LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cmath>
150#include <cstdint>
151#include <functional>
152#include <iterator>
153#include <limits>
154#include <memory>
155#include <string>
156#include <tuple>
157#include <utility>
158
159using namespace llvm;
160using namespace SCEVPatternMatch;
161
162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
164
165#ifndef NDEBUG
166const char VerboseDebug[] = DEBUG_TYPE "-verbose";
167#endif
168
169STATISTIC(LoopsVectorized, "Number of loops vectorized");
170STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
173
175 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
176 cl::desc("Enable vectorization of epilogue loops."));
177
179 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
180 cl::desc("When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
182 "loops."));
183
185 "epilogue-vectorization-minimum-VF", cl::Hidden,
186 cl::desc("Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
188
189/// Loops with a known constant trip count below this number are vectorized only
190/// if no scalar iteration overheads are incurred.
192 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
193 cl::desc("Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
195 "are incurred."));
196
198 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
199 cl::desc("The maximum allowed number of runtime memory checks"));
200
201// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
202// that predication is preferred, and this lists all options. I.e., the
203// vectorizer will try to fold the tail-loop (epilogue) into the vector body
204// and predicate the instructions accordingly. If tail-folding fails, there are
205// different fallback strategies depending on these values:
212} // namespace PreferPredicateTy
213
215 "prefer-predicate-over-epilogue",
218 cl::desc("Tail-folding and predication preferences over creating a scalar "
219 "epilogue loop."),
221 "scalar-epilogue",
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
226 "folding fails."),
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
231
233 "force-tail-folding-style", cl::desc("Force the tail folding style"),
236 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
252
254 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
255 cl::desc("Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
257
259 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
260 cl::desc("Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
262
264 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
266
267/// An interleave-group may need masking if it resides in a block that needs
268/// predication, or in order to mask away gaps.
270 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
271 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
272
274 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
275 cl::desc("A flag that overrides the target's number of scalar registers."));
276
278 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
279 cl::desc("A flag that overrides the target's number of vector registers."));
280
282 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
283 cl::desc("A flag that overrides the target's max interleave factor for "
284 "scalar loops."));
285
287 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
288 cl::desc("A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
290
292 "force-target-instruction-cost", cl::init(0), cl::Hidden,
293 cl::desc("A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
296
298 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
299 cl::desc(
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
302
304 "small-loop-cost", cl::init(20), cl::Hidden,
305 cl::desc(
306 "The cost of a loop that is considered 'small' by the interleaver."));
307
309 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
310 cl::desc("Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
313
314// Runtime interleave loops for load/store throughput.
316 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
317 cl::desc(
318 "Enable runtime interleaving until load/store ports are saturated"));
319
320/// The number of stores in a loop that are allowed to need predication.
322 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
323 cl::desc("Max number of stores to be predicated behind an if."));
324
326 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
327 cl::desc("Count the induction variable only once when interleaving"));
328
330 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
331 cl::desc("Enable if predication of stores during vectorization."));
332
334 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
335 cl::desc("The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
337
338static cl::opt<bool>
339 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
341 cl::desc("Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
343
345 "force-ordered-reductions", cl::init(false), cl::Hidden,
346 cl::desc("Enable the vectorisation of loops with in-order (strict) "
347 "FP reductions"));
348
350 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
351 cl::desc(
352 "Prefer predicating a reduction operation over an after loop select."));
353
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358
360 llvm::VerifyEachVPlan("vplan-verify-each",
361#ifdef EXPENSIVE_CHECKS
362 cl::init(true),
363#else
364 cl::init(false),
365#endif
367 cl::desc("Verfiy VPlans after VPlan transforms."));
368
369// This flag enables the stress testing of the VPlan H-CFG construction in the
370// VPlan-native vectorization path. It must be used in conjuction with
371// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
372// verification of the H-CFGs built.
374 "vplan-build-stress-test", cl::init(false), cl::Hidden,
375 cl::desc(
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
379
381 "interleave-loops", cl::init(true), cl::Hidden,
382 cl::desc("Enable loop interleaving in Loop vectorization passes"));
384 "vectorize-loops", cl::init(true), cl::Hidden,
385 cl::desc("Run the Loop vectorization passes"));
386
388 "force-widen-divrem-via-safe-divisor", cl::Hidden,
389 cl::desc(
390 "Override cost based safe divisor widening for div/rem instructions"));
391
393 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
395 cl::desc("Try wider VFs if they enable the use of vector variants"));
396
398 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
399 cl::desc(
400 "Enable vectorization of early exit loops with uncountable exits."));
401
403 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
404 cl::desc("Discard VFs if their register pressure is too high."));
405
406// Likelyhood of bypassing the vectorized loop because there are zero trips left
407// after prolog. See `emitIterationCountCheck`.
408static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
409
410/// A helper function that returns true if the given type is irregular. The
411/// type is irregular if its allocated size doesn't equal the store size of an
412/// element of the corresponding vector type.
413static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
414 // Determine if an array of N elements of type Ty is "bitcast compatible"
415 // with a <N x Ty> vector.
416 // This is only true if there is no padding between the array elements.
417 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
418}
419
420/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
421/// ElementCount to include loops whose trip count is a function of vscale.
423 const Loop *L) {
424 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
425 return ElementCount::getFixed(ExpectedTC);
426
427 const SCEV *BTC = SE->getBackedgeTakenCount(L);
429 return ElementCount::getFixed(0);
430
431 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
432 if (isa<SCEVVScale>(ExitCount))
434
435 const APInt *Scale;
436 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
437 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
438 if (Scale->getActiveBits() <= 32)
440
441 return ElementCount::getFixed(0);
442}
443
444/// Returns "best known" trip count, which is either a valid positive trip count
445/// or std::nullopt when an estimate cannot be made (including when the trip
446/// count would overflow), for the specified loop \p L as defined by the
447/// following procedure:
448/// 1) Returns exact trip count if it is known.
449/// 2) Returns expected trip count according to profile data if any.
450/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
451/// 4) Returns std::nullopt if all of the above failed.
452static std::optional<ElementCount>
454 bool CanUseConstantMax = true) {
455 // Check if exact trip count is known.
456 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
457 return ExpectedTC;
458
459 // Check if there is an expected trip count available from profile data.
461 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
462 return ElementCount::getFixed(*EstimatedTC);
463
464 if (!CanUseConstantMax)
465 return std::nullopt;
466
467 // Check if upper bound estimate is known.
468 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
469 return ElementCount::getFixed(ExpectedTC);
470
471 return std::nullopt;
472}
473
474namespace {
475// Forward declare GeneratedRTChecks.
476class GeneratedRTChecks;
477
478using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
479} // namespace
480
481namespace llvm {
482
484
485/// InnerLoopVectorizer vectorizes loops which contain only one basic
486/// block to a specified vectorization factor (VF).
487/// This class performs the widening of scalars into vectors, or multiple
488/// scalars. This class also implements the following features:
489/// * It inserts an epilogue loop for handling loops that don't have iteration
490/// counts that are known to be a multiple of the vectorization factor.
491/// * It handles the code generation for reduction variables.
492/// * Scalarization (implementation using scalars) of un-vectorizable
493/// instructions.
494/// InnerLoopVectorizer does not perform any vectorization-legality
495/// checks, and relies on the caller to check for the different legality
496/// aspects. The InnerLoopVectorizer relies on the
497/// LoopVectorizationLegality class to provide information about the induction
498/// and reduction variables that were found to a given vectorization factor.
500public:
504 ElementCount VecWidth, unsigned UnrollFactor,
506 GeneratedRTChecks &RTChecks, VPlan &Plan)
507 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
508 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
512
513 virtual ~InnerLoopVectorizer() = default;
514
515 /// Creates a basic block for the scalar preheader. Both
516 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
517 /// the method to create additional blocks and checks needed for epilogue
518 /// vectorization.
520
521 /// Fix the vectorized code, taking care of header phi's, and more.
523
524 /// Fix the non-induction PHIs in \p Plan.
526
527 /// Returns the original loop trip count.
528 Value *getTripCount() const { return TripCount; }
529
530 /// Used to set the trip count after ILV's construction and after the
531 /// preheader block has been executed. Note that this always holds the trip
532 /// count of the original loop for both main loop and epilogue vectorization.
533 void setTripCount(Value *TC) { TripCount = TC; }
534
535protected:
537
538 /// Create and return a new IR basic block for the scalar preheader whose name
539 /// is prefixed with \p Prefix.
541
542 /// Allow subclasses to override and print debug traces before/after vplan
543 /// execution, when trace information is requested.
544 virtual void printDebugTracesAtStart() {}
545 virtual void printDebugTracesAtEnd() {}
546
547 /// The original loop.
549
550 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
551 /// dynamic knowledge to simplify SCEV expressions and converts them to a
552 /// more usable form.
554
555 /// Loop Info.
557
558 /// Dominator Tree.
560
561 /// Target Transform Info.
563
564 /// Assumption Cache.
566
567 /// The vectorization SIMD factor to use. Each vector will have this many
568 /// vector elements.
570
571 /// The vectorization unroll factor to use. Each scalar is vectorized to this
572 /// many different vector instructions.
573 unsigned UF;
574
575 /// The builder that we use
577
578 // --- Vectorization state ---
579
580 /// Trip count of the original loop.
581 Value *TripCount = nullptr;
582
583 /// The profitablity analysis.
585
586 /// Structure to hold information about generated runtime checks, responsible
587 /// for cleaning the checks, if vectorization turns out unprofitable.
588 GeneratedRTChecks &RTChecks;
589
591
592 /// The vector preheader block of \p Plan, used as target for check blocks
593 /// introduced during skeleton creation.
595};
596
597/// Encapsulate information regarding vectorization of a loop and its epilogue.
598/// This information is meant to be updated and used across two stages of
599/// epilogue vectorization.
602 unsigned MainLoopUF = 0;
604 unsigned EpilogueUF = 0;
607 Value *TripCount = nullptr;
610
612 ElementCount EVF, unsigned EUF,
614 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
616 assert(EUF == 1 &&
617 "A high UF for the epilogue loop is likely not beneficial.");
618 }
619};
620
621/// An extension of the inner loop vectorizer that creates a skeleton for a
622/// vectorized loop that has its epilogue (residual) also vectorized.
623/// The idea is to run the vplan on a given loop twice, firstly to setup the
624/// skeleton and vectorize the main loop, and secondly to complete the skeleton
625/// from the first step and vectorize the epilogue. This is achieved by
626/// deriving two concrete strategy classes from this base class and invoking
627/// them in succession from the loop vectorizer planner.
629public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
667 /// Implements the interface for creating a vectorized skeleton using the
668 /// *main loop* strategy (i.e., the first pass of VPlan execution).
670
671protected:
672 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
673 /// vector preheader and its predecessor, also connecting the new block to the
674 /// scalar preheader.
675 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
676
677 // Create a check to see if the main vector loop should be executed
679 unsigned UF) const;
680
681 /// Emits an iteration count bypass check once for the main loop (when \p
682 /// ForEpilogue is false) and once for the epilogue loop (when \p
683 /// ForEpilogue is true).
685 bool ForEpilogue);
686 void printDebugTracesAtStart() override;
687 void printDebugTracesAtEnd() override;
688};
689
690// A specialized derived class of inner loop vectorizer that performs
691// vectorization of *epilogue* loops in the process of vectorizing loops and
692// their epilogues.
694public:
701 GeneratedRTChecks &Checks, VPlan &Plan)
703 Checks, Plan, EPI.EpilogueVF,
704 EPI.EpilogueVF, EPI.EpilogueUF) {}
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
878 std::function<BlockFrequencyInfo &()> GetBFI,
879 const Function *F, const LoopVectorizeHints *Hints,
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), GetBFI(GetBFI),
885 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
886 initializeVScaleForTuning();
888 }
889
890 /// \return An upper bound for the vectorization factors (both fixed and
891 /// scalable). If the factors are 0, vectorization and interleaving should be
892 /// avoided up front.
893 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
894
895 /// \return True if runtime checks are required for vectorization, and false
896 /// otherwise.
897 bool runtimeChecksRequired();
898
899 /// Setup cost-based decisions for user vectorization factor.
900 /// \return true if the UserVF is a feasible VF to be chosen.
903 return expectedCost(UserVF).isValid();
904 }
905
906 /// \return True if maximizing vector bandwidth is enabled by the target or
907 /// user options, for the given register kind.
908 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
909
910 /// \return True if register pressure should be considered for the given VF.
911 bool shouldConsiderRegPressureForVF(ElementCount VF);
912
913 /// \return The size (in bits) of the smallest and widest types in the code
914 /// that needs to be vectorized. We ignore values that remain scalar such as
915 /// 64 bit loop indices.
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
917
918 /// Memory access instruction may be vectorized in more than one way.
919 /// Form of instruction after vectorization depends on cost.
920 /// This function takes cost-based decisions for Load/Store instructions
921 /// and collects them in a map. This decisions map is used for building
922 /// the lists of loop-uniform and loop-scalar instructions.
923 /// The calculated cost is saved with widening decision in order to
924 /// avoid redundant calculations.
925 void setCostBasedWideningDecision(ElementCount VF);
926
927 /// A call may be vectorized in different ways depending on whether we have
928 /// vectorized variants available and whether the target supports masking.
929 /// This function analyzes all calls in the function at the supplied VF,
930 /// makes a decision based on the costs of available options, and stores that
931 /// decision in a map for use in planning and plan execution.
932 void setVectorizedCallDecision(ElementCount VF);
933
934 /// Collect values we want to ignore in the cost model.
935 void collectValuesToIgnore();
936
937 /// Collect all element types in the loop for which widening is needed.
938 void collectElementTypesForWidening();
939
940 /// Split reductions into those that happen in the loop, and those that happen
941 /// outside. In loop reductions are collected into InLoopReductions.
942 void collectInLoopReductions();
943
944 /// Returns true if we should use strict in-order reductions for the given
945 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
946 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
947 /// of FP operations.
948 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
949 return !Hints->allowReordering() && RdxDesc.isOrdered();
950 }
951
952 /// \returns The smallest bitwidth each instruction can be represented with.
953 /// The vector equivalents of these instructions should be truncated to this
954 /// type.
956 return MinBWs;
957 }
958
959 /// \returns True if it is more profitable to scalarize instruction \p I for
960 /// vectorization factor \p VF.
962 assert(VF.isVector() &&
963 "Profitable to scalarize relevant only for VF > 1.");
964 assert(
965 TheLoop->isInnermost() &&
966 "cost-model should not be used for outer loops (in VPlan-native path)");
967
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(I);
972 }
973
974 /// Returns true if \p I is known to be uniform after vectorization.
976 assert(
977 TheLoop->isInnermost() &&
978 "cost-model should not be used for outer loops (in VPlan-native path)");
979 // Pseudo probe needs to be duplicated for each unrolled iteration and
980 // vector lane so that profiled loop trip count can be accurately
981 // accumulated instead of being under counted.
983 return false;
984
985 if (VF.isScalar())
986 return true;
987
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(I);
992 }
993
994 /// Returns true if \p I is known to be scalar after vectorization.
996 assert(
997 TheLoop->isInnermost() &&
998 "cost-model should not be used for outer loops (in VPlan-native path)");
999 if (VF.isScalar())
1000 return true;
1001
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(I);
1006 }
1007
1008 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1009 /// for vectorization factor \p VF.
1011 // Truncs must truncate at most to their destination type.
1012 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1014 return false;
1015 return VF.isVector() && MinBWs.contains(I) &&
1016 !isProfitableToScalarize(I, VF) &&
1018 }
1019
1020 /// Decision that was taken during cost calculation for memory instruction.
1023 CM_Widen, // For consecutive accesses with stride +1.
1024 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1030 };
1031
1032 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1033 /// instruction \p I and vector width \p VF.
1036 assert(VF.isVector() && "Expected VF >=2");
1037 WideningDecisions[{I, VF}] = {W, Cost};
1038 }
1039
1040 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1041 /// interleaving group \p Grp and vector width \p VF.
1045 assert(VF.isVector() && "Expected VF >=2");
1046 /// Broadcast this decicion to all instructions inside the group.
1047 /// When interleaving, the cost will only be assigned one instruction, the
1048 /// insert position. For other cases, add the appropriate fraction of the
1049 /// total cost to each instruction. This ensures accurate costs are used,
1050 /// even if the insert position instruction is not used.
1051 InstructionCost InsertPosCost = Cost;
1052 InstructionCost OtherMemberCost = 0;
1053 if (W != CM_Interleave)
1054 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1055 ;
1056 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1057 if (auto *I = Grp->getMember(Idx)) {
1058 if (Grp->getInsertPos() == I)
1059 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1060 else
1061 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1062 }
1063 }
1064 }
1065
1066 /// Return the cost model decision for the given instruction \p I and vector
1067 /// width \p VF. Return CM_Unknown if this instruction did not pass
1068 /// through the cost modeling.
1070 assert(VF.isVector() && "Expected VF to be a vector VF");
1071 assert(
1072 TheLoop->isInnermost() &&
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1074
1075 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1078 return CM_Unknown;
1079 return Itr->second.first;
1080 }
1081
1082 /// Return the vectorization cost for the given instruction \p I and vector
1083 /// width \p VF.
1085 assert(VF.isVector() && "Expected VF >=2");
1086 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1090 }
1091
1099
1101 Function *Variant, Intrinsic::ID IID,
1102 std::optional<unsigned> MaskPos,
1104 assert(!VF.isScalar() && "Expected vector VF");
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1106 }
1107
1109 ElementCount VF) const {
1110 assert(!VF.isScalar() && "Expected vector VF");
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (I == CallWideningDecisions.end())
1113 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1114 return I->second;
1115 }
1116
1117 /// Return True if instruction \p I is an optimizable truncate whose operand
1118 /// is an induction variable. Such a truncate will be removed by adding a new
1119 /// induction variable with the destination type.
1121 // If the instruction is not a truncate, return false.
1122 auto *Trunc = dyn_cast<TruncInst>(I);
1123 if (!Trunc)
1124 return false;
1125
1126 // Get the source and destination types of the truncate.
1127 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1128 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1129
1130 // If the truncate is free for the given types, return false. Replacing a
1131 // free truncate with an induction variable would add an induction variable
1132 // update instruction to each iteration of the loop. We exclude from this
1133 // check the primary induction variable since it will need an update
1134 // instruction regardless.
1135 Value *Op = Trunc->getOperand(0);
1136 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1137 return false;
1138
1139 // If the truncated value is not an induction variable, return false.
1140 return Legal->isInductionPhi(Op);
1141 }
1142
1143 /// Collects the instructions to scalarize for each predicated instruction in
1144 /// the loop.
1145 void collectInstsToScalarize(ElementCount VF);
1146
1147 /// Collect values that will not be widened, including Uniforms, Scalars, and
1148 /// Instructions to Scalarize for the given \p VF.
1149 /// The sets depend on CM decision for Load/Store instructions
1150 /// that may be vectorized as interleave, gather-scatter or scalarized.
1151 /// Also make a decision on what to do about call instructions in the loop
1152 /// at that VF -- scalarize, call a known vector routine, or call a
1153 /// vector intrinsic.
1155 // Do the analysis once.
1156 if (VF.isScalar() || Uniforms.contains(VF))
1157 return;
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1163 }
1164
1165 /// Returns true if the target machine supports masked store operation
1166 /// for the given \p DataType and kind of access to \p Ptr.
1167 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1168 unsigned AddressSpace) const {
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1170 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1171 }
1172
1173 /// Returns true if the target machine supports masked load operation
1174 /// for the given \p DataType and kind of access to \p Ptr.
1175 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1176 unsigned AddressSpace) const {
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1178 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1179 }
1180
1181 /// Returns true if the target machine can represent \p V as a masked gather
1182 /// or scatter operation.
1184 bool LI = isa<LoadInst>(V);
1185 bool SI = isa<StoreInst>(V);
1186 if (!LI && !SI)
1187 return false;
1188 auto *Ty = getLoadStoreType(V);
1190 if (VF.isVector())
1191 Ty = VectorType::get(Ty, VF);
1192 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1193 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1194 }
1195
1196 /// Returns true if the target machine supports all of the reduction
1197 /// variables found for the given VF.
1199 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1202 }));
1203 }
1204
1205 /// Given costs for both strategies, return true if the scalar predication
1206 /// lowering should be used for div/rem. This incorporates an override
1207 /// option so it is not simply a cost comparison.
1209 InstructionCost SafeDivisorCost) const {
1210 switch (ForceSafeDivisor) {
1211 case cl::BOU_UNSET:
1212 return ScalarCost < SafeDivisorCost;
1213 case cl::BOU_TRUE:
1214 return false;
1215 case cl::BOU_FALSE:
1216 return true;
1217 }
1218 llvm_unreachable("impossible case value");
1219 }
1220
1221 /// Returns true if \p I is an instruction which requires predication and
1222 /// for which our chosen predication strategy is scalarization (i.e. we
1223 /// don't have an alternate strategy such as masking available).
1224 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1225 bool isScalarWithPredication(Instruction *I, ElementCount VF);
1226
1227 /// Returns true if \p I is an instruction that needs to be predicated
1228 /// at runtime. The result is independent of the predication mechanism.
1229 /// Superset of instructions that return true for isScalarWithPredication.
1230 bool isPredicatedInst(Instruction *I) const;
1231
1232 /// A helper function that returns how much we should divide the cost of a
1233 /// predicated block by. Typically this is the reciprocal of the block
1234 /// probability, i.e. if we return X we are assuming the predicated block will
1235 /// execute once for every X iterations of the loop header so the block should
1236 /// only contribute 1/X of its cost to the total cost calculation, but when
1237 /// optimizing for code size it will just be 1 as code size costs don't depend
1238 /// on execution probabilities.
1239 ///
1240 /// Note that if a block wasn't originally predicated but was predicated due
1241 /// to tail folding, the divisor will still be 1 because it will execute for
1242 /// every iteration of the loop header.
1243 inline uint64_t
1244 getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind,
1245 const BasicBlock *BB);
1246
1247 /// Return the costs for our two available strategies for lowering a
1248 /// div/rem operation which requires speculating at least one lane.
1249 /// First result is for scalarization (will be invalid for scalable
1250 /// vectors); second is for the safe-divisor strategy.
1251 std::pair<InstructionCost, InstructionCost>
1252 getDivRemSpeculationCost(Instruction *I, ElementCount VF);
1253
1254 /// Returns true if \p I is a memory instruction with consecutive memory
1255 /// access that can be widened.
1256 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1257
1258 /// Returns true if \p I is a memory instruction in an interleaved-group
1259 /// of memory accesses that can be vectorized with wide vector loads/stores
1260 /// and shuffles.
1261 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1262
1263 /// Check if \p Instr belongs to any interleaved access group.
1265 return InterleaveInfo.isInterleaved(Instr);
1266 }
1267
1268 /// Get the interleaved access group that \p Instr belongs to.
1271 return InterleaveInfo.getInterleaveGroup(Instr);
1272 }
1273
1274 /// Returns true if we're required to use a scalar epilogue for at least
1275 /// the final iteration of the original loop.
1276 bool requiresScalarEpilogue(bool IsVectorizing) const {
1277 if (!isScalarEpilogueAllowed()) {
1278 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1279 return false;
1280 }
1281 // If we might exit from anywhere but the latch and early exit vectorization
1282 // is disabled, we must run the exiting iteration in scalar form.
1283 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1284 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1287 return true;
1288 }
1289 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1290 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1291 "interleaved group requires scalar epilogue\n");
1292 return true;
1293 }
1294 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1295 return false;
1296 }
1297
1298 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1299 /// loop hint annotation.
1301 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1302 }
1303
1304 /// Returns true if tail-folding is preferred over a scalar epilogue.
1306 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1307 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Returns true if the use of wide lane masks is requested and the loop is
1371 /// using tail-folding with a lane mask for control flow.
1380
1381 /// Return maximum safe number of elements to be processed per vector
1382 /// iteration, which do not prevent store-load forwarding and are safe with
1383 /// regard to the memory dependencies. Required for EVL-based VPlans to
1384 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1385 /// MaxSafeElements).
1386 /// TODO: need to consider adjusting cost model to use this value as a
1387 /// vectorization factor for EVL-based vectorization.
1388 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1389
1390 /// Returns true if the instructions in this block requires predication
1391 /// for any reason, e.g. because tail folding now requires a predicate
1392 /// or because the block in the original loop was predicated.
1394 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1395 }
1396
1397 /// Returns true if VP intrinsics with explicit vector length support should
1398 /// be generated in the tail folded loop.
1402
1403 /// Returns true if the Phi is part of an inloop reduction.
1404 bool isInLoopReduction(PHINode *Phi) const {
1405 return InLoopReductions.contains(Phi);
1406 }
1407
1408 /// Returns the set of in-loop reduction PHIs.
1410 return InLoopReductions;
1411 }
1412
1413 /// Returns true if the predicated reduction select should be used to set the
1414 /// incoming value for the reduction phi.
1416 // Force to use predicated reduction select since the EVL of the
1417 // second-to-last iteration might not be VF*UF.
1418 if (foldTailWithEVL())
1419 return true;
1421 TTI.preferPredicatedReductionSelect();
1422 }
1423
1424 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1425 /// with factor VF. Return the cost of the instruction, including
1426 /// scalarization overhead if it's needed.
1427 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1428
1429 /// Estimate cost of a call instruction CI if it were vectorized with factor
1430 /// VF. Return the cost of the instruction, including scalarization overhead
1431 /// if it's needed.
1432 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1433
1434 /// Invalidates decisions already taken by the cost model.
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1438 Uniforms.clear();
1439 Scalars.clear();
1440 }
1441
1442 /// Returns the expected execution cost. The unit of the cost does
1443 /// not matter because we use the 'cost' units to compare different
1444 /// vector widths. The cost that is returned is *not* normalized by
1445 /// the factor width.
1446 InstructionCost expectedCost(ElementCount VF);
1447
1448 bool hasPredStores() const { return NumPredStores > 0; }
1449
1450 /// Returns true if epilogue vectorization is considered profitable, and
1451 /// false otherwise.
1452 /// \p VF is the vectorization factor chosen for the original loop.
1453 /// \p Multiplier is an aditional scaling factor applied to VF before
1454 /// comparing to EpilogueVectorizationMinVF.
1455 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1456 const unsigned IC) const;
1457
1458 /// Returns the execution time cost of an instruction for a given vector
1459 /// width. Vector width of one means scalar.
1460 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1461
1462 /// Return the cost of instructions in an inloop reduction pattern, if I is
1463 /// part of that pattern.
1464 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1465 ElementCount VF,
1466 Type *VectorTy) const;
1467
1468 /// Returns true if \p Op should be considered invariant and if it is
1469 /// trivially hoistable.
1470 bool shouldConsiderInvariant(Value *Op);
1471
1472 /// Return the value of vscale used for tuning the cost model.
1473 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1474
1475private:
1476 unsigned NumPredStores = 0;
1477
1478 /// Used to store the value of vscale used for tuning the cost model. It is
1479 /// initialized during object construction.
1480 std::optional<unsigned> VScaleForTuning;
1481
1482 /// Initializes the value of vscale used for tuning the cost model. If
1483 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1484 /// return the value returned by the corresponding TTI method.
1485 void initializeVScaleForTuning() {
1486 const Function *Fn = TheLoop->getHeader()->getParent();
1487 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1488 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1489 auto Min = Attr.getVScaleRangeMin();
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1493 return;
1494 }
1495 }
1496
1497 VScaleForTuning = TTI.getVScaleForTuning();
1498 }
1499
1500 /// \return An upper bound for the vectorization factors for both
1501 /// fixed and scalable vectorization, where the minimum-known number of
1502 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1503 /// disabled or unsupported, then the scalable part will be equal to
1504 /// ElementCount::getScalable(0).
1505 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1508
1509 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1510 /// MaxTripCount.
1511 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1512 bool FoldTailByMasking) const;
1513
1514 /// \return the maximized element count based on the targets vector
1515 /// registers and the loop trip-count, but limited to a maximum safe VF.
1516 /// This is a helper function of computeFeasibleMaxVF.
1517 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1522
1523 /// Checks if scalable vectorization is supported and enabled. Caches the
1524 /// result to avoid repeated debug dumps for repeated queries.
1525 bool isScalableVectorizationAllowed();
1526
1527 /// \return the maximum legal scalable VF, based on the safe max number
1528 /// of elements.
1529 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1530
1531 /// Calculate vectorization cost of memory instruction \p I.
1532 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1533
1534 /// The cost computation for scalarized memory instruction.
1535 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1536
1537 /// The cost computation for interleaving group of memory instructions.
1538 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1539
1540 /// The cost computation for Gather/Scatter instruction.
1541 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1542
1543 /// The cost computation for widening instruction \p I with consecutive
1544 /// memory access.
1545 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1546
1547 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1548 /// Load: scalar load + broadcast.
1549 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1550 /// element)
1551 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1552
1553 /// Estimate the overhead of scalarizing an instruction. This is a
1554 /// convenience wrapper for the type-based getScalarizationOverhead API.
1556 ElementCount VF) const;
1557
1558 /// Returns true if an artificially high cost for emulated masked memrefs
1559 /// should be used.
1560 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1561
1562 /// Map of scalar integer values to the smallest bitwidth they can be legally
1563 /// represented as. The vector equivalents of these values should be truncated
1564 /// to this type.
1565 MapVector<Instruction *, uint64_t> MinBWs;
1566
1567 /// A type representing the costs for instructions if they were to be
1568 /// scalarized rather than vectorized. The entries are Instruction-Cost
1569 /// pairs.
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1571
1572 /// A set containing all BasicBlocks that are known to present after
1573 /// vectorization as a predicated block.
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1576
1577 /// Records whether it is allowed to have the original scalar loop execute at
1578 /// least once. This may be needed as a fallback loop in case runtime
1579 /// aliasing/dependence checks fail, or to handle the tail/remainder
1580 /// iterations when the trip count is unknown or doesn't divide by the VF,
1581 /// or as a peel-loop to handle gaps in interleave-groups.
1582 /// Under optsize and when the trip count is very small we don't allow any
1583 /// iterations to execute in the scalar loop.
1584 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1585
1586 /// Control finally chosen tail folding style. The first element is used if
1587 /// the IV update may overflow, the second element - if it does not.
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1590
1591 /// true if scalable vectorization is supported and enabled.
1592 std::optional<bool> IsScalableVectorizationAllowed;
1593
1594 /// Maximum safe number of elements to be processed per vector iteration,
1595 /// which do not prevent store-load forwarding and are safe with regard to the
1596 /// memory dependencies. Required for EVL-based veectorization, where this
1597 /// value is used as the upper bound of the safe AVL.
1598 std::optional<unsigned> MaxSafeElements;
1599
1600 /// A map holding scalar costs for different vectorization factors. The
1601 /// presence of a cost for an instruction in the mapping indicates that the
1602 /// instruction will be scalarized when vectorizing with the associated
1603 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1605
1606 /// Holds the instructions known to be uniform after vectorization.
1607 /// The data is collected per VF.
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1609
1610 /// Holds the instructions known to be scalar after vectorization.
1611 /// The data is collected per VF.
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1613
1614 /// Holds the instructions (address computations) that are forced to be
1615 /// scalarized.
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1617
1618 /// PHINodes of the reductions that should be expanded in-loop.
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1620
1621 /// A Map of inloop reduction operations and their immediate chain operand.
1622 /// FIXME: This can be removed once reductions can be costed correctly in
1623 /// VPlan. This was added to allow quick lookup of the inloop operations.
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1625
1626 /// Returns the expected difference in cost from scalarizing the expression
1627 /// feeding a predicated instruction \p PredInst. The instructions to
1628 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1629 /// non-negative return value implies the expression will be scalarized.
1630 /// Currently, only single-use chains are considered for scalarization.
1631 InstructionCost computePredInstDiscount(Instruction *PredInst,
1632 ScalarCostsTy &ScalarCosts,
1633 ElementCount VF);
1634
1635 /// Collect the instructions that are uniform after vectorization. An
1636 /// instruction is uniform if we represent it with a single scalar value in
1637 /// the vectorized loop corresponding to each vector iteration. Examples of
1638 /// uniform instructions include pointer operands of consecutive or
1639 /// interleaved memory accesses. Note that although uniformity implies an
1640 /// instruction will be scalar, the reverse is not true. In general, a
1641 /// scalarized instruction will be represented by VF scalar values in the
1642 /// vectorized loop, each corresponding to an iteration of the original
1643 /// scalar loop.
1644 void collectLoopUniforms(ElementCount VF);
1645
1646 /// Collect the instructions that are scalar after vectorization. An
1647 /// instruction is scalar if it is known to be uniform or will be scalarized
1648 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1649 /// to the list if they are used by a load/store instruction that is marked as
1650 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1651 /// VF values in the vectorized loop, each corresponding to an iteration of
1652 /// the original scalar loop.
1653 void collectLoopScalars(ElementCount VF);
1654
1655 /// Keeps cost model vectorization decision and cost for instructions.
1656 /// Right now it is used for memory instructions only.
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1659
1660 DecisionList WideningDecisions;
1661
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1664
1665 CallDecisionList CallWideningDecisions;
1666
1667 /// Returns true if \p V is expected to be vectorized and it needs to be
1668 /// extracted.
1669 bool needsExtract(Value *V, ElementCount VF) const {
1671 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1672 TheLoop->isLoopInvariant(I) ||
1673 getWideningDecision(I, VF) == CM_Scalarize ||
1674 (isa<CallInst>(I) &&
1675 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1676 return false;
1677
1678 // Assume we can vectorize V (and hence we need extraction) if the
1679 // scalars are not computed yet. This can happen, because it is called
1680 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1681 // the scalars are collected. That should be a safe assumption in most
1682 // cases, because we check if the operands have vectorizable types
1683 // beforehand in LoopVectorizationLegality.
1684 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1685 };
1686
1687 /// Returns a range containing only operands needing to be extracted.
1688 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1689 ElementCount VF) const {
1690
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1693 for (Value *Op : Ops) {
1694 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1695 !needsExtract(Op, VF))
1696 continue;
1697 Res.push_back(Op);
1698 }
1699 return Res;
1700 }
1701
1702public:
1703 /// The loop that we evaluate.
1705
1706 /// Predicated scalar evolution analysis.
1708
1709 /// Loop Info analysis.
1711
1712 /// Vectorization legality.
1714
1715 /// Vector target information.
1717
1718 /// Target Library Info.
1720
1721 /// Demanded bits analysis.
1723
1724 /// Assumption cache.
1726
1727 /// Interface to emit optimization remarks.
1729
1730 /// A function to lazily fetch BlockFrequencyInfo. This avoids computing it
1731 /// unless necessary, e.g. when the loop isn't legal to vectorize or when
1732 /// there is no predication.
1733 std::function<BlockFrequencyInfo &()> GetBFI;
1734 /// The BlockFrequencyInfo returned from GetBFI.
1736 /// Returns the BlockFrequencyInfo for the function if cached, otherwise
1737 /// fetches it via GetBFI. Avoids an indirect call to the std::function.
1739 if (!BFI)
1740 BFI = &GetBFI();
1741 return *BFI;
1742 }
1743
1745
1746 /// Loop Vectorize Hint.
1748
1749 /// The interleave access information contains groups of interleaved accesses
1750 /// with the same stride and close to each other.
1752
1753 /// Values to ignore in the cost model.
1755
1756 /// Values to ignore in the cost model when VF > 1.
1758
1759 /// All element types found in the loop.
1761
1762 /// The kind of cost that we are calculating
1764
1765 /// Whether this loop should be optimized for size based on function attribute
1766 /// or profile information.
1768
1769 /// The highest VF possible for this loop, without using MaxBandwidth.
1771};
1772} // end namespace llvm
1773
1774namespace {
1775/// Helper struct to manage generating runtime checks for vectorization.
1776///
1777/// The runtime checks are created up-front in temporary blocks to allow better
1778/// estimating the cost and un-linked from the existing IR. After deciding to
1779/// vectorize, the checks are moved back. If deciding not to vectorize, the
1780/// temporary blocks are completely removed.
1781class GeneratedRTChecks {
1782 /// Basic block which contains the generated SCEV checks, if any.
1783 BasicBlock *SCEVCheckBlock = nullptr;
1784
1785 /// The value representing the result of the generated SCEV checks. If it is
1786 /// nullptr no SCEV checks have been generated.
1787 Value *SCEVCheckCond = nullptr;
1788
1789 /// Basic block which contains the generated memory runtime checks, if any.
1790 BasicBlock *MemCheckBlock = nullptr;
1791
1792 /// The value representing the result of the generated memory runtime checks.
1793 /// If it is nullptr no memory runtime checks have been generated.
1794 Value *MemRuntimeCheckCond = nullptr;
1795
1796 DominatorTree *DT;
1797 LoopInfo *LI;
1799
1800 SCEVExpander SCEVExp;
1801 SCEVExpander MemCheckExp;
1802
1803 bool CostTooHigh = false;
1804
1805 Loop *OuterLoop = nullptr;
1806
1808
1809 /// The kind of cost that we are calculating
1811
1812public:
1813 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1816 : DT(DT), LI(LI), TTI(TTI),
1817 SCEVExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1818 MemCheckExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1819 PSE(PSE), CostKind(CostKind) {}
1820
1821 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1822 /// accurately estimate the cost of the runtime checks. The blocks are
1823 /// un-linked from the IR and are added back during vector code generation. If
1824 /// there is no vector code generation, the check blocks are removed
1825 /// completely.
1826 void create(Loop *L, const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC,
1828 OptimizationRemarkEmitter &ORE) {
1829
1830 // Hard cutoff to limit compile-time increase in case a very large number of
1831 // runtime checks needs to be generated.
1832 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1833 // profile info.
1834 CostTooHigh =
1836 if (CostTooHigh) {
1837 // Mark runtime checks as never succeeding when they exceed the threshold.
1838 MemRuntimeCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1839 SCEVCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1840 ORE.emit([&]() {
1841 return OptimizationRemarkAnalysisAliasing(
1842 DEBUG_TYPE, "TooManyMemoryRuntimeChecks", L->getStartLoc(),
1843 L->getHeader())
1844 << "loop not vectorized: too many memory checks needed";
1845 });
1846 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1847 return;
1848 }
1849
1850 BasicBlock *LoopHeader = L->getHeader();
1851 BasicBlock *Preheader = L->getLoopPreheader();
1852
1853 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1854 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1855 // may be used by SCEVExpander. The blocks will be un-linked from their
1856 // predecessors and removed from LI & DT at the end of the function.
1857 if (!UnionPred.isAlwaysTrue()) {
1858 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1859 nullptr, "vector.scevcheck");
1860
1861 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1862 &UnionPred, SCEVCheckBlock->getTerminator());
1863 if (isa<Constant>(SCEVCheckCond)) {
1864 // Clean up directly after expanding the predicate to a constant, to
1865 // avoid further expansions re-using anything left over from SCEVExp.
1866 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1867 SCEVCleaner.cleanup();
1868 }
1869 }
1870
1871 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1872 if (RtPtrChecking.Need) {
1873 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1874 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1875 "vector.memcheck");
1876
1877 auto DiffChecks = RtPtrChecking.getDiffChecks();
1878 if (DiffChecks) {
1879 Value *RuntimeVF = nullptr;
1880 MemRuntimeCheckCond = addDiffRuntimeChecks(
1881 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1882 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1883 if (!RuntimeVF)
1884 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1885 return RuntimeVF;
1886 },
1887 IC);
1888 } else {
1889 MemRuntimeCheckCond = addRuntimeChecks(
1890 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1892 }
1893 assert(MemRuntimeCheckCond &&
1894 "no RT checks generated although RtPtrChecking "
1895 "claimed checks are required");
1896 }
1897
1898 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1899
1900 if (!MemCheckBlock && !SCEVCheckBlock)
1901 return;
1902
1903 // Unhook the temporary block with the checks, update various places
1904 // accordingly.
1905 if (SCEVCheckBlock)
1906 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1907 if (MemCheckBlock)
1908 MemCheckBlock->replaceAllUsesWith(Preheader);
1909
1910 if (SCEVCheckBlock) {
1911 SCEVCheckBlock->getTerminator()->moveBefore(
1912 Preheader->getTerminator()->getIterator());
1913 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1914 UI->setDebugLoc(DebugLoc::getTemporary());
1915 Preheader->getTerminator()->eraseFromParent();
1916 }
1917 if (MemCheckBlock) {
1918 MemCheckBlock->getTerminator()->moveBefore(
1919 Preheader->getTerminator()->getIterator());
1920 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1921 UI->setDebugLoc(DebugLoc::getTemporary());
1922 Preheader->getTerminator()->eraseFromParent();
1923 }
1924
1925 DT->changeImmediateDominator(LoopHeader, Preheader);
1926 if (MemCheckBlock) {
1927 DT->eraseNode(MemCheckBlock);
1928 LI->removeBlock(MemCheckBlock);
1929 }
1930 if (SCEVCheckBlock) {
1931 DT->eraseNode(SCEVCheckBlock);
1932 LI->removeBlock(SCEVCheckBlock);
1933 }
1934
1935 // Outer loop is used as part of the later cost calculations.
1936 OuterLoop = L->getParentLoop();
1937 }
1938
1940 if (SCEVCheckBlock || MemCheckBlock)
1941 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1942
1943 if (CostTooHigh) {
1945 Cost.setInvalid();
1946 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1947 return Cost;
1948 }
1949
1950 InstructionCost RTCheckCost = 0;
1951 if (SCEVCheckBlock)
1952 for (Instruction &I : *SCEVCheckBlock) {
1953 if (SCEVCheckBlock->getTerminator() == &I)
1954 continue;
1956 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1957 RTCheckCost += C;
1958 }
1959 if (MemCheckBlock) {
1960 InstructionCost MemCheckCost = 0;
1961 for (Instruction &I : *MemCheckBlock) {
1962 if (MemCheckBlock->getTerminator() == &I)
1963 continue;
1965 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1966 MemCheckCost += C;
1967 }
1968
1969 // If the runtime memory checks are being created inside an outer loop
1970 // we should find out if these checks are outer loop invariant. If so,
1971 // the checks will likely be hoisted out and so the effective cost will
1972 // reduce according to the outer loop trip count.
1973 if (OuterLoop) {
1974 ScalarEvolution *SE = MemCheckExp.getSE();
1975 // TODO: If profitable, we could refine this further by analysing every
1976 // individual memory check, since there could be a mixture of loop
1977 // variant and invariant checks that mean the final condition is
1978 // variant.
1979 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1980 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1981 // It seems reasonable to assume that we can reduce the effective
1982 // cost of the checks even when we know nothing about the trip
1983 // count. Assume that the outer loop executes at least twice.
1984 unsigned BestTripCount = 2;
1985
1986 // Get the best known TC estimate.
1987 if (auto EstimatedTC = getSmallBestKnownTC(
1988 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1989 if (EstimatedTC->isFixed())
1990 BestTripCount = EstimatedTC->getFixedValue();
1991
1992 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1993
1994 // Let's ensure the cost is always at least 1.
1995 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1996 (InstructionCost::CostType)1);
1997
1998 if (BestTripCount > 1)
2000 << "We expect runtime memory checks to be hoisted "
2001 << "out of the outer loop. Cost reduced from "
2002 << MemCheckCost << " to " << NewMemCheckCost << '\n');
2003
2004 MemCheckCost = NewMemCheckCost;
2005 }
2006 }
2007
2008 RTCheckCost += MemCheckCost;
2009 }
2010
2011 if (SCEVCheckBlock || MemCheckBlock)
2012 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2013 << "\n");
2014
2015 return RTCheckCost;
2016 }
2017
2018 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2019 /// unused.
2020 ~GeneratedRTChecks() {
2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2023 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2024 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2025 if (SCEVChecksUsed)
2026 SCEVCleaner.markResultUsed();
2027
2028 if (MemChecksUsed) {
2029 MemCheckCleaner.markResultUsed();
2030 } else {
2031 auto &SE = *MemCheckExp.getSE();
2032 // Memory runtime check generation creates compares that use expanded
2033 // values. Remove them before running the SCEVExpanderCleaners.
2034 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2035 if (MemCheckExp.isInsertedInstruction(&I))
2036 continue;
2037 SE.forgetValue(&I);
2038 I.eraseFromParent();
2039 }
2040 }
2041 MemCheckCleaner.cleanup();
2042 SCEVCleaner.cleanup();
2043
2044 if (!SCEVChecksUsed)
2045 SCEVCheckBlock->eraseFromParent();
2046 if (!MemChecksUsed)
2047 MemCheckBlock->eraseFromParent();
2048 }
2049
2050 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2051 /// outside VPlan.
2052 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2053 using namespace llvm::PatternMatch;
2054 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2055 return {nullptr, nullptr};
2056
2057 return {SCEVCheckCond, SCEVCheckBlock};
2058 }
2059
2060 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2061 /// outside VPlan.
2062 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2063 using namespace llvm::PatternMatch;
2064 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2065 return {nullptr, nullptr};
2066 return {MemRuntimeCheckCond, MemCheckBlock};
2067 }
2068
2069 /// Return true if any runtime checks have been added
2070 bool hasChecks() const {
2071 return getSCEVChecks().first || getMemRuntimeChecks().first;
2072 }
2073};
2074} // namespace
2075
2081
2086
2087// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2088// vectorization. The loop needs to be annotated with #pragma omp simd
2089// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2090// vector length information is not provided, vectorization is not considered
2091// explicit. Interleave hints are not allowed either. These limitations will be
2092// relaxed in the future.
2093// Please, note that we are currently forced to abuse the pragma 'clang
2094// vectorize' semantics. This pragma provides *auto-vectorization hints*
2095// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2096// provides *explicit vectorization hints* (LV can bypass legal checks and
2097// assume that vectorization is legal). However, both hints are implemented
2098// using the same metadata (llvm.loop.vectorize, processed by
2099// LoopVectorizeHints). This will be fixed in the future when the native IR
2100// representation for pragma 'omp simd' is introduced.
2101static bool isExplicitVecOuterLoop(Loop *OuterLp,
2103 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2104 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2105
2106 // Only outer loops with an explicit vectorization hint are supported.
2107 // Unannotated outer loops are ignored.
2109 return false;
2110
2111 Function *Fn = OuterLp->getHeader()->getParent();
2112 if (!Hints.allowVectorization(Fn, OuterLp,
2113 true /*VectorizeOnlyWhenForced*/)) {
2114 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2115 return false;
2116 }
2117
2118 if (Hints.getInterleave() > 1) {
2119 // TODO: Interleave support is future work.
2120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2121 "outer loops.\n");
2122 Hints.emitRemarkWithHints();
2123 return false;
2124 }
2125
2126 return true;
2127}
2128
2132 // Collect inner loops and outer loops without irreducible control flow. For
2133 // now, only collect outer loops that have explicit vectorization hints. If we
2134 // are stress testing the VPlan H-CFG construction, we collect the outermost
2135 // loop of every loop nest.
2136 if (L.isInnermost() || VPlanBuildStressTest ||
2138 LoopBlocksRPO RPOT(&L);
2139 RPOT.perform(LI);
2141 V.push_back(&L);
2142 // TODO: Collect inner loops inside marked outer loops in case
2143 // vectorization fails for the outer loop. Do not invoke
2144 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2145 // already known to be reducible. We can use an inherited attribute for
2146 // that.
2147 return;
2148 }
2149 }
2150 for (Loop *InnerL : L)
2151 collectSupportedLoops(*InnerL, LI, ORE, V);
2152}
2153
2154//===----------------------------------------------------------------------===//
2155// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2156// LoopVectorizationCostModel and LoopVectorizationPlanner.
2157//===----------------------------------------------------------------------===//
2158
2159/// Compute the transformed value of Index at offset StartValue using step
2160/// StepValue.
2161/// For integer induction, returns StartValue + Index * StepValue.
2162/// For pointer induction, returns StartValue[Index * StepValue].
2163/// FIXME: The newly created binary instructions should contain nsw/nuw
2164/// flags, which can be found from the original scalar operations.
2165static Value *
2167 Value *Step,
2169 const BinaryOperator *InductionBinOp) {
2170 using namespace llvm::PatternMatch;
2171 Type *StepTy = Step->getType();
2172 Value *CastedIndex = StepTy->isIntegerTy()
2173 ? B.CreateSExtOrTrunc(Index, StepTy)
2174 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2175 if (CastedIndex != Index) {
2176 CastedIndex->setName(CastedIndex->getName() + ".cast");
2177 Index = CastedIndex;
2178 }
2179
2180 // Note: the IR at this point is broken. We cannot use SE to create any new
2181 // SCEV and then expand it, hoping that SCEV's simplification will give us
2182 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2183 // lead to various SCEV crashes. So all we can do is to use builder and rely
2184 // on InstCombine for future simplifications. Here we handle some trivial
2185 // cases only.
2186 auto CreateAdd = [&B](Value *X, Value *Y) {
2187 assert(X->getType() == Y->getType() && "Types don't match!");
2188 if (match(X, m_ZeroInt()))
2189 return Y;
2190 if (match(Y, m_ZeroInt()))
2191 return X;
2192 return B.CreateAdd(X, Y);
2193 };
2194
2195 // We allow X to be a vector type, in which case Y will potentially be
2196 // splatted into a vector with the same element count.
2197 auto CreateMul = [&B](Value *X, Value *Y) {
2198 assert(X->getType()->getScalarType() == Y->getType() &&
2199 "Types don't match!");
2200 if (match(X, m_One()))
2201 return Y;
2202 if (match(Y, m_One()))
2203 return X;
2204 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2205 if (XVTy && !isa<VectorType>(Y->getType()))
2206 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2207 return B.CreateMul(X, Y);
2208 };
2209
2210 switch (InductionKind) {
2212 assert(!isa<VectorType>(Index->getType()) &&
2213 "Vector indices not supported for integer inductions yet");
2214 assert(Index->getType() == StartValue->getType() &&
2215 "Index type does not match StartValue type");
2216 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2217 return B.CreateSub(StartValue, Index);
2218 auto *Offset = CreateMul(Index, Step);
2219 return CreateAdd(StartValue, Offset);
2220 }
2222 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2224 assert(!isa<VectorType>(Index->getType()) &&
2225 "Vector indices not supported for FP inductions yet");
2226 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2227 assert(InductionBinOp &&
2228 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2229 InductionBinOp->getOpcode() == Instruction::FSub) &&
2230 "Original bin op should be defined for FP induction");
2231
2232 Value *MulExp = B.CreateFMul(Step, Index);
2233 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2234 "induction");
2235 }
2237 return nullptr;
2238 }
2239 llvm_unreachable("invalid enum");
2240}
2241
2242static std::optional<unsigned> getMaxVScale(const Function &F,
2243 const TargetTransformInfo &TTI) {
2244 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2245 return MaxVScale;
2246
2247 if (F.hasFnAttribute(Attribute::VScaleRange))
2248 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2249
2250 return std::nullopt;
2251}
2252
2253/// For the given VF and UF and maximum trip count computed for the loop, return
2254/// whether the induction variable might overflow in the vectorized loop. If not,
2255/// then we know a runtime overflow check always evaluates to false and can be
2256/// removed.
2258 const LoopVectorizationCostModel *Cost,
2259 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2260 // Always be conservative if we don't know the exact unroll factor.
2261 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2262
2263 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2264 APInt MaxUIntTripCount = IdxTy->getMask();
2265
2266 // We know the runtime overflow check is known false iff the (max) trip-count
2267 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2268 // the vector loop induction variable.
2269 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2270 uint64_t MaxVF = VF.getKnownMinValue();
2271 if (VF.isScalable()) {
2272 std::optional<unsigned> MaxVScale =
2273 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2274 if (!MaxVScale)
2275 return false;
2276 MaxVF *= *MaxVScale;
2277 }
2278
2279 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2280 }
2281
2282 return false;
2283}
2284
2285// Return whether we allow using masked interleave-groups (for dealing with
2286// strided loads/stores that reside in predicated blocks, or for dealing
2287// with gaps).
2289 // If an override option has been passed in for interleaved accesses, use it.
2290 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2292
2293 return TTI.enableMaskedInterleavedAccessVectorization();
2294}
2295
2297 BasicBlock *CheckIRBB) {
2298 // Note: The block with the minimum trip-count check is already connected
2299 // during earlier VPlan construction.
2300 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2301 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2302 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2303 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2304 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2305 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2306 PreVectorPH = CheckVPIRBB;
2307 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2308 PreVectorPH->swapSuccessors();
2309
2310 // We just connected a new block to the scalar preheader. Update all
2311 // VPPhis by adding an incoming value for it, replicating the last value.
2312 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2313 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2314 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2315 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2316 "must have incoming values for all operands");
2317 R.addOperand(R.getOperand(NumPredecessors - 2));
2318 }
2319}
2320
2322 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2323 // Generate code to check if the loop's trip count is less than VF * UF, or
2324 // equal to it in case a scalar epilogue is required; this implies that the
2325 // vector trip count is zero. This check also covers the case where adding one
2326 // to the backedge-taken count overflowed leading to an incorrect trip count
2327 // of zero. In this case we will also jump to the scalar loop.
2328 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2330
2331 // Reuse existing vector loop preheader for TC checks.
2332 // Note that new preheader block is generated for vector loop.
2333 BasicBlock *const TCCheckBlock = VectorPH;
2335 TCCheckBlock->getContext(),
2336 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2337 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2338
2339 // If tail is to be folded, vector loop takes care of all iterations.
2341 Type *CountTy = Count->getType();
2342 Value *CheckMinIters = Builder.getFalse();
2343 auto CreateStep = [&]() -> Value * {
2344 // Create step with max(MinProTripCount, UF * VF).
2345 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2346 return createStepForVF(Builder, CountTy, VF, UF);
2347
2348 Value *MinProfTC =
2349 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2350 if (!VF.isScalable())
2351 return MinProfTC;
2352 return Builder.CreateBinaryIntrinsic(
2353 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2354 };
2355
2356 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2357 if (Style == TailFoldingStyle::None) {
2358 Value *Step = CreateStep();
2359 ScalarEvolution &SE = *PSE.getSE();
2360 // TODO: Emit unconditional branch to vector preheader instead of
2361 // conditional branch with known condition.
2362 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2363 // Check if the trip count is < the step.
2364 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2365 // TODO: Ensure step is at most the trip count when determining max VF and
2366 // UF, w/o tail folding.
2367 CheckMinIters = Builder.getTrue();
2369 TripCountSCEV, SE.getSCEV(Step))) {
2370 // Generate the minimum iteration check only if we cannot prove the
2371 // check is known to be true, or known to be false.
2372 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2373 } // else step known to be < trip count, use CheckMinIters preset to false.
2374 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2377 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2378 // an overflow to zero when updating induction variables and so an
2379 // additional overflow check is required before entering the vector loop.
2380
2381 // Get the maximum unsigned value for the type.
2382 Value *MaxUIntTripCount =
2383 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2384 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2385
2386 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2387 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2388 }
2389 return CheckMinIters;
2390}
2391
2392/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2393/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2394/// predecessors and successors of VPBB, if any, are rewired to the new
2395/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2397 BasicBlock *IRBB,
2398 VPlan *Plan = nullptr) {
2399 if (!Plan)
2400 Plan = VPBB->getPlan();
2401 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2402 auto IP = IRVPBB->begin();
2403 for (auto &R : make_early_inc_range(VPBB->phis()))
2404 R.moveBefore(*IRVPBB, IP);
2405
2406 for (auto &R :
2408 R.moveBefore(*IRVPBB, IRVPBB->end());
2409
2410 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2411 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2412 return IRVPBB;
2413}
2414
2416 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2417 assert(VectorPH && "Invalid loop structure");
2418 assert((OrigLoop->getUniqueLatchExitBlock() ||
2419 Cost->requiresScalarEpilogue(VF.isVector())) &&
2420 "loops not exiting via the latch without required epilogue?");
2421
2422 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2423 // wrapping the newly created scalar preheader here at the moment, because the
2424 // Plan's scalar preheader may be unreachable at this point. Instead it is
2425 // replaced in executePlan.
2426 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2427 Twine(Prefix) + "scalar.ph");
2428}
2429
2430/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2431/// expansion results.
2433 const SCEV2ValueTy &ExpandedSCEVs) {
2434 const SCEV *Step = ID.getStep();
2435 if (auto *C = dyn_cast<SCEVConstant>(Step))
2436 return C->getValue();
2437 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2438 return U->getValue();
2439 Value *V = ExpandedSCEVs.lookup(Step);
2440 assert(V && "SCEV must be expanded at this point");
2441 return V;
2442}
2443
2444/// Knowing that loop \p L executes a single vector iteration, add instructions
2445/// that will get simplified and thus should not have any cost to \p
2446/// InstsToIgnore.
2449 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2450 auto *Cmp = L->getLatchCmpInst();
2451 if (Cmp)
2452 InstsToIgnore.insert(Cmp);
2453 for (const auto &KV : IL) {
2454 // Extract the key by hand so that it can be used in the lambda below. Note
2455 // that captured structured bindings are a C++20 extension.
2456 const PHINode *IV = KV.first;
2457
2458 // Get next iteration value of the induction variable.
2459 Instruction *IVInst =
2460 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2461 if (all_of(IVInst->users(),
2462 [&](const User *U) { return U == IV || U == Cmp; }))
2463 InstsToIgnore.insert(IVInst);
2464 }
2465}
2466
2468 // Create a new IR basic block for the scalar preheader.
2469 BasicBlock *ScalarPH = createScalarPreheader("");
2470 return ScalarPH->getSinglePredecessor();
2471}
2472
2473namespace {
2474
2475struct CSEDenseMapInfo {
2476 static bool canHandle(const Instruction *I) {
2479 }
2480
2481 static inline Instruction *getEmptyKey() {
2483 }
2484
2485 static inline Instruction *getTombstoneKey() {
2486 return DenseMapInfo<Instruction *>::getTombstoneKey();
2487 }
2488
2489 static unsigned getHashValue(const Instruction *I) {
2490 assert(canHandle(I) && "Unknown instruction!");
2491 return hash_combine(I->getOpcode(),
2492 hash_combine_range(I->operand_values()));
2493 }
2494
2495 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2496 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2497 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2498 return LHS == RHS;
2499 return LHS->isIdenticalTo(RHS);
2500 }
2501};
2502
2503} // end anonymous namespace
2504
2505/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2506/// removal, in favor of the VPlan-based one.
2507static void legacyCSE(BasicBlock *BB) {
2508 // Perform simple cse.
2510 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2511 if (!CSEDenseMapInfo::canHandle(&In))
2512 continue;
2513
2514 // Check if we can replace this instruction with any of the
2515 // visited instructions.
2516 if (Instruction *V = CSEMap.lookup(&In)) {
2517 In.replaceAllUsesWith(V);
2518 In.eraseFromParent();
2519 continue;
2520 }
2521
2522 CSEMap[&In] = &In;
2523 }
2524}
2525
2526/// This function attempts to return a value that represents the ElementCount
2527/// at runtime. For fixed-width VFs we know this precisely at compile
2528/// time, but for scalable VFs we calculate it based on an estimate of the
2529/// vscale value.
2531 std::optional<unsigned> VScale) {
2532 unsigned EstimatedVF = VF.getKnownMinValue();
2533 if (VF.isScalable())
2534 if (VScale)
2535 EstimatedVF *= *VScale;
2536 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2537 return EstimatedVF;
2538}
2539
2542 ElementCount VF) const {
2543 // We only need to calculate a cost if the VF is scalar; for actual vectors
2544 // we should already have a pre-calculated cost at each VF.
2545 if (!VF.isScalar())
2546 return getCallWideningDecision(CI, VF).Cost;
2547
2548 Type *RetTy = CI->getType();
2550 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2551 return *RedCost;
2552
2554 for (auto &ArgOp : CI->args())
2555 Tys.push_back(ArgOp->getType());
2556
2557 InstructionCost ScalarCallCost =
2558 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2559
2560 // If this is an intrinsic we may have a lower cost for it.
2563 return std::min(ScalarCallCost, IntrinsicCost);
2564 }
2565 return ScalarCallCost;
2566}
2567
2569 if (VF.isScalar() || !canVectorizeTy(Ty))
2570 return Ty;
2571 return toVectorizedTy(Ty, VF);
2572}
2573
2576 ElementCount VF) const {
2578 assert(ID && "Expected intrinsic call!");
2579 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2580 FastMathFlags FMF;
2581 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2582 FMF = FPMO->getFastMathFlags();
2583
2586 SmallVector<Type *> ParamTys;
2587 std::transform(FTy->param_begin(), FTy->param_end(),
2588 std::back_inserter(ParamTys),
2589 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2590
2591 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2594 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2595}
2596
2598 // Fix widened non-induction PHIs by setting up the PHI operands.
2599 fixNonInductionPHIs(State);
2600
2601 // Don't apply optimizations below when no (vector) loop remains, as they all
2602 // require one at the moment.
2603 VPBasicBlock *HeaderVPBB =
2604 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2605 if (!HeaderVPBB)
2606 return;
2607
2608 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2609
2610 // Remove redundant induction instructions.
2611 legacyCSE(HeaderBB);
2612}
2613
2615 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2617 for (VPRecipeBase &P : VPBB->phis()) {
2619 if (!VPPhi)
2620 continue;
2621 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2622 // Make sure the builder has a valid insert point.
2623 Builder.SetInsertPoint(NewPhi);
2624 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2625 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2626 }
2627 }
2628}
2629
2630void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2631 // We should not collect Scalars more than once per VF. Right now, this
2632 // function is called from collectUniformsAndScalars(), which already does
2633 // this check. Collecting Scalars for VF=1 does not make any sense.
2634 assert(VF.isVector() && !Scalars.contains(VF) &&
2635 "This function should not be visited twice for the same VF");
2636
2637 // This avoids any chances of creating a REPLICATE recipe during planning
2638 // since that would result in generation of scalarized code during execution,
2639 // which is not supported for scalable vectors.
2640 if (VF.isScalable()) {
2641 Scalars[VF].insert_range(Uniforms[VF]);
2642 return;
2643 }
2644
2646
2647 // These sets are used to seed the analysis with pointers used by memory
2648 // accesses that will remain scalar.
2650 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2651 auto *Latch = TheLoop->getLoopLatch();
2652
2653 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2654 // The pointer operands of loads and stores will be scalar as long as the
2655 // memory access is not a gather or scatter operation. The value operand of a
2656 // store will remain scalar if the store is scalarized.
2657 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2658 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2659 assert(WideningDecision != CM_Unknown &&
2660 "Widening decision should be ready at this moment");
2661 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2662 if (Ptr == Store->getValueOperand())
2663 return WideningDecision == CM_Scalarize;
2664 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2665 "Ptr is neither a value or pointer operand");
2666 return WideningDecision != CM_GatherScatter;
2667 };
2668
2669 // A helper that returns true if the given value is a getelementptr
2670 // instruction contained in the loop.
2671 auto IsLoopVaryingGEP = [&](Value *V) {
2672 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2673 };
2674
2675 // A helper that evaluates a memory access's use of a pointer. If the use will
2676 // be a scalar use and the pointer is only used by memory accesses, we place
2677 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2678 // PossibleNonScalarPtrs.
2679 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2680 // We only care about bitcast and getelementptr instructions contained in
2681 // the loop.
2682 if (!IsLoopVaryingGEP(Ptr))
2683 return;
2684
2685 // If the pointer has already been identified as scalar (e.g., if it was
2686 // also identified as uniform), there's nothing to do.
2687 auto *I = cast<Instruction>(Ptr);
2688 if (Worklist.count(I))
2689 return;
2690
2691 // If the use of the pointer will be a scalar use, and all users of the
2692 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2693 // place the pointer in PossibleNonScalarPtrs.
2694 if (IsScalarUse(MemAccess, Ptr) &&
2696 ScalarPtrs.insert(I);
2697 else
2698 PossibleNonScalarPtrs.insert(I);
2699 };
2700
2701 // We seed the scalars analysis with three classes of instructions: (1)
2702 // instructions marked uniform-after-vectorization and (2) bitcast,
2703 // getelementptr and (pointer) phi instructions used by memory accesses
2704 // requiring a scalar use.
2705 //
2706 // (1) Add to the worklist all instructions that have been identified as
2707 // uniform-after-vectorization.
2708 Worklist.insert_range(Uniforms[VF]);
2709
2710 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2711 // memory accesses requiring a scalar use. The pointer operands of loads and
2712 // stores will be scalar unless the operation is a gather or scatter.
2713 // The value operand of a store will remain scalar if the store is scalarized.
2714 for (auto *BB : TheLoop->blocks())
2715 for (auto &I : *BB) {
2716 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2717 EvaluatePtrUse(Load, Load->getPointerOperand());
2718 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2719 EvaluatePtrUse(Store, Store->getPointerOperand());
2720 EvaluatePtrUse(Store, Store->getValueOperand());
2721 }
2722 }
2723 for (auto *I : ScalarPtrs)
2724 if (!PossibleNonScalarPtrs.count(I)) {
2725 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2726 Worklist.insert(I);
2727 }
2728
2729 // Insert the forced scalars.
2730 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2731 // induction variable when the PHI user is scalarized.
2732 auto ForcedScalar = ForcedScalars.find(VF);
2733 if (ForcedScalar != ForcedScalars.end())
2734 for (auto *I : ForcedScalar->second) {
2735 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2736 Worklist.insert(I);
2737 }
2738
2739 // Expand the worklist by looking through any bitcasts and getelementptr
2740 // instructions we've already identified as scalar. This is similar to the
2741 // expansion step in collectLoopUniforms(); however, here we're only
2742 // expanding to include additional bitcasts and getelementptr instructions.
2743 unsigned Idx = 0;
2744 while (Idx != Worklist.size()) {
2745 Instruction *Dst = Worklist[Idx++];
2746 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2747 continue;
2748 auto *Src = cast<Instruction>(Dst->getOperand(0));
2749 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2750 auto *J = cast<Instruction>(U);
2751 return !TheLoop->contains(J) || Worklist.count(J) ||
2752 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2753 IsScalarUse(J, Src));
2754 })) {
2755 Worklist.insert(Src);
2756 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2757 }
2758 }
2759
2760 // An induction variable will remain scalar if all users of the induction
2761 // variable and induction variable update remain scalar.
2762 for (const auto &Induction : Legal->getInductionVars()) {
2763 auto *Ind = Induction.first;
2764 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2765
2766 // If tail-folding is applied, the primary induction variable will be used
2767 // to feed a vector compare.
2768 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2769 continue;
2770
2771 // Returns true if \p Indvar is a pointer induction that is used directly by
2772 // load/store instruction \p I.
2773 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2774 Instruction *I) {
2775 return Induction.second.getKind() ==
2778 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2779 };
2780
2781 // Determine if all users of the induction variable are scalar after
2782 // vectorization.
2783 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2787 });
2788 if (!ScalarInd)
2789 continue;
2790
2791 // If the induction variable update is a fixed-order recurrence, neither the
2792 // induction variable or its update should be marked scalar after
2793 // vectorization.
2794 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2795 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2796 continue;
2797
2798 // Determine if all users of the induction variable update instruction are
2799 // scalar after vectorization.
2800 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2801 auto *I = cast<Instruction>(U);
2802 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2803 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2804 });
2805 if (!ScalarIndUpdate)
2806 continue;
2807
2808 // The induction variable and its update instruction will remain scalar.
2809 Worklist.insert(Ind);
2810 Worklist.insert(IndUpdate);
2811 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2812 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2813 << "\n");
2814 }
2815
2816 Scalars[VF].insert_range(Worklist);
2817}
2818
2820 ElementCount VF) {
2821 if (!isPredicatedInst(I))
2822 return false;
2823
2824 // Do we have a non-scalar lowering for this predicated
2825 // instruction? No - it is scalar with predication.
2826 switch(I->getOpcode()) {
2827 default:
2828 return true;
2829 case Instruction::Call:
2830 if (VF.isScalar())
2831 return true;
2833 case Instruction::Load:
2834 case Instruction::Store: {
2835 auto *Ptr = getLoadStorePointerOperand(I);
2836 auto *Ty = getLoadStoreType(I);
2837 unsigned AS = getLoadStoreAddressSpace(I);
2838 Type *VTy = Ty;
2839 if (VF.isVector())
2840 VTy = VectorType::get(Ty, VF);
2841 const Align Alignment = getLoadStoreAlignment(I);
2842 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2843 TTI.isLegalMaskedGather(VTy, Alignment))
2844 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2845 TTI.isLegalMaskedScatter(VTy, Alignment));
2846 }
2847 case Instruction::UDiv:
2848 case Instruction::SDiv:
2849 case Instruction::SRem:
2850 case Instruction::URem: {
2851 // We have the option to use the safe-divisor idiom to avoid predication.
2852 // The cost based decision here will always select safe-divisor for
2853 // scalable vectors as scalarization isn't legal.
2854 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2855 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2856 }
2857 }
2858}
2859
2860// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2862 // TODO: We can use the loop-preheader as context point here and get
2863 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2865 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2867 return false;
2868
2869 // If the instruction was executed conditionally in the original scalar loop,
2870 // predication is needed with a mask whose lanes are all possibly inactive.
2871 if (Legal->blockNeedsPredication(I->getParent()))
2872 return true;
2873
2874 // If we're not folding the tail by masking, predication is unnecessary.
2875 if (!foldTailByMasking())
2876 return false;
2877
2878 // All that remain are instructions with side-effects originally executed in
2879 // the loop unconditionally, but now execute under a tail-fold mask (only)
2880 // having at least one active lane (the first). If the side-effects of the
2881 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2882 // - it will cause the same side-effects as when masked.
2883 switch(I->getOpcode()) {
2884 default:
2886 "instruction should have been considered by earlier checks");
2887 case Instruction::Call:
2888 // Side-effects of a Call are assumed to be non-invariant, needing a
2889 // (fold-tail) mask.
2890 assert(Legal->isMaskRequired(I) &&
2891 "should have returned earlier for calls not needing a mask");
2892 return true;
2893 case Instruction::Load:
2894 // If the address is loop invariant no predication is needed.
2895 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2896 case Instruction::Store: {
2897 // For stores, we need to prove both speculation safety (which follows from
2898 // the same argument as loads), but also must prove the value being stored
2899 // is correct. The easiest form of the later is to require that all values
2900 // stored are the same.
2901 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2902 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2903 }
2904 case Instruction::UDiv:
2905 case Instruction::URem:
2906 // If the divisor is loop-invariant no predication is needed.
2907 return !Legal->isInvariant(I->getOperand(1));
2908 case Instruction::SDiv:
2909 case Instruction::SRem:
2910 // Conservative for now, since masked-off lanes may be poison and could
2911 // trigger signed overflow.
2912 return true;
2913 }
2914}
2915
2919 return 1;
2920 // If the block wasn't originally predicated then return early to avoid
2921 // computing BlockFrequencyInfo unnecessarily.
2922 if (!Legal->blockNeedsPredication(BB))
2923 return 1;
2924
2925 uint64_t HeaderFreq =
2926 getBFI().getBlockFreq(TheLoop->getHeader()).getFrequency();
2927 uint64_t BBFreq = getBFI().getBlockFreq(BB).getFrequency();
2928 assert(HeaderFreq >= BBFreq &&
2929 "Header has smaller block freq than dominated BB?");
2930 return std::round((double)HeaderFreq / BBFreq);
2931}
2932
2933std::pair<InstructionCost, InstructionCost>
2935 ElementCount VF) {
2936 assert(I->getOpcode() == Instruction::UDiv ||
2937 I->getOpcode() == Instruction::SDiv ||
2938 I->getOpcode() == Instruction::SRem ||
2939 I->getOpcode() == Instruction::URem);
2941
2942 // Scalarization isn't legal for scalable vector types
2943 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2944 if (!VF.isScalable()) {
2945 // Get the scalarization cost and scale this amount by the probability of
2946 // executing the predicated block. If the instruction is not predicated,
2947 // we fall through to the next case.
2948 ScalarizationCost = 0;
2949
2950 // These instructions have a non-void type, so account for the phi nodes
2951 // that we will create. This cost is likely to be zero. The phi node
2952 // cost, if any, should be scaled by the block probability because it
2953 // models a copy at the end of each predicated block.
2954 ScalarizationCost +=
2955 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2956
2957 // The cost of the non-predicated instruction.
2958 ScalarizationCost +=
2959 VF.getFixedValue() *
2960 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2961
2962 // The cost of insertelement and extractelement instructions needed for
2963 // scalarization.
2964 ScalarizationCost += getScalarizationOverhead(I, VF);
2965
2966 // Scale the cost by the probability of executing the predicated blocks.
2967 // This assumes the predicated block for each vector lane is equally
2968 // likely.
2969 ScalarizationCost =
2970 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2971 }
2972
2973 InstructionCost SafeDivisorCost = 0;
2974 auto *VecTy = toVectorTy(I->getType(), VF);
2975 // The cost of the select guard to ensure all lanes are well defined
2976 // after we speculate above any internal control flow.
2977 SafeDivisorCost +=
2978 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2979 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2981
2982 SmallVector<const Value *, 4> Operands(I->operand_values());
2983 SafeDivisorCost += TTI.getArithmeticInstrCost(
2984 I->getOpcode(), VecTy, CostKind,
2985 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2986 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2987 Operands, I);
2988 return {ScalarizationCost, SafeDivisorCost};
2989}
2990
2992 Instruction *I, ElementCount VF) const {
2993 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2995 "Decision should not be set yet.");
2996 auto *Group = getInterleavedAccessGroup(I);
2997 assert(Group && "Must have a group.");
2998 unsigned InterleaveFactor = Group->getFactor();
2999
3000 // If the instruction's allocated size doesn't equal its type size, it
3001 // requires padding and will be scalarized.
3002 auto &DL = I->getDataLayout();
3003 auto *ScalarTy = getLoadStoreType(I);
3004 if (hasIrregularType(ScalarTy, DL))
3005 return false;
3006
3007 // For scalable vectors, the interleave factors must be <= 8 since we require
3008 // the (de)interleaveN intrinsics instead of shufflevectors.
3009 if (VF.isScalable() && InterleaveFactor > 8)
3010 return false;
3011
3012 // If the group involves a non-integral pointer, we may not be able to
3013 // losslessly cast all values to a common type.
3014 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
3015 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3016 Instruction *Member = Group->getMember(Idx);
3017 if (!Member)
3018 continue;
3019 auto *MemberTy = getLoadStoreType(Member);
3020 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3021 // Don't coerce non-integral pointers to integers or vice versa.
3022 if (MemberNI != ScalarNI)
3023 // TODO: Consider adding special nullptr value case here
3024 return false;
3025 if (MemberNI && ScalarNI &&
3026 ScalarTy->getPointerAddressSpace() !=
3027 MemberTy->getPointerAddressSpace())
3028 return false;
3029 }
3030
3031 // Check if masking is required.
3032 // A Group may need masking for one of two reasons: it resides in a block that
3033 // needs predication, or it was decided to use masking to deal with gaps
3034 // (either a gap at the end of a load-access that may result in a speculative
3035 // load, or any gaps in a store-access).
3036 bool PredicatedAccessRequiresMasking =
3037 blockNeedsPredicationForAnyReason(I->getParent()) &&
3038 Legal->isMaskRequired(I);
3039 bool LoadAccessWithGapsRequiresEpilogMasking =
3040 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3042 bool StoreAccessWithGapsRequiresMasking =
3043 isa<StoreInst>(I) && !Group->isFull();
3044 if (!PredicatedAccessRequiresMasking &&
3045 !LoadAccessWithGapsRequiresEpilogMasking &&
3046 !StoreAccessWithGapsRequiresMasking)
3047 return true;
3048
3049 // If masked interleaving is required, we expect that the user/target had
3050 // enabled it, because otherwise it either wouldn't have been created or
3051 // it should have been invalidated by the CostModel.
3053 "Masked interleave-groups for predicated accesses are not enabled.");
3054
3055 if (Group->isReverse())
3056 return false;
3057
3058 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3059 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3060 StoreAccessWithGapsRequiresMasking;
3061 if (VF.isScalable() && NeedsMaskForGaps)
3062 return false;
3063
3064 auto *Ty = getLoadStoreType(I);
3065 const Align Alignment = getLoadStoreAlignment(I);
3066 unsigned AS = getLoadStoreAddressSpace(I);
3067 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3068 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3069}
3070
3072 Instruction *I, ElementCount VF) {
3073 // Get and ensure we have a valid memory instruction.
3074 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3075
3076 auto *Ptr = getLoadStorePointerOperand(I);
3077 auto *ScalarTy = getLoadStoreType(I);
3078
3079 // In order to be widened, the pointer should be consecutive, first of all.
3080 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3081 return false;
3082
3083 // If the instruction is a store located in a predicated block, it will be
3084 // scalarized.
3085 if (isScalarWithPredication(I, VF))
3086 return false;
3087
3088 // If the instruction's allocated size doesn't equal it's type size, it
3089 // requires padding and will be scalarized.
3090 auto &DL = I->getDataLayout();
3091 if (hasIrregularType(ScalarTy, DL))
3092 return false;
3093
3094 return true;
3095}
3096
3097void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3098 // We should not collect Uniforms more than once per VF. Right now,
3099 // this function is called from collectUniformsAndScalars(), which
3100 // already does this check. Collecting Uniforms for VF=1 does not make any
3101 // sense.
3102
3103 assert(VF.isVector() && !Uniforms.contains(VF) &&
3104 "This function should not be visited twice for the same VF");
3105
3106 // Visit the list of Uniforms. If we find no uniform value, we won't
3107 // analyze again. Uniforms.count(VF) will return 1.
3108 Uniforms[VF].clear();
3109
3110 // Now we know that the loop is vectorizable!
3111 // Collect instructions inside the loop that will remain uniform after
3112 // vectorization.
3113
3114 // Global values, params and instructions outside of current loop are out of
3115 // scope.
3116 auto IsOutOfScope = [&](Value *V) -> bool {
3118 return (!I || !TheLoop->contains(I));
3119 };
3120
3121 // Worklist containing uniform instructions demanding lane 0.
3122 SetVector<Instruction *> Worklist;
3123
3124 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3125 // that require predication must not be considered uniform after
3126 // vectorization, because that would create an erroneous replicating region
3127 // where only a single instance out of VF should be formed.
3128 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3129 if (IsOutOfScope(I)) {
3130 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3131 << *I << "\n");
3132 return;
3133 }
3134 if (isPredicatedInst(I)) {
3135 LLVM_DEBUG(
3136 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3137 << "\n");
3138 return;
3139 }
3140 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3141 Worklist.insert(I);
3142 };
3143
3144 // Start with the conditional branches exiting the loop. If the branch
3145 // condition is an instruction contained in the loop that is only used by the
3146 // branch, it is uniform. Note conditions from uncountable early exits are not
3147 // uniform.
3149 TheLoop->getExitingBlocks(Exiting);
3150 for (BasicBlock *E : Exiting) {
3151 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3152 continue;
3153 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3154 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3155 AddToWorklistIfAllowed(Cmp);
3156 }
3157
3158 auto PrevVF = VF.divideCoefficientBy(2);
3159 // Return true if all lanes perform the same memory operation, and we can
3160 // thus choose to execute only one.
3161 auto IsUniformMemOpUse = [&](Instruction *I) {
3162 // If the value was already known to not be uniform for the previous
3163 // (smaller VF), it cannot be uniform for the larger VF.
3164 if (PrevVF.isVector()) {
3165 auto Iter = Uniforms.find(PrevVF);
3166 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3167 return false;
3168 }
3169 if (!Legal->isUniformMemOp(*I, VF))
3170 return false;
3171 if (isa<LoadInst>(I))
3172 // Loading the same address always produces the same result - at least
3173 // assuming aliasing and ordering which have already been checked.
3174 return true;
3175 // Storing the same value on every iteration.
3176 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3177 };
3178
3179 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3180 InstWidening WideningDecision = getWideningDecision(I, VF);
3181 assert(WideningDecision != CM_Unknown &&
3182 "Widening decision should be ready at this moment");
3183
3184 if (IsUniformMemOpUse(I))
3185 return true;
3186
3187 return (WideningDecision == CM_Widen ||
3188 WideningDecision == CM_Widen_Reverse ||
3189 WideningDecision == CM_Interleave);
3190 };
3191
3192 // Returns true if Ptr is the pointer operand of a memory access instruction
3193 // I, I is known to not require scalarization, and the pointer is not also
3194 // stored.
3195 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3196 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3197 return false;
3198 return getLoadStorePointerOperand(I) == Ptr &&
3199 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3200 };
3201
3202 // Holds a list of values which are known to have at least one uniform use.
3203 // Note that there may be other uses which aren't uniform. A "uniform use"
3204 // here is something which only demands lane 0 of the unrolled iterations;
3205 // it does not imply that all lanes produce the same value (e.g. this is not
3206 // the usual meaning of uniform)
3207 SetVector<Value *> HasUniformUse;
3208
3209 // Scan the loop for instructions which are either a) known to have only
3210 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3211 for (auto *BB : TheLoop->blocks())
3212 for (auto &I : *BB) {
3213 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3214 switch (II->getIntrinsicID()) {
3215 case Intrinsic::sideeffect:
3216 case Intrinsic::experimental_noalias_scope_decl:
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_start:
3219 case Intrinsic::lifetime_end:
3220 if (TheLoop->hasLoopInvariantOperands(&I))
3221 AddToWorklistIfAllowed(&I);
3222 break;
3223 default:
3224 break;
3225 }
3226 }
3227
3228 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3229 if (IsOutOfScope(EVI->getAggregateOperand())) {
3230 AddToWorklistIfAllowed(EVI);
3231 continue;
3232 }
3233 // Only ExtractValue instructions where the aggregate value comes from a
3234 // call are allowed to be non-uniform.
3235 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3236 "Expected aggregate value to be call return value");
3237 }
3238
3239 // If there's no pointer operand, there's nothing to do.
3240 auto *Ptr = getLoadStorePointerOperand(&I);
3241 if (!Ptr)
3242 continue;
3243
3244 // If the pointer can be proven to be uniform, always add it to the
3245 // worklist.
3246 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3247 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3248
3249 if (IsUniformMemOpUse(&I))
3250 AddToWorklistIfAllowed(&I);
3251
3252 if (IsVectorizedMemAccessUse(&I, Ptr))
3253 HasUniformUse.insert(Ptr);
3254 }
3255
3256 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3257 // demanding) users. Since loops are assumed to be in LCSSA form, this
3258 // disallows uses outside the loop as well.
3259 for (auto *V : HasUniformUse) {
3260 if (IsOutOfScope(V))
3261 continue;
3262 auto *I = cast<Instruction>(V);
3263 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3264 auto *UI = cast<Instruction>(U);
3265 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3266 });
3267 if (UsersAreMemAccesses)
3268 AddToWorklistIfAllowed(I);
3269 }
3270
3271 // Expand Worklist in topological order: whenever a new instruction
3272 // is added , its users should be already inside Worklist. It ensures
3273 // a uniform instruction will only be used by uniform instructions.
3274 unsigned Idx = 0;
3275 while (Idx != Worklist.size()) {
3276 Instruction *I = Worklist[Idx++];
3277
3278 for (auto *OV : I->operand_values()) {
3279 // isOutOfScope operands cannot be uniform instructions.
3280 if (IsOutOfScope(OV))
3281 continue;
3282 // First order recurrence Phi's should typically be considered
3283 // non-uniform.
3284 auto *OP = dyn_cast<PHINode>(OV);
3285 if (OP && Legal->isFixedOrderRecurrence(OP))
3286 continue;
3287 // If all the users of the operand are uniform, then add the
3288 // operand into the uniform worklist.
3289 auto *OI = cast<Instruction>(OV);
3290 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3291 auto *J = cast<Instruction>(U);
3292 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3293 }))
3294 AddToWorklistIfAllowed(OI);
3295 }
3296 }
3297
3298 // For an instruction to be added into Worklist above, all its users inside
3299 // the loop should also be in Worklist. However, this condition cannot be
3300 // true for phi nodes that form a cyclic dependence. We must process phi
3301 // nodes separately. An induction variable will remain uniform if all users
3302 // of the induction variable and induction variable update remain uniform.
3303 // The code below handles both pointer and non-pointer induction variables.
3304 BasicBlock *Latch = TheLoop->getLoopLatch();
3305 for (const auto &Induction : Legal->getInductionVars()) {
3306 auto *Ind = Induction.first;
3307 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3308
3309 // Determine if all users of the induction variable are uniform after
3310 // vectorization.
3311 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3312 auto *I = cast<Instruction>(U);
3313 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3314 IsVectorizedMemAccessUse(I, Ind);
3315 });
3316 if (!UniformInd)
3317 continue;
3318
3319 // Determine if all users of the induction variable update instruction are
3320 // uniform after vectorization.
3321 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3322 auto *I = cast<Instruction>(U);
3323 return I == Ind || Worklist.count(I) ||
3324 IsVectorizedMemAccessUse(I, IndUpdate);
3325 });
3326 if (!UniformIndUpdate)
3327 continue;
3328
3329 // The induction variable and its update instruction will remain uniform.
3330 AddToWorklistIfAllowed(Ind);
3331 AddToWorklistIfAllowed(IndUpdate);
3332 }
3333
3334 Uniforms[VF].insert_range(Worklist);
3335}
3336
3338 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3339
3340 if (Legal->getRuntimePointerChecking()->Need) {
3341 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3342 "runtime pointer checks needed. Enable vectorization of this "
3343 "loop with '#pragma clang loop vectorize(enable)' when "
3344 "compiling with -Os/-Oz",
3345 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3346 return true;
3347 }
3348
3349 if (!PSE.getPredicate().isAlwaysTrue()) {
3350 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3351 "runtime SCEV checks needed. Enable vectorization of this "
3352 "loop with '#pragma clang loop vectorize(enable)' when "
3353 "compiling with -Os/-Oz",
3354 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3355 return true;
3356 }
3357
3358 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3359 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3360 reportVectorizationFailure("Runtime stride check for small trip count",
3361 "runtime stride == 1 checks needed. Enable vectorization of "
3362 "this loop without such check by compiling with -Os/-Oz",
3363 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3364 return true;
3365 }
3366
3367 return false;
3368}
3369
3370bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3371 if (IsScalableVectorizationAllowed)
3372 return *IsScalableVectorizationAllowed;
3373
3374 IsScalableVectorizationAllowed = false;
3375 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3376 return false;
3377
3378 if (Hints->isScalableVectorizationDisabled()) {
3379 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3380 "ScalableVectorizationDisabled", ORE, TheLoop);
3381 return false;
3382 }
3383
3384 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3385
3386 auto MaxScalableVF = ElementCount::getScalable(
3387 std::numeric_limits<ElementCount::ScalarTy>::max());
3388
3389 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3390 // FIXME: While for scalable vectors this is currently sufficient, this should
3391 // be replaced by a more detailed mechanism that filters out specific VFs,
3392 // instead of invalidating vectorization for a whole set of VFs based on the
3393 // MaxVF.
3394
3395 // Disable scalable vectorization if the loop contains unsupported reductions.
3396 if (!canVectorizeReductions(MaxScalableVF)) {
3398 "Scalable vectorization not supported for the reduction "
3399 "operations found in this loop.",
3400 "ScalableVFUnfeasible", ORE, TheLoop);
3401 return false;
3402 }
3403
3404 // Disable scalable vectorization if the loop contains any instructions
3405 // with element types not supported for scalable vectors.
3406 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3407 return !Ty->isVoidTy() &&
3409 })) {
3410 reportVectorizationInfo("Scalable vectorization is not supported "
3411 "for all element types found in this loop.",
3412 "ScalableVFUnfeasible", ORE, TheLoop);
3413 return false;
3414 }
3415
3416 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3417 reportVectorizationInfo("The target does not provide maximum vscale value "
3418 "for safe distance analysis.",
3419 "ScalableVFUnfeasible", ORE, TheLoop);
3420 return false;
3421 }
3422
3423 IsScalableVectorizationAllowed = true;
3424 return true;
3425}
3426
3427ElementCount
3428LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3429 if (!isScalableVectorizationAllowed())
3430 return ElementCount::getScalable(0);
3431
3432 auto MaxScalableVF = ElementCount::getScalable(
3433 std::numeric_limits<ElementCount::ScalarTy>::max());
3434 if (Legal->isSafeForAnyVectorWidth())
3435 return MaxScalableVF;
3436
3437 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3438 // Limit MaxScalableVF by the maximum safe dependence distance.
3439 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3440
3441 if (!MaxScalableVF)
3443 "Max legal vector width too small, scalable vectorization "
3444 "unfeasible.",
3445 "ScalableVFUnfeasible", ORE, TheLoop);
3446
3447 return MaxScalableVF;
3448}
3449
3450FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3451 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3452 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3453 unsigned SmallestType, WidestType;
3454 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3455
3456 // Get the maximum safe dependence distance in bits computed by LAA.
3457 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3458 // the memory accesses that is most restrictive (involved in the smallest
3459 // dependence distance).
3460 unsigned MaxSafeElementsPowerOf2 =
3461 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3462 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3463 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3464 MaxSafeElementsPowerOf2 =
3465 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3466 }
3467 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3468 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3469
3470 if (!Legal->isSafeForAnyVectorWidth())
3471 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3472
3473 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3474 << ".\n");
3475 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3476 << ".\n");
3477
3478 // First analyze the UserVF, fall back if the UserVF should be ignored.
3479 if (UserVF) {
3480 auto MaxSafeUserVF =
3481 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3482
3483 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3484 // If `VF=vscale x N` is safe, then so is `VF=N`
3485 if (UserVF.isScalable())
3486 return FixedScalableVFPair(
3487 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3488
3489 return UserVF;
3490 }
3491
3492 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3493
3494 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3495 // is better to ignore the hint and let the compiler choose a suitable VF.
3496 if (!UserVF.isScalable()) {
3497 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3498 << " is unsafe, clamping to max safe VF="
3499 << MaxSafeFixedVF << ".\n");
3500 ORE->emit([&]() {
3501 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3502 TheLoop->getStartLoc(),
3503 TheLoop->getHeader())
3504 << "User-specified vectorization factor "
3505 << ore::NV("UserVectorizationFactor", UserVF)
3506 << " is unsafe, clamping to maximum safe vectorization factor "
3507 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3508 });
3509 return MaxSafeFixedVF;
3510 }
3511
3513 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3514 << " is ignored because scalable vectors are not "
3515 "available.\n");
3516 ORE->emit([&]() {
3517 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3518 TheLoop->getStartLoc(),
3519 TheLoop->getHeader())
3520 << "User-specified vectorization factor "
3521 << ore::NV("UserVectorizationFactor", UserVF)
3522 << " is ignored because the target does not support scalable "
3523 "vectors. The compiler will pick a more suitable value.";
3524 });
3525 } else {
3526 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3527 << " is unsafe. Ignoring scalable UserVF.\n");
3528 ORE->emit([&]() {
3529 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3530 TheLoop->getStartLoc(),
3531 TheLoop->getHeader())
3532 << "User-specified vectorization factor "
3533 << ore::NV("UserVectorizationFactor", UserVF)
3534 << " is unsafe. Ignoring the hint to let the compiler pick a "
3535 "more suitable value.";
3536 });
3537 }
3538 }
3539
3540 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3541 << " / " << WidestType << " bits.\n");
3542
3543 FixedScalableVFPair Result(ElementCount::getFixed(1),
3545 if (auto MaxVF =
3546 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3547 MaxSafeFixedVF, FoldTailByMasking))
3548 Result.FixedVF = MaxVF;
3549
3550 if (auto MaxVF =
3551 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3552 MaxSafeScalableVF, FoldTailByMasking))
3553 if (MaxVF.isScalable()) {
3554 Result.ScalableVF = MaxVF;
3555 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3556 << "\n");
3557 }
3558
3559 return Result;
3560}
3561
3562FixedScalableVFPair
3564 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3565 // TODO: It may be useful to do since it's still likely to be dynamically
3566 // uniform if the target can skip.
3568 "Not inserting runtime ptr check for divergent target",
3569 "runtime pointer checks needed. Not enabled for divergent target",
3570 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3572 }
3573
3574 ScalarEvolution *SE = PSE.getSE();
3576 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3577 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3578 if (TC != ElementCount::getFixed(MaxTC))
3579 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3580 if (TC.isScalar()) {
3581 reportVectorizationFailure("Single iteration (non) loop",
3582 "loop trip count is one, irrelevant for vectorization",
3583 "SingleIterationLoop", ORE, TheLoop);
3585 }
3586
3587 // If BTC matches the widest induction type and is -1 then the trip count
3588 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3589 // to vectorize.
3590 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3591 if (!isa<SCEVCouldNotCompute>(BTC) &&
3592 BTC->getType()->getScalarSizeInBits() >=
3593 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3595 SE->getMinusOne(BTC->getType()))) {
3597 "Trip count computation wrapped",
3598 "backedge-taken count is -1, loop trip count wrapped to 0",
3599 "TripCountWrapped", ORE, TheLoop);
3601 }
3602
3603 switch (ScalarEpilogueStatus) {
3605 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3607 [[fallthrough]];
3609 LLVM_DEBUG(
3610 dbgs() << "LV: vector predicate hint/switch found.\n"
3611 << "LV: Not allowing scalar epilogue, creating predicated "
3612 << "vector loop.\n");
3613 break;
3615 // fallthrough as a special case of OptForSize
3617 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3618 LLVM_DEBUG(
3619 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3620 else
3621 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3622 << "count.\n");
3623
3624 // Bail if runtime checks are required, which are not good when optimising
3625 // for size.
3628
3629 break;
3630 }
3631
3632 // Now try the tail folding
3633
3634 // Invalidate interleave groups that require an epilogue if we can't mask
3635 // the interleave-group.
3637 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3638 "No decisions should have been taken at this point");
3639 // Note: There is no need to invalidate any cost modeling decisions here, as
3640 // none were taken so far.
3641 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3642 }
3643
3644 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3645
3646 // Avoid tail folding if the trip count is known to be a multiple of any VF
3647 // we choose.
3648 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3649 MaxFactors.FixedVF.getFixedValue();
3650 if (MaxFactors.ScalableVF) {
3651 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3652 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3653 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3654 *MaxPowerOf2RuntimeVF,
3655 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3656 } else
3657 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3658 }
3659
3660 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3661 // Return false if the loop is neither a single-latch-exit loop nor an
3662 // early-exit loop as tail-folding is not supported in that case.
3663 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3664 !Legal->hasUncountableEarlyExit())
3665 return false;
3666 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3667 ScalarEvolution *SE = PSE.getSE();
3668 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3669 // with uncountable exits. For countable loops, the symbolic maximum must
3670 // remain identical to the known back-edge taken count.
3671 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3672 assert((Legal->hasUncountableEarlyExit() ||
3673 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3674 "Invalid loop count");
3675 const SCEV *ExitCount = SE->getAddExpr(
3676 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3677 const SCEV *Rem = SE->getURemExpr(
3678 SE->applyLoopGuards(ExitCount, TheLoop),
3679 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3680 return Rem->isZero();
3681 };
3682
3683 if (MaxPowerOf2RuntimeVF > 0u) {
3684 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3685 "MaxFixedVF must be a power of 2");
3686 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3687 // Accept MaxFixedVF if we do not have a tail.
3688 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3689 return MaxFactors;
3690 }
3691 }
3692
3693 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3694 if (ExpectedTC && ExpectedTC->isFixed() &&
3695 ExpectedTC->getFixedValue() <=
3696 TTI.getMinTripCountTailFoldingThreshold()) {
3697 if (MaxPowerOf2RuntimeVF > 0u) {
3698 // If we have a low-trip-count, and the fixed-width VF is known to divide
3699 // the trip count but the scalable factor does not, use the fixed-width
3700 // factor in preference to allow the generation of a non-predicated loop.
3701 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3702 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3703 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3704 "remain for any chosen VF.\n");
3705 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3706 return MaxFactors;
3707 }
3708 }
3709
3711 "The trip count is below the minial threshold value.",
3712 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3713 ORE, TheLoop);
3715 }
3716
3717 // If we don't know the precise trip count, or if the trip count that we
3718 // found modulo the vectorization factor is not zero, try to fold the tail
3719 // by masking.
3720 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3721 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3722 setTailFoldingStyles(ContainsScalableVF, UserIC);
3723 if (foldTailByMasking()) {
3724 if (foldTailWithEVL()) {
3725 LLVM_DEBUG(
3726 dbgs()
3727 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3728 "try to generate VP Intrinsics with scalable vector "
3729 "factors only.\n");
3730 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3731 // for now.
3732 // TODO: extend it for fixed vectors, if required.
3733 assert(ContainsScalableVF && "Expected scalable vector factor.");
3734
3735 MaxFactors.FixedVF = ElementCount::getFixed(1);
3736 }
3737 return MaxFactors;
3738 }
3739
3740 // If there was a tail-folding hint/switch, but we can't fold the tail by
3741 // masking, fallback to a vectorization with a scalar epilogue.
3742 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3743 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3744 "scalar epilogue instead.\n");
3745 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3746 return MaxFactors;
3747 }
3748
3749 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3750 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3752 }
3753
3754 if (TC.isZero()) {
3756 "unable to calculate the loop count due to complex control flow",
3757 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3759 }
3760
3762 "Cannot optimize for size and vectorize at the same time.",
3763 "cannot optimize for size and vectorize at the same time. "
3764 "Enable vectorization of this loop with '#pragma clang loop "
3765 "vectorize(enable)' when compiling with -Os/-Oz",
3766 "NoTailLoopWithOptForSize", ORE, TheLoop);
3768}
3769
3771 ElementCount VF) {
3772 if (ConsiderRegPressure.getNumOccurrences())
3773 return ConsiderRegPressure;
3774
3775 // TODO: We should eventually consider register pressure for all targets. The
3776 // TTI hook is temporary whilst target-specific issues are being fixed.
3777 if (TTI.shouldConsiderVectorizationRegPressure())
3778 return true;
3779
3780 if (!useMaxBandwidth(VF.isScalable()
3783 return false;
3784 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3786 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3788}
3789
3792 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3793 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3795 Legal->hasVectorCallVariants())));
3796}
3797
3798ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3799 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3800 unsigned EstimatedVF = VF.getKnownMinValue();
3801 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3802 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3803 auto Min = Attr.getVScaleRangeMin();
3804 EstimatedVF *= Min;
3805 }
3806
3807 // When a scalar epilogue is required, at least one iteration of the scalar
3808 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3809 // max VF that results in a dead vector loop.
3810 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3811 MaxTripCount -= 1;
3812
3813 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3814 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3815 // If upper bound loop trip count (TC) is known at compile time there is no
3816 // point in choosing VF greater than TC (as done in the loop below). Select
3817 // maximum power of two which doesn't exceed TC. If VF is
3818 // scalable, we only fall back on a fixed VF when the TC is less than or
3819 // equal to the known number of lanes.
3820 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3821 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3822 "exceeding the constant trip count: "
3823 << ClampedUpperTripCount << "\n");
3824 return ElementCount::get(ClampedUpperTripCount,
3825 FoldTailByMasking ? VF.isScalable() : false);
3826 }
3827 return VF;
3828}
3829
3830ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3831 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3832 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3833 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3834 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3835 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3837
3838 // Convenience function to return the minimum of two ElementCounts.
3839 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3840 assert((LHS.isScalable() == RHS.isScalable()) &&
3841 "Scalable flags must match");
3842 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3843 };
3844
3845 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3846 // Note that both WidestRegister and WidestType may not be a powers of 2.
3847 auto MaxVectorElementCount = ElementCount::get(
3848 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3849 ComputeScalableMaxVF);
3850 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3851 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3852 << (MaxVectorElementCount * WidestType) << " bits.\n");
3853
3854 if (!MaxVectorElementCount) {
3855 LLVM_DEBUG(dbgs() << "LV: The target has no "
3856 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3857 << " vector registers.\n");
3858 return ElementCount::getFixed(1);
3859 }
3860
3861 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3862 MaxTripCount, FoldTailByMasking);
3863 // If the MaxVF was already clamped, there's no point in trying to pick a
3864 // larger one.
3865 if (MaxVF != MaxVectorElementCount)
3866 return MaxVF;
3867
3869 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3871
3872 if (MaxVF.isScalable())
3873 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3874 else
3875 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3876
3877 if (useMaxBandwidth(RegKind)) {
3878 auto MaxVectorElementCountMaxBW = ElementCount::get(
3879 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3880 ComputeScalableMaxVF);
3881 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3882
3883 if (ElementCount MinVF =
3884 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3885 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3886 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3887 << ") with target's minimum: " << MinVF << '\n');
3888 MaxVF = MinVF;
3889 }
3890 }
3891
3892 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3893
3894 if (MaxVectorElementCount != MaxVF) {
3895 // Invalidate any widening decisions we might have made, in case the loop
3896 // requires prediction (decided later), but we have already made some
3897 // load/store widening decisions.
3898 invalidateCostModelingDecisions();
3899 }
3900 }
3901 return MaxVF;
3902}
3903
3904bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3905 const VectorizationFactor &B,
3906 const unsigned MaxTripCount,
3907 bool HasTail,
3908 bool IsEpilogue) const {
3909 InstructionCost CostA = A.Cost;
3910 InstructionCost CostB = B.Cost;
3911
3912 // Improve estimate for the vector width if it is scalable.
3913 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3914 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3915 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3916 if (A.Width.isScalable())
3917 EstimatedWidthA *= *VScale;
3918 if (B.Width.isScalable())
3919 EstimatedWidthB *= *VScale;
3920 }
3921
3922 // When optimizing for size choose whichever is smallest, which will be the
3923 // one with the smallest cost for the whole loop. On a tie pick the larger
3924 // vector width, on the assumption that throughput will be greater.
3925 if (CM.CostKind == TTI::TCK_CodeSize)
3926 return CostA < CostB ||
3927 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3928
3929 // Assume vscale may be larger than 1 (or the value being tuned for),
3930 // so that scalable vectorization is slightly favorable over fixed-width
3931 // vectorization.
3932 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3933 A.Width.isScalable() && !B.Width.isScalable();
3934
3935 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3936 const InstructionCost &RHS) {
3937 return PreferScalable ? LHS <= RHS : LHS < RHS;
3938 };
3939
3940 // To avoid the need for FP division:
3941 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3942 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3943 if (!MaxTripCount)
3944 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3945
3946 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3947 InstructionCost VectorCost,
3948 InstructionCost ScalarCost) {
3949 // If the trip count is a known (possibly small) constant, the trip count
3950 // will be rounded up to an integer number of iterations under
3951 // FoldTailByMasking. The total cost in that case will be
3952 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3953 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3954 // some extra overheads, but for the purpose of comparing the costs of
3955 // different VFs we can use this to compare the total loop-body cost
3956 // expected after vectorization.
3957 if (HasTail)
3958 return VectorCost * (MaxTripCount / VF) +
3959 ScalarCost * (MaxTripCount % VF);
3960 return VectorCost * divideCeil(MaxTripCount, VF);
3961 };
3962
3963 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3964 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3965 return CmpFn(RTCostA, RTCostB);
3966}
3967
3968bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3969 const VectorizationFactor &B,
3970 bool HasTail,
3971 bool IsEpilogue) const {
3972 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3973 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3974 IsEpilogue);
3975}
3976
3979 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3980 SmallVector<RecipeVFPair> InvalidCosts;
3981 for (const auto &Plan : VPlans) {
3982 for (ElementCount VF : Plan->vectorFactors()) {
3983 // The VPlan-based cost model is designed for computing vector cost.
3984 // Querying VPlan-based cost model with a scarlar VF will cause some
3985 // errors because we expect the VF is vector for most of the widen
3986 // recipes.
3987 if (VF.isScalar())
3988 continue;
3989
3990 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
3991 OrigLoop);
3992 precomputeCosts(*Plan, VF, CostCtx);
3993 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3995 for (auto &R : *VPBB) {
3996 if (!R.cost(VF, CostCtx).isValid())
3997 InvalidCosts.emplace_back(&R, VF);
3998 }
3999 }
4000 }
4001 }
4002 if (InvalidCosts.empty())
4003 return;
4004
4005 // Emit a report of VFs with invalid costs in the loop.
4006
4007 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
4009 unsigned I = 0;
4010 for (auto &Pair : InvalidCosts)
4011 if (Numbering.try_emplace(Pair.first, I).second)
4012 ++I;
4013
4014 // Sort the list, first on recipe(number) then on VF.
4015 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
4016 unsigned NA = Numbering[A.first];
4017 unsigned NB = Numbering[B.first];
4018 if (NA != NB)
4019 return NA < NB;
4020 return ElementCount::isKnownLT(A.second, B.second);
4021 });
4022
4023 // For a list of ordered recipe-VF pairs:
4024 // [(load, VF1), (load, VF2), (store, VF1)]
4025 // group the recipes together to emit separate remarks for:
4026 // load (VF1, VF2)
4027 // store (VF1)
4028 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4029 auto Subset = ArrayRef<RecipeVFPair>();
4030 do {
4031 if (Subset.empty())
4032 Subset = Tail.take_front(1);
4033
4034 VPRecipeBase *R = Subset.front().first;
4035
4036 unsigned Opcode =
4039 [](const auto *R) { return Instruction::PHI; })
4040 .Case<VPWidenStoreRecipe>(
4041 [](const auto *R) { return Instruction::Store; })
4042 .Case<VPWidenLoadRecipe>(
4043 [](const auto *R) { return Instruction::Load; })
4044 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4045 [](const auto *R) { return Instruction::Call; })
4048 [](const auto *R) { return R->getOpcode(); })
4049 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4050 return R->getStoredValues().empty() ? Instruction::Load
4051 : Instruction::Store;
4052 })
4053 .Case<VPReductionRecipe>([](const auto *R) {
4054 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4055 });
4056
4057 // If the next recipe is different, or if there are no other pairs,
4058 // emit a remark for the collated subset. e.g.
4059 // [(load, VF1), (load, VF2))]
4060 // to emit:
4061 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4062 if (Subset == Tail || Tail[Subset.size()].first != R) {
4063 std::string OutString;
4064 raw_string_ostream OS(OutString);
4065 assert(!Subset.empty() && "Unexpected empty range");
4066 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4067 for (const auto &Pair : Subset)
4068 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4069 OS << "):";
4070 if (Opcode == Instruction::Call) {
4071 StringRef Name = "";
4072 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4073 Name = Int->getIntrinsicName();
4074 } else {
4075 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4076 Function *CalledFn =
4077 WidenCall ? WidenCall->getCalledScalarFunction()
4078 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4079 ->getLiveInIRValue());
4080 Name = CalledFn->getName();
4081 }
4082 OS << " call to " << Name;
4083 } else
4084 OS << " " << Instruction::getOpcodeName(Opcode);
4085 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4086 R->getDebugLoc());
4087 Tail = Tail.drop_front(Subset.size());
4088 Subset = {};
4089 } else
4090 // Grow the subset by one element
4091 Subset = Tail.take_front(Subset.size() + 1);
4092 } while (!Tail.empty());
4093}
4094
4095/// Check if any recipe of \p Plan will generate a vector value, which will be
4096/// assigned a vector register.
4098 const TargetTransformInfo &TTI) {
4099 assert(VF.isVector() && "Checking a scalar VF?");
4100 VPTypeAnalysis TypeInfo(Plan);
4101 DenseSet<VPRecipeBase *> EphemeralRecipes;
4102 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4103 // Set of already visited types.
4104 DenseSet<Type *> Visited;
4107 for (VPRecipeBase &R : *VPBB) {
4108 if (EphemeralRecipes.contains(&R))
4109 continue;
4110 // Continue early if the recipe is considered to not produce a vector
4111 // result. Note that this includes VPInstruction where some opcodes may
4112 // produce a vector, to preserve existing behavior as VPInstructions model
4113 // aspects not directly mapped to existing IR instructions.
4114 switch (R.getVPDefID()) {
4115 case VPDef::VPDerivedIVSC:
4116 case VPDef::VPScalarIVStepsSC:
4117 case VPDef::VPReplicateSC:
4118 case VPDef::VPInstructionSC:
4119 case VPDef::VPCanonicalIVPHISC:
4120 case VPDef::VPVectorPointerSC:
4121 case VPDef::VPVectorEndPointerSC:
4122 case VPDef::VPExpandSCEVSC:
4123 case VPDef::VPEVLBasedIVPHISC:
4124 case VPDef::VPPredInstPHISC:
4125 case VPDef::VPBranchOnMaskSC:
4126 continue;
4127 case VPDef::VPReductionSC:
4128 case VPDef::VPActiveLaneMaskPHISC:
4129 case VPDef::VPWidenCallSC:
4130 case VPDef::VPWidenCanonicalIVSC:
4131 case VPDef::VPWidenCastSC:
4132 case VPDef::VPWidenGEPSC:
4133 case VPDef::VPWidenIntrinsicSC:
4134 case VPDef::VPWidenSC:
4135 case VPDef::VPBlendSC:
4136 case VPDef::VPFirstOrderRecurrencePHISC:
4137 case VPDef::VPHistogramSC:
4138 case VPDef::VPWidenPHISC:
4139 case VPDef::VPWidenIntOrFpInductionSC:
4140 case VPDef::VPWidenPointerInductionSC:
4141 case VPDef::VPReductionPHISC:
4142 case VPDef::VPInterleaveEVLSC:
4143 case VPDef::VPInterleaveSC:
4144 case VPDef::VPWidenLoadEVLSC:
4145 case VPDef::VPWidenLoadSC:
4146 case VPDef::VPWidenStoreEVLSC:
4147 case VPDef::VPWidenStoreSC:
4148 break;
4149 default:
4150 llvm_unreachable("unhandled recipe");
4151 }
4152
4153 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4154 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4155 if (!NumLegalParts)
4156 return false;
4157 if (VF.isScalable()) {
4158 // <vscale x 1 x iN> is assumed to be profitable over iN because
4159 // scalable registers are a distinct register class from scalar
4160 // ones. If we ever find a target which wants to lower scalable
4161 // vectors back to scalars, we'll need to update this code to
4162 // explicitly ask TTI about the register class uses for each part.
4163 return NumLegalParts <= VF.getKnownMinValue();
4164 }
4165 // Two or more elements that share a register - are vectorized.
4166 return NumLegalParts < VF.getFixedValue();
4167 };
4168
4169 // If no def nor is a store, e.g., branches, continue - no value to check.
4170 if (R.getNumDefinedValues() == 0 &&
4172 continue;
4173 // For multi-def recipes, currently only interleaved loads, suffice to
4174 // check first def only.
4175 // For stores check their stored value; for interleaved stores suffice
4176 // the check first stored value only. In all cases this is the second
4177 // operand.
4178 VPValue *ToCheck =
4179 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4180 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4181 if (!Visited.insert({ScalarTy}).second)
4182 continue;
4183 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4184 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4185 return true;
4186 }
4187 }
4188
4189 return false;
4190}
4191
4192static bool hasReplicatorRegion(VPlan &Plan) {
4194 Plan.getVectorLoopRegion()->getEntry())),
4195 [](auto *VPRB) { return VPRB->isReplicator(); });
4196}
4197
4198#ifndef NDEBUG
4199VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4200 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4201 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4202 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4203 assert(
4204 any_of(VPlans,
4205 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4206 "Expected Scalar VF to be a candidate");
4207
4208 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4209 ExpectedCost);
4210 VectorizationFactor ChosenFactor = ScalarCost;
4211
4212 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4213 if (ForceVectorization &&
4214 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4215 // Ignore scalar width, because the user explicitly wants vectorization.
4216 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4217 // evaluation.
4218 ChosenFactor.Cost = InstructionCost::getMax();
4219 }
4220
4221 for (auto &P : VPlans) {
4222 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4223 P->vectorFactors().end());
4224
4226 if (any_of(VFs, [this](ElementCount VF) {
4227 return CM.shouldConsiderRegPressureForVF(VF);
4228 }))
4229 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4230
4231 for (unsigned I = 0; I < VFs.size(); I++) {
4232 ElementCount VF = VFs[I];
4233 // The cost for scalar VF=1 is already calculated, so ignore it.
4234 if (VF.isScalar())
4235 continue;
4236
4237 /// If the register pressure needs to be considered for VF,
4238 /// don't consider the VF as valid if it exceeds the number
4239 /// of registers for the target.
4240 if (CM.shouldConsiderRegPressureForVF(VF) &&
4241 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4242 continue;
4243
4244 InstructionCost C = CM.expectedCost(VF);
4245
4246 // Add on other costs that are modelled in VPlan, but not in the legacy
4247 // cost model.
4248 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind, CM.PSE,
4249 OrigLoop);
4250 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4251 assert(VectorRegion && "Expected to have a vector region!");
4252 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4253 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4254 for (VPRecipeBase &R : *VPBB) {
4255 auto *VPI = dyn_cast<VPInstruction>(&R);
4256 if (!VPI)
4257 continue;
4258 switch (VPI->getOpcode()) {
4259 // Selects are only modelled in the legacy cost model for safe
4260 // divisors.
4261 case Instruction::Select: {
4262 if (auto *WR =
4263 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4264 switch (WR->getOpcode()) {
4265 case Instruction::UDiv:
4266 case Instruction::SDiv:
4267 case Instruction::URem:
4268 case Instruction::SRem:
4269 continue;
4270 default:
4271 break;
4272 }
4273 }
4274 C += VPI->cost(VF, CostCtx);
4275 break;
4276 }
4278 unsigned Multiplier =
4279 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4280 ->getZExtValue();
4281 C += VPI->cost(VF * Multiplier, CostCtx);
4282 break;
4283 }
4285 C += VPI->cost(VF, CostCtx);
4286 break;
4287 default:
4288 break;
4289 }
4290 }
4291 }
4292
4293 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4294 unsigned Width =
4295 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4296 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4297 << " costs: " << (Candidate.Cost / Width));
4298 if (VF.isScalable())
4299 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4300 << CM.getVScaleForTuning().value_or(1) << ")");
4301 LLVM_DEBUG(dbgs() << ".\n");
4302
4303 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4304 LLVM_DEBUG(
4305 dbgs()
4306 << "LV: Not considering vector loop of width " << VF
4307 << " because it will not generate any vector instructions.\n");
4308 continue;
4309 }
4310
4311 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4312 LLVM_DEBUG(
4313 dbgs()
4314 << "LV: Not considering vector loop of width " << VF
4315 << " because it would cause replicated blocks to be generated,"
4316 << " which isn't allowed when optimizing for size.\n");
4317 continue;
4318 }
4319
4320 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4321 ChosenFactor = Candidate;
4322 }
4323 }
4324
4325 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4327 "There are conditional stores.",
4328 "store that is conditionally executed prevents vectorization",
4329 "ConditionalStore", ORE, OrigLoop);
4330 ChosenFactor = ScalarCost;
4331 }
4332
4333 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4334 !isMoreProfitable(ChosenFactor, ScalarCost,
4335 !CM.foldTailByMasking())) dbgs()
4336 << "LV: Vectorization seems to be not beneficial, "
4337 << "but was forced by a user.\n");
4338 return ChosenFactor;
4339}
4340#endif
4341
4342bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4343 ElementCount VF) const {
4344 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4345 // reductions need special handling and are currently unsupported.
4346 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4347 if (!Legal->isReductionVariable(&Phi))
4348 return Legal->isFixedOrderRecurrence(&Phi);
4349 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4350 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4351 }))
4352 return false;
4353
4354 // Phis with uses outside of the loop require special handling and are
4355 // currently unsupported.
4356 for (const auto &Entry : Legal->getInductionVars()) {
4357 // Look for uses of the value of the induction at the last iteration.
4358 Value *PostInc =
4359 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4360 for (User *U : PostInc->users())
4361 if (!OrigLoop->contains(cast<Instruction>(U)))
4362 return false;
4363 // Look for uses of penultimate value of the induction.
4364 for (User *U : Entry.first->users())
4365 if (!OrigLoop->contains(cast<Instruction>(U)))
4366 return false;
4367 }
4368
4369 // Epilogue vectorization code has not been auditted to ensure it handles
4370 // non-latch exits properly. It may be fine, but it needs auditted and
4371 // tested.
4372 // TODO: Add support for loops with an early exit.
4373 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4374 return false;
4375
4376 return true;
4377}
4378
4380 const ElementCount VF, const unsigned IC) const {
4381 // FIXME: We need a much better cost-model to take different parameters such
4382 // as register pressure, code size increase and cost of extra branches into
4383 // account. For now we apply a very crude heuristic and only consider loops
4384 // with vectorization factors larger than a certain value.
4385
4386 // Allow the target to opt out entirely.
4387 if (!TTI.preferEpilogueVectorization())
4388 return false;
4389
4390 // We also consider epilogue vectorization unprofitable for targets that don't
4391 // consider interleaving beneficial (eg. MVE).
4392 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4393 return false;
4394
4395 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4397 : TTI.getEpilogueVectorizationMinVF();
4398 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4399}
4400
4402 const ElementCount MainLoopVF, unsigned IC) {
4405 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4406 return Result;
4407 }
4408
4409 if (!CM.isScalarEpilogueAllowed()) {
4410 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4411 "epilogue is allowed.\n");
4412 return Result;
4413 }
4414
4415 // Not really a cost consideration, but check for unsupported cases here to
4416 // simplify the logic.
4417 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4418 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4419 "is not a supported candidate.\n");
4420 return Result;
4421 }
4422
4424 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4426 if (hasPlanWithVF(ForcedEC))
4427 return {ForcedEC, 0, 0};
4428
4429 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4430 "viable.\n");
4431 return Result;
4432 }
4433
4434 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4435 LLVM_DEBUG(
4436 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4437 return Result;
4438 }
4439
4440 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4441 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4442 "this loop\n");
4443 return Result;
4444 }
4445
4446 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4447 // the main loop handles 8 lanes per iteration. We could still benefit from
4448 // vectorizing the epilogue loop with VF=4.
4449 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4450 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4451
4452 Type *TCType = Legal->getWidestInductionType();
4453 const SCEV *RemainingIterations = nullptr;
4454 unsigned MaxTripCount = 0;
4456 getPlanFor(MainLoopVF).getTripCount(), PSE);
4457 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4458 const SCEV *KnownMinTC;
4459 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4460 bool ScalableRemIter = false;
4461 ScalarEvolution &SE = *PSE.getSE();
4462 // Use versions of TC and VF in which both are either scalable or fixed.
4463 if (ScalableTC == MainLoopVF.isScalable()) {
4464 ScalableRemIter = ScalableTC;
4465 RemainingIterations =
4466 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4467 } else if (ScalableTC) {
4468 const SCEV *EstimatedTC = SE.getMulExpr(
4469 KnownMinTC,
4470 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4471 RemainingIterations = SE.getURemExpr(
4472 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4473 } else
4474 RemainingIterations =
4475 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4476
4477 // No iterations left to process in the epilogue.
4478 if (RemainingIterations->isZero())
4479 return Result;
4480
4481 if (MainLoopVF.isFixed()) {
4482 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4483 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4484 SE.getConstant(TCType, MaxTripCount))) {
4485 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4486 }
4487 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4488 << MaxTripCount << "\n");
4489 }
4490
4491 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4492 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4493 };
4494 for (auto &NextVF : ProfitableVFs) {
4495 // Skip candidate VFs without a corresponding VPlan.
4496 if (!hasPlanWithVF(NextVF.Width))
4497 continue;
4498
4499 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4500 // vectors) or > the VF of the main loop (fixed vectors).
4501 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4502 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4503 (NextVF.Width.isScalable() &&
4504 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4505 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4506 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4507 continue;
4508
4509 // If NextVF is greater than the number of remaining iterations, the
4510 // epilogue loop would be dead. Skip such factors.
4511 // TODO: We should also consider comparing against a scalable
4512 // RemainingIterations when SCEV be able to evaluate non-canonical
4513 // vscale-based expressions.
4514 if (!ScalableRemIter) {
4515 // Handle the case where NextVF and RemainingIterations are in different
4516 // numerical spaces.
4517 ElementCount EC = NextVF.Width;
4518 if (NextVF.Width.isScalable())
4520 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4521 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4522 continue;
4523 }
4524
4525 if (Result.Width.isScalar() ||
4526 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4527 /*IsEpilogue*/ true))
4528 Result = NextVF;
4529 }
4530
4531 if (Result != VectorizationFactor::Disabled())
4532 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4533 << Result.Width << "\n");
4534 return Result;
4535}
4536
4537std::pair<unsigned, unsigned>
4539 unsigned MinWidth = -1U;
4540 unsigned MaxWidth = 8;
4541 const DataLayout &DL = TheFunction->getDataLayout();
4542 // For in-loop reductions, no element types are added to ElementTypesInLoop
4543 // if there are no loads/stores in the loop. In this case, check through the
4544 // reduction variables to determine the maximum width.
4545 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4546 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4547 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4548 // When finding the min width used by the recurrence we need to account
4549 // for casts on the input operands of the recurrence.
4550 MinWidth = std::min(
4551 MinWidth,
4552 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4554 MaxWidth = std::max(MaxWidth,
4556 }
4557 } else {
4558 for (Type *T : ElementTypesInLoop) {
4559 MinWidth = std::min<unsigned>(
4560 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4561 MaxWidth = std::max<unsigned>(
4562 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4563 }
4564 }
4565 return {MinWidth, MaxWidth};
4566}
4567
4569 ElementTypesInLoop.clear();
4570 // For each block.
4571 for (BasicBlock *BB : TheLoop->blocks()) {
4572 // For each instruction in the loop.
4573 for (Instruction &I : BB->instructionsWithoutDebug()) {
4574 Type *T = I.getType();
4575
4576 // Skip ignored values.
4577 if (ValuesToIgnore.count(&I))
4578 continue;
4579
4580 // Only examine Loads, Stores and PHINodes.
4581 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4582 continue;
4583
4584 // Examine PHI nodes that are reduction variables. Update the type to
4585 // account for the recurrence type.
4586 if (auto *PN = dyn_cast<PHINode>(&I)) {
4587 if (!Legal->isReductionVariable(PN))
4588 continue;
4589 const RecurrenceDescriptor &RdxDesc =
4590 Legal->getRecurrenceDescriptor(PN);
4592 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4593 RdxDesc.getRecurrenceType()))
4594 continue;
4595 T = RdxDesc.getRecurrenceType();
4596 }
4597
4598 // Examine the stored values.
4599 if (auto *ST = dyn_cast<StoreInst>(&I))
4600 T = ST->getValueOperand()->getType();
4601
4602 assert(T->isSized() &&
4603 "Expected the load/store/recurrence type to be sized");
4604
4605 ElementTypesInLoop.insert(T);
4606 }
4607 }
4608}
4609
4610unsigned
4612 InstructionCost LoopCost) {
4613 // -- The interleave heuristics --
4614 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4615 // There are many micro-architectural considerations that we can't predict
4616 // at this level. For example, frontend pressure (on decode or fetch) due to
4617 // code size, or the number and capabilities of the execution ports.
4618 //
4619 // We use the following heuristics to select the interleave count:
4620 // 1. If the code has reductions, then we interleave to break the cross
4621 // iteration dependency.
4622 // 2. If the loop is really small, then we interleave to reduce the loop
4623 // overhead.
4624 // 3. We don't interleave if we think that we will spill registers to memory
4625 // due to the increased register pressure.
4626
4627 // Only interleave tail-folded loops if wide lane masks are requested, as the
4628 // overhead of multiple instructions to calculate the predicate is likely
4629 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4630 // do not interleave.
4631 if (!CM.isScalarEpilogueAllowed() &&
4632 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4633 return 1;
4634
4637 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4638 "Unroll factor forced to be 1.\n");
4639 return 1;
4640 }
4641
4642 // We used the distance for the interleave count.
4643 if (!Legal->isSafeForAnyVectorWidth())
4644 return 1;
4645
4646 // We don't attempt to perform interleaving for loops with uncountable early
4647 // exits because the VPInstruction::AnyOf code cannot currently handle
4648 // multiple parts.
4649 if (Plan.hasEarlyExit())
4650 return 1;
4651
4652 const bool HasReductions =
4655
4656 // If we did not calculate the cost for VF (because the user selected the VF)
4657 // then we calculate the cost of VF here.
4658 if (LoopCost == 0) {
4659 if (VF.isScalar())
4660 LoopCost = CM.expectedCost(VF);
4661 else
4662 LoopCost = cost(Plan, VF);
4663 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4664
4665 // Loop body is free and there is no need for interleaving.
4666 if (LoopCost == 0)
4667 return 1;
4668 }
4669
4670 VPRegisterUsage R =
4671 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4672 // We divide by these constants so assume that we have at least one
4673 // instruction that uses at least one register.
4674 for (auto &Pair : R.MaxLocalUsers) {
4675 Pair.second = std::max(Pair.second, 1U);
4676 }
4677
4678 // We calculate the interleave count using the following formula.
4679 // Subtract the number of loop invariants from the number of available
4680 // registers. These registers are used by all of the interleaved instances.
4681 // Next, divide the remaining registers by the number of registers that is
4682 // required by the loop, in order to estimate how many parallel instances
4683 // fit without causing spills. All of this is rounded down if necessary to be
4684 // a power of two. We want power of two interleave count to simplify any
4685 // addressing operations or alignment considerations.
4686 // We also want power of two interleave counts to ensure that the induction
4687 // variable of the vector loop wraps to zero, when tail is folded by masking;
4688 // this currently happens when OptForSize, in which case IC is set to 1 above.
4689 unsigned IC = UINT_MAX;
4690
4691 for (const auto &Pair : R.MaxLocalUsers) {
4692 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4693 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4694 << " registers of "
4695 << TTI.getRegisterClassName(Pair.first)
4696 << " register class\n");
4697 if (VF.isScalar()) {
4698 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4699 TargetNumRegisters = ForceTargetNumScalarRegs;
4700 } else {
4701 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4702 TargetNumRegisters = ForceTargetNumVectorRegs;
4703 }
4704 unsigned MaxLocalUsers = Pair.second;
4705 unsigned LoopInvariantRegs = 0;
4706 if (R.LoopInvariantRegs.contains(Pair.first))
4707 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4708
4709 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4710 MaxLocalUsers);
4711 // Don't count the induction variable as interleaved.
4713 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4714 std::max(1U, (MaxLocalUsers - 1)));
4715 }
4716
4717 IC = std::min(IC, TmpIC);
4718 }
4719
4720 // Clamp the interleave ranges to reasonable counts.
4721 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4722
4723 // Check if the user has overridden the max.
4724 if (VF.isScalar()) {
4725 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4726 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4727 } else {
4728 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4729 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4730 }
4731
4732 // Try to get the exact trip count, or an estimate based on profiling data or
4733 // ConstantMax from PSE, failing that.
4734 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4735
4736 // For fixed length VFs treat a scalable trip count as unknown.
4737 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4738 // Re-evaluate trip counts and VFs to be in the same numerical space.
4739 unsigned AvailableTC =
4740 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4741 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4742
4743 // At least one iteration must be scalar when this constraint holds. So the
4744 // maximum available iterations for interleaving is one less.
4745 if (CM.requiresScalarEpilogue(VF.isVector()))
4746 --AvailableTC;
4747
4748 unsigned InterleaveCountLB = bit_floor(std::max(
4749 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4750
4751 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4752 // If the best known trip count is exact, we select between two
4753 // prospective ICs, where
4754 //
4755 // 1) the aggressive IC is capped by the trip count divided by VF
4756 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4757 //
4758 // The final IC is selected in a way that the epilogue loop trip count is
4759 // minimized while maximizing the IC itself, so that we either run the
4760 // vector loop at least once if it generates a small epilogue loop, or
4761 // else we run the vector loop at least twice.
4762
4763 unsigned InterleaveCountUB = bit_floor(std::max(
4764 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4765 MaxInterleaveCount = InterleaveCountLB;
4766
4767 if (InterleaveCountUB != InterleaveCountLB) {
4768 unsigned TailTripCountUB =
4769 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4770 unsigned TailTripCountLB =
4771 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4772 // If both produce same scalar tail, maximize the IC to do the same work
4773 // in fewer vector loop iterations
4774 if (TailTripCountUB == TailTripCountLB)
4775 MaxInterleaveCount = InterleaveCountUB;
4776 }
4777 } else {
4778 // If trip count is an estimated compile time constant, limit the
4779 // IC to be capped by the trip count divided by VF * 2, such that the
4780 // vector loop runs at least twice to make interleaving seem profitable
4781 // when there is an epilogue loop present. Since exact Trip count is not
4782 // known we choose to be conservative in our IC estimate.
4783 MaxInterleaveCount = InterleaveCountLB;
4784 }
4785 }
4786
4787 assert(MaxInterleaveCount > 0 &&
4788 "Maximum interleave count must be greater than 0");
4789
4790 // Clamp the calculated IC to be between the 1 and the max interleave count
4791 // that the target and trip count allows.
4792 if (IC > MaxInterleaveCount)
4793 IC = MaxInterleaveCount;
4794 else
4795 // Make sure IC is greater than 0.
4796 IC = std::max(1u, IC);
4797
4798 assert(IC > 0 && "Interleave count must be greater than 0.");
4799
4800 // Interleave if we vectorized this loop and there is a reduction that could
4801 // benefit from interleaving.
4802 if (VF.isVector() && HasReductions) {
4803 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4804 return IC;
4805 }
4806
4807 // For any scalar loop that either requires runtime checks or predication we
4808 // are better off leaving this to the unroller. Note that if we've already
4809 // vectorized the loop we will have done the runtime check and so interleaving
4810 // won't require further checks.
4811 bool ScalarInterleavingRequiresPredication =
4812 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4813 return Legal->blockNeedsPredication(BB);
4814 }));
4815 bool ScalarInterleavingRequiresRuntimePointerCheck =
4816 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4817
4818 // We want to interleave small loops in order to reduce the loop overhead and
4819 // potentially expose ILP opportunities.
4820 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4821 << "LV: IC is " << IC << '\n'
4822 << "LV: VF is " << VF << '\n');
4823 const bool AggressivelyInterleaveReductions =
4824 TTI.enableAggressiveInterleaving(HasReductions);
4825 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4826 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4827 // We assume that the cost overhead is 1 and we use the cost model
4828 // to estimate the cost of the loop and interleave until the cost of the
4829 // loop overhead is about 5% of the cost of the loop.
4830 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4831 SmallLoopCost / LoopCost.getValue()));
4832
4833 // Interleave until store/load ports (estimated by max interleave count) are
4834 // saturated.
4835 unsigned NumStores = 0;
4836 unsigned NumLoads = 0;
4839 for (VPRecipeBase &R : *VPBB) {
4841 NumLoads++;
4842 continue;
4843 }
4845 NumStores++;
4846 continue;
4847 }
4848
4849 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4850 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4851 NumStores += StoreOps;
4852 else
4853 NumLoads += InterleaveR->getNumDefinedValues();
4854 continue;
4855 }
4856 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4857 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4858 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4859 continue;
4860 }
4861 if (isa<VPHistogramRecipe>(&R)) {
4862 NumLoads++;
4863 NumStores++;
4864 continue;
4865 }
4866 }
4867 }
4868 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4869 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4870
4871 // There is little point in interleaving for reductions containing selects
4872 // and compares when VF=1 since it may just create more overhead than it's
4873 // worth for loops with small trip counts. This is because we still have to
4874 // do the final reduction after the loop.
4875 bool HasSelectCmpReductions =
4876 HasReductions &&
4878 [](VPRecipeBase &R) {
4879 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4880 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4881 RedR->getRecurrenceKind()) ||
4882 RecurrenceDescriptor::isFindIVRecurrenceKind(
4883 RedR->getRecurrenceKind()));
4884 });
4885 if (HasSelectCmpReductions) {
4886 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4887 return 1;
4888 }
4889
4890 // If we have a scalar reduction (vector reductions are already dealt with
4891 // by this point), we can increase the critical path length if the loop
4892 // we're interleaving is inside another loop. For tree-wise reductions
4893 // set the limit to 2, and for ordered reductions it's best to disable
4894 // interleaving entirely.
4895 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4896 bool HasOrderedReductions =
4898 [](VPRecipeBase &R) {
4899 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4900
4901 return RedR && RedR->isOrdered();
4902 });
4903 if (HasOrderedReductions) {
4904 LLVM_DEBUG(
4905 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4906 return 1;
4907 }
4908
4909 unsigned F = MaxNestedScalarReductionIC;
4910 SmallIC = std::min(SmallIC, F);
4911 StoresIC = std::min(StoresIC, F);
4912 LoadsIC = std::min(LoadsIC, F);
4913 }
4914
4916 std::max(StoresIC, LoadsIC) > SmallIC) {
4917 LLVM_DEBUG(
4918 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4919 return std::max(StoresIC, LoadsIC);
4920 }
4921
4922 // If there are scalar reductions and TTI has enabled aggressive
4923 // interleaving for reductions, we will interleave to expose ILP.
4924 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4925 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4926 // Interleave no less than SmallIC but not as aggressive as the normal IC
4927 // to satisfy the rare situation when resources are too limited.
4928 return std::max(IC / 2, SmallIC);
4929 }
4930
4931 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4932 return SmallIC;
4933 }
4934
4935 // Interleave if this is a large loop (small loops are already dealt with by
4936 // this point) that could benefit from interleaving.
4937 if (AggressivelyInterleaveReductions) {
4938 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4939 return IC;
4940 }
4941
4942 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4943 return 1;
4944}
4945
4946bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4947 ElementCount VF) {
4948 // TODO: Cost model for emulated masked load/store is completely
4949 // broken. This hack guides the cost model to use an artificially
4950 // high enough value to practically disable vectorization with such
4951 // operations, except where previously deployed legality hack allowed
4952 // using very low cost values. This is to avoid regressions coming simply
4953 // from moving "masked load/store" check from legality to cost model.
4954 // Masked Load/Gather emulation was previously never allowed.
4955 // Limited number of Masked Store/Scatter emulation was allowed.
4956 assert((isPredicatedInst(I)) &&
4957 "Expecting a scalar emulated instruction");
4958 return isa<LoadInst>(I) ||
4959 (isa<StoreInst>(I) &&
4960 NumPredStores > NumberOfStoresToPredicate);
4961}
4962
4964 assert(VF.isVector() && "Expected VF >= 2");
4965
4966 // If we've already collected the instructions to scalarize or the predicated
4967 // BBs after vectorization, there's nothing to do. Collection may already have
4968 // occurred if we have a user-selected VF and are now computing the expected
4969 // cost for interleaving.
4970 if (InstsToScalarize.contains(VF) ||
4971 PredicatedBBsAfterVectorization.contains(VF))
4972 return;
4973
4974 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4975 // not profitable to scalarize any instructions, the presence of VF in the
4976 // map will indicate that we've analyzed it already.
4977 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4978
4979 // Find all the instructions that are scalar with predication in the loop and
4980 // determine if it would be better to not if-convert the blocks they are in.
4981 // If so, we also record the instructions to scalarize.
4982 for (BasicBlock *BB : TheLoop->blocks()) {
4984 continue;
4985 for (Instruction &I : *BB)
4986 if (isScalarWithPredication(&I, VF)) {
4987 ScalarCostsTy ScalarCosts;
4988 // Do not apply discount logic for:
4989 // 1. Scalars after vectorization, as there will only be a single copy
4990 // of the instruction.
4991 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4992 // 3. Emulated masked memrefs, if a hacked cost is needed.
4993 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4994 !useEmulatedMaskMemRefHack(&I, VF) &&
4995 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4996 for (const auto &[I, IC] : ScalarCosts)
4997 ScalarCostsVF.insert({I, IC});
4998 // Check if we decided to scalarize a call. If so, update the widening
4999 // decision of the call to CM_Scalarize with the computed scalar cost.
5000 for (const auto &[I, Cost] : ScalarCosts) {
5001 auto *CI = dyn_cast<CallInst>(I);
5002 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5003 continue;
5004 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
5005 CallWideningDecisions[{CI, VF}].Cost = Cost;
5006 }
5007 }
5008 // Remember that BB will remain after vectorization.
5009 PredicatedBBsAfterVectorization[VF].insert(BB);
5010 for (auto *Pred : predecessors(BB)) {
5011 if (Pred->getSingleSuccessor() == BB)
5012 PredicatedBBsAfterVectorization[VF].insert(Pred);
5013 }
5014 }
5015 }
5016}
5017
5018InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5019 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5020 assert(!isUniformAfterVectorization(PredInst, VF) &&
5021 "Instruction marked uniform-after-vectorization will be predicated");
5022
5023 // Initialize the discount to zero, meaning that the scalar version and the
5024 // vector version cost the same.
5025 InstructionCost Discount = 0;
5026
5027 // Holds instructions to analyze. The instructions we visit are mapped in
5028 // ScalarCosts. Those instructions are the ones that would be scalarized if
5029 // we find that the scalar version costs less.
5031
5032 // Returns true if the given instruction can be scalarized.
5033 auto CanBeScalarized = [&](Instruction *I) -> bool {
5034 // We only attempt to scalarize instructions forming a single-use chain
5035 // from the original predicated block that would otherwise be vectorized.
5036 // Although not strictly necessary, we give up on instructions we know will
5037 // already be scalar to avoid traversing chains that are unlikely to be
5038 // beneficial.
5039 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5040 isScalarAfterVectorization(I, VF))
5041 return false;
5042
5043 // If the instruction is scalar with predication, it will be analyzed
5044 // separately. We ignore it within the context of PredInst.
5045 if (isScalarWithPredication(I, VF))
5046 return false;
5047
5048 // If any of the instruction's operands are uniform after vectorization,
5049 // the instruction cannot be scalarized. This prevents, for example, a
5050 // masked load from being scalarized.
5051 //
5052 // We assume we will only emit a value for lane zero of an instruction
5053 // marked uniform after vectorization, rather than VF identical values.
5054 // Thus, if we scalarize an instruction that uses a uniform, we would
5055 // create uses of values corresponding to the lanes we aren't emitting code
5056 // for. This behavior can be changed by allowing getScalarValue to clone
5057 // the lane zero values for uniforms rather than asserting.
5058 for (Use &U : I->operands())
5059 if (auto *J = dyn_cast<Instruction>(U.get()))
5060 if (isUniformAfterVectorization(J, VF))
5061 return false;
5062
5063 // Otherwise, we can scalarize the instruction.
5064 return true;
5065 };
5066
5067 // Compute the expected cost discount from scalarizing the entire expression
5068 // feeding the predicated instruction. We currently only consider expressions
5069 // that are single-use instruction chains.
5070 Worklist.push_back(PredInst);
5071 while (!Worklist.empty()) {
5072 Instruction *I = Worklist.pop_back_val();
5073
5074 // If we've already analyzed the instruction, there's nothing to do.
5075 if (ScalarCosts.contains(I))
5076 continue;
5077
5078 // Cannot scalarize fixed-order recurrence phis at the moment.
5079 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5080 continue;
5081
5082 // Compute the cost of the vector instruction. Note that this cost already
5083 // includes the scalarization overhead of the predicated instruction.
5084 InstructionCost VectorCost = getInstructionCost(I, VF);
5085
5086 // Compute the cost of the scalarized instruction. This cost is the cost of
5087 // the instruction as if it wasn't if-converted and instead remained in the
5088 // predicated block. We will scale this cost by block probability after
5089 // computing the scalarization overhead.
5090 InstructionCost ScalarCost =
5091 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5092
5093 // Compute the scalarization overhead of needed insertelement instructions
5094 // and phi nodes.
5095 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5096 Type *WideTy = toVectorizedTy(I->getType(), VF);
5097 for (Type *VectorTy : getContainedTypes(WideTy)) {
5098 ScalarCost += TTI.getScalarizationOverhead(
5100 /*Insert=*/true,
5101 /*Extract=*/false, CostKind);
5102 }
5103 ScalarCost +=
5104 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5105 }
5106
5107 // Compute the scalarization overhead of needed extractelement
5108 // instructions. For each of the instruction's operands, if the operand can
5109 // be scalarized, add it to the worklist; otherwise, account for the
5110 // overhead.
5111 for (Use &U : I->operands())
5112 if (auto *J = dyn_cast<Instruction>(U.get())) {
5113 assert(canVectorizeTy(J->getType()) &&
5114 "Instruction has non-scalar type");
5115 if (CanBeScalarized(J))
5116 Worklist.push_back(J);
5117 else if (needsExtract(J, VF)) {
5118 Type *WideTy = toVectorizedTy(J->getType(), VF);
5119 for (Type *VectorTy : getContainedTypes(WideTy)) {
5120 ScalarCost += TTI.getScalarizationOverhead(
5121 cast<VectorType>(VectorTy),
5122 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5123 /*Extract*/ true, CostKind);
5124 }
5125 }
5126 }
5127
5128 // Scale the total scalar cost by block probability.
5129 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5130
5131 // Compute the discount. A non-negative discount means the vector version
5132 // of the instruction costs more, and scalarizing would be beneficial.
5133 Discount += VectorCost - ScalarCost;
5134 ScalarCosts[I] = ScalarCost;
5135 }
5136
5137 return Discount;
5138}
5139
5142
5143 // If the vector loop gets executed exactly once with the given VF, ignore the
5144 // costs of comparison and induction instructions, as they'll get simplified
5145 // away.
5146 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5147 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5148 if (TC == VF && !foldTailByMasking())
5150 ValuesToIgnoreForVF);
5151
5152 // For each block.
5153 for (BasicBlock *BB : TheLoop->blocks()) {
5154 InstructionCost BlockCost;
5155
5156 // For each instruction in the old loop.
5157 for (Instruction &I : BB->instructionsWithoutDebug()) {
5158 // Skip ignored values.
5159 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5160 (VF.isVector() && VecValuesToIgnore.count(&I)))
5161 continue;
5162
5164
5165 // Check if we should override the cost.
5166 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) {
5167 // For interleave groups, use ForceTargetInstructionCost once for the
5168 // whole group.
5169 if (VF.isVector() && getWideningDecision(&I, VF) == CM_Interleave) {
5170 if (getInterleavedAccessGroup(&I)->getInsertPos() == &I)
5172 else
5173 C = InstructionCost(0);
5174 } else {
5176 }
5177 }
5178
5179 BlockCost += C;
5180 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5181 << VF << " For instruction: " << I << '\n');
5182 }
5183
5184 // If we are vectorizing a predicated block, it will have been
5185 // if-converted. This means that the block's instructions (aside from
5186 // stores and instructions that may divide by zero) will now be
5187 // unconditionally executed. For the scalar case, we may not always execute
5188 // the predicated block, if it is an if-else block. Thus, scale the block's
5189 // cost by the probability of executing it.
5190 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5191 // by the header mask when folding the tail.
5192 if (VF.isScalar())
5193 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5194
5195 Cost += BlockCost;
5196 }
5197
5198 return Cost;
5199}
5200
5201/// Gets the address access SCEV for Ptr, if it should be used for cost modeling
5202/// according to isAddressSCEVForCost.
5203///
5204/// This SCEV can be sent to the Target in order to estimate the address
5205/// calculation cost.
5207 Value *Ptr,
5209 const Loop *TheLoop) {
5210 const SCEV *Addr = PSE.getSCEV(Ptr);
5211 return vputils::isAddressSCEVForCost(Addr, *PSE.getSE(), TheLoop) ? Addr
5212 : nullptr;
5213}
5214
5216LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5217 ElementCount VF) {
5218 assert(VF.isVector() &&
5219 "Scalarization cost of instruction implies vectorization.");
5220 if (VF.isScalable())
5221 return InstructionCost::getInvalid();
5222
5223 Type *ValTy = getLoadStoreType(I);
5224 auto *SE = PSE.getSE();
5225
5226 unsigned AS = getLoadStoreAddressSpace(I);
5228 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5229 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5230 // that it is being called from this specific place.
5231
5232 // Figure out whether the access is strided and get the stride value
5233 // if it's known in compile time
5234 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, PSE, TheLoop);
5235
5236 // Get the cost of the scalar memory instruction and address computation.
5238 PtrTy, SE, PtrSCEV, CostKind);
5239
5240 // Don't pass *I here, since it is scalar but will actually be part of a
5241 // vectorized loop where the user of it is a vectorized instruction.
5242 const Align Alignment = getLoadStoreAlignment(I);
5243 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5244 Cost += VF.getFixedValue() *
5245 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5246 AS, CostKind, OpInfo);
5247
5248 // Get the overhead of the extractelement and insertelement instructions
5249 // we might create due to scalarization.
5251
5252 // If we have a predicated load/store, it will need extra i1 extracts and
5253 // conditional branches, but may not be executed for each vector lane. Scale
5254 // the cost by the probability of executing the predicated block.
5255 if (isPredicatedInst(I)) {
5256 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5257
5258 // Add the cost of an i1 extract and a branch
5259 auto *VecI1Ty =
5260 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5262 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5263 /*Insert=*/false, /*Extract=*/true, CostKind);
5264 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5265
5266 if (useEmulatedMaskMemRefHack(I, VF))
5267 // Artificially setting to a high enough value to practically disable
5268 // vectorization with such operations.
5269 Cost = 3000000;
5270 }
5271
5272 return Cost;
5273}
5274
5276LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5277 ElementCount VF) {
5278 Type *ValTy = getLoadStoreType(I);
5279 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5281 unsigned AS = getLoadStoreAddressSpace(I);
5282 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5283
5284 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5285 "Stride should be 1 or -1 for consecutive memory access");
5286 const Align Alignment = getLoadStoreAlignment(I);
5288 if (Legal->isMaskRequired(I)) {
5289 unsigned IID = I->getOpcode() == Instruction::Load
5290 ? Intrinsic::masked_load
5291 : Intrinsic::masked_store;
5293 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS), CostKind);
5294 } else {
5295 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5296 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5297 CostKind, OpInfo, I);
5298 }
5299
5300 bool Reverse = ConsecutiveStride < 0;
5301 if (Reverse)
5303 VectorTy, {}, CostKind, 0);
5304 return Cost;
5305}
5306
5308LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5309 ElementCount VF) {
5310 assert(Legal->isUniformMemOp(*I, VF));
5311
5312 Type *ValTy = getLoadStoreType(I);
5314 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5315 const Align Alignment = getLoadStoreAlignment(I);
5316 unsigned AS = getLoadStoreAddressSpace(I);
5317 if (isa<LoadInst>(I)) {
5318 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5319 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5320 CostKind) +
5322 VectorTy, {}, CostKind);
5323 }
5324 StoreInst *SI = cast<StoreInst>(I);
5325
5326 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5327 // TODO: We have existing tests that request the cost of extracting element
5328 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5329 // the actual generated code, which involves extracting the last element of
5330 // a scalable vector where the lane to extract is unknown at compile time.
5332 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5333 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5334 if (!IsLoopInvariantStoreValue)
5335 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5336 VectorTy, CostKind, 0);
5337 return Cost;
5338}
5339
5341LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5342 ElementCount VF) {
5343 Type *ValTy = getLoadStoreType(I);
5344 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5345 const Align Alignment = getLoadStoreAlignment(I);
5347 Type *PtrTy = Ptr->getType();
5348
5349 if (!Legal->isUniform(Ptr, VF))
5350 PtrTy = toVectorTy(PtrTy, VF);
5351
5352 unsigned IID = I->getOpcode() == Instruction::Load
5353 ? Intrinsic::masked_gather
5354 : Intrinsic::masked_scatter;
5355 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5357 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5358 Legal->isMaskRequired(I), Alignment, I),
5359 CostKind);
5360}
5361
5363LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5364 ElementCount VF) {
5365 const auto *Group = getInterleavedAccessGroup(I);
5366 assert(Group && "Fail to get an interleaved access group.");
5367
5368 Instruction *InsertPos = Group->getInsertPos();
5369 Type *ValTy = getLoadStoreType(InsertPos);
5370 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5371 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5372
5373 unsigned InterleaveFactor = Group->getFactor();
5374 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5375
5376 // Holds the indices of existing members in the interleaved group.
5377 SmallVector<unsigned, 4> Indices;
5378 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5379 if (Group->getMember(IF))
5380 Indices.push_back(IF);
5381
5382 // Calculate the cost of the whole interleaved group.
5383 bool UseMaskForGaps =
5384 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5385 (isa<StoreInst>(I) && !Group->isFull());
5387 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5388 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5389 UseMaskForGaps);
5390
5391 if (Group->isReverse()) {
5392 // TODO: Add support for reversed masked interleaved access.
5393 assert(!Legal->isMaskRequired(I) &&
5394 "Reverse masked interleaved access not supported.");
5395 Cost += Group->getNumMembers() *
5397 VectorTy, {}, CostKind, 0);
5398 }
5399 return Cost;
5400}
5401
5402std::optional<InstructionCost>
5404 ElementCount VF,
5405 Type *Ty) const {
5406 using namespace llvm::PatternMatch;
5407 // Early exit for no inloop reductions
5408 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5409 return std::nullopt;
5410 auto *VectorTy = cast<VectorType>(Ty);
5411
5412 // We are looking for a pattern of, and finding the minimal acceptable cost:
5413 // reduce(mul(ext(A), ext(B))) or
5414 // reduce(mul(A, B)) or
5415 // reduce(ext(A)) or
5416 // reduce(A).
5417 // The basic idea is that we walk down the tree to do that, finding the root
5418 // reduction instruction in InLoopReductionImmediateChains. From there we find
5419 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5420 // of the components. If the reduction cost is lower then we return it for the
5421 // reduction instruction and 0 for the other instructions in the pattern. If
5422 // it is not we return an invalid cost specifying the orignal cost method
5423 // should be used.
5424 Instruction *RetI = I;
5425 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5426 if (!RetI->hasOneUser())
5427 return std::nullopt;
5428 RetI = RetI->user_back();
5429 }
5430
5431 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5432 RetI->user_back()->getOpcode() == Instruction::Add) {
5433 RetI = RetI->user_back();
5434 }
5435
5436 // Test if the found instruction is a reduction, and if not return an invalid
5437 // cost specifying the parent to use the original cost modelling.
5438 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5439 if (!LastChain)
5440 return std::nullopt;
5441
5442 // Find the reduction this chain is a part of and calculate the basic cost of
5443 // the reduction on its own.
5444 Instruction *ReductionPhi = LastChain;
5445 while (!isa<PHINode>(ReductionPhi))
5446 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5447
5448 const RecurrenceDescriptor &RdxDesc =
5449 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5450
5451 InstructionCost BaseCost;
5452 RecurKind RK = RdxDesc.getRecurrenceKind();
5455 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5456 RdxDesc.getFastMathFlags(), CostKind);
5457 } else {
5458 BaseCost = TTI.getArithmeticReductionCost(
5459 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5460 }
5461
5462 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5463 // normal fmul instruction to the cost of the fadd reduction.
5464 if (RK == RecurKind::FMulAdd)
5465 BaseCost +=
5466 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5467
5468 // If we're using ordered reductions then we can just return the base cost
5469 // here, since getArithmeticReductionCost calculates the full ordered
5470 // reduction cost when FP reassociation is not allowed.
5471 if (useOrderedReductions(RdxDesc))
5472 return BaseCost;
5473
5474 // Get the operand that was not the reduction chain and match it to one of the
5475 // patterns, returning the better cost if it is found.
5476 Instruction *RedOp = RetI->getOperand(1) == LastChain
5479
5480 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5481
5482 Instruction *Op0, *Op1;
5483 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5484 match(RedOp,
5486 match(Op0, m_ZExtOrSExt(m_Value())) &&
5487 Op0->getOpcode() == Op1->getOpcode() &&
5488 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5489 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5490 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5491
5492 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5493 // Note that the extend opcodes need to all match, or if A==B they will have
5494 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5495 // which is equally fine.
5496 bool IsUnsigned = isa<ZExtInst>(Op0);
5497 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5498 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5499
5500 InstructionCost ExtCost =
5501 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5503 InstructionCost MulCost =
5504 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5505 InstructionCost Ext2Cost =
5506 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5508
5509 InstructionCost RedCost = TTI.getMulAccReductionCost(
5510 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5511 CostKind);
5512
5513 if (RedCost.isValid() &&
5514 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5515 return I == RetI ? RedCost : 0;
5516 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5517 !TheLoop->isLoopInvariant(RedOp)) {
5518 // Matched reduce(ext(A))
5519 bool IsUnsigned = isa<ZExtInst>(RedOp);
5520 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5521 InstructionCost RedCost = TTI.getExtendedReductionCost(
5522 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5523 RdxDesc.getFastMathFlags(), CostKind);
5524
5525 InstructionCost ExtCost =
5526 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5528 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5529 return I == RetI ? RedCost : 0;
5530 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5531 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5532 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5533 Op0->getOpcode() == Op1->getOpcode() &&
5534 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5535 bool IsUnsigned = isa<ZExtInst>(Op0);
5536 Type *Op0Ty = Op0->getOperand(0)->getType();
5537 Type *Op1Ty = Op1->getOperand(0)->getType();
5538 Type *LargestOpTy =
5539 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5540 : Op0Ty;
5541 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5542
5543 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5544 // different sizes. We take the largest type as the ext to reduce, and add
5545 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5546 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5547 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5549 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5550 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5552 InstructionCost MulCost =
5553 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5554
5555 InstructionCost RedCost = TTI.getMulAccReductionCost(
5556 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5557 CostKind);
5558 InstructionCost ExtraExtCost = 0;
5559 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5560 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5561 ExtraExtCost = TTI.getCastInstrCost(
5562 ExtraExtOp->getOpcode(), ExtType,
5563 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5565 }
5566
5567 if (RedCost.isValid() &&
5568 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5569 return I == RetI ? RedCost : 0;
5570 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5571 // Matched reduce.add(mul())
5572 InstructionCost MulCost =
5573 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5574
5575 InstructionCost RedCost = TTI.getMulAccReductionCost(
5576 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5577 CostKind);
5578
5579 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5580 return I == RetI ? RedCost : 0;
5581 }
5582 }
5583
5584 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5585}
5586
5588LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5589 ElementCount VF) {
5590 // Calculate scalar cost only. Vectorization cost should be ready at this
5591 // moment.
5592 if (VF.isScalar()) {
5593 Type *ValTy = getLoadStoreType(I);
5595 const Align Alignment = getLoadStoreAlignment(I);
5596 unsigned AS = getLoadStoreAddressSpace(I);
5597
5598 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5599 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5600 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5601 OpInfo, I);
5602 }
5603 return getWideningCost(I, VF);
5604}
5605
5607LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5608 ElementCount VF) const {
5609
5610 // There is no mechanism yet to create a scalable scalarization loop,
5611 // so this is currently Invalid.
5612 if (VF.isScalable())
5613 return InstructionCost::getInvalid();
5614
5615 if (VF.isScalar())
5616 return 0;
5617
5619 Type *RetTy = toVectorizedTy(I->getType(), VF);
5620 if (!RetTy->isVoidTy() &&
5622
5623 for (Type *VectorTy : getContainedTypes(RetTy)) {
5626 /*Insert=*/true,
5627 /*Extract=*/false, CostKind);
5628 }
5629 }
5630
5631 // Some targets keep addresses scalar.
5633 return Cost;
5634
5635 // Some targets support efficient element stores.
5637 return Cost;
5638
5639 // Collect operands to consider.
5640 CallInst *CI = dyn_cast<CallInst>(I);
5641 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5642
5643 // Skip operands that do not require extraction/scalarization and do not incur
5644 // any overhead.
5646 for (auto *V : filterExtractingOperands(Ops, VF))
5647 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5649}
5650
5652 if (VF.isScalar())
5653 return;
5654 NumPredStores = 0;
5655 for (BasicBlock *BB : TheLoop->blocks()) {
5656 // For each instruction in the old loop.
5657 for (Instruction &I : *BB) {
5659 if (!Ptr)
5660 continue;
5661
5662 // TODO: We should generate better code and update the cost model for
5663 // predicated uniform stores. Today they are treated as any other
5664 // predicated store (see added test cases in
5665 // invariant-store-vectorization.ll).
5667 NumPredStores++;
5668
5669 if (Legal->isUniformMemOp(I, VF)) {
5670 auto IsLegalToScalarize = [&]() {
5671 if (!VF.isScalable())
5672 // Scalarization of fixed length vectors "just works".
5673 return true;
5674
5675 // We have dedicated lowering for unpredicated uniform loads and
5676 // stores. Note that even with tail folding we know that at least
5677 // one lane is active (i.e. generalized predication is not possible
5678 // here), and the logic below depends on this fact.
5679 if (!foldTailByMasking())
5680 return true;
5681
5682 // For scalable vectors, a uniform memop load is always
5683 // uniform-by-parts and we know how to scalarize that.
5684 if (isa<LoadInst>(I))
5685 return true;
5686
5687 // A uniform store isn't neccessarily uniform-by-part
5688 // and we can't assume scalarization.
5689 auto &SI = cast<StoreInst>(I);
5690 return TheLoop->isLoopInvariant(SI.getValueOperand());
5691 };
5692
5693 const InstructionCost GatherScatterCost =
5695 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5696
5697 // Load: Scalar load + broadcast
5698 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5699 // FIXME: This cost is a significant under-estimate for tail folded
5700 // memory ops.
5701 const InstructionCost ScalarizationCost =
5702 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5704
5705 // Choose better solution for the current VF, Note that Invalid
5706 // costs compare as maximumal large. If both are invalid, we get
5707 // scalable invalid which signals a failure and a vectorization abort.
5708 if (GatherScatterCost < ScalarizationCost)
5709 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5710 else
5711 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5712 continue;
5713 }
5714
5715 // We assume that widening is the best solution when possible.
5716 if (memoryInstructionCanBeWidened(&I, VF)) {
5717 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5718 int ConsecutiveStride = Legal->isConsecutivePtr(
5720 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5721 "Expected consecutive stride.");
5722 InstWidening Decision =
5723 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5724 setWideningDecision(&I, VF, Decision, Cost);
5725 continue;
5726 }
5727
5728 // Choose between Interleaving, Gather/Scatter or Scalarization.
5730 unsigned NumAccesses = 1;
5731 if (isAccessInterleaved(&I)) {
5732 const auto *Group = getInterleavedAccessGroup(&I);
5733 assert(Group && "Fail to get an interleaved access group.");
5734
5735 // Make one decision for the whole group.
5736 if (getWideningDecision(&I, VF) != CM_Unknown)
5737 continue;
5738
5739 NumAccesses = Group->getNumMembers();
5741 InterleaveCost = getInterleaveGroupCost(&I, VF);
5742 }
5743
5744 InstructionCost GatherScatterCost =
5746 ? getGatherScatterCost(&I, VF) * NumAccesses
5748
5749 InstructionCost ScalarizationCost =
5750 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5751
5752 // Choose better solution for the current VF,
5753 // write down this decision and use it during vectorization.
5755 InstWidening Decision;
5756 if (InterleaveCost <= GatherScatterCost &&
5757 InterleaveCost < ScalarizationCost) {
5758 Decision = CM_Interleave;
5759 Cost = InterleaveCost;
5760 } else if (GatherScatterCost < ScalarizationCost) {
5761 Decision = CM_GatherScatter;
5762 Cost = GatherScatterCost;
5763 } else {
5764 Decision = CM_Scalarize;
5765 Cost = ScalarizationCost;
5766 }
5767 // If the instructions belongs to an interleave group, the whole group
5768 // receives the same decision. The whole group receives the cost, but
5769 // the cost will actually be assigned to one instruction.
5770 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5771 if (Decision == CM_Scalarize) {
5772 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5773 if (auto *I = Group->getMember(Idx)) {
5774 setWideningDecision(I, VF, Decision,
5775 getMemInstScalarizationCost(I, VF));
5776 }
5777 }
5778 } else {
5779 setWideningDecision(Group, VF, Decision, Cost);
5780 }
5781 } else
5782 setWideningDecision(&I, VF, Decision, Cost);
5783 }
5784 }
5785
5786 // Make sure that any load of address and any other address computation
5787 // remains scalar unless there is gather/scatter support. This avoids
5788 // inevitable extracts into address registers, and also has the benefit of
5789 // activating LSR more, since that pass can't optimize vectorized
5790 // addresses.
5791 if (TTI.prefersVectorizedAddressing())
5792 return;
5793
5794 // Start with all scalar pointer uses.
5796 for (BasicBlock *BB : TheLoop->blocks())
5797 for (Instruction &I : *BB) {
5798 Instruction *PtrDef =
5800 if (PtrDef && TheLoop->contains(PtrDef) &&
5802 AddrDefs.insert(PtrDef);
5803 }
5804
5805 // Add all instructions used to generate the addresses.
5807 append_range(Worklist, AddrDefs);
5808 while (!Worklist.empty()) {
5809 Instruction *I = Worklist.pop_back_val();
5810 for (auto &Op : I->operands())
5811 if (auto *InstOp = dyn_cast<Instruction>(Op))
5812 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5813 AddrDefs.insert(InstOp).second)
5814 Worklist.push_back(InstOp);
5815 }
5816
5817 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5818 // If there are direct memory op users of the newly scalarized load,
5819 // their cost may have changed because there's no scalarization
5820 // overhead for the operand. Update it.
5821 for (User *U : LI->users()) {
5823 continue;
5825 continue;
5828 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5829 }
5830 };
5831 for (auto *I : AddrDefs) {
5832 if (isa<LoadInst>(I)) {
5833 // Setting the desired widening decision should ideally be handled in
5834 // by cost functions, but since this involves the task of finding out
5835 // if the loaded register is involved in an address computation, it is
5836 // instead changed here when we know this is the case.
5837 InstWidening Decision = getWideningDecision(I, VF);
5838 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5839 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5840 Decision == CM_Scalarize)) {
5841 // Scalarize a widened load of address or update the cost of a scalar
5842 // load of an address.
5844 I, VF, CM_Scalarize,
5845 (VF.getKnownMinValue() *
5846 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5847 UpdateMemOpUserCost(cast<LoadInst>(I));
5848 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5849 // Scalarize all members of this interleaved group when any member
5850 // is used as an address. The address-used load skips scalarization
5851 // overhead, other members include it.
5852 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5853 if (Instruction *Member = Group->getMember(Idx)) {
5855 AddrDefs.contains(Member)
5856 ? (VF.getKnownMinValue() *
5857 getMemoryInstructionCost(Member,
5859 : getMemInstScalarizationCost(Member, VF);
5861 UpdateMemOpUserCost(cast<LoadInst>(Member));
5862 }
5863 }
5864 }
5865 } else {
5866 // Cannot scalarize fixed-order recurrence phis at the moment.
5867 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5868 continue;
5869
5870 // Make sure I gets scalarized and a cost estimate without
5871 // scalarization overhead.
5872 ForcedScalars[VF].insert(I);
5873 }
5874 }
5875}
5876
5878 assert(!VF.isScalar() &&
5879 "Trying to set a vectorization decision for a scalar VF");
5880
5881 auto ForcedScalar = ForcedScalars.find(VF);
5882 for (BasicBlock *BB : TheLoop->blocks()) {
5883 // For each instruction in the old loop.
5884 for (Instruction &I : *BB) {
5886
5887 if (!CI)
5888 continue;
5889
5893 Function *ScalarFunc = CI->getCalledFunction();
5894 Type *ScalarRetTy = CI->getType();
5895 SmallVector<Type *, 4> Tys, ScalarTys;
5896 for (auto &ArgOp : CI->args())
5897 ScalarTys.push_back(ArgOp->getType());
5898
5899 // Estimate cost of scalarized vector call. The source operands are
5900 // assumed to be vectors, so we need to extract individual elements from
5901 // there, execute VF scalar calls, and then gather the result into the
5902 // vector return value.
5903 if (VF.isFixed()) {
5904 InstructionCost ScalarCallCost =
5905 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5906
5907 // Compute costs of unpacking argument values for the scalar calls and
5908 // packing the return values to a vector.
5909 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5910 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5911 } else {
5912 // There is no point attempting to calculate the scalar cost for a
5913 // scalable VF as we know it will be Invalid.
5915 "Unexpected valid cost for scalarizing scalable vectors");
5916 ScalarCost = InstructionCost::getInvalid();
5917 }
5918
5919 // Honor ForcedScalars and UniformAfterVectorization decisions.
5920 // TODO: For calls, it might still be more profitable to widen. Use
5921 // VPlan-based cost model to compare different options.
5922 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5923 ForcedScalar->second.contains(CI)) ||
5924 isUniformAfterVectorization(CI, VF))) {
5925 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5926 Intrinsic::not_intrinsic, std::nullopt,
5927 ScalarCost);
5928 continue;
5929 }
5930
5931 bool MaskRequired = Legal->isMaskRequired(CI);
5932 // Compute corresponding vector type for return value and arguments.
5933 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5934 for (Type *ScalarTy : ScalarTys)
5935 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5936
5937 // An in-loop reduction using an fmuladd intrinsic is a special case;
5938 // we don't want the normal cost for that intrinsic.
5940 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5943 std::nullopt, *RedCost);
5944 continue;
5945 }
5946
5947 // Find the cost of vectorizing the call, if we can find a suitable
5948 // vector variant of the function.
5949 VFInfo FuncInfo;
5950 Function *VecFunc = nullptr;
5951 // Search through any available variants for one we can use at this VF.
5952 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5953 // Must match requested VF.
5954 if (Info.Shape.VF != VF)
5955 continue;
5956
5957 // Must take a mask argument if one is required
5958 if (MaskRequired && !Info.isMasked())
5959 continue;
5960
5961 // Check that all parameter kinds are supported
5962 bool ParamsOk = true;
5963 for (VFParameter Param : Info.Shape.Parameters) {
5964 switch (Param.ParamKind) {
5966 break;
5968 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5969 // Make sure the scalar parameter in the loop is invariant.
5970 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5971 TheLoop))
5972 ParamsOk = false;
5973 break;
5974 }
5976 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5977 // Find the stride for the scalar parameter in this loop and see if
5978 // it matches the stride for the variant.
5979 // TODO: do we need to figure out the cost of an extract to get the
5980 // first lane? Or do we hope that it will be folded away?
5981 ScalarEvolution *SE = PSE.getSE();
5982 if (!match(SE->getSCEV(ScalarParam),
5984 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5986 ParamsOk = false;
5987 break;
5988 }
5990 break;
5991 default:
5992 ParamsOk = false;
5993 break;
5994 }
5995 }
5996
5997 if (!ParamsOk)
5998 continue;
5999
6000 // Found a suitable candidate, stop here.
6001 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6002 FuncInfo = Info;
6003 break;
6004 }
6005
6006 if (TLI && VecFunc && !CI->isNoBuiltin())
6007 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
6008
6009 // Find the cost of an intrinsic; some targets may have instructions that
6010 // perform the operation without needing an actual call.
6012 if (IID != Intrinsic::not_intrinsic)
6014
6015 InstructionCost Cost = ScalarCost;
6016 InstWidening Decision = CM_Scalarize;
6017
6018 if (VectorCost <= Cost) {
6019 Cost = VectorCost;
6020 Decision = CM_VectorCall;
6021 }
6022
6023 if (IntrinsicCost <= Cost) {
6025 Decision = CM_IntrinsicCall;
6026 }
6027
6028 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6030 }
6031 }
6032}
6033
6035 if (!Legal->isInvariant(Op))
6036 return false;
6037 // Consider Op invariant, if it or its operands aren't predicated
6038 // instruction in the loop. In that case, it is not trivially hoistable.
6039 auto *OpI = dyn_cast<Instruction>(Op);
6040 return !OpI || !TheLoop->contains(OpI) ||
6041 (!isPredicatedInst(OpI) &&
6042 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6043 all_of(OpI->operands(),
6044 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6045}
6046
6049 ElementCount VF) {
6050 // If we know that this instruction will remain uniform, check the cost of
6051 // the scalar version.
6053 VF = ElementCount::getFixed(1);
6054
6055 if (VF.isVector() && isProfitableToScalarize(I, VF))
6056 return InstsToScalarize[VF][I];
6057
6058 // Forced scalars do not have any scalarization overhead.
6059 auto ForcedScalar = ForcedScalars.find(VF);
6060 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6061 auto InstSet = ForcedScalar->second;
6062 if (InstSet.count(I))
6064 VF.getKnownMinValue();
6065 }
6066
6067 Type *RetTy = I->getType();
6069 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6070 auto *SE = PSE.getSE();
6071
6072 Type *VectorTy;
6073 if (isScalarAfterVectorization(I, VF)) {
6074 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6075 [this](Instruction *I, ElementCount VF) -> bool {
6076 if (VF.isScalar())
6077 return true;
6078
6079 auto Scalarized = InstsToScalarize.find(VF);
6080 assert(Scalarized != InstsToScalarize.end() &&
6081 "VF not yet analyzed for scalarization profitability");
6082 return !Scalarized->second.count(I) &&
6083 llvm::all_of(I->users(), [&](User *U) {
6084 auto *UI = cast<Instruction>(U);
6085 return !Scalarized->second.count(UI);
6086 });
6087 };
6088
6089 // With the exception of GEPs and PHIs, after scalarization there should
6090 // only be one copy of the instruction generated in the loop. This is
6091 // because the VF is either 1, or any instructions that need scalarizing
6092 // have already been dealt with by the time we get here. As a result,
6093 // it means we don't have to multiply the instruction cost by VF.
6094 assert(I->getOpcode() == Instruction::GetElementPtr ||
6095 I->getOpcode() == Instruction::PHI ||
6096 (I->getOpcode() == Instruction::BitCast &&
6097 I->getType()->isPointerTy()) ||
6098 HasSingleCopyAfterVectorization(I, VF));
6099 VectorTy = RetTy;
6100 } else
6101 VectorTy = toVectorizedTy(RetTy, VF);
6102
6103 if (VF.isVector() && VectorTy->isVectorTy() &&
6104 !TTI.getNumberOfParts(VectorTy))
6106
6107 // TODO: We need to estimate the cost of intrinsic calls.
6108 switch (I->getOpcode()) {
6109 case Instruction::GetElementPtr:
6110 // We mark this instruction as zero-cost because the cost of GEPs in
6111 // vectorized code depends on whether the corresponding memory instruction
6112 // is scalarized or not. Therefore, we handle GEPs with the memory
6113 // instruction cost.
6114 return 0;
6115 case Instruction::Br: {
6116 // In cases of scalarized and predicated instructions, there will be VF
6117 // predicated blocks in the vectorized loop. Each branch around these
6118 // blocks requires also an extract of its vector compare i1 element.
6119 // Note that the conditional branch from the loop latch will be replaced by
6120 // a single branch controlling the loop, so there is no extra overhead from
6121 // scalarization.
6122 bool ScalarPredicatedBB = false;
6124 if (VF.isVector() && BI->isConditional() &&
6125 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6126 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6127 BI->getParent() != TheLoop->getLoopLatch())
6128 ScalarPredicatedBB = true;
6129
6130 if (ScalarPredicatedBB) {
6131 // Not possible to scalarize scalable vector with predicated instructions.
6132 if (VF.isScalable())
6134 // Return cost for branches around scalarized and predicated blocks.
6135 auto *VecI1Ty =
6137 return (
6138 TTI.getScalarizationOverhead(
6139 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6140 /*Insert*/ false, /*Extract*/ true, CostKind) +
6141 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6142 }
6143
6144 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6145 // The back-edge branch will remain, as will all scalar branches.
6146 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6147
6148 // This branch will be eliminated by if-conversion.
6149 return 0;
6150 // Note: We currently assume zero cost for an unconditional branch inside
6151 // a predicated block since it will become a fall-through, although we
6152 // may decide in the future to call TTI for all branches.
6153 }
6154 case Instruction::Switch: {
6155 if (VF.isScalar())
6156 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6157 auto *Switch = cast<SwitchInst>(I);
6158 return Switch->getNumCases() *
6159 TTI.getCmpSelInstrCost(
6160 Instruction::ICmp,
6161 toVectorTy(Switch->getCondition()->getType(), VF),
6162 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6164 }
6165 case Instruction::PHI: {
6166 auto *Phi = cast<PHINode>(I);
6167
6168 // First-order recurrences are replaced by vector shuffles inside the loop.
6169 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6171 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6172 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6173 cast<VectorType>(VectorTy),
6174 cast<VectorType>(VectorTy), Mask, CostKind,
6175 VF.getKnownMinValue() - 1);
6176 }
6177
6178 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6179 // converted into select instructions. We require N - 1 selects per phi
6180 // node, where N is the number of incoming values.
6181 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6182 Type *ResultTy = Phi->getType();
6183
6184 // All instructions in an Any-of reduction chain are narrowed to bool.
6185 // Check if that is the case for this phi node.
6186 auto *HeaderUser = cast_if_present<PHINode>(
6187 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6188 auto *Phi = dyn_cast<PHINode>(U);
6189 if (Phi && Phi->getParent() == TheLoop->getHeader())
6190 return Phi;
6191 return nullptr;
6192 }));
6193 if (HeaderUser) {
6194 auto &ReductionVars = Legal->getReductionVars();
6195 auto Iter = ReductionVars.find(HeaderUser);
6196 if (Iter != ReductionVars.end() &&
6198 Iter->second.getRecurrenceKind()))
6199 ResultTy = Type::getInt1Ty(Phi->getContext());
6200 }
6201 return (Phi->getNumIncomingValues() - 1) *
6202 TTI.getCmpSelInstrCost(
6203 Instruction::Select, toVectorTy(ResultTy, VF),
6204 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6206 }
6207
6208 // When tail folding with EVL, if the phi is part of an out of loop
6209 // reduction then it will be transformed into a wide vp_merge.
6210 if (VF.isVector() && foldTailWithEVL() &&
6211 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6213 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6214 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6215 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6216 }
6217
6218 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6219 }
6220 case Instruction::UDiv:
6221 case Instruction::SDiv:
6222 case Instruction::URem:
6223 case Instruction::SRem:
6224 if (VF.isVector() && isPredicatedInst(I)) {
6225 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6226 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6227 ScalarCost : SafeDivisorCost;
6228 }
6229 // We've proven all lanes safe to speculate, fall through.
6230 [[fallthrough]];
6231 case Instruction::Add:
6232 case Instruction::Sub: {
6233 auto Info = Legal->getHistogramInfo(I);
6234 if (Info && VF.isVector()) {
6235 const HistogramInfo *HGram = Info.value();
6236 // Assume that a non-constant update value (or a constant != 1) requires
6237 // a multiply, and add that into the cost.
6239 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6240 if (!RHS || RHS->getZExtValue() != 1)
6241 MulCost =
6242 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6243
6244 // Find the cost of the histogram operation itself.
6245 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6246 Type *ScalarTy = I->getType();
6247 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6248 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6249 Type::getVoidTy(I->getContext()),
6250 {PtrTy, ScalarTy, MaskTy});
6251
6252 // Add the costs together with the add/sub operation.
6253 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6254 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6255 }
6256 [[fallthrough]];
6257 }
6258 case Instruction::FAdd:
6259 case Instruction::FSub:
6260 case Instruction::Mul:
6261 case Instruction::FMul:
6262 case Instruction::FDiv:
6263 case Instruction::FRem:
6264 case Instruction::Shl:
6265 case Instruction::LShr:
6266 case Instruction::AShr:
6267 case Instruction::And:
6268 case Instruction::Or:
6269 case Instruction::Xor: {
6270 // If we're speculating on the stride being 1, the multiplication may
6271 // fold away. We can generalize this for all operations using the notion
6272 // of neutral elements. (TODO)
6273 if (I->getOpcode() == Instruction::Mul &&
6274 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6275 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6276 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6277 PSE.getSCEV(I->getOperand(1))->isOne())))
6278 return 0;
6279
6280 // Detect reduction patterns
6281 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6282 return *RedCost;
6283
6284 // Certain instructions can be cheaper to vectorize if they have a constant
6285 // second vector operand. One example of this are shifts on x86.
6286 Value *Op2 = I->getOperand(1);
6287 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6288 PSE.getSE()->isSCEVable(Op2->getType()) &&
6289 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6290 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6291 }
6292 auto Op2Info = TTI.getOperandInfo(Op2);
6293 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6296
6297 SmallVector<const Value *, 4> Operands(I->operand_values());
6298 return TTI.getArithmeticInstrCost(
6299 I->getOpcode(), VectorTy, CostKind,
6300 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6301 Op2Info, Operands, I, TLI);
6302 }
6303 case Instruction::FNeg: {
6304 return TTI.getArithmeticInstrCost(
6305 I->getOpcode(), VectorTy, CostKind,
6306 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6307 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6308 I->getOperand(0), I);
6309 }
6310 case Instruction::Select: {
6312 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6313 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6314
6315 const Value *Op0, *Op1;
6316 using namespace llvm::PatternMatch;
6317 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6318 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6319 // select x, y, false --> x & y
6320 // select x, true, y --> x | y
6321 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6322 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6323 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6324 Op1->getType()->getScalarSizeInBits() == 1);
6325
6326 return TTI.getArithmeticInstrCost(
6327 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6328 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6329 }
6330
6331 Type *CondTy = SI->getCondition()->getType();
6332 if (!ScalarCond)
6333 CondTy = VectorType::get(CondTy, VF);
6334
6336 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6337 Pred = Cmp->getPredicate();
6338 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6339 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6340 {TTI::OK_AnyValue, TTI::OP_None}, I);
6341 }
6342 case Instruction::ICmp:
6343 case Instruction::FCmp: {
6344 Type *ValTy = I->getOperand(0)->getType();
6345
6347 [[maybe_unused]] Instruction *Op0AsInstruction =
6348 dyn_cast<Instruction>(I->getOperand(0));
6349 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6350 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6351 "if both the operand and the compare are marked for "
6352 "truncation, they must have the same bitwidth");
6353 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6354 }
6355
6356 VectorTy = toVectorTy(ValTy, VF);
6357 return TTI.getCmpSelInstrCost(
6358 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6359 cast<CmpInst>(I)->getPredicate(), CostKind,
6360 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6361 }
6362 case Instruction::Store:
6363 case Instruction::Load: {
6364 ElementCount Width = VF;
6365 if (Width.isVector()) {
6366 InstWidening Decision = getWideningDecision(I, Width);
6367 assert(Decision != CM_Unknown &&
6368 "CM decision should be taken at this point");
6371 if (Decision == CM_Scalarize)
6372 Width = ElementCount::getFixed(1);
6373 }
6374 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6375 return getMemoryInstructionCost(I, VF);
6376 }
6377 case Instruction::BitCast:
6378 if (I->getType()->isPointerTy())
6379 return 0;
6380 [[fallthrough]];
6381 case Instruction::ZExt:
6382 case Instruction::SExt:
6383 case Instruction::FPToUI:
6384 case Instruction::FPToSI:
6385 case Instruction::FPExt:
6386 case Instruction::PtrToInt:
6387 case Instruction::IntToPtr:
6388 case Instruction::SIToFP:
6389 case Instruction::UIToFP:
6390 case Instruction::Trunc:
6391 case Instruction::FPTrunc: {
6392 // Computes the CastContextHint from a Load/Store instruction.
6393 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6395 "Expected a load or a store!");
6396
6397 if (VF.isScalar() || !TheLoop->contains(I))
6399
6400 switch (getWideningDecision(I, VF)) {
6412 llvm_unreachable("Instr did not go through cost modelling?");
6415 llvm_unreachable_internal("Instr has invalid widening decision");
6416 }
6417
6418 llvm_unreachable("Unhandled case!");
6419 };
6420
6421 unsigned Opcode = I->getOpcode();
6423 // For Trunc, the context is the only user, which must be a StoreInst.
6424 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6425 if (I->hasOneUse())
6426 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6427 CCH = ComputeCCH(Store);
6428 }
6429 // For Z/Sext, the context is the operand, which must be a LoadInst.
6430 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6431 Opcode == Instruction::FPExt) {
6432 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6433 CCH = ComputeCCH(Load);
6434 }
6435
6436 // We optimize the truncation of induction variables having constant
6437 // integer steps. The cost of these truncations is the same as the scalar
6438 // operation.
6439 if (isOptimizableIVTruncate(I, VF)) {
6440 auto *Trunc = cast<TruncInst>(I);
6441 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6442 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6443 }
6444
6445 // Detect reduction patterns
6446 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6447 return *RedCost;
6448
6449 Type *SrcScalarTy = I->getOperand(0)->getType();
6450 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6451 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6452 SrcScalarTy =
6453 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6454 Type *SrcVecTy =
6455 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6456
6458 // If the result type is <= the source type, there will be no extend
6459 // after truncating the users to the minimal required bitwidth.
6460 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6461 (I->getOpcode() == Instruction::ZExt ||
6462 I->getOpcode() == Instruction::SExt))
6463 return 0;
6464 }
6465
6466 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6467 }
6468 case Instruction::Call:
6469 return getVectorCallCost(cast<CallInst>(I), VF);
6470 case Instruction::ExtractValue:
6471 return TTI.getInstructionCost(I, CostKind);
6472 case Instruction::Alloca:
6473 // We cannot easily widen alloca to a scalable alloca, as
6474 // the result would need to be a vector of pointers.
6475 if (VF.isScalable())
6477 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy, CostKind);
6478 default:
6479 // This opcode is unknown. Assume that it is the same as 'mul'.
6480 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6481 } // end of switch.
6482}
6483
6485 // Ignore ephemeral values.
6487
6488 SmallVector<Value *, 4> DeadInterleavePointerOps;
6490
6491 // If a scalar epilogue is required, users outside the loop won't use
6492 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6493 // that is the case.
6494 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6495 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6496 return RequiresScalarEpilogue &&
6497 !TheLoop->contains(cast<Instruction>(U)->getParent());
6498 };
6499
6501 DFS.perform(LI);
6502 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6503 for (Instruction &I : reverse(*BB)) {
6504 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6505 continue;
6506
6507 // Add instructions that would be trivially dead and are only used by
6508 // values already ignored to DeadOps to seed worklist.
6510 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6511 return VecValuesToIgnore.contains(U) ||
6512 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6513 }))
6514 DeadOps.push_back(&I);
6515
6516 // For interleave groups, we only create a pointer for the start of the
6517 // interleave group. Queue up addresses of group members except the insert
6518 // position for further processing.
6519 if (isAccessInterleaved(&I)) {
6520 auto *Group = getInterleavedAccessGroup(&I);
6521 if (Group->getInsertPos() == &I)
6522 continue;
6523 Value *PointerOp = getLoadStorePointerOperand(&I);
6524 DeadInterleavePointerOps.push_back(PointerOp);
6525 }
6526
6527 // Queue branches for analysis. They are dead, if their successors only
6528 // contain dead instructions.
6529 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6530 if (Br->isConditional())
6531 DeadOps.push_back(&I);
6532 }
6533 }
6534
6535 // Mark ops feeding interleave group members as free, if they are only used
6536 // by other dead computations.
6537 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6538 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6539 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6540 Instruction *UI = cast<Instruction>(U);
6541 return !VecValuesToIgnore.contains(U) &&
6542 (!isAccessInterleaved(UI) ||
6543 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6544 }))
6545 continue;
6546 VecValuesToIgnore.insert(Op);
6547 append_range(DeadInterleavePointerOps, Op->operands());
6548 }
6549
6550 // Mark ops that would be trivially dead and are only used by ignored
6551 // instructions as free.
6552 BasicBlock *Header = TheLoop->getHeader();
6553
6554 // Returns true if the block contains only dead instructions. Such blocks will
6555 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6556 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6557 auto IsEmptyBlock = [this](BasicBlock *BB) {
6558 return all_of(*BB, [this](Instruction &I) {
6559 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6560 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6561 });
6562 };
6563 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6564 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6565
6566 // Check if the branch should be considered dead.
6567 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6568 BasicBlock *ThenBB = Br->getSuccessor(0);
6569 BasicBlock *ElseBB = Br->getSuccessor(1);
6570 // Don't considers branches leaving the loop for simplification.
6571 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6572 continue;
6573 bool ThenEmpty = IsEmptyBlock(ThenBB);
6574 bool ElseEmpty = IsEmptyBlock(ElseBB);
6575 if ((ThenEmpty && ElseEmpty) ||
6576 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6577 ElseBB->phis().empty()) ||
6578 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6579 ThenBB->phis().empty())) {
6580 VecValuesToIgnore.insert(Br);
6581 DeadOps.push_back(Br->getCondition());
6582 }
6583 continue;
6584 }
6585
6586 // Skip any op that shouldn't be considered dead.
6587 if (!Op || !TheLoop->contains(Op) ||
6588 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6590 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6591 return !VecValuesToIgnore.contains(U) &&
6592 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6593 }))
6594 continue;
6595
6596 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6597 // which applies for both scalar and vector versions. Otherwise it is only
6598 // dead in vector versions, so only add it to VecValuesToIgnore.
6599 if (all_of(Op->users(),
6600 [this](User *U) { return ValuesToIgnore.contains(U); }))
6601 ValuesToIgnore.insert(Op);
6602
6603 VecValuesToIgnore.insert(Op);
6604 append_range(DeadOps, Op->operands());
6605 }
6606
6607 // Ignore type-promoting instructions we identified during reduction
6608 // detection.
6609 for (const auto &Reduction : Legal->getReductionVars()) {
6610 const RecurrenceDescriptor &RedDes = Reduction.second;
6611 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6612 VecValuesToIgnore.insert_range(Casts);
6613 }
6614 // Ignore type-casting instructions we identified during induction
6615 // detection.
6616 for (const auto &Induction : Legal->getInductionVars()) {
6617 const InductionDescriptor &IndDes = Induction.second;
6618 VecValuesToIgnore.insert_range(IndDes.getCastInsts());
6619 }
6620}
6621
6623 // Avoid duplicating work finding in-loop reductions.
6624 if (!InLoopReductions.empty())
6625 return;
6626
6627 for (const auto &Reduction : Legal->getReductionVars()) {
6628 PHINode *Phi = Reduction.first;
6629 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6630
6631 // Multi-use reductions (e.g., used in FindLastIV patterns) are handled
6632 // separately and should not be considered for in-loop reductions.
6633 if (RdxDesc.hasUsesOutsideReductionChain())
6634 continue;
6635
6636 // We don't collect reductions that are type promoted (yet).
6637 if (RdxDesc.getRecurrenceType() != Phi->getType())
6638 continue;
6639
6640 // In-loop AnyOf and FindIV reductions are not yet supported.
6641 RecurKind Kind = RdxDesc.getRecurrenceKind();
6644 continue;
6645
6646 // If the target would prefer this reduction to happen "in-loop", then we
6647 // want to record it as such.
6648 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6649 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6650 continue;
6651
6652 // Check that we can correctly put the reductions into the loop, by
6653 // finding the chain of operations that leads from the phi to the loop
6654 // exit value.
6655 SmallVector<Instruction *, 4> ReductionOperations =
6656 RdxDesc.getReductionOpChain(Phi, TheLoop);
6657 bool InLoop = !ReductionOperations.empty();
6658
6659 if (InLoop) {
6660 InLoopReductions.insert(Phi);
6661 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6662 Instruction *LastChain = Phi;
6663 for (auto *I : ReductionOperations) {
6664 InLoopReductionImmediateChains[I] = LastChain;
6665 LastChain = I;
6666 }
6667 }
6668 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6669 << " reduction for phi: " << *Phi << "\n");
6670 }
6671}
6672
6673// This function will select a scalable VF if the target supports scalable
6674// vectors and a fixed one otherwise.
6675// TODO: we could return a pair of values that specify the max VF and
6676// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6677// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6678// doesn't have a cost model that can choose which plan to execute if
6679// more than one is generated.
6682 unsigned WidestType;
6683 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6684
6686 TTI.enableScalableVectorization()
6689
6690 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6691 unsigned N = RegSize.getKnownMinValue() / WidestType;
6692 return ElementCount::get(N, RegSize.isScalable());
6693}
6694
6697 ElementCount VF = UserVF;
6698 // Outer loop handling: They may require CFG and instruction level
6699 // transformations before even evaluating whether vectorization is profitable.
6700 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6701 // the vectorization pipeline.
6702 if (!OrigLoop->isInnermost()) {
6703 // If the user doesn't provide a vectorization factor, determine a
6704 // reasonable one.
6705 if (UserVF.isZero()) {
6706 VF = determineVPlanVF(TTI, CM);
6707 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6708
6709 // Make sure we have a VF > 1 for stress testing.
6710 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6711 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6712 << "overriding computed VF.\n");
6713 VF = ElementCount::getFixed(4);
6714 }
6715 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6717 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6718 << "not supported by the target.\n");
6720 "Scalable vectorization requested but not supported by the target",
6721 "the scalable user-specified vectorization width for outer-loop "
6722 "vectorization cannot be used because the target does not support "
6723 "scalable vectors.",
6724 "ScalableVFUnfeasible", ORE, OrigLoop);
6726 }
6727 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6729 "VF needs to be a power of two");
6730 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6731 << "VF " << VF << " to build VPlans.\n");
6732 buildVPlans(VF, VF);
6733
6734 if (VPlans.empty())
6736
6737 // For VPlan build stress testing, we bail out after VPlan construction.
6740
6741 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6742 }
6743
6744 LLVM_DEBUG(
6745 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6746 "VPlan-native path.\n");
6748}
6749
6750void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6751 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6752 CM.collectValuesToIgnore();
6753 CM.collectElementTypesForWidening();
6754
6755 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6756 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6757 return;
6758
6759 // Invalidate interleave groups if all blocks of loop will be predicated.
6760 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6762 LLVM_DEBUG(
6763 dbgs()
6764 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6765 "which requires masked-interleaved support.\n");
6766 if (CM.InterleaveInfo.invalidateGroups())
6767 // Invalidating interleave groups also requires invalidating all decisions
6768 // based on them, which includes widening decisions and uniform and scalar
6769 // values.
6770 CM.invalidateCostModelingDecisions();
6771 }
6772
6773 if (CM.foldTailByMasking())
6774 Legal->prepareToFoldTailByMasking();
6775
6776 ElementCount MaxUserVF =
6777 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6778 if (UserVF) {
6779 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6781 "UserVF ignored because it may be larger than the maximal safe VF",
6782 "InvalidUserVF", ORE, OrigLoop);
6783 } else {
6785 "VF needs to be a power of two");
6786 // Collect the instructions (and their associated costs) that will be more
6787 // profitable to scalarize.
6788 CM.collectInLoopReductions();
6789 if (CM.selectUserVectorizationFactor(UserVF)) {
6790 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6791 buildVPlansWithVPRecipes(UserVF, UserVF);
6793 return;
6794 }
6795 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6796 "InvalidCost", ORE, OrigLoop);
6797 }
6798 }
6799
6800 // Collect the Vectorization Factor Candidates.
6801 SmallVector<ElementCount> VFCandidates;
6802 for (auto VF = ElementCount::getFixed(1);
6803 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6804 VFCandidates.push_back(VF);
6805 for (auto VF = ElementCount::getScalable(1);
6806 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6807 VFCandidates.push_back(VF);
6808
6809 CM.collectInLoopReductions();
6810 for (const auto &VF : VFCandidates) {
6811 // Collect Uniform and Scalar instructions after vectorization with VF.
6812 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6813 }
6814
6815 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6816 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6817
6819}
6820
6822 ElementCount VF) const {
6823 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6824 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6826 return Cost;
6827}
6828
6830 ElementCount VF) const {
6831 return CM.isUniformAfterVectorization(I, VF);
6832}
6833
6834bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6835 return CM.ValuesToIgnore.contains(UI) ||
6836 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6837 SkipCostComputation.contains(UI);
6838}
6839
6841 return CM.getPredBlockCostDivisor(CostKind, BB);
6842}
6843
6845LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6846 VPCostContext &CostCtx) const {
6848 // Cost modeling for inductions is inaccurate in the legacy cost model
6849 // compared to the recipes that are generated. To match here initially during
6850 // VPlan cost model bring up directly use the induction costs from the legacy
6851 // cost model. Note that we do this as pre-processing; the VPlan may not have
6852 // any recipes associated with the original induction increment instruction
6853 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6854 // the cost of induction phis and increments (both that are represented by
6855 // recipes and those that are not), to avoid distinguishing between them here,
6856 // and skip all recipes that represent induction phis and increments (the
6857 // former case) later on, if they exist, to avoid counting them twice.
6858 // Similarly we pre-compute the cost of any optimized truncates.
6859 // TODO: Switch to more accurate costing based on VPlan.
6860 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6862 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6863 SmallVector<Instruction *> IVInsts = {IVInc};
6864 for (unsigned I = 0; I != IVInsts.size(); I++) {
6865 for (Value *Op : IVInsts[I]->operands()) {
6866 auto *OpI = dyn_cast<Instruction>(Op);
6867 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6868 continue;
6869 IVInsts.push_back(OpI);
6870 }
6871 }
6872 IVInsts.push_back(IV);
6873 for (User *U : IV->users()) {
6874 auto *CI = cast<Instruction>(U);
6875 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6876 continue;
6877 IVInsts.push_back(CI);
6878 }
6879
6880 // If the vector loop gets executed exactly once with the given VF, ignore
6881 // the costs of comparison and induction instructions, as they'll get
6882 // simplified away.
6883 // TODO: Remove this code after stepping away from the legacy cost model and
6884 // adding code to simplify VPlans before calculating their costs.
6885 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6886 if (TC == VF && !CM.foldTailByMasking())
6887 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6888 CostCtx.SkipCostComputation);
6889
6890 for (Instruction *IVInst : IVInsts) {
6891 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6892 continue;
6893 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6894 LLVM_DEBUG({
6895 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6896 << ": induction instruction " << *IVInst << "\n";
6897 });
6898 Cost += InductionCost;
6899 CostCtx.SkipCostComputation.insert(IVInst);
6900 }
6901 }
6902
6903 /// Compute the cost of all exiting conditions of the loop using the legacy
6904 /// cost model. This is to match the legacy behavior, which adds the cost of
6905 /// all exit conditions. Note that this over-estimates the cost, as there will
6906 /// be a single condition to control the vector loop.
6908 CM.TheLoop->getExitingBlocks(Exiting);
6909 SetVector<Instruction *> ExitInstrs;
6910 // Collect all exit conditions.
6911 for (BasicBlock *EB : Exiting) {
6912 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6913 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6914 continue;
6915 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6916 ExitInstrs.insert(CondI);
6917 }
6918 }
6919 // Compute the cost of all instructions only feeding the exit conditions.
6920 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6921 Instruction *CondI = ExitInstrs[I];
6922 if (!OrigLoop->contains(CondI) ||
6923 !CostCtx.SkipCostComputation.insert(CondI).second)
6924 continue;
6925 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6926 LLVM_DEBUG({
6927 dbgs() << "Cost of " << CondICost << " for VF " << VF
6928 << ": exit condition instruction " << *CondI << "\n";
6929 });
6930 Cost += CondICost;
6931 for (Value *Op : CondI->operands()) {
6932 auto *OpI = dyn_cast<Instruction>(Op);
6933 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6934 any_of(OpI->users(), [&ExitInstrs](User *U) {
6935 return !ExitInstrs.contains(cast<Instruction>(U));
6936 }))
6937 continue;
6938 ExitInstrs.insert(OpI);
6939 }
6940 }
6941
6942 // Pre-compute the costs for branches except for the backedge, as the number
6943 // of replicate regions in a VPlan may not directly match the number of
6944 // branches, which would lead to different decisions.
6945 // TODO: Compute cost of branches for each replicate region in the VPlan,
6946 // which is more accurate than the legacy cost model.
6947 for (BasicBlock *BB : OrigLoop->blocks()) {
6948 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6949 continue;
6950 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6951 if (BB == OrigLoop->getLoopLatch())
6952 continue;
6953 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6954 Cost += BranchCost;
6955 }
6956
6957 // Pre-compute costs for instructions that are forced-scalar or profitable to
6958 // scalarize. Their costs will be computed separately in the legacy cost
6959 // model.
6960 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6961 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6962 continue;
6963 CostCtx.SkipCostComputation.insert(ForcedScalar);
6964 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6965 LLVM_DEBUG({
6966 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6967 << ": forced scalar " << *ForcedScalar << "\n";
6968 });
6969 Cost += ForcedCost;
6970 }
6971 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6972 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6973 continue;
6974 CostCtx.SkipCostComputation.insert(Scalarized);
6975 LLVM_DEBUG({
6976 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6977 << ": profitable to scalarize " << *Scalarized << "\n";
6978 });
6979 Cost += ScalarCost;
6980 }
6981
6982 return Cost;
6983}
6984
6985InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6986 ElementCount VF) const {
6987 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
6988 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6989
6990 // Now compute and add the VPlan-based cost.
6991 Cost += Plan.cost(VF, CostCtx);
6992#ifndef NDEBUG
6993 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
6994 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
6995 << " (Estimated cost per lane: ");
6996 if (Cost.isValid()) {
6997 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
6998 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
6999 } else /* No point dividing an invalid cost - it will still be invalid */
7000 LLVM_DEBUG(dbgs() << "Invalid");
7001 LLVM_DEBUG(dbgs() << ")\n");
7002#endif
7003 return Cost;
7004}
7005
7006#ifndef NDEBUG
7007/// Return true if the original loop \ TheLoop contains any instructions that do
7008/// not have corresponding recipes in \p Plan and are not marked to be ignored
7009/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7010/// cost-model did not account for.
7012 VPCostContext &CostCtx,
7013 Loop *TheLoop,
7014 ElementCount VF) {
7015 // First collect all instructions for the recipes in Plan.
7016 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7017 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7018 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7019 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7020 return &WidenMem->getIngredient();
7021 return nullptr;
7022 };
7023
7024 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
7025 // the select doesn't need to be considered for the vector loop cost; go with
7026 // the more accurate VPlan-based cost model.
7027 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
7028 auto *VPI = dyn_cast<VPInstruction>(&R);
7029 if (!VPI || VPI->getOpcode() != Instruction::Select)
7030 continue;
7031
7032 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
7033 switch (WR->getOpcode()) {
7034 case Instruction::UDiv:
7035 case Instruction::SDiv:
7036 case Instruction::URem:
7037 case Instruction::SRem:
7038 return true;
7039 default:
7040 break;
7041 }
7042 }
7043 }
7044
7045 DenseSet<Instruction *> SeenInstrs;
7046 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7048 for (VPRecipeBase &R : *VPBB) {
7049 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7050 auto *IG = IR->getInterleaveGroup();
7051 unsigned NumMembers = IG->getNumMembers();
7052 for (unsigned I = 0; I != NumMembers; ++I) {
7053 if (Instruction *M = IG->getMember(I))
7054 SeenInstrs.insert(M);
7055 }
7056 continue;
7057 }
7058 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7059 // cost model won't cost it whilst the legacy will.
7060 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7061 using namespace VPlanPatternMatch;
7062 if (none_of(FOR->users(),
7063 match_fn(m_VPInstruction<
7065 return true;
7066 }
7067 // The VPlan-based cost model is more accurate for partial reductions and
7068 // comparing against the legacy cost isn't desirable.
7069 if (auto *VPR = dyn_cast<VPReductionRecipe>(&R))
7070 if (VPR->isPartialReduction())
7071 return true;
7072
7073 // The VPlan-based cost model can analyze if recipes are scalar
7074 // recursively, but the legacy cost model cannot.
7075 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7076 auto *AddrI = dyn_cast<Instruction>(
7077 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7078 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7079 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7080 return true;
7081
7082 if (WidenMemR->isReverse()) {
7083 // If the stored value of a reverse store is invariant, LICM will
7084 // hoist the reverse operation to the preheader. In this case, the
7085 // result of the VPlan-based cost model will diverge from that of
7086 // the legacy model.
7087 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(WidenMemR))
7088 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7089 return true;
7090
7091 if (auto *StoreR = dyn_cast<VPWidenStoreEVLRecipe>(WidenMemR))
7092 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7093 return true;
7094 }
7095 }
7096
7097 // The legacy cost model costs non-header phis with a scalar VF as a phi,
7098 // but scalar unrolled VPlans will have VPBlendRecipes which emit selects.
7099 if (isa<VPBlendRecipe>(&R) &&
7100 vputils::onlyFirstLaneUsed(R.getVPSingleValue()))
7101 return true;
7102
7103 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7104 /// but the original instruction wasn't uniform-after-vectorization in the
7105 /// legacy cost model, the legacy cost overestimates the actual cost.
7106 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7107 if (RepR->isSingleScalar() &&
7109 RepR->getUnderlyingInstr(), VF))
7110 return true;
7111 }
7112 if (Instruction *UI = GetInstructionForCost(&R)) {
7113 // If we adjusted the predicate of the recipe, the cost in the legacy
7114 // cost model may be different.
7115 using namespace VPlanPatternMatch;
7116 CmpPredicate Pred;
7117 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7118 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7119 cast<CmpInst>(UI)->getPredicate())
7120 return true;
7121 SeenInstrs.insert(UI);
7122 }
7123 }
7124 }
7125
7126 // Return true if the loop contains any instructions that are not also part of
7127 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7128 // that the VPlan contains extra simplifications.
7129 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7130 TheLoop](BasicBlock *BB) {
7131 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7132 // Skip induction phis when checking for simplifications, as they may not
7133 // be lowered directly be lowered to a corresponding PHI recipe.
7134 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7135 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7136 return false;
7137 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7138 });
7139 });
7140}
7141#endif
7142
7144 if (VPlans.empty())
7146 // If there is a single VPlan with a single VF, return it directly.
7147 VPlan &FirstPlan = *VPlans[0];
7148 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7149 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7150
7151 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7152 << (CM.CostKind == TTI::TCK_RecipThroughput
7153 ? "Reciprocal Throughput\n"
7154 : CM.CostKind == TTI::TCK_Latency
7155 ? "Instruction Latency\n"
7156 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7157 : CM.CostKind == TTI::TCK_SizeAndLatency
7158 ? "Code Size and Latency\n"
7159 : "Unknown\n"));
7160
7162 assert(hasPlanWithVF(ScalarVF) &&
7163 "More than a single plan/VF w/o any plan having scalar VF");
7164
7165 // TODO: Compute scalar cost using VPlan-based cost model.
7166 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7167 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7168 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7169 VectorizationFactor BestFactor = ScalarFactor;
7170
7171 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7172 if (ForceVectorization) {
7173 // Ignore scalar width, because the user explicitly wants vectorization.
7174 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7175 // evaluation.
7176 BestFactor.Cost = InstructionCost::getMax();
7177 }
7178
7179 for (auto &P : VPlans) {
7180 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7181 P->vectorFactors().end());
7182
7184 if (any_of(VFs, [this](ElementCount VF) {
7185 return CM.shouldConsiderRegPressureForVF(VF);
7186 }))
7187 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7188
7189 for (unsigned I = 0; I < VFs.size(); I++) {
7190 ElementCount VF = VFs[I];
7191 if (VF.isScalar())
7192 continue;
7193 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7194 LLVM_DEBUG(
7195 dbgs()
7196 << "LV: Not considering vector loop of width " << VF
7197 << " because it will not generate any vector instructions.\n");
7198 continue;
7199 }
7200 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7201 LLVM_DEBUG(
7202 dbgs()
7203 << "LV: Not considering vector loop of width " << VF
7204 << " because it would cause replicated blocks to be generated,"
7205 << " which isn't allowed when optimizing for size.\n");
7206 continue;
7207 }
7208
7209 InstructionCost Cost = cost(*P, VF);
7210 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7211
7212 if (CM.shouldConsiderRegPressureForVF(VF) &&
7213 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7214 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7215 << VF << " because it uses too many registers\n");
7216 continue;
7217 }
7218
7219 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7220 BestFactor = CurrentFactor;
7221
7222 // If profitable add it to ProfitableVF list.
7223 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7224 ProfitableVFs.push_back(CurrentFactor);
7225 }
7226 }
7227
7228#ifndef NDEBUG
7229 // Select the optimal vectorization factor according to the legacy cost-model.
7230 // This is now only used to verify the decisions by the new VPlan-based
7231 // cost-model and will be retired once the VPlan-based cost-model is
7232 // stabilized.
7233 VectorizationFactor LegacyVF = selectVectorizationFactor();
7234 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7235
7236 // Pre-compute the cost and use it to check if BestPlan contains any
7237 // simplifications not accounted for in the legacy cost model. If that's the
7238 // case, don't trigger the assertion, as the extra simplifications may cause a
7239 // different VF to be picked by the VPlan-based cost model.
7240 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7241 OrigLoop);
7242 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7243 // Verify that the VPlan-based and legacy cost models agree, except for
7244 // * VPlans with early exits,
7245 // * VPlans with additional VPlan simplifications,
7246 // * EVL-based VPlans with gather/scatters (the VPlan-based cost model uses
7247 // vp_scatter/vp_gather).
7248 // The legacy cost model doesn't properly model costs for such loops.
7249 bool UsesEVLGatherScatter =
7251 BestPlan.getVectorLoopRegion()->getEntry())),
7252 [](VPBasicBlock *VPBB) {
7253 return any_of(*VPBB, [](VPRecipeBase &R) {
7254 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7255 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7256 });
7257 });
7258 assert(
7259 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7260 !Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7262 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7264 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7265 " VPlan cost model and legacy cost model disagreed");
7266 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7267 "when vectorizing, the scalar cost must be computed.");
7268#endif
7269
7270 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7271 return BestFactor;
7272}
7273
7274/// Search \p Start's users for a recipe satisfying \p Pred, looking through
7275/// recipes with definitions.
7276template <typename PredT>
7277static VPRecipeBase *findRecipe(VPValue *Start, PredT Pred) {
7278 SetVector<VPValue *> Worklist;
7279 Worklist.insert(Start);
7280 for (unsigned I = 0; I != Worklist.size(); ++I) {
7281 VPValue *Cur = Worklist[I];
7282 auto *R = Cur->getDefiningRecipe();
7283 if (Pred(R))
7284 return R;
7285 for (VPUser *U : Cur->users()) {
7286 for (VPValue *V : cast<VPRecipeBase>(U)->definedValues())
7287 Worklist.insert(V);
7288 }
7289 }
7290 return nullptr;
7291}
7292
7294 using namespace VPlanPatternMatch;
7296 "RdxResult must be ComputeFindIVResult");
7297 VPValue *StartVPV = RdxResult->getOperand(1);
7298 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7299 return StartVPV->getLiveInIRValue();
7300}
7301
7302// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7303// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7304// from the main vector loop.
7306 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7307 // Get the VPInstruction computing the reduction result in the middle block.
7308 // The first operand may not be from the middle block if it is not connected
7309 // to the scalar preheader. In that case, there's nothing to fix.
7310 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7313 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7314 if (!EpiRedResult ||
7315 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7316 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7317 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7318 return;
7319
7320 // Find the reduction phi by searching users of the backedge value.
7321 VPValue *BackedgeVal =
7322 EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7323 auto *EpiRedHeaderPhi = cast_if_present<VPReductionPHIRecipe>(
7325 if (!EpiRedHeaderPhi) {
7326 match(BackedgeVal,
7328 VPlanPatternMatch::m_VPValue(BackedgeVal),
7330 EpiRedHeaderPhi = cast<VPReductionPHIRecipe>(
7332 }
7333
7334 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7335 Value *MainResumeValue;
7336 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7337 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7338 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7339 "unexpected start recipe");
7340 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7341 } else
7342 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7344 [[maybe_unused]] Value *StartV =
7345 EpiRedResult->getOperand(1)->getLiveInIRValue();
7346 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7347 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7348 "AnyOf expected to start with ICMP_NE");
7349 assert(Cmp->getOperand(1) == StartV &&
7350 "AnyOf expected to start by comparing main resume value to original "
7351 "start value");
7352 MainResumeValue = Cmp->getOperand(0);
7354 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7355 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7356 using namespace llvm::PatternMatch;
7357 Value *Cmp, *OrigResumeV, *CmpOp;
7358 [[maybe_unused]] bool IsExpectedPattern =
7359 match(MainResumeValue,
7360 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7361 m_Value(OrigResumeV))) &&
7363 m_Value(CmpOp))) &&
7364 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7365 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7366 MainResumeValue = OrigResumeV;
7367 }
7368 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7369
7370 // When fixing reductions in the epilogue loop we should already have
7371 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7372 // over the incoming values correctly.
7373 EpiResumePhi.setIncomingValueForBlock(
7374 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7375}
7376
7378 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7379 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7380 assert(BestVPlan.hasVF(BestVF) &&
7381 "Trying to execute plan with unsupported VF");
7382 assert(BestVPlan.hasUF(BestUF) &&
7383 "Trying to execute plan with unsupported UF");
7384 if (BestVPlan.hasEarlyExit())
7385 ++LoopsEarlyExitVectorized;
7386 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7387 // cost model is complete for better cost estimates.
7390 BestVPlan);
7393 bool HasBranchWeights =
7394 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7395 if (HasBranchWeights) {
7396 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7398 BestVPlan, BestVF, VScale);
7399 }
7400
7401 // Checks are the same for all VPlans, added to BestVPlan only for
7402 // compactness.
7403 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7404
7405 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7406 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7407
7408 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7411 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7412 BestVPlan.getScalarPreheader()) {
7413 // TODO: The vector loop would be dead, should not even try to vectorize.
7414 ORE->emit([&]() {
7415 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7416 OrigLoop->getStartLoc(),
7417 OrigLoop->getHeader())
7418 << "Created vector loop never executes due to insufficient trip "
7419 "count.";
7420 });
7422 }
7423
7425 BestVPlan, BestVF,
7426 TTI.getRegisterBitWidth(BestVF.isScalable()
7430
7432 // Regions are dissolved after optimizing for VF and UF, which completely
7433 // removes unneeded loop regions first.
7435 // Expand BranchOnTwoConds after dissolution, when latch has direct access to
7436 // its successors.
7438 // Canonicalize EVL loops after regions are dissolved.
7442 BestVPlan, VectorPH, CM.foldTailByMasking(),
7443 CM.requiresScalarEpilogue(BestVF.isVector()));
7444 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7445 VPlanTransforms::cse(BestVPlan);
7447
7448 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7449 // making any changes to the CFG.
7450 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7451 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7452 if (!ILV.getTripCount()) {
7453 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7454 } else {
7455 assert(VectorizingEpilogue && "should only re-use the existing trip "
7456 "count during epilogue vectorization");
7457 }
7458
7459 // Perform the actual loop transformation.
7460 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7461 OrigLoop->getParentLoop(),
7462 Legal->getWidestInductionType());
7463
7464#ifdef EXPENSIVE_CHECKS
7465 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7466#endif
7467
7468 // 1. Set up the skeleton for vectorization, including vector pre-header and
7469 // middle block. The vector loop is created during VPlan execution.
7470 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7472 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7474
7475 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7476 "final VPlan is invalid");
7477
7478 // After vectorization, the exit blocks of the original loop will have
7479 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7480 // looked through single-entry phis.
7481 ScalarEvolution &SE = *PSE.getSE();
7482 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7483 if (!Exit->hasPredecessors())
7484 continue;
7485 for (VPRecipeBase &PhiR : Exit->phis())
7487 &cast<VPIRPhi>(PhiR).getIRPhi());
7488 }
7489 // Forget the original loop and block dispositions.
7490 SE.forgetLoop(OrigLoop);
7492
7494
7495 //===------------------------------------------------===//
7496 //
7497 // Notice: any optimization or new instruction that go
7498 // into the code below should also be implemented in
7499 // the cost-model.
7500 //
7501 //===------------------------------------------------===//
7502
7503 // Retrieve loop information before executing the plan, which may remove the
7504 // original loop, if it becomes unreachable.
7505 MDNode *LID = OrigLoop->getLoopID();
7506 unsigned OrigLoopInvocationWeight = 0;
7507 std::optional<unsigned> OrigAverageTripCount =
7508 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7509
7510 BestVPlan.execute(&State);
7511
7512 // 2.6. Maintain Loop Hints
7513 // Keep all loop hints from the original loop on the vector loop (we'll
7514 // replace the vectorizer-specific hints below).
7515 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7516 // Add metadata to disable runtime unrolling a scalar loop when there
7517 // are no runtime checks about strides and memory. A scalar loop that is
7518 // rarely used is not worth unrolling.
7519 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7521 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7522 : nullptr,
7523 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7524 OrigLoopInvocationWeight,
7525 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7526 DisableRuntimeUnroll);
7527
7528 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7529 // predication, updating analyses.
7530 ILV.fixVectorizedLoop(State);
7531
7533
7534 return ExpandedSCEVs;
7535}
7536
7537//===--------------------------------------------------------------------===//
7538// EpilogueVectorizerMainLoop
7539//===--------------------------------------------------------------------===//
7540
7541/// This function is partially responsible for generating the control flow
7542/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7544 BasicBlock *ScalarPH = createScalarPreheader("");
7545 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7546
7547 // Generate the code to check the minimum iteration count of the vector
7548 // epilogue (see below).
7549 EPI.EpilogueIterationCountCheck =
7550 emitIterationCountCheck(VectorPH, ScalarPH, true);
7551 EPI.EpilogueIterationCountCheck->setName("iter.check");
7552
7553 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7554 ->getSuccessor(1);
7555 // Generate the iteration count check for the main loop, *after* the check
7556 // for the epilogue loop, so that the path-length is shorter for the case
7557 // that goes directly through the vector epilogue. The longer-path length for
7558 // the main loop is compensated for, by the gain from vectorizing the larger
7559 // trip count. Note: the branch will get updated later on when we vectorize
7560 // the epilogue.
7561 EPI.MainLoopIterationCountCheck =
7562 emitIterationCountCheck(VectorPH, ScalarPH, false);
7563
7564 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7565 ->getSuccessor(1);
7566}
7567
7569 LLVM_DEBUG({
7570 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7571 << "Main Loop VF:" << EPI.MainLoopVF
7572 << ", Main Loop UF:" << EPI.MainLoopUF
7573 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7574 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7575 });
7576}
7577
7580 dbgs() << "intermediate fn:\n"
7581 << *OrigLoop->getHeader()->getParent() << "\n";
7582 });
7583}
7584
7586 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7587 assert(Bypass && "Expected valid bypass basic block.");
7590 Value *CheckMinIters = createIterationCountCheck(
7591 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7592 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7593
7594 BasicBlock *const TCCheckBlock = VectorPH;
7595 if (!ForEpilogue)
7596 TCCheckBlock->setName("vector.main.loop.iter.check");
7597
7598 // Create new preheader for vector loop.
7599 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7600 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7601 "vector.ph");
7602 if (ForEpilogue) {
7603 // Save the trip count so we don't have to regenerate it in the
7604 // vec.epilog.iter.check. This is safe to do because the trip count
7605 // generated here dominates the vector epilog iter check.
7606 EPI.TripCount = Count;
7607 } else {
7609 }
7610
7611 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7612 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7613 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7614 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7615
7616 // When vectorizing the main loop, its trip-count check is placed in a new
7617 // block, whereas the overall trip-count check is placed in the VPlan entry
7618 // block. When vectorizing the epilogue loop, its trip-count check is placed
7619 // in the VPlan entry block.
7620 if (!ForEpilogue)
7621 introduceCheckBlockInVPlan(TCCheckBlock);
7622 return TCCheckBlock;
7623}
7624
7625//===--------------------------------------------------------------------===//
7626// EpilogueVectorizerEpilogueLoop
7627//===--------------------------------------------------------------------===//
7628
7629/// This function creates a new scalar preheader, using the previous one as
7630/// entry block to the epilogue VPlan. The minimum iteration check is being
7631/// represented in VPlan.
7633 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7634 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7635 OriginalScalarPH->setName("vec.epilog.iter.check");
7636 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7637 VPBasicBlock *OldEntry = Plan.getEntry();
7638 for (auto &R : make_early_inc_range(*OldEntry)) {
7639 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7640 // defining.
7641 if (isa<VPIRInstruction>(&R))
7642 continue;
7643 R.moveBefore(*NewEntry, NewEntry->end());
7644 }
7645
7646 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7647 Plan.setEntry(NewEntry);
7648 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7649
7650 return OriginalScalarPH;
7651}
7652
7654 LLVM_DEBUG({
7655 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7656 << "Epilogue Loop VF:" << EPI.EpilogueVF
7657 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7658 });
7659}
7660
7663 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7664 });
7665}
7666
7667VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7668 VFRange &Range) {
7669 assert((VPI->getOpcode() == Instruction::Load ||
7670 VPI->getOpcode() == Instruction::Store) &&
7671 "Must be called with either a load or store");
7673
7674 auto WillWiden = [&](ElementCount VF) -> bool {
7676 CM.getWideningDecision(I, VF);
7678 "CM decision should be taken at this point.");
7680 return true;
7681 if (CM.isScalarAfterVectorization(I, VF) ||
7682 CM.isProfitableToScalarize(I, VF))
7683 return false;
7685 };
7686
7688 return nullptr;
7689
7690 VPValue *Mask = nullptr;
7691 if (Legal->isMaskRequired(I))
7692 Mask = getBlockInMask(Builder.getInsertBlock());
7693
7694 // Determine if the pointer operand of the access is either consecutive or
7695 // reverse consecutive.
7697 CM.getWideningDecision(I, Range.Start);
7699 bool Consecutive =
7701
7702 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7703 : VPI->getOperand(1);
7704 if (Consecutive) {
7707 VPSingleDefRecipe *VectorPtr;
7708 if (Reverse) {
7709 // When folding the tail, we may compute an address that we don't in the
7710 // original scalar loop: drop the GEP no-wrap flags in this case.
7711 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7712 // emit negative indices.
7713 GEPNoWrapFlags Flags =
7714 CM.foldTailByMasking() || !GEP
7716 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7717 VectorPtr = new VPVectorEndPointerRecipe(
7718 Ptr, &Plan.getVF(), getLoadStoreType(I),
7719 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7720 } else {
7721 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7722 GEP ? GEP->getNoWrapFlags()
7724 VPI->getDebugLoc());
7725 }
7726 Builder.insert(VectorPtr);
7727 Ptr = VectorPtr;
7728 }
7729
7730 if (VPI->getOpcode() == Instruction::Load) {
7731 auto *Load = cast<LoadInst>(I);
7732 auto *LoadR = new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7733 *VPI, Load->getDebugLoc());
7734 if (Reverse) {
7735 Builder.insert(LoadR);
7736 return new VPInstruction(VPInstruction::Reverse, LoadR, {}, {},
7737 LoadR->getDebugLoc());
7738 }
7739 return LoadR;
7740 }
7741
7742 StoreInst *Store = cast<StoreInst>(I);
7743 VPValue *StoredVal = VPI->getOperand(0);
7744 if (Reverse)
7745 StoredVal = Builder.createNaryOp(VPInstruction::Reverse, StoredVal,
7746 Store->getDebugLoc());
7747 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7748 Reverse, *VPI, Store->getDebugLoc());
7749}
7750
7752VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7753 VFRange &Range) {
7754 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7755 // Optimize the special case where the source is a constant integer
7756 // induction variable. Notice that we can only optimize the 'trunc' case
7757 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7758 // (c) other casts depend on pointer size.
7759
7760 // Determine whether \p K is a truncation based on an induction variable that
7761 // can be optimized.
7762 auto IsOptimizableIVTruncate =
7763 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7764 return [=](ElementCount VF) -> bool {
7765 return CM.isOptimizableIVTruncate(K, VF);
7766 };
7767 };
7768
7770 IsOptimizableIVTruncate(I), Range))
7771 return nullptr;
7772
7774 VPI->getOperand(0)->getDefiningRecipe());
7775 PHINode *Phi = WidenIV->getPHINode();
7776 VPIRValue *Start = WidenIV->getStartValue();
7777 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7778
7779 // It is always safe to copy over the NoWrap and FastMath flags. In
7780 // particular, when folding tail by masking, the masked-off lanes are never
7781 // used, so it is safe.
7782 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7783 VPValue *Step =
7785 return new VPWidenIntOrFpInductionRecipe(
7786 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7787}
7788
7789VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7790 VFRange &Range) {
7791 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7793 [this, CI](ElementCount VF) {
7794 return CM.isScalarWithPredication(CI, VF);
7795 },
7796 Range);
7797
7798 if (IsPredicated)
7799 return nullptr;
7800
7802 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7803 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7804 ID == Intrinsic::pseudoprobe ||
7805 ID == Intrinsic::experimental_noalias_scope_decl))
7806 return nullptr;
7807
7809 VPI->op_begin() + CI->arg_size());
7810
7811 // Is it beneficial to perform intrinsic call compared to lib call?
7812 bool ShouldUseVectorIntrinsic =
7814 [&](ElementCount VF) -> bool {
7815 return CM.getCallWideningDecision(CI, VF).Kind ==
7817 },
7818 Range);
7819 if (ShouldUseVectorIntrinsic)
7820 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7821 VPI->getDebugLoc());
7822
7823 Function *Variant = nullptr;
7824 std::optional<unsigned> MaskPos;
7825 // Is better to call a vectorized version of the function than to to scalarize
7826 // the call?
7827 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7828 [&](ElementCount VF) -> bool {
7829 // The following case may be scalarized depending on the VF.
7830 // The flag shows whether we can use a usual Call for vectorized
7831 // version of the instruction.
7832
7833 // If we've found a variant at a previous VF, then stop looking. A
7834 // vectorized variant of a function expects input in a certain shape
7835 // -- basically the number of input registers, the number of lanes
7836 // per register, and whether there's a mask required.
7837 // We store a pointer to the variant in the VPWidenCallRecipe, so
7838 // once we have an appropriate variant it's only valid for that VF.
7839 // This will force a different vplan to be generated for each VF that
7840 // finds a valid variant.
7841 if (Variant)
7842 return false;
7843 LoopVectorizationCostModel::CallWideningDecision Decision =
7844 CM.getCallWideningDecision(CI, VF);
7846 Variant = Decision.Variant;
7847 MaskPos = Decision.MaskPos;
7848 return true;
7849 }
7850
7851 return false;
7852 },
7853 Range);
7854 if (ShouldUseVectorCall) {
7855 if (MaskPos.has_value()) {
7856 // We have 2 cases that would require a mask:
7857 // 1) The block needs to be predicated, either due to a conditional
7858 // in the scalar loop or use of an active lane mask with
7859 // tail-folding, and we use the appropriate mask for the block.
7860 // 2) No mask is required for the block, but the only available
7861 // vector variant at this VF requires a mask, so we synthesize an
7862 // all-true mask.
7863 VPValue *Mask = Legal->isMaskRequired(CI)
7864 ? getBlockInMask(Builder.getInsertBlock())
7865 : Plan.getTrue();
7866
7867 Ops.insert(Ops.begin() + *MaskPos, Mask);
7868 }
7869
7870 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7871 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7872 VPI->getDebugLoc());
7873 }
7874
7875 return nullptr;
7876}
7877
7878bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7880 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7881 // Instruction should be widened, unless it is scalar after vectorization,
7882 // scalarization is profitable or it is predicated.
7883 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7884 return CM.isScalarAfterVectorization(I, VF) ||
7885 CM.isProfitableToScalarize(I, VF) ||
7886 CM.isScalarWithPredication(I, VF);
7887 };
7889 Range);
7890}
7891
7892VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7893 auto *I = VPI->getUnderlyingInstr();
7894 switch (VPI->getOpcode()) {
7895 default:
7896 return nullptr;
7897 case Instruction::SDiv:
7898 case Instruction::UDiv:
7899 case Instruction::SRem:
7900 case Instruction::URem: {
7901 // If not provably safe, use a select to form a safe divisor before widening the
7902 // div/rem operation itself. Otherwise fall through to general handling below.
7903 if (CM.isPredicatedInst(I)) {
7905 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7906 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7907 auto *SafeRHS =
7908 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7909 Ops[1] = SafeRHS;
7910 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7911 }
7912 [[fallthrough]];
7913 }
7914 case Instruction::Add:
7915 case Instruction::And:
7916 case Instruction::AShr:
7917 case Instruction::FAdd:
7918 case Instruction::FCmp:
7919 case Instruction::FDiv:
7920 case Instruction::FMul:
7921 case Instruction::FNeg:
7922 case Instruction::FRem:
7923 case Instruction::FSub:
7924 case Instruction::ICmp:
7925 case Instruction::LShr:
7926 case Instruction::Mul:
7927 case Instruction::Or:
7928 case Instruction::Select:
7929 case Instruction::Shl:
7930 case Instruction::Sub:
7931 case Instruction::Xor:
7932 case Instruction::Freeze:
7933 return new VPWidenRecipe(*I, VPI->operands(), *VPI, *VPI,
7934 VPI->getDebugLoc());
7935 case Instruction::ExtractValue: {
7936 SmallVector<VPValue *> NewOps(VPI->operands());
7937 auto *EVI = cast<ExtractValueInst>(I);
7938 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7939 unsigned Idx = EVI->getIndices()[0];
7940 NewOps.push_back(Plan.getConstantInt(32, Idx));
7941 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7942 }
7943 };
7944}
7945
7946VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7947 VPInstruction *VPI) {
7948 // FIXME: Support other operations.
7949 unsigned Opcode = HI->Update->getOpcode();
7950 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7951 "Histogram update operation must be an Add or Sub");
7952
7954 // Bucket address.
7955 HGramOps.push_back(VPI->getOperand(1));
7956 // Increment value.
7957 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7958
7959 // In case of predicated execution (due to tail-folding, or conditional
7960 // execution, or both), pass the relevant mask.
7961 if (Legal->isMaskRequired(HI->Store))
7962 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7963
7964 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7965}
7966
7968 VFRange &Range) {
7969 auto *I = VPI->getUnderlyingInstr();
7971 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7972 Range);
7973
7974 bool IsPredicated = CM.isPredicatedInst(I);
7975
7976 // Even if the instruction is not marked as uniform, there are certain
7977 // intrinsic calls that can be effectively treated as such, so we check for
7978 // them here. Conservatively, we only do this for scalable vectors, since
7979 // for fixed-width VFs we can always fall back on full scalarization.
7980 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7981 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7982 case Intrinsic::assume:
7983 case Intrinsic::lifetime_start:
7984 case Intrinsic::lifetime_end:
7985 // For scalable vectors if one of the operands is variant then we still
7986 // want to mark as uniform, which will generate one instruction for just
7987 // the first lane of the vector. We can't scalarize the call in the same
7988 // way as for fixed-width vectors because we don't know how many lanes
7989 // there are.
7990 //
7991 // The reasons for doing it this way for scalable vectors are:
7992 // 1. For the assume intrinsic generating the instruction for the first
7993 // lane is still be better than not generating any at all. For
7994 // example, the input may be a splat across all lanes.
7995 // 2. For the lifetime start/end intrinsics the pointer operand only
7996 // does anything useful when the input comes from a stack object,
7997 // which suggests it should always be uniform. For non-stack objects
7998 // the effect is to poison the object, which still allows us to
7999 // remove the call.
8000 IsUniform = true;
8001 break;
8002 default:
8003 break;
8004 }
8005 }
8006 VPValue *BlockInMask = nullptr;
8007 if (!IsPredicated) {
8008 // Finalize the recipe for Instr, first if it is not predicated.
8009 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8010 } else {
8011 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8012 // Instructions marked for predication are replicated and a mask operand is
8013 // added initially. Masked replicate recipes will later be placed under an
8014 // if-then construct to prevent side-effects. Generate recipes to compute
8015 // the block mask for this region.
8016 BlockInMask = getBlockInMask(Builder.getInsertBlock());
8017 }
8018
8019 // Note that there is some custom logic to mark some intrinsics as uniform
8020 // manually above for scalable vectors, which this assert needs to account for
8021 // as well.
8022 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8023 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
8024 "Should not predicate a uniform recipe");
8025 auto *Recipe =
8026 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
8027 *VPI, VPI->getDebugLoc());
8028 return Recipe;
8029}
8030
8031/// Find all possible partial reductions in the loop and track all of those that
8032/// are valid so recipes can be formed later.
8034 // Find all possible partial reductions, grouping chains by their PHI. This
8035 // grouping allows invalidating the whole chain, if any link is not a valid
8036 // partial reduction.
8039 ChainsByPhi;
8040 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8041 if (Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8042 getScaledReductions(Phi, RdxExitInstr, Range, ChainsByPhi[Phi]);
8043 }
8044
8045 // A partial reduction is invalid if any of its extends are used by
8046 // something that isn't another partial reduction. This is because the
8047 // extends are intended to be lowered along with the reduction itself.
8048
8049 // Build up a set of partial reduction ops for efficient use checking.
8050 SmallPtrSet<User *, 4> PartialReductionOps;
8051 for (const auto &[_, Chains] : ChainsByPhi)
8052 for (const auto &[PartialRdx, _] : Chains)
8053 PartialReductionOps.insert(PartialRdx.ExtendUser);
8054
8055 auto ExtendIsOnlyUsedByPartialReductions =
8056 [&PartialReductionOps](Instruction *Extend) {
8057 return all_of(Extend->users(), [&](const User *U) {
8058 return PartialReductionOps.contains(U);
8059 });
8060 };
8061
8062 // Check if each use of a chain's two extends is a partial reduction
8063 // and only add those that don't have non-partial reduction users.
8064 for (const auto &[_, Chains] : ChainsByPhi) {
8065 for (const auto &[Chain, Scale] : Chains) {
8066 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8067 (!Chain.ExtendB ||
8068 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8069 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8070 }
8071 }
8072
8073 // Check that all partial reductions in a chain are only used by other
8074 // partial reductions with the same scale factor. Otherwise we end up creating
8075 // users of scaled reductions where the types of the other operands don't
8076 // match.
8077 for (const auto &[Phi, Chains] : ChainsByPhi) {
8078 for (const auto &[Chain, Scale] : Chains) {
8079 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8080 this](const User *U) {
8081 auto *UI = cast<Instruction>(U);
8082 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8083 return UI == RdxPhi;
8084 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8085 !OrigLoop->contains(UI->getParent());
8086 };
8087
8088 // If any partial reduction entry for the phi is invalid, invalidate the
8089 // whole chain.
8090 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8091 for (const auto &[Chain, _] : Chains)
8092 ScaledReductionMap.erase(Chain.Reduction);
8093 break;
8094 }
8095 }
8096 }
8097}
8098
8099bool VPRecipeBuilder::getScaledReductions(
8100 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8101 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8102 if (!CM.TheLoop->contains(RdxExitInstr))
8103 return false;
8104
8105 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8106 if (!Update)
8107 return false;
8108
8109 Value *Op = Update->getOperand(0);
8110 Value *PhiOp = Update->getOperand(1);
8111 if (Op == PHI)
8112 std::swap(Op, PhiOp);
8113
8114 using namespace llvm::PatternMatch;
8115 // If Op is an extend, then it's still a valid partial reduction if the
8116 // extended mul fulfills the other requirements.
8117 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8118 // reduction since the inner extends will be widened. We already have oneUse
8119 // checks on the inner extends so widening them is safe.
8120 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8121 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8122 auto *Cast = cast<CastInst>(Op);
8123 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8124 Op = Cast->getOperand(0);
8125 }
8126
8127 // Try and get a scaled reduction from the first non-phi operand.
8128 // If one is found, we use the discovered reduction instruction in
8129 // place of the accumulator for costing.
8130 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8131 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8132 PHI = Chains.rbegin()->first.Reduction;
8133
8134 Op = Update->getOperand(0);
8135 PhiOp = Update->getOperand(1);
8136 if (Op == PHI)
8137 std::swap(Op, PhiOp);
8138 }
8139 }
8140 if (PhiOp != PHI)
8141 return false;
8142
8143 // If the update is a binary operator, check both of its operands to see if
8144 // they are extends. Otherwise, see if the update comes directly from an
8145 // extend.
8146 Instruction *Exts[2] = {nullptr};
8147 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8148 std::optional<unsigned> BinOpc;
8149 Type *ExtOpTypes[2] = {nullptr};
8151
8152 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8153 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8154 for (const auto &[I, OpI] : enumerate(Ops)) {
8155 const APInt *C;
8156 if (I > 0 && match(OpI, m_APInt(C)) &&
8157 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8158 ExtOpTypes[I] = ExtOpTypes[0];
8159 ExtKinds[I] = ExtKinds[0];
8160 continue;
8161 }
8162 Value *ExtOp;
8163 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8164 return false;
8165 Exts[I] = cast<Instruction>(OpI);
8166
8167 // TODO: We should be able to support live-ins.
8168 if (!CM.TheLoop->contains(Exts[I]))
8169 return false;
8170
8171 ExtOpTypes[I] = ExtOp->getType();
8172 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8173 // The outer extend kind must be the same as the inner extends, so that
8174 // they can be folded together.
8175 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8176 return false;
8177 }
8178 return true;
8179 };
8180
8181 if (ExtendUser) {
8182 if (!ExtendUser->hasOneUse())
8183 return false;
8184
8185 // Use the side-effect of match to replace BinOp only if the pattern is
8186 // matched, we don't care at this point whether it actually matched.
8187 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8188
8189 SmallVector<Value *> Ops(ExtendUser->operands());
8190 if (!CollectExtInfo(Ops))
8191 return false;
8192
8193 BinOpc = std::make_optional(ExtendUser->getOpcode());
8194 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8195 // We already know the operands for Update are Op and PhiOp.
8197 if (!CollectExtInfo(Ops))
8198 return false;
8199
8200 ExtendUser = Update;
8201 BinOpc = std::nullopt;
8202 } else
8203 return false;
8204
8205 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8206
8207 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8208 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8209 if (!PHISize.hasKnownScalarFactor(ASize))
8210 return false;
8211 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8212
8214 [&](ElementCount VF) {
8215 InstructionCost Cost = TTI->getPartialReductionCost(
8216 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8217 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8218 CM.CostKind);
8219 return Cost.isValid();
8220 },
8221 Range)) {
8222 Chains.emplace_back(Chain, TargetScaleFactor);
8223 return true;
8224 }
8225
8226 return false;
8227}
8228
8231 VFRange &Range) {
8232 assert(!R->isPhi() && "phis must be handled earlier");
8233 // First, check for specific widening recipes that deal with optimizing
8234 // truncates, calls and memory operations.
8235
8236 VPRecipeBase *Recipe;
8237 auto *VPI = cast<VPInstruction>(R);
8238 if (VPI->getOpcode() == Instruction::Trunc &&
8239 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8240 return Recipe;
8241
8242 // All widen recipes below deal only with VF > 1.
8244 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8245 return nullptr;
8246
8247 if (VPI->getOpcode() == Instruction::Call)
8248 return tryToWidenCall(VPI, Range);
8249
8250 Instruction *Instr = R->getUnderlyingInstr();
8251 if (VPI->getOpcode() == Instruction::Store)
8252 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8253 return tryToWidenHistogram(*HistInfo, VPI);
8254
8255 if (VPI->getOpcode() == Instruction::Load ||
8256 VPI->getOpcode() == Instruction::Store)
8257 return tryToWidenMemory(VPI, Range);
8258
8259 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8260 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8261
8262 if (!shouldWiden(Instr, Range))
8263 return nullptr;
8264
8265 if (VPI->getOpcode() == Instruction::GetElementPtr)
8266 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8267 *VPI, VPI->getDebugLoc());
8268
8269 if (Instruction::isCast(VPI->getOpcode())) {
8270 auto *CI = cast<CastInst>(Instr);
8271 auto *CastR = cast<VPInstructionWithType>(VPI);
8272 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8273 CastR->getResultType(), CI, *VPI, *VPI,
8274 VPI->getDebugLoc());
8275 }
8276
8277 return tryToWiden(VPI);
8278}
8279
8282 unsigned ScaleFactor) {
8283 assert(Reduction->getNumOperands() == 2 &&
8284 "Unexpected number of operands for partial reduction");
8285
8286 VPValue *BinOp = Reduction->getOperand(0);
8287 VPValue *Accumulator = Reduction->getOperand(1);
8288 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8289 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8290 (isa<VPReductionRecipe>(BinOpRecipe) &&
8291 cast<VPReductionRecipe>(BinOpRecipe)->isPartialReduction()))
8292 std::swap(BinOp, Accumulator);
8293
8294 if (auto *RedPhiR = dyn_cast<VPReductionPHIRecipe>(Accumulator))
8295 RedPhiR->setVFScaleFactor(ScaleFactor);
8296
8297 assert(ScaleFactor ==
8298 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8299 "all accumulators in chain must have same scale factor");
8300
8301 auto *ReductionI = Reduction->getUnderlyingInstr();
8302 if (Reduction->getOpcode() == Instruction::Sub) {
8304 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8305 Ops.push_back(BinOp);
8306 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8307 VPIRMetadata(), ReductionI->getDebugLoc());
8308 Builder.insert(BinOp->getDefiningRecipe());
8309 }
8310
8311 VPValue *Cond = nullptr;
8312 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8313 Cond = getBlockInMask(Builder.getInsertBlock());
8314
8315 return new VPReductionRecipe(
8316 RecurKind::Add, FastMathFlags(), ReductionI, Accumulator, BinOp, Cond,
8317 RdxUnordered{/*VFScaleFactor=*/ScaleFactor}, ReductionI->getDebugLoc());
8318}
8319
8320void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8321 ElementCount MaxVF) {
8322 if (ElementCount::isKnownGT(MinVF, MaxVF))
8323 return;
8324
8325 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8326
8327 const LoopAccessInfo *LAI = Legal->getLAI();
8329 OrigLoop, LI, DT, PSE.getSE());
8330 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8332 // Only use noalias metadata when using memory checks guaranteeing no
8333 // overlap across all iterations.
8334 LVer.prepareNoAliasMetadata();
8335 }
8336
8337 // Create initial base VPlan0, to serve as common starting point for all
8338 // candidates built later for specific VF ranges.
8339 auto VPlan0 = VPlanTransforms::buildVPlan0(
8340 OrigLoop, *LI, Legal->getWidestInductionType(),
8341 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8342
8343 // Create recipes for header phis.
8345 *VPlan0, PSE, *OrigLoop, Legal->getInductionVars(),
8346 Legal->getReductionVars(), Legal->getFixedOrderRecurrences(),
8347 CM.getInLoopReductions(), Hints.allowReordering());
8348
8349 auto MaxVFTimes2 = MaxVF * 2;
8350 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8351 VFRange SubRange = {VF, MaxVFTimes2};
8352 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8353 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8354 // Now optimize the initial VPlan.
8355 VPlanTransforms::hoistPredicatedLoads(*Plan, PSE, OrigLoop);
8356 VPlanTransforms::sinkPredicatedStores(*Plan, PSE, OrigLoop);
8358 *Plan, CM.getMinimalBitwidths());
8360 // TODO: try to put it close to addActiveLaneMask().
8361 if (CM.foldTailWithEVL())
8363 *Plan, CM.getMaxSafeElements());
8364 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8365 VPlans.push_back(std::move(Plan));
8366 }
8367 VF = SubRange.End;
8368 }
8369}
8370
8371VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8372 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8373
8374 using namespace llvm::VPlanPatternMatch;
8375 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8376
8377 // ---------------------------------------------------------------------------
8378 // Build initial VPlan: Scan the body of the loop in a topological order to
8379 // visit each basic block after having visited its predecessor basic blocks.
8380 // ---------------------------------------------------------------------------
8381
8382 bool RequiresScalarEpilogueCheck =
8384 [this](ElementCount VF) {
8385 return !CM.requiresScalarEpilogue(VF.isVector());
8386 },
8387 Range);
8388 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8389 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8390 CM.foldTailByMasking());
8391
8393
8394 // Don't use getDecisionAndClampRange here, because we don't know the UF
8395 // so this function is better to be conservative, rather than to split
8396 // it up into different VPlans.
8397 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8398 bool IVUpdateMayOverflow = false;
8399 for (ElementCount VF : Range)
8400 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8401
8402 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8403 // Use NUW for the induction increment if we proved that it won't overflow in
8404 // the vector loop or when not folding the tail. In the later case, we know
8405 // that the canonical induction increment will not overflow as the vector trip
8406 // count is >= increment and a multiple of the increment.
8407 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8408 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8409 if (!HasNUW) {
8410 auto *IVInc =
8411 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8412 assert(match(IVInc,
8413 m_VPInstruction<Instruction::Add>(
8414 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8415 "Did not find the canonical IV increment");
8416 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8417 }
8418
8419 // ---------------------------------------------------------------------------
8420 // Pre-construction: record ingredients whose recipes we'll need to further
8421 // process after constructing the initial VPlan.
8422 // ---------------------------------------------------------------------------
8423
8424 // For each interleave group which is relevant for this (possibly trimmed)
8425 // Range, add it to the set of groups to be later applied to the VPlan and add
8426 // placeholders for its members' Recipes which we'll be replacing with a
8427 // single VPInterleaveRecipe.
8428 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8429 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8430 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8431 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8433 // For scalable vectors, the interleave factors must be <= 8 since we
8434 // require the (de)interleaveN intrinsics instead of shufflevectors.
8435 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8436 "Unsupported interleave factor for scalable vectors");
8437 return Result;
8438 };
8439 if (!getDecisionAndClampRange(ApplyIG, Range))
8440 continue;
8441 InterleaveGroups.insert(IG);
8442 }
8443
8444 // ---------------------------------------------------------------------------
8445 // Predicate and linearize the top-level loop region.
8446 // ---------------------------------------------------------------------------
8447 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8448 *Plan, CM.foldTailByMasking());
8449
8450 // ---------------------------------------------------------------------------
8451 // Construct wide recipes and apply predication for original scalar
8452 // VPInstructions in the loop.
8453 // ---------------------------------------------------------------------------
8454 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8455 BlockMaskCache);
8456 // TODO: Handle partial reductions with EVL tail folding.
8457 if (!CM.foldTailWithEVL())
8458 RecipeBuilder.collectScaledReductions(Range);
8459
8460 // Scan the body of the loop in a topological order to visit each basic block
8461 // after having visited its predecessor basic blocks.
8462 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8463 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8464 HeaderVPBB);
8465
8466 auto *MiddleVPBB = Plan->getMiddleBlock();
8467 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8468 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8469 // temporarily to update created block masks.
8470 DenseMap<VPValue *, VPValue *> Old2New;
8471
8472 // Collect blocks that need predication for in-loop reduction recipes.
8473 DenseSet<BasicBlock *> BlocksNeedingPredication;
8474 for (BasicBlock *BB : OrigLoop->blocks())
8475 if (CM.blockNeedsPredicationForAnyReason(BB))
8476 BlocksNeedingPredication.insert(BB);
8477
8479 *Plan, BlockMaskCache, BlocksNeedingPredication, Range.Start);
8480
8481 // Now process all other blocks and instructions.
8482 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8483 // Convert input VPInstructions to widened recipes.
8484 for (VPRecipeBase &R : make_early_inc_range(
8485 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8486 // Skip recipes that do not need transforming.
8488 continue;
8489 auto *VPI = cast<VPInstruction>(&R);
8490 if (!VPI->getUnderlyingValue())
8491 continue;
8492
8493 // TODO: Gradually replace uses of underlying instruction by analyses on
8494 // VPlan. Migrate code relying on the underlying instruction from VPlan0
8495 // to construct recipes below to not use the underlying instruction.
8497 Builder.setInsertPoint(VPI);
8498
8499 // The stores with invariant address inside the loop will be deleted, and
8500 // in the exit block, a uniform store recipe will be created for the final
8501 // invariant store of the reduction.
8502 StoreInst *SI;
8503 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8504 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8505 // Only create recipe for the final invariant store of the reduction.
8506 if (Legal->isInvariantStoreOfReduction(SI)) {
8507 auto *Recipe = new VPReplicateRecipe(
8508 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8509 *VPI, VPI->getDebugLoc());
8510 Recipe->insertBefore(*MiddleVPBB, MBIP);
8511 }
8512 R.eraseFromParent();
8513 continue;
8514 }
8515
8516 VPRecipeBase *Recipe =
8517 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI, Range);
8518 if (!Recipe)
8519 Recipe =
8520 RecipeBuilder.handleReplication(cast<VPInstruction>(VPI), Range);
8521
8522 RecipeBuilder.setRecipe(Instr, Recipe);
8523 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8524 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8525 // moved to the phi section in the header.
8526 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8527 } else {
8528 Builder.insert(Recipe);
8529 }
8530 if (Recipe->getNumDefinedValues() == 1) {
8531 VPI->replaceAllUsesWith(Recipe->getVPSingleValue());
8532 Old2New[VPI] = Recipe->getVPSingleValue();
8533 } else {
8534 assert(Recipe->getNumDefinedValues() == 0 &&
8535 "Unexpected multidef recipe");
8536 R.eraseFromParent();
8537 }
8538 }
8539 }
8540
8541 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8542 // TODO: Include the masks as operands in the predicated VPlan directly
8543 // to remove the need to keep a map of masks beyond the predication
8544 // transform.
8545 RecipeBuilder.updateBlockMaskCache(Old2New);
8546 for (VPValue *Old : Old2New.keys())
8547 Old->getDefiningRecipe()->eraseFromParent();
8548
8549 assert(isa<VPRegionBlock>(LoopRegion) &&
8550 !LoopRegion->getEntryBasicBlock()->empty() &&
8551 "entry block must be set to a VPRegionBlock having a non-empty entry "
8552 "VPBasicBlock");
8553
8554 // TODO: We can't call runPass on these transforms yet, due to verifier
8555 // failures.
8557 DenseMap<VPValue *, VPValue *> IVEndValues;
8558 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8559
8560 // ---------------------------------------------------------------------------
8561 // Transform initial VPlan: Apply previously taken decisions, in order, to
8562 // bring the VPlan to its final state.
8563 // ---------------------------------------------------------------------------
8564
8565 addReductionResultComputation(Plan, RecipeBuilder, Range.Start);
8566
8567 // Apply mandatory transformation to handle reductions with multiple in-loop
8568 // uses if possible, bail out otherwise.
8570 *Plan))
8571 return nullptr;
8572 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8573 // NaNs if possible, bail out otherwise.
8575 *Plan))
8576 return nullptr;
8577
8578 // Transform recipes to abstract recipes if it is legal and beneficial and
8579 // clamp the range for better cost estimation.
8580 // TODO: Enable following transform when the EVL-version of extended-reduction
8581 // and mulacc-reduction are implemented.
8582 if (!CM.foldTailWithEVL()) {
8583 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8584 OrigLoop);
8586 CostCtx, Range);
8587 }
8588
8589 for (ElementCount VF : Range)
8590 Plan->addVF(VF);
8591 Plan->setName("Initial VPlan");
8592
8593 // Interleave memory: for each Interleave Group we marked earlier as relevant
8594 // for this VPlan, replace the Recipes widening its memory instructions with a
8595 // single VPInterleaveRecipe at its insertion point.
8597 InterleaveGroups, RecipeBuilder,
8598 CM.isScalarEpilogueAllowed());
8599
8600 // Replace VPValues for known constant strides.
8602 Legal->getLAI()->getSymbolicStrides());
8603
8604 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8605 return Legal->blockNeedsPredication(BB);
8606 };
8608 BlockNeedsPredication);
8609
8610 // Sink users of fixed-order recurrence past the recipe defining the previous
8611 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8613 *Plan, Builder))
8614 return nullptr;
8615
8616 if (useActiveLaneMask(Style)) {
8617 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8618 // TailFoldingStyle is visible there.
8619 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8620 bool WithoutRuntimeCheck =
8622 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8623 WithoutRuntimeCheck);
8624 }
8625 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, PSE);
8626
8627 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8628 return Plan;
8629}
8630
8631VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8632 // Outer loop handling: They may require CFG and instruction level
8633 // transformations before even evaluating whether vectorization is profitable.
8634 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8635 // the vectorization pipeline.
8636 assert(!OrigLoop->isInnermost());
8637 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8638
8639 auto Plan = VPlanTransforms::buildVPlan0(
8640 OrigLoop, *LI, Legal->getWidestInductionType(),
8641 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8643 /*HasUncountableExit*/ false);
8644 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8645 /*TailFolded*/ false);
8646
8648
8649 for (ElementCount VF : Range)
8650 Plan->addVF(VF);
8651
8653 *Plan,
8654 [this](PHINode *P) {
8655 return Legal->getIntOrFpInductionDescriptor(P);
8656 },
8657 *TLI))
8658 return nullptr;
8659
8660 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8661 // values.
8662 // TODO: We can't call runPass on the transform yet, due to verifier
8663 // failures.
8664 DenseMap<VPValue *, VPValue *> IVEndValues;
8665 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8666
8667 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8668 return Plan;
8669}
8670
8671void LoopVectorizationPlanner::addReductionResultComputation(
8672 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8673 using namespace VPlanPatternMatch;
8674 VPTypeAnalysis TypeInfo(*Plan);
8675 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8676 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8678 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8679 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8680 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8681 for (VPRecipeBase &R :
8682 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8683 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8684 if (!PhiR)
8685 continue;
8686
8687 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8689 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8690 // If tail is folded by masking, introduce selects between the phi
8691 // and the users outside the vector region of each reduction, at the
8692 // beginning of the dedicated latch block.
8693 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8694 auto *NewExitingVPV = PhiR->getBackedgeValue();
8695 // Don't output selects for partial reductions because they have an output
8696 // with fewer lanes than the VF. So the operands of the select would have
8697 // different numbers of lanes. Partial reductions mask the input instead.
8698 auto *RR = dyn_cast<VPReductionRecipe>(OrigExitingVPV->getDefiningRecipe());
8699 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8700 (!RR || !RR->isPartialReduction())) {
8701 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8702 std::optional<FastMathFlags> FMFs =
8703 PhiTy->isFloatingPointTy()
8704 ? std::make_optional(RdxDesc.getFastMathFlags())
8705 : std::nullopt;
8706 NewExitingVPV =
8707 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8708 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8709 return isa<VPInstruction>(&U) &&
8710 (cast<VPInstruction>(&U)->getOpcode() ==
8712 cast<VPInstruction>(&U)->getOpcode() ==
8714 cast<VPInstruction>(&U)->getOpcode() ==
8716 });
8717 if (CM.usePredicatedReductionSelect())
8718 PhiR->setOperand(1, NewExitingVPV);
8719 }
8720
8721 // We want code in the middle block to appear to execute on the location of
8722 // the scalar loop's latch terminator because: (a) it is all compiler
8723 // generated, (b) these instructions are always executed after evaluating
8724 // the latch conditional branch, and (c) other passes may add new
8725 // predecessors which terminate on this line. This is the easiest way to
8726 // ensure we don't accidentally cause an extra step back into the loop while
8727 // debugging.
8728 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8729
8730 // TODO: At the moment ComputeReductionResult also drives creation of the
8731 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8732 // even for in-loop reductions, until the reduction resume value handling is
8733 // also modeled in VPlan.
8734 VPInstruction *FinalReductionResult;
8735 VPBuilder::InsertPointGuard Guard(Builder);
8736 Builder.setInsertPoint(MiddleVPBB, IP);
8737 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8739 VPValue *Start = PhiR->getStartValue();
8740 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8741 FinalReductionResult =
8742 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8743 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8744 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8745 VPValue *Start = PhiR->getStartValue();
8746 FinalReductionResult =
8747 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8748 {PhiR, Start, NewExitingVPV}, ExitDL);
8749 } else {
8750 VPIRFlags Flags =
8752 ? VPIRFlags(RdxDesc.getFastMathFlags())
8753 : VPIRFlags();
8754 FinalReductionResult =
8755 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8756 {PhiR, NewExitingVPV}, Flags, ExitDL);
8757 }
8758 // If the vector reduction can be performed in a smaller type, we truncate
8759 // then extend the loop exit value to enable InstCombine to evaluate the
8760 // entire expression in the smaller type.
8761 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8763 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8765 "Unexpected truncated min-max recurrence!");
8766 Type *RdxTy = RdxDesc.getRecurrenceType();
8767 VPWidenCastRecipe *Trunc;
8768 Instruction::CastOps ExtendOpc =
8769 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8770 VPWidenCastRecipe *Extnd;
8771 {
8772 VPBuilder::InsertPointGuard Guard(Builder);
8773 Builder.setInsertPoint(
8774 NewExitingVPV->getDefiningRecipe()->getParent(),
8775 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8776 Trunc =
8777 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8778 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8779 }
8780 if (PhiR->getOperand(1) == NewExitingVPV)
8781 PhiR->setOperand(1, Extnd->getVPSingleValue());
8782
8783 // Update ComputeReductionResult with the truncated exiting value and
8784 // extend its result.
8785 FinalReductionResult->setOperand(1, Trunc);
8786 FinalReductionResult =
8787 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8788 }
8789
8790 // Update all users outside the vector region. Also replace redundant
8791 // extracts.
8792 for (auto *U : to_vector(OrigExitingVPV->users())) {
8793 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8794 if (FinalReductionResult == U || Parent->getParent())
8795 continue;
8796 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8797
8798 // Look through ExtractLastPart.
8800 U = cast<VPInstruction>(U)->getSingleUser();
8801
8804 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8805 }
8806
8807 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8808 // with a boolean reduction phi node to check if the condition is true in
8809 // any iteration. The final value is selected by the final
8810 // ComputeReductionResult.
8811 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8812 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8813 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8814 }));
8815 VPValue *Cmp = Select->getOperand(0);
8816 // If the compare is checking the reduction PHI node, adjust it to check
8817 // the start value.
8818 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8819 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8820 Builder.setInsertPoint(Select);
8821
8822 // If the true value of the select is the reduction phi, the new value is
8823 // selected if the negated condition is true in any iteration.
8824 if (Select->getOperand(1) == PhiR)
8825 Cmp = Builder.createNot(Cmp);
8826 VPValue *Or = Builder.createOr(PhiR, Cmp);
8827 Select->getVPSingleValue()->replaceAllUsesWith(Or);
8828 // Delete Select now that it has invalid types.
8829 ToDelete.push_back(Select);
8830
8831 // Convert the reduction phi to operate on bools.
8832 PhiR->setOperand(0, Plan->getFalse());
8833 continue;
8834 }
8835
8837 RdxDesc.getRecurrenceKind())) {
8838 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
8839 // the sentinel value after generating the ResumePhi recipe, which uses
8840 // the original start value.
8841 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
8842 }
8843 RecurKind RK = RdxDesc.getRecurrenceKind();
8847 VPBuilder PHBuilder(Plan->getVectorPreheader());
8848 VPValue *Iden = Plan->getOrAddLiveIn(
8849 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
8850 // If the PHI is used by a partial reduction, set the scale factor.
8851 unsigned ScaleFactor =
8852 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
8853 .value_or(1);
8854 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8855 VPValue *StartV = PHBuilder.createNaryOp(
8857 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
8858 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
8859 : FastMathFlags());
8860 PhiR->setOperand(0, StartV);
8861 }
8862 }
8863 for (VPRecipeBase *R : ToDelete)
8864 R->eraseFromParent();
8865
8867}
8868
8869void LoopVectorizationPlanner::attachRuntimeChecks(
8870 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
8871 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8872 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8873 assert((!CM.OptForSize ||
8874 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
8875 "Cannot SCEV check stride or overflow when optimizing for size");
8876 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
8877 HasBranchWeights);
8878 }
8879 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8880 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8881 // VPlan-native path does not do any analysis for runtime checks
8882 // currently.
8883 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
8884 "Runtime checks are not supported for outer loops yet");
8885
8886 if (CM.OptForSize) {
8887 assert(
8888 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
8889 "Cannot emit memory checks when optimizing for size, unless forced "
8890 "to vectorize.");
8891 ORE->emit([&]() {
8892 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
8893 OrigLoop->getStartLoc(),
8894 OrigLoop->getHeader())
8895 << "Code-size may be reduced by not forcing "
8896 "vectorization, or by source-code modifications "
8897 "eliminating the need for runtime checks "
8898 "(e.g., adding 'restrict').";
8899 });
8900 }
8901 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
8902 HasBranchWeights);
8903 }
8904}
8905
8907 VPlan &Plan, ElementCount VF, unsigned UF,
8908 ElementCount MinProfitableTripCount) const {
8909 // vscale is not necessarily a power-of-2, which means we cannot guarantee
8910 // an overflow to zero when updating induction variables and so an
8911 // additional overflow check is required before entering the vector loop.
8912 bool IsIndvarOverflowCheckNeededForVF =
8913 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8914 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
8915 CM.getTailFoldingStyle() !=
8917 const uint32_t *BranchWeigths =
8918 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
8920 : nullptr;
8922 Plan, VF, UF, MinProfitableTripCount,
8923 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
8924 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8925 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8926}
8927
8929 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
8930
8931 // Fast-math-flags propagate from the original induction instruction.
8932 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
8933 if (FPBinOp)
8934 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
8935
8936 Value *Step = State.get(getStepValue(), VPLane(0));
8937 Value *Index = State.get(getOperand(1), VPLane(0));
8938 Value *DerivedIV = emitTransformedIndex(
8939 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
8941 DerivedIV->setName(Name);
8942 State.set(this, DerivedIV, VPLane(0));
8943}
8944
8945// Determine how to lower the scalar epilogue, which depends on 1) optimising
8946// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
8947// predication, and 4) a TTI hook that analyses whether the loop is suitable
8948// for predication.
8950 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
8953 // 1) OptSize takes precedence over all other options, i.e. if this is set,
8954 // don't look at hints or options, and don't request a scalar epilogue.
8955 if (F->hasOptSize() ||
8956 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
8958
8959 // 2) If set, obey the directives
8960 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
8968 };
8969 }
8970
8971 // 3) If set, obey the hints
8972 switch (Hints.getPredicate()) {
8977 };
8978
8979 // 4) if the TTI hook indicates this is profitable, request predication.
8980 TailFoldingInfo TFI(TLI, &LVL, IAI);
8981 if (TTI->preferPredicateOverEpilogue(&TFI))
8983
8985}
8986
8987// Process the loop in the VPlan-native vectorization path. This path builds
8988// VPlan upfront in the vectorization pipeline, which allows to apply
8989// VPlan-to-VPlan transformations from the very beginning without modifying the
8990// input LLVM IR.
8996 std::function<BlockFrequencyInfo &()> GetBFI, bool OptForSize,
8997 LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements) {
8998
9000 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9001 return false;
9002 }
9003 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9004 Function *F = L->getHeader()->getParent();
9005 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9006
9008 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9009
9010 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE,
9011 GetBFI, F, &Hints, IAI, OptForSize);
9012 // Use the planner for outer loop vectorization.
9013 // TODO: CM is not used at this point inside the planner. Turn CM into an
9014 // optional argument if we don't need it in the future.
9015 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9016 ORE);
9017
9018 // Get user vectorization factor.
9019 ElementCount UserVF = Hints.getWidth();
9020
9022
9023 // Plan how to best vectorize, return the best VF and its cost.
9024 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9025
9026 // If we are stress testing VPlan builds, do not attempt to generate vector
9027 // code. Masked vector code generation support will follow soon.
9028 // Also, do not attempt to vectorize if no vector code will be produced.
9030 return false;
9031
9032 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9033
9034 {
9035 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9036 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9037 Checks, BestPlan);
9038 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9039 << L->getHeader()->getParent()->getName() << "\"\n");
9040 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9042
9043 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9044 }
9045
9046 reportVectorization(ORE, L, VF, 1);
9047
9048 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9049 return true;
9050}
9051
9052// Emit a remark if there are stores to floats that required a floating point
9053// extension. If the vectorized loop was generated with floating point there
9054// will be a performance penalty from the conversion overhead and the change in
9055// the vector width.
9058 for (BasicBlock *BB : L->getBlocks()) {
9059 for (Instruction &Inst : *BB) {
9060 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9061 if (S->getValueOperand()->getType()->isFloatTy())
9062 Worklist.push_back(S);
9063 }
9064 }
9065 }
9066
9067 // Traverse the floating point stores upwards searching, for floating point
9068 // conversions.
9071 while (!Worklist.empty()) {
9072 auto *I = Worklist.pop_back_val();
9073 if (!L->contains(I))
9074 continue;
9075 if (!Visited.insert(I).second)
9076 continue;
9077
9078 // Emit a remark if the floating point store required a floating
9079 // point conversion.
9080 // TODO: More work could be done to identify the root cause such as a
9081 // constant or a function return type and point the user to it.
9082 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9083 ORE->emit([&]() {
9084 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9085 I->getDebugLoc(), L->getHeader())
9086 << "floating point conversion changes vector width. "
9087 << "Mixed floating point precision requires an up/down "
9088 << "cast that will negatively impact performance.";
9089 });
9090
9091 for (Use &Op : I->operands())
9092 if (auto *OpI = dyn_cast<Instruction>(Op))
9093 Worklist.push_back(OpI);
9094 }
9095}
9096
9097/// For loops with uncountable early exits, find the cost of doing work when
9098/// exiting the loop early, such as calculating the final exit values of
9099/// variables used outside the loop.
9100/// TODO: This is currently overly pessimistic because the loop may not take
9101/// the early exit, but better to keep this conservative for now. In future,
9102/// it might be possible to relax this by using branch probabilities.
9104 VPlan &Plan, ElementCount VF) {
9105 InstructionCost Cost = 0;
9106 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9107 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9108 // If the predecessor is not the middle.block, then it must be the
9109 // vector.early.exit block, which may contain work to calculate the exit
9110 // values of variables used outside the loop.
9111 if (PredVPBB != Plan.getMiddleBlock()) {
9112 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9113 << PredVPBB->getName() << ":\n");
9114 Cost += PredVPBB->cost(VF, CostCtx);
9115 }
9116 }
9117 }
9118 return Cost;
9119}
9120
9121/// This function determines whether or not it's still profitable to vectorize
9122/// the loop given the extra work we have to do outside of the loop:
9123/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9124/// to vectorize.
9125/// 2. In the case of loops with uncountable early exits, we may have to do
9126/// extra work when exiting the loop early, such as calculating the final
9127/// exit values of variables used outside the loop.
9128/// 3. The middle block.
9129static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9130 VectorizationFactor &VF, Loop *L,
9132 VPCostContext &CostCtx, VPlan &Plan,
9134 std::optional<unsigned> VScale) {
9135 InstructionCost TotalCost = Checks.getCost();
9136 if (!TotalCost.isValid())
9137 return false;
9138
9139 // Add on the cost of any work required in the vector early exit block, if
9140 // one exists.
9141 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9142
9143 TotalCost += Plan.getMiddleBlock()->cost(VF.Width, CostCtx);
9144
9145 // When interleaving only scalar and vector cost will be equal, which in turn
9146 // would lead to a divide by 0. Fall back to hard threshold.
9147 if (VF.Width.isScalar()) {
9148 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9149 if (TotalCost > VectorizeMemoryCheckThreshold) {
9150 LLVM_DEBUG(
9151 dbgs()
9152 << "LV: Interleaving only is not profitable due to runtime checks\n");
9153 return false;
9154 }
9155 return true;
9156 }
9157
9158 // The scalar cost should only be 0 when vectorizing with a user specified
9159 // VF/IC. In those cases, runtime checks should always be generated.
9160 uint64_t ScalarC = VF.ScalarCost.getValue();
9161 if (ScalarC == 0)
9162 return true;
9163
9164 // First, compute the minimum iteration count required so that the vector
9165 // loop outperforms the scalar loop.
9166 // The total cost of the scalar loop is
9167 // ScalarC * TC
9168 // where
9169 // * TC is the actual trip count of the loop.
9170 // * ScalarC is the cost of a single scalar iteration.
9171 //
9172 // The total cost of the vector loop is
9173 // RtC + VecC * (TC / VF) + EpiC
9174 // where
9175 // * RtC is the sum of the costs cost of
9176 // - the generated runtime checks
9177 // - performing any additional work in the vector.early.exit block for
9178 // loops with uncountable early exits.
9179 // - the middle block, if ExpectedTC <= VF.Width.
9180 // * VecC is the cost of a single vector iteration.
9181 // * TC is the actual trip count of the loop
9182 // * VF is the vectorization factor
9183 // * EpiCost is the cost of the generated epilogue, including the cost
9184 // of the remaining scalar operations.
9185 //
9186 // Vectorization is profitable once the total vector cost is less than the
9187 // total scalar cost:
9188 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9189 //
9190 // Now we can compute the minimum required trip count TC as
9191 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9192 //
9193 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9194 // the computations are performed on doubles, not integers and the result
9195 // is rounded up, hence we get an upper estimate of the TC.
9196 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9197 uint64_t RtC = TotalCost.getValue();
9198 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9199 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9200
9201 // Second, compute a minimum iteration count so that the cost of the
9202 // runtime checks is only a fraction of the total scalar loop cost. This
9203 // adds a loop-dependent bound on the overhead incurred if the runtime
9204 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9205 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9206 // cost, compute
9207 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9208 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9209
9210 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9211 // epilogue is allowed, choose the next closest multiple of VF. This should
9212 // partly compensate for ignoring the epilogue cost.
9213 uint64_t MinTC = std::max(MinTC1, MinTC2);
9214 if (SEL == CM_ScalarEpilogueAllowed)
9215 MinTC = alignTo(MinTC, IntVF);
9217
9218 LLVM_DEBUG(
9219 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9220 << VF.MinProfitableTripCount << "\n");
9221
9222 // Skip vectorization if the expected trip count is less than the minimum
9223 // required trip count.
9224 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9225 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9226 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9227 "trip count < minimum profitable VF ("
9228 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9229 << ")\n");
9230
9231 return false;
9232 }
9233 }
9234 return true;
9235}
9236
9238 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9240 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9242
9243/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9244/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9245/// don't have a corresponding wide induction in \p EpiPlan.
9246static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9247 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9248 // will need their resume-values computed in the main vector loop. Others
9249 // can be removed from the main VPlan.
9250 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9251 for (VPRecipeBase &R :
9254 continue;
9255 EpiWidenedPhis.insert(
9256 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9257 }
9258 for (VPRecipeBase &R :
9259 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9260 auto *VPIRInst = cast<VPIRPhi>(&R);
9261 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9262 continue;
9263 // There is no corresponding wide induction in the epilogue plan that would
9264 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9265 // together with the corresponding ResumePhi. The resume values for the
9266 // scalar loop will be created during execution of EpiPlan.
9267 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9268 VPIRInst->eraseFromParent();
9269 ResumePhi->eraseFromParent();
9270 }
9272
9273 using namespace VPlanPatternMatch;
9274 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9275 // introduce multiple uses of undef/poison. If the reduction start value may
9276 // be undef or poison it needs to be frozen and the frozen start has to be
9277 // used when computing the reduction result. We also need to use the frozen
9278 // value in the resume phi generated by the main vector loop, as this is also
9279 // used to compute the reduction result after the epilogue vector loop.
9280 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9281 bool UpdateResumePhis) {
9282 VPBuilder Builder(Plan.getEntry());
9283 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9284 auto *VPI = dyn_cast<VPInstruction>(&R);
9285 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9286 continue;
9287 VPValue *OrigStart = VPI->getOperand(1);
9289 continue;
9290 VPInstruction *Freeze =
9291 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9292 VPI->setOperand(1, Freeze);
9293 if (UpdateResumePhis)
9294 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9295 return Freeze != &U && isa<VPPhi>(&U);
9296 });
9297 }
9298 };
9299 AddFreezeForFindLastIVReductions(MainPlan, true);
9300 AddFreezeForFindLastIVReductions(EpiPlan, false);
9301
9302 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9303 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9304 // If there is a suitable resume value for the canonical induction in the
9305 // scalar (which will become vector) epilogue loop, use it and move it to the
9306 // beginning of the scalar preheader. Otherwise create it below.
9307 auto ResumePhiIter =
9308 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9309 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9310 m_ZeroInt()));
9311 });
9312 VPPhi *ResumePhi = nullptr;
9313 if (ResumePhiIter == MainScalarPH->phis().end()) {
9314 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9315 ResumePhi = ScalarPHBuilder.createScalarPhi(
9316 {VectorTC,
9318 {}, "vec.epilog.resume.val");
9319 } else {
9320 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9321 if (MainScalarPH->begin() == MainScalarPH->end())
9322 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9323 else if (&*MainScalarPH->begin() != ResumePhi)
9324 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9325 }
9326 // Add a user to to make sure the resume phi won't get removed.
9327 VPBuilder(MainScalarPH)
9329}
9330
9331/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9332/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9333/// reductions require creating new instructions to compute the resume values.
9334/// They are collected in a vector and returned. They must be moved to the
9335/// preheader of the vector epilogue loop, after created by the execution of \p
9336/// Plan.
9338 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9340 ScalarEvolution &SE) {
9341 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9342 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9343 Header->setName("vec.epilog.vector.body");
9344
9345 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9346 // When vectorizing the epilogue loop, the canonical induction needs to be
9347 // adjusted by the value after the main vector loop. Find the resume value
9348 // created during execution of the main VPlan. It must be the first phi in the
9349 // loop preheader. Use the value to increment the canonical IV, and update all
9350 // users in the loop region to use the adjusted value.
9351 // FIXME: Improve modeling for canonical IV start values in the epilogue
9352 // loop.
9353 using namespace llvm::PatternMatch;
9354 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9355 for (Value *Inc : EPResumeVal->incoming_values()) {
9356 if (match(Inc, m_SpecificInt(0)))
9357 continue;
9358 assert(!EPI.VectorTripCount &&
9359 "Must only have a single non-zero incoming value");
9360 EPI.VectorTripCount = Inc;
9361 }
9362 // If we didn't find a non-zero vector trip count, all incoming values
9363 // must be zero, which also means the vector trip count is zero. Pick the
9364 // first zero as vector trip count.
9365 // TODO: We should not choose VF * UF so the main vector loop is known to
9366 // be dead.
9367 if (!EPI.VectorTripCount) {
9368 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9369 all_of(EPResumeVal->incoming_values(),
9370 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9371 "all incoming values must be 0");
9372 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9373 }
9374 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9375 assert(all_of(IV->users(),
9376 [](const VPUser *U) {
9377 return isa<VPScalarIVStepsRecipe>(U) ||
9378 isa<VPDerivedIVRecipe>(U) ||
9379 cast<VPRecipeBase>(U)->isScalarCast() ||
9380 cast<VPInstruction>(U)->getOpcode() ==
9381 Instruction::Add;
9382 }) &&
9383 "the canonical IV should only be used by its increment or "
9384 "ScalarIVSteps when resetting the start value");
9385 VPBuilder Builder(Header, Header->getFirstNonPhi());
9386 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9387 IV->replaceAllUsesWith(Add);
9388 Add->setOperand(0, IV);
9389
9391 SmallVector<Instruction *> InstsToMove;
9392 // Ensure that the start values for all header phi recipes are updated before
9393 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9394 // handled above.
9395 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9396 Value *ResumeV = nullptr;
9397 // TODO: Move setting of resume values to prepareToExecute.
9398 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9399 // Find the reduction result by searching users of the phi or its backedge
9400 // value.
9401 auto IsReductionResult = [](VPRecipeBase *R) {
9402 auto *VPI = dyn_cast<VPInstruction>(R);
9403 return VPI &&
9407 };
9408 auto *RdxResult = cast<VPInstruction>(
9409 findRecipe(ReductionPhi->getBackedgeValue(), IsReductionResult));
9410 assert(
9411 (is_contained(RdxResult->operands(),
9412 ReductionPhi->getBackedgeValue()) ||
9413 (isa<VPWidenCastRecipe>(ReductionPhi->getBackedgeValue()) &&
9414 is_contained(RdxResult->operands(), ReductionPhi->getBackedgeValue()
9415 ->getDefiningRecipe()
9416 ->getOperand(0))) ||
9417 RdxResult->getOpcode() == VPInstruction::ComputeFindIVResult) &&
9418 "expected to find reduction result via backedge");
9419
9420 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9421 ->getIncomingValueForBlock(L->getLoopPreheader());
9422 RecurKind RK = ReductionPhi->getRecurrenceKind();
9424 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9425 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9426 // start value; compare the final value from the main vector loop
9427 // to the start value.
9428 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9429 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9430 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9431 if (auto *I = dyn_cast<Instruction>(ResumeV))
9432 InstsToMove.push_back(I);
9434 Value *StartV = getStartValueFromReductionResult(RdxResult);
9435 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9437
9438 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9439 // an adjustment to the resume value. The resume value is adjusted to
9440 // the sentinel value when the final value from the main vector loop
9441 // equals the start value. This ensures correctness when the start value
9442 // might not be less than the minimum value of a monotonically
9443 // increasing induction variable.
9444 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9445 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9446 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9447 if (auto *I = dyn_cast<Instruction>(Cmp))
9448 InstsToMove.push_back(I);
9449 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9450 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9451 if (auto *I = dyn_cast<Instruction>(ResumeV))
9452 InstsToMove.push_back(I);
9453 } else {
9454 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9455 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9456 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9458 "unexpected start value");
9459 VPI->setOperand(0, StartVal);
9460 continue;
9461 }
9462 }
9463 } else {
9464 // Retrieve the induction resume values for wide inductions from
9465 // their original phi nodes in the scalar loop.
9466 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9467 // Hook up to the PHINode generated by a ResumePhi recipe of main
9468 // loop VPlan, which feeds the scalar loop.
9469 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9470 }
9471 assert(ResumeV && "Must have a resume value");
9472 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9473 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9474 }
9475
9476 // For some VPValues in the epilogue plan we must re-use the generated IR
9477 // values from the main plan. Replace them with live-in VPValues.
9478 // TODO: This is a workaround needed for epilogue vectorization and it
9479 // should be removed once induction resume value creation is done
9480 // directly in VPlan.
9481 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9482 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9483 // epilogue plan. This ensures all users use the same frozen value.
9484 auto *VPI = dyn_cast<VPInstruction>(&R);
9485 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9487 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9488 continue;
9489 }
9490
9491 // Re-use the trip count and steps expanded for the main loop, as
9492 // skeleton creation needs it as a value that dominates both the scalar
9493 // and vector epilogue loops
9494 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9495 if (!ExpandR)
9496 continue;
9497 VPValue *ExpandedVal =
9498 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9499 ExpandR->replaceAllUsesWith(ExpandedVal);
9500 if (Plan.getTripCount() == ExpandR)
9501 Plan.resetTripCount(ExpandedVal);
9502 ExpandR->eraseFromParent();
9503 }
9504
9505 auto VScale = CM.getVScaleForTuning();
9506 unsigned MainLoopStep =
9507 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9508 unsigned EpilogueLoopStep =
9509 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9511 Plan, EPI.TripCount, EPI.VectorTripCount,
9513 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9514
9515 return InstsToMove;
9516}
9517
9518// Generate bypass values from the additional bypass block. Note that when the
9519// vectorized epilogue is skipped due to iteration count check, then the
9520// resume value for the induction variable comes from the trip count of the
9521// main vector loop, passed as the second argument.
9523 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9524 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9525 Instruction *OldInduction) {
9526 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9527 // For the primary induction the additional bypass end value is known.
9528 // Otherwise it is computed.
9529 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9530 if (OrigPhi != OldInduction) {
9531 auto *BinOp = II.getInductionBinOp();
9532 // Fast-math-flags propagate from the original induction instruction.
9534 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9535
9536 // Compute the end value for the additional bypass.
9537 EndValueFromAdditionalBypass =
9538 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9539 II.getStartValue(), Step, II.getKind(), BinOp);
9540 EndValueFromAdditionalBypass->setName("ind.end");
9541 }
9542 return EndValueFromAdditionalBypass;
9543}
9544
9546 VPlan &BestEpiPlan,
9548 const SCEV2ValueTy &ExpandedSCEVs,
9549 Value *MainVectorTripCount) {
9550 // Fix reduction resume values from the additional bypass block.
9551 BasicBlock *PH = L->getLoopPreheader();
9552 for (auto *Pred : predecessors(PH)) {
9553 for (PHINode &Phi : PH->phis()) {
9554 if (Phi.getBasicBlockIndex(Pred) != -1)
9555 continue;
9556 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9557 }
9558 }
9559 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9560 if (ScalarPH->hasPredecessors()) {
9561 // If ScalarPH has predecessors, we may need to update its reduction
9562 // resume values.
9563 for (const auto &[R, IRPhi] :
9564 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9566 BypassBlock);
9567 }
9568 }
9569
9570 // Fix induction resume values from the additional bypass block.
9571 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9572 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9573 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9575 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9576 LVL.getPrimaryInduction());
9577 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9578 Inc->setIncomingValueForBlock(BypassBlock, V);
9579 }
9580}
9581
9582/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9583// loop, after both plans have executed, updating branches from the iteration
9584// and runtime checks of the main loop, as well as updating various phis. \p
9585// InstsToMove contains instructions that need to be moved to the preheader of
9586// the epilogue vector loop.
9588 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9590 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9591 ArrayRef<Instruction *> InstsToMove) {
9592 BasicBlock *VecEpilogueIterationCountCheck =
9593 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9594
9595 BasicBlock *VecEpiloguePreHeader =
9596 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9597 ->getSuccessor(1);
9598 // Adjust the control flow taking the state info from the main loop
9599 // vectorization into account.
9601 "expected this to be saved from the previous pass.");
9602 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9604 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9605
9607 VecEpilogueIterationCountCheck},
9609 VecEpiloguePreHeader}});
9610
9611 BasicBlock *ScalarPH =
9612 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9614 VecEpilogueIterationCountCheck, ScalarPH);
9615 DTU.applyUpdates(
9617 VecEpilogueIterationCountCheck},
9619
9620 // Adjust the terminators of runtime check blocks and phis using them.
9621 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9622 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9623 if (SCEVCheckBlock) {
9624 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9625 VecEpilogueIterationCountCheck, ScalarPH);
9626 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9627 VecEpilogueIterationCountCheck},
9628 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9629 }
9630 if (MemCheckBlock) {
9631 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9632 VecEpilogueIterationCountCheck, ScalarPH);
9633 DTU.applyUpdates(
9634 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9635 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9636 }
9637
9638 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9639 // or reductions which merge control-flow from the latch block and the
9640 // middle block. Update the incoming values here and move the Phi into the
9641 // preheader.
9642 SmallVector<PHINode *, 4> PhisInBlock(
9643 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9644
9645 for (PHINode *Phi : PhisInBlock) {
9646 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9647 Phi->replaceIncomingBlockWith(
9648 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9649 VecEpilogueIterationCountCheck);
9650
9651 // If the phi doesn't have an incoming value from the
9652 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9653 // incoming value and also those from other check blocks. This is needed
9654 // for reduction phis only.
9655 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9656 return EPI.EpilogueIterationCountCheck == IncB;
9657 }))
9658 continue;
9659 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9660 if (SCEVCheckBlock)
9661 Phi->removeIncomingValue(SCEVCheckBlock);
9662 if (MemCheckBlock)
9663 Phi->removeIncomingValue(MemCheckBlock);
9664 }
9665
9666 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9667 for (auto *I : InstsToMove)
9668 I->moveBefore(IP);
9669
9670 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9671 // after executing the main loop. We need to update the resume values of
9672 // inductions and reductions during epilogue vectorization.
9673 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9674 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9675}
9676
9678 assert((EnableVPlanNativePath || L->isInnermost()) &&
9679 "VPlan-native path is not enabled. Only process inner loops.");
9680
9681 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9682 << L->getHeader()->getParent()->getName() << "' from "
9683 << L->getLocStr() << "\n");
9684
9685 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9686
9687 LLVM_DEBUG(
9688 dbgs() << "LV: Loop hints:"
9689 << " force="
9691 ? "disabled"
9693 ? "enabled"
9694 : "?"))
9695 << " width=" << Hints.getWidth()
9696 << " interleave=" << Hints.getInterleave() << "\n");
9697
9698 // Function containing loop
9699 Function *F = L->getHeader()->getParent();
9700
9701 // Looking at the diagnostic output is the only way to determine if a loop
9702 // was vectorized (other than looking at the IR or machine code), so it
9703 // is important to generate an optimization remark for each loop. Most of
9704 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9705 // generated as OptimizationRemark and OptimizationRemarkMissed are
9706 // less verbose reporting vectorized loops and unvectorized loops that may
9707 // benefit from vectorization, respectively.
9708
9709 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9710 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9711 return false;
9712 }
9713
9714 PredicatedScalarEvolution PSE(*SE, *L);
9715
9716 // Query this against the original loop and save it here because the profile
9717 // of the original loop header may change as the transformation happens.
9718 bool OptForSize = llvm::shouldOptimizeForSize(
9719 L->getHeader(), PSI,
9720 PSI && PSI->hasProfileSummary() ? &GetBFI() : nullptr,
9722
9723 // Check if it is legal to vectorize the loop.
9724 LoopVectorizationRequirements Requirements;
9725 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9726 &Requirements, &Hints, DB, AC,
9727 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9729 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9730 Hints.emitRemarkWithHints();
9731 return false;
9732 }
9733
9735 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9736 "early exit is not enabled",
9737 "UncountableEarlyExitLoopsDisabled", ORE, L);
9738 return false;
9739 }
9740
9741 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9742 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9743 "faulting load is not supported",
9744 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9745 return false;
9746 }
9747
9748 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9749 // here. They may require CFG and instruction level transformations before
9750 // even evaluating whether vectorization is profitable. Since we cannot modify
9751 // the incoming IR, we need to build VPlan upfront in the vectorization
9752 // pipeline.
9753 if (!L->isInnermost())
9754 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9755 ORE, GetBFI, OptForSize, Hints,
9756 Requirements);
9757
9758 assert(L->isInnermost() && "Inner loop expected.");
9759
9760 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9761 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9762
9763 // If an override option has been passed in for interleaved accesses, use it.
9764 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9765 UseInterleaved = EnableInterleavedMemAccesses;
9766
9767 // Analyze interleaved memory accesses.
9768 if (UseInterleaved)
9770
9771 if (LVL.hasUncountableEarlyExit()) {
9772 BasicBlock *LoopLatch = L->getLoopLatch();
9773 if (IAI.requiresScalarEpilogue() ||
9775 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9776 reportVectorizationFailure("Auto-vectorization of early exit loops "
9777 "requiring a scalar epilogue is unsupported",
9778 "UncountableEarlyExitUnsupported", ORE, L);
9779 return false;
9780 }
9781 }
9782
9783 // Check the function attributes and profiles to find out if this function
9784 // should be optimized for size.
9786 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9787
9788 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9789 // count by optimizing for size, to minimize overheads.
9790 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9791 if (ExpectedTC && ExpectedTC->isFixed() &&
9792 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9793 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9794 << "This loop is worth vectorizing only if no scalar "
9795 << "iteration overheads are incurred.");
9797 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9798 else {
9799 LLVM_DEBUG(dbgs() << "\n");
9800 // Predicate tail-folded loops are efficient even when the loop
9801 // iteration count is low. However, setting the epilogue policy to
9802 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9803 // with runtime checks. It's more effective to let
9804 // `isOutsideLoopWorkProfitable` determine if vectorization is
9805 // beneficial for the loop.
9808 }
9809 }
9810
9811 // Check the function attributes to see if implicit floats or vectors are
9812 // allowed.
9813 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9815 "Can't vectorize when the NoImplicitFloat attribute is used",
9816 "loop not vectorized due to NoImplicitFloat attribute",
9817 "NoImplicitFloat", ORE, L);
9818 Hints.emitRemarkWithHints();
9819 return false;
9820 }
9821
9822 // Check if the target supports potentially unsafe FP vectorization.
9823 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9824 // for the target we're vectorizing for, to make sure none of the
9825 // additional fp-math flags can help.
9826 if (Hints.isPotentiallyUnsafe() &&
9827 TTI->isFPVectorizationPotentiallyUnsafe()) {
9829 "Potentially unsafe FP op prevents vectorization",
9830 "loop not vectorized due to unsafe FP support.",
9831 "UnsafeFP", ORE, L);
9832 Hints.emitRemarkWithHints();
9833 return false;
9834 }
9835
9836 bool AllowOrderedReductions;
9837 // If the flag is set, use that instead and override the TTI behaviour.
9838 if (ForceOrderedReductions.getNumOccurrences() > 0)
9839 AllowOrderedReductions = ForceOrderedReductions;
9840 else
9841 AllowOrderedReductions = TTI->enableOrderedReductions();
9842 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9843 ORE->emit([&]() {
9844 auto *ExactFPMathInst = Requirements.getExactFPInst();
9845 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9846 ExactFPMathInst->getDebugLoc(),
9847 ExactFPMathInst->getParent())
9848 << "loop not vectorized: cannot prove it is safe to reorder "
9849 "floating-point operations";
9850 });
9851 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9852 "reorder floating-point operations\n");
9853 Hints.emitRemarkWithHints();
9854 return false;
9855 }
9856
9857 // Use the cost model.
9858 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9859 GetBFI, F, &Hints, IAI, OptForSize);
9860 // Use the planner for vectorization.
9861 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9862 ORE);
9863
9864 // Get user vectorization factor and interleave count.
9865 ElementCount UserVF = Hints.getWidth();
9866 unsigned UserIC = Hints.getInterleave();
9867 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
9868 UserIC = 1;
9869
9870 // Plan how to best vectorize.
9871 LVP.plan(UserVF, UserIC);
9873 unsigned IC = 1;
9874
9875 if (ORE->allowExtraAnalysis(LV_NAME))
9877
9878 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9879 if (LVP.hasPlanWithVF(VF.Width)) {
9880 // Select the interleave count.
9881 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
9882
9883 unsigned SelectedIC = std::max(IC, UserIC);
9884 // Optimistically generate runtime checks if they are needed. Drop them if
9885 // they turn out to not be profitable.
9886 if (VF.Width.isVector() || SelectedIC > 1) {
9887 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC,
9888 *ORE);
9889
9890 // Bail out early if either the SCEV or memory runtime checks are known to
9891 // fail. In that case, the vector loop would never execute.
9892 using namespace llvm::PatternMatch;
9893 if (Checks.getSCEVChecks().first &&
9894 match(Checks.getSCEVChecks().first, m_One()))
9895 return false;
9896 if (Checks.getMemRuntimeChecks().first &&
9897 match(Checks.getMemRuntimeChecks().first, m_One()))
9898 return false;
9899 }
9900
9901 // Check if it is profitable to vectorize with runtime checks.
9902 bool ForceVectorization =
9904 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
9905 CM.CostKind, CM.PSE, L);
9906 if (!ForceVectorization &&
9907 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
9908 LVP.getPlanFor(VF.Width), SEL,
9909 CM.getVScaleForTuning())) {
9910 ORE->emit([&]() {
9912 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
9913 L->getHeader())
9914 << "loop not vectorized: cannot prove it is safe to reorder "
9915 "memory operations";
9916 });
9917 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
9918 Hints.emitRemarkWithHints();
9919 return false;
9920 }
9921 }
9922
9923 // Identify the diagnostic messages that should be produced.
9924 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9925 bool VectorizeLoop = true, InterleaveLoop = true;
9926 if (VF.Width.isScalar()) {
9927 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9928 VecDiagMsg = {
9929 "VectorizationNotBeneficial",
9930 "the cost-model indicates that vectorization is not beneficial"};
9931 VectorizeLoop = false;
9932 }
9933
9934 if (UserIC == 1 && Hints.getInterleave() > 1) {
9936 "UserIC should only be ignored due to unsafe dependencies");
9937 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
9938 IntDiagMsg = {"InterleavingUnsafe",
9939 "Ignoring user-specified interleave count due to possibly "
9940 "unsafe dependencies in the loop."};
9941 InterleaveLoop = false;
9942 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
9943 // Tell the user interleaving was avoided up-front, despite being explicitly
9944 // requested.
9945 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9946 "interleaving should be avoided up front\n");
9947 IntDiagMsg = {"InterleavingAvoided",
9948 "Ignoring UserIC, because interleaving was avoided up front"};
9949 InterleaveLoop = false;
9950 } else if (IC == 1 && UserIC <= 1) {
9951 // Tell the user interleaving is not beneficial.
9952 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9953 IntDiagMsg = {
9954 "InterleavingNotBeneficial",
9955 "the cost-model indicates that interleaving is not beneficial"};
9956 InterleaveLoop = false;
9957 if (UserIC == 1) {
9958 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9959 IntDiagMsg.second +=
9960 " and is explicitly disabled or interleave count is set to 1";
9961 }
9962 } else if (IC > 1 && UserIC == 1) {
9963 // Tell the user interleaving is beneficial, but it explicitly disabled.
9964 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
9965 "disabled.\n");
9966 IntDiagMsg = {"InterleavingBeneficialButDisabled",
9967 "the cost-model indicates that interleaving is beneficial "
9968 "but is explicitly disabled or interleave count is set to 1"};
9969 InterleaveLoop = false;
9970 }
9971
9972 // If there is a histogram in the loop, do not just interleave without
9973 // vectorizing. The order of operations will be incorrect without the
9974 // histogram intrinsics, which are only used for recipes with VF > 1.
9975 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
9976 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
9977 << "to histogram operations.\n");
9978 IntDiagMsg = {
9979 "HistogramPreventsScalarInterleaving",
9980 "Unable to interleave without vectorization due to constraints on "
9981 "the order of histogram operations"};
9982 InterleaveLoop = false;
9983 }
9984
9985 // Override IC if user provided an interleave count.
9986 IC = UserIC > 0 ? UserIC : IC;
9987
9988 // Emit diagnostic messages, if any.
9989 const char *VAPassName = Hints.vectorizeAnalysisPassName();
9990 if (!VectorizeLoop && !InterleaveLoop) {
9991 // Do not vectorize or interleaving the loop.
9992 ORE->emit([&]() {
9993 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9994 L->getStartLoc(), L->getHeader())
9995 << VecDiagMsg.second;
9996 });
9997 ORE->emit([&]() {
9998 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9999 L->getStartLoc(), L->getHeader())
10000 << IntDiagMsg.second;
10001 });
10002 return false;
10003 }
10004
10005 if (!VectorizeLoop && InterleaveLoop) {
10006 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10007 ORE->emit([&]() {
10008 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10009 L->getStartLoc(), L->getHeader())
10010 << VecDiagMsg.second;
10011 });
10012 } else if (VectorizeLoop && !InterleaveLoop) {
10013 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10014 << ") in " << L->getLocStr() << '\n');
10015 ORE->emit([&]() {
10016 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10017 L->getStartLoc(), L->getHeader())
10018 << IntDiagMsg.second;
10019 });
10020 } else if (VectorizeLoop && InterleaveLoop) {
10021 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10022 << ") in " << L->getLocStr() << '\n');
10023 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10024 }
10025
10026 // Report the vectorization decision.
10027 if (VF.Width.isScalar()) {
10028 using namespace ore;
10029 assert(IC > 1);
10030 ORE->emit([&]() {
10031 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10032 L->getHeader())
10033 << "interleaved loop (interleaved count: "
10034 << NV("InterleaveCount", IC) << ")";
10035 });
10036 } else {
10037 // Report the vectorization decision.
10038 reportVectorization(ORE, L, VF, IC);
10039 }
10040 if (ORE->allowExtraAnalysis(LV_NAME))
10042
10043 // If we decided that it is *legal* to interleave or vectorize the loop, then
10044 // do it.
10045
10046 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10047 // Consider vectorizing the epilogue too if it's profitable.
10048 VectorizationFactor EpilogueVF =
10050 if (EpilogueVF.Width.isVector()) {
10051 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10052
10053 // The first pass vectorizes the main loop and creates a scalar epilogue
10054 // to be vectorized by executing the plan (potentially with a different
10055 // factor) again shortly afterwards.
10056 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10057 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10058 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10059 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10060 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10061 BestEpiPlan);
10062 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10063 Checks, *BestMainPlan);
10064 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10065 *BestMainPlan, MainILV, DT, false);
10066 ++LoopsVectorized;
10067
10068 // Second pass vectorizes the epilogue and adjusts the control flow
10069 // edges from the first pass.
10070 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10071 Checks, BestEpiPlan);
10073 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10074 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10075 true);
10076 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10077 Checks, InstsToMove);
10078 ++LoopsEpilogueVectorized;
10079 } else {
10080 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10081 BestPlan);
10082 // TODO: Move to general VPlan pipeline once epilogue loops are also
10083 // supported.
10086 IC, PSE);
10087 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10089
10090 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10091 ++LoopsVectorized;
10092 }
10093
10094 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10095 "DT not preserved correctly");
10096 assert(!verifyFunction(*F, &dbgs()));
10097
10098 return true;
10099}
10100
10102
10103 // Don't attempt if
10104 // 1. the target claims to have no vector registers, and
10105 // 2. interleaving won't help ILP.
10106 //
10107 // The second condition is necessary because, even if the target has no
10108 // vector registers, loop vectorization may still enable scalar
10109 // interleaving.
10110 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10111 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10112 return LoopVectorizeResult(false, false);
10113
10114 bool Changed = false, CFGChanged = false;
10115
10116 // The vectorizer requires loops to be in simplified form.
10117 // Since simplification may add new inner loops, it has to run before the
10118 // legality and profitability checks. This means running the loop vectorizer
10119 // will simplify all loops, regardless of whether anything end up being
10120 // vectorized.
10121 for (const auto &L : *LI)
10122 Changed |= CFGChanged |=
10123 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10124
10125 // Build up a worklist of inner-loops to vectorize. This is necessary as
10126 // the act of vectorizing or partially unrolling a loop creates new loops
10127 // and can invalidate iterators across the loops.
10128 SmallVector<Loop *, 8> Worklist;
10129
10130 for (Loop *L : *LI)
10131 collectSupportedLoops(*L, LI, ORE, Worklist);
10132
10133 LoopsAnalyzed += Worklist.size();
10134
10135 // Now walk the identified inner loops.
10136 while (!Worklist.empty()) {
10137 Loop *L = Worklist.pop_back_val();
10138
10139 // For the inner loops we actually process, form LCSSA to simplify the
10140 // transform.
10141 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10142
10143 Changed |= CFGChanged |= processLoop(L);
10144
10145 if (Changed) {
10146 LAIs->clear();
10147
10148#ifndef NDEBUG
10149 if (VerifySCEV)
10150 SE->verify();
10151#endif
10152 }
10153 }
10154
10155 // Process each loop nest in the function.
10156 return LoopVectorizeResult(Changed, CFGChanged);
10157}
10158
10161 LI = &AM.getResult<LoopAnalysis>(F);
10162 // There are no loops in the function. Return before computing other
10163 // expensive analyses.
10164 if (LI->empty())
10165 return PreservedAnalyses::all();
10174 AA = &AM.getResult<AAManager>(F);
10175
10176 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10177 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10178 GetBFI = [&AM, &F]() -> BlockFrequencyInfo & {
10180 };
10181 LoopVectorizeResult Result = runImpl(F);
10182 if (!Result.MadeAnyChange)
10183 return PreservedAnalyses::all();
10185
10186 if (isAssignmentTrackingEnabled(*F.getParent())) {
10187 for (auto &BB : F)
10189 }
10190
10191 PA.preserve<LoopAnalysis>();
10195
10196 if (Result.MadeCFGChange) {
10197 // Making CFG changes likely means a loop got vectorized. Indicate that
10198 // extra simplification passes should be run.
10199 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10200 // be run if runtime checks have been added.
10203 } else {
10205 }
10206 return PA;
10207}
10208
10210 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10211 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10212 OS, MapClassName2PassName);
10213
10214 OS << '<';
10215 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10216 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10217 OS << '>';
10218}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getUnknown()
Definition DebugLoc.h:161
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:294
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2794
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1584
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1635
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1568
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1549
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1713
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
void insert_range(Range &&R)
Definition SetVector.h:176
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:262
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:89
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:98
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:293
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:25
Value * getOperand(unsigned i) const
Definition User.h:233
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3949
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3976
iterator end()
Definition VPlan.h:3986
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3984
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4037
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:775
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:228
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:635
bool empty() const
Definition VPlan.h:3995
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:198
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:173
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:178
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:221
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:242
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:173
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:199
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3535
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
Definition VPlan.h:3556
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:453
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:426
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPIRValue * getStartValue() const
Definition VPlan.h:3750
VPValue * getStepValue() const
Definition VPlan.h:3751
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2020
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2063
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2052
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1775
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4102
Class to record and manage LLVM IR flags.
Definition VPlan.h:608
Helper to manage IR metadata for recipes.
Definition VPlan.h:980
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1034
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1081
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1139
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1130
unsigned getOpcode() const
Definition VPlan.h:1191
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2673
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1372
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2469
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2463
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2766
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4137
const VPBlockBase * getEntry() const
Definition VPlan.h:4173
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4235
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2922
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:594
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:229
operand_range operands()
Definition VPlanValue.h:297
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:273
unsigned getNumOperands() const
Definition VPlanValue.h:267
operand_iterator op_begin()
Definition VPlanValue.h:293
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:268
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:45
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
Definition VPlan.cpp:133
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:119
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:72
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1385
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1389
user_range users()
Definition VPlanValue.h:126
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1879
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1570
A recipe for handling GEP instructions.
Definition VPlan.h:1816
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2166
A recipe for widened phis.
Definition VPlan.h:2302
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1522
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4267
bool hasVF(ElementCount VF) const
Definition VPlan.h:4464
VPBasicBlock * getEntry()
Definition VPlan.h:4356
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4446
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4414
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4471
bool hasUF(unsigned UF) const
Definition VPlan.h:4482
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4404
VPSymbolicValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4443
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4506
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1022
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4616
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1004
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4428
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4381
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4395
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:916
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4400
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4361
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1164
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:397
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:553
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:93
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2530
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2184
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1726
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1835
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Add
Sum of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:368
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
This reduction is unordered with the partial result scaled down by some factor.
Definition VPlan.h:2387
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static bool handleMultiUseReductions(VPlan &Plan)
Try to legalize reductions with multiple in-loop uses.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, PredicatedScalarEvolution &PSE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void createInLoopReductionRecipes(VPlan &Plan, const DenseMap< VPBasicBlock *, VPValue * > &BlockMaskCache, const DenseSet< BasicBlock * > &BlocksNeedingPredication, ElementCount MinVF)
Create VPReductionRecipes for in-loop reductions.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, PredicatedScalarEvolution &PSE)
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void expandBranchOnTwoConds(VPlan &Plan)
Expand BranchOnTwoConds instructions into explicit CFG with BranchOnCond instructions.
static void hoistPredicatedLoads(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Hoist predicated loads from the same address to the loop entry block, if they are guaranteed to execu...
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void createHeaderPhiRecipes(VPlan &Plan, PredicatedScalarEvolution &PSE, Loop &OrigLoop, const MapVector< PHINode *, InductionDescriptor > &Inductions, const MapVector< PHINode *, RecurrenceDescriptor > &Reductions, const SmallPtrSetImpl< const PHINode * > &FixedOrderRecurrences, const SmallPtrSetImpl< PHINode * > &InLoopReductions, bool AllowReordering)
Replace VPPhi recipes in Plan's header with corresponding VPHeaderPHIRecipe subclasses for inductions...
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void sinkPredicatedStores(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Sink predicated stores to the same address with complementary predicates (P and NOT P) to an uncondit...
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static void updateScalarResumePhis(VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Update the resume phis in the scalar preheader after creating wide recipes for first-order recurrence...
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks