LLVM 22.0.0git
VPlanAnalysis.cpp
Go to the documentation of this file.
1//===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "VPlanAnalysis.h"
10#include "VPlan.h"
11#include "VPlanCFG.h"
12#include "VPlanDominatorTree.h"
13#include "VPlanHelpers.h"
14#include "VPlanPatternMatch.h"
16#include "llvm/ADT/TypeSwitch.h"
19#include "llvm/IR/Instruction.h"
21
22using namespace llvm;
23using namespace VPlanPatternMatch;
24
25#define DEBUG_TYPE "vplan"
26
28 if (auto LoopRegion = Plan.getVectorLoopRegion()) {
29 if (const auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(
30 &LoopRegion->getEntryBasicBlock()->front())) {
31 CanonicalIVTy = CanIV->getScalarType();
32 return;
33 }
34 }
35
36 // If there's no canonical IV, retrieve the type from the trip count
37 // expression.
38 auto *TC = Plan.getTripCount();
39 if (auto *TCIRV = dyn_cast<VPIRValue>(TC)) {
40 CanonicalIVTy = TCIRV->getType();
41 return;
42 }
43 CanonicalIVTy = cast<VPExpandSCEVRecipe>(TC)->getSCEV()->getType();
44}
45
46Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
47 Type *ResTy = inferScalarType(R->getIncomingValue(0));
48 for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
49 VPValue *Inc = R->getIncomingValue(I);
50 assert(inferScalarType(Inc) == ResTy &&
51 "different types inferred for different incoming values");
52 CachedTypes[Inc] = ResTy;
53 }
54 return ResTy;
55}
56
57Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
58 // Set the result type from the first operand, check if the types for all
59 // other operands match and cache them.
60 auto SetResultTyFromOp = [this, R]() {
61 Type *ResTy = inferScalarType(R->getOperand(0));
62 for (unsigned Op = 1; Op != R->getNumOperands(); ++Op) {
63 VPValue *OtherV = R->getOperand(Op);
64 assert(inferScalarType(OtherV) == ResTy &&
65 "different types inferred for different operands");
66 CachedTypes[OtherV] = ResTy;
67 }
68 return ResTy;
69 };
70
71 unsigned Opcode = R->getOpcode();
73 return SetResultTyFromOp();
74
75 switch (Opcode) {
76 case Instruction::ExtractElement:
77 case Instruction::Freeze:
80 return inferScalarType(R->getOperand(0));
81 case Instruction::Select: {
82 Type *ResTy = inferScalarType(R->getOperand(1));
83 VPValue *OtherV = R->getOperand(2);
84 assert(inferScalarType(OtherV) == ResTy &&
85 "different types inferred for different operands");
86 CachedTypes[OtherV] = ResTy;
87 return ResTy;
88 }
89 case Instruction::ICmp:
90 case Instruction::FCmp:
92 assert(inferScalarType(R->getOperand(0)) ==
93 inferScalarType(R->getOperand(1)) &&
94 "different types inferred for different operands");
95 return IntegerType::get(Ctx, 1);
97 return inferScalarType(R->getOperand(1));
100 return inferScalarType(R->getOperand(0));
101 }
103 return Type::getIntNTy(Ctx, 32);
104 case Instruction::PHI:
105 // Infer the type of first operand only, as other operands of header phi's
106 // may lead to infinite recursion.
107 return inferScalarType(R->getOperand(0));
116 return SetResultTyFromOp();
118 return inferScalarType(R->getOperand(1));
121 return Type::getIntNTy(Ctx, 64);
124 return inferScalarType(R->getOperand(0));
126 return inferScalarType(R->getOperand(0));
128 assert(inferScalarType(R->getOperand(0))->isIntegerTy(1) &&
129 inferScalarType(R->getOperand(1))->isIntegerTy(1) &&
130 "LogicalAnd operands should be bool");
131 return IntegerType::get(Ctx, 1);
136 // Return the type based on first operand.
137 return inferScalarType(R->getOperand(0));
141 return Type::getVoidTy(Ctx);
142 default:
143 break;
144 }
145 // Type inference not implemented for opcode.
146 LLVM_DEBUG({
147 dbgs() << "LV: Found unhandled opcode for: ";
148 R->getVPSingleValue()->dump();
149 });
150 llvm_unreachable("Unhandled opcode!");
151}
152
153Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
154 unsigned Opcode = R->getOpcode();
155 if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
157 Type *ResTy = inferScalarType(R->getOperand(0));
158 assert(ResTy == inferScalarType(R->getOperand(1)) &&
159 "types for both operands must match for binary op");
160 CachedTypes[R->getOperand(1)] = ResTy;
161 return ResTy;
162 }
163
164 switch (Opcode) {
165 case Instruction::ICmp:
166 case Instruction::FCmp:
167 return IntegerType::get(Ctx, 1);
168 case Instruction::FNeg:
169 case Instruction::Freeze:
170 return inferScalarType(R->getOperand(0));
171 case Instruction::ExtractValue: {
172 assert(R->getNumOperands() == 2 && "expected single level extractvalue");
173 auto *StructTy = cast<StructType>(inferScalarType(R->getOperand(0)));
174 auto *CI = cast<ConstantInt>(R->getOperand(1)->getLiveInIRValue());
175 return StructTy->getTypeAtIndex(CI->getZExtValue());
176 }
177 case Instruction::Select:
178 return inferScalarType(R->getOperand(1));
179 default:
180 break;
181 }
182
183 // Type inference not implemented for opcode.
184 LLVM_DEBUG({
185 dbgs() << "LV: Found unhandled opcode for: ";
186 R->getVPSingleValue()->dump();
187 });
188 llvm_unreachable("Unhandled opcode!");
189}
190
191Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
192 auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
193 return CI.getType();
194}
195
196Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenMemoryRecipe *R) {
198 "Store recipes should not define any values");
199 return cast<LoadInst>(&R->getIngredient())->getType();
200}
201
202Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
203 unsigned Opcode = R->getUnderlyingInstr()->getOpcode();
204
205 if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
207 Type *ResTy = inferScalarType(R->getOperand(0));
208 assert(ResTy == inferScalarType(R->getOperand(1)) &&
209 "inferred types for operands of binary op don't match");
210 CachedTypes[R->getOperand(1)] = ResTy;
211 return ResTy;
212 }
213
214 if (Instruction::isCast(Opcode))
215 return R->getUnderlyingInstr()->getType();
216
217 switch (Opcode) {
218 case Instruction::Call: {
219 unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
220 return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
221 ->getReturnType();
222 }
223 case Instruction::Select: {
224 Type *ResTy = inferScalarType(R->getOperand(1));
225 assert(ResTy == inferScalarType(R->getOperand(2)) &&
226 "inferred types for operands of select op don't match");
227 CachedTypes[R->getOperand(2)] = ResTy;
228 return ResTy;
229 }
230 case Instruction::ICmp:
231 case Instruction::FCmp:
232 return IntegerType::get(Ctx, 1);
233 case Instruction::Alloca:
234 case Instruction::ExtractValue:
235 return R->getUnderlyingInstr()->getType();
236 case Instruction::Freeze:
237 case Instruction::FNeg:
238 case Instruction::GetElementPtr:
239 return inferScalarType(R->getOperand(0));
240 case Instruction::Load:
241 return cast<LoadInst>(R->getUnderlyingInstr())->getType();
242 case Instruction::Store:
243 // FIXME: VPReplicateRecipes with store opcodes still define a result
244 // VPValue, so we need to handle them here. Remove the code here once this
245 // is modeled accurately in VPlan.
246 return Type::getVoidTy(Ctx);
247 default:
248 break;
249 }
250 // Type inference not implemented for opcode.
251 LLVM_DEBUG({
252 dbgs() << "LV: Found unhandled opcode for: ";
253 R->getVPSingleValue()->dump();
254 });
255 llvm_unreachable("Unhandled opcode");
256}
257
259 if (Type *CachedTy = CachedTypes.lookup(V))
260 return CachedTy;
261
262 if (auto *IRV = dyn_cast<VPIRValue>(V))
263 return IRV->getType();
264
265 if (isa<VPSymbolicValue>(V)) {
266 // All VPValues without any underlying IR value (like the vector trip count
267 // or the backedge-taken count) have the same type as the canonical IV.
268 return CanonicalIVTy;
269 }
270
271 Type *ResultTy =
272 TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
276 [this](const auto *R) {
277 // Handle header phi recipes, except VPWidenIntOrFpInduction
278 // which needs special handling due it being possibly truncated.
279 // TODO: consider inferring/caching type of siblings, e.g.,
280 // backedge value, here and in cases below.
281 return inferScalarType(R->getStartValue());
282 })
283 .Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
284 [](const auto *R) { return R->getScalarType(); })
288 [this](const VPRecipeBase *R) {
289 return inferScalarType(R->getOperand(0));
290 })
291 // VPInstructionWithType must be handled before VPInstruction.
294 [](const auto *R) { return R->getResultType(); })
297 [this](const auto *R) { return inferScalarTypeForRecipe(R); })
298 .Case<VPInterleaveBase>([V](const auto *R) {
299 // TODO: Use info from interleave group.
300 return V->getUnderlyingValue()->getType();
301 })
302 .Case<VPExpandSCEVRecipe>([](const VPExpandSCEVRecipe *R) {
303 return R->getSCEV()->getType();
304 })
305 .Case<VPReductionRecipe>([this](const auto *R) {
306 return inferScalarType(R->getChainOp());
307 })
308 .Case<VPExpressionRecipe>([this](const auto *R) {
309 return inferScalarType(R->getOperandOfResultType());
310 });
311
312 assert(ResultTy && "could not infer type for the given VPValue");
313 CachedTypes[V] = ResultTy;
314 return ResultTy;
315}
316
318 VPlan &Plan, DenseSet<VPRecipeBase *> &EphRecipes) {
319 // First, collect seed recipes which are operands of assumes.
323 for (VPRecipeBase &R : *VPBB) {
324 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
325 if (!RepR || !match(RepR, m_Intrinsic<Intrinsic::assume>()))
326 continue;
327 Worklist.push_back(RepR);
328 EphRecipes.insert(RepR);
329 }
330 }
331
332 // Process operands of candidates in worklist and add them to the set of
333 // ephemeral recipes, if they don't have side-effects and are only used by
334 // other ephemeral recipes.
335 while (!Worklist.empty()) {
336 VPRecipeBase *Cur = Worklist.pop_back_val();
337 for (VPValue *Op : Cur->operands()) {
338 auto *OpR = Op->getDefiningRecipe();
339 if (!OpR || OpR->mayHaveSideEffects() || EphRecipes.contains(OpR))
340 continue;
341 if (any_of(Op->users(), [EphRecipes](VPUser *U) {
342 auto *UR = dyn_cast<VPRecipeBase>(U);
343 return !UR || !EphRecipes.contains(UR);
344 }))
345 continue;
346 EphRecipes.insert(OpR);
347 Worklist.push_back(OpR);
348 }
349 }
350}
351
354
356 const VPRecipeBase *B) {
357 if (A == B)
358 return false;
359
360 auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
361 for (auto &R : *A->getParent()) {
362 if (&R == A)
363 return true;
364 if (&R == B)
365 return false;
366 }
367 llvm_unreachable("recipe not found");
368 };
369 const VPBlockBase *ParentA = A->getParent();
370 const VPBlockBase *ParentB = B->getParent();
371 if (ParentA == ParentB)
372 return LocalComesBefore(A, B);
373
374#ifndef NDEBUG
375 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
376 VPRegionBlock *Region = R->getRegion();
377 if (Region && Region->isReplicator()) {
378 assert(Region->getNumSuccessors() == 1 &&
379 Region->getNumPredecessors() == 1 && "Expected SESE region!");
380 assert(R->getParent()->size() == 1 &&
381 "A recipe in an original replicator region must be the only "
382 "recipe in its block");
383 return Region;
384 }
385 return nullptr;
386 };
387 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
388 "No replicate regions expected at this point");
389 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
390 "No replicate regions expected at this point");
391#endif
392 return Base::properlyDominates(ParentA, ParentB);
393}
394
396 unsigned OverrideMaxNumRegs) const {
397 return any_of(MaxLocalUsers, [&TTI, &OverrideMaxNumRegs](auto &LU) {
398 return LU.second > (OverrideMaxNumRegs > 0
399 ? OverrideMaxNumRegs
400 : TTI.getNumberOfRegisters(LU.first));
401 });
402}
403
406 const SmallPtrSetImpl<const Value *> &ValuesToIgnore) {
407 // Each 'key' in the map opens a new interval. The values
408 // of the map are the index of the 'last seen' usage of the
409 // VPValue that is the key.
411
412 // Maps indices to recipes.
414 // Marks the end of each interval.
415 IntervalMap EndPoint;
416 // Saves the list of VPValues that are used in the loop.
418 // Saves the list of values that are used in the loop but are defined outside
419 // the loop (not including non-recipe values such as arguments and
420 // constants).
421 SmallSetVector<VPValue *, 8> LoopInvariants;
422 LoopInvariants.insert(&Plan.getVectorTripCount());
423
424 // We scan the loop in a topological order in order and assign a number to
425 // each recipe. We use RPO to ensure that defs are met before their users. We
426 // assume that each recipe that has in-loop users starts an interval. We
427 // record every time that an in-loop value is used, so we have a list of the
428 // first occurences of each recipe and last occurrence of each VPValue.
429 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
431 LoopRegion);
433 if (!VPBB->getParent())
434 break;
435 for (VPRecipeBase &R : *VPBB) {
436 Idx2Recipe.push_back(&R);
437
438 // Save the end location of each USE.
439 for (VPValue *U : R.operands()) {
440 auto *DefR = U->getDefiningRecipe();
441
442 // Ignore non-recipe values such as arguments, constants, etc.
443 // FIXME: Might need some motivation why these values are ignored. If
444 // for example an argument is used inside the loop it will increase the
445 // register pressure (so shouldn't we add it to LoopInvariants).
446 auto *IRV = dyn_cast<VPIRValue>(U);
447 if (!DefR && (!IRV || !isa<Instruction>(IRV->getValue())))
448 continue;
449
450 // If this recipe is outside the loop then record it and continue.
451 if (!DefR) {
452 LoopInvariants.insert(U);
453 continue;
454 }
455
456 // Overwrite previous end points.
457 EndPoint[U] = Idx2Recipe.size();
458 Ends.insert(U);
459 }
460 }
461 if (VPBB == LoopRegion->getExiting()) {
462 // VPWidenIntOrFpInductionRecipes are used implicitly at the end of the
463 // exiting block, where their increment will get materialized eventually.
464 for (auto &R : LoopRegion->getEntryBasicBlock()->phis()) {
465 if (auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) {
466 EndPoint[WideIV] = Idx2Recipe.size();
467 Ends.insert(WideIV);
468 }
469 }
470 }
471 }
472
473 // Saves the list of intervals that end with the index in 'key'.
474 using VPValueList = SmallVector<VPValue *, 2>;
476
477 // Next, we transpose the EndPoints into a multi map that holds the list of
478 // intervals that *end* at a specific location.
479 for (auto &Interval : EndPoint)
480 TransposeEnds[Interval.second].push_back(Interval.first);
481
482 SmallPtrSet<VPValue *, 8> OpenIntervals;
485
486 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
487
488 VPTypeAnalysis TypeInfo(Plan);
489
490 const auto &TTICapture = TTI;
491 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
492 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) ||
493 (VF.isScalable() &&
494 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
495 return 0;
496 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
497 };
498
499 // We scan the instructions linearly and record each time that a new interval
500 // starts, by placing it in a set. If we find this value in TransposEnds then
501 // we remove it from the set. The max register usage is the maximum register
502 // usage of the recipes of the set.
503 for (unsigned int Idx = 0, Sz = Idx2Recipe.size(); Idx < Sz; ++Idx) {
504 VPRecipeBase *R = Idx2Recipe[Idx];
505
506 // Remove all of the VPValues that end at this location.
507 VPValueList &List = TransposeEnds[Idx];
508 for (VPValue *ToRemove : List)
509 OpenIntervals.erase(ToRemove);
510
511 // Ignore recipes that are never used within the loop and do not have side
512 // effects.
513 if (none_of(R->definedValues(),
514 [&Ends](VPValue *Def) { return Ends.count(Def); }) &&
515 !R->mayHaveSideEffects())
516 continue;
517
518 // Skip recipes for ignored values.
519 // TODO: Should mark recipes for ephemeral values that cannot be removed
520 // explictly in VPlan.
521 if (isa<VPSingleDefRecipe>(R) &&
522 ValuesToIgnore.contains(
523 cast<VPSingleDefRecipe>(R)->getUnderlyingValue()))
524 continue;
525
526 // For each VF find the maximum usage of registers.
527 for (unsigned J = 0, E = VFs.size(); J < E; ++J) {
528 // Count the number of registers used, per register class, given all open
529 // intervals.
530 // Note that elements in this SmallMapVector will be default constructed
531 // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
532 // there is no previous entry for ClassID.
534
535 for (auto *VPV : OpenIntervals) {
536 // Skip artificial values or values that weren't present in the original
537 // loop.
538 // TODO: Remove skipping values that weren't present in the original
539 // loop after removing the legacy
540 // LoopVectorizationCostModel::calculateRegisterUsage
542 VPBranchOnMaskRecipe>(VPV) ||
544 continue;
545
546 if (VFs[J].isScalar() ||
551 (cast<VPReductionPHIRecipe>(VPV))->isInLoop())) {
552 unsigned ClassID =
553 TTI.getRegisterClassForType(false, TypeInfo.inferScalarType(VPV));
554 // FIXME: The target might use more than one register for the type
555 // even in the scalar case.
556 RegUsage[ClassID] += 1;
557 } else {
558 // The output from scaled phis and scaled reductions actually has
559 // fewer lanes than the VF.
560 unsigned ScaleFactor =
561 vputils::getVFScaleFactor(VPV->getDefiningRecipe());
562 ElementCount VF = VFs[J];
563 if (ScaleFactor > 1) {
564 VF = VFs[J].divideCoefficientBy(ScaleFactor);
565 LLVM_DEBUG(dbgs() << "LV(REG): Scaled down VF from " << VFs[J]
566 << " to " << VF << " for " << *R << "\n";);
567 }
568
569 Type *ScalarTy = TypeInfo.inferScalarType(VPV);
570 unsigned ClassID = TTI.getRegisterClassForType(true, ScalarTy);
571 RegUsage[ClassID] += GetRegUsage(ScalarTy, VF);
572 }
573 }
574
575 for (const auto &Pair : RegUsage) {
576 auto &Entry = MaxUsages[J][Pair.first];
577 Entry = std::max(Entry, Pair.second);
578 }
579 }
580
581 LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # "
582 << OpenIntervals.size() << '\n');
583
584 // Add used VPValues defined by the current recipe to the list of open
585 // intervals.
586 for (VPValue *DefV : R->definedValues())
587 if (Ends.contains(DefV))
588 OpenIntervals.insert(DefV);
589 }
590
591 // We also search for instructions that are defined outside the loop, but are
592 // used inside the loop. We need this number separately from the max-interval
593 // usage number because when we unroll, loop-invariant values do not take
594 // more register.
596 for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) {
597 // Note that elements in this SmallMapVector will be default constructed
598 // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
599 // there is no previous entry for ClassID.
601
602 for (auto *In : LoopInvariants) {
603 // FIXME: The target might use more than one register for the type
604 // even in the scalar case.
605 bool IsScalar = vputils::onlyScalarValuesUsed(In);
606
607 ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx];
608 unsigned ClassID = TTI.getRegisterClassForType(
609 VF.isVector(), TypeInfo.inferScalarType(In));
610 Invariant[ClassID] += GetRegUsage(TypeInfo.inferScalarType(In), VF);
611 }
612
613 LLVM_DEBUG({
614 dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n';
615 dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size()
616 << " item\n";
617 for (const auto &pair : MaxUsages[Idx]) {
618 dbgs() << "LV(REG): RegisterClass: "
619 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
620 << " registers\n";
621 }
622 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
623 << " item\n";
624 for (const auto &pair : Invariant) {
625 dbgs() << "LV(REG): RegisterClass: "
626 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
627 << " registers\n";
628 }
629 });
630
631 RU.LoopInvariantRegs = Invariant;
632 RU.MaxLocalUsers = MaxUsages[Idx];
633 RUs[Idx] = RU;
634 }
635
636 return RUs;
637}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
ReachingDefInfo InstSet & ToRemove
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define I(x, y, z)
Definition MD5.cpp:57
std::pair< uint64_t, uint64_t > Interval
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file contains the declarations of the Vectorization Plan base classes:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Core dominator tree base class.
bool properlyDominates(const DomTreeNodeBase< VPBlockBase > *A, const DomTreeNodeBase< VPBlockBase > *B) const
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
bool isCast() const
bool isBinaryOp() const
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:89
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:98
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition VPlan.h:3592
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3949
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4037
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition VPlan.h:2499
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:178
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:221
A recipe for generating conditional branches on the bits of a mask.
Definition VPlan.h:3003
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3535
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition VPlan.h:3703
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition VPlan.h:3624
Recipe to expand a SCEV expression.
Definition VPlan.h:3497
A specialization of VPInstruction augmenting it with a dedicated result type, to be used when the opc...
Definition VPlan.h:1266
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1034
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1136
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1081
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1139
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
Definition VPlan.h:1078
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1130
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1073
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1070
@ CanonicalIVIncrementForPart
Definition VPlan.h:1054
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition VPlan.h:3190
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
A recipe for handling reduction phis.
Definition VPlan.h:2406
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2766
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4137
const VPBlockBase * getEntry() const
Definition VPlan.h:4173
const VPBlockBase * getExiting() const
Definition VPlan.h:4185
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2922
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3771
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
VPTypeAnalysis(const VPlan &Plan)
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:229
operand_range operands()
Definition VPlanValue.h:297
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:45
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1879
A recipe to compute the pointers for widened memory accesses of SourceElementTy.
Definition VPlan.h:1940
A recipe for widening Call instructions using library calls.
Definition VPlan.h:1720
A Recipe for widening the canonical induction variable of the vector loop.
Definition VPlan.h:3666
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1570
A recipe for handling GEP instructions.
Definition VPlan.h:1816
A recipe for widening vector intrinsics.
Definition VPlan.h:1620
A common base class for widening memory operations.
Definition VPlan.h:3233
A recipe for widened phis.
Definition VPlan.h:2302
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1522
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4267
VPSymbolicValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4443
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1022
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
TargetTransformInfo TTI
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2344
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
bool exceedsMaxNumRegs(const TargetTransformInfo &TTI, unsigned OverrideMaxNumRegs=0) const
Check if any of the tracked live intervals exceeds the number of available registers for the target.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.