LLVM 22.0.0git
VPlanAnalysis.cpp
Go to the documentation of this file.
1//===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "VPlanAnalysis.h"
10#include "VPlan.h"
11#include "VPlanCFG.h"
12#include "VPlanDominatorTree.h"
13#include "VPlanHelpers.h"
14#include "VPlanPatternMatch.h"
16#include "llvm/ADT/TypeSwitch.h"
19#include "llvm/IR/Instruction.h"
21
22using namespace llvm;
23using namespace VPlanPatternMatch;
24
25#define DEBUG_TYPE "vplan"
26
28 if (auto LoopRegion = Plan.getVectorLoopRegion()) {
29 if (const auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(
30 &LoopRegion->getEntryBasicBlock()->front())) {
31 CanonicalIVTy = CanIV->getScalarType();
32 return;
33 }
34 }
35
36 // If there's no canonical IV, retrieve the type from the trip count
37 // expression.
38 auto *TC = Plan.getTripCount();
39 if (TC->isLiveIn()) {
40 CanonicalIVTy = TC->getLiveInIRValue()->getType();
41 return;
42 }
43 CanonicalIVTy = cast<VPExpandSCEVRecipe>(TC)->getSCEV()->getType();
44}
45
46Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
47 Type *ResTy = inferScalarType(R->getIncomingValue(0));
48 for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
49 VPValue *Inc = R->getIncomingValue(I);
50 assert(inferScalarType(Inc) == ResTy &&
51 "different types inferred for different incoming values");
52 CachedTypes[Inc] = ResTy;
53 }
54 return ResTy;
55}
56
57Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
58 // Set the result type from the first operand, check if the types for all
59 // other operands match and cache them.
60 auto SetResultTyFromOp = [this, R]() {
61 Type *ResTy = inferScalarType(R->getOperand(0));
62 for (unsigned Op = 1; Op != R->getNumOperands(); ++Op) {
63 VPValue *OtherV = R->getOperand(Op);
64 assert(inferScalarType(OtherV) == ResTy &&
65 "different types inferred for different operands");
66 CachedTypes[OtherV] = ResTy;
67 }
68 return ResTy;
69 };
70
71 unsigned Opcode = R->getOpcode();
73 return SetResultTyFromOp();
74
75 switch (Opcode) {
76 case Instruction::ExtractElement:
77 case Instruction::Freeze:
80 return inferScalarType(R->getOperand(0));
81 case Instruction::Select: {
82 Type *ResTy = inferScalarType(R->getOperand(1));
83 VPValue *OtherV = R->getOperand(2);
84 assert(inferScalarType(OtherV) == ResTy &&
85 "different types inferred for different operands");
86 CachedTypes[OtherV] = ResTy;
87 return ResTy;
88 }
89 case Instruction::ICmp:
90 case Instruction::FCmp:
92 assert(inferScalarType(R->getOperand(0)) ==
93 inferScalarType(R->getOperand(1)) &&
94 "different types inferred for different operands");
95 return IntegerType::get(Ctx, 1);
97 return inferScalarType(R->getOperand(1));
100 return inferScalarType(R->getOperand(0));
101 }
103 return Type::getIntNTy(Ctx, 32);
104 case Instruction::PHI:
105 // Infer the type of first operand only, as other operands of header phi's
106 // may lead to infinite recursion.
107 return inferScalarType(R->getOperand(0));
116 return SetResultTyFromOp();
118 return inferScalarType(R->getOperand(1));
121 return Type::getIntNTy(Ctx, 64);
125 Type *BaseTy = inferScalarType(R->getOperand(0));
126 if (auto *VecTy = dyn_cast<VectorType>(BaseTy))
127 return VecTy->getElementType();
128 return BaseTy;
129 }
131 assert(inferScalarType(R->getOperand(0))->isIntegerTy(1) &&
132 inferScalarType(R->getOperand(1))->isIntegerTy(1) &&
133 "LogicalAnd operands should be bool");
134 return IntegerType::get(Ctx, 1);
138 // Return the type based on first operand.
139 return inferScalarType(R->getOperand(0));
142 return Type::getVoidTy(Ctx);
143 default:
144 break;
145 }
146 // Type inference not implemented for opcode.
147 LLVM_DEBUG({
148 dbgs() << "LV: Found unhandled opcode for: ";
149 R->getVPSingleValue()->dump();
150 });
151 llvm_unreachable("Unhandled opcode!");
152}
153
154Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
155 unsigned Opcode = R->getOpcode();
156 if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
158 Type *ResTy = inferScalarType(R->getOperand(0));
159 assert(ResTy == inferScalarType(R->getOperand(1)) &&
160 "types for both operands must match for binary op");
161 CachedTypes[R->getOperand(1)] = ResTy;
162 return ResTy;
163 }
164
165 switch (Opcode) {
166 case Instruction::ICmp:
167 case Instruction::FCmp:
168 return IntegerType::get(Ctx, 1);
169 case Instruction::FNeg:
170 case Instruction::Freeze:
171 return inferScalarType(R->getOperand(0));
172 case Instruction::ExtractValue: {
173 assert(R->getNumOperands() == 2 && "expected single level extractvalue");
174 auto *StructTy = cast<StructType>(inferScalarType(R->getOperand(0)));
175 auto *CI = cast<ConstantInt>(R->getOperand(1)->getLiveInIRValue());
176 return StructTy->getTypeAtIndex(CI->getZExtValue());
177 }
178 default:
179 break;
180 }
181
182 // Type inference not implemented for opcode.
183 LLVM_DEBUG({
184 dbgs() << "LV: Found unhandled opcode for: ";
185 R->getVPSingleValue()->dump();
186 });
187 llvm_unreachable("Unhandled opcode!");
188}
189
190Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
191 auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
192 return CI.getType();
193}
194
195Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenMemoryRecipe *R) {
197 "Store recipes should not define any values");
198 return cast<LoadInst>(&R->getIngredient())->getType();
199}
200
201Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenSelectRecipe *R) {
202 Type *ResTy = inferScalarType(R->getOperand(1));
203 VPValue *OtherV = R->getOperand(2);
204 assert(inferScalarType(OtherV) == ResTy &&
205 "different types inferred for different operands");
206 CachedTypes[OtherV] = ResTy;
207 return ResTy;
208}
209
210Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
211 unsigned Opcode = R->getUnderlyingInstr()->getOpcode();
212
213 if (Instruction::isBinaryOp(Opcode) || Instruction::isShift(Opcode) ||
215 Type *ResTy = inferScalarType(R->getOperand(0));
216 assert(ResTy == inferScalarType(R->getOperand(1)) &&
217 "inferred types for operands of binary op don't match");
218 CachedTypes[R->getOperand(1)] = ResTy;
219 return ResTy;
220 }
221
222 if (Instruction::isCast(Opcode))
223 return R->getUnderlyingInstr()->getType();
224
225 switch (Opcode) {
226 case Instruction::Call: {
227 unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
228 return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
229 ->getReturnType();
230 }
231 case Instruction::Select: {
232 Type *ResTy = inferScalarType(R->getOperand(1));
233 assert(ResTy == inferScalarType(R->getOperand(2)) &&
234 "inferred types for operands of select op don't match");
235 CachedTypes[R->getOperand(2)] = ResTy;
236 return ResTy;
237 }
238 case Instruction::ICmp:
239 case Instruction::FCmp:
240 return IntegerType::get(Ctx, 1);
241 case Instruction::Alloca:
242 case Instruction::ExtractValue:
243 return R->getUnderlyingInstr()->getType();
244 case Instruction::Freeze:
245 case Instruction::FNeg:
246 case Instruction::GetElementPtr:
247 return inferScalarType(R->getOperand(0));
248 case Instruction::Load:
249 return cast<LoadInst>(R->getUnderlyingInstr())->getType();
250 case Instruction::Store:
251 // FIXME: VPReplicateRecipes with store opcodes still define a result
252 // VPValue, so we need to handle them here. Remove the code here once this
253 // is modeled accurately in VPlan.
254 return Type::getVoidTy(Ctx);
255 default:
256 break;
257 }
258 // Type inference not implemented for opcode.
259 LLVM_DEBUG({
260 dbgs() << "LV: Found unhandled opcode for: ";
261 R->getVPSingleValue()->dump();
262 });
263 llvm_unreachable("Unhandled opcode");
264}
265
267 if (Type *CachedTy = CachedTypes.lookup(V))
268 return CachedTy;
269
270 if (V->isLiveIn()) {
271 if (auto *IRValue = V->getLiveInIRValue())
272 return IRValue->getType();
273 // All VPValues without any underlying IR value (like the vector trip count
274 // or the backedge-taken count) have the same type as the canonical IV.
275 return CanonicalIVTy;
276 }
277
278 Type *ResultTy =
279 TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
283 [this](const auto *R) {
284 // Handle header phi recipes, except VPWidenIntOrFpInduction
285 // which needs special handling due it being possibly truncated.
286 // TODO: consider inferring/caching type of siblings, e.g.,
287 // backedge value, here and in cases below.
288 return inferScalarType(R->getStartValue());
289 })
290 .Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
291 [](const auto *R) { return R->getScalarType(); })
295 [this](const VPRecipeBase *R) {
296 return inferScalarType(R->getOperand(0));
297 })
298 // VPInstructionWithType must be handled before VPInstruction.
301 [](const auto *R) { return R->getResultType(); })
304 [this](const auto *R) { return inferScalarTypeForRecipe(R); })
305 .Case<VPInterleaveBase>([V](const auto *R) {
306 // TODO: Use info from interleave group.
307 return V->getUnderlyingValue()->getType();
308 })
309 .Case<VPExpandSCEVRecipe>([](const VPExpandSCEVRecipe *R) {
310 return R->getSCEV()->getType();
311 })
312 .Case<VPReductionRecipe>([this](const auto *R) {
313 return inferScalarType(R->getChainOp());
314 })
315 .Case<VPExpressionRecipe>([this](const auto *R) {
316 return inferScalarType(R->getOperandOfResultType());
317 });
318
319 assert(ResultTy && "could not infer type for the given VPValue");
320 CachedTypes[V] = ResultTy;
321 return ResultTy;
322}
323
325 VPlan &Plan, DenseSet<VPRecipeBase *> &EphRecipes) {
326 // First, collect seed recipes which are operands of assumes.
330 for (VPRecipeBase &R : *VPBB) {
331 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
332 if (!RepR || !match(RepR, m_Intrinsic<Intrinsic::assume>()))
333 continue;
334 Worklist.push_back(RepR);
335 EphRecipes.insert(RepR);
336 }
337 }
338
339 // Process operands of candidates in worklist and add them to the set of
340 // ephemeral recipes, if they don't have side-effects and are only used by
341 // other ephemeral recipes.
342 while (!Worklist.empty()) {
343 VPRecipeBase *Cur = Worklist.pop_back_val();
344 for (VPValue *Op : Cur->operands()) {
345 auto *OpR = Op->getDefiningRecipe();
346 if (!OpR || OpR->mayHaveSideEffects() || EphRecipes.contains(OpR))
347 continue;
348 if (any_of(Op->users(), [EphRecipes](VPUser *U) {
349 auto *UR = dyn_cast<VPRecipeBase>(U);
350 return !UR || !EphRecipes.contains(UR);
351 }))
352 continue;
353 EphRecipes.insert(OpR);
354 Worklist.push_back(OpR);
355 }
356 }
357}
358
361
363 const VPRecipeBase *B) {
364 if (A == B)
365 return false;
366
367 auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
368 for (auto &R : *A->getParent()) {
369 if (&R == A)
370 return true;
371 if (&R == B)
372 return false;
373 }
374 llvm_unreachable("recipe not found");
375 };
376 const VPBlockBase *ParentA = A->getParent();
377 const VPBlockBase *ParentB = B->getParent();
378 if (ParentA == ParentB)
379 return LocalComesBefore(A, B);
380
381#ifndef NDEBUG
382 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
383 VPRegionBlock *Region = R->getRegion();
384 if (Region && Region->isReplicator()) {
385 assert(Region->getNumSuccessors() == 1 &&
386 Region->getNumPredecessors() == 1 && "Expected SESE region!");
387 assert(R->getParent()->size() == 1 &&
388 "A recipe in an original replicator region must be the only "
389 "recipe in its block");
390 return Region;
391 }
392 return nullptr;
393 };
394 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
395 "No replicate regions expected at this point");
396 assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
397 "No replicate regions expected at this point");
398#endif
399 return Base::properlyDominates(ParentA, ParentB);
400}
401
403 unsigned OverrideMaxNumRegs) const {
404 return any_of(MaxLocalUsers, [&TTI, &OverrideMaxNumRegs](auto &LU) {
405 return LU.second > (OverrideMaxNumRegs > 0
406 ? OverrideMaxNumRegs
407 : TTI.getNumberOfRegisters(LU.first));
408 });
409}
410
413 const SmallPtrSetImpl<const Value *> &ValuesToIgnore) {
414 // Each 'key' in the map opens a new interval. The values
415 // of the map are the index of the 'last seen' usage of the
416 // VPValue that is the key.
418
419 // Maps indices to recipes.
421 // Marks the end of each interval.
422 IntervalMap EndPoint;
423 // Saves the list of VPValues that are used in the loop.
425 // Saves the list of values that are used in the loop but are defined outside
426 // the loop (not including non-recipe values such as arguments and
427 // constants).
428 SmallSetVector<VPValue *, 8> LoopInvariants;
429 LoopInvariants.insert(&Plan.getVectorTripCount());
430
431 // We scan the loop in a topological order in order and assign a number to
432 // each recipe. We use RPO to ensure that defs are met before their users. We
433 // assume that each recipe that has in-loop users starts an interval. We
434 // record every time that an in-loop value is used, so we have a list of the
435 // first occurences of each recipe and last occurrence of each VPValue.
436 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
438 LoopRegion);
440 if (!VPBB->getParent())
441 break;
442 for (VPRecipeBase &R : *VPBB) {
443 Idx2Recipe.push_back(&R);
444
445 // Save the end location of each USE.
446 for (VPValue *U : R.operands()) {
447 auto *DefR = U->getDefiningRecipe();
448
449 // Ignore non-recipe values such as arguments, constants, etc.
450 // FIXME: Might need some motivation why these values are ignored. If
451 // for example an argument is used inside the loop it will increase the
452 // register pressure (so shouldn't we add it to LoopInvariants).
453 if (!DefR && (!U->getLiveInIRValue() ||
454 !isa<Instruction>(U->getLiveInIRValue())))
455 continue;
456
457 // If this recipe is outside the loop then record it and continue.
458 if (!DefR) {
459 LoopInvariants.insert(U);
460 continue;
461 }
462
463 // Overwrite previous end points.
464 EndPoint[U] = Idx2Recipe.size();
465 Ends.insert(U);
466 }
467 }
468 if (VPBB == LoopRegion->getExiting()) {
469 // VPWidenIntOrFpInductionRecipes are used implicitly at the end of the
470 // exiting block, where their increment will get materialized eventually.
471 for (auto &R : LoopRegion->getEntryBasicBlock()->phis()) {
472 if (auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) {
473 EndPoint[WideIV] = Idx2Recipe.size();
474 Ends.insert(WideIV);
475 }
476 }
477 }
478 }
479
480 // Saves the list of intervals that end with the index in 'key'.
481 using VPValueList = SmallVector<VPValue *, 2>;
483
484 // Next, we transpose the EndPoints into a multi map that holds the list of
485 // intervals that *end* at a specific location.
486 for (auto &Interval : EndPoint)
487 TransposeEnds[Interval.second].push_back(Interval.first);
488
489 SmallPtrSet<VPValue *, 8> OpenIntervals;
492
493 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
494
495 VPTypeAnalysis TypeInfo(Plan);
496
497 const auto &TTICapture = TTI;
498 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
499 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) ||
500 (VF.isScalable() &&
501 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
502 return 0;
503 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
504 };
505
506 // We scan the instructions linearly and record each time that a new interval
507 // starts, by placing it in a set. If we find this value in TransposEnds then
508 // we remove it from the set. The max register usage is the maximum register
509 // usage of the recipes of the set.
510 for (unsigned int Idx = 0, Sz = Idx2Recipe.size(); Idx < Sz; ++Idx) {
511 VPRecipeBase *R = Idx2Recipe[Idx];
512
513 // Remove all of the VPValues that end at this location.
514 VPValueList &List = TransposeEnds[Idx];
515 for (VPValue *ToRemove : List)
516 OpenIntervals.erase(ToRemove);
517
518 // Ignore recipes that are never used within the loop and do not have side
519 // effects.
520 if (none_of(R->definedValues(),
521 [&Ends](VPValue *Def) { return Ends.count(Def); }) &&
522 !R->mayHaveSideEffects())
523 continue;
524
525 // Skip recipes for ignored values.
526 // TODO: Should mark recipes for ephemeral values that cannot be removed
527 // explictly in VPlan.
528 if (isa<VPSingleDefRecipe>(R) &&
529 ValuesToIgnore.contains(
530 cast<VPSingleDefRecipe>(R)->getUnderlyingValue()))
531 continue;
532
533 // For each VF find the maximum usage of registers.
534 for (unsigned J = 0, E = VFs.size(); J < E; ++J) {
535 // Count the number of registers used, per register class, given all open
536 // intervals.
537 // Note that elements in this SmallMapVector will be default constructed
538 // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
539 // there is no previous entry for ClassID.
541
542 for (auto *VPV : OpenIntervals) {
543 // Skip values that weren't present in the original loop.
544 // TODO: Remove after removing the legacy
545 // LoopVectorizationCostModel::calculateRegisterUsage
548 continue;
549
550 if (VFs[J].isScalar() ||
555 (cast<VPReductionPHIRecipe>(VPV))->isInLoop())) {
556 unsigned ClassID =
557 TTI.getRegisterClassForType(false, TypeInfo.inferScalarType(VPV));
558 // FIXME: The target might use more than one register for the type
559 // even in the scalar case.
560 RegUsage[ClassID] += 1;
561 } else {
562 // The output from scaled phis and scaled reductions actually has
563 // fewer lanes than the VF.
564 unsigned ScaleFactor =
565 vputils::getVFScaleFactor(VPV->getDefiningRecipe());
566 ElementCount VF = VFs[J];
567 if (ScaleFactor > 1) {
568 VF = VFs[J].divideCoefficientBy(ScaleFactor);
569 LLVM_DEBUG(dbgs() << "LV(REG): Scaled down VF from " << VFs[J]
570 << " to " << VF << " for " << *R << "\n";);
571 }
572
573 Type *ScalarTy = TypeInfo.inferScalarType(VPV);
574 unsigned ClassID = TTI.getRegisterClassForType(true, ScalarTy);
575 RegUsage[ClassID] += GetRegUsage(ScalarTy, VF);
576 }
577 }
578
579 for (const auto &Pair : RegUsage) {
580 auto &Entry = MaxUsages[J][Pair.first];
581 Entry = std::max(Entry, Pair.second);
582 }
583 }
584
585 LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # "
586 << OpenIntervals.size() << '\n');
587
588 // Add used VPValues defined by the current recipe to the list of open
589 // intervals.
590 for (VPValue *DefV : R->definedValues())
591 if (Ends.contains(DefV))
592 OpenIntervals.insert(DefV);
593 }
594
595 // We also search for instructions that are defined outside the loop, but are
596 // used inside the loop. We need this number separately from the max-interval
597 // usage number because when we unroll, loop-invariant values do not take
598 // more register.
600 for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) {
601 // Note that elements in this SmallMapVector will be default constructed
602 // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
603 // there is no previous entry for ClassID.
605
606 for (auto *In : LoopInvariants) {
607 // FIXME: The target might use more than one register for the type
608 // even in the scalar case.
609 bool IsScalar = vputils::onlyScalarValuesUsed(In);
610
611 ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx];
612 unsigned ClassID = TTI.getRegisterClassForType(
613 VF.isVector(), TypeInfo.inferScalarType(In));
614 Invariant[ClassID] += GetRegUsage(TypeInfo.inferScalarType(In), VF);
615 }
616
617 LLVM_DEBUG({
618 dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n';
619 dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size()
620 << " item\n";
621 for (const auto &pair : MaxUsages[Idx]) {
622 dbgs() << "LV(REG): RegisterClass: "
623 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
624 << " registers\n";
625 }
626 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
627 << " item\n";
628 for (const auto &pair : Invariant) {
629 dbgs() << "LV(REG): RegisterClass: "
630 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
631 << " registers\n";
632 }
633 });
634
635 RU.LoopInvariantRegs = Invariant;
636 RU.MaxLocalUsers = MaxUsages[Idx];
637 RUs[Idx] = RU;
638 }
639
640 return RUs;
641}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
ReachingDefInfo InstSet & ToRemove
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define I(x, y, z)
Definition MD5.cpp:57
std::pair< uint64_t, uint64_t > Interval
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file contains the declarations of the Vectorization Plan base classes:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Core dominator tree base class.
bool properlyDominates(const DomTreeNodeBase< VPBlockBase > *A, const DomTreeNodeBase< VPBlockBase > *B) const
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
bool isCast() const
bool isBinaryOp() const
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
bool isShift() const
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:149
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:337
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:88
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:97
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition VPlan.h:3610
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3971
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4059
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition VPlan.h:2517
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:166
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:211
A recipe for generating conditional branches on the bits of a mask.
Definition VPlan.h:3021
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3552
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition VPlan.h:3721
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition VPlan.h:3642
Recipe to expand a SCEV expression.
Definition VPlan.h:3514
A specialization of VPInstruction augmenting it with a dedicated result type, to be used when the opc...
Definition VPlan.h:1253
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1031
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1124
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1069
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1127
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
Definition VPlan.h:1066
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1118
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1061
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1058
@ CanonicalIVIncrementForPart
Definition VPlan.h:1051
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition VPlan.h:3208
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
A recipe for handling reduction phis.
Definition VPlan.h:2432
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2784
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4159
const VPBlockBase * getEntry() const
Definition VPlan.h:4195
const VPBlockBase * getExiting() const
Definition VPlan.h:4207
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2940
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3791
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
VPTypeAnalysis(const VPlan &Plan)
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:207
operand_range operands()
Definition VPlanValue.h:275
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:48
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1916
A recipe to compute the pointers for widened memory accesses of IndexTy.
Definition VPlan.h:1976
A recipe for widening Call instructions using library calls.
Definition VPlan.h:1707
A Recipe for widening the canonical induction variable of the vector loop.
Definition VPlan.h:3684
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1557
A recipe for handling GEP instructions.
Definition VPlan.h:1853
A recipe for widening vector intrinsics.
Definition VPlan.h:1607
A common base class for widening memory operations.
Definition VPlan.h:3251
A recipe for widened phis.
Definition VPlan.h:2331
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1509
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4289
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4473
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
TargetTransformInfo TTI
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:271
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2373
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
bool exceedsMaxNumRegs(const TargetTransformInfo &TTI, unsigned OverrideMaxNumRegs=0) const
Check if any of the tracked live intervals exceeds the number of available registers for the target.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
A recipe for widening select instructions.
Definition VPlan.h:1806