LLVM  9.0.0svn
TargetTransformInfoImpl.h
Go to the documentation of this file.
1 //===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file provides helpers for the implementation of
10 /// a TargetTransformInfo-conforming class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
15 #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16 
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/Type.h"
26 
27 namespace llvm {
28 
29 /// Base class for use as a mix-in that aids implementing
30 /// a TargetTransformInfo-compatible class.
32 protected:
34 
35  const DataLayout &DL;
36 
37  explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
38 
39 public:
40  // Provide value semantics. MSVC requires that we spell all of these out.
42  : DL(Arg.DL) {}
44 
45  const DataLayout &getDataLayout() const { return DL; }
46 
47  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
48  switch (Opcode) {
49  default:
50  // By default, just classify everything as 'basic'.
51  return TTI::TCC_Basic;
52 
53  case Instruction::GetElementPtr:
54  llvm_unreachable("Use getGEPCost for GEP operations!");
55 
56  case Instruction::BitCast:
57  assert(OpTy && "Cast instructions must provide the operand type");
58  if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
59  // Identity and pointer-to-pointer casts are free.
60  return TTI::TCC_Free;
61 
62  // Otherwise, the default basic cost is used.
63  return TTI::TCC_Basic;
64 
65  case Instruction::FDiv:
66  case Instruction::FRem:
67  case Instruction::SDiv:
68  case Instruction::SRem:
69  case Instruction::UDiv:
70  case Instruction::URem:
71  return TTI::TCC_Expensive;
72 
73  case Instruction::IntToPtr: {
74  // An inttoptr cast is free so long as the input is a legal integer type
75  // which doesn't contain values outside the range of a pointer.
76  unsigned OpSize = OpTy->getScalarSizeInBits();
77  if (DL.isLegalInteger(OpSize) &&
78  OpSize <= DL.getPointerTypeSizeInBits(Ty))
79  return TTI::TCC_Free;
80 
81  // Otherwise it's not a no-op.
82  return TTI::TCC_Basic;
83  }
84  case Instruction::PtrToInt: {
85  // A ptrtoint cast is free so long as the result is large enough to store
86  // the pointer, and a legal integer type.
87  unsigned DestSize = Ty->getScalarSizeInBits();
88  if (DL.isLegalInteger(DestSize) &&
89  DestSize >= DL.getPointerTypeSizeInBits(OpTy))
90  return TTI::TCC_Free;
91 
92  // Otherwise it's not a no-op.
93  return TTI::TCC_Basic;
94  }
95  case Instruction::Trunc:
96  // trunc to a native type is free (assuming the target has compare and
97  // shift-right of the same width).
98  if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
99  return TTI::TCC_Free;
100 
101  return TTI::TCC_Basic;
102  }
103  }
104 
105  int getGEPCost(Type *PointeeType, const Value *Ptr,
106  ArrayRef<const Value *> Operands) {
107  // In the basic model, we just assume that all-constant GEPs will be folded
108  // into their uses via addressing modes.
109  for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
110  if (!isa<Constant>(Operands[Idx]))
111  return TTI::TCC_Basic;
112 
113  return TTI::TCC_Free;
114  }
115 
117  unsigned &JTSize) {
118  JTSize = 0;
119  return SI.getNumCases();
120  }
121 
122  int getExtCost(const Instruction *I, const Value *Src) {
123  return TTI::TCC_Basic;
124  }
125 
126  unsigned getCallCost(FunctionType *FTy, int NumArgs) {
127  assert(FTy && "FunctionType must be provided to this routine.");
128 
129  // The target-independent implementation just measures the size of the
130  // function by approximating that each argument will take on average one
131  // instruction to prepare.
132 
133  if (NumArgs < 0)
134  // Set the argument number to the number of explicit arguments in the
135  // function.
136  NumArgs = FTy->getNumParams();
137 
138  return TTI::TCC_Basic * (NumArgs + 1);
139  }
140 
141  unsigned getInliningThresholdMultiplier() { return 1; }
142 
143  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
144  ArrayRef<Type *> ParamTys) {
145  switch (IID) {
146  default:
147  // Intrinsics rarely (if ever) have normal argument setup constraints.
148  // Model them as having a basic instruction cost.
149  // FIXME: This is wrong for libc intrinsics.
150  return TTI::TCC_Basic;
151 
152  case Intrinsic::annotation:
153  case Intrinsic::assume:
154  case Intrinsic::sideeffect:
155  case Intrinsic::dbg_declare:
156  case Intrinsic::dbg_value:
157  case Intrinsic::dbg_label:
158  case Intrinsic::invariant_start:
159  case Intrinsic::invariant_end:
160  case Intrinsic::launder_invariant_group:
161  case Intrinsic::strip_invariant_group:
162  case Intrinsic::is_constant:
163  case Intrinsic::lifetime_start:
164  case Intrinsic::lifetime_end:
165  case Intrinsic::objectsize:
166  case Intrinsic::ptr_annotation:
167  case Intrinsic::var_annotation:
168  case Intrinsic::experimental_gc_result:
169  case Intrinsic::experimental_gc_relocate:
170  case Intrinsic::coro_alloc:
171  case Intrinsic::coro_begin:
172  case Intrinsic::coro_free:
173  case Intrinsic::coro_end:
174  case Intrinsic::coro_frame:
175  case Intrinsic::coro_size:
176  case Intrinsic::coro_suspend:
177  case Intrinsic::coro_param:
178  case Intrinsic::coro_subfn_addr:
179  // These intrinsics don't actually represent code after lowering.
180  return TTI::TCC_Free;
181  }
182  }
183 
184  bool hasBranchDivergence() { return false; }
185 
186  bool isSourceOfDivergence(const Value *V) { return false; }
187 
188  bool isAlwaysUniform(const Value *V) { return false; }
189 
190  unsigned getFlatAddressSpace () {
191  return -1;
192  }
193 
194  bool isLoweredToCall(const Function *F) {
195  assert(F && "A concrete function must be provided to this routine.");
196 
197  // FIXME: These should almost certainly not be handled here, and instead
198  // handled with the help of TLI or the target itself. This was largely
199  // ported from existing analysis heuristics here so that such refactorings
200  // can take place in the future.
201 
202  if (F->isIntrinsic())
203  return false;
204 
205  if (F->hasLocalLinkage() || !F->hasName())
206  return true;
207 
208  StringRef Name = F->getName();
209 
210  // These will all likely lower to a single selection DAG node.
211  if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
212  Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
213  Name == "fmin" || Name == "fminf" || Name == "fminl" ||
214  Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
215  Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
216  Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
217  return false;
218 
219  // These are all likely to be optimized into something smaller.
220  if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
221  Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
222  Name == "floorf" || Name == "ceil" || Name == "round" ||
223  Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
224  Name == "llabs")
225  return false;
226 
227  return true;
228  }
229 
232 
233  bool isLegalAddImmediate(int64_t Imm) { return false; }
234 
235  bool isLegalICmpImmediate(int64_t Imm) { return false; }
236 
237  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
238  bool HasBaseReg, int64_t Scale,
239  unsigned AddrSpace, Instruction *I = nullptr) {
240  // Guess that only reg and reg+reg addressing is allowed. This heuristic is
241  // taken from the implementation of LSR.
242  return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
243  }
244 
246  return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
247  C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
248  std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
249  C2.ScaleCost, C2.ImmCost, C2.SetupCost);
250  }
251 
252  bool canMacroFuseCmp() { return false; }
253 
254  bool shouldFavorPostInc() const { return false; }
255 
256  bool shouldFavorBackedgeIndex(const Loop *L) const { return false; }
257 
258  bool isLegalMaskedStore(Type *DataType) { return false; }
259 
260  bool isLegalMaskedLoad(Type *DataType) { return false; }
261 
262  bool isLegalMaskedScatter(Type *DataType) { return false; }
263 
264  bool isLegalMaskedGather(Type *DataType) { return false; }
265 
266  bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
267 
268  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
269 
270  bool prefersVectorizedAddressing() { return true; }
271 
272  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
273  bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
274  // Guess that all legal addressing mode are free.
275  if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
276  Scale, AddrSpace))
277  return 0;
278  return -1;
279  }
280 
281  bool LSRWithInstrQueries() { return false; }
282 
283  bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
284 
285  bool isProfitableToHoist(Instruction *I) { return true; }
286 
287  bool useAA() { return false; }
288 
289  bool isTypeLegal(Type *Ty) { return false; }
290 
291  unsigned getJumpBufAlignment() { return 0; }
292 
293  unsigned getJumpBufSize() { return 0; }
294 
295  bool shouldBuildLookupTables() { return true; }
297 
298  bool useColdCCForColdCall(Function &F) { return false; }
299 
300  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
301  return 0;
302  }
303 
305  unsigned VF) { return 0; }
306 
308 
309  bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
310 
312  bool IsZeroCmp) const {
313  return nullptr;
314  }
315 
316  bool enableInterleavedAccessVectorization() { return false; }
317 
319 
320  bool isFPVectorizationPotentiallyUnsafe() { return false; }
321 
323  unsigned BitWidth,
324  unsigned AddressSpace,
325  unsigned Alignment,
326  bool *Fast) { return false; }
327 
328  TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
329  return TTI::PSK_Software;
330  }
331 
332  bool haveFastSqrt(Type *Ty) { return false; }
333 
334  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
335 
337 
338  int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
339  Type *Ty) {
340  return 0;
341  }
342 
343  unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
344 
345  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
346  Type *Ty) {
347  return TTI::TCC_Free;
348  }
349 
350  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
351  Type *Ty) {
352  return TTI::TCC_Free;
353  }
354 
355  unsigned getNumberOfRegisters(bool Vector) { return 8; }
356 
357  unsigned getRegisterBitWidth(bool Vector) const { return 32; }
358 
359  unsigned getMinVectorRegisterBitWidth() { return 128; }
360 
361  bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
362 
363  unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }
364 
365  bool
367  bool &AllowPromotionWithoutCommonHeader) {
368  AllowPromotionWithoutCommonHeader = false;
369  return false;
370  }
371 
372  unsigned getCacheLineSize() { return 0; }
373 
375  switch (Level) {
379  return llvm::Optional<unsigned>();
380  }
381 
382  llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
383  }
384 
387  switch (Level) {
391  return llvm::Optional<unsigned>();
392  }
393 
394  llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
395  }
396 
397  unsigned getPrefetchDistance() { return 0; }
398 
399  unsigned getMinPrefetchStride() { return 1; }
400 
401  unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
402 
403  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
404 
405  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
406  TTI::OperandValueKind Opd1Info,
407  TTI::OperandValueKind Opd2Info,
408  TTI::OperandValueProperties Opd1PropInfo,
409  TTI::OperandValueProperties Opd2PropInfo,
411  return 1;
412  }
413 
415  Type *SubTp) {
416  return 1;
417  }
418 
419  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
420  const Instruction *I) { return 1; }
421 
422  unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
423  VectorType *VecTy, unsigned Index) {
424  return 1;
425  }
426 
427  unsigned getCFInstrCost(unsigned Opcode) { return 1; }
428 
429  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
430  const Instruction *I) {
431  return 1;
432  }
433 
434  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
435  return 1;
436  }
437 
438  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
439  unsigned AddressSpace, const Instruction *I) {
440  return 1;
441  }
442 
443  unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
444  unsigned AddressSpace) {
445  return 1;
446  }
447 
448  unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
449  bool VariableMask,
450  unsigned Alignment) {
451  return 1;
452  }
453 
454  unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
455  unsigned Factor,
456  ArrayRef<unsigned> Indices,
457  unsigned Alignment, unsigned AddressSpace,
458  bool UseMaskForCond = false,
459  bool UseMaskForGaps = false) {
460  return 1;
461  }
462 
465  unsigned ScalarizationCostPassed) {
466  return 1;
467  }
469  ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
470  return 1;
471  }
472 
473  unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
474  return 1;
475  }
476 
477  unsigned getNumberOfParts(Type *Tp) { return 0; }
478 
480  const SCEV *) {
481  return 0;
482  }
483 
484  unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
485 
486  unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
487 
488  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
489 
491  return false;
492  }
493 
495  // Note for overrides: You must ensure for all element unordered-atomic
496  // memory intrinsics that all power-of-2 element sizes up to, and
497  // including, the return value of this method have a corresponding
498  // runtime lib call. These runtime lib call definitions can be found
499  // in RuntimeLibcalls.h
500  return 0;
501  }
502 
504  Type *ExpectedType) {
505  return nullptr;
506  }
507 
509  unsigned SrcAlign, unsigned DestAlign) const {
510  return Type::getInt8Ty(Context);
511  }
512 
515  unsigned RemainingBytes,
516  unsigned SrcAlign,
517  unsigned DestAlign) const {
518  for (unsigned i = 0; i != RemainingBytes; ++i)
519  OpsOut.push_back(Type::getInt8Ty(Context));
520  }
521 
522  bool areInlineCompatible(const Function *Caller,
523  const Function *Callee) const {
524  return (Caller->getFnAttribute("target-cpu") ==
525  Callee->getFnAttribute("target-cpu")) &&
526  (Caller->getFnAttribute("target-features") ==
527  Callee->getFnAttribute("target-features"));
528  }
529 
530  bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
532  return (Caller->getFnAttribute("target-cpu") ==
533  Callee->getFnAttribute("target-cpu")) &&
534  (Caller->getFnAttribute("target-features") ==
535  Callee->getFnAttribute("target-features"));
536  }
537 
539  const DataLayout &DL) const {
540  return false;
541  }
542 
544  const DataLayout &DL) const {
545  return false;
546  }
547 
548  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
549 
550  bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
551 
552  bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
553 
554  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
555  unsigned Alignment,
556  unsigned AddrSpace) const {
557  return true;
558  }
559 
560  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
561  unsigned Alignment,
562  unsigned AddrSpace) const {
563  return true;
564  }
565 
566  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
567  unsigned ChainSizeInBytes,
568  VectorType *VecTy) const {
569  return VF;
570  }
571 
572  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
573  unsigned ChainSizeInBytes,
574  VectorType *VecTy) const {
575  return VF;
576  }
577 
578  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
579  TTI::ReductionFlags Flags) const {
580  return false;
581  }
582 
583  bool shouldExpandReduction(const IntrinsicInst *II) const {
584  return true;
585  }
586 
587 protected:
588  // Obtain the minimum required size to hold the value (without the sign)
589  // In case of a vector it returns the min required size for one element.
590  unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
591  if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
592  const auto* VectorValue = cast<Constant>(Val);
593 
594  // In case of a vector need to pick the max between the min
595  // required size for each element
596  auto *VT = cast<VectorType>(Val->getType());
597 
598  // Assume unsigned elements
599  isSigned = false;
600 
601  // The max required size is the total vector width divided by num
602  // of elements in the vector
603  unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
604 
605  unsigned MinRequiredSize = 0;
606  for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
607  if (auto* IntElement =
608  dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
609  bool signedElement = IntElement->getValue().isNegative();
610  // Get the element min required size.
611  unsigned ElementMinRequiredSize =
612  IntElement->getValue().getMinSignedBits() - 1;
613  // In case one element is signed then all the vector is signed.
614  isSigned |= signedElement;
615  // Save the max required bit size between all the elements.
616  MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
617  }
618  else {
619  // not an int constant element
620  return MaxRequiredSize;
621  }
622  }
623  return MinRequiredSize;
624  }
625 
626  if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
627  isSigned = CI->getValue().isNegative();
628  return CI->getValue().getMinSignedBits() - 1;
629  }
630 
631  if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
632  isSigned = true;
633  return Cast->getSrcTy()->getScalarSizeInBits() - 1;
634  }
635 
636  if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
637  isSigned = false;
638  return Cast->getSrcTy()->getScalarSizeInBits();
639  }
640 
641  isSigned = false;
642  return Val->getType()->getScalarSizeInBits();
643  }
644 
645  bool isStridedAccess(const SCEV *Ptr) {
646  return Ptr && isa<SCEVAddRecExpr>(Ptr);
647  }
648 
650  const SCEV *Ptr) {
651  if (!isStridedAccess(Ptr))
652  return nullptr;
653  const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
654  return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
655  }
656 
658  int64_t MergeDistance) {
659  const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
660  if (!Step)
661  return false;
662  APInt StrideVal = Step->getAPInt();
663  if (StrideVal.getBitWidth() > 64)
664  return false;
665  // FIXME: Need to take absolute value for negative stride case.
666  return StrideVal.getSExtValue() < MergeDistance;
667  }
668 };
669 
670 /// CRTP base class for use as a mix-in that aids implementing
671 /// a TargetTransformInfo-compatible class.
672 template <typename T>
674 private:
676 
677 protected:
678  explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
679 
680 public:
681  using BaseT::getCallCost;
682 
683  unsigned getCallCost(const Function *F, int NumArgs) {
684  assert(F && "A concrete function must be provided to this routine.");
685 
686  if (NumArgs < 0)
687  // Set the argument number to the number of explicit arguments in the
688  // function.
689  NumArgs = F->arg_size();
690 
691  if (Intrinsic::ID IID = F->getIntrinsicID()) {
692  FunctionType *FTy = F->getFunctionType();
693  SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
694  return static_cast<T *>(this)
695  ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
696  }
697 
698  if (!static_cast<T *>(this)->isLoweredToCall(F))
699  return TTI::TCC_Basic; // Give a basic cost if it will be lowered
700  // directly.
701 
702  return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
703  }
704 
706  // Simply delegate to generic handling of the call.
707  // FIXME: We should use instsimplify or something else to catch calls which
708  // will constant fold with these arguments.
709  return static_cast<T *>(this)->getCallCost(F, Arguments.size());
710  }
711 
712  using BaseT::getGEPCost;
713 
714  int getGEPCost(Type *PointeeType, const Value *Ptr,
715  ArrayRef<const Value *> Operands) {
716  const GlobalValue *BaseGV = nullptr;
717  if (Ptr != nullptr) {
718  // TODO: will remove this when pointers have an opaque type.
720  PointeeType &&
721  "explicit pointee type doesn't match operand's pointee type");
722  BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
723  }
724  bool HasBaseReg = (BaseGV == nullptr);
725 
726  auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
727  APInt BaseOffset(PtrSizeBits, 0);
728  int64_t Scale = 0;
729 
730  auto GTI = gep_type_begin(PointeeType, Operands);
731  Type *TargetType = nullptr;
732 
733  // Handle the case where the GEP instruction has a single operand,
734  // the basis, therefore TargetType is a nullptr.
735  if (Operands.empty())
736  return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
737 
738  for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
739  TargetType = GTI.getIndexedType();
740  // We assume that the cost of Scalar GEP with constant index and the
741  // cost of Vector GEP with splat constant index are the same.
742  const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
743  if (!ConstIdx)
744  if (auto Splat = getSplatValue(*I))
745  ConstIdx = dyn_cast<ConstantInt>(Splat);
746  if (StructType *STy = GTI.getStructTypeOrNull()) {
747  // For structures the index is always splat or scalar constant
748  assert(ConstIdx && "Unexpected GEP index");
749  uint64_t Field = ConstIdx->getZExtValue();
750  BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
751  } else {
752  int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
753  if (ConstIdx) {
754  BaseOffset +=
755  ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
756  } else {
757  // Needs scale register.
758  if (Scale != 0)
759  // No addressing mode takes two scale registers.
760  return TTI::TCC_Basic;
761  Scale = ElementSize;
762  }
763  }
764  }
765 
766  // Assumes the address space is 0 when Ptr is nullptr.
767  unsigned AS =
768  (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
769 
770  if (static_cast<T *>(this)->isLegalAddressingMode(
771  TargetType, const_cast<GlobalValue *>(BaseGV),
772  BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
773  return TTI::TCC_Free;
774  return TTI::TCC_Basic;
775  }
776 
777  using BaseT::getIntrinsicCost;
778 
779  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
781  // Delegate to the generic intrinsic handling code. This mostly provides an
782  // opportunity for targets to (for example) special case the cost of
783  // certain intrinsics based on constants used as arguments.
784  SmallVector<Type *, 8> ParamTys;
785  ParamTys.reserve(Arguments.size());
786  for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
787  ParamTys.push_back(Arguments[Idx]->getType());
788  return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
789  }
790 
791  unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
792  if (isa<PHINode>(U))
793  return TTI::TCC_Free; // Model all PHI nodes as free.
794 
795  // Static alloca doesn't generate target instructions.
796  if (auto *A = dyn_cast<AllocaInst>(U))
797  if (A->isStaticAlloca())
798  return TTI::TCC_Free;
799 
800  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
801  return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
802  GEP->getPointerOperand(),
803  Operands.drop_front());
804  }
805 
806  if (auto CS = ImmutableCallSite(U)) {
807  const Function *F = CS.getCalledFunction();
808  if (!F) {
809  // Just use the called value type.
810  Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
811  return static_cast<T *>(this)
812  ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
813  }
814 
815  SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
816  return static_cast<T *>(this)->getCallCost(F, Arguments);
817  }
818 
819  if (const CastInst *CI = dyn_cast<CastInst>(U)) {
820  // Result of a cmp instruction is often extended (to be used by other
821  // cmp instructions, logical or return instructions). These are usually
822  // nop on most sane targets.
823  if (isa<CmpInst>(CI->getOperand(0)))
824  return TTI::TCC_Free;
825  if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
826  return static_cast<T *>(this)->getExtCost(CI, Operands.back());
827  }
828 
829  return static_cast<T *>(this)->getOperationCost(
830  Operator::getOpcode(U), U->getType(),
831  U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
832  }
833 
836  I->value_op_end());
837  if (getUserCost(I, Operands) == TTI::TCC_Free)
838  return 0;
839 
840  if (isa<LoadInst>(I))
841  return 4;
842 
843  Type *DstTy = I->getType();
844 
845  // Usually an intrinsic is a simple instruction.
846  // A real function call is much slower.
847  if (auto *CI = dyn_cast<CallInst>(I)) {
848  const Function *F = CI->getCalledFunction();
849  if (!F || static_cast<T *>(this)->isLoweredToCall(F))
850  return 40;
851  // Some intrinsics return a value and a flag, we use the value type
852  // to decide its latency.
853  if (StructType* StructTy = dyn_cast<StructType>(DstTy))
854  DstTy = StructTy->getElementType(0);
855  // Fall through to simple instructions.
856  }
857 
858  if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
859  DstTy = VectorTy->getElementType();
860  if (DstTy->isFloatingPointTy())
861  return 3;
862 
863  return 1;
864  }
865 };
866 }
867 
868 #endif
uint64_t CallInst * C
unsigned getNumCases() const
Return the number of &#39;cases&#39; in this switch instruction, excluding the default case.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:198
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class...
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:110
bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee, SmallPtrSetImpl< Argument *> &Args) const
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance)
bool hasLocalLinkage() const
Definition: GlobalValue.h:435
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef< Type *> Tys, FastMathFlags FMF, unsigned ScalarizationCostPassed)
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
LLVMContext & Context
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:157
SI Whole Quad Mode
unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, unsigned Alignment)
This class represents lattice values for constants.
Definition: AllocatorList.h:23
unsigned minRequiredElementSize(const Value *Val, bool &isSigned)
void getUnrollingPreferences(Loop *, ScalarEvolution &, TTI::UnrollingPreferences &)
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index)
iterator begin() const
Definition: ArrayRef.h:136
amdgpu Simplify well known AMD library false FunctionCallee Value const Twine & Name
unsigned getCostOfKeepingLiveOverCall(ArrayRef< Type *> Tys)
const Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:587
value_op_iterator value_op_begin()
Definition: User.h:255
The main scalar evolution driver.
MemIndexedMode
The type of load/store indexing.
unsigned getCallCost(const Function *F, int NumArgs)
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef< const Value *> Args)
unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy)
value_op_iterator value_op_end()
Definition: User.h:258
F(f)
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:534
param_iterator param_end() const
Definition: DerivedTypes.h:128
An instruction for reading from memory.
Definition: Instructions.h:167
Hexagon Common GEP
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace, const Instruction *I)
void reserve(size_type N)
Definition: SmallVector.h:368
unsigned getIntImmCost(const APInt &Imm, Type *Ty)
int getExtCost(const Instruction *I, const Value *Src)
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1508
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:343
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const
bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const
CRTP base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class...
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info)
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
Type * getPointerElementType() const
Definition: Type.h:375
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:353
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:645
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:161
Class to represent struct types.
Definition: DerivedTypes.h:232
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:41
unsigned getArithmeticReductionCost(unsigned, Type *, bool)
const APInt & getAPInt() const
bool isLegalToVectorizeLoad(LoadInst *LI) const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAlign, unsigned DestAlign) const
bool isTruncateFree(Type *Ty1, Type *Ty2)
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:42
bool enableAggressiveInterleaving(bool LoopHasReductions)
Class to represent function types.
Definition: DerivedTypes.h:102
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1574
llvm::Optional< unsigned > getCacheSize(TargetTransformInfo::CacheLevel Level)
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
This node represents a polynomial recurrence on the trip count of the specified loop.
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type *> &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const
PopcntSupportKind
Flags indicating the kind of support for population count.
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:883
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:137
An instruction for storing to memory.
Definition: Instructions.h:320
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index)
Value * getOperand(unsigned i) const
Definition: User.h:169
Analysis containing CSE Info
Definition: CSEInfo.cpp:20
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:303
bool isLegalToVectorizeStore(StoreInst *SI) const
unsigned getMinimumVF(unsigned ElemWidth) const
If not nullptr, enable inline expansion of memcmp.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:148
unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index, Type *SubTp)
unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type *> Tys)
bool hasName() const
Definition: Value.h:250
Flags describing the kind of vector reduction.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I)
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef< const Value *> Arguments)
TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
bool shouldFavorBackedgeIndex(const Loop *L) const
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:148
This is an important base class in LLVM.
Definition: Constant.h:41
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:223
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:138
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty)
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace)
Expected to fold away in lowering.
AMDGPU Lower Kernel Arguments
unsigned getUserCost(const User *U, ArrayRef< const Value *> Operands)
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr)
param_iterator param_begin() const
Definition: DerivedTypes.h:127
const TTI::MemCmpExpansionOptions * enableMemCmpExpansion(bool IsZeroCmp) const
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize)
unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond=false, bool UseMaskForGaps=false)
amdgpu Simplify well known AMD library false FunctionCallee Value * Arg
size_t arg_size() const
Definition: Function.h:697
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs, and aliases.
Definition: Value.cpp:529
unsigned getCallCost(FunctionType *FTy, int NumArgs)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const SCEVConstant * getConstantStrideStep(ScalarEvolution *SE, const SCEV *Ptr)
OperandValueProperties
Additional properties of an operand&#39;s values.
int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty)
unsigned getNumOperands() const
Definition: User.h:191
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:129
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract)
TargetTransformInfoImplBase(const DataLayout &DL)
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:839
AddressSpace
Definition: NVPTXBaseInfo.h:21
iterator end() const
Definition: ArrayRef.h:137
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU...
Definition: DataLayout.h:242
Type * getReturnType() const
Definition: DerivedTypes.h:123
bool useReductionIntrinsic(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast)
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:193
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader)
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace)
Class to represent vector types.
Definition: DerivedTypes.h:424
Class for arbitrary precision integers.
Definition: APInt.h:69
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
unsigned getMinMaxReductionCost(Type *, Type *, bool, bool)
uint64_t getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:567
bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2)
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:435
unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace)
unsigned getCFInstrCost(unsigned Opcode)
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:550
This class represents an analyzed expression in the program.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:464
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:187
Parameters that control the generic loop unrolling transformation.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Establish a view to a call site for examination.
Definition: CallSite.h:892
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned getOperandsScalarizationOverhead(ArrayRef< const Value *> Args, unsigned VF)
int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value *> Operands)
bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:322
uint32_t Size
Definition: Profile.cpp:46
unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *, const SCEV *)
const unsigned Kind
Multiway switch.
TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
The cost of a typical &#39;add&#39; instruction.
LLVM Value Representation.
Definition: Value.h:72
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty)
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:40
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition: Compiler.h:250
bool shouldExpandReduction(const IntrinsicInst *II) const
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.h:330
bool shouldMaximizeVectorBandwidth(bool OptSize) const
const DataLayout & getDataLayout() const
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:159
OperandValueKind
Additional information about an operand&#39;s possible values.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:48
This pass exposes codegen information to IR-level passes.
llvm::Optional< unsigned > getCacheAssociativity(TargetTransformInfo::CacheLevel Level)
CacheLevel
The possible cache levels.
unsigned getRegisterBitWidth(bool Vector) const
Information about a load/store intrinsic defined by the target.
unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, ArrayRef< Type *> ParamTys)
The cost of a &#39;div&#39; instruction on x86.
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:173
int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value *> Operands)
unsigned getCallCost(const Function *F, ArrayRef< const Value *> Arguments)
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
bool hasDivRemOp(Type *DataType, bool IsSigned)
TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit)
Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType)
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:143
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:43
This class represents a constant integer value.
unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef< Value *> Args, FastMathFlags FMF, unsigned VF)
ShuffleKind
The various kinds of shuffle patterns for vector queries.
gep_type_iterator gep_type_begin(const User *GEP)