(X, Y);
2190 };
2191
2192 // We allow X to be a vector type, in which case Y will potentially be
2193 // splatted into a vector with the same element count.
2194 auto CreateMul = [&B](Value *X, Value *Y) {
2195 assert(X->getType()->getScalarType() == Y->getType() &&
2196 "Types don't match!");
2197 if (match(X, m_One()))
2198 return Y;
2199 if (match(Y, m_One()))
2200 return X;
2201 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2202 if (XVTy && !isa<VectorType>(Y->getType()))
2203 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2204 return B.CreateMul(X, Y);
2205 };
2206
2207 switch (InductionKind) {
2209 assert(!isa<VectorType>(Index->getType()) &&
2210 "Vector indices not supported for integer inductions yet");
2211 assert(Index->getType() == StartValue->getType() &&
2212 "Index type does not match StartValue type");
2213 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2214 return B.CreateSub(StartValue, Index);
2215 auto *Offset = CreateMul(Index, Step);
2216 return CreateAdd(StartValue, Offset);
2217 }
2219 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2221 assert(!isa<VectorType>(Index->getType()) &&
2222 "Vector indices not supported for FP inductions yet");
2223 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2224 assert(InductionBinOp &&
2225 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2226 InductionBinOp->getOpcode() == Instruction::FSub) &&
2227 "Original bin op should be defined for FP induction");
2228
2229 Value *MulExp = B.CreateFMul(Step, Index);
2230 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2231 "induction");
2232 }
2234 return nullptr;
2235 }
2236 llvm_unreachable("invalid enum");
2237}
2238
2239static std::optional<unsigned> getMaxVScale(const Function &F,
2240 const TargetTransformInfo &TTI) {
2241 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2242 return MaxVScale;
2243
2244 if (F.hasFnAttribute(Attribute::VScaleRange))
2245 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2246
2247 return std::nullopt;
2248}
2249
2250/// For the given VF and UF and maximum trip count computed for the loop, return
2251/// whether the induction variable might overflow in the vectorized loop. If not,
2252/// then we know a runtime overflow check always evaluates to false and can be
2253/// removed.
2255 const LoopVectorizationCostModel *Cost,
2256 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2257 // Always be conservative if we don't know the exact unroll factor.
2258 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2259
2260 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2261 APInt MaxUIntTripCount = IdxTy->getMask();
2262
2263 // We know the runtime overflow check is known false iff the (max) trip-count
2264 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2265 // the vector loop induction variable.
2266 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2267 uint64_t MaxVF = VF.getKnownMinValue();
2268 if (VF.isScalable()) {
2269 std::optional<unsigned> MaxVScale =
2270 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2271 if (!MaxVScale)
2272 return false;
2273 MaxVF *= *MaxVScale;
2274 }
2275
2276 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2277 }
2278
2279 return false;
2280}
2281
2282// Return whether we allow using masked interleave-groups (for dealing with
2283// strided loads/stores that reside in predicated blocks, or for dealing
2284// with gaps).
2286 // If an override option has been passed in for interleaved accesses, use it.
2287 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2289
2290 return TTI.enableMaskedInterleavedAccessVectorization();
2291}
2292
2294 BasicBlock *CheckIRBB) {
2295 // Note: The block with the minimum trip-count check is already connected
2296 // during earlier VPlan construction.
2297 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2298 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2299 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2300 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2301 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2302 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2303 PreVectorPH = CheckVPIRBB;
2304 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2305 PreVectorPH->swapSuccessors();
2306
2307 // We just connected a new block to the scalar preheader. Update all
2308 // VPPhis by adding an incoming value for it, replicating the last value.
2309 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2310 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2311 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2312 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2313 "must have incoming values for all operands");
2314 R.addOperand(R.getOperand(NumPredecessors - 2));
2315 }
2316}
2317
2319 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2320 // Generate code to check if the loop's trip count is less than VF * UF, or
2321 // equal to it in case a scalar epilogue is required; this implies that the
2322 // vector trip count is zero. This check also covers the case where adding one
2323 // to the backedge-taken count overflowed leading to an incorrect trip count
2324 // of zero. In this case we will also jump to the scalar loop.
2325 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2327
2328 // Reuse existing vector loop preheader for TC checks.
2329 // Note that new preheader block is generated for vector loop.
2330 BasicBlock *const TCCheckBlock = VectorPH;
2332 TCCheckBlock->getContext(),
2333 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2334 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2335
2336 // If tail is to be folded, vector loop takes care of all iterations.
2338 Type *CountTy = Count->getType();
2339 Value *CheckMinIters = Builder.getFalse();
2340 auto CreateStep = [&]() -> Value * {
2341 // Create step with max(MinProTripCount, UF * VF).
2342 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2343 return createStepForVF(Builder, CountTy, VF, UF);
2344
2345 Value *MinProfTC =
2346 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2347 if (!VF.isScalable())
2348 return MinProfTC;
2349 return Builder.CreateBinaryIntrinsic(
2350 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2351 };
2352
2353 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2354 if (Style == TailFoldingStyle::None) {
2355 Value *Step = CreateStep();
2356 ScalarEvolution &SE = *PSE.getSE();
2357 // TODO: Emit unconditional branch to vector preheader instead of
2358 // conditional branch with known condition.
2359 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2360 // Check if the trip count is < the step.
2361 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2362 // TODO: Ensure step is at most the trip count when determining max VF and
2363 // UF, w/o tail folding.
2364 CheckMinIters = Builder.getTrue();
2366 TripCountSCEV, SE.getSCEV(Step))) {
2367 // Generate the minimum iteration check only if we cannot prove the
2368 // check is known to be true, or known to be false.
2369 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2370 } // else step known to be < trip count, use CheckMinIters preset to false.
2371 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2374 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2375 // an overflow to zero when updating induction variables and so an
2376 // additional overflow check is required before entering the vector loop.
2377
2378 // Get the maximum unsigned value for the type.
2379 Value *MaxUIntTripCount =
2380 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2381 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2382
2383 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2384 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2385 }
2386 return CheckMinIters;
2387}
2388
2389/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2390/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2391/// predecessors and successors of VPBB, if any, are rewired to the new
2392/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2394 BasicBlock *IRBB,
2395 VPlan *Plan = nullptr) {
2396 if (!Plan)
2397 Plan = VPBB->getPlan();
2398 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2399 auto IP = IRVPBB->begin();
2400 for (auto &R : make_early_inc_range(VPBB->phis()))
2401 R.moveBefore(*IRVPBB, IP);
2402
2403 for (auto &R :
2405 R.moveBefore(*IRVPBB, IRVPBB->end());
2406
2407 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2408 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2409 return IRVPBB;
2410}
2411
2413 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2414 assert(VectorPH && "Invalid loop structure");
2415 assert((OrigLoop->getUniqueLatchExitBlock() ||
2416 Cost->requiresScalarEpilogue(VF.isVector())) &&
2417 "loops not exiting via the latch without required epilogue?");
2418
2419 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2420 // wrapping the newly created scalar preheader here at the moment, because the
2421 // Plan's scalar preheader may be unreachable at this point. Instead it is
2422 // replaced in executePlan.
2423 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2424 Twine(Prefix) + "scalar.ph");
2425}
2426
2427/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2428/// expansion results.
2430 const SCEV2ValueTy &ExpandedSCEVs) {
2431 const SCEV *Step = ID.getStep();
2432 if (auto *C = dyn_cast<SCEVConstant>(Step))
2433 return C->getValue();
2434 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2435 return U->getValue();
2436 Value *V = ExpandedSCEVs.lookup(Step);
2437 assert(V && "SCEV must be expanded at this point");
2438 return V;
2439}
2440
2441/// Knowing that loop \p L executes a single vector iteration, add instructions
2442/// that will get simplified and thus should not have any cost to \p
2443/// InstsToIgnore.
2446 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2447 auto *Cmp = L->getLatchCmpInst();
2448 if (Cmp)
2449 InstsToIgnore.insert(Cmp);
2450 for (const auto &KV : IL) {
2451 // Extract the key by hand so that it can be used in the lambda below. Note
2452 // that captured structured bindings are a C++20 extension.
2453 const PHINode *IV = KV.first;
2454
2455 // Get next iteration value of the induction variable.
2456 Instruction *IVInst =
2457 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2458 if (all_of(IVInst->users(),
2459 [&](const User *U) { return U == IV || U == Cmp; }))
2460 InstsToIgnore.insert(IVInst);
2461 }
2462}
2463
2465 // Create a new IR basic block for the scalar preheader.
2466 BasicBlock *ScalarPH = createScalarPreheader("");
2467 return ScalarPH->getSinglePredecessor();
2468}
2469
2470namespace {
2471
2472struct CSEDenseMapInfo {
2473 static bool canHandle(const Instruction *I) {
2476 }
2477
2478 static inline Instruction *getEmptyKey() {
2480 }
2481
2482 static inline Instruction *getTombstoneKey() {
2483 return DenseMapInfo<Instruction *>::getTombstoneKey();
2484 }
2485
2486 static unsigned getHashValue(const Instruction *I) {
2487 assert(canHandle(I) && "Unknown instruction!");
2488 return hash_combine(I->getOpcode(),
2489 hash_combine_range(I->operand_values()));
2490 }
2491
2492 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2493 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2494 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2495 return LHS == RHS;
2496 return LHS->isIdenticalTo(RHS);
2497 }
2498};
2499
2500} // end anonymous namespace
2501
2502/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2503/// removal, in favor of the VPlan-based one.
2504static void legacyCSE(BasicBlock *BB) {
2505 // Perform simple cse.
2507 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2508 if (!CSEDenseMapInfo::canHandle(&In))
2509 continue;
2510
2511 // Check if we can replace this instruction with any of the
2512 // visited instructions.
2513 if (Instruction *V = CSEMap.lookup(&In)) {
2514 In.replaceAllUsesWith(V);
2515 In.eraseFromParent();
2516 continue;
2517 }
2518
2519 CSEMap[&In] = &In;
2520 }
2521}
2522
2523/// This function attempts to return a value that represents the ElementCount
2524/// at runtime. For fixed-width VFs we know this precisely at compile
2525/// time, but for scalable VFs we calculate it based on an estimate of the
2526/// vscale value.
2528 std::optional<unsigned> VScale) {
2529 unsigned EstimatedVF = VF.getKnownMinValue();
2530 if (VF.isScalable())
2531 if (VScale)
2532 EstimatedVF *= *VScale;
2533 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2534 return EstimatedVF;
2535}
2536
2539 ElementCount VF) const {
2540 // We only need to calculate a cost if the VF is scalar; for actual vectors
2541 // we should already have a pre-calculated cost at each VF.
2542 if (!VF.isScalar())
2543 return getCallWideningDecision(CI, VF).Cost;
2544
2545 Type *RetTy = CI->getType();
2547 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2548 return *RedCost;
2549
2551 for (auto &ArgOp : CI->args())
2552 Tys.push_back(ArgOp->getType());
2553
2554 InstructionCost ScalarCallCost =
2555 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2556
2557 // If this is an intrinsic we may have a lower cost for it.
2560 return std::min(ScalarCallCost, IntrinsicCost);
2561 }
2562 return ScalarCallCost;
2563}
2564
2566 if (VF.isScalar() || !canVectorizeTy(Ty))
2567 return Ty;
2568 return toVectorizedTy(Ty, VF);
2569}
2570
2573 ElementCount VF) const {
2575 assert(ID && "Expected intrinsic call!");
2576 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2577 FastMathFlags FMF;
2578 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2579 FMF = FPMO->getFastMathFlags();
2580
2583 SmallVector<Type *> ParamTys;
2584 std::transform(FTy->param_begin(), FTy->param_end(),
2585 std::back_inserter(ParamTys),
2586 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2587
2588 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2591 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2592}
2593
2595 // Fix widened non-induction PHIs by setting up the PHI operands.
2596 fixNonInductionPHIs(State);
2597
2598 // Don't apply optimizations below when no (vector) loop remains, as they all
2599 // require one at the moment.
2600 VPBasicBlock *HeaderVPBB =
2601 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2602 if (!HeaderVPBB)
2603 return;
2604
2605 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2606
2607 // Remove redundant induction instructions.
2608 legacyCSE(HeaderBB);
2609}
2610
2612 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2614 for (VPRecipeBase &P : VPBB->phis()) {
2616 if (!VPPhi)
2617 continue;
2618 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2619 // Make sure the builder has a valid insert point.
2620 Builder.SetInsertPoint(NewPhi);
2621 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2622 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2623 }
2624 }
2625}
2626
2627void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2628 // We should not collect Scalars more than once per VF. Right now, this
2629 // function is called from collectUniformsAndScalars(), which already does
2630 // this check. Collecting Scalars for VF=1 does not make any sense.
2631 assert(VF.isVector() && !Scalars.contains(VF) &&
2632 "This function should not be visited twice for the same VF");
2633
2634 // This avoids any chances of creating a REPLICATE recipe during planning
2635 // since that would result in generation of scalarized code during execution,
2636 // which is not supported for scalable vectors.
2637 if (VF.isScalable()) {
2638 Scalars[VF].insert_range(Uniforms[VF]);
2639 return;
2640 }
2641
2643
2644 // These sets are used to seed the analysis with pointers used by memory
2645 // accesses that will remain scalar.
2647 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2648 auto *Latch = TheLoop->getLoopLatch();
2649
2650 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2651 // The pointer operands of loads and stores will be scalar as long as the
2652 // memory access is not a gather or scatter operation. The value operand of a
2653 // store will remain scalar if the store is scalarized.
2654 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2655 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2656 assert(WideningDecision != CM_Unknown &&
2657 "Widening decision should be ready at this moment");
2658 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2659 if (Ptr == Store->getValueOperand())
2660 return WideningDecision == CM_Scalarize;
2661 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2662 "Ptr is neither a value or pointer operand");
2663 return WideningDecision != CM_GatherScatter;
2664 };
2665
2666 // A helper that returns true if the given value is a getelementptr
2667 // instruction contained in the loop.
2668 auto IsLoopVaryingGEP = [&](Value *V) {
2669 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2670 };
2671
2672 // A helper that evaluates a memory access's use of a pointer. If the use will
2673 // be a scalar use and the pointer is only used by memory accesses, we place
2674 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2675 // PossibleNonScalarPtrs.
2676 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2677 // We only care about bitcast and getelementptr instructions contained in
2678 // the loop.
2679 if (!IsLoopVaryingGEP(Ptr))
2680 return;
2681
2682 // If the pointer has already been identified as scalar (e.g., if it was
2683 // also identified as uniform), there's nothing to do.
2684 auto *I = cast<Instruction>(Ptr);
2685 if (Worklist.count(I))
2686 return;
2687
2688 // If the use of the pointer will be a scalar use, and all users of the
2689 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2690 // place the pointer in PossibleNonScalarPtrs.
2691 if (IsScalarUse(MemAccess, Ptr) &&
2693 ScalarPtrs.insert(I);
2694 else
2695 PossibleNonScalarPtrs.insert(I);
2696 };
2697
2698 // We seed the scalars analysis with three classes of instructions: (1)
2699 // instructions marked uniform-after-vectorization and (2) bitcast,
2700 // getelementptr and (pointer) phi instructions used by memory accesses
2701 // requiring a scalar use.
2702 //
2703 // (1) Add to the worklist all instructions that have been identified as
2704 // uniform-after-vectorization.
2705 Worklist.insert_range(Uniforms[VF]);
2706
2707 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2708 // memory accesses requiring a scalar use. The pointer operands of loads and
2709 // stores will be scalar unless the operation is a gather or scatter.
2710 // The value operand of a store will remain scalar if the store is scalarized.
2711 for (auto *BB : TheLoop->blocks())
2712 for (auto &I : *BB) {
2713 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2714 EvaluatePtrUse(Load, Load->getPointerOperand());
2715 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2716 EvaluatePtrUse(Store, Store->getPointerOperand());
2717 EvaluatePtrUse(Store, Store->getValueOperand());
2718 }
2719 }
2720 for (auto *I : ScalarPtrs)
2721 if (!PossibleNonScalarPtrs.count(I)) {
2722 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2723 Worklist.insert(I);
2724 }
2725
2726 // Insert the forced scalars.
2727 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2728 // induction variable when the PHI user is scalarized.
2729 auto ForcedScalar = ForcedScalars.find(VF);
2730 if (ForcedScalar != ForcedScalars.end())
2731 for (auto *I : ForcedScalar->second) {
2732 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2733 Worklist.insert(I);
2734 }
2735
2736 // Expand the worklist by looking through any bitcasts and getelementptr
2737 // instructions we've already identified as scalar. This is similar to the
2738 // expansion step in collectLoopUniforms(); however, here we're only
2739 // expanding to include additional bitcasts and getelementptr instructions.
2740 unsigned Idx = 0;
2741 while (Idx != Worklist.size()) {
2742 Instruction *Dst = Worklist[Idx++];
2743 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2744 continue;
2745 auto *Src = cast<Instruction>(Dst->getOperand(0));
2746 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2747 auto *J = cast<Instruction>(U);
2748 return !TheLoop->contains(J) || Worklist.count(J) ||
2749 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2750 IsScalarUse(J, Src));
2751 })) {
2752 Worklist.insert(Src);
2753 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2754 }
2755 }
2756
2757 // An induction variable will remain scalar if all users of the induction
2758 // variable and induction variable update remain scalar.
2759 for (const auto &Induction : Legal->getInductionVars()) {
2760 auto *Ind = Induction.first;
2761 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2762
2763 // If tail-folding is applied, the primary induction variable will be used
2764 // to feed a vector compare.
2765 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2766 continue;
2767
2768 // Returns true if \p Indvar is a pointer induction that is used directly by
2769 // load/store instruction \p I.
2770 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2771 Instruction *I) {
2772 return Induction.second.getKind() ==
2775 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2776 };
2777
2778 // Determine if all users of the induction variable are scalar after
2779 // vectorization.
2780 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2781 auto *I = cast<Instruction>(U);
2782 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2783 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2784 });
2785 if (!ScalarInd)
2786 continue;
2787
2788 // If the induction variable update is a fixed-order recurrence, neither the
2789 // induction variable or its update should be marked scalar after
2790 // vectorization.
2791 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2792 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2793 continue;
2794
2795 // Determine if all users of the induction variable update instruction are
2796 // scalar after vectorization.
2797 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2798 auto *I = cast<Instruction>(U);
2799 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2800 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2801 });
2802 if (!ScalarIndUpdate)
2803 continue;
2804
2805 // The induction variable and its update instruction will remain scalar.
2806 Worklist.insert(Ind);
2807 Worklist.insert(IndUpdate);
2808 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2809 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2810 << "\n");
2811 }
2812
2813 Scalars[VF].insert_range(Worklist);
2814}
2815
2817 ElementCount VF) {
2818 if (!isPredicatedInst(I))
2819 return false;
2820
2821 // Do we have a non-scalar lowering for this predicated
2822 // instruction? No - it is scalar with predication.
2823 switch(I->getOpcode()) {
2824 default:
2825 return true;
2826 case Instruction::Call:
2827 if (VF.isScalar())
2828 return true;
2830 case Instruction::Load:
2831 case Instruction::Store: {
2832 auto *Ptr = getLoadStorePointerOperand(I);
2833 auto *Ty = getLoadStoreType(I);
2834 unsigned AS = getLoadStoreAddressSpace(I);
2835 Type *VTy = Ty;
2836 if (VF.isVector())
2837 VTy = VectorType::get(Ty, VF);
2838 const Align Alignment = getLoadStoreAlignment(I);
2839 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2840 TTI.isLegalMaskedGather(VTy, Alignment))
2841 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2842 TTI.isLegalMaskedScatter(VTy, Alignment));
2843 }
2844 case Instruction::UDiv:
2845 case Instruction::SDiv:
2846 case Instruction::SRem:
2847 case Instruction::URem: {
2848 // We have the option to use the safe-divisor idiom to avoid predication.
2849 // The cost based decision here will always select safe-divisor for
2850 // scalable vectors as scalarization isn't legal.
2851 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2852 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2853 }
2854 }
2855}
2856
2857// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2859 // TODO: We can use the loop-preheader as context point here and get
2860 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2862 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2864 return false;
2865
2866 // If the instruction was executed conditionally in the original scalar loop,
2867 // predication is needed with a mask whose lanes are all possibly inactive.
2868 if (Legal->blockNeedsPredication(I->getParent()))
2869 return true;
2870
2871 // If we're not folding the tail by masking, predication is unnecessary.
2872 if (!foldTailByMasking())
2873 return false;
2874
2875 // All that remain are instructions with side-effects originally executed in
2876 // the loop unconditionally, but now execute under a tail-fold mask (only)
2877 // having at least one active lane (the first). If the side-effects of the
2878 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2879 // - it will cause the same side-effects as when masked.
2880 switch(I->getOpcode()) {
2881 default:
2883 "instruction should have been considered by earlier checks");
2884 case Instruction::Call:
2885 // Side-effects of a Call are assumed to be non-invariant, needing a
2886 // (fold-tail) mask.
2887 assert(Legal->isMaskRequired(I) &&
2888 "should have returned earlier for calls not needing a mask");
2889 return true;
2890 case Instruction::Load:
2891 // If the address is loop invariant no predication is needed.
2892 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2893 case Instruction::Store: {
2894 // For stores, we need to prove both speculation safety (which follows from
2895 // the same argument as loads), but also must prove the value being stored
2896 // is correct. The easiest form of the later is to require that all values
2897 // stored are the same.
2898 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2899 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2900 }
2901 case Instruction::UDiv:
2902 case Instruction::URem:
2903 // If the divisor is loop-invariant no predication is needed.
2904 return !Legal->isInvariant(I->getOperand(1));
2905 case Instruction::SDiv:
2906 case Instruction::SRem:
2907 // Conservative for now, since masked-off lanes may be poison and could
2908 // trigger signed overflow.
2909 return true;
2910 }
2911}
2912
2916 return 1;
2917 // If the block wasn't originally predicated then return early to avoid
2918 // computing BlockFrequencyInfo unnecessarily.
2919 if (!Legal->blockNeedsPredication(BB))
2920 return 1;
2921
2922 uint64_t HeaderFreq =
2923 getBFI().getBlockFreq(TheLoop->getHeader()).getFrequency();
2924 uint64_t BBFreq = getBFI().getBlockFreq(BB).getFrequency();
2925 assert(HeaderFreq >= BBFreq &&
2926 "Header has smaller block freq than dominated BB?");
2927 return std::round((double)HeaderFreq / BBFreq);
2928}
2929
2930std::pair<InstructionCost, InstructionCost>
2932 ElementCount VF) {
2933 assert(I->getOpcode() == Instruction::UDiv ||
2934 I->getOpcode() == Instruction::SDiv ||
2935 I->getOpcode() == Instruction::SRem ||
2936 I->getOpcode() == Instruction::URem);
2938
2939 // Scalarization isn't legal for scalable vector types
2940 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2941 if (!VF.isScalable()) {
2942 // Get the scalarization cost and scale this amount by the probability of
2943 // executing the predicated block. If the instruction is not predicated,
2944 // we fall through to the next case.
2945 ScalarizationCost = 0;
2946
2947 // These instructions have a non-void type, so account for the phi nodes
2948 // that we will create. This cost is likely to be zero. The phi node
2949 // cost, if any, should be scaled by the block probability because it
2950 // models a copy at the end of each predicated block.
2951 ScalarizationCost +=
2952 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2953
2954 // The cost of the non-predicated instruction.
2955 ScalarizationCost +=
2956 VF.getFixedValue() *
2957 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2958
2959 // The cost of insertelement and extractelement instructions needed for
2960 // scalarization.
2961 ScalarizationCost += getScalarizationOverhead(I, VF);
2962
2963 // Scale the cost by the probability of executing the predicated blocks.
2964 // This assumes the predicated block for each vector lane is equally
2965 // likely.
2966 ScalarizationCost =
2967 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2968 }
2969
2970 InstructionCost SafeDivisorCost = 0;
2971 auto *VecTy = toVectorTy(I->getType(), VF);
2972 // The cost of the select guard to ensure all lanes are well defined
2973 // after we speculate above any internal control flow.
2974 SafeDivisorCost +=
2975 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2976 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2978
2979 SmallVector<const Value *, 4> Operands(I->operand_values());
2980 SafeDivisorCost += TTI.getArithmeticInstrCost(
2981 I->getOpcode(), VecTy, CostKind,
2982 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2983 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2984 Operands, I);
2985 return {ScalarizationCost, SafeDivisorCost};
2986}
2987
2989 Instruction *I, ElementCount VF) const {
2990 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2992 "Decision should not be set yet.");
2993 auto *Group = getInterleavedAccessGroup(I);
2994 assert(Group && "Must have a group.");
2995 unsigned InterleaveFactor = Group->getFactor();
2996
2997 // If the instruction's allocated size doesn't equal its type size, it
2998 // requires padding and will be scalarized.
2999 auto &DL = I->getDataLayout();
3000 auto *ScalarTy = getLoadStoreType(I);
3001 if (hasIrregularType(ScalarTy, DL))
3002 return false;
3003
3004 // For scalable vectors, the interleave factors must be <= 8 since we require
3005 // the (de)interleaveN intrinsics instead of shufflevectors.
3006 if (VF.isScalable() && InterleaveFactor > 8)
3007 return false;
3008
3009 // If the group involves a non-integral pointer, we may not be able to
3010 // losslessly cast all values to a common type.
3011 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
3012 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3013 Instruction *Member = Group->getMember(Idx);
3014 if (!Member)
3015 continue;
3016 auto *MemberTy = getLoadStoreType(Member);
3017 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3018 // Don't coerce non-integral pointers to integers or vice versa.
3019 if (MemberNI != ScalarNI)
3020 // TODO: Consider adding special nullptr value case here
3021 return false;
3022 if (MemberNI && ScalarNI &&
3023 ScalarTy->getPointerAddressSpace() !=
3024 MemberTy->getPointerAddressSpace())
3025 return false;
3026 }
3027
3028 // Check if masking is required.
3029 // A Group may need masking for one of two reasons: it resides in a block that
3030 // needs predication, or it was decided to use masking to deal with gaps
3031 // (either a gap at the end of a load-access that may result in a speculative
3032 // load, or any gaps in a store-access).
3033 bool PredicatedAccessRequiresMasking =
3034 blockNeedsPredicationForAnyReason(I->getParent()) &&
3035 Legal->isMaskRequired(I);
3036 bool LoadAccessWithGapsRequiresEpilogMasking =
3037 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3039 bool StoreAccessWithGapsRequiresMasking =
3040 isa<StoreInst>(I) && !Group->isFull();
3041 if (!PredicatedAccessRequiresMasking &&
3042 !LoadAccessWithGapsRequiresEpilogMasking &&
3043 !StoreAccessWithGapsRequiresMasking)
3044 return true;
3045
3046 // If masked interleaving is required, we expect that the user/target had
3047 // enabled it, because otherwise it either wouldn't have been created or
3048 // it should have been invalidated by the CostModel.
3050 "Masked interleave-groups for predicated accesses are not enabled.");
3051
3052 if (Group->isReverse())
3053 return false;
3054
3055 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3056 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3057 StoreAccessWithGapsRequiresMasking;
3058 if (VF.isScalable() && NeedsMaskForGaps)
3059 return false;
3060
3061 auto *Ty = getLoadStoreType(I);
3062 const Align Alignment = getLoadStoreAlignment(I);
3063 unsigned AS = getLoadStoreAddressSpace(I);
3064 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3065 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3066}
3067
3069 Instruction *I, ElementCount VF) {
3070 // Get and ensure we have a valid memory instruction.
3071 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3072
3073 auto *Ptr = getLoadStorePointerOperand(I);
3074 auto *ScalarTy = getLoadStoreType(I);
3075
3076 // In order to be widened, the pointer should be consecutive, first of all.
3077 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3078 return false;
3079
3080 // If the instruction is a store located in a predicated block, it will be
3081 // scalarized.
3082 if (isScalarWithPredication(I, VF))
3083 return false;
3084
3085 // If the instruction's allocated size doesn't equal it's type size, it
3086 // requires padding and will be scalarized.
3087 auto &DL = I->getDataLayout();
3088 if (hasIrregularType(ScalarTy, DL))
3089 return false;
3090
3091 return true;
3092}
3093
3094void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3095 // We should not collect Uniforms more than once per VF. Right now,
3096 // this function is called from collectUniformsAndScalars(), which
3097 // already does this check. Collecting Uniforms for VF=1 does not make any
3098 // sense.
3099
3100 assert(VF.isVector() && !Uniforms.contains(VF) &&
3101 "This function should not be visited twice for the same VF");
3102
3103 // Visit the list of Uniforms. If we find no uniform value, we won't
3104 // analyze again. Uniforms.count(VF) will return 1.
3105 Uniforms[VF].clear();
3106
3107 // Now we know that the loop is vectorizable!
3108 // Collect instructions inside the loop that will remain uniform after
3109 // vectorization.
3110
3111 // Global values, params and instructions outside of current loop are out of
3112 // scope.
3113 auto IsOutOfScope = [&](Value *V) -> bool {
3115 return (!I || !TheLoop->contains(I));
3116 };
3117
3118 // Worklist containing uniform instructions demanding lane 0.
3119 SetVector<Instruction *> Worklist;
3120
3121 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3122 // that require predication must not be considered uniform after
3123 // vectorization, because that would create an erroneous replicating region
3124 // where only a single instance out of VF should be formed.
3125 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3126 if (IsOutOfScope(I)) {
3127 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3128 << *I << "\n");
3129 return;
3130 }
3131 if (isPredicatedInst(I)) {
3132 LLVM_DEBUG(
3133 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3134 << "\n");
3135 return;
3136 }
3137 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3138 Worklist.insert(I);
3139 };
3140
3141 // Start with the conditional branches exiting the loop. If the branch
3142 // condition is an instruction contained in the loop that is only used by the
3143 // branch, it is uniform. Note conditions from uncountable early exits are not
3144 // uniform.
3146 TheLoop->getExitingBlocks(Exiting);
3147 for (BasicBlock *E : Exiting) {
3148 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3149 continue;
3150 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3151 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3152 AddToWorklistIfAllowed(Cmp);
3153 }
3154
3155 auto PrevVF = VF.divideCoefficientBy(2);
3156 // Return true if all lanes perform the same memory operation, and we can
3157 // thus choose to execute only one.
3158 auto IsUniformMemOpUse = [&](Instruction *I) {
3159 // If the value was already known to not be uniform for the previous
3160 // (smaller VF), it cannot be uniform for the larger VF.
3161 if (PrevVF.isVector()) {
3162 auto Iter = Uniforms.find(PrevVF);
3163 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3164 return false;
3165 }
3166 if (!Legal->isUniformMemOp(*I, VF))
3167 return false;
3168 if (isa<LoadInst>(I))
3169 // Loading the same address always produces the same result - at least
3170 // assuming aliasing and ordering which have already been checked.
3171 return true;
3172 // Storing the same value on every iteration.
3173 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3174 };
3175
3176 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3177 InstWidening WideningDecision = getWideningDecision(I, VF);
3178 assert(WideningDecision != CM_Unknown &&
3179 "Widening decision should be ready at this moment");
3180
3181 if (IsUniformMemOpUse(I))
3182 return true;
3183
3184 return (WideningDecision == CM_Widen ||
3185 WideningDecision == CM_Widen_Reverse ||
3186 WideningDecision == CM_Interleave);
3187 };
3188
3189 // Returns true if Ptr is the pointer operand of a memory access instruction
3190 // I, I is known to not require scalarization, and the pointer is not also
3191 // stored.
3192 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3193 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3194 return false;
3195 return getLoadStorePointerOperand(I) == Ptr &&
3196 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3197 };
3198
3199 // Holds a list of values which are known to have at least one uniform use.
3200 // Note that there may be other uses which aren't uniform. A "uniform use"
3201 // here is something which only demands lane 0 of the unrolled iterations;
3202 // it does not imply that all lanes produce the same value (e.g. this is not
3203 // the usual meaning of uniform)
3204 SetVector<Value *> HasUniformUse;
3205
3206 // Scan the loop for instructions which are either a) known to have only
3207 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3208 for (auto *BB : TheLoop->blocks())
3209 for (auto &I : *BB) {
3210 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3211 switch (II->getIntrinsicID()) {
3212 case Intrinsic::sideeffect:
3213 case Intrinsic::experimental_noalias_scope_decl:
3214 case Intrinsic::assume:
3215 case Intrinsic::lifetime_start:
3216 case Intrinsic::lifetime_end:
3217 if (TheLoop->hasLoopInvariantOperands(&I))
3218 AddToWorklistIfAllowed(&I);
3219 break;
3220 default:
3221 break;
3222 }
3223 }
3224
3225 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3226 if (IsOutOfScope(EVI->getAggregateOperand())) {
3227 AddToWorklistIfAllowed(EVI);
3228 continue;
3229 }
3230 // Only ExtractValue instructions where the aggregate value comes from a
3231 // call are allowed to be non-uniform.
3232 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3233 "Expected aggregate value to be call return value");
3234 }
3235
3236 // If there's no pointer operand, there's nothing to do.
3237 auto *Ptr = getLoadStorePointerOperand(&I);
3238 if (!Ptr)
3239 continue;
3240
3241 // If the pointer can be proven to be uniform, always add it to the
3242 // worklist.
3243 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3244 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3245
3246 if (IsUniformMemOpUse(&I))
3247 AddToWorklistIfAllowed(&I);
3248
3249 if (IsVectorizedMemAccessUse(&I, Ptr))
3250 HasUniformUse.insert(Ptr);
3251 }
3252
3253 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3254 // demanding) users. Since loops are assumed to be in LCSSA form, this
3255 // disallows uses outside the loop as well.
3256 for (auto *V : HasUniformUse) {
3257 if (IsOutOfScope(V))
3258 continue;
3259 auto *I = cast<Instruction>(V);
3260 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3261 auto *UI = cast<Instruction>(U);
3262 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3263 });
3264 if (UsersAreMemAccesses)
3265 AddToWorklistIfAllowed(I);
3266 }
3267
3268 // Expand Worklist in topological order: whenever a new instruction
3269 // is added , its users should be already inside Worklist. It ensures
3270 // a uniform instruction will only be used by uniform instructions.
3271 unsigned Idx = 0;
3272 while (Idx != Worklist.size()) {
3273 Instruction *I = Worklist[Idx++];
3274
3275 for (auto *OV : I->operand_values()) {
3276 // isOutOfScope operands cannot be uniform instructions.
3277 if (IsOutOfScope(OV))
3278 continue;
3279 // First order recurrence Phi's should typically be considered
3280 // non-uniform.
3281 auto *OP = dyn_cast<PHINode>(OV);
3282 if (OP && Legal->isFixedOrderRecurrence(OP))
3283 continue;
3284 // If all the users of the operand are uniform, then add the
3285 // operand into the uniform worklist.
3286 auto *OI = cast<Instruction>(OV);
3287 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3288 auto *J = cast<Instruction>(U);
3289 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3290 }))
3291 AddToWorklistIfAllowed(OI);
3292 }
3293 }
3294
3295 // For an instruction to be added into Worklist above, all its users inside
3296 // the loop should also be in Worklist. However, this condition cannot be
3297 // true for phi nodes that form a cyclic dependence. We must process phi
3298 // nodes separately. An induction variable will remain uniform if all users
3299 // of the induction variable and induction variable update remain uniform.
3300 // The code below handles both pointer and non-pointer induction variables.
3301 BasicBlock *Latch = TheLoop->getLoopLatch();
3302 for (const auto &Induction : Legal->getInductionVars()) {
3303 auto *Ind = Induction.first;
3304 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3305
3306 // Determine if all users of the induction variable are uniform after
3307 // vectorization.
3308 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3309 auto *I = cast<Instruction>(U);
3310 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3311 IsVectorizedMemAccessUse(I, Ind);
3312 });
3313 if (!UniformInd)
3314 continue;
3315
3316 // Determine if all users of the induction variable update instruction are
3317 // uniform after vectorization.
3318 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3319 auto *I = cast<Instruction>(U);
3320 return I == Ind || Worklist.count(I) ||
3321 IsVectorizedMemAccessUse(I, IndUpdate);
3322 });
3323 if (!UniformIndUpdate)
3324 continue;
3325
3326 // The induction variable and its update instruction will remain uniform.
3327 AddToWorklistIfAllowed(Ind);
3328 AddToWorklistIfAllowed(IndUpdate);
3329 }
3330
3331 Uniforms[VF].insert_range(Worklist);
3332}
3333
3335 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3336
3337 if (Legal->getRuntimePointerChecking()->Need) {
3338 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3339 "runtime pointer checks needed. Enable vectorization of this "
3340 "loop with '#pragma clang loop vectorize(enable)' when "
3341 "compiling with -Os/-Oz",
3342 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3343 return true;
3344 }
3345
3346 if (!PSE.getPredicate().isAlwaysTrue()) {
3347 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3348 "runtime SCEV checks needed. Enable vectorization of this "
3349 "loop with '#pragma clang loop vectorize(enable)' when "
3350 "compiling with -Os/-Oz",
3351 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3352 return true;
3353 }
3354
3355 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3356 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3357 reportVectorizationFailure("Runtime stride check for small trip count",
3358 "runtime stride == 1 checks needed. Enable vectorization of "
3359 "this loop without such check by compiling with -Os/-Oz",
3360 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3361 return true;
3362 }
3363
3364 return false;
3365}
3366
3367bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3368 if (IsScalableVectorizationAllowed)
3369 return *IsScalableVectorizationAllowed;
3370
3371 IsScalableVectorizationAllowed = false;
3372 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3373 return false;
3374
3375 if (Hints->isScalableVectorizationDisabled()) {
3376 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3377 "ScalableVectorizationDisabled", ORE, TheLoop);
3378 return false;
3379 }
3380
3381 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3382
3383 auto MaxScalableVF = ElementCount::getScalable(
3384 std::numeric_limits<ElementCount::ScalarTy>::max());
3385
3386 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3387 // FIXME: While for scalable vectors this is currently sufficient, this should
3388 // be replaced by a more detailed mechanism that filters out specific VFs,
3389 // instead of invalidating vectorization for a whole set of VFs based on the
3390 // MaxVF.
3391
3392 // Disable scalable vectorization if the loop contains unsupported reductions.
3393 if (!canVectorizeReductions(MaxScalableVF)) {
3395 "Scalable vectorization not supported for the reduction "
3396 "operations found in this loop.",
3397 "ScalableVFUnfeasible", ORE, TheLoop);
3398 return false;
3399 }
3400
3401 // Disable scalable vectorization if the loop contains any instructions
3402 // with element types not supported for scalable vectors.
3403 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3404 return !Ty->isVoidTy() &&
3406 })) {
3407 reportVectorizationInfo("Scalable vectorization is not supported "
3408 "for all element types found in this loop.",
3409 "ScalableVFUnfeasible", ORE, TheLoop);
3410 return false;
3411 }
3412
3413 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3414 reportVectorizationInfo("The target does not provide maximum vscale value "
3415 "for safe distance analysis.",
3416 "ScalableVFUnfeasible", ORE, TheLoop);
3417 return false;
3418 }
3419
3420 IsScalableVectorizationAllowed = true;
3421 return true;
3422}
3423
3424ElementCount
3425LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3426 if (!isScalableVectorizationAllowed())
3427 return ElementCount::getScalable(0);
3428
3429 auto MaxScalableVF = ElementCount::getScalable(
3430 std::numeric_limits<ElementCount::ScalarTy>::max());
3431 if (Legal->isSafeForAnyVectorWidth())
3432 return MaxScalableVF;
3433
3434 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3435 // Limit MaxScalableVF by the maximum safe dependence distance.
3436 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3437
3438 if (!MaxScalableVF)
3440 "Max legal vector width too small, scalable vectorization "
3441 "unfeasible.",
3442 "ScalableVFUnfeasible", ORE, TheLoop);
3443
3444 return MaxScalableVF;
3445}
3446
3447FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3448 unsigned MaxTripCount, ElementCount UserVF, unsigned UserIC,
3449 bool FoldTailByMasking) {
3450 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3451 unsigned SmallestType, WidestType;
3452 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3453
3454 // Get the maximum safe dependence distance in bits computed by LAA.
3455 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3456 // the memory accesses that is most restrictive (involved in the smallest
3457 // dependence distance).
3458 unsigned MaxSafeElementsPowerOf2 =
3459 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3460 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3461 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3462 MaxSafeElementsPowerOf2 =
3463 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3464 }
3465 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3466 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3467
3468 if (!Legal->isSafeForAnyVectorWidth())
3469 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3470
3471 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3472 << ".\n");
3473 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3474 << ".\n");
3475
3476 // First analyze the UserVF, fall back if the UserVF should be ignored.
3477 if (UserVF) {
3478 auto MaxSafeUserVF =
3479 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3480
3481 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3482 // If `VF=vscale x N` is safe, then so is `VF=N`
3483 if (UserVF.isScalable())
3484 return FixedScalableVFPair(
3485 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3486
3487 return UserVF;
3488 }
3489
3490 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3491
3492 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3493 // is better to ignore the hint and let the compiler choose a suitable VF.
3494 if (!UserVF.isScalable()) {
3495 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3496 << " is unsafe, clamping to max safe VF="
3497 << MaxSafeFixedVF << ".\n");
3498 ORE->emit([&]() {
3499 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3500 TheLoop->getStartLoc(),
3501 TheLoop->getHeader())
3502 << "User-specified vectorization factor "
3503 << ore::NV("UserVectorizationFactor", UserVF)
3504 << " is unsafe, clamping to maximum safe vectorization factor "
3505 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3506 });
3507 return MaxSafeFixedVF;
3508 }
3509
3511 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3512 << " is ignored because scalable vectors are not "
3513 "available.\n");
3514 ORE->emit([&]() {
3515 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3516 TheLoop->getStartLoc(),
3517 TheLoop->getHeader())
3518 << "User-specified vectorization factor "
3519 << ore::NV("UserVectorizationFactor", UserVF)
3520 << " is ignored because the target does not support scalable "
3521 "vectors. The compiler will pick a more suitable value.";
3522 });
3523 } else {
3524 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3525 << " is unsafe. Ignoring scalable UserVF.\n");
3526 ORE->emit([&]() {
3527 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3528 TheLoop->getStartLoc(),
3529 TheLoop->getHeader())
3530 << "User-specified vectorization factor "
3531 << ore::NV("UserVectorizationFactor", UserVF)
3532 << " is unsafe. Ignoring the hint to let the compiler pick a "
3533 "more suitable value.";
3534 });
3535 }
3536 }
3537
3538 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3539 << " / " << WidestType << " bits.\n");
3540
3541 FixedScalableVFPair Result(ElementCount::getFixed(1),
3543 if (auto MaxVF =
3544 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3545 MaxSafeFixedVF, UserIC, FoldTailByMasking))
3546 Result.FixedVF = MaxVF;
3547
3548 if (auto MaxVF =
3549 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3550 MaxSafeScalableVF, UserIC, FoldTailByMasking))
3551 if (MaxVF.isScalable()) {
3552 Result.ScalableVF = MaxVF;
3553 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3554 << "\n");
3555 }
3556
3557 return Result;
3558}
3559
3560FixedScalableVFPair
3562 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3563 // TODO: It may be useful to do since it's still likely to be dynamically
3564 // uniform if the target can skip.
3566 "Not inserting runtime ptr check for divergent target",
3567 "runtime pointer checks needed. Not enabled for divergent target",
3568 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3570 }
3571
3572 ScalarEvolution *SE = PSE.getSE();
3574 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3575 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3576 if (TC != ElementCount::getFixed(MaxTC))
3577 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3578 if (TC.isScalar()) {
3579 reportVectorizationFailure("Single iteration (non) loop",
3580 "loop trip count is one, irrelevant for vectorization",
3581 "SingleIterationLoop", ORE, TheLoop);
3583 }
3584
3585 // If BTC matches the widest induction type and is -1 then the trip count
3586 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3587 // to vectorize.
3588 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3589 if (!isa<SCEVCouldNotCompute>(BTC) &&
3590 BTC->getType()->getScalarSizeInBits() >=
3591 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3593 SE->getMinusOne(BTC->getType()))) {
3595 "Trip count computation wrapped",
3596 "backedge-taken count is -1, loop trip count wrapped to 0",
3597 "TripCountWrapped", ORE, TheLoop);
3599 }
3600
3601 switch (ScalarEpilogueStatus) {
3603 return computeFeasibleMaxVF(MaxTC, UserVF, UserIC, false);
3605 [[fallthrough]];
3607 LLVM_DEBUG(
3608 dbgs() << "LV: vector predicate hint/switch found.\n"
3609 << "LV: Not allowing scalar epilogue, creating predicated "
3610 << "vector loop.\n");
3611 break;
3613 // fallthrough as a special case of OptForSize
3615 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3616 LLVM_DEBUG(
3617 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3618 else
3619 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3620 << "count.\n");
3621
3622 // Bail if runtime checks are required, which are not good when optimising
3623 // for size.
3626
3627 break;
3628 }
3629
3630 // Now try the tail folding
3631
3632 // Invalidate interleave groups that require an epilogue if we can't mask
3633 // the interleave-group.
3635 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3636 "No decisions should have been taken at this point");
3637 // Note: There is no need to invalidate any cost modeling decisions here, as
3638 // none were taken so far.
3639 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3640 }
3641
3642 FixedScalableVFPair MaxFactors =
3643 computeFeasibleMaxVF(MaxTC, UserVF, UserIC, true);
3644
3645 // Avoid tail folding if the trip count is known to be a multiple of any VF
3646 // we choose.
3647 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3648 MaxFactors.FixedVF.getFixedValue();
3649 if (MaxFactors.ScalableVF) {
3650 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3651 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3652 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3653 *MaxPowerOf2RuntimeVF,
3654 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3655 } else
3656 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3657 }
3658
3659 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3660 // Return false if the loop is neither a single-latch-exit loop nor an
3661 // early-exit loop as tail-folding is not supported in that case.
3662 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3663 !Legal->hasUncountableEarlyExit())
3664 return false;
3665 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3666 ScalarEvolution *SE = PSE.getSE();
3667 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3668 // with uncountable exits. For countable loops, the symbolic maximum must
3669 // remain identical to the known back-edge taken count.
3670 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3671 assert((Legal->hasUncountableEarlyExit() ||
3672 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3673 "Invalid loop count");
3674 const SCEV *ExitCount = SE->getAddExpr(
3675 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3676 const SCEV *Rem = SE->getURemExpr(
3677 SE->applyLoopGuards(ExitCount, TheLoop),
3678 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3679 return Rem->isZero();
3680 };
3681
3682 if (MaxPowerOf2RuntimeVF > 0u) {
3683 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3684 "MaxFixedVF must be a power of 2");
3685 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3686 // Accept MaxFixedVF if we do not have a tail.
3687 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3688 return MaxFactors;
3689 }
3690 }
3691
3692 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3693 if (ExpectedTC && ExpectedTC->isFixed() &&
3694 ExpectedTC->getFixedValue() <=
3695 TTI.getMinTripCountTailFoldingThreshold()) {
3696 if (MaxPowerOf2RuntimeVF > 0u) {
3697 // If we have a low-trip-count, and the fixed-width VF is known to divide
3698 // the trip count but the scalable factor does not, use the fixed-width
3699 // factor in preference to allow the generation of a non-predicated loop.
3700 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3701 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3702 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3703 "remain for any chosen VF.\n");
3704 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3705 return MaxFactors;
3706 }
3707 }
3708
3710 "The trip count is below the minial threshold value.",
3711 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3712 ORE, TheLoop);
3714 }
3715
3716 // If we don't know the precise trip count, or if the trip count that we
3717 // found modulo the vectorization factor is not zero, try to fold the tail
3718 // by masking.
3719 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3720 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3721 setTailFoldingStyles(ContainsScalableVF, UserIC);
3722 if (foldTailByMasking()) {
3723 if (foldTailWithEVL()) {
3724 LLVM_DEBUG(
3725 dbgs()
3726 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3727 "try to generate VP Intrinsics with scalable vector "
3728 "factors only.\n");
3729 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3730 // for now.
3731 // TODO: extend it for fixed vectors, if required.
3732 assert(ContainsScalableVF && "Expected scalable vector factor.");
3733
3734 MaxFactors.FixedVF = ElementCount::getFixed(1);
3735 }
3736 return MaxFactors;
3737 }
3738
3739 // If there was a tail-folding hint/switch, but we can't fold the tail by
3740 // masking, fallback to a vectorization with a scalar epilogue.
3741 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3742 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3743 "scalar epilogue instead.\n");
3744 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3745 return MaxFactors;
3746 }
3747
3748 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3749 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3751 }
3752
3753 if (TC.isZero()) {
3755 "unable to calculate the loop count due to complex control flow",
3756 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3758 }
3759
3761 "Cannot optimize for size and vectorize at the same time.",
3762 "cannot optimize for size and vectorize at the same time. "
3763 "Enable vectorization of this loop with '#pragma clang loop "
3764 "vectorize(enable)' when compiling with -Os/-Oz",
3765 "NoTailLoopWithOptForSize", ORE, TheLoop);
3767}
3768
3770 ElementCount VF) {
3771 if (ConsiderRegPressure.getNumOccurrences())
3772 return ConsiderRegPressure;
3773
3774 // TODO: We should eventually consider register pressure for all targets. The
3775 // TTI hook is temporary whilst target-specific issues are being fixed.
3776 if (TTI.shouldConsiderVectorizationRegPressure())
3777 return true;
3778
3779 if (!useMaxBandwidth(VF.isScalable()
3782 return false;
3783 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3785 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3787}
3788
3791 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3792 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3794 Legal->hasVectorCallVariants())));
3795}
3796
3797ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3798 ElementCount VF, unsigned MaxTripCount, unsigned UserIC,
3799 bool FoldTailByMasking) const {
3800 unsigned EstimatedVF = VF.getKnownMinValue();
3801 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3802 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3803 auto Min = Attr.getVScaleRangeMin();
3804 EstimatedVF *= Min;
3805 }
3806
3807 // When a scalar epilogue is required, at least one iteration of the scalar
3808 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3809 // max VF that results in a dead vector loop.
3810 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3811 MaxTripCount -= 1;
3812
3813 // When the user specifies an interleave count, we need to ensure that
3814 // VF * UserIC <= MaxTripCount to avoid a dead vector loop.
3815 unsigned IC = UserIC > 0 ? UserIC : 1;
3816 unsigned EstimatedVFTimesIC = EstimatedVF * IC;
3817
3818 if (MaxTripCount && MaxTripCount <= EstimatedVFTimesIC &&
3819 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3820 // If upper bound loop trip count (TC) is known at compile time there is no
3821 // point in choosing VF greater than TC / IC (as done in the loop below).
3822 // Select maximum power of two which doesn't exceed TC / IC. If VF is
3823 // scalable, we only fall back on a fixed VF when the TC is less than or
3824 // equal to the known number of lanes.
3825 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount / IC);
3826 if (ClampedUpperTripCount == 0)
3827 ClampedUpperTripCount = 1;
3828 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3829 "exceeding the constant trip count"
3830 << (UserIC > 0 ? " divided by UserIC" : "") << ": "
3831 << ClampedUpperTripCount << "\n");
3832 return ElementCount::get(ClampedUpperTripCount,
3833 FoldTailByMasking ? VF.isScalable() : false);
3834 }
3835 return VF;
3836}
3837
3838ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3839 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3840 ElementCount MaxSafeVF, unsigned UserIC, bool FoldTailByMasking) {
3841 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3842 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3843 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3845
3846 // Convenience function to return the minimum of two ElementCounts.
3847 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3848 assert((LHS.isScalable() == RHS.isScalable()) &&
3849 "Scalable flags must match");
3850 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3851 };
3852
3853 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3854 // Note that both WidestRegister and WidestType may not be a powers of 2.
3855 auto MaxVectorElementCount = ElementCount::get(
3856 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3857 ComputeScalableMaxVF);
3858 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3859 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3860 << (MaxVectorElementCount * WidestType) << " bits.\n");
3861
3862 if (!MaxVectorElementCount) {
3863 LLVM_DEBUG(dbgs() << "LV: The target has no "
3864 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3865 << " vector registers.\n");
3866 return ElementCount::getFixed(1);
3867 }
3868
3869 ElementCount MaxVF = clampVFByMaxTripCount(
3870 MaxVectorElementCount, MaxTripCount, UserIC, FoldTailByMasking);
3871 // If the MaxVF was already clamped, there's no point in trying to pick a
3872 // larger one.
3873 if (MaxVF != MaxVectorElementCount)
3874 return MaxVF;
3875
3877 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3879
3880 if (MaxVF.isScalable())
3881 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3882 else
3883 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3884
3885 if (useMaxBandwidth(RegKind)) {
3886 auto MaxVectorElementCountMaxBW = ElementCount::get(
3887 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3888 ComputeScalableMaxVF);
3889 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3890
3891 if (ElementCount MinVF =
3892 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3893 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3894 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3895 << ") with target's minimum: " << MinVF << '\n');
3896 MaxVF = MinVF;
3897 }
3898 }
3899
3900 MaxVF =
3901 clampVFByMaxTripCount(MaxVF, MaxTripCount, UserIC, FoldTailByMasking);
3902
3903 if (MaxVectorElementCount != MaxVF) {
3904 // Invalidate any widening decisions we might have made, in case the loop
3905 // requires prediction (decided later), but we have already made some
3906 // load/store widening decisions.
3907 invalidateCostModelingDecisions();
3908 }
3909 }
3910 return MaxVF;
3911}
3912
3913bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3914 const VectorizationFactor &B,
3915 const unsigned MaxTripCount,
3916 bool HasTail,
3917 bool IsEpilogue) const {
3918 InstructionCost CostA = A.Cost;
3919 InstructionCost CostB = B.Cost;
3920
3921 // Improve estimate for the vector width if it is scalable.
3922 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3923 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3924 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3925 if (A.Width.isScalable())
3926 EstimatedWidthA *= *VScale;
3927 if (B.Width.isScalable())
3928 EstimatedWidthB *= *VScale;
3929 }
3930
3931 // When optimizing for size choose whichever is smallest, which will be the
3932 // one with the smallest cost for the whole loop. On a tie pick the larger
3933 // vector width, on the assumption that throughput will be greater.
3934 if (CM.CostKind == TTI::TCK_CodeSize)
3935 return CostA < CostB ||
3936 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3937
3938 // Assume vscale may be larger than 1 (or the value being tuned for),
3939 // so that scalable vectorization is slightly favorable over fixed-width
3940 // vectorization.
3941 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3942 A.Width.isScalable() && !B.Width.isScalable();
3943
3944 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3945 const InstructionCost &RHS) {
3946 return PreferScalable ? LHS <= RHS : LHS < RHS;
3947 };
3948
3949 // To avoid the need for FP division:
3950 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3951 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3952 if (!MaxTripCount)
3953 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3954
3955 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3956 InstructionCost VectorCost,
3957 InstructionCost ScalarCost) {
3958 // If the trip count is a known (possibly small) constant, the trip count
3959 // will be rounded up to an integer number of iterations under
3960 // FoldTailByMasking. The total cost in that case will be
3961 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3962 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3963 // some extra overheads, but for the purpose of comparing the costs of
3964 // different VFs we can use this to compare the total loop-body cost
3965 // expected after vectorization.
3966 if (HasTail)
3967 return VectorCost * (MaxTripCount / VF) +
3968 ScalarCost * (MaxTripCount % VF);
3969 return VectorCost * divideCeil(MaxTripCount, VF);
3970 };
3971
3972 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3973 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3974 return CmpFn(RTCostA, RTCostB);
3975}
3976
3977bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3978 const VectorizationFactor &B,
3979 bool HasTail,
3980 bool IsEpilogue) const {
3981 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3982 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3983 IsEpilogue);
3984}
3985
3988 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3989 SmallVector<RecipeVFPair> InvalidCosts;
3990 for (const auto &Plan : VPlans) {
3991 for (ElementCount VF : Plan->vectorFactors()) {
3992 // The VPlan-based cost model is designed for computing vector cost.
3993 // Querying VPlan-based cost model with a scarlar VF will cause some
3994 // errors because we expect the VF is vector for most of the widen
3995 // recipes.
3996 if (VF.isScalar())
3997 continue;
3998
3999 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
4000 OrigLoop);
4001 precomputeCosts(*Plan, VF, CostCtx);
4002 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
4004 for (auto &R : *VPBB) {
4005 if (!R.cost(VF, CostCtx).isValid())
4006 InvalidCosts.emplace_back(&R, VF);
4007 }
4008 }
4009 }
4010 }
4011 if (InvalidCosts.empty())
4012 return;
4013
4014 // Emit a report of VFs with invalid costs in the loop.
4015
4016 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
4018 unsigned I = 0;
4019 for (auto &Pair : InvalidCosts)
4020 if (Numbering.try_emplace(Pair.first, I).second)
4021 ++I;
4022
4023 // Sort the list, first on recipe(number) then on VF.
4024 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
4025 unsigned NA = Numbering[A.first];
4026 unsigned NB = Numbering[B.first];
4027 if (NA != NB)
4028 return NA < NB;
4029 return ElementCount::isKnownLT(A.second, B.second);
4030 });
4031
4032 // For a list of ordered recipe-VF pairs:
4033 // [(load, VF1), (load, VF2), (store, VF1)]
4034 // group the recipes together to emit separate remarks for:
4035 // load (VF1, VF2)
4036 // store (VF1)
4037 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4038 auto Subset = ArrayRef<RecipeVFPair>();
4039 do {
4040 if (Subset.empty())
4041 Subset = Tail.take_front(1);
4042
4043 VPRecipeBase *R = Subset.front().first;
4044
4045 unsigned Opcode =
4048 [](const auto *R) { return Instruction::PHI; })
4049 .Case<VPWidenStoreRecipe>(
4050 [](const auto *R) { return Instruction::Store; })
4051 .Case<VPWidenLoadRecipe>(
4052 [](const auto *R) { return Instruction::Load; })
4053 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4054 [](const auto *R) { return Instruction::Call; })
4057 [](const auto *R) { return R->getOpcode(); })
4058 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4059 return R->getStoredValues().empty() ? Instruction::Load
4060 : Instruction::Store;
4061 })
4062 .Case<VPReductionRecipe>([](const auto *R) {
4063 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4064 });
4065
4066 // If the next recipe is different, or if there are no other pairs,
4067 // emit a remark for the collated subset. e.g.
4068 // [(load, VF1), (load, VF2))]
4069 // to emit:
4070 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4071 if (Subset == Tail || Tail[Subset.size()].first != R) {
4072 std::string OutString;
4073 raw_string_ostream OS(OutString);
4074 assert(!Subset.empty() && "Unexpected empty range");
4075 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4076 for (const auto &Pair : Subset)
4077 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4078 OS << "):";
4079 if (Opcode == Instruction::Call) {
4080 StringRef Name = "";
4081 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4082 Name = Int->getIntrinsicName();
4083 } else {
4084 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4085 Function *CalledFn =
4086 WidenCall ? WidenCall->getCalledScalarFunction()
4087 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4088 ->getLiveInIRValue());
4089 Name = CalledFn->getName();
4090 }
4091 OS << " call to " << Name;
4092 } else
4093 OS << " " << Instruction::getOpcodeName(Opcode);
4094 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4095 R->getDebugLoc());
4096 Tail = Tail.drop_front(Subset.size());
4097 Subset = {};
4098 } else
4099 // Grow the subset by one element
4100 Subset = Tail.take_front(Subset.size() + 1);
4101 } while (!Tail.empty());
4102}
4103
4104/// Check if any recipe of \p Plan will generate a vector value, which will be
4105/// assigned a vector register.
4107 const TargetTransformInfo &TTI) {
4108 assert(VF.isVector() && "Checking a scalar VF?");
4109 VPTypeAnalysis TypeInfo(Plan);
4110 DenseSet<VPRecipeBase *> EphemeralRecipes;
4111 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4112 // Set of already visited types.
4113 DenseSet<Type *> Visited;
4116 for (VPRecipeBase &R : *VPBB) {
4117 if (EphemeralRecipes.contains(&R))
4118 continue;
4119 // Continue early if the recipe is considered to not produce a vector
4120 // result. Note that this includes VPInstruction where some opcodes may
4121 // produce a vector, to preserve existing behavior as VPInstructions model
4122 // aspects not directly mapped to existing IR instructions.
4123 switch (R.getVPDefID()) {
4124 case VPDef::VPDerivedIVSC:
4125 case VPDef::VPScalarIVStepsSC:
4126 case VPDef::VPReplicateSC:
4127 case VPDef::VPInstructionSC:
4128 case VPDef::VPCanonicalIVPHISC:
4129 case VPDef::VPVectorPointerSC:
4130 case VPDef::VPVectorEndPointerSC:
4131 case VPDef::VPExpandSCEVSC:
4132 case VPDef::VPEVLBasedIVPHISC:
4133 case VPDef::VPPredInstPHISC:
4134 case VPDef::VPBranchOnMaskSC:
4135 continue;
4136 case VPDef::VPReductionSC:
4137 case VPDef::VPActiveLaneMaskPHISC:
4138 case VPDef::VPWidenCallSC:
4139 case VPDef::VPWidenCanonicalIVSC:
4140 case VPDef::VPWidenCastSC:
4141 case VPDef::VPWidenGEPSC:
4142 case VPDef::VPWidenIntrinsicSC:
4143 case VPDef::VPWidenSC:
4144 case VPDef::VPBlendSC:
4145 case VPDef::VPFirstOrderRecurrencePHISC:
4146 case VPDef::VPHistogramSC:
4147 case VPDef::VPWidenPHISC:
4148 case VPDef::VPWidenIntOrFpInductionSC:
4149 case VPDef::VPWidenPointerInductionSC:
4150 case VPDef::VPReductionPHISC:
4151 case VPDef::VPInterleaveEVLSC:
4152 case VPDef::VPInterleaveSC:
4153 case VPDef::VPWidenLoadEVLSC:
4154 case VPDef::VPWidenLoadSC:
4155 case VPDef::VPWidenStoreEVLSC:
4156 case VPDef::VPWidenStoreSC:
4157 break;
4158 default:
4159 llvm_unreachable("unhandled recipe");
4160 }
4161
4162 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4163 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4164 if (!NumLegalParts)
4165 return false;
4166 if (VF.isScalable()) {
4167 // <vscale x 1 x iN> is assumed to be profitable over iN because
4168 // scalable registers are a distinct register class from scalar
4169 // ones. If we ever find a target which wants to lower scalable
4170 // vectors back to scalars, we'll need to update this code to
4171 // explicitly ask TTI about the register class uses for each part.
4172 return NumLegalParts <= VF.getKnownMinValue();
4173 }
4174 // Two or more elements that share a register - are vectorized.
4175 return NumLegalParts < VF.getFixedValue();
4176 };
4177
4178 // If no def nor is a store, e.g., branches, continue - no value to check.
4179 if (R.getNumDefinedValues() == 0 &&
4181 continue;
4182 // For multi-def recipes, currently only interleaved loads, suffice to
4183 // check first def only.
4184 // For stores check their stored value; for interleaved stores suffice
4185 // the check first stored value only. In all cases this is the second
4186 // operand.
4187 VPValue *ToCheck =
4188 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4189 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4190 if (!Visited.insert({ScalarTy}).second)
4191 continue;
4192 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4193 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4194 return true;
4195 }
4196 }
4197
4198 return false;
4199}
4200
4201static bool hasReplicatorRegion(VPlan &Plan) {
4203 Plan.getVectorLoopRegion()->getEntry())),
4204 [](auto *VPRB) { return VPRB->isReplicator(); });
4205}
4206
4207#ifndef NDEBUG
4208VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4209 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4210 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4211 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4212 assert(
4213 any_of(VPlans,
4214 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4215 "Expected Scalar VF to be a candidate");
4216
4217 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4218 ExpectedCost);
4219 VectorizationFactor ChosenFactor = ScalarCost;
4220
4221 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4222 if (ForceVectorization &&
4223 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4224 // Ignore scalar width, because the user explicitly wants vectorization.
4225 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4226 // evaluation.
4227 ChosenFactor.Cost = InstructionCost::getMax();
4228 }
4229
4230 for (auto &P : VPlans) {
4231 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4232 P->vectorFactors().end());
4233
4235 if (any_of(VFs, [this](ElementCount VF) {
4236 return CM.shouldConsiderRegPressureForVF(VF);
4237 }))
4238 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4239
4240 for (unsigned I = 0; I < VFs.size(); I++) {
4241 ElementCount VF = VFs[I];
4242 // The cost for scalar VF=1 is already calculated, so ignore it.
4243 if (VF.isScalar())
4244 continue;
4245
4246 /// If the register pressure needs to be considered for VF,
4247 /// don't consider the VF as valid if it exceeds the number
4248 /// of registers for the target.
4249 if (CM.shouldConsiderRegPressureForVF(VF) &&
4250 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4251 continue;
4252
4253 InstructionCost C = CM.expectedCost(VF);
4254
4255 // Add on other costs that are modelled in VPlan, but not in the legacy
4256 // cost model.
4257 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind, CM.PSE,
4258 OrigLoop);
4259 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4260 assert(VectorRegion && "Expected to have a vector region!");
4261 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4262 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4263 for (VPRecipeBase &R : *VPBB) {
4264 auto *VPI = dyn_cast<VPInstruction>(&R);
4265 if (!VPI)
4266 continue;
4267 switch (VPI->getOpcode()) {
4268 // Selects are only modelled in the legacy cost model for safe
4269 // divisors.
4270 case Instruction::Select: {
4271 if (auto *WR =
4272 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4273 switch (WR->getOpcode()) {
4274 case Instruction::UDiv:
4275 case Instruction::SDiv:
4276 case Instruction::URem:
4277 case Instruction::SRem:
4278 continue;
4279 default:
4280 break;
4281 }
4282 }
4283 C += VPI->cost(VF, CostCtx);
4284 break;
4285 }
4287 unsigned Multiplier =
4288 cast<VPConstantInt>(VPI->getOperand(2))->getZExtValue();
4289 C += VPI->cost(VF * Multiplier, CostCtx);
4290 break;
4291 }
4293 C += VPI->cost(VF, CostCtx);
4294 break;
4295 default:
4296 break;
4297 }
4298 }
4299 }
4300
4301 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4302 unsigned Width =
4303 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4304 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4305 << " costs: " << (Candidate.Cost / Width));
4306 if (VF.isScalable())
4307 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4308 << CM.getVScaleForTuning().value_or(1) << ")");
4309 LLVM_DEBUG(dbgs() << ".\n");
4310
4311 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4312 LLVM_DEBUG(
4313 dbgs()
4314 << "LV: Not considering vector loop of width " << VF
4315 << " because it will not generate any vector instructions.\n");
4316 continue;
4317 }
4318
4319 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4320 LLVM_DEBUG(
4321 dbgs()
4322 << "LV: Not considering vector loop of width " << VF
4323 << " because it would cause replicated blocks to be generated,"
4324 << " which isn't allowed when optimizing for size.\n");
4325 continue;
4326 }
4327
4328 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4329 ChosenFactor = Candidate;
4330 }
4331 }
4332
4333 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4335 "There are conditional stores.",
4336 "store that is conditionally executed prevents vectorization",
4337 "ConditionalStore", ORE, OrigLoop);
4338 ChosenFactor = ScalarCost;
4339 }
4340
4341 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4342 !isMoreProfitable(ChosenFactor, ScalarCost,
4343 !CM.foldTailByMasking())) dbgs()
4344 << "LV: Vectorization seems to be not beneficial, "
4345 << "but was forced by a user.\n");
4346 return ChosenFactor;
4347}
4348#endif
4349
4350/// Returns true if the VPlan contains a VPReductionPHIRecipe with
4351/// FindLast recurrence kind.
4352static bool hasFindLastReductionPhi(VPlan &Plan) {
4354 [](VPRecipeBase &R) {
4355 auto *RedPhi = dyn_cast<VPReductionPHIRecipe>(&R);
4356 return RedPhi &&
4357 RecurrenceDescriptor::isFindLastRecurrenceKind(
4358 RedPhi->getRecurrenceKind());
4359 });
4360}
4361
4362bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4363 ElementCount VF) const {
4364 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4365 // reductions need special handling and are currently unsupported.
4366 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4367 if (!Legal->isReductionVariable(&Phi))
4368 return Legal->isFixedOrderRecurrence(&Phi);
4369 RecurKind Kind =
4370 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4371 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(Kind);
4372 }))
4373 return false;
4374
4375 // FindLast reductions require special handling for the synthesized mask PHI
4376 // and are currently unsupported for epilogue vectorization.
4377 if (hasFindLastReductionPhi(getPlanFor(VF)))
4378 return false;
4379
4380 // Phis with uses outside of the loop require special handling and are
4381 // currently unsupported.
4382 for (const auto &Entry : Legal->getInductionVars()) {
4383 // Look for uses of the value of the induction at the last iteration.
4384 Value *PostInc =
4385 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4386 for (User *U : PostInc->users())
4387 if (!OrigLoop->contains(cast<Instruction>(U)))
4388 return false;
4389 // Look for uses of penultimate value of the induction.
4390 for (User *U : Entry.first->users())
4391 if (!OrigLoop->contains(cast<Instruction>(U)))
4392 return false;
4393 }
4394
4395 // Epilogue vectorization code has not been auditted to ensure it handles
4396 // non-latch exits properly. It may be fine, but it needs auditted and
4397 // tested.
4398 // TODO: Add support for loops with an early exit.
4399 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4400 return false;
4401
4402 return true;
4403}
4404
4406 const ElementCount VF, const unsigned IC) const {
4407 // FIXME: We need a much better cost-model to take different parameters such
4408 // as register pressure, code size increase and cost of extra branches into
4409 // account. For now we apply a very crude heuristic and only consider loops
4410 // with vectorization factors larger than a certain value.
4411
4412 // Allow the target to opt out entirely.
4413 if (!TTI.preferEpilogueVectorization())
4414 return false;
4415
4416 // We also consider epilogue vectorization unprofitable for targets that don't
4417 // consider interleaving beneficial (eg. MVE).
4418 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4419 return false;
4420
4421 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4423 : TTI.getEpilogueVectorizationMinVF();
4424 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4425}
4426
4428 const ElementCount MainLoopVF, unsigned IC) {
4431 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4432 return Result;
4433 }
4434
4435 if (!CM.isScalarEpilogueAllowed()) {
4436 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4437 "epilogue is allowed.\n");
4438 return Result;
4439 }
4440
4441 // Not really a cost consideration, but check for unsupported cases here to
4442 // simplify the logic.
4443 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4444 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4445 "is not a supported candidate.\n");
4446 return Result;
4447 }
4448
4450 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4452 if (hasPlanWithVF(ForcedEC))
4453 return {ForcedEC, 0, 0};
4454
4455 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4456 "viable.\n");
4457 return Result;
4458 }
4459
4460 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4461 LLVM_DEBUG(
4462 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4463 return Result;
4464 }
4465
4466 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4467 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4468 "this loop\n");
4469 return Result;
4470 }
4471
4472 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4473 // the main loop handles 8 lanes per iteration. We could still benefit from
4474 // vectorizing the epilogue loop with VF=4.
4475 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4476 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4477
4478 Type *TCType = Legal->getWidestInductionType();
4479 const SCEV *RemainingIterations = nullptr;
4480 unsigned MaxTripCount = 0;
4482 getPlanFor(MainLoopVF).getTripCount(), PSE);
4483 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4484 const SCEV *KnownMinTC;
4485 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4486 bool ScalableRemIter = false;
4487 ScalarEvolution &SE = *PSE.getSE();
4488 // Use versions of TC and VF in which both are either scalable or fixed.
4489 if (ScalableTC == MainLoopVF.isScalable()) {
4490 ScalableRemIter = ScalableTC;
4491 RemainingIterations =
4492 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4493 } else if (ScalableTC) {
4494 const SCEV *EstimatedTC = SE.getMulExpr(
4495 KnownMinTC,
4496 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4497 RemainingIterations = SE.getURemExpr(
4498 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4499 } else
4500 RemainingIterations =
4501 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4502
4503 // No iterations left to process in the epilogue.
4504 if (RemainingIterations->isZero())
4505 return Result;
4506
4507 if (MainLoopVF.isFixed()) {
4508 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4509 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4510 SE.getConstant(TCType, MaxTripCount))) {
4511 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4512 }
4513 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4514 << MaxTripCount << "\n");
4515 }
4516
4517 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4518 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4519 };
4520 for (auto &NextVF : ProfitableVFs) {
4521 // Skip candidate VFs without a corresponding VPlan.
4522 if (!hasPlanWithVF(NextVF.Width))
4523 continue;
4524
4525 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4526 // vectors) or > the VF of the main loop (fixed vectors).
4527 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4528 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4529 (NextVF.Width.isScalable() &&
4530 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4531 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4532 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4533 continue;
4534
4535 // If NextVF is greater than the number of remaining iterations, the
4536 // epilogue loop would be dead. Skip such factors.
4537 // TODO: We should also consider comparing against a scalable
4538 // RemainingIterations when SCEV be able to evaluate non-canonical
4539 // vscale-based expressions.
4540 if (!ScalableRemIter) {
4541 // Handle the case where NextVF and RemainingIterations are in different
4542 // numerical spaces.
4543 ElementCount EC = NextVF.Width;
4544 if (NextVF.Width.isScalable())
4546 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4547 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4548 continue;
4549 }
4550
4551 if (Result.Width.isScalar() ||
4552 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4553 /*IsEpilogue*/ true))
4554 Result = NextVF;
4555 }
4556
4557 if (Result != VectorizationFactor::Disabled())
4558 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4559 << Result.Width << "\n");
4560 return Result;
4561}
4562
4563std::pair<unsigned, unsigned>
4565 unsigned MinWidth = -1U;
4566 unsigned MaxWidth = 8;
4567 const DataLayout &DL = TheFunction->getDataLayout();
4568 // For in-loop reductions, no element types are added to ElementTypesInLoop
4569 // if there are no loads/stores in the loop. In this case, check through the
4570 // reduction variables to determine the maximum width.
4571 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4572 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4573 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4574 // When finding the min width used by the recurrence we need to account
4575 // for casts on the input operands of the recurrence.
4576 MinWidth = std::min(
4577 MinWidth,
4578 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4580 MaxWidth = std::max(MaxWidth,
4582 }
4583 } else {
4584 for (Type *T : ElementTypesInLoop) {
4585 MinWidth = std::min<unsigned>(
4586 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4587 MaxWidth = std::max<unsigned>(
4588 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4589 }
4590 }
4591 return {MinWidth, MaxWidth};
4592}
4593
4595 ElementTypesInLoop.clear();
4596 // For each block.
4597 for (BasicBlock *BB : TheLoop->blocks()) {
4598 // For each instruction in the loop.
4599 for (Instruction &I : BB->instructionsWithoutDebug()) {
4600 Type *T = I.getType();
4601
4602 // Skip ignored values.
4603 if (ValuesToIgnore.count(&I))
4604 continue;
4605
4606 // Only examine Loads, Stores and PHINodes.
4607 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4608 continue;
4609
4610 // Examine PHI nodes that are reduction variables. Update the type to
4611 // account for the recurrence type.
4612 if (auto *PN = dyn_cast<PHINode>(&I)) {
4613 if (!Legal->isReductionVariable(PN))
4614 continue;
4615 const RecurrenceDescriptor &RdxDesc =
4616 Legal->getRecurrenceDescriptor(PN);
4618 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4619 RdxDesc.getRecurrenceType()))
4620 continue;
4621 T = RdxDesc.getRecurrenceType();
4622 }
4623
4624 // Examine the stored values.
4625 if (auto *ST = dyn_cast<StoreInst>(&I))
4626 T = ST->getValueOperand()->getType();
4627
4628 assert(T->isSized() &&
4629 "Expected the load/store/recurrence type to be sized");
4630
4631 ElementTypesInLoop.insert(T);
4632 }
4633 }
4634}
4635
4636unsigned
4638 InstructionCost LoopCost) {
4639 // -- The interleave heuristics --
4640 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4641 // There are many micro-architectural considerations that we can't predict
4642 // at this level. For example, frontend pressure (on decode or fetch) due to
4643 // code size, or the number and capabilities of the execution ports.
4644 //
4645 // We use the following heuristics to select the interleave count:
4646 // 1. If the code has reductions, then we interleave to break the cross
4647 // iteration dependency.
4648 // 2. If the loop is really small, then we interleave to reduce the loop
4649 // overhead.
4650 // 3. We don't interleave if we think that we will spill registers to memory
4651 // due to the increased register pressure.
4652
4653 // Only interleave tail-folded loops if wide lane masks are requested, as the
4654 // overhead of multiple instructions to calculate the predicate is likely
4655 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4656 // do not interleave.
4657 if (!CM.isScalarEpilogueAllowed() &&
4658 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4659 return 1;
4660
4663 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4664 "Unroll factor forced to be 1.\n");
4665 return 1;
4666 }
4667
4668 // We used the distance for the interleave count.
4669 if (!Legal->isSafeForAnyVectorWidth())
4670 return 1;
4671
4672 // We don't attempt to perform interleaving for loops with uncountable early
4673 // exits because the VPInstruction::AnyOf code cannot currently handle
4674 // multiple parts.
4675 if (Plan.hasEarlyExit())
4676 return 1;
4677
4678 const bool HasReductions =
4681
4682 // FIXME: implement interleaving for FindLast transform correctly.
4683 if (hasFindLastReductionPhi(Plan))
4684 return 1;
4685
4686 // If we did not calculate the cost for VF (because the user selected the VF)
4687 // then we calculate the cost of VF here.
4688 if (LoopCost == 0) {
4689 if (VF.isScalar())
4690 LoopCost = CM.expectedCost(VF);
4691 else
4692 LoopCost = cost(Plan, VF);
4693 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4694
4695 // Loop body is free and there is no need for interleaving.
4696 if (LoopCost == 0)
4697 return 1;
4698 }
4699
4700 VPRegisterUsage R =
4701 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4702 // We divide by these constants so assume that we have at least one
4703 // instruction that uses at least one register.
4704 for (auto &Pair : R.MaxLocalUsers) {
4705 Pair.second = std::max(Pair.second, 1U);
4706 }
4707
4708 // We calculate the interleave count using the following formula.
4709 // Subtract the number of loop invariants from the number of available
4710 // registers. These registers are used by all of the interleaved instances.
4711 // Next, divide the remaining registers by the number of registers that is
4712 // required by the loop, in order to estimate how many parallel instances
4713 // fit without causing spills. All of this is rounded down if necessary to be
4714 // a power of two. We want power of two interleave count to simplify any
4715 // addressing operations or alignment considerations.
4716 // We also want power of two interleave counts to ensure that the induction
4717 // variable of the vector loop wraps to zero, when tail is folded by masking;
4718 // this currently happens when OptForSize, in which case IC is set to 1 above.
4719 unsigned IC = UINT_MAX;
4720
4721 for (const auto &Pair : R.MaxLocalUsers) {
4722 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4723 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4724 << " registers of "
4725 << TTI.getRegisterClassName(Pair.first)
4726 << " register class\n");
4727 if (VF.isScalar()) {
4728 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4729 TargetNumRegisters = ForceTargetNumScalarRegs;
4730 } else {
4731 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4732 TargetNumRegisters = ForceTargetNumVectorRegs;
4733 }
4734 unsigned MaxLocalUsers = Pair.second;
4735 unsigned LoopInvariantRegs = 0;
4736 if (R.LoopInvariantRegs.contains(Pair.first))
4737 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4738
4739 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4740 MaxLocalUsers);
4741 // Don't count the induction variable as interleaved.
4743 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4744 std::max(1U, (MaxLocalUsers - 1)));
4745 }
4746
4747 IC = std::min(IC, TmpIC);
4748 }
4749
4750 // Clamp the interleave ranges to reasonable counts.
4751 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4752
4753 // Check if the user has overridden the max.
4754 if (VF.isScalar()) {
4755 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4756 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4757 } else {
4758 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4759 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4760 }
4761
4762 // Try to get the exact trip count, or an estimate based on profiling data or
4763 // ConstantMax from PSE, failing that.
4764 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4765
4766 // For fixed length VFs treat a scalable trip count as unknown.
4767 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4768 // Re-evaluate trip counts and VFs to be in the same numerical space.
4769 unsigned AvailableTC =
4770 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4771 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4772
4773 // At least one iteration must be scalar when this constraint holds. So the
4774 // maximum available iterations for interleaving is one less.
4775 if (CM.requiresScalarEpilogue(VF.isVector()))
4776 --AvailableTC;
4777
4778 unsigned InterleaveCountLB = bit_floor(std::max(
4779 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4780
4781 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4782 // If the best known trip count is exact, we select between two
4783 // prospective ICs, where
4784 //
4785 // 1) the aggressive IC is capped by the trip count divided by VF
4786 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4787 //
4788 // The final IC is selected in a way that the epilogue loop trip count is
4789 // minimized while maximizing the IC itself, so that we either run the
4790 // vector loop at least once if it generates a small epilogue loop, or
4791 // else we run the vector loop at least twice.
4792
4793 unsigned InterleaveCountUB = bit_floor(std::max(
4794 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4795 MaxInterleaveCount = InterleaveCountLB;
4796
4797 if (InterleaveCountUB != InterleaveCountLB) {
4798 unsigned TailTripCountUB =
4799 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4800 unsigned TailTripCountLB =
4801 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4802 // If both produce same scalar tail, maximize the IC to do the same work
4803 // in fewer vector loop iterations
4804 if (TailTripCountUB == TailTripCountLB)
4805 MaxInterleaveCount = InterleaveCountUB;
4806 }
4807 } else {
4808 // If trip count is an estimated compile time constant, limit the
4809 // IC to be capped by the trip count divided by VF * 2, such that the
4810 // vector loop runs at least twice to make interleaving seem profitable
4811 // when there is an epilogue loop present. Since exact Trip count is not
4812 // known we choose to be conservative in our IC estimate.
4813 MaxInterleaveCount = InterleaveCountLB;
4814 }
4815 }
4816
4817 assert(MaxInterleaveCount > 0 &&
4818 "Maximum interleave count must be greater than 0");
4819
4820 // Clamp the calculated IC to be between the 1 and the max interleave count
4821 // that the target and trip count allows.
4822 if (IC > MaxInterleaveCount)
4823 IC = MaxInterleaveCount;
4824 else
4825 // Make sure IC is greater than 0.
4826 IC = std::max(1u, IC);
4827
4828 assert(IC > 0 && "Interleave count must be greater than 0.");
4829
4830 // Interleave if we vectorized this loop and there is a reduction that could
4831 // benefit from interleaving.
4832 if (VF.isVector() && HasReductions) {
4833 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4834 return IC;
4835 }
4836
4837 // For any scalar loop that either requires runtime checks or predication we
4838 // are better off leaving this to the unroller. Note that if we've already
4839 // vectorized the loop we will have done the runtime check and so interleaving
4840 // won't require further checks.
4841 bool ScalarInterleavingRequiresPredication =
4842 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4843 return Legal->blockNeedsPredication(BB);
4844 }));
4845 bool ScalarInterleavingRequiresRuntimePointerCheck =
4846 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4847
4848 // We want to interleave small loops in order to reduce the loop overhead and
4849 // potentially expose ILP opportunities.
4850 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4851 << "LV: IC is " << IC << '\n'
4852 << "LV: VF is " << VF << '\n');
4853 const bool AggressivelyInterleaveReductions =
4854 TTI.enableAggressiveInterleaving(HasReductions);
4855 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4856 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4857 // We assume that the cost overhead is 1 and we use the cost model
4858 // to estimate the cost of the loop and interleave until the cost of the
4859 // loop overhead is about 5% of the cost of the loop.
4860 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4861 SmallLoopCost / LoopCost.getValue()));
4862
4863 // Interleave until store/load ports (estimated by max interleave count) are
4864 // saturated.
4865 unsigned NumStores = 0;
4866 unsigned NumLoads = 0;
4869 for (VPRecipeBase &R : *VPBB) {
4871 NumLoads++;
4872 continue;
4873 }
4875 NumStores++;
4876 continue;
4877 }
4878
4879 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4880 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4881 NumStores += StoreOps;
4882 else
4883 NumLoads += InterleaveR->getNumDefinedValues();
4884 continue;
4885 }
4886 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4887 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4888 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4889 continue;
4890 }
4891 if (isa<VPHistogramRecipe>(&R)) {
4892 NumLoads++;
4893 NumStores++;
4894 continue;
4895 }
4896 }
4897 }
4898 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4899 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4900
4901 // There is little point in interleaving for reductions containing selects
4902 // and compares when VF=1 since it may just create more overhead than it's
4903 // worth for loops with small trip counts. This is because we still have to
4904 // do the final reduction after the loop.
4905 bool HasSelectCmpReductions =
4906 HasReductions &&
4908 [](VPRecipeBase &R) {
4909 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4910 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4911 RedR->getRecurrenceKind()) ||
4912 RecurrenceDescriptor::isFindIVRecurrenceKind(
4913 RedR->getRecurrenceKind()));
4914 });
4915 if (HasSelectCmpReductions) {
4916 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4917 return 1;
4918 }
4919
4920 // If we have a scalar reduction (vector reductions are already dealt with
4921 // by this point), we can increase the critical path length if the loop
4922 // we're interleaving is inside another loop. For tree-wise reductions
4923 // set the limit to 2, and for ordered reductions it's best to disable
4924 // interleaving entirely.
4925 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4926 bool HasOrderedReductions =
4928 [](VPRecipeBase &R) {
4929 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4930
4931 return RedR && RedR->isOrdered();
4932 });
4933 if (HasOrderedReductions) {
4934 LLVM_DEBUG(
4935 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4936 return 1;
4937 }
4938
4939 unsigned F = MaxNestedScalarReductionIC;
4940 SmallIC = std::min(SmallIC, F);
4941 StoresIC = std::min(StoresIC, F);
4942 LoadsIC = std::min(LoadsIC, F);
4943 }
4944
4946 std::max(StoresIC, LoadsIC) > SmallIC) {
4947 LLVM_DEBUG(
4948 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4949 return std::max(StoresIC, LoadsIC);
4950 }
4951
4952 // If there are scalar reductions and TTI has enabled aggressive
4953 // interleaving for reductions, we will interleave to expose ILP.
4954 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4955 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4956 // Interleave no less than SmallIC but not as aggressive as the normal IC
4957 // to satisfy the rare situation when resources are too limited.
4958 return std::max(IC / 2, SmallIC);
4959 }
4960
4961 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4962 return SmallIC;
4963 }
4964
4965 // Interleave if this is a large loop (small loops are already dealt with by
4966 // this point) that could benefit from interleaving.
4967 if (AggressivelyInterleaveReductions) {
4968 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4969 return IC;
4970 }
4971
4972 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4973 return 1;
4974}
4975
4976bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4977 ElementCount VF) {
4978 // TODO: Cost model for emulated masked load/store is completely
4979 // broken. This hack guides the cost model to use an artificially
4980 // high enough value to practically disable vectorization with such
4981 // operations, except where previously deployed legality hack allowed
4982 // using very low cost values. This is to avoid regressions coming simply
4983 // from moving "masked load/store" check from legality to cost model.
4984 // Masked Load/Gather emulation was previously never allowed.
4985 // Limited number of Masked Store/Scatter emulation was allowed.
4986 assert((isPredicatedInst(I)) &&
4987 "Expecting a scalar emulated instruction");
4988 return isa<LoadInst>(I) ||
4989 (isa<StoreInst>(I) &&
4990 NumPredStores > NumberOfStoresToPredicate);
4991}
4992
4994 assert(VF.isVector() && "Expected VF >= 2");
4995
4996 // If we've already collected the instructions to scalarize or the predicated
4997 // BBs after vectorization, there's nothing to do. Collection may already have
4998 // occurred if we have a user-selected VF and are now computing the expected
4999 // cost for interleaving.
5000 if (InstsToScalarize.contains(VF) ||
5001 PredicatedBBsAfterVectorization.contains(VF))
5002 return;
5003
5004 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5005 // not profitable to scalarize any instructions, the presence of VF in the
5006 // map will indicate that we've analyzed it already.
5007 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5008
5009 // Find all the instructions that are scalar with predication in the loop and
5010 // determine if it would be better to not if-convert the blocks they are in.
5011 // If so, we also record the instructions to scalarize.
5012 for (BasicBlock *BB : TheLoop->blocks()) {
5014 continue;
5015 for (Instruction &I : *BB)
5016 if (isScalarWithPredication(&I, VF)) {
5017 ScalarCostsTy ScalarCosts;
5018 // Do not apply discount logic for:
5019 // 1. Scalars after vectorization, as there will only be a single copy
5020 // of the instruction.
5021 // 2. Scalable VF, as that would lead to invalid scalarization costs.
5022 // 3. Emulated masked memrefs, if a hacked cost is needed.
5023 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
5024 !useEmulatedMaskMemRefHack(&I, VF) &&
5025 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
5026 for (const auto &[I, IC] : ScalarCosts)
5027 ScalarCostsVF.insert({I, IC});
5028 // Check if we decided to scalarize a call. If so, update the widening
5029 // decision of the call to CM_Scalarize with the computed scalar cost.
5030 for (const auto &[I, Cost] : ScalarCosts) {
5031 auto *CI = dyn_cast<CallInst>(I);
5032 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5033 continue;
5034 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
5035 CallWideningDecisions[{CI, VF}].Cost = Cost;
5036 }
5037 }
5038 // Remember that BB will remain after vectorization.
5039 PredicatedBBsAfterVectorization[VF].insert(BB);
5040 for (auto *Pred : predecessors(BB)) {
5041 if (Pred->getSingleSuccessor() == BB)
5042 PredicatedBBsAfterVectorization[VF].insert(Pred);
5043 }
5044 }
5045 }
5046}
5047
5048InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5049 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5050 assert(!isUniformAfterVectorization(PredInst, VF) &&
5051 "Instruction marked uniform-after-vectorization will be predicated");
5052
5053 // Initialize the discount to zero, meaning that the scalar version and the
5054 // vector version cost the same.
5055 InstructionCost Discount = 0;
5056
5057 // Holds instructions to analyze. The instructions we visit are mapped in
5058 // ScalarCosts. Those instructions are the ones that would be scalarized if
5059 // we find that the scalar version costs less.
5061
5062 // Returns true if the given instruction can be scalarized.
5063 auto CanBeScalarized = [&](Instruction *I) -> bool {
5064 // We only attempt to scalarize instructions forming a single-use chain
5065 // from the original predicated block that would otherwise be vectorized.
5066 // Although not strictly necessary, we give up on instructions we know will
5067 // already be scalar to avoid traversing chains that are unlikely to be
5068 // beneficial.
5069 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5070 isScalarAfterVectorization(I, VF))
5071 return false;
5072
5073 // If the instruction is scalar with predication, it will be analyzed
5074 // separately. We ignore it within the context of PredInst.
5075 if (isScalarWithPredication(I, VF))
5076 return false;
5077
5078 // If any of the instruction's operands are uniform after vectorization,
5079 // the instruction cannot be scalarized. This prevents, for example, a
5080 // masked load from being scalarized.
5081 //
5082 // We assume we will only emit a value for lane zero of an instruction
5083 // marked uniform after vectorization, rather than VF identical values.
5084 // Thus, if we scalarize an instruction that uses a uniform, we would
5085 // create uses of values corresponding to the lanes we aren't emitting code
5086 // for. This behavior can be changed by allowing getScalarValue to clone
5087 // the lane zero values for uniforms rather than asserting.
5088 for (Use &U : I->operands())
5089 if (auto *J = dyn_cast<Instruction>(U.get()))
5090 if (isUniformAfterVectorization(J, VF))
5091 return false;
5092
5093 // Otherwise, we can scalarize the instruction.
5094 return true;
5095 };
5096
5097 // Compute the expected cost discount from scalarizing the entire expression
5098 // feeding the predicated instruction. We currently only consider expressions
5099 // that are single-use instruction chains.
5100 Worklist.push_back(PredInst);
5101 while (!Worklist.empty()) {
5102 Instruction *I = Worklist.pop_back_val();
5103
5104 // If we've already analyzed the instruction, there's nothing to do.
5105 if (ScalarCosts.contains(I))
5106 continue;
5107
5108 // Cannot scalarize fixed-order recurrence phis at the moment.
5109 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5110 continue;
5111
5112 // Compute the cost of the vector instruction. Note that this cost already
5113 // includes the scalarization overhead of the predicated instruction.
5114 InstructionCost VectorCost = getInstructionCost(I, VF);
5115
5116 // Compute the cost of the scalarized instruction. This cost is the cost of
5117 // the instruction as if it wasn't if-converted and instead remained in the
5118 // predicated block. We will scale this cost by block probability after
5119 // computing the scalarization overhead.
5120 InstructionCost ScalarCost =
5121 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5122
5123 // Compute the scalarization overhead of needed insertelement instructions
5124 // and phi nodes.
5125 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5126 Type *WideTy = toVectorizedTy(I->getType(), VF);
5127 for (Type *VectorTy : getContainedTypes(WideTy)) {
5128 ScalarCost += TTI.getScalarizationOverhead(
5130 /*Insert=*/true,
5131 /*Extract=*/false, CostKind);
5132 }
5133 ScalarCost +=
5134 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5135 }
5136
5137 // Compute the scalarization overhead of needed extractelement
5138 // instructions. For each of the instruction's operands, if the operand can
5139 // be scalarized, add it to the worklist; otherwise, account for the
5140 // overhead.
5141 for (Use &U : I->operands())
5142 if (auto *J = dyn_cast<Instruction>(U.get())) {
5143 assert(canVectorizeTy(J->getType()) &&
5144 "Instruction has non-scalar type");
5145 if (CanBeScalarized(J))
5146 Worklist.push_back(J);
5147 else if (needsExtract(J, VF)) {
5148 Type *WideTy = toVectorizedTy(J->getType(), VF);
5149 for (Type *VectorTy : getContainedTypes(WideTy)) {
5150 ScalarCost += TTI.getScalarizationOverhead(
5151 cast<VectorType>(VectorTy),
5152 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5153 /*Extract*/ true, CostKind);
5154 }
5155 }
5156 }
5157
5158 // Scale the total scalar cost by block probability.
5159 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5160
5161 // Compute the discount. A non-negative discount means the vector version
5162 // of the instruction costs more, and scalarizing would be beneficial.
5163 Discount += VectorCost - ScalarCost;
5164 ScalarCosts[I] = ScalarCost;
5165 }
5166
5167 return Discount;
5168}
5169
5172
5173 // If the vector loop gets executed exactly once with the given VF, ignore the
5174 // costs of comparison and induction instructions, as they'll get simplified
5175 // away.
5176 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5177 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5178 if (TC == VF && !foldTailByMasking())
5180 ValuesToIgnoreForVF);
5181
5182 // For each block.
5183 for (BasicBlock *BB : TheLoop->blocks()) {
5184 InstructionCost BlockCost;
5185
5186 // For each instruction in the old loop.
5187 for (Instruction &I : BB->instructionsWithoutDebug()) {
5188 // Skip ignored values.
5189 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5190 (VF.isVector() && VecValuesToIgnore.count(&I)))
5191 continue;
5192
5194
5195 // Check if we should override the cost.
5196 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) {
5197 // For interleave groups, use ForceTargetInstructionCost once for the
5198 // whole group.
5199 if (VF.isVector() && getWideningDecision(&I, VF) == CM_Interleave) {
5200 if (getInterleavedAccessGroup(&I)->getInsertPos() == &I)
5202 else
5203 C = InstructionCost(0);
5204 } else {
5206 }
5207 }
5208
5209 BlockCost += C;
5210 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5211 << VF << " For instruction: " << I << '\n');
5212 }
5213
5214 // If we are vectorizing a predicated block, it will have been
5215 // if-converted. This means that the block's instructions (aside from
5216 // stores and instructions that may divide by zero) will now be
5217 // unconditionally executed. For the scalar case, we may not always execute
5218 // the predicated block, if it is an if-else block. Thus, scale the block's
5219 // cost by the probability of executing it.
5220 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5221 // by the header mask when folding the tail.
5222 if (VF.isScalar())
5223 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5224
5225 Cost += BlockCost;
5226 }
5227
5228 return Cost;
5229}
5230
5231/// Gets the address access SCEV for Ptr, if it should be used for cost modeling
5232/// according to isAddressSCEVForCost.
5233///
5234/// This SCEV can be sent to the Target in order to estimate the address
5235/// calculation cost.
5237 Value *Ptr,
5239 const Loop *TheLoop) {
5240 const SCEV *Addr = PSE.getSCEV(Ptr);
5241 return vputils::isAddressSCEVForCost(Addr, *PSE.getSE(), TheLoop) ? Addr
5242 : nullptr;
5243}
5244
5246LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5247 ElementCount VF) {
5248 assert(VF.isVector() &&
5249 "Scalarization cost of instruction implies vectorization.");
5250 if (VF.isScalable())
5251 return InstructionCost::getInvalid();
5252
5253 Type *ValTy = getLoadStoreType(I);
5254 auto *SE = PSE.getSE();
5255
5256 unsigned AS = getLoadStoreAddressSpace(I);
5258 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5259 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5260 // that it is being called from this specific place.
5261
5262 // Figure out whether the access is strided and get the stride value
5263 // if it's known in compile time
5264 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, PSE, TheLoop);
5265
5266 // Get the cost of the scalar memory instruction and address computation.
5268 PtrTy, SE, PtrSCEV, CostKind);
5269
5270 // Don't pass *I here, since it is scalar but will actually be part of a
5271 // vectorized loop where the user of it is a vectorized instruction.
5272 const Align Alignment = getLoadStoreAlignment(I);
5273 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5274 Cost += VF.getFixedValue() *
5275 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5276 AS, CostKind, OpInfo);
5277
5278 // Get the overhead of the extractelement and insertelement instructions
5279 // we might create due to scalarization.
5281
5282 // If we have a predicated load/store, it will need extra i1 extracts and
5283 // conditional branches, but may not be executed for each vector lane. Scale
5284 // the cost by the probability of executing the predicated block.
5285 if (isPredicatedInst(I)) {
5286 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5287
5288 // Add the cost of an i1 extract and a branch
5289 auto *VecI1Ty =
5290 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5292 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5293 /*Insert=*/false, /*Extract=*/true, CostKind);
5294 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5295
5296 if (useEmulatedMaskMemRefHack(I, VF))
5297 // Artificially setting to a high enough value to practically disable
5298 // vectorization with such operations.
5299 Cost = 3000000;
5300 }
5301
5302 return Cost;
5303}
5304
5306LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5307 ElementCount VF) {
5308 Type *ValTy = getLoadStoreType(I);
5309 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5311 unsigned AS = getLoadStoreAddressSpace(I);
5312 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5313
5314 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5315 "Stride should be 1 or -1 for consecutive memory access");
5316 const Align Alignment = getLoadStoreAlignment(I);
5318 if (Legal->isMaskRequired(I)) {
5319 unsigned IID = I->getOpcode() == Instruction::Load
5320 ? Intrinsic::masked_load
5321 : Intrinsic::masked_store;
5323 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS), CostKind);
5324 } else {
5325 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5326 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5327 CostKind, OpInfo, I);
5328 }
5329
5330 bool Reverse = ConsecutiveStride < 0;
5331 if (Reverse)
5333 VectorTy, {}, CostKind, 0);
5334 return Cost;
5335}
5336
5338LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5339 ElementCount VF) {
5340 assert(Legal->isUniformMemOp(*I, VF));
5341
5342 Type *ValTy = getLoadStoreType(I);
5344 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5345 const Align Alignment = getLoadStoreAlignment(I);
5346 unsigned AS = getLoadStoreAddressSpace(I);
5347 if (isa<LoadInst>(I)) {
5348 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5349 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5350 CostKind) +
5352 VectorTy, {}, CostKind);
5353 }
5354 StoreInst *SI = cast<StoreInst>(I);
5355
5356 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5357 // TODO: We have existing tests that request the cost of extracting element
5358 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5359 // the actual generated code, which involves extracting the last element of
5360 // a scalable vector where the lane to extract is unknown at compile time.
5362 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5363 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5364 if (!IsLoopInvariantStoreValue)
5365 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5366 VectorTy, CostKind, 0);
5367 return Cost;
5368}
5369
5371LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5372 ElementCount VF) {
5373 Type *ValTy = getLoadStoreType(I);
5374 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5375 const Align Alignment = getLoadStoreAlignment(I);
5377 Type *PtrTy = Ptr->getType();
5378
5379 if (!Legal->isUniform(Ptr, VF))
5380 PtrTy = toVectorTy(PtrTy, VF);
5381
5382 unsigned IID = I->getOpcode() == Instruction::Load
5383 ? Intrinsic::masked_gather
5384 : Intrinsic::masked_scatter;
5385 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5387 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5388 Legal->isMaskRequired(I), Alignment, I),
5389 CostKind);
5390}
5391
5393LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5394 ElementCount VF) {
5395 const auto *Group = getInterleavedAccessGroup(I);
5396 assert(Group && "Fail to get an interleaved access group.");
5397
5398 Instruction *InsertPos = Group->getInsertPos();
5399 Type *ValTy = getLoadStoreType(InsertPos);
5400 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5401 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5402
5403 unsigned InterleaveFactor = Group->getFactor();
5404 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5405
5406 // Holds the indices of existing members in the interleaved group.
5407 SmallVector<unsigned, 4> Indices;
5408 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5409 if (Group->getMember(IF))
5410 Indices.push_back(IF);
5411
5412 // Calculate the cost of the whole interleaved group.
5413 bool UseMaskForGaps =
5414 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5415 (isa<StoreInst>(I) && !Group->isFull());
5417 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5418 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5419 UseMaskForGaps);
5420
5421 if (Group->isReverse()) {
5422 // TODO: Add support for reversed masked interleaved access.
5423 assert(!Legal->isMaskRequired(I) &&
5424 "Reverse masked interleaved access not supported.");
5425 Cost += Group->getNumMembers() *
5427 VectorTy, {}, CostKind, 0);
5428 }
5429 return Cost;
5430}
5431
5432std::optional<InstructionCost>
5434 ElementCount VF,
5435 Type *Ty) const {
5436 using namespace llvm::PatternMatch;
5437 // Early exit for no inloop reductions
5438 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5439 return std::nullopt;
5440 auto *VectorTy = cast<VectorType>(Ty);
5441
5442 // We are looking for a pattern of, and finding the minimal acceptable cost:
5443 // reduce(mul(ext(A), ext(B))) or
5444 // reduce(mul(A, B)) or
5445 // reduce(ext(A)) or
5446 // reduce(A).
5447 // The basic idea is that we walk down the tree to do that, finding the root
5448 // reduction instruction in InLoopReductionImmediateChains. From there we find
5449 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5450 // of the components. If the reduction cost is lower then we return it for the
5451 // reduction instruction and 0 for the other instructions in the pattern. If
5452 // it is not we return an invalid cost specifying the orignal cost method
5453 // should be used.
5454 Instruction *RetI = I;
5455 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5456 if (!RetI->hasOneUser())
5457 return std::nullopt;
5458 RetI = RetI->user_back();
5459 }
5460
5461 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5462 RetI->user_back()->getOpcode() == Instruction::Add) {
5463 RetI = RetI->user_back();
5464 }
5465
5466 // Test if the found instruction is a reduction, and if not return an invalid
5467 // cost specifying the parent to use the original cost modelling.
5468 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5469 if (!LastChain)
5470 return std::nullopt;
5471
5472 // Find the reduction this chain is a part of and calculate the basic cost of
5473 // the reduction on its own.
5474 Instruction *ReductionPhi = LastChain;
5475 while (!isa<PHINode>(ReductionPhi))
5476 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5477
5478 const RecurrenceDescriptor &RdxDesc =
5479 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5480
5481 InstructionCost BaseCost;
5482 RecurKind RK = RdxDesc.getRecurrenceKind();
5485 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5486 RdxDesc.getFastMathFlags(), CostKind);
5487 } else {
5488 BaseCost = TTI.getArithmeticReductionCost(
5489 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5490 }
5491
5492 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5493 // normal fmul instruction to the cost of the fadd reduction.
5494 if (RK == RecurKind::FMulAdd)
5495 BaseCost +=
5496 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5497
5498 // If we're using ordered reductions then we can just return the base cost
5499 // here, since getArithmeticReductionCost calculates the full ordered
5500 // reduction cost when FP reassociation is not allowed.
5501 if (useOrderedReductions(RdxDesc))
5502 return BaseCost;
5503
5504 // Get the operand that was not the reduction chain and match it to one of the
5505 // patterns, returning the better cost if it is found.
5506 Instruction *RedOp = RetI->getOperand(1) == LastChain
5509
5510 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5511
5512 Instruction *Op0, *Op1;
5513 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5514 match(RedOp,
5516 match(Op0, m_ZExtOrSExt(m_Value())) &&
5517 Op0->getOpcode() == Op1->getOpcode() &&
5518 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5519 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5520 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5521
5522 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5523 // Note that the extend opcodes need to all match, or if A==B they will have
5524 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5525 // which is equally fine.
5526 bool IsUnsigned = isa<ZExtInst>(Op0);
5527 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5528 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5529
5530 InstructionCost ExtCost =
5531 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5533 InstructionCost MulCost =
5534 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5535 InstructionCost Ext2Cost =
5536 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5538
5539 InstructionCost RedCost = TTI.getMulAccReductionCost(
5540 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5541 CostKind);
5542
5543 if (RedCost.isValid() &&
5544 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5545 return I == RetI ? RedCost : 0;
5546 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5547 !TheLoop->isLoopInvariant(RedOp)) {
5548 // Matched reduce(ext(A))
5549 bool IsUnsigned = isa<ZExtInst>(RedOp);
5550 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5551 InstructionCost RedCost = TTI.getExtendedReductionCost(
5552 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5553 RdxDesc.getFastMathFlags(), CostKind);
5554
5555 InstructionCost ExtCost =
5556 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5558 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5559 return I == RetI ? RedCost : 0;
5560 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5561 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5562 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5563 Op0->getOpcode() == Op1->getOpcode() &&
5564 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5565 bool IsUnsigned = isa<ZExtInst>(Op0);
5566 Type *Op0Ty = Op0->getOperand(0)->getType();
5567 Type *Op1Ty = Op1->getOperand(0)->getType();
5568 Type *LargestOpTy =
5569 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5570 : Op0Ty;
5571 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5572
5573 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5574 // different sizes. We take the largest type as the ext to reduce, and add
5575 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5576 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5577 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5579 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5580 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5582 InstructionCost MulCost =
5583 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5584
5585 InstructionCost RedCost = TTI.getMulAccReductionCost(
5586 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5587 CostKind);
5588 InstructionCost ExtraExtCost = 0;
5589 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5590 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5591 ExtraExtCost = TTI.getCastInstrCost(
5592 ExtraExtOp->getOpcode(), ExtType,
5593 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5595 }
5596
5597 if (RedCost.isValid() &&
5598 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5599 return I == RetI ? RedCost : 0;
5600 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5601 // Matched reduce.add(mul())
5602 InstructionCost MulCost =
5603 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5604
5605 InstructionCost RedCost = TTI.getMulAccReductionCost(
5606 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5607 CostKind);
5608
5609 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5610 return I == RetI ? RedCost : 0;
5611 }
5612 }
5613
5614 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5615}
5616
5618LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5619 ElementCount VF) {
5620 // Calculate scalar cost only. Vectorization cost should be ready at this
5621 // moment.
5622 if (VF.isScalar()) {
5623 Type *ValTy = getLoadStoreType(I);
5625 const Align Alignment = getLoadStoreAlignment(I);
5626 unsigned AS = getLoadStoreAddressSpace(I);
5627
5628 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5629 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5630 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5631 OpInfo, I);
5632 }
5633 return getWideningCost(I, VF);
5634}
5635
5637LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5638 ElementCount VF) const {
5639
5640 // There is no mechanism yet to create a scalable scalarization loop,
5641 // so this is currently Invalid.
5642 if (VF.isScalable())
5643 return InstructionCost::getInvalid();
5644
5645 if (VF.isScalar())
5646 return 0;
5647
5649 Type *RetTy = toVectorizedTy(I->getType(), VF);
5650 if (!RetTy->isVoidTy() &&
5652
5653 for (Type *VectorTy : getContainedTypes(RetTy)) {
5656 /*Insert=*/true,
5657 /*Extract=*/false, CostKind);
5658 }
5659 }
5660
5661 // Some targets keep addresses scalar.
5663 return Cost;
5664
5665 // Some targets support efficient element stores.
5667 return Cost;
5668
5669 // Collect operands to consider.
5670 CallInst *CI = dyn_cast<CallInst>(I);
5671 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5672
5673 // Skip operands that do not require extraction/scalarization and do not incur
5674 // any overhead.
5676 for (auto *V : filterExtractingOperands(Ops, VF))
5677 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5679}
5680
5682 if (VF.isScalar())
5683 return;
5684 NumPredStores = 0;
5685 for (BasicBlock *BB : TheLoop->blocks()) {
5686 // For each instruction in the old loop.
5687 for (Instruction &I : *BB) {
5689 if (!Ptr)
5690 continue;
5691
5692 // TODO: We should generate better code and update the cost model for
5693 // predicated uniform stores. Today they are treated as any other
5694 // predicated store (see added test cases in
5695 // invariant-store-vectorization.ll).
5697 NumPredStores++;
5698
5699 if (Legal->isUniformMemOp(I, VF)) {
5700 auto IsLegalToScalarize = [&]() {
5701 if (!VF.isScalable())
5702 // Scalarization of fixed length vectors "just works".
5703 return true;
5704
5705 // We have dedicated lowering for unpredicated uniform loads and
5706 // stores. Note that even with tail folding we know that at least
5707 // one lane is active (i.e. generalized predication is not possible
5708 // here), and the logic below depends on this fact.
5709 if (!foldTailByMasking())
5710 return true;
5711
5712 // For scalable vectors, a uniform memop load is always
5713 // uniform-by-parts and we know how to scalarize that.
5714 if (isa<LoadInst>(I))
5715 return true;
5716
5717 // A uniform store isn't neccessarily uniform-by-part
5718 // and we can't assume scalarization.
5719 auto &SI = cast<StoreInst>(I);
5720 return TheLoop->isLoopInvariant(SI.getValueOperand());
5721 };
5722
5723 const InstructionCost GatherScatterCost =
5725 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5726
5727 // Load: Scalar load + broadcast
5728 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5729 // FIXME: This cost is a significant under-estimate for tail folded
5730 // memory ops.
5731 const InstructionCost ScalarizationCost =
5732 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5734
5735 // Choose better solution for the current VF, Note that Invalid
5736 // costs compare as maximumal large. If both are invalid, we get
5737 // scalable invalid which signals a failure and a vectorization abort.
5738 if (GatherScatterCost < ScalarizationCost)
5739 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5740 else
5741 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5742 continue;
5743 }
5744
5745 // We assume that widening is the best solution when possible.
5746 if (memoryInstructionCanBeWidened(&I, VF)) {
5747 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5748 int ConsecutiveStride = Legal->isConsecutivePtr(
5750 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5751 "Expected consecutive stride.");
5752 InstWidening Decision =
5753 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5754 setWideningDecision(&I, VF, Decision, Cost);
5755 continue;
5756 }
5757
5758 // Choose between Interleaving, Gather/Scatter or Scalarization.
5760 unsigned NumAccesses = 1;
5761 if (isAccessInterleaved(&I)) {
5762 const auto *Group = getInterleavedAccessGroup(&I);
5763 assert(Group && "Fail to get an interleaved access group.");
5764
5765 // Make one decision for the whole group.
5766 if (getWideningDecision(&I, VF) != CM_Unknown)
5767 continue;
5768
5769 NumAccesses = Group->getNumMembers();
5771 InterleaveCost = getInterleaveGroupCost(&I, VF);
5772 }
5773
5774 InstructionCost GatherScatterCost =
5776 ? getGatherScatterCost(&I, VF) * NumAccesses
5778
5779 InstructionCost ScalarizationCost =
5780 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5781
5782 // Choose better solution for the current VF,
5783 // write down this decision and use it during vectorization.
5785 InstWidening Decision;
5786 if (InterleaveCost <= GatherScatterCost &&
5787 InterleaveCost < ScalarizationCost) {
5788 Decision = CM_Interleave;
5789 Cost = InterleaveCost;
5790 } else if (GatherScatterCost < ScalarizationCost) {
5791 Decision = CM_GatherScatter;
5792 Cost = GatherScatterCost;
5793 } else {
5794 Decision = CM_Scalarize;
5795 Cost = ScalarizationCost;
5796 }
5797 // If the instructions belongs to an interleave group, the whole group
5798 // receives the same decision. The whole group receives the cost, but
5799 // the cost will actually be assigned to one instruction.
5800 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5801 if (Decision == CM_Scalarize) {
5802 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5803 if (auto *I = Group->getMember(Idx)) {
5804 setWideningDecision(I, VF, Decision,
5805 getMemInstScalarizationCost(I, VF));
5806 }
5807 }
5808 } else {
5809 setWideningDecision(Group, VF, Decision, Cost);
5810 }
5811 } else
5812 setWideningDecision(&I, VF, Decision, Cost);
5813 }
5814 }
5815
5816 // Make sure that any load of address and any other address computation
5817 // remains scalar unless there is gather/scatter support. This avoids
5818 // inevitable extracts into address registers, and also has the benefit of
5819 // activating LSR more, since that pass can't optimize vectorized
5820 // addresses.
5821 if (TTI.prefersVectorizedAddressing())
5822 return;
5823
5824 // Start with all scalar pointer uses.
5826 for (BasicBlock *BB : TheLoop->blocks())
5827 for (Instruction &I : *BB) {
5828 Instruction *PtrDef =
5830 if (PtrDef && TheLoop->contains(PtrDef) &&
5832 AddrDefs.insert(PtrDef);
5833 }
5834
5835 // Add all instructions used to generate the addresses.
5837 append_range(Worklist, AddrDefs);
5838 while (!Worklist.empty()) {
5839 Instruction *I = Worklist.pop_back_val();
5840 for (auto &Op : I->operands())
5841 if (auto *InstOp = dyn_cast<Instruction>(Op))
5842 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5843 AddrDefs.insert(InstOp).second)
5844 Worklist.push_back(InstOp);
5845 }
5846
5847 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5848 // If there are direct memory op users of the newly scalarized load,
5849 // their cost may have changed because there's no scalarization
5850 // overhead for the operand. Update it.
5851 for (User *U : LI->users()) {
5853 continue;
5855 continue;
5858 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5859 }
5860 };
5861 for (auto *I : AddrDefs) {
5862 if (isa<LoadInst>(I)) {
5863 // Setting the desired widening decision should ideally be handled in
5864 // by cost functions, but since this involves the task of finding out
5865 // if the loaded register is involved in an address computation, it is
5866 // instead changed here when we know this is the case.
5867 InstWidening Decision = getWideningDecision(I, VF);
5868 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5869 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5870 Decision == CM_Scalarize)) {
5871 // Scalarize a widened load of address or update the cost of a scalar
5872 // load of an address.
5874 I, VF, CM_Scalarize,
5875 (VF.getKnownMinValue() *
5876 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5877 UpdateMemOpUserCost(cast<LoadInst>(I));
5878 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5879 // Scalarize all members of this interleaved group when any member
5880 // is used as an address. The address-used load skips scalarization
5881 // overhead, other members include it.
5882 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5883 if (Instruction *Member = Group->getMember(Idx)) {
5885 AddrDefs.contains(Member)
5886 ? (VF.getKnownMinValue() *
5887 getMemoryInstructionCost(Member,
5889 : getMemInstScalarizationCost(Member, VF);
5891 UpdateMemOpUserCost(cast<LoadInst>(Member));
5892 }
5893 }
5894 }
5895 } else {
5896 // Cannot scalarize fixed-order recurrence phis at the moment.
5897 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5898 continue;
5899
5900 // Make sure I gets scalarized and a cost estimate without
5901 // scalarization overhead.
5902 ForcedScalars[VF].insert(I);
5903 }
5904 }
5905}
5906
5908 assert(!VF.isScalar() &&
5909 "Trying to set a vectorization decision for a scalar VF");
5910
5911 auto ForcedScalar = ForcedScalars.find(VF);
5912 for (BasicBlock *BB : TheLoop->blocks()) {
5913 // For each instruction in the old loop.
5914 for (Instruction &I : *BB) {
5916
5917 if (!CI)
5918 continue;
5919
5923 Function *ScalarFunc = CI->getCalledFunction();
5924 Type *ScalarRetTy = CI->getType();
5925 SmallVector<Type *, 4> Tys, ScalarTys;
5926 for (auto &ArgOp : CI->args())
5927 ScalarTys.push_back(ArgOp->getType());
5928
5929 // Estimate cost of scalarized vector call. The source operands are
5930 // assumed to be vectors, so we need to extract individual elements from
5931 // there, execute VF scalar calls, and then gather the result into the
5932 // vector return value.
5933 if (VF.isFixed()) {
5934 InstructionCost ScalarCallCost =
5935 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5936
5937 // Compute costs of unpacking argument values for the scalar calls and
5938 // packing the return values to a vector.
5939 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5940 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5941 } else {
5942 // There is no point attempting to calculate the scalar cost for a
5943 // scalable VF as we know it will be Invalid.
5945 "Unexpected valid cost for scalarizing scalable vectors");
5946 ScalarCost = InstructionCost::getInvalid();
5947 }
5948
5949 // Honor ForcedScalars and UniformAfterVectorization decisions.
5950 // TODO: For calls, it might still be more profitable to widen. Use
5951 // VPlan-based cost model to compare different options.
5952 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5953 ForcedScalar->second.contains(CI)) ||
5954 isUniformAfterVectorization(CI, VF))) {
5955 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5956 Intrinsic::not_intrinsic, std::nullopt,
5957 ScalarCost);
5958 continue;
5959 }
5960
5961 bool MaskRequired = Legal->isMaskRequired(CI);
5962 // Compute corresponding vector type for return value and arguments.
5963 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5964 for (Type *ScalarTy : ScalarTys)
5965 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5966
5967 // An in-loop reduction using an fmuladd intrinsic is a special case;
5968 // we don't want the normal cost for that intrinsic.
5970 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5973 std::nullopt, *RedCost);
5974 continue;
5975 }
5976
5977 // Find the cost of vectorizing the call, if we can find a suitable
5978 // vector variant of the function.
5979 VFInfo FuncInfo;
5980 Function *VecFunc = nullptr;
5981 // Search through any available variants for one we can use at this VF.
5982 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5983 // Must match requested VF.
5984 if (Info.Shape.VF != VF)
5985 continue;
5986
5987 // Must take a mask argument if one is required
5988 if (MaskRequired && !Info.isMasked())
5989 continue;
5990
5991 // Check that all parameter kinds are supported
5992 bool ParamsOk = true;
5993 for (VFParameter Param : Info.Shape.Parameters) {
5994 switch (Param.ParamKind) {
5996 break;
5998 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5999 // Make sure the scalar parameter in the loop is invariant.
6000 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
6001 TheLoop))
6002 ParamsOk = false;
6003 break;
6004 }
6006 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
6007 // Find the stride for the scalar parameter in this loop and see if
6008 // it matches the stride for the variant.
6009 // TODO: do we need to figure out the cost of an extract to get the
6010 // first lane? Or do we hope that it will be folded away?
6011 ScalarEvolution *SE = PSE.getSE();
6012 if (!match(SE->getSCEV(ScalarParam),
6014 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
6016 ParamsOk = false;
6017 break;
6018 }
6020 break;
6021 default:
6022 ParamsOk = false;
6023 break;
6024 }
6025 }
6026
6027 if (!ParamsOk)
6028 continue;
6029
6030 // Found a suitable candidate, stop here.
6031 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6032 FuncInfo = Info;
6033 break;
6034 }
6035
6036 if (TLI && VecFunc && !CI->isNoBuiltin())
6037 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
6038
6039 // Find the cost of an intrinsic; some targets may have instructions that
6040 // perform the operation without needing an actual call.
6042 if (IID != Intrinsic::not_intrinsic)
6044
6045 InstructionCost Cost = ScalarCost;
6046 InstWidening Decision = CM_Scalarize;
6047
6048 if (VectorCost.isValid() && VectorCost <= Cost) {
6049 Cost = VectorCost;
6050 Decision = CM_VectorCall;
6051 }
6052
6053 if (IntrinsicCost.isValid() && IntrinsicCost <= Cost) {
6055 Decision = CM_IntrinsicCall;
6056 }
6057
6058 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6060 }
6061 }
6062}
6063
6065 if (!Legal->isInvariant(Op))
6066 return false;
6067 // Consider Op invariant, if it or its operands aren't predicated
6068 // instruction in the loop. In that case, it is not trivially hoistable.
6069 auto *OpI = dyn_cast<Instruction>(Op);
6070 return !OpI || !TheLoop->contains(OpI) ||
6071 (!isPredicatedInst(OpI) &&
6072 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6073 all_of(OpI->operands(),
6074 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6075}
6076
6079 ElementCount VF) {
6080 // If we know that this instruction will remain uniform, check the cost of
6081 // the scalar version.
6083 VF = ElementCount::getFixed(1);
6084
6085 if (VF.isVector() && isProfitableToScalarize(I, VF))
6086 return InstsToScalarize[VF][I];
6087
6088 // Forced scalars do not have any scalarization overhead.
6089 auto ForcedScalar = ForcedScalars.find(VF);
6090 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6091 auto InstSet = ForcedScalar->second;
6092 if (InstSet.count(I))
6094 VF.getKnownMinValue();
6095 }
6096
6097 Type *RetTy = I->getType();
6099 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6100 auto *SE = PSE.getSE();
6101
6102 Type *VectorTy;
6103 if (isScalarAfterVectorization(I, VF)) {
6104 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6105 [this](Instruction *I, ElementCount VF) -> bool {
6106 if (VF.isScalar())
6107 return true;
6108
6109 auto Scalarized = InstsToScalarize.find(VF);
6110 assert(Scalarized != InstsToScalarize.end() &&
6111 "VF not yet analyzed for scalarization profitability");
6112 return !Scalarized->second.count(I) &&
6113 llvm::all_of(I->users(), [&](User *U) {
6114 auto *UI = cast<Instruction>(U);
6115 return !Scalarized->second.count(UI);
6116 });
6117 };
6118
6119 // With the exception of GEPs and PHIs, after scalarization there should
6120 // only be one copy of the instruction generated in the loop. This is
6121 // because the VF is either 1, or any instructions that need scalarizing
6122 // have already been dealt with by the time we get here. As a result,
6123 // it means we don't have to multiply the instruction cost by VF.
6124 assert(I->getOpcode() == Instruction::GetElementPtr ||
6125 I->getOpcode() == Instruction::PHI ||
6126 (I->getOpcode() == Instruction::BitCast &&
6127 I->getType()->isPointerTy()) ||
6128 HasSingleCopyAfterVectorization(I, VF));
6129 VectorTy = RetTy;
6130 } else
6131 VectorTy = toVectorizedTy(RetTy, VF);
6132
6133 if (VF.isVector() && VectorTy->isVectorTy() &&
6134 !TTI.getNumberOfParts(VectorTy))
6136
6137 // TODO: We need to estimate the cost of intrinsic calls.
6138 switch (I->getOpcode()) {
6139 case Instruction::GetElementPtr:
6140 // We mark this instruction as zero-cost because the cost of GEPs in
6141 // vectorized code depends on whether the corresponding memory instruction
6142 // is scalarized or not. Therefore, we handle GEPs with the memory
6143 // instruction cost.
6144 return 0;
6145 case Instruction::Br: {
6146 // In cases of scalarized and predicated instructions, there will be VF
6147 // predicated blocks in the vectorized loop. Each branch around these
6148 // blocks requires also an extract of its vector compare i1 element.
6149 // Note that the conditional branch from the loop latch will be replaced by
6150 // a single branch controlling the loop, so there is no extra overhead from
6151 // scalarization.
6152 bool ScalarPredicatedBB = false;
6154 if (VF.isVector() && BI->isConditional() &&
6155 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6156 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6157 BI->getParent() != TheLoop->getLoopLatch())
6158 ScalarPredicatedBB = true;
6159
6160 if (ScalarPredicatedBB) {
6161 // Not possible to scalarize scalable vector with predicated instructions.
6162 if (VF.isScalable())
6164 // Return cost for branches around scalarized and predicated blocks.
6165 auto *VecI1Ty =
6167 return (
6168 TTI.getScalarizationOverhead(
6169 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6170 /*Insert*/ false, /*Extract*/ true, CostKind) +
6171 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6172 }
6173
6174 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6175 // The back-edge branch will remain, as will all scalar branches.
6176 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6177
6178 // This branch will be eliminated by if-conversion.
6179 return 0;
6180 // Note: We currently assume zero cost for an unconditional branch inside
6181 // a predicated block since it will become a fall-through, although we
6182 // may decide in the future to call TTI for all branches.
6183 }
6184 case Instruction::Switch: {
6185 if (VF.isScalar())
6186 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6187 auto *Switch = cast<SwitchInst>(I);
6188 return Switch->getNumCases() *
6189 TTI.getCmpSelInstrCost(
6190 Instruction::ICmp,
6191 toVectorTy(Switch->getCondition()->getType(), VF),
6192 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6194 }
6195 case Instruction::PHI: {
6196 auto *Phi = cast<PHINode>(I);
6197
6198 // First-order recurrences are replaced by vector shuffles inside the loop.
6199 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6201 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6202 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6203 cast<VectorType>(VectorTy),
6204 cast<VectorType>(VectorTy), Mask, CostKind,
6205 VF.getKnownMinValue() - 1);
6206 }
6207
6208 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6209 // converted into select instructions. We require N - 1 selects per phi
6210 // node, where N is the number of incoming values.
6211 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6212 Type *ResultTy = Phi->getType();
6213
6214 // All instructions in an Any-of reduction chain are narrowed to bool.
6215 // Check if that is the case for this phi node.
6216 auto *HeaderUser = cast_if_present<PHINode>(
6217 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6218 auto *Phi = dyn_cast<PHINode>(U);
6219 if (Phi && Phi->getParent() == TheLoop->getHeader())
6220 return Phi;
6221 return nullptr;
6222 }));
6223 if (HeaderUser) {
6224 auto &ReductionVars = Legal->getReductionVars();
6225 auto Iter = ReductionVars.find(HeaderUser);
6226 if (Iter != ReductionVars.end() &&
6228 Iter->second.getRecurrenceKind()))
6229 ResultTy = Type::getInt1Ty(Phi->getContext());
6230 }
6231 return (Phi->getNumIncomingValues() - 1) *
6232 TTI.getCmpSelInstrCost(
6233 Instruction::Select, toVectorTy(ResultTy, VF),
6234 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6236 }
6237
6238 // When tail folding with EVL, if the phi is part of an out of loop
6239 // reduction then it will be transformed into a wide vp_merge.
6240 if (VF.isVector() && foldTailWithEVL() &&
6241 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6243 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6244 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6245 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6246 }
6247
6248 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6249 }
6250 case Instruction::UDiv:
6251 case Instruction::SDiv:
6252 case Instruction::URem:
6253 case Instruction::SRem:
6254 if (VF.isVector() && isPredicatedInst(I)) {
6255 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6256 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6257 ScalarCost : SafeDivisorCost;
6258 }
6259 // We've proven all lanes safe to speculate, fall through.
6260 [[fallthrough]];
6261 case Instruction::Add:
6262 case Instruction::Sub: {
6263 auto Info = Legal->getHistogramInfo(I);
6264 if (Info && VF.isVector()) {
6265 const HistogramInfo *HGram = Info.value();
6266 // Assume that a non-constant update value (or a constant != 1) requires
6267 // a multiply, and add that into the cost.
6269 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6270 if (!RHS || RHS->getZExtValue() != 1)
6271 MulCost =
6272 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6273
6274 // Find the cost of the histogram operation itself.
6275 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6276 Type *ScalarTy = I->getType();
6277 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6278 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6279 Type::getVoidTy(I->getContext()),
6280 {PtrTy, ScalarTy, MaskTy});
6281
6282 // Add the costs together with the add/sub operation.
6283 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6284 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6285 }
6286 [[fallthrough]];
6287 }
6288 case Instruction::FAdd:
6289 case Instruction::FSub:
6290 case Instruction::Mul:
6291 case Instruction::FMul:
6292 case Instruction::FDiv:
6293 case Instruction::FRem:
6294 case Instruction::Shl:
6295 case Instruction::LShr:
6296 case Instruction::AShr:
6297 case Instruction::And:
6298 case Instruction::Or:
6299 case Instruction::Xor: {
6300 // If we're speculating on the stride being 1, the multiplication may
6301 // fold away. We can generalize this for all operations using the notion
6302 // of neutral elements. (TODO)
6303 if (I->getOpcode() == Instruction::Mul &&
6304 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6305 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6306 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6307 PSE.getSCEV(I->getOperand(1))->isOne())))
6308 return 0;
6309
6310 // Detect reduction patterns
6311 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6312 return *RedCost;
6313
6314 // Certain instructions can be cheaper to vectorize if they have a constant
6315 // second vector operand. One example of this are shifts on x86.
6316 Value *Op2 = I->getOperand(1);
6317 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6318 PSE.getSE()->isSCEVable(Op2->getType()) &&
6319 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6320 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6321 }
6322 auto Op2Info = TTI.getOperandInfo(Op2);
6323 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6326
6327 SmallVector<const Value *, 4> Operands(I->operand_values());
6328 return TTI.getArithmeticInstrCost(
6329 I->getOpcode(), VectorTy, CostKind,
6330 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6331 Op2Info, Operands, I, TLI);
6332 }
6333 case Instruction::FNeg: {
6334 return TTI.getArithmeticInstrCost(
6335 I->getOpcode(), VectorTy, CostKind,
6336 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6337 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6338 I->getOperand(0), I);
6339 }
6340 case Instruction::Select: {
6342 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6343 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6344
6345 const Value *Op0, *Op1;
6346 using namespace llvm::PatternMatch;
6347 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6348 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6349 // select x, y, false --> x & y
6350 // select x, true, y --> x | y
6351 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6352 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6353 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6354 Op1->getType()->getScalarSizeInBits() == 1);
6355
6356 return TTI.getArithmeticInstrCost(
6357 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6358 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6359 }
6360
6361 Type *CondTy = SI->getCondition()->getType();
6362 if (!ScalarCond)
6363 CondTy = VectorType::get(CondTy, VF);
6364
6366 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6367 Pred = Cmp->getPredicate();
6368 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6369 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6370 {TTI::OK_AnyValue, TTI::OP_None}, I);
6371 }
6372 case Instruction::ICmp:
6373 case Instruction::FCmp: {
6374 Type *ValTy = I->getOperand(0)->getType();
6375
6377 [[maybe_unused]] Instruction *Op0AsInstruction =
6378 dyn_cast<Instruction>(I->getOperand(0));
6379 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6380 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6381 "if both the operand and the compare are marked for "
6382 "truncation, they must have the same bitwidth");
6383 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6384 }
6385
6386 VectorTy = toVectorTy(ValTy, VF);
6387 return TTI.getCmpSelInstrCost(
6388 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6389 cast<CmpInst>(I)->getPredicate(), CostKind,
6390 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6391 }
6392 case Instruction::Store:
6393 case Instruction::Load: {
6394 ElementCount Width = VF;
6395 if (Width.isVector()) {
6396 InstWidening Decision = getWideningDecision(I, Width);
6397 assert(Decision != CM_Unknown &&
6398 "CM decision should be taken at this point");
6401 if (Decision == CM_Scalarize)
6402 Width = ElementCount::getFixed(1);
6403 }
6404 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6405 return getMemoryInstructionCost(I, VF);
6406 }
6407 case Instruction::BitCast:
6408 if (I->getType()->isPointerTy())
6409 return 0;
6410 [[fallthrough]];
6411 case Instruction::ZExt:
6412 case Instruction::SExt:
6413 case Instruction::FPToUI:
6414 case Instruction::FPToSI:
6415 case Instruction::FPExt:
6416 case Instruction::PtrToInt:
6417 case Instruction::IntToPtr:
6418 case Instruction::SIToFP:
6419 case Instruction::UIToFP:
6420 case Instruction::Trunc:
6421 case Instruction::FPTrunc: {
6422 // Computes the CastContextHint from a Load/Store instruction.
6423 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6425 "Expected a load or a store!");
6426
6427 if (VF.isScalar() || !TheLoop->contains(I))
6429
6430 switch (getWideningDecision(I, VF)) {
6442 llvm_unreachable("Instr did not go through cost modelling?");
6445 llvm_unreachable_internal("Instr has invalid widening decision");
6446 }
6447
6448 llvm_unreachable("Unhandled case!");
6449 };
6450
6451 unsigned Opcode = I->getOpcode();
6453 // For Trunc, the context is the only user, which must be a StoreInst.
6454 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6455 if (I->hasOneUse())
6456 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6457 CCH = ComputeCCH(Store);
6458 }
6459 // For Z/Sext, the context is the operand, which must be a LoadInst.
6460 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6461 Opcode == Instruction::FPExt) {
6462 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6463 CCH = ComputeCCH(Load);
6464 }
6465
6466 // We optimize the truncation of induction variables having constant
6467 // integer steps. The cost of these truncations is the same as the scalar
6468 // operation.
6469 if (isOptimizableIVTruncate(I, VF)) {
6470 auto *Trunc = cast<TruncInst>(I);
6471 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6472 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6473 }
6474
6475 // Detect reduction patterns
6476 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6477 return *RedCost;
6478
6479 Type *SrcScalarTy = I->getOperand(0)->getType();
6480 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6481 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6482 SrcScalarTy =
6483 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6484 Type *SrcVecTy =
6485 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6486
6488 // If the result type is <= the source type, there will be no extend
6489 // after truncating the users to the minimal required bitwidth.
6490 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6491 (I->getOpcode() == Instruction::ZExt ||
6492 I->getOpcode() == Instruction::SExt))
6493 return 0;
6494 }
6495
6496 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6497 }
6498 case Instruction::Call:
6499 return getVectorCallCost(cast<CallInst>(I), VF);
6500 case Instruction::ExtractValue:
6501 return TTI.getInstructionCost(I, CostKind);
6502 case Instruction::Alloca:
6503 // We cannot easily widen alloca to a scalable alloca, as
6504 // the result would need to be a vector of pointers.
6505 if (VF.isScalable())
6507 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy, CostKind);
6508 default:
6509 // This opcode is unknown. Assume that it is the same as 'mul'.
6510 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6511 } // end of switch.
6512}
6513
6515 // Ignore ephemeral values.
6517
6518 SmallVector<Value *, 4> DeadInterleavePointerOps;
6520
6521 // If a scalar epilogue is required, users outside the loop won't use
6522 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6523 // that is the case.
6524 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6525 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6526 return RequiresScalarEpilogue &&
6527 !TheLoop->contains(cast<Instruction>(U)->getParent());
6528 };
6529
6531 DFS.perform(LI);
6532 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6533 for (Instruction &I : reverse(*BB)) {
6534 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6535 continue;
6536
6537 // Add instructions that would be trivially dead and are only used by
6538 // values already ignored to DeadOps to seed worklist.
6540 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6541 return VecValuesToIgnore.contains(U) ||
6542 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6543 }))
6544 DeadOps.push_back(&I);
6545
6546 // For interleave groups, we only create a pointer for the start of the
6547 // interleave group. Queue up addresses of group members except the insert
6548 // position for further processing.
6549 if (isAccessInterleaved(&I)) {
6550 auto *Group = getInterleavedAccessGroup(&I);
6551 if (Group->getInsertPos() == &I)
6552 continue;
6553 Value *PointerOp = getLoadStorePointerOperand(&I);
6554 DeadInterleavePointerOps.push_back(PointerOp);
6555 }
6556
6557 // Queue branches for analysis. They are dead, if their successors only
6558 // contain dead instructions.
6559 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6560 if (Br->isConditional())
6561 DeadOps.push_back(&I);
6562 }
6563 }
6564
6565 // Mark ops feeding interleave group members as free, if they are only used
6566 // by other dead computations.
6567 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6568 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6569 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6570 Instruction *UI = cast<Instruction>(U);
6571 return !VecValuesToIgnore.contains(U) &&
6572 (!isAccessInterleaved(UI) ||
6573 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6574 }))
6575 continue;
6576 VecValuesToIgnore.insert(Op);
6577 append_range(DeadInterleavePointerOps, Op->operands());
6578 }
6579
6580 // Mark ops that would be trivially dead and are only used by ignored
6581 // instructions as free.
6582 BasicBlock *Header = TheLoop->getHeader();
6583
6584 // Returns true if the block contains only dead instructions. Such blocks will
6585 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6586 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6587 auto IsEmptyBlock = [this](BasicBlock *BB) {
6588 return all_of(*BB, [this](Instruction &I) {
6589 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6590 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6591 });
6592 };
6593 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6594 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6595
6596 // Check if the branch should be considered dead.
6597 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6598 BasicBlock *ThenBB = Br->getSuccessor(0);
6599 BasicBlock *ElseBB = Br->getSuccessor(1);
6600 // Don't considers branches leaving the loop for simplification.
6601 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6602 continue;
6603 bool ThenEmpty = IsEmptyBlock(ThenBB);
6604 bool ElseEmpty = IsEmptyBlock(ElseBB);
6605 if ((ThenEmpty && ElseEmpty) ||
6606 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6607 ElseBB->phis().empty()) ||
6608 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6609 ThenBB->phis().empty())) {
6610 VecValuesToIgnore.insert(Br);
6611 DeadOps.push_back(Br->getCondition());
6612 }
6613 continue;
6614 }
6615
6616 // Skip any op that shouldn't be considered dead.
6617 if (!Op || !TheLoop->contains(Op) ||
6618 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6620 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6621 return !VecValuesToIgnore.contains(U) &&
6622 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6623 }))
6624 continue;
6625
6626 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6627 // which applies for both scalar and vector versions. Otherwise it is only
6628 // dead in vector versions, so only add it to VecValuesToIgnore.
6629 if (all_of(Op->users(),
6630 [this](User *U) { return ValuesToIgnore.contains(U); }))
6631 ValuesToIgnore.insert(Op);
6632
6633 VecValuesToIgnore.insert(Op);
6634 append_range(DeadOps, Op->operands());
6635 }
6636
6637 // Ignore type-promoting instructions we identified during reduction
6638 // detection.
6639 for (const auto &Reduction : Legal->getReductionVars()) {
6640 const RecurrenceDescriptor &RedDes = Reduction.second;
6641 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6642 VecValuesToIgnore.insert_range(Casts);
6643 }
6644 // Ignore type-casting instructions we identified during induction
6645 // detection.
6646 for (const auto &Induction : Legal->getInductionVars()) {
6647 const InductionDescriptor &IndDes = Induction.second;
6648 VecValuesToIgnore.insert_range(IndDes.getCastInsts());
6649 }
6650}
6651
6653 // Avoid duplicating work finding in-loop reductions.
6654 if (!InLoopReductions.empty())
6655 return;
6656
6657 for (const auto &Reduction : Legal->getReductionVars()) {
6658 PHINode *Phi = Reduction.first;
6659 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6660
6661 // Multi-use reductions (e.g., used in FindLastIV patterns) are handled
6662 // separately and should not be considered for in-loop reductions.
6663 if (RdxDesc.hasUsesOutsideReductionChain())
6664 continue;
6665
6666 // We don't collect reductions that are type promoted (yet).
6667 if (RdxDesc.getRecurrenceType() != Phi->getType())
6668 continue;
6669
6670 // In-loop AnyOf and FindIV reductions are not yet supported.
6671 RecurKind Kind = RdxDesc.getRecurrenceKind();
6674 continue;
6675
6676 // If the target would prefer this reduction to happen "in-loop", then we
6677 // want to record it as such.
6678 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6679 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6680 continue;
6681
6682 // Check that we can correctly put the reductions into the loop, by
6683 // finding the chain of operations that leads from the phi to the loop
6684 // exit value.
6685 SmallVector<Instruction *, 4> ReductionOperations =
6686 RdxDesc.getReductionOpChain(Phi, TheLoop);
6687 bool InLoop = !ReductionOperations.empty();
6688
6689 if (InLoop) {
6690 InLoopReductions.insert(Phi);
6691 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6692 Instruction *LastChain = Phi;
6693 for (auto *I : ReductionOperations) {
6694 InLoopReductionImmediateChains[I] = LastChain;
6695 LastChain = I;
6696 }
6697 }
6698 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6699 << " reduction for phi: " << *Phi << "\n");
6700 }
6701}
6702
6703// This function will select a scalable VF if the target supports scalable
6704// vectors and a fixed one otherwise.
6705// TODO: we could return a pair of values that specify the max VF and
6706// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6707// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6708// doesn't have a cost model that can choose which plan to execute if
6709// more than one is generated.
6712 unsigned WidestType;
6713 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6714
6716 TTI.enableScalableVectorization()
6719
6720 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6721 unsigned N = RegSize.getKnownMinValue() / WidestType;
6722 return ElementCount::get(N, RegSize.isScalable());
6723}
6724
6727 ElementCount VF = UserVF;
6728 // Outer loop handling: They may require CFG and instruction level
6729 // transformations before even evaluating whether vectorization is profitable.
6730 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6731 // the vectorization pipeline.
6732 if (!OrigLoop->isInnermost()) {
6733 // If the user doesn't provide a vectorization factor, determine a
6734 // reasonable one.
6735 if (UserVF.isZero()) {
6736 VF = determineVPlanVF(TTI, CM);
6737 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6738
6739 // Make sure we have a VF > 1 for stress testing.
6740 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6741 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6742 << "overriding computed VF.\n");
6743 VF = ElementCount::getFixed(4);
6744 }
6745 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6747 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6748 << "not supported by the target.\n");
6750 "Scalable vectorization requested but not supported by the target",
6751 "the scalable user-specified vectorization width for outer-loop "
6752 "vectorization cannot be used because the target does not support "
6753 "scalable vectors.",
6754 "ScalableVFUnfeasible", ORE, OrigLoop);
6756 }
6757 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6759 "VF needs to be a power of two");
6760 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6761 << "VF " << VF << " to build VPlans.\n");
6762 buildVPlans(VF, VF);
6763
6764 if (VPlans.empty())
6766
6767 // For VPlan build stress testing, we bail out after VPlan construction.
6770
6771 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6772 }
6773
6774 LLVM_DEBUG(
6775 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6776 "VPlan-native path.\n");
6778}
6779
6780void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6781 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6782 CM.collectValuesToIgnore();
6783 CM.collectElementTypesForWidening();
6784
6785 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6786 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6787 return;
6788
6789 // Invalidate interleave groups if all blocks of loop will be predicated.
6790 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6792 LLVM_DEBUG(
6793 dbgs()
6794 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6795 "which requires masked-interleaved support.\n");
6796 if (CM.InterleaveInfo.invalidateGroups())
6797 // Invalidating interleave groups also requires invalidating all decisions
6798 // based on them, which includes widening decisions and uniform and scalar
6799 // values.
6800 CM.invalidateCostModelingDecisions();
6801 }
6802
6803 if (CM.foldTailByMasking())
6804 Legal->prepareToFoldTailByMasking();
6805
6806 ElementCount MaxUserVF =
6807 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6808 if (UserVF) {
6809 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6811 "UserVF ignored because it may be larger than the maximal safe VF",
6812 "InvalidUserVF", ORE, OrigLoop);
6813 } else {
6815 "VF needs to be a power of two");
6816 // Collect the instructions (and their associated costs) that will be more
6817 // profitable to scalarize.
6818 CM.collectInLoopReductions();
6819 if (CM.selectUserVectorizationFactor(UserVF)) {
6820 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6821 buildVPlansWithVPRecipes(UserVF, UserVF);
6823 return;
6824 }
6825 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6826 "InvalidCost", ORE, OrigLoop);
6827 }
6828 }
6829
6830 // Collect the Vectorization Factor Candidates.
6831 SmallVector<ElementCount> VFCandidates;
6832 for (auto VF = ElementCount::getFixed(1);
6833 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6834 VFCandidates.push_back(VF);
6835 for (auto VF = ElementCount::getScalable(1);
6836 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6837 VFCandidates.push_back(VF);
6838
6839 CM.collectInLoopReductions();
6840 for (const auto &VF : VFCandidates) {
6841 // Collect Uniform and Scalar instructions after vectorization with VF.
6842 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6843 }
6844
6845 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6846 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6847
6849}
6850
6852 ElementCount VF) const {
6853 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6854 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6856 return Cost;
6857}
6858
6860 ElementCount VF) const {
6861 return CM.isUniformAfterVectorization(I, VF);
6862}
6863
6864bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6865 return CM.ValuesToIgnore.contains(UI) ||
6866 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6867 SkipCostComputation.contains(UI);
6868}
6869
6871 return CM.getPredBlockCostDivisor(CostKind, BB);
6872}
6873
6875LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6876 VPCostContext &CostCtx) const {
6878 // Cost modeling for inductions is inaccurate in the legacy cost model
6879 // compared to the recipes that are generated. To match here initially during
6880 // VPlan cost model bring up directly use the induction costs from the legacy
6881 // cost model. Note that we do this as pre-processing; the VPlan may not have
6882 // any recipes associated with the original induction increment instruction
6883 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6884 // the cost of induction phis and increments (both that are represented by
6885 // recipes and those that are not), to avoid distinguishing between them here,
6886 // and skip all recipes that represent induction phis and increments (the
6887 // former case) later on, if they exist, to avoid counting them twice.
6888 // Similarly we pre-compute the cost of any optimized truncates.
6889 // TODO: Switch to more accurate costing based on VPlan.
6890 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6892 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6893 SmallVector<Instruction *> IVInsts = {IVInc};
6894 for (unsigned I = 0; I != IVInsts.size(); I++) {
6895 for (Value *Op : IVInsts[I]->operands()) {
6896 auto *OpI = dyn_cast<Instruction>(Op);
6897 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6898 continue;
6899 IVInsts.push_back(OpI);
6900 }
6901 }
6902 IVInsts.push_back(IV);
6903 for (User *U : IV->users()) {
6904 auto *CI = cast<Instruction>(U);
6905 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6906 continue;
6907 IVInsts.push_back(CI);
6908 }
6909
6910 // If the vector loop gets executed exactly once with the given VF, ignore
6911 // the costs of comparison and induction instructions, as they'll get
6912 // simplified away.
6913 // TODO: Remove this code after stepping away from the legacy cost model and
6914 // adding code to simplify VPlans before calculating their costs.
6915 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6916 if (TC == VF && !CM.foldTailByMasking())
6917 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6918 CostCtx.SkipCostComputation);
6919
6920 for (Instruction *IVInst : IVInsts) {
6921 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6922 continue;
6923 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6924 LLVM_DEBUG({
6925 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6926 << ": induction instruction " << *IVInst << "\n";
6927 });
6928 Cost += InductionCost;
6929 CostCtx.SkipCostComputation.insert(IVInst);
6930 }
6931 }
6932
6933 /// Compute the cost of all exiting conditions of the loop using the legacy
6934 /// cost model. This is to match the legacy behavior, which adds the cost of
6935 /// all exit conditions. Note that this over-estimates the cost, as there will
6936 /// be a single condition to control the vector loop.
6938 CM.TheLoop->getExitingBlocks(Exiting);
6939 SetVector<Instruction *> ExitInstrs;
6940 // Collect all exit conditions.
6941 for (BasicBlock *EB : Exiting) {
6942 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6943 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6944 continue;
6945 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6946 ExitInstrs.insert(CondI);
6947 }
6948 }
6949 // Compute the cost of all instructions only feeding the exit conditions.
6950 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6951 Instruction *CondI = ExitInstrs[I];
6952 if (!OrigLoop->contains(CondI) ||
6953 !CostCtx.SkipCostComputation.insert(CondI).second)
6954 continue;
6955 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6956 LLVM_DEBUG({
6957 dbgs() << "Cost of " << CondICost << " for VF " << VF
6958 << ": exit condition instruction " << *CondI << "\n";
6959 });
6960 Cost += CondICost;
6961 for (Value *Op : CondI->operands()) {
6962 auto *OpI = dyn_cast<Instruction>(Op);
6963 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6964 any_of(OpI->users(), [&ExitInstrs](User *U) {
6965 return !ExitInstrs.contains(cast<Instruction>(U));
6966 }))
6967 continue;
6968 ExitInstrs.insert(OpI);
6969 }
6970 }
6971
6972 // Pre-compute the costs for branches except for the backedge, as the number
6973 // of replicate regions in a VPlan may not directly match the number of
6974 // branches, which would lead to different decisions.
6975 // TODO: Compute cost of branches for each replicate region in the VPlan,
6976 // which is more accurate than the legacy cost model.
6977 for (BasicBlock *BB : OrigLoop->blocks()) {
6978 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6979 continue;
6980 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6981 if (BB == OrigLoop->getLoopLatch())
6982 continue;
6983 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6984 Cost += BranchCost;
6985 }
6986
6987 // Pre-compute costs for instructions that are forced-scalar or profitable to
6988 // scalarize. Their costs will be computed separately in the legacy cost
6989 // model.
6990 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6991 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6992 continue;
6993 CostCtx.SkipCostComputation.insert(ForcedScalar);
6994 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6995 LLVM_DEBUG({
6996 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6997 << ": forced scalar " << *ForcedScalar << "\n";
6998 });
6999 Cost += ForcedCost;
7000 }
7001 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7002 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
7003 continue;
7004 CostCtx.SkipCostComputation.insert(Scalarized);
7005 LLVM_DEBUG({
7006 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
7007 << ": profitable to scalarize " << *Scalarized << "\n";
7008 });
7009 Cost += ScalarCost;
7010 }
7011
7012 return Cost;
7013}
7014
7015InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
7016 ElementCount VF) const {
7017 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
7018 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
7019
7020 // Now compute and add the VPlan-based cost.
7021 Cost += Plan.cost(VF, CostCtx);
7022#ifndef NDEBUG
7023 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
7024 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
7025 << " (Estimated cost per lane: ");
7026 if (Cost.isValid()) {
7027 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
7028 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
7029 } else /* No point dividing an invalid cost - it will still be invalid */
7030 LLVM_DEBUG(dbgs() << "Invalid");
7031 LLVM_DEBUG(dbgs() << ")\n");
7032#endif
7033 return Cost;
7034}
7035
7036#ifndef NDEBUG
7037/// Return true if the original loop \ TheLoop contains any instructions that do
7038/// not have corresponding recipes in \p Plan and are not marked to be ignored
7039/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7040/// cost-model did not account for.
7042 VPCostContext &CostCtx,
7043 Loop *TheLoop,
7044 ElementCount VF) {
7045 // First collect all instructions for the recipes in Plan.
7046 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7047 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7048 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7049 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7050 return &WidenMem->getIngredient();
7051 return nullptr;
7052 };
7053
7054 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
7055 // the select doesn't need to be considered for the vector loop cost; go with
7056 // the more accurate VPlan-based cost model.
7057 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
7058 auto *VPI = dyn_cast<VPInstruction>(&R);
7059 if (!VPI || VPI->getOpcode() != Instruction::Select)
7060 continue;
7061
7062 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
7063 switch (WR->getOpcode()) {
7064 case Instruction::UDiv:
7065 case Instruction::SDiv:
7066 case Instruction::URem:
7067 case Instruction::SRem:
7068 return true;
7069 default:
7070 break;
7071 }
7072 }
7073 }
7074
7075 DenseSet<Instruction *> SeenInstrs;
7076 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7078 for (VPRecipeBase &R : *VPBB) {
7079 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7080 auto *IG = IR->getInterleaveGroup();
7081 unsigned NumMembers = IG->getNumMembers();
7082 for (unsigned I = 0; I != NumMembers; ++I) {
7083 if (Instruction *M = IG->getMember(I))
7084 SeenInstrs.insert(M);
7085 }
7086 continue;
7087 }
7088 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7089 // cost model won't cost it whilst the legacy will.
7090 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7091 using namespace VPlanPatternMatch;
7092 if (none_of(FOR->users(),
7093 match_fn(m_VPInstruction<
7095 return true;
7096 }
7097 // The VPlan-based cost model is more accurate for partial reductions and
7098 // comparing against the legacy cost isn't desirable.
7099 if (auto *VPR = dyn_cast<VPReductionRecipe>(&R))
7100 if (VPR->isPartialReduction())
7101 return true;
7102
7103 // The VPlan-based cost model can analyze if recipes are scalar
7104 // recursively, but the legacy cost model cannot.
7105 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7106 auto *AddrI = dyn_cast<Instruction>(
7107 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7108 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7109 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7110 return true;
7111
7112 if (WidenMemR->isReverse()) {
7113 // If the stored value of a reverse store is invariant, LICM will
7114 // hoist the reverse operation to the preheader. In this case, the
7115 // result of the VPlan-based cost model will diverge from that of
7116 // the legacy model.
7117 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(WidenMemR))
7118 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7119 return true;
7120
7121 if (auto *StoreR = dyn_cast<VPWidenStoreEVLRecipe>(WidenMemR))
7122 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7123 return true;
7124 }
7125 }
7126
7127 // The legacy cost model costs non-header phis with a scalar VF as a phi,
7128 // but scalar unrolled VPlans will have VPBlendRecipes which emit selects.
7129 if (isa<VPBlendRecipe>(&R) &&
7130 vputils::onlyFirstLaneUsed(R.getVPSingleValue()))
7131 return true;
7132
7133 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7134 /// but the original instruction wasn't uniform-after-vectorization in the
7135 /// legacy cost model, the legacy cost overestimates the actual cost.
7136 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7137 if (RepR->isSingleScalar() &&
7139 RepR->getUnderlyingInstr(), VF))
7140 return true;
7141 }
7142 if (Instruction *UI = GetInstructionForCost(&R)) {
7143 // If we adjusted the predicate of the recipe, the cost in the legacy
7144 // cost model may be different.
7145 using namespace VPlanPatternMatch;
7146 CmpPredicate Pred;
7147 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7148 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7149 cast<CmpInst>(UI)->getPredicate())
7150 return true;
7151 SeenInstrs.insert(UI);
7152 }
7153 }
7154 }
7155
7156 // Return true if the loop contains any instructions that are not also part of
7157 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7158 // that the VPlan contains extra simplifications.
7159 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7160 TheLoop](BasicBlock *BB) {
7161 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7162 // Skip induction phis when checking for simplifications, as they may not
7163 // be lowered directly be lowered to a corresponding PHI recipe.
7164 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7165 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7166 return false;
7167 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7168 });
7169 });
7170}
7171#endif
7172
7174 if (VPlans.empty())
7176 // If there is a single VPlan with a single VF, return it directly.
7177 VPlan &FirstPlan = *VPlans[0];
7178 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7179 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7180
7181 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7182 << (CM.CostKind == TTI::TCK_RecipThroughput
7183 ? "Reciprocal Throughput\n"
7184 : CM.CostKind == TTI::TCK_Latency
7185 ? "Instruction Latency\n"
7186 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7187 : CM.CostKind == TTI::TCK_SizeAndLatency
7188 ? "Code Size and Latency\n"
7189 : "Unknown\n"));
7190
7192 assert(hasPlanWithVF(ScalarVF) &&
7193 "More than a single plan/VF w/o any plan having scalar VF");
7194
7195 // TODO: Compute scalar cost using VPlan-based cost model.
7196 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7197 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7198 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7199 VectorizationFactor BestFactor = ScalarFactor;
7200
7201 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7202 if (ForceVectorization) {
7203 // Ignore scalar width, because the user explicitly wants vectorization.
7204 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7205 // evaluation.
7206 BestFactor.Cost = InstructionCost::getMax();
7207 }
7208
7209 for (auto &P : VPlans) {
7210 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7211 P->vectorFactors().end());
7212
7214 if (any_of(VFs, [this](ElementCount VF) {
7215 return CM.shouldConsiderRegPressureForVF(VF);
7216 }))
7217 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7218
7219 for (unsigned I = 0; I < VFs.size(); I++) {
7220 ElementCount VF = VFs[I];
7221 if (VF.isScalar())
7222 continue;
7223 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7224 LLVM_DEBUG(
7225 dbgs()
7226 << "LV: Not considering vector loop of width " << VF
7227 << " because it will not generate any vector instructions.\n");
7228 continue;
7229 }
7230 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7231 LLVM_DEBUG(
7232 dbgs()
7233 << "LV: Not considering vector loop of width " << VF
7234 << " because it would cause replicated blocks to be generated,"
7235 << " which isn't allowed when optimizing for size.\n");
7236 continue;
7237 }
7238
7239 InstructionCost Cost = cost(*P, VF);
7240 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7241
7242 if (CM.shouldConsiderRegPressureForVF(VF) &&
7243 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7244 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7245 << VF << " because it uses too many registers\n");
7246 continue;
7247 }
7248
7249 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7250 BestFactor = CurrentFactor;
7251
7252 // If profitable add it to ProfitableVF list.
7253 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7254 ProfitableVFs.push_back(CurrentFactor);
7255 }
7256 }
7257
7258#ifndef NDEBUG
7259 // Select the optimal vectorization factor according to the legacy cost-model.
7260 // This is now only used to verify the decisions by the new VPlan-based
7261 // cost-model and will be retired once the VPlan-based cost-model is
7262 // stabilized.
7263 VectorizationFactor LegacyVF = selectVectorizationFactor();
7264 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7265
7266 // Pre-compute the cost and use it to check if BestPlan contains any
7267 // simplifications not accounted for in the legacy cost model. If that's the
7268 // case, don't trigger the assertion, as the extra simplifications may cause a
7269 // different VF to be picked by the VPlan-based cost model.
7270 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7271 OrigLoop);
7272 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7273 // Verify that the VPlan-based and legacy cost models agree, except for
7274 // * VPlans with early exits,
7275 // * VPlans with additional VPlan simplifications,
7276 // * EVL-based VPlans with gather/scatters (the VPlan-based cost model uses
7277 // vp_scatter/vp_gather).
7278 // The legacy cost model doesn't properly model costs for such loops.
7279 bool UsesEVLGatherScatter =
7281 BestPlan.getVectorLoopRegion()->getEntry())),
7282 [](VPBasicBlock *VPBB) {
7283 return any_of(*VPBB, [](VPRecipeBase &R) {
7284 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7285 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7286 });
7287 });
7288 assert(
7289 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7290 !Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7292 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7294 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7295 " VPlan cost model and legacy cost model disagreed");
7296 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7297 "when vectorizing, the scalar cost must be computed.");
7298#endif
7299
7300 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7301 return BestFactor;
7302}
7303
7304/// Search \p Start's users for a recipe satisfying \p Pred, looking through
7305/// recipes with definitions.
7306template <typename PredT>
7307static VPRecipeBase *findRecipe(VPValue *Start, PredT Pred) {
7308 SetVector<VPValue *> Worklist;
7309 Worklist.insert(Start);
7310 for (unsigned I = 0; I != Worklist.size(); ++I) {
7311 VPValue *Cur = Worklist[I];
7312 auto *R = Cur->getDefiningRecipe();
7313 // TODO: Skip live-ins once no degenerate reductions (ones with constant
7314 // backedge values) are generated.
7315 if (R && Pred(R))
7316 return R;
7317 for (VPUser *U : Cur->users()) {
7318 for (VPValue *V : cast<VPRecipeBase>(U)->definedValues())
7319 Worklist.insert(V);
7320 }
7321 }
7322 return nullptr;
7323}
7324
7326 using namespace VPlanPatternMatch;
7328 "RdxResult must be ComputeFindIVResult");
7329 VPValue *StartVPV = RdxResult->getOperand(0);
7330 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7331 return StartVPV->getLiveInIRValue();
7332}
7333
7334// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7335// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7336// from the main vector loop.
7338 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7339 // Get the VPInstruction computing the reduction result in the middle block.
7340 // The first operand may not be from the middle block if it is not connected
7341 // to the scalar preheader. In that case, there's nothing to fix.
7342 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7345 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7346 if (!EpiRedResult ||
7347 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7348 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7349 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7350 return;
7351
7352 // Find the reduction phi by searching users of the backedge value.
7353 VPValue *BackedgeVal =
7354 EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7355 auto *EpiRedHeaderPhi = cast_if_present<VPReductionPHIRecipe>(
7357 if (!EpiRedHeaderPhi) {
7358 match(BackedgeVal,
7360 VPlanPatternMatch::m_VPValue(BackedgeVal),
7362 EpiRedHeaderPhi = cast<VPReductionPHIRecipe>(
7364 }
7365
7366 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7367 Value *MainResumeValue;
7368 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7369 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7370 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7371 "unexpected start recipe");
7372 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7373 } else
7374 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7376 [[maybe_unused]] Value *StartV =
7377 EpiRedResult->getOperand(0)->getLiveInIRValue();
7378 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7379 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7380 "AnyOf expected to start with ICMP_NE");
7381 assert(Cmp->getOperand(1) == StartV &&
7382 "AnyOf expected to start by comparing main resume value to original "
7383 "start value");
7384 MainResumeValue = Cmp->getOperand(0);
7386 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7387 Value *SentinelV = EpiRedResult->getOperand(1)->getLiveInIRValue();
7388 using namespace llvm::PatternMatch;
7389 Value *Cmp, *OrigResumeV, *CmpOp;
7390 [[maybe_unused]] bool IsExpectedPattern =
7391 match(MainResumeValue,
7392 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7393 m_Value(OrigResumeV))) &&
7395 m_Value(CmpOp))) &&
7396 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7397 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7398 MainResumeValue = OrigResumeV;
7399 }
7400 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7401
7402 // When fixing reductions in the epilogue loop we should already have
7403 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7404 // over the incoming values correctly.
7405 EpiResumePhi.setIncomingValueForBlock(
7406 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7407}
7408
7410 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7411 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7412 assert(BestVPlan.hasVF(BestVF) &&
7413 "Trying to execute plan with unsupported VF");
7414 assert(BestVPlan.hasUF(BestUF) &&
7415 "Trying to execute plan with unsupported UF");
7416 if (BestVPlan.hasEarlyExit())
7417 ++LoopsEarlyExitVectorized;
7418 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7419 // cost model is complete for better cost estimates.
7422 BestVPlan);
7425 bool HasBranchWeights =
7426 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7427 if (HasBranchWeights) {
7428 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7430 BestVPlan, BestVF, VScale);
7431 }
7432
7433 // Checks are the same for all VPlans, added to BestVPlan only for
7434 // compactness.
7435 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7436
7437 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7438 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7439
7440 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7443 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7444 BestVPlan.getScalarPreheader()) {
7445 // TODO: The vector loop would be dead, should not even try to vectorize.
7446 ORE->emit([&]() {
7447 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7448 OrigLoop->getStartLoc(),
7449 OrigLoop->getHeader())
7450 << "Created vector loop never executes due to insufficient trip "
7451 "count.";
7452 });
7454 }
7455
7457 BestVPlan, BestVF,
7458 TTI.getRegisterBitWidth(BestVF.isScalable()
7462
7464 // Regions are dissolved after optimizing for VF and UF, which completely
7465 // removes unneeded loop regions first.
7467 // Expand BranchOnTwoConds after dissolution, when latch has direct access to
7468 // its successors.
7470 // Canonicalize EVL loops after regions are dissolved.
7474 BestVPlan, VectorPH, CM.foldTailByMasking(),
7475 CM.requiresScalarEpilogue(BestVF.isVector()));
7476 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7477 VPlanTransforms::cse(BestVPlan);
7479
7480 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7481 // making any changes to the CFG.
7482 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7483 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7484 if (!ILV.getTripCount()) {
7485 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7486 } else {
7487 assert(VectorizingEpilogue && "should only re-use the existing trip "
7488 "count during epilogue vectorization");
7489 }
7490
7491 // Perform the actual loop transformation.
7492 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7493 OrigLoop->getParentLoop(),
7494 Legal->getWidestInductionType());
7495
7496#ifdef EXPENSIVE_CHECKS
7497 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7498#endif
7499
7500 // 1. Set up the skeleton for vectorization, including vector pre-header and
7501 // middle block. The vector loop is created during VPlan execution.
7502 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7504 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7506
7507 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7508 "final VPlan is invalid");
7509
7510 // After vectorization, the exit blocks of the original loop will have
7511 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7512 // looked through single-entry phis.
7513 ScalarEvolution &SE = *PSE.getSE();
7514 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7515 if (!Exit->hasPredecessors())
7516 continue;
7517 for (VPRecipeBase &PhiR : Exit->phis())
7519 &cast<VPIRPhi>(PhiR).getIRPhi());
7520 }
7521 // Forget the original loop and block dispositions.
7522 SE.forgetLoop(OrigLoop);
7524
7526
7527 //===------------------------------------------------===//
7528 //
7529 // Notice: any optimization or new instruction that go
7530 // into the code below should also be implemented in
7531 // the cost-model.
7532 //
7533 //===------------------------------------------------===//
7534
7535 // Retrieve loop information before executing the plan, which may remove the
7536 // original loop, if it becomes unreachable.
7537 MDNode *LID = OrigLoop->getLoopID();
7538 unsigned OrigLoopInvocationWeight = 0;
7539 std::optional<unsigned> OrigAverageTripCount =
7540 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7541
7542 BestVPlan.execute(&State);
7543
7544 // 2.6. Maintain Loop Hints
7545 // Keep all loop hints from the original loop on the vector loop (we'll
7546 // replace the vectorizer-specific hints below).
7547 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7548 // Add metadata to disable runtime unrolling a scalar loop when there
7549 // are no runtime checks about strides and memory. A scalar loop that is
7550 // rarely used is not worth unrolling.
7551 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7553 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7554 : nullptr,
7555 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7556 OrigLoopInvocationWeight,
7557 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7558 DisableRuntimeUnroll);
7559
7560 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7561 // predication, updating analyses.
7562 ILV.fixVectorizedLoop(State);
7563
7565
7566 return ExpandedSCEVs;
7567}
7568
7569//===--------------------------------------------------------------------===//
7570// EpilogueVectorizerMainLoop
7571//===--------------------------------------------------------------------===//
7572
7573/// This function is partially responsible for generating the control flow
7574/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7576 BasicBlock *ScalarPH = createScalarPreheader("");
7577 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7578
7579 // Generate the code to check the minimum iteration count of the vector
7580 // epilogue (see below).
7581 EPI.EpilogueIterationCountCheck =
7582 emitIterationCountCheck(VectorPH, ScalarPH, true);
7583 EPI.EpilogueIterationCountCheck->setName("iter.check");
7584
7585 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7586 ->getSuccessor(1);
7587 // Generate the iteration count check for the main loop, *after* the check
7588 // for the epilogue loop, so that the path-length is shorter for the case
7589 // that goes directly through the vector epilogue. The longer-path length for
7590 // the main loop is compensated for, by the gain from vectorizing the larger
7591 // trip count. Note: the branch will get updated later on when we vectorize
7592 // the epilogue.
7593 EPI.MainLoopIterationCountCheck =
7594 emitIterationCountCheck(VectorPH, ScalarPH, false);
7595
7596 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7597 ->getSuccessor(1);
7598}
7599
7601 LLVM_DEBUG({
7602 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7603 << "Main Loop VF:" << EPI.MainLoopVF
7604 << ", Main Loop UF:" << EPI.MainLoopUF
7605 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7606 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7607 });
7608}
7609
7612 dbgs() << "intermediate fn:\n"
7613 << *OrigLoop->getHeader()->getParent() << "\n";
7614 });
7615}
7616
7618 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7619 assert(Bypass && "Expected valid bypass basic block.");
7622 Value *CheckMinIters = createIterationCountCheck(
7623 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7624 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7625
7626 BasicBlock *const TCCheckBlock = VectorPH;
7627 if (!ForEpilogue)
7628 TCCheckBlock->setName("vector.main.loop.iter.check");
7629
7630 // Create new preheader for vector loop.
7631 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7632 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7633 "vector.ph");
7634 if (ForEpilogue) {
7635 // Save the trip count so we don't have to regenerate it in the
7636 // vec.epilog.iter.check. This is safe to do because the trip count
7637 // generated here dominates the vector epilog iter check.
7638 EPI.TripCount = Count;
7639 } else {
7641 }
7642
7643 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7644 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7645 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7646 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7647
7648 // When vectorizing the main loop, its trip-count check is placed in a new
7649 // block, whereas the overall trip-count check is placed in the VPlan entry
7650 // block. When vectorizing the epilogue loop, its trip-count check is placed
7651 // in the VPlan entry block.
7652 if (!ForEpilogue)
7653 introduceCheckBlockInVPlan(TCCheckBlock);
7654 return TCCheckBlock;
7655}
7656
7657//===--------------------------------------------------------------------===//
7658// EpilogueVectorizerEpilogueLoop
7659//===--------------------------------------------------------------------===//
7660
7661/// This function creates a new scalar preheader, using the previous one as
7662/// entry block to the epilogue VPlan. The minimum iteration check is being
7663/// represented in VPlan.
7665 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7666 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7667 OriginalScalarPH->setName("vec.epilog.iter.check");
7668 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7669 VPBasicBlock *OldEntry = Plan.getEntry();
7670 for (auto &R : make_early_inc_range(*OldEntry)) {
7671 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7672 // defining.
7673 if (isa<VPIRInstruction>(&R))
7674 continue;
7675 R.moveBefore(*NewEntry, NewEntry->end());
7676 }
7677
7678 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7679 Plan.setEntry(NewEntry);
7680 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7681
7682 return OriginalScalarPH;
7683}
7684
7686 LLVM_DEBUG({
7687 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7688 << "Epilogue Loop VF:" << EPI.EpilogueVF
7689 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7690 });
7691}
7692
7695 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7696 });
7697}
7698
7699VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7700 VFRange &Range) {
7701 assert((VPI->getOpcode() == Instruction::Load ||
7702 VPI->getOpcode() == Instruction::Store) &&
7703 "Must be called with either a load or store");
7705
7706 auto WillWiden = [&](ElementCount VF) -> bool {
7708 CM.getWideningDecision(I, VF);
7710 "CM decision should be taken at this point.");
7712 return true;
7713 if (CM.isScalarAfterVectorization(I, VF) ||
7714 CM.isProfitableToScalarize(I, VF))
7715 return false;
7717 };
7718
7720 return nullptr;
7721
7722 VPValue *Mask = nullptr;
7723 if (Legal->isMaskRequired(I))
7724 Mask = getBlockInMask(Builder.getInsertBlock());
7725
7726 // Determine if the pointer operand of the access is either consecutive or
7727 // reverse consecutive.
7729 CM.getWideningDecision(I, Range.Start);
7731 bool Consecutive =
7733
7734 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7735 : VPI->getOperand(1);
7736 if (Consecutive) {
7739 VPSingleDefRecipe *VectorPtr;
7740 if (Reverse) {
7741 // When folding the tail, we may compute an address that we don't in the
7742 // original scalar loop: drop the GEP no-wrap flags in this case.
7743 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7744 // emit negative indices.
7745 GEPNoWrapFlags Flags =
7746 CM.foldTailByMasking() || !GEP
7748 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7749 VectorPtr = new VPVectorEndPointerRecipe(
7750 Ptr, &Plan.getVF(), getLoadStoreType(I),
7751 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7752 } else {
7753 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7754 GEP ? GEP->getNoWrapFlags()
7756 VPI->getDebugLoc());
7757 }
7758 Builder.insert(VectorPtr);
7759 Ptr = VectorPtr;
7760 }
7761
7762 if (VPI->getOpcode() == Instruction::Load) {
7763 auto *Load = cast<LoadInst>(I);
7764 auto *LoadR = new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7765 *VPI, Load->getDebugLoc());
7766 if (Reverse) {
7767 Builder.insert(LoadR);
7768 return new VPInstruction(VPInstruction::Reverse, LoadR, {}, {},
7769 LoadR->getDebugLoc());
7770 }
7771 return LoadR;
7772 }
7773
7774 StoreInst *Store = cast<StoreInst>(I);
7775 VPValue *StoredVal = VPI->getOperand(0);
7776 if (Reverse)
7777 StoredVal = Builder.createNaryOp(VPInstruction::Reverse, StoredVal,
7778 Store->getDebugLoc());
7779 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7780 Reverse, *VPI, Store->getDebugLoc());
7781}
7782
7784VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7785 VFRange &Range) {
7786 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7787 // Optimize the special case where the source is a constant integer
7788 // induction variable. Notice that we can only optimize the 'trunc' case
7789 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7790 // (c) other casts depend on pointer size.
7791
7792 // Determine whether \p K is a truncation based on an induction variable that
7793 // can be optimized.
7794 auto IsOptimizableIVTruncate =
7795 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7796 return [=](ElementCount VF) -> bool {
7797 return CM.isOptimizableIVTruncate(K, VF);
7798 };
7799 };
7800
7802 IsOptimizableIVTruncate(I), Range))
7803 return nullptr;
7804
7806 VPI->getOperand(0)->getDefiningRecipe());
7807 PHINode *Phi = WidenIV->getPHINode();
7808 VPIRValue *Start = WidenIV->getStartValue();
7809 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7810
7811 // It is always safe to copy over the NoWrap and FastMath flags. In
7812 // particular, when folding tail by masking, the masked-off lanes are never
7813 // used, so it is safe.
7814 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7815 VPValue *Step =
7817 return new VPWidenIntOrFpInductionRecipe(
7818 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7819}
7820
7821VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7822 VFRange &Range) {
7823 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7825 [this, CI](ElementCount VF) {
7826 return CM.isScalarWithPredication(CI, VF);
7827 },
7828 Range);
7829
7830 if (IsPredicated)
7831 return nullptr;
7832
7834 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7835 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7836 ID == Intrinsic::pseudoprobe ||
7837 ID == Intrinsic::experimental_noalias_scope_decl))
7838 return nullptr;
7839
7841 VPI->op_begin() + CI->arg_size());
7842
7843 // Is it beneficial to perform intrinsic call compared to lib call?
7844 bool ShouldUseVectorIntrinsic =
7846 [&](ElementCount VF) -> bool {
7847 return CM.getCallWideningDecision(CI, VF).Kind ==
7849 },
7850 Range);
7851 if (ShouldUseVectorIntrinsic)
7852 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7853 VPI->getDebugLoc());
7854
7855 Function *Variant = nullptr;
7856 std::optional<unsigned> MaskPos;
7857 // Is better to call a vectorized version of the function than to to scalarize
7858 // the call?
7859 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7860 [&](ElementCount VF) -> bool {
7861 // The following case may be scalarized depending on the VF.
7862 // The flag shows whether we can use a usual Call for vectorized
7863 // version of the instruction.
7864
7865 // If we've found a variant at a previous VF, then stop looking. A
7866 // vectorized variant of a function expects input in a certain shape
7867 // -- basically the number of input registers, the number of lanes
7868 // per register, and whether there's a mask required.
7869 // We store a pointer to the variant in the VPWidenCallRecipe, so
7870 // once we have an appropriate variant it's only valid for that VF.
7871 // This will force a different vplan to be generated for each VF that
7872 // finds a valid variant.
7873 if (Variant)
7874 return false;
7875 LoopVectorizationCostModel::CallWideningDecision Decision =
7876 CM.getCallWideningDecision(CI, VF);
7878 Variant = Decision.Variant;
7879 MaskPos = Decision.MaskPos;
7880 return true;
7881 }
7882
7883 return false;
7884 },
7885 Range);
7886 if (ShouldUseVectorCall) {
7887 if (MaskPos.has_value()) {
7888 // We have 2 cases that would require a mask:
7889 // 1) The block needs to be predicated, either due to a conditional
7890 // in the scalar loop or use of an active lane mask with
7891 // tail-folding, and we use the appropriate mask for the block.
7892 // 2) No mask is required for the block, but the only available
7893 // vector variant at this VF requires a mask, so we synthesize an
7894 // all-true mask.
7895 VPValue *Mask = Legal->isMaskRequired(CI)
7896 ? getBlockInMask(Builder.getInsertBlock())
7897 : Plan.getTrue();
7898
7899 Ops.insert(Ops.begin() + *MaskPos, Mask);
7900 }
7901
7902 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7903 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7904 VPI->getDebugLoc());
7905 }
7906
7907 return nullptr;
7908}
7909
7910bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7912 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7913 // Instruction should be widened, unless it is scalar after vectorization,
7914 // scalarization is profitable or it is predicated.
7915 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7916 return CM.isScalarAfterVectorization(I, VF) ||
7917 CM.isProfitableToScalarize(I, VF) ||
7918 CM.isScalarWithPredication(I, VF);
7919 };
7921 Range);
7922}
7923
7924VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7925 auto *I = VPI->getUnderlyingInstr();
7926 switch (VPI->getOpcode()) {
7927 default:
7928 return nullptr;
7929 case Instruction::SDiv:
7930 case Instruction::UDiv:
7931 case Instruction::SRem:
7932 case Instruction::URem: {
7933 // If not provably safe, use a select to form a safe divisor before widening the
7934 // div/rem operation itself. Otherwise fall through to general handling below.
7935 if (CM.isPredicatedInst(I)) {
7937 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7938 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7939 auto *SafeRHS =
7940 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7941 Ops[1] = SafeRHS;
7942 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7943 }
7944 [[fallthrough]];
7945 }
7946 case Instruction::Add:
7947 case Instruction::And:
7948 case Instruction::AShr:
7949 case Instruction::FAdd:
7950 case Instruction::FCmp:
7951 case Instruction::FDiv:
7952 case Instruction::FMul:
7953 case Instruction::FNeg:
7954 case Instruction::FRem:
7955 case Instruction::FSub:
7956 case Instruction::ICmp:
7957 case Instruction::LShr:
7958 case Instruction::Mul:
7959 case Instruction::Or:
7960 case Instruction::Select:
7961 case Instruction::Shl:
7962 case Instruction::Sub:
7963 case Instruction::Xor:
7964 case Instruction::Freeze:
7965 return new VPWidenRecipe(*I, VPI->operands(), *VPI, *VPI,
7966 VPI->getDebugLoc());
7967 case Instruction::ExtractValue: {
7968 SmallVector<VPValue *> NewOps(VPI->operands());
7969 auto *EVI = cast<ExtractValueInst>(I);
7970 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7971 unsigned Idx = EVI->getIndices()[0];
7972 NewOps.push_back(Plan.getConstantInt(32, Idx));
7973 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7974 }
7975 };
7976}
7977
7978VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7979 VPInstruction *VPI) {
7980 // FIXME: Support other operations.
7981 unsigned Opcode = HI->Update->getOpcode();
7982 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7983 "Histogram update operation must be an Add or Sub");
7984
7986 // Bucket address.
7987 HGramOps.push_back(VPI->getOperand(1));
7988 // Increment value.
7989 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7990
7991 // In case of predicated execution (due to tail-folding, or conditional
7992 // execution, or both), pass the relevant mask.
7993 if (Legal->isMaskRequired(HI->Store))
7994 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7995
7996 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7997}
7998
8000 VFRange &Range) {
8001 auto *I = VPI->getUnderlyingInstr();
8003 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8004 Range);
8005
8006 bool IsPredicated = CM.isPredicatedInst(I);
8007
8008 // Even if the instruction is not marked as uniform, there are certain
8009 // intrinsic calls that can be effectively treated as such, so we check for
8010 // them here. Conservatively, we only do this for scalable vectors, since
8011 // for fixed-width VFs we can always fall back on full scalarization.
8012 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8013 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8014 case Intrinsic::assume:
8015 case Intrinsic::lifetime_start:
8016 case Intrinsic::lifetime_end:
8017 // For scalable vectors if one of the operands is variant then we still
8018 // want to mark as uniform, which will generate one instruction for just
8019 // the first lane of the vector. We can't scalarize the call in the same
8020 // way as for fixed-width vectors because we don't know how many lanes
8021 // there are.
8022 //
8023 // The reasons for doing it this way for scalable vectors are:
8024 // 1. For the assume intrinsic generating the instruction for the first
8025 // lane is still be better than not generating any at all. For
8026 // example, the input may be a splat across all lanes.
8027 // 2. For the lifetime start/end intrinsics the pointer operand only
8028 // does anything useful when the input comes from a stack object,
8029 // which suggests it should always be uniform. For non-stack objects
8030 // the effect is to poison the object, which still allows us to
8031 // remove the call.
8032 IsUniform = true;
8033 break;
8034 default:
8035 break;
8036 }
8037 }
8038 VPValue *BlockInMask = nullptr;
8039 if (!IsPredicated) {
8040 // Finalize the recipe for Instr, first if it is not predicated.
8041 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8042 } else {
8043 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8044 // Instructions marked for predication are replicated and a mask operand is
8045 // added initially. Masked replicate recipes will later be placed under an
8046 // if-then construct to prevent side-effects. Generate recipes to compute
8047 // the block mask for this region.
8048 BlockInMask = getBlockInMask(Builder.getInsertBlock());
8049 }
8050
8051 // Note that there is some custom logic to mark some intrinsics as uniform
8052 // manually above for scalable vectors, which this assert needs to account for
8053 // as well.
8054 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8055 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
8056 "Should not predicate a uniform recipe");
8057 auto *Recipe =
8058 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
8059 *VPI, VPI->getDebugLoc());
8060 return Recipe;
8061}
8062
8063/// Find all possible partial reductions in the loop and track all of those that
8064/// are valid so recipes can be formed later.
8066 // Find all possible partial reductions, grouping chains by their PHI. This
8067 // grouping allows invalidating the whole chain, if any link is not a valid
8068 // partial reduction.
8071 ChainsByPhi;
8072 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8073 if (Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8074 getScaledReductions(Phi, RdxExitInstr, Range, ChainsByPhi[Phi]);
8075 }
8076
8077 // A partial reduction is invalid if any of its extends are used by
8078 // something that isn't another partial reduction. This is because the
8079 // extends are intended to be lowered along with the reduction itself.
8080
8081 // Build up a set of partial reduction ops for efficient use checking.
8082 SmallPtrSet<User *, 4> PartialReductionOps;
8083 for (const auto &[_, Chains] : ChainsByPhi)
8084 for (const auto &[PartialRdx, _] : Chains)
8085 PartialReductionOps.insert(PartialRdx.ExtendUser);
8086
8087 auto ExtendIsOnlyUsedByPartialReductions =
8088 [&PartialReductionOps](Instruction *Extend) {
8089 return all_of(Extend->users(), [&](const User *U) {
8090 return PartialReductionOps.contains(U);
8091 });
8092 };
8093
8094 // Check if each use of a chain's two extends is a partial reduction
8095 // and only add those that don't have non-partial reduction users.
8096 for (const auto &[_, Chains] : ChainsByPhi) {
8097 for (const auto &[Chain, Scale] : Chains) {
8098 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8099 (!Chain.ExtendB ||
8100 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8101 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8102 }
8103 }
8104
8105 // Check that all partial reductions in a chain are only used by other
8106 // partial reductions with the same scale factor. Otherwise we end up creating
8107 // users of scaled reductions where the types of the other operands don't
8108 // match.
8109 for (const auto &[Phi, Chains] : ChainsByPhi) {
8110 for (const auto &[Chain, Scale] : Chains) {
8111 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8112 this](const User *U) {
8113 auto *UI = cast<Instruction>(U);
8114 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8115 return UI == RdxPhi;
8116 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8117 !OrigLoop->contains(UI->getParent());
8118 };
8119
8120 // If any partial reduction entry for the phi is invalid, invalidate the
8121 // whole chain.
8122 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8123 for (const auto &[Chain, _] : Chains)
8124 ScaledReductionMap.erase(Chain.Reduction);
8125 break;
8126 }
8127 }
8128 }
8129}
8130
8131bool VPRecipeBuilder::getScaledReductions(
8132 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8133 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8134 if (!CM.TheLoop->contains(RdxExitInstr))
8135 return false;
8136
8137 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8138 if (!Update)
8139 return false;
8140
8141 Value *Op = Update->getOperand(0);
8142 Value *PhiOp = Update->getOperand(1);
8143 if (Op == PHI)
8144 std::swap(Op, PhiOp);
8145
8146 using namespace llvm::PatternMatch;
8147 // If Op is an extend, then it's still a valid partial reduction if the
8148 // extended mul fulfills the other requirements.
8149 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8150 // reduction since the inner extends will be widened. We already have oneUse
8151 // checks on the inner extends so widening them is safe.
8152 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8153 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8154 auto *Cast = cast<CastInst>(Op);
8155 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8156 Op = Cast->getOperand(0);
8157 }
8158
8159 // Try and get a scaled reduction from the first non-phi operand.
8160 // If one is found, we use the discovered reduction instruction in
8161 // place of the accumulator for costing.
8162 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8163 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8164 PHI = Chains.rbegin()->first.Reduction;
8165
8166 Op = Update->getOperand(0);
8167 PhiOp = Update->getOperand(1);
8168 if (Op == PHI)
8169 std::swap(Op, PhiOp);
8170 }
8171 }
8172 if (PhiOp != PHI)
8173 return false;
8174
8175 // If the update is a binary operator, check both of its operands to see if
8176 // they are extends. Otherwise, see if the update comes directly from an
8177 // extend.
8178 Instruction *Exts[2] = {nullptr};
8179 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8180 std::optional<unsigned> BinOpc;
8181 Type *ExtOpTypes[2] = {nullptr};
8183
8184 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8185 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8186 for (const auto &[I, OpI] : enumerate(Ops)) {
8187 const APInt *C;
8188 if (I > 0 && match(OpI, m_APInt(C)) &&
8189 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8190 ExtOpTypes[I] = ExtOpTypes[0];
8191 ExtKinds[I] = ExtKinds[0];
8192 continue;
8193 }
8194 Value *ExtOp;
8195 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8196 return false;
8197 Exts[I] = cast<Instruction>(OpI);
8198
8199 // TODO: We should be able to support live-ins.
8200 if (!CM.TheLoop->contains(Exts[I]))
8201 return false;
8202
8203 ExtOpTypes[I] = ExtOp->getType();
8204 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8205 // The outer extend kind must be the same as the inner extends, so that
8206 // they can be folded together.
8207 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8208 return false;
8209 }
8210 return true;
8211 };
8212
8213 if (ExtendUser) {
8214 if (!ExtendUser->hasOneUse())
8215 return false;
8216
8217 // Use the side-effect of match to replace BinOp only if the pattern is
8218 // matched, we don't care at this point whether it actually matched.
8219 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8220
8221 SmallVector<Value *> Ops(ExtendUser->operands());
8222 if (!CollectExtInfo(Ops))
8223 return false;
8224
8225 BinOpc = std::make_optional(ExtendUser->getOpcode());
8226 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8227 // We already know the operands for Update are Op and PhiOp.
8229 if (!CollectExtInfo(Ops))
8230 return false;
8231
8232 ExtendUser = Update;
8233 BinOpc = std::nullopt;
8234 } else
8235 return false;
8236
8237 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8238
8239 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8240 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8241 if (!PHISize.hasKnownScalarFactor(ASize))
8242 return false;
8243 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8244
8246 [&](ElementCount VF) {
8247 InstructionCost Cost = TTI->getPartialReductionCost(
8248 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8249 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8250 CM.CostKind);
8251 return Cost.isValid();
8252 },
8253 Range)) {
8254 Chains.emplace_back(Chain, TargetScaleFactor);
8255 return true;
8256 }
8257
8258 return false;
8259}
8260
8263 VFRange &Range) {
8264 assert(!R->isPhi() && "phis must be handled earlier");
8265 // First, check for specific widening recipes that deal with optimizing
8266 // truncates, calls and memory operations.
8267
8268 VPRecipeBase *Recipe;
8269 auto *VPI = cast<VPInstruction>(R);
8270 if (VPI->getOpcode() == Instruction::Trunc &&
8271 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8272 return Recipe;
8273
8274 // All widen recipes below deal only with VF > 1.
8276 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8277 return nullptr;
8278
8279 if (VPI->getOpcode() == Instruction::Call)
8280 return tryToWidenCall(VPI, Range);
8281
8282 Instruction *Instr = R->getUnderlyingInstr();
8283 if (VPI->getOpcode() == Instruction::Store)
8284 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8285 return tryToWidenHistogram(*HistInfo, VPI);
8286
8287 if (VPI->getOpcode() == Instruction::Load ||
8288 VPI->getOpcode() == Instruction::Store)
8289 return tryToWidenMemory(VPI, Range);
8290
8291 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8292 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8293
8294 if (!shouldWiden(Instr, Range))
8295 return nullptr;
8296
8297 if (VPI->getOpcode() == Instruction::GetElementPtr)
8298 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8299 *VPI, VPI->getDebugLoc());
8300
8301 if (Instruction::isCast(VPI->getOpcode())) {
8302 auto *CI = cast<CastInst>(Instr);
8303 auto *CastR = cast<VPInstructionWithType>(VPI);
8304 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8305 CastR->getResultType(), CI, *VPI, *VPI,
8306 VPI->getDebugLoc());
8307 }
8308
8309 return tryToWiden(VPI);
8310}
8311
8314 unsigned ScaleFactor) {
8315 assert(Reduction->getNumOperands() == 2 &&
8316 "Unexpected number of operands for partial reduction");
8317
8318 VPValue *BinOp = Reduction->getOperand(0);
8319 VPValue *Accumulator = Reduction->getOperand(1);
8320 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8321 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8322 (isa<VPReductionRecipe>(BinOpRecipe) &&
8323 cast<VPReductionRecipe>(BinOpRecipe)->isPartialReduction()))
8324 std::swap(BinOp, Accumulator);
8325
8326 if (auto *RedPhiR = dyn_cast<VPReductionPHIRecipe>(Accumulator))
8327 RedPhiR->setVFScaleFactor(ScaleFactor);
8328
8329 assert(ScaleFactor ==
8330 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8331 "all accumulators in chain must have same scale factor");
8332
8333 auto *ReductionI = Reduction->getUnderlyingInstr();
8334 if (Reduction->getOpcode() == Instruction::Sub) {
8336 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8337 Ops.push_back(BinOp);
8338 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8339 VPIRMetadata(), ReductionI->getDebugLoc());
8340 Builder.insert(BinOp->getDefiningRecipe());
8341 }
8342
8343 VPValue *Cond = nullptr;
8344 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8345 Cond = getBlockInMask(Builder.getInsertBlock());
8346
8347 return new VPReductionRecipe(
8348 RecurKind::Add, FastMathFlags(), ReductionI, Accumulator, BinOp, Cond,
8349 RdxUnordered{/*VFScaleFactor=*/ScaleFactor}, ReductionI->getDebugLoc());
8350}
8351
8352void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8353 ElementCount MaxVF) {
8354 if (ElementCount::isKnownGT(MinVF, MaxVF))
8355 return;
8356
8357 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8358
8359 const LoopAccessInfo *LAI = Legal->getLAI();
8361 OrigLoop, LI, DT, PSE.getSE());
8362 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8364 // Only use noalias metadata when using memory checks guaranteeing no
8365 // overlap across all iterations.
8366 LVer.prepareNoAliasMetadata();
8367 }
8368
8369 // Create initial base VPlan0, to serve as common starting point for all
8370 // candidates built later for specific VF ranges.
8371 auto VPlan0 = VPlanTransforms::buildVPlan0(
8372 OrigLoop, *LI, Legal->getWidestInductionType(),
8373 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8374
8375 // Create recipes for header phis.
8377 *VPlan0, PSE, *OrigLoop, Legal->getInductionVars(),
8378 Legal->getReductionVars(), Legal->getFixedOrderRecurrences(),
8379 CM.getInLoopReductions(), Hints.allowReordering());
8380
8381 auto MaxVFTimes2 = MaxVF * 2;
8382 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8383 VFRange SubRange = {VF, MaxVFTimes2};
8384 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8385 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8386 // Now optimize the initial VPlan.
8387 VPlanTransforms::hoistPredicatedLoads(*Plan, PSE, OrigLoop);
8388 VPlanTransforms::sinkPredicatedStores(*Plan, PSE, OrigLoop);
8390 *Plan, CM.getMinimalBitwidths());
8392 // TODO: try to put addExplicitVectorLength close to addActiveLaneMask
8393 if (CM.foldTailWithEVL()) {
8395 *Plan, CM.getMaxSafeElements());
8397 }
8398 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8399 VPlans.push_back(std::move(Plan));
8400 }
8401 VF = SubRange.End;
8402 }
8403}
8404
8405VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8406 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8407
8408 using namespace llvm::VPlanPatternMatch;
8409 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8410
8411 // ---------------------------------------------------------------------------
8412 // Build initial VPlan: Scan the body of the loop in a topological order to
8413 // visit each basic block after having visited its predecessor basic blocks.
8414 // ---------------------------------------------------------------------------
8415
8416 bool RequiresScalarEpilogueCheck =
8418 [this](ElementCount VF) {
8419 return !CM.requiresScalarEpilogue(VF.isVector());
8420 },
8421 Range);
8422 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8423 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8424 CM.foldTailByMasking());
8425
8427
8428 // Don't use getDecisionAndClampRange here, because we don't know the UF
8429 // so this function is better to be conservative, rather than to split
8430 // it up into different VPlans.
8431 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8432 bool IVUpdateMayOverflow = false;
8433 for (ElementCount VF : Range)
8434 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8435
8436 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8437 // Use NUW for the induction increment if we proved that it won't overflow in
8438 // the vector loop or when not folding the tail. In the later case, we know
8439 // that the canonical induction increment will not overflow as the vector trip
8440 // count is >= increment and a multiple of the increment.
8441 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8442 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8443 if (!HasNUW) {
8444 auto *IVInc =
8445 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8446 assert(match(IVInc,
8447 m_VPInstruction<Instruction::Add>(
8448 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8449 "Did not find the canonical IV increment");
8450 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8451 }
8452
8453 // ---------------------------------------------------------------------------
8454 // Pre-construction: record ingredients whose recipes we'll need to further
8455 // process after constructing the initial VPlan.
8456 // ---------------------------------------------------------------------------
8457
8458 // For each interleave group which is relevant for this (possibly trimmed)
8459 // Range, add it to the set of groups to be later applied to the VPlan and add
8460 // placeholders for its members' Recipes which we'll be replacing with a
8461 // single VPInterleaveRecipe.
8462 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8463 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8464 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8465 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8467 // For scalable vectors, the interleave factors must be <= 8 since we
8468 // require the (de)interleaveN intrinsics instead of shufflevectors.
8469 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8470 "Unsupported interleave factor for scalable vectors");
8471 return Result;
8472 };
8473 if (!getDecisionAndClampRange(ApplyIG, Range))
8474 continue;
8475 InterleaveGroups.insert(IG);
8476 }
8477
8478 // ---------------------------------------------------------------------------
8479 // Predicate and linearize the top-level loop region.
8480 // ---------------------------------------------------------------------------
8481 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8482 *Plan, CM.foldTailByMasking());
8483
8484 // ---------------------------------------------------------------------------
8485 // Construct wide recipes and apply predication for original scalar
8486 // VPInstructions in the loop.
8487 // ---------------------------------------------------------------------------
8488 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8489 BlockMaskCache);
8490 // TODO: Handle partial reductions with EVL tail folding.
8491 if (!CM.foldTailWithEVL())
8492 RecipeBuilder.collectScaledReductions(Range);
8493
8494 // Scan the body of the loop in a topological order to visit each basic block
8495 // after having visited its predecessor basic blocks.
8496 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8497 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8498 HeaderVPBB);
8499
8500 auto *MiddleVPBB = Plan->getMiddleBlock();
8501 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8502 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8503 // temporarily to update created block masks.
8504 DenseMap<VPValue *, VPValue *> Old2New;
8505
8506 // Collect blocks that need predication for in-loop reduction recipes.
8507 DenseSet<BasicBlock *> BlocksNeedingPredication;
8508 for (BasicBlock *BB : OrigLoop->blocks())
8509 if (CM.blockNeedsPredicationForAnyReason(BB))
8510 BlocksNeedingPredication.insert(BB);
8511
8513 *Plan, BlockMaskCache, BlocksNeedingPredication, Range.Start);
8514
8515 // Now process all other blocks and instructions.
8516 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8517 // Convert input VPInstructions to widened recipes.
8518 for (VPRecipeBase &R : make_early_inc_range(
8519 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8520 // Skip recipes that do not need transforming.
8522 continue;
8523 auto *VPI = cast<VPInstruction>(&R);
8524 if (!VPI->getUnderlyingValue())
8525 continue;
8526
8527 // TODO: Gradually replace uses of underlying instruction by analyses on
8528 // VPlan. Migrate code relying on the underlying instruction from VPlan0
8529 // to construct recipes below to not use the underlying instruction.
8531 Builder.setInsertPoint(VPI);
8532
8533 // The stores with invariant address inside the loop will be deleted, and
8534 // in the exit block, a uniform store recipe will be created for the final
8535 // invariant store of the reduction.
8536 StoreInst *SI;
8537 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8538 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8539 // Only create recipe for the final invariant store of the reduction.
8540 if (Legal->isInvariantStoreOfReduction(SI)) {
8541 auto *Recipe = new VPReplicateRecipe(
8542 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8543 *VPI, VPI->getDebugLoc());
8544 Recipe->insertBefore(*MiddleVPBB, MBIP);
8545 }
8546 R.eraseFromParent();
8547 continue;
8548 }
8549
8550 VPRecipeBase *Recipe =
8551 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI, Range);
8552 if (!Recipe)
8553 Recipe =
8554 RecipeBuilder.handleReplication(cast<VPInstruction>(VPI), Range);
8555
8556 RecipeBuilder.setRecipe(Instr, Recipe);
8557 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8558 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8559 // moved to the phi section in the header.
8560 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8561 } else {
8562 Builder.insert(Recipe);
8563 }
8564 if (Recipe->getNumDefinedValues() == 1) {
8565 VPI->replaceAllUsesWith(Recipe->getVPSingleValue());
8566 Old2New[VPI] = Recipe->getVPSingleValue();
8567 } else {
8568 assert(Recipe->getNumDefinedValues() == 0 &&
8569 "Unexpected multidef recipe");
8570 R.eraseFromParent();
8571 }
8572 }
8573 }
8574
8575 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8576 // TODO: Include the masks as operands in the predicated VPlan directly
8577 // to remove the need to keep a map of masks beyond the predication
8578 // transform.
8579 RecipeBuilder.updateBlockMaskCache(Old2New);
8580 for (VPValue *Old : Old2New.keys())
8581 Old->getDefiningRecipe()->eraseFromParent();
8582
8583 assert(isa<VPRegionBlock>(LoopRegion) &&
8584 !LoopRegion->getEntryBasicBlock()->empty() &&
8585 "entry block must be set to a VPRegionBlock having a non-empty entry "
8586 "VPBasicBlock");
8587
8588 // TODO: We can't call runPass on these transforms yet, due to verifier
8589 // failures.
8591 DenseMap<VPValue *, VPValue *> IVEndValues;
8592 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8593
8594 // ---------------------------------------------------------------------------
8595 // Transform initial VPlan: Apply previously taken decisions, in order, to
8596 // bring the VPlan to its final state.
8597 // ---------------------------------------------------------------------------
8598
8599 addReductionResultComputation(Plan, RecipeBuilder, Range.Start);
8600
8601 // Apply mandatory transformation to handle reductions with multiple in-loop
8602 // uses if possible, bail out otherwise.
8604 *Plan))
8605 return nullptr;
8606 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8607 // NaNs if possible, bail out otherwise.
8609 *Plan))
8610 return nullptr;
8611
8612 // Create whole-vector selects for find-last recurrences.
8614 *Plan))
8615 return nullptr;
8616
8617 // Transform recipes to abstract recipes if it is legal and beneficial and
8618 // clamp the range for better cost estimation.
8619 // TODO: Enable following transform when the EVL-version of extended-reduction
8620 // and mulacc-reduction are implemented.
8621 if (!CM.foldTailWithEVL()) {
8622 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8623 OrigLoop);
8625 CostCtx, Range);
8626 }
8627
8628 for (ElementCount VF : Range)
8629 Plan->addVF(VF);
8630 Plan->setName("Initial VPlan");
8631
8632 // Interleave memory: for each Interleave Group we marked earlier as relevant
8633 // for this VPlan, replace the Recipes widening its memory instructions with a
8634 // single VPInterleaveRecipe at its insertion point.
8636 InterleaveGroups, RecipeBuilder,
8637 CM.isScalarEpilogueAllowed());
8638
8639 // Replace VPValues for known constant strides.
8641 Legal->getLAI()->getSymbolicStrides());
8642
8643 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8644 return Legal->blockNeedsPredication(BB);
8645 };
8647 BlockNeedsPredication);
8648
8649 // Sink users of fixed-order recurrence past the recipe defining the previous
8650 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8652 *Plan, Builder))
8653 return nullptr;
8654
8655 if (useActiveLaneMask(Style)) {
8656 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8657 // TailFoldingStyle is visible there.
8658 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8659 bool WithoutRuntimeCheck =
8661 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8662 WithoutRuntimeCheck);
8663 }
8664 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, PSE);
8665
8666 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8667 return Plan;
8668}
8669
8670VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8671 // Outer loop handling: They may require CFG and instruction level
8672 // transformations before even evaluating whether vectorization is profitable.
8673 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8674 // the vectorization pipeline.
8675 assert(!OrigLoop->isInnermost());
8676 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8677
8678 auto Plan = VPlanTransforms::buildVPlan0(
8679 OrigLoop, *LI, Legal->getWidestInductionType(),
8680 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8681
8683 *Plan, PSE, *OrigLoop, Legal->getInductionVars(),
8684 MapVector<PHINode *, RecurrenceDescriptor>(),
8685 SmallPtrSet<const PHINode *, 1>(), SmallPtrSet<PHINode *, 1>(),
8686 /*AllowReordering=*/false);
8688 /*HasUncountableExit*/ false);
8689 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8690 /*TailFolded*/ false);
8691
8693
8694 for (ElementCount VF : Range)
8695 Plan->addVF(VF);
8696
8698 return nullptr;
8699
8700 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8701 // values.
8702 // TODO: We can't call runPass on the transform yet, due to verifier
8703 // failures.
8704 DenseMap<VPValue *, VPValue *> IVEndValues;
8705 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8706
8707 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8708 return Plan;
8709}
8710
8711void LoopVectorizationPlanner::addReductionResultComputation(
8712 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8713 using namespace VPlanPatternMatch;
8714 VPTypeAnalysis TypeInfo(*Plan);
8715 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8716 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8718 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8719 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8720 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8721 for (VPRecipeBase &R :
8722 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8723 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8724 if (!PhiR)
8725 continue;
8726
8727 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8729 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8730 // If tail is folded by masking, introduce selects between the phi
8731 // and the users outside the vector region of each reduction, at the
8732 // beginning of the dedicated latch block.
8733 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8734 auto *NewExitingVPV = PhiR->getBackedgeValue();
8735 // Don't output selects for partial reductions because they have an output
8736 // with fewer lanes than the VF. So the operands of the select would have
8737 // different numbers of lanes. Partial reductions mask the input instead.
8738 auto *RR = dyn_cast<VPReductionRecipe>(OrigExitingVPV->getDefiningRecipe());
8739 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8740 (!RR || !RR->isPartialReduction())) {
8741 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8742 std::optional<FastMathFlags> FMFs =
8743 PhiTy->isFloatingPointTy()
8744 ? std::make_optional(RdxDesc.getFastMathFlags())
8745 : std::nullopt;
8746 NewExitingVPV =
8747 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8748 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8749 return isa<VPInstruction>(&U) &&
8750 (cast<VPInstruction>(&U)->getOpcode() ==
8752 cast<VPInstruction>(&U)->getOpcode() ==
8754 cast<VPInstruction>(&U)->getOpcode() ==
8756 });
8757 if (CM.usePredicatedReductionSelect())
8758 PhiR->setOperand(1, NewExitingVPV);
8759 }
8760
8761 // We want code in the middle block to appear to execute on the location of
8762 // the scalar loop's latch terminator because: (a) it is all compiler
8763 // generated, (b) these instructions are always executed after evaluating
8764 // the latch conditional branch, and (c) other passes may add new
8765 // predecessors which terminate on this line. This is the easiest way to
8766 // ensure we don't accidentally cause an extra step back into the loop while
8767 // debugging.
8768 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8769
8770 // TODO: At the moment ComputeReductionResult also drives creation of the
8771 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8772 // even for in-loop reductions, until the reduction resume value handling is
8773 // also modeled in VPlan.
8774 VPInstruction *FinalReductionResult;
8775 VPBuilder::InsertPointGuard Guard(Builder);
8776 Builder.setInsertPoint(MiddleVPBB, IP);
8777 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8778 // For AnyOf reductions, find the select among PhiR's users. This is used
8779 // both to find NewVal for ComputeAnyOfResult and to adjust the reduction.
8780 VPRecipeBase *AnyOfSelect = nullptr;
8781 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8782 AnyOfSelect = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8783 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8784 }));
8785 }
8787 VPValue *Start = PhiR->getStartValue();
8788 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8789 RecurKind MinMaxKind;
8790 bool IsSigned =
8793 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
8794 else
8795 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
8796 VPIRFlags Flags(MinMaxKind, /*IsOrdered=*/false, /*IsInLoop=*/false,
8797 FastMathFlags());
8798 FinalReductionResult =
8799 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8800 {Start, Sentinel, NewExitingVPV}, Flags, ExitDL);
8801 } else if (AnyOfSelect) {
8802 VPValue *Start = PhiR->getStartValue();
8803 // NewVal is the non-phi operand of the select.
8804 VPValue *NewVal = AnyOfSelect->getOperand(1) == PhiR
8805 ? AnyOfSelect->getOperand(2)
8806 : AnyOfSelect->getOperand(1);
8807 FinalReductionResult =
8808 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8809 {Start, NewVal, NewExitingVPV}, ExitDL);
8810 } else {
8811 FastMathFlags FMFs =
8813 ? RdxDesc.getFastMathFlags()
8814 : FastMathFlags();
8815 VPIRFlags Flags(RecurrenceKind, PhiR->isOrdered(), PhiR->isInLoop(),
8816 FMFs);
8817 FinalReductionResult =
8818 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8819 {NewExitingVPV}, Flags, ExitDL);
8820 }
8821 // If the vector reduction can be performed in a smaller type, we truncate
8822 // then extend the loop exit value to enable InstCombine to evaluate the
8823 // entire expression in the smaller type.
8824 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8826 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8828 "Unexpected truncated min-max recurrence!");
8829 Type *RdxTy = RdxDesc.getRecurrenceType();
8830 VPWidenCastRecipe *Trunc;
8831 Instruction::CastOps ExtendOpc =
8832 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8833 VPWidenCastRecipe *Extnd;
8834 {
8835 VPBuilder::InsertPointGuard Guard(Builder);
8836 Builder.setInsertPoint(
8837 NewExitingVPV->getDefiningRecipe()->getParent(),
8838 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8839 Trunc =
8840 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8841 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8842 }
8843 if (PhiR->getOperand(1) == NewExitingVPV)
8844 PhiR->setOperand(1, Extnd->getVPSingleValue());
8845
8846 // Update ComputeReductionResult with the truncated exiting value and
8847 // extend its result. Operand 0 provides the values to be reduced.
8848 FinalReductionResult->setOperand(0, Trunc);
8849 FinalReductionResult =
8850 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8851 }
8852
8853 // Update all users outside the vector region. Also replace redundant
8854 // extracts.
8855 for (auto *U : to_vector(OrigExitingVPV->users())) {
8856 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8857 if (FinalReductionResult == U || Parent->getParent())
8858 continue;
8859 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8860
8861 // Look through ExtractLastPart.
8863 U = cast<VPInstruction>(U)->getSingleUser();
8864
8867 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8868 }
8869
8870 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8871 // with a boolean reduction phi node to check if the condition is true in
8872 // any iteration. The final value is selected by the final
8873 // ComputeReductionResult.
8874 if (AnyOfSelect) {
8875 VPValue *Cmp = AnyOfSelect->getOperand(0);
8876 // If the compare is checking the reduction PHI node, adjust it to check
8877 // the start value.
8878 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8879 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8880 Builder.setInsertPoint(AnyOfSelect);
8881
8882 // If the true value of the select is the reduction phi, the new value is
8883 // selected if the negated condition is true in any iteration.
8884 if (AnyOfSelect->getOperand(1) == PhiR)
8885 Cmp = Builder.createNot(Cmp);
8886 VPValue *Or = Builder.createOr(PhiR, Cmp);
8887 AnyOfSelect->getVPSingleValue()->replaceAllUsesWith(Or);
8888 // Delete AnyOfSelect now that it has invalid types.
8889 ToDelete.push_back(AnyOfSelect);
8890
8891 // Convert the reduction phi to operate on bools.
8892 PhiR->setOperand(0, Plan->getFalse());
8893 continue;
8894 }
8895
8897 RdxDesc.getRecurrenceKind())) {
8898 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
8899 // the sentinel value after generating the ResumePhi recipe, which uses
8900 // the original start value.
8901 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
8902 }
8903 RecurKind RK = RdxDesc.getRecurrenceKind();
8908 VPBuilder PHBuilder(Plan->getVectorPreheader());
8909 VPValue *Iden = Plan->getOrAddLiveIn(
8910 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
8911 // If the PHI is used by a partial reduction, set the scale factor.
8912 unsigned ScaleFactor =
8913 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
8914 .value_or(1);
8915 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8916 VPValue *StartV = PHBuilder.createNaryOp(
8918 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
8919 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
8920 : FastMathFlags());
8921 PhiR->setOperand(0, StartV);
8922 }
8923 }
8924 for (VPRecipeBase *R : ToDelete)
8925 R->eraseFromParent();
8926
8928}
8929
8930void LoopVectorizationPlanner::attachRuntimeChecks(
8931 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
8932 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8933 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8934 assert((!CM.OptForSize ||
8935 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
8936 "Cannot SCEV check stride or overflow when optimizing for size");
8937 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
8938 HasBranchWeights);
8939 }
8940 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8941 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8942 // VPlan-native path does not do any analysis for runtime checks
8943 // currently.
8944 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
8945 "Runtime checks are not supported for outer loops yet");
8946
8947 if (CM.OptForSize) {
8948 assert(
8949 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
8950 "Cannot emit memory checks when optimizing for size, unless forced "
8951 "to vectorize.");
8952 ORE->emit([&]() {
8953 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
8954 OrigLoop->getStartLoc(),
8955 OrigLoop->getHeader())
8956 << "Code-size may be reduced by not forcing "
8957 "vectorization, or by source-code modifications "
8958 "eliminating the need for runtime checks "
8959 "(e.g., adding 'restrict').";
8960 });
8961 }
8962 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
8963 HasBranchWeights);
8964 }
8965}
8966
8968 VPlan &Plan, ElementCount VF, unsigned UF,
8969 ElementCount MinProfitableTripCount) const {
8970 // vscale is not necessarily a power-of-2, which means we cannot guarantee
8971 // an overflow to zero when updating induction variables and so an
8972 // additional overflow check is required before entering the vector loop.
8973 bool IsIndvarOverflowCheckNeededForVF =
8974 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8975 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
8976 CM.getTailFoldingStyle() !=
8978 const uint32_t *BranchWeigths =
8979 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
8981 : nullptr;
8983 Plan, VF, UF, MinProfitableTripCount,
8984 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
8985 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8986 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8987}
8988
8989// Determine how to lower the scalar epilogue, which depends on 1) optimising
8990// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
8991// predication, and 4) a TTI hook that analyses whether the loop is suitable
8992// for predication.
8994 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
8997 // 1) OptSize takes precedence over all other options, i.e. if this is set,
8998 // don't look at hints or options, and don't request a scalar epilogue.
8999 if (F->hasOptSize() ||
9000 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9002
9003 // 2) If set, obey the directives
9004 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9012 };
9013 }
9014
9015 // 3) If set, obey the hints
9016 switch (Hints.getPredicate()) {
9021 };
9022
9023 // 4) if the TTI hook indicates this is profitable, request predication.
9024 TailFoldingInfo TFI(TLI, &LVL, IAI);
9025 if (TTI->preferPredicateOverEpilogue(&TFI))
9027
9029}
9030
9031// Process the loop in the VPlan-native vectorization path. This path builds
9032// VPlan upfront in the vectorization pipeline, which allows to apply
9033// VPlan-to-VPlan transformations from the very beginning without modifying the
9034// input LLVM IR.
9040 std::function<BlockFrequencyInfo &()> GetBFI, bool OptForSize,
9041 LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements) {
9042
9044 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9045 return false;
9046 }
9047 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9048 Function *F = L->getHeader()->getParent();
9049 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9050
9052 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9053
9054 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE,
9055 GetBFI, F, &Hints, IAI, OptForSize);
9056 // Use the planner for outer loop vectorization.
9057 // TODO: CM is not used at this point inside the planner. Turn CM into an
9058 // optional argument if we don't need it in the future.
9059 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9060 ORE);
9061
9062 // Get user vectorization factor.
9063 ElementCount UserVF = Hints.getWidth();
9064
9066
9067 // Plan how to best vectorize, return the best VF and its cost.
9068 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9069
9070 // If we are stress testing VPlan builds, do not attempt to generate vector
9071 // code. Masked vector code generation support will follow soon.
9072 // Also, do not attempt to vectorize if no vector code will be produced.
9074 return false;
9075
9076 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9077
9078 {
9079 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9080 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9081 Checks, BestPlan);
9082 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9083 << L->getHeader()->getParent()->getName() << "\"\n");
9084 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9086
9087 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9088 }
9089
9090 reportVectorization(ORE, L, VF, 1);
9091
9092 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9093 return true;
9094}
9095
9096// Emit a remark if there are stores to floats that required a floating point
9097// extension. If the vectorized loop was generated with floating point there
9098// will be a performance penalty from the conversion overhead and the change in
9099// the vector width.
9102 for (BasicBlock *BB : L->getBlocks()) {
9103 for (Instruction &Inst : *BB) {
9104 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9105 if (S->getValueOperand()->getType()->isFloatTy())
9106 Worklist.push_back(S);
9107 }
9108 }
9109 }
9110
9111 // Traverse the floating point stores upwards searching, for floating point
9112 // conversions.
9115 while (!Worklist.empty()) {
9116 auto *I = Worklist.pop_back_val();
9117 if (!L->contains(I))
9118 continue;
9119 if (!Visited.insert(I).second)
9120 continue;
9121
9122 // Emit a remark if the floating point store required a floating
9123 // point conversion.
9124 // TODO: More work could be done to identify the root cause such as a
9125 // constant or a function return type and point the user to it.
9126 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9127 ORE->emit([&]() {
9128 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9129 I->getDebugLoc(), L->getHeader())
9130 << "floating point conversion changes vector width. "
9131 << "Mixed floating point precision requires an up/down "
9132 << "cast that will negatively impact performance.";
9133 });
9134
9135 for (Use &Op : I->operands())
9136 if (auto *OpI = dyn_cast<Instruction>(Op))
9137 Worklist.push_back(OpI);
9138 }
9139}
9140
9141/// For loops with uncountable early exits, find the cost of doing work when
9142/// exiting the loop early, such as calculating the final exit values of
9143/// variables used outside the loop.
9144/// TODO: This is currently overly pessimistic because the loop may not take
9145/// the early exit, but better to keep this conservative for now. In future,
9146/// it might be possible to relax this by using branch probabilities.
9148 VPlan &Plan, ElementCount VF) {
9149 InstructionCost Cost = 0;
9150 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9151 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9152 // If the predecessor is not the middle.block, then it must be the
9153 // vector.early.exit block, which may contain work to calculate the exit
9154 // values of variables used outside the loop.
9155 if (PredVPBB != Plan.getMiddleBlock()) {
9156 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9157 << PredVPBB->getName() << ":\n");
9158 Cost += PredVPBB->cost(VF, CostCtx);
9159 }
9160 }
9161 }
9162 return Cost;
9163}
9164
9165/// This function determines whether or not it's still profitable to vectorize
9166/// the loop given the extra work we have to do outside of the loop:
9167/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9168/// to vectorize.
9169/// 2. In the case of loops with uncountable early exits, we may have to do
9170/// extra work when exiting the loop early, such as calculating the final
9171/// exit values of variables used outside the loop.
9172/// 3. The middle block.
9173static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9174 VectorizationFactor &VF, Loop *L,
9176 VPCostContext &CostCtx, VPlan &Plan,
9178 std::optional<unsigned> VScale) {
9179 InstructionCost TotalCost = Checks.getCost();
9180 if (!TotalCost.isValid())
9181 return false;
9182
9183 // Add on the cost of any work required in the vector early exit block, if
9184 // one exists.
9185 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9186
9187 TotalCost += Plan.getMiddleBlock()->cost(VF.Width, CostCtx);
9188
9189 // When interleaving only scalar and vector cost will be equal, which in turn
9190 // would lead to a divide by 0. Fall back to hard threshold.
9191 if (VF.Width.isScalar()) {
9192 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9193 if (TotalCost > VectorizeMemoryCheckThreshold) {
9194 LLVM_DEBUG(
9195 dbgs()
9196 << "LV: Interleaving only is not profitable due to runtime checks\n");
9197 return false;
9198 }
9199 return true;
9200 }
9201
9202 // The scalar cost should only be 0 when vectorizing with a user specified
9203 // VF/IC. In those cases, runtime checks should always be generated.
9204 uint64_t ScalarC = VF.ScalarCost.getValue();
9205 if (ScalarC == 0)
9206 return true;
9207
9208 // First, compute the minimum iteration count required so that the vector
9209 // loop outperforms the scalar loop.
9210 // The total cost of the scalar loop is
9211 // ScalarC * TC
9212 // where
9213 // * TC is the actual trip count of the loop.
9214 // * ScalarC is the cost of a single scalar iteration.
9215 //
9216 // The total cost of the vector loop is
9217 // RtC + VecC * (TC / VF) + EpiC
9218 // where
9219 // * RtC is the sum of the costs cost of
9220 // - the generated runtime checks
9221 // - performing any additional work in the vector.early.exit block for
9222 // loops with uncountable early exits.
9223 // - the middle block, if ExpectedTC <= VF.Width.
9224 // * VecC is the cost of a single vector iteration.
9225 // * TC is the actual trip count of the loop
9226 // * VF is the vectorization factor
9227 // * EpiCost is the cost of the generated epilogue, including the cost
9228 // of the remaining scalar operations.
9229 //
9230 // Vectorization is profitable once the total vector cost is less than the
9231 // total scalar cost:
9232 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9233 //
9234 // Now we can compute the minimum required trip count TC as
9235 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9236 //
9237 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9238 // the computations are performed on doubles, not integers and the result
9239 // is rounded up, hence we get an upper estimate of the TC.
9240 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9241 uint64_t RtC = TotalCost.getValue();
9242 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9243 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9244
9245 // Second, compute a minimum iteration count so that the cost of the
9246 // runtime checks is only a fraction of the total scalar loop cost. This
9247 // adds a loop-dependent bound on the overhead incurred if the runtime
9248 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9249 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9250 // cost, compute
9251 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9252 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9253
9254 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9255 // epilogue is allowed, choose the next closest multiple of VF. This should
9256 // partly compensate for ignoring the epilogue cost.
9257 uint64_t MinTC = std::max(MinTC1, MinTC2);
9258 if (SEL == CM_ScalarEpilogueAllowed)
9259 MinTC = alignTo(MinTC, IntVF);
9261
9262 LLVM_DEBUG(
9263 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9264 << VF.MinProfitableTripCount << "\n");
9265
9266 // Skip vectorization if the expected trip count is less than the minimum
9267 // required trip count.
9268 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9269 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9270 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9271 "trip count < minimum profitable VF ("
9272 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9273 << ")\n");
9274
9275 return false;
9276 }
9277 }
9278 return true;
9279}
9280
9282 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9284 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9286
9287/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9288/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9289/// don't have a corresponding wide induction in \p EpiPlan.
9290static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9291 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9292 // will need their resume-values computed in the main vector loop. Others
9293 // can be removed from the main VPlan.
9294 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9295 for (VPRecipeBase &R :
9298 continue;
9299 EpiWidenedPhis.insert(
9300 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9301 }
9302 for (VPRecipeBase &R :
9303 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9304 auto *VPIRInst = cast<VPIRPhi>(&R);
9305 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9306 continue;
9307 // There is no corresponding wide induction in the epilogue plan that would
9308 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9309 // together with the corresponding ResumePhi. The resume values for the
9310 // scalar loop will be created during execution of EpiPlan.
9311 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9312 VPIRInst->eraseFromParent();
9313 ResumePhi->eraseFromParent();
9314 }
9316
9317 using namespace VPlanPatternMatch;
9318 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9319 // introduce multiple uses of undef/poison. If the reduction start value may
9320 // be undef or poison it needs to be frozen and the frozen start has to be
9321 // used when computing the reduction result. We also need to use the frozen
9322 // value in the resume phi generated by the main vector loop, as this is also
9323 // used to compute the reduction result after the epilogue vector loop.
9324 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9325 bool UpdateResumePhis) {
9326 VPBuilder Builder(Plan.getEntry());
9327 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9328 auto *VPI = dyn_cast<VPInstruction>(&R);
9329 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9330 continue;
9331 VPValue *OrigStart = VPI->getOperand(0);
9333 continue;
9334 VPInstruction *Freeze =
9335 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9336 VPI->setOperand(0, Freeze);
9337 if (UpdateResumePhis)
9338 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9339 return Freeze != &U && isa<VPPhi>(&U);
9340 });
9341 }
9342 };
9343 AddFreezeForFindLastIVReductions(MainPlan, true);
9344 AddFreezeForFindLastIVReductions(EpiPlan, false);
9345
9346 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9347 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9348 // If there is a suitable resume value for the canonical induction in the
9349 // scalar (which will become vector) epilogue loop, use it and move it to the
9350 // beginning of the scalar preheader. Otherwise create it below.
9351 auto ResumePhiIter =
9352 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9353 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9354 m_ZeroInt()));
9355 });
9356 VPPhi *ResumePhi = nullptr;
9357 if (ResumePhiIter == MainScalarPH->phis().end()) {
9358 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9359 ResumePhi = ScalarPHBuilder.createScalarPhi(
9360 {VectorTC,
9362 {}, "vec.epilog.resume.val");
9363 } else {
9364 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9365 if (MainScalarPH->begin() == MainScalarPH->end())
9366 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9367 else if (&*MainScalarPH->begin() != ResumePhi)
9368 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9369 }
9370 // Add a user to to make sure the resume phi won't get removed.
9371 VPBuilder(MainScalarPH)
9373}
9374
9375/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9376/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9377/// reductions require creating new instructions to compute the resume values.
9378/// They are collected in a vector and returned. They must be moved to the
9379/// preheader of the vector epilogue loop, after created by the execution of \p
9380/// Plan.
9382 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9384 ScalarEvolution &SE) {
9385 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9386 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9387 Header->setName("vec.epilog.vector.body");
9388
9389 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9390 // When vectorizing the epilogue loop, the canonical induction needs to be
9391 // adjusted by the value after the main vector loop. Find the resume value
9392 // created during execution of the main VPlan. It must be the first phi in the
9393 // loop preheader. Use the value to increment the canonical IV, and update all
9394 // users in the loop region to use the adjusted value.
9395 // FIXME: Improve modeling for canonical IV start values in the epilogue
9396 // loop.
9397 using namespace llvm::PatternMatch;
9398 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9399 for (Value *Inc : EPResumeVal->incoming_values()) {
9400 if (match(Inc, m_SpecificInt(0)))
9401 continue;
9402 assert(!EPI.VectorTripCount &&
9403 "Must only have a single non-zero incoming value");
9404 EPI.VectorTripCount = Inc;
9405 }
9406 // If we didn't find a non-zero vector trip count, all incoming values
9407 // must be zero, which also means the vector trip count is zero. Pick the
9408 // first zero as vector trip count.
9409 // TODO: We should not choose VF * UF so the main vector loop is known to
9410 // be dead.
9411 if (!EPI.VectorTripCount) {
9412 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9413 all_of(EPResumeVal->incoming_values(),
9414 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9415 "all incoming values must be 0");
9416 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9417 }
9418 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9419 assert(all_of(IV->users(),
9420 [](const VPUser *U) {
9421 return isa<VPScalarIVStepsRecipe>(U) ||
9422 isa<VPDerivedIVRecipe>(U) ||
9423 cast<VPRecipeBase>(U)->isScalarCast() ||
9424 cast<VPInstruction>(U)->getOpcode() ==
9425 Instruction::Add;
9426 }) &&
9427 "the canonical IV should only be used by its increment or "
9428 "ScalarIVSteps when resetting the start value");
9429 VPBuilder Builder(Header, Header->getFirstNonPhi());
9430 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9431 IV->replaceAllUsesWith(Add);
9432 Add->setOperand(0, IV);
9433
9435 SmallVector<Instruction *> InstsToMove;
9436 // Ensure that the start values for all header phi recipes are updated before
9437 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9438 // handled above.
9439 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9440 Value *ResumeV = nullptr;
9441 // TODO: Move setting of resume values to prepareToExecute.
9442 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9443 // Find the reduction result by searching users of the phi or its backedge
9444 // value.
9445 auto IsReductionResult = [](VPRecipeBase *R) {
9446 auto *VPI = dyn_cast<VPInstruction>(R);
9447 return VPI &&
9451 };
9452 auto *RdxResult = cast<VPInstruction>(
9453 findRecipe(ReductionPhi->getBackedgeValue(), IsReductionResult));
9454 assert(
9455 (is_contained(RdxResult->operands(),
9456 ReductionPhi->getBackedgeValue()) ||
9457 (isa<VPWidenCastRecipe>(ReductionPhi->getBackedgeValue()) &&
9458 is_contained(RdxResult->operands(), ReductionPhi->getBackedgeValue()
9459 ->getDefiningRecipe()
9460 ->getOperand(0))) ||
9461 RdxResult->getOpcode() == VPInstruction::ComputeFindIVResult) &&
9462 "expected to find reduction result via backedge");
9463
9464 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9465 ->getIncomingValueForBlock(L->getLoopPreheader());
9466 RecurKind RK = ReductionPhi->getRecurrenceKind();
9468 Value *StartV = RdxResult->getOperand(0)->getLiveInIRValue();
9469 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9470 // start value; compare the final value from the main vector loop
9471 // to the start value.
9472 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9473 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9474 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9475 if (auto *I = dyn_cast<Instruction>(ResumeV))
9476 InstsToMove.push_back(I);
9478 Value *StartV = getStartValueFromReductionResult(RdxResult);
9479 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9481
9482 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9483 // an adjustment to the resume value. The resume value is adjusted to
9484 // the sentinel value when the final value from the main vector loop
9485 // equals the start value. This ensures correctness when the start value
9486 // might not be less than the minimum value of a monotonically
9487 // increasing induction variable.
9488 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9489 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9490 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9491 if (auto *I = dyn_cast<Instruction>(Cmp))
9492 InstsToMove.push_back(I);
9493 Value *Sentinel = RdxResult->getOperand(1)->getLiveInIRValue();
9494 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9495 if (auto *I = dyn_cast<Instruction>(ResumeV))
9496 InstsToMove.push_back(I);
9497 } else {
9498 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9499 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9500 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9502 "unexpected start value");
9503 VPI->setOperand(0, StartVal);
9504 continue;
9505 }
9506 }
9507 } else {
9508 // Retrieve the induction resume values for wide inductions from
9509 // their original phi nodes in the scalar loop.
9510 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9511 // Hook up to the PHINode generated by a ResumePhi recipe of main
9512 // loop VPlan, which feeds the scalar loop.
9513 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9514 }
9515 assert(ResumeV && "Must have a resume value");
9516 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9517 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9518 }
9519
9520 // For some VPValues in the epilogue plan we must re-use the generated IR
9521 // values from the main plan. Replace them with live-in VPValues.
9522 // TODO: This is a workaround needed for epilogue vectorization and it
9523 // should be removed once induction resume value creation is done
9524 // directly in VPlan.
9525 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9526 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9527 // epilogue plan. This ensures all users use the same frozen value.
9528 auto *VPI = dyn_cast<VPInstruction>(&R);
9529 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9531 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9532 continue;
9533 }
9534
9535 // Re-use the trip count and steps expanded for the main loop, as
9536 // skeleton creation needs it as a value that dominates both the scalar
9537 // and vector epilogue loops
9538 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9539 if (!ExpandR)
9540 continue;
9541 VPValue *ExpandedVal =
9542 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9543 ExpandR->replaceAllUsesWith(ExpandedVal);
9544 if (Plan.getTripCount() == ExpandR)
9545 Plan.resetTripCount(ExpandedVal);
9546 ExpandR->eraseFromParent();
9547 }
9548
9549 auto VScale = CM.getVScaleForTuning();
9550 unsigned MainLoopStep =
9551 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9552 unsigned EpilogueLoopStep =
9553 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9555 Plan, EPI.TripCount, EPI.VectorTripCount,
9557 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9558
9559 return InstsToMove;
9560}
9561
9562// Generate bypass values from the additional bypass block. Note that when the
9563// vectorized epilogue is skipped due to iteration count check, then the
9564// resume value for the induction variable comes from the trip count of the
9565// main vector loop, passed as the second argument.
9567 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9568 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9569 Instruction *OldInduction) {
9570 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9571 // For the primary induction the additional bypass end value is known.
9572 // Otherwise it is computed.
9573 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9574 if (OrigPhi != OldInduction) {
9575 auto *BinOp = II.getInductionBinOp();
9576 // Fast-math-flags propagate from the original induction instruction.
9578 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9579
9580 // Compute the end value for the additional bypass.
9581 EndValueFromAdditionalBypass =
9582 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9583 II.getStartValue(), Step, II.getKind(), BinOp);
9584 EndValueFromAdditionalBypass->setName("ind.end");
9585 }
9586 return EndValueFromAdditionalBypass;
9587}
9588
9590 VPlan &BestEpiPlan,
9592 const SCEV2ValueTy &ExpandedSCEVs,
9593 Value *MainVectorTripCount) {
9594 // Fix reduction resume values from the additional bypass block.
9595 BasicBlock *PH = L->getLoopPreheader();
9596 for (auto *Pred : predecessors(PH)) {
9597 for (PHINode &Phi : PH->phis()) {
9598 if (Phi.getBasicBlockIndex(Pred) != -1)
9599 continue;
9600 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9601 }
9602 }
9603 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9604 if (ScalarPH->hasPredecessors()) {
9605 // If ScalarPH has predecessors, we may need to update its reduction
9606 // resume values.
9607 for (const auto &[R, IRPhi] :
9608 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9610 BypassBlock);
9611 }
9612 }
9613
9614 // Fix induction resume values from the additional bypass block.
9615 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9616 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9617 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9619 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9620 LVL.getPrimaryInduction());
9621 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9622 Inc->setIncomingValueForBlock(BypassBlock, V);
9623 }
9624}
9625
9626/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9627// loop, after both plans have executed, updating branches from the iteration
9628// and runtime checks of the main loop, as well as updating various phis. \p
9629// InstsToMove contains instructions that need to be moved to the preheader of
9630// the epilogue vector loop.
9632 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9634 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9635 ArrayRef<Instruction *> InstsToMove) {
9636 BasicBlock *VecEpilogueIterationCountCheck =
9637 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9638
9639 BasicBlock *VecEpiloguePreHeader =
9640 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9641 ->getSuccessor(1);
9642 // Adjust the control flow taking the state info from the main loop
9643 // vectorization into account.
9645 "expected this to be saved from the previous pass.");
9646 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9648 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9649
9651 VecEpilogueIterationCountCheck},
9653 VecEpiloguePreHeader}});
9654
9655 BasicBlock *ScalarPH =
9656 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9658 VecEpilogueIterationCountCheck, ScalarPH);
9659 DTU.applyUpdates(
9661 VecEpilogueIterationCountCheck},
9663
9664 // Adjust the terminators of runtime check blocks and phis using them.
9665 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9666 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9667 if (SCEVCheckBlock) {
9668 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9669 VecEpilogueIterationCountCheck, ScalarPH);
9670 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9671 VecEpilogueIterationCountCheck},
9672 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9673 }
9674 if (MemCheckBlock) {
9675 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9676 VecEpilogueIterationCountCheck, ScalarPH);
9677 DTU.applyUpdates(
9678 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9679 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9680 }
9681
9682 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9683 // or reductions which merge control-flow from the latch block and the
9684 // middle block. Update the incoming values here and move the Phi into the
9685 // preheader.
9686 SmallVector<PHINode *, 4> PhisInBlock(
9687 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9688
9689 for (PHINode *Phi : PhisInBlock) {
9690 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9691 Phi->replaceIncomingBlockWith(
9692 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9693 VecEpilogueIterationCountCheck);
9694
9695 // If the phi doesn't have an incoming value from the
9696 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9697 // incoming value and also those from other check blocks. This is needed
9698 // for reduction phis only.
9699 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9700 return EPI.EpilogueIterationCountCheck == IncB;
9701 }))
9702 continue;
9703 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9704 if (SCEVCheckBlock)
9705 Phi->removeIncomingValue(SCEVCheckBlock);
9706 if (MemCheckBlock)
9707 Phi->removeIncomingValue(MemCheckBlock);
9708 }
9709
9710 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9711 for (auto *I : InstsToMove)
9712 I->moveBefore(IP);
9713
9714 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9715 // after executing the main loop. We need to update the resume values of
9716 // inductions and reductions during epilogue vectorization.
9717 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9718 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9719}
9720
9722 assert((EnableVPlanNativePath || L->isInnermost()) &&
9723 "VPlan-native path is not enabled. Only process inner loops.");
9724
9725 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9726 << L->getHeader()->getParent()->getName() << "' from "
9727 << L->getLocStr() << "\n");
9728
9729 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9730
9731 LLVM_DEBUG(
9732 dbgs() << "LV: Loop hints:"
9733 << " force="
9735 ? "disabled"
9737 ? "enabled"
9738 : "?"))
9739 << " width=" << Hints.getWidth()
9740 << " interleave=" << Hints.getInterleave() << "\n");
9741
9742 // Function containing loop
9743 Function *F = L->getHeader()->getParent();
9744
9745 // Looking at the diagnostic output is the only way to determine if a loop
9746 // was vectorized (other than looking at the IR or machine code), so it
9747 // is important to generate an optimization remark for each loop. Most of
9748 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9749 // generated as OptimizationRemark and OptimizationRemarkMissed are
9750 // less verbose reporting vectorized loops and unvectorized loops that may
9751 // benefit from vectorization, respectively.
9752
9753 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9754 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9755 return false;
9756 }
9757
9758 PredicatedScalarEvolution PSE(*SE, *L);
9759
9760 // Query this against the original loop and save it here because the profile
9761 // of the original loop header may change as the transformation happens.
9762 bool OptForSize = llvm::shouldOptimizeForSize(
9763 L->getHeader(), PSI,
9764 PSI && PSI->hasProfileSummary() ? &GetBFI() : nullptr,
9766
9767 // Check if it is legal to vectorize the loop.
9768 LoopVectorizationRequirements Requirements;
9769 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9770 &Requirements, &Hints, DB, AC,
9771 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9773 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9774 Hints.emitRemarkWithHints();
9775 return false;
9776 }
9777
9778 if (LVL.hasUncountableEarlyExit()) {
9780 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9781 "early exit is not enabled",
9782 "UncountableEarlyExitLoopsDisabled", ORE, L);
9783 return false;
9784 }
9785 SmallVector<BasicBlock *, 8> ExitingBlocks;
9786 L->getExitingBlocks(ExitingBlocks);
9787 // TODO: Support multiple uncountable early exits.
9788 if (ExitingBlocks.size() - LVL.getCountableExitingBlocks().size() > 1) {
9789 reportVectorizationFailure("Auto-vectorization of loops with multiple "
9790 "uncountable early exits is not yet supported",
9791 "MultipleUncountableEarlyExits", ORE, L);
9792 return false;
9793 }
9794 }
9795
9796 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9797 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9798 "faulting load is not supported",
9799 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9800 return false;
9801 }
9802
9803 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9804 // here. They may require CFG and instruction level transformations before
9805 // even evaluating whether vectorization is profitable. Since we cannot modify
9806 // the incoming IR, we need to build VPlan upfront in the vectorization
9807 // pipeline.
9808 if (!L->isInnermost())
9809 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9810 ORE, GetBFI, OptForSize, Hints,
9811 Requirements);
9812
9813 assert(L->isInnermost() && "Inner loop expected.");
9814
9815 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9816 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9817
9818 // If an override option has been passed in for interleaved accesses, use it.
9819 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9820 UseInterleaved = EnableInterleavedMemAccesses;
9821
9822 // Analyze interleaved memory accesses.
9823 if (UseInterleaved)
9825
9826 if (LVL.hasUncountableEarlyExit()) {
9827 BasicBlock *LoopLatch = L->getLoopLatch();
9828 if (IAI.requiresScalarEpilogue() ||
9830 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9831 reportVectorizationFailure("Auto-vectorization of early exit loops "
9832 "requiring a scalar epilogue is unsupported",
9833 "UncountableEarlyExitUnsupported", ORE, L);
9834 return false;
9835 }
9836 }
9837
9838 // Check the function attributes and profiles to find out if this function
9839 // should be optimized for size.
9841 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9842
9843 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9844 // count by optimizing for size, to minimize overheads.
9845 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9846 if (ExpectedTC && ExpectedTC->isFixed() &&
9847 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9848 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9849 << "This loop is worth vectorizing only if no scalar "
9850 << "iteration overheads are incurred.");
9852 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9853 else {
9854 LLVM_DEBUG(dbgs() << "\n");
9855 // Predicate tail-folded loops are efficient even when the loop
9856 // iteration count is low. However, setting the epilogue policy to
9857 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9858 // with runtime checks. It's more effective to let
9859 // `isOutsideLoopWorkProfitable` determine if vectorization is
9860 // beneficial for the loop.
9863 }
9864 }
9865
9866 // Check the function attributes to see if implicit floats or vectors are
9867 // allowed.
9868 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9870 "Can't vectorize when the NoImplicitFloat attribute is used",
9871 "loop not vectorized due to NoImplicitFloat attribute",
9872 "NoImplicitFloat", ORE, L);
9873 Hints.emitRemarkWithHints();
9874 return false;
9875 }
9876
9877 // Check if the target supports potentially unsafe FP vectorization.
9878 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9879 // for the target we're vectorizing for, to make sure none of the
9880 // additional fp-math flags can help.
9881 if (Hints.isPotentiallyUnsafe() &&
9882 TTI->isFPVectorizationPotentiallyUnsafe()) {
9884 "Potentially unsafe FP op prevents vectorization",
9885 "loop not vectorized due to unsafe FP support.",
9886 "UnsafeFP", ORE, L);
9887 Hints.emitRemarkWithHints();
9888 return false;
9889 }
9890
9891 bool AllowOrderedReductions;
9892 // If the flag is set, use that instead and override the TTI behaviour.
9893 if (ForceOrderedReductions.getNumOccurrences() > 0)
9894 AllowOrderedReductions = ForceOrderedReductions;
9895 else
9896 AllowOrderedReductions = TTI->enableOrderedReductions();
9897 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9898 ORE->emit([&]() {
9899 auto *ExactFPMathInst = Requirements.getExactFPInst();
9900 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9901 ExactFPMathInst->getDebugLoc(),
9902 ExactFPMathInst->getParent())
9903 << "loop not vectorized: cannot prove it is safe to reorder "
9904 "floating-point operations";
9905 });
9906 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9907 "reorder floating-point operations\n");
9908 Hints.emitRemarkWithHints();
9909 return false;
9910 }
9911
9912 // Use the cost model.
9913 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9914 GetBFI, F, &Hints, IAI, OptForSize);
9915 // Use the planner for vectorization.
9916 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9917 ORE);
9918
9919 // Get user vectorization factor and interleave count.
9920 ElementCount UserVF = Hints.getWidth();
9921 unsigned UserIC = Hints.getInterleave();
9922 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
9923 UserIC = 1;
9924
9925 // Plan how to best vectorize.
9926 LVP.plan(UserVF, UserIC);
9928 unsigned IC = 1;
9929
9930 if (ORE->allowExtraAnalysis(LV_NAME))
9932
9933 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9934 if (LVP.hasPlanWithVF(VF.Width)) {
9935 // Select the interleave count.
9936 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
9937
9938 unsigned SelectedIC = std::max(IC, UserIC);
9939 // Optimistically generate runtime checks if they are needed. Drop them if
9940 // they turn out to not be profitable.
9941 if (VF.Width.isVector() || SelectedIC > 1) {
9942 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC,
9943 *ORE);
9944
9945 // Bail out early if either the SCEV or memory runtime checks are known to
9946 // fail. In that case, the vector loop would never execute.
9947 using namespace llvm::PatternMatch;
9948 if (Checks.getSCEVChecks().first &&
9949 match(Checks.getSCEVChecks().first, m_One()))
9950 return false;
9951 if (Checks.getMemRuntimeChecks().first &&
9952 match(Checks.getMemRuntimeChecks().first, m_One()))
9953 return false;
9954 }
9955
9956 // Check if it is profitable to vectorize with runtime checks.
9957 bool ForceVectorization =
9959 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
9960 CM.CostKind, CM.PSE, L);
9961 if (!ForceVectorization &&
9962 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
9963 LVP.getPlanFor(VF.Width), SEL,
9964 CM.getVScaleForTuning())) {
9965 ORE->emit([&]() {
9967 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
9968 L->getHeader())
9969 << "loop not vectorized: cannot prove it is safe to reorder "
9970 "memory operations";
9971 });
9972 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
9973 Hints.emitRemarkWithHints();
9974 return false;
9975 }
9976 }
9977
9978 // Identify the diagnostic messages that should be produced.
9979 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9980 bool VectorizeLoop = true, InterleaveLoop = true;
9981 if (VF.Width.isScalar()) {
9982 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9983 VecDiagMsg = {
9984 "VectorizationNotBeneficial",
9985 "the cost-model indicates that vectorization is not beneficial"};
9986 VectorizeLoop = false;
9987 }
9988
9989 if (UserIC == 1 && Hints.getInterleave() > 1) {
9991 "UserIC should only be ignored due to unsafe dependencies");
9992 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
9993 IntDiagMsg = {"InterleavingUnsafe",
9994 "Ignoring user-specified interleave count due to possibly "
9995 "unsafe dependencies in the loop."};
9996 InterleaveLoop = false;
9997 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
9998 // Tell the user interleaving was avoided up-front, despite being explicitly
9999 // requested.
10000 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10001 "interleaving should be avoided up front\n");
10002 IntDiagMsg = {"InterleavingAvoided",
10003 "Ignoring UserIC, because interleaving was avoided up front"};
10004 InterleaveLoop = false;
10005 } else if (IC == 1 && UserIC <= 1) {
10006 // Tell the user interleaving is not beneficial.
10007 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10008 IntDiagMsg = {
10009 "InterleavingNotBeneficial",
10010 "the cost-model indicates that interleaving is not beneficial"};
10011 InterleaveLoop = false;
10012 if (UserIC == 1) {
10013 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10014 IntDiagMsg.second +=
10015 " and is explicitly disabled or interleave count is set to 1";
10016 }
10017 } else if (IC > 1 && UserIC == 1) {
10018 // Tell the user interleaving is beneficial, but it explicitly disabled.
10019 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10020 "disabled.\n");
10021 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10022 "the cost-model indicates that interleaving is beneficial "
10023 "but is explicitly disabled or interleave count is set to 1"};
10024 InterleaveLoop = false;
10025 }
10026
10027 // If there is a histogram in the loop, do not just interleave without
10028 // vectorizing. The order of operations will be incorrect without the
10029 // histogram intrinsics, which are only used for recipes with VF > 1.
10030 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10031 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10032 << "to histogram operations.\n");
10033 IntDiagMsg = {
10034 "HistogramPreventsScalarInterleaving",
10035 "Unable to interleave without vectorization due to constraints on "
10036 "the order of histogram operations"};
10037 InterleaveLoop = false;
10038 }
10039
10040 // Override IC if user provided an interleave count.
10041 IC = UserIC > 0 ? UserIC : IC;
10042
10043 // FIXME: Enable interleaving for FindLast reductions.
10044 if (any_of(LVL.getReductionVars().values(), [](auto &RdxDesc) {
10045 return RecurrenceDescriptor::isFindLastRecurrenceKind(
10046 RdxDesc.getRecurrenceKind());
10047 })) {
10048 LLVM_DEBUG(dbgs() << "LV: Not interleaving due to FindLast reduction.\n");
10049 IntDiagMsg = {"FindLastPreventsScalarInterleaving",
10050 "Unable to interleave due to FindLast reduction."};
10051 InterleaveLoop = false;
10052 IC = 1;
10053 }
10054
10055 // Emit diagnostic messages, if any.
10056 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10057 if (!VectorizeLoop && !InterleaveLoop) {
10058 // Do not vectorize or interleaving the loop.
10059 ORE->emit([&]() {
10060 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10061 L->getStartLoc(), L->getHeader())
10062 << VecDiagMsg.second;
10063 });
10064 ORE->emit([&]() {
10065 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10066 L->getStartLoc(), L->getHeader())
10067 << IntDiagMsg.second;
10068 });
10069 return false;
10070 }
10071
10072 if (!VectorizeLoop && InterleaveLoop) {
10073 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10074 ORE->emit([&]() {
10075 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10076 L->getStartLoc(), L->getHeader())
10077 << VecDiagMsg.second;
10078 });
10079 } else if (VectorizeLoop && !InterleaveLoop) {
10080 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10081 << ") in " << L->getLocStr() << '\n');
10082 ORE->emit([&]() {
10083 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10084 L->getStartLoc(), L->getHeader())
10085 << IntDiagMsg.second;
10086 });
10087 } else if (VectorizeLoop && InterleaveLoop) {
10088 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10089 << ") in " << L->getLocStr() << '\n');
10090 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10091 }
10092
10093 // Report the vectorization decision.
10094 if (VF.Width.isScalar()) {
10095 using namespace ore;
10096 assert(IC > 1);
10097 ORE->emit([&]() {
10098 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10099 L->getHeader())
10100 << "interleaved loop (interleaved count: "
10101 << NV("InterleaveCount", IC) << ")";
10102 });
10103 } else {
10104 // Report the vectorization decision.
10105 reportVectorization(ORE, L, VF, IC);
10106 }
10107 if (ORE->allowExtraAnalysis(LV_NAME))
10109
10110 // If we decided that it is *legal* to interleave or vectorize the loop, then
10111 // do it.
10112
10113 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10114 // Consider vectorizing the epilogue too if it's profitable.
10115 VectorizationFactor EpilogueVF =
10117 if (EpilogueVF.Width.isVector()) {
10118 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10119
10120 // The first pass vectorizes the main loop and creates a scalar epilogue
10121 // to be vectorized by executing the plan (potentially with a different
10122 // factor) again shortly afterwards.
10123 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10124 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10125 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10126 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10127 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10128 BestEpiPlan);
10129 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10130 Checks, *BestMainPlan);
10131 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10132 *BestMainPlan, MainILV, DT, false);
10133 ++LoopsVectorized;
10134
10135 // Second pass vectorizes the epilogue and adjusts the control flow
10136 // edges from the first pass.
10137 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10138 Checks, BestEpiPlan);
10140 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10141 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10142 true);
10143 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10144 Checks, InstsToMove);
10145 ++LoopsEpilogueVectorized;
10146 } else {
10147 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10148 BestPlan);
10149 // TODO: Move to general VPlan pipeline once epilogue loops are also
10150 // supported.
10153 IC, PSE);
10154 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10156
10157 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10158 ++LoopsVectorized;
10159 }
10160
10161 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10162 "DT not preserved correctly");
10163 assert(!verifyFunction(*F, &dbgs()));
10164
10165 return true;
10166}
10167
10169
10170 // Don't attempt if
10171 // 1. the target claims to have no vector registers, and
10172 // 2. interleaving won't help ILP.
10173 //
10174 // The second condition is necessary because, even if the target has no
10175 // vector registers, loop vectorization may still enable scalar
10176 // interleaving.
10177 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10178 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10179 return LoopVectorizeResult(false, false);
10180
10181 bool Changed = false, CFGChanged = false;
10182
10183 // The vectorizer requires loops to be in simplified form.
10184 // Since simplification may add new inner loops, it has to run before the
10185 // legality and profitability checks. This means running the loop vectorizer
10186 // will simplify all loops, regardless of whether anything end up being
10187 // vectorized.
10188 for (const auto &L : *LI)
10189 Changed |= CFGChanged |=
10190 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10191
10192 // Build up a worklist of inner-loops to vectorize. This is necessary as
10193 // the act of vectorizing or partially unrolling a loop creates new loops
10194 // and can invalidate iterators across the loops.
10195 SmallVector<Loop *, 8> Worklist;
10196
10197 for (Loop *L : *LI)
10198 collectSupportedLoops(*L, LI, ORE, Worklist);
10199
10200 LoopsAnalyzed += Worklist.size();
10201
10202 // Now walk the identified inner loops.
10203 while (!Worklist.empty()) {
10204 Loop *L = Worklist.pop_back_val();
10205
10206 // For the inner loops we actually process, form LCSSA to simplify the
10207 // transform.
10208 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10209
10210 Changed |= CFGChanged |= processLoop(L);
10211
10212 if (Changed) {
10213 LAIs->clear();
10214
10215#ifndef NDEBUG
10216 if (VerifySCEV)
10217 SE->verify();
10218#endif
10219 }
10220 }
10221
10222 // Process each loop nest in the function.
10223 return LoopVectorizeResult(Changed, CFGChanged);
10224}
10225
10228 LI = &AM.getResult<LoopAnalysis>(F);
10229 // There are no loops in the function. Return before computing other
10230 // expensive analyses.
10231 if (LI->empty())
10232 return PreservedAnalyses::all();
10241 AA = &AM.getResult<AAManager>(F);
10242
10243 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10244 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10245 GetBFI = [&AM, &F]() -> BlockFrequencyInfo & {
10247 };
10248 LoopVectorizeResult Result = runImpl(F);
10249 if (!Result.MadeAnyChange)
10250 return PreservedAnalyses::all();
10252
10253 if (isAssignmentTrackingEnabled(*F.getParent())) {
10254 for (auto &BB : F)
10256 }
10257
10258 PA.preserve<LoopAnalysis>();
10262
10263 if (Result.MadeCFGChange) {
10264 // Making CFG changes likely means a loop got vectorized. Indicate that
10265 // extra simplification passes should be run.
10266 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10267 // be run if runtime checks have been added.
10270 } else {
10272 }
10273 return PA;
10274}
10275
10277 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10278 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10279 OS, MapClassName2PassName);
10280
10281 OS << '<';
10282 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10283 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10284 OS << '>';
10285}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:81
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static bool hasFindLastReductionPhi(VPlan &Plan)
Returns true if the VPlan contains a VPReductionPHIRecipe with FindLast recurrence kind.
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1549
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1521
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:539
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getUnknown()
Definition DebugLoc.h:161
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:294
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2762
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has uncountable early exits, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MainLoopVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1584
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1635
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1568
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1549
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1713
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:235
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
static bool isFindLastRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
void insert_range(Range &&R)
Definition SetVector.h:176
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:262
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:89
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:98
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:267
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:25
Value * getOperand(unsigned i) const
Definition User.h:207
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:4009
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:4036
iterator end()
Definition VPlan.h:4046
iterator begin()
Recipe iterator methods.
Definition VPlan.h:4044
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4097
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:775
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:228
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:635
bool empty() const
Definition VPlan.h:4055
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:198
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:173
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:178
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:221
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:242
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:173
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:199
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3595
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
Definition VPlan.h:3616
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:476
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:449
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2075
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2118
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2107
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1830
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4162
Class to record and manage LLVM IR flags.
Definition VPlan.h:608
Helper to manage IR metadata for recipes.
Definition VPlan.h:1032
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1086
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1133
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1191
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1182
unsigned getOpcode() const
Definition VPlan.h:1246
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2733
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1427
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isOrdered() const
Returns true, if the phi is part of an ordered reduction.
Definition VPlan.h:2525
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2528
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2522
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2826
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4197
const VPBlockBase * getEntry() const
Definition VPlan.h:4233
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4295
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2982
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:594
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:253
operand_range operands()
Definition VPlanValue.h:321
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:297
unsigned getNumOperands() const
Definition VPlanValue.h:291
operand_iterator op_begin()
Definition VPlanValue.h:317
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:292
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:47
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
Definition VPlan.cpp:133
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:119
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:74
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1385
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1389
user_range users()
Definition VPlanValue.h:128
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1934
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1625
A recipe for handling GEP instructions.
Definition VPlan.h:1871
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2221
A recipe for widened phis.
Definition VPlan.h:2357
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1577
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4327
bool hasVF(ElementCount VF) const
Definition VPlan.h:4524
VPBasicBlock * getEntry()
Definition VPlan.h:4416
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4506
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4474
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4531
bool hasUF(unsigned UF) const
Definition VPlan.h:4542
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4464
VPSymbolicValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4503
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4566
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1022
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4680
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1004
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4488
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4441
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4455
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:916
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4460
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4421
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1164
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:397
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:553
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:93
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2544
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1726
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1835
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:368
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
This reduction is unordered with the partial result scaled down by some factor.
Definition VPlan.h:2446
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static bool handleMultiUseReductions(VPlan &Plan)
Try to legalize reductions with multiple in-loop uses.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, PredicatedScalarEvolution &PSE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void createInLoopReductionRecipes(VPlan &Plan, const DenseMap< VPBasicBlock *, VPValue * > &BlockMaskCache, const DenseSet< BasicBlock * > &BlocksNeedingPredication, ElementCount MinVF)
Create VPReductionRecipes for in-loop reductions.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, PredicatedScalarEvolution &PSE)
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static bool handleFindLastReductions(VPlan &Plan)
Check if Plan contains any FindLast reductions.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void expandBranchOnTwoConds(VPlan &Plan)
Expand BranchOnTwoConds instructions into explicit CFG with BranchOnCond instructions.
static void hoistPredicatedLoads(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Hoist predicated loads from the same address to the loop entry block, if they are guaranteed to execu...
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void createHeaderPhiRecipes(VPlan &Plan, PredicatedScalarEvolution &PSE, Loop &OrigLoop, const MapVector< PHINode *, InductionDescriptor > &Inductions, const MapVector< PHINode *, RecurrenceDescriptor > &Reductions, const SmallPtrSetImpl< const PHINode * > &FixedOrderRecurrences, const SmallPtrSetImpl< PHINode * > &InLoopReductions, bool AllowReordering)
Replace VPPhi recipes in Plan's header with corresponding VPHeaderPHIRecipe subclasses for inductions...
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void optimizeEVLMasks(VPlan &Plan)
Optimize recipes which use an EVL-based header mask to VP intrinsics, for example:
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void sinkPredicatedStores(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Sink predicated stores to the same address with complementary predicates (P and NOT P) to an uncondit...
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static void updateScalarResumePhis(VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Update the resume phis in the scalar preheader after creating wide recipes for first-order recurrence...
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks