LLVM 20.0.0git
MipsAsmBackend.cpp
Go to the documentation of this file.
1//===-- MipsAsmBackend.cpp - Mips Asm Backend ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the MipsAsmBackend class.
10//
11//===----------------------------------------------------------------------===//
12//
13
20#include "llvm/MC/MCAssembler.h"
21#include "llvm/MC/MCContext.h"
27#include "llvm/MC/MCValue.h"
31
32using namespace llvm;
33
34// Prepare value for the target space for it
36 MCContext &Ctx) {
37
38 unsigned Kind = Fixup.getKind();
39
40 // Add/subtract and shift
41 switch (Kind) {
42 default:
43 return 0;
44 case FK_Data_2:
61 Value &= 0xffff;
62 break;
63 case FK_DTPRel_4:
64 case FK_DTPRel_8:
65 case FK_TPRel_4:
66 case FK_TPRel_8:
67 case FK_GPRel_4:
68 case FK_Data_4:
69 case FK_Data_8:
72 break;
74 // The displacement is then divided by 4 to give us an 18 bit
75 // address range. Forcing a signed division because Value can be negative.
76 Value = (int64_t)Value / 4;
77 // We now check if Value can be encoded as a 16-bit signed immediate.
78 if (!isInt<16>(Value)) {
79 Ctx.reportError(Fixup.getLoc(), "out of range PC16 fixup");
80 return 0;
81 }
82 break;
85 // Forcing a signed division because Value can be negative.
86 Value = (int64_t)Value / 4;
87 // We now check if Value can be encoded as a 19-bit signed immediate.
88 if (!isInt<19>(Value)) {
89 Ctx.reportError(Fixup.getLoc(), "out of range PC19 fixup");
90 return 0;
91 }
92 break;
94 // So far we are only using this type for jumps.
95 // The displacement is then divided by 4 to give us an 28 bit
96 // address range.
97 Value >>= 2;
98 break;
106 // Get the 2nd 16-bits. Also add 1 if bit 15 is 1.
107 Value = ((Value + 0x8000) >> 16) & 0xffff;
108 break;
111 // Get the 3rd 16-bits.
112 Value = ((Value + 0x80008000LL) >> 32) & 0xffff;
113 break;
116 // Get the 4th 16-bits.
117 Value = ((Value + 0x800080008000LL) >> 48) & 0xffff;
118 break;
120 Value >>= 1;
121 break;
123 Value -= 4;
124 // Forcing a signed division because Value can be negative.
125 Value = (int64_t) Value / 2;
126 // We now check if Value can be encoded as a 7-bit signed immediate.
127 if (!isInt<7>(Value)) {
128 Ctx.reportError(Fixup.getLoc(), "out of range PC7 fixup");
129 return 0;
130 }
131 break;
133 Value -= 2;
134 // Forcing a signed division because Value can be negative.
135 Value = (int64_t) Value / 2;
136 // We now check if Value can be encoded as a 10-bit signed immediate.
137 if (!isInt<10>(Value)) {
138 Ctx.reportError(Fixup.getLoc(), "out of range PC10 fixup");
139 return 0;
140 }
141 break;
143 Value -= 4;
144 // Forcing a signed division because Value can be negative.
145 Value = (int64_t)Value / 2;
146 // We now check if Value can be encoded as a 16-bit signed immediate.
147 if (!isInt<16>(Value)) {
148 Ctx.reportError(Fixup.getLoc(), "out of range PC16 fixup");
149 return 0;
150 }
151 break;
153 // Forcing a signed division because Value can be negative.
154 Value = (int64_t)Value / 8;
155 // We now check if Value can be encoded as a 18-bit signed immediate.
156 if (!isInt<18>(Value)) {
157 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
158 return 0;
159 }
160 break;
162 // Check alignment.
163 if ((Value & 7)) {
164 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
165 }
166 // Forcing a signed division because Value can be negative.
167 Value = (int64_t)Value / 8;
168 // We now check if Value can be encoded as a 18-bit signed immediate.
169 if (!isInt<18>(Value)) {
170 Ctx.reportError(Fixup.getLoc(), "out of range PC18 fixup");
171 return 0;
172 }
173 break;
175 // Forcing a signed division because Value can be negative.
176 Value = (int64_t) Value / 4;
177 // We now check if Value can be encoded as a 21-bit signed immediate.
178 if (!isInt<21>(Value)) {
179 Ctx.reportError(Fixup.getLoc(), "out of range PC21 fixup");
180 return 0;
181 }
182 break;
184 // Forcing a signed division because Value can be negative.
185 Value = (int64_t) Value / 4;
186 // We now check if Value can be encoded as a 26-bit signed immediate.
187 if (!isInt<26>(Value)) {
188 Ctx.reportError(Fixup.getLoc(), "out of range PC26 fixup");
189 return 0;
190 }
191 break;
193 // Forcing a signed division because Value can be negative.
194 Value = (int64_t)Value / 2;
195 // We now check if Value can be encoded as a 26-bit signed immediate.
196 if (!isInt<26>(Value)) {
197 Ctx.reportError(Fixup.getLoc(), "out of range PC26 fixup");
198 return 0;
199 }
200 break;
202 // Forcing a signed division because Value can be negative.
203 Value = (int64_t)Value / 2;
204 // We now check if Value can be encoded as a 21-bit signed immediate.
205 if (!isInt<21>(Value)) {
206 Ctx.reportError(Fixup.getLoc(), "out of range PC21 fixup");
207 return 0;
208 }
209 break;
210 }
211
212 return Value;
213}
214
215std::unique_ptr<MCObjectTargetWriter>
217 return createMipsELFObjectWriter(TheTriple, IsN32);
218}
219
220// Little-endian fixup data byte ordering:
221// mips32r2: a | b | x | x
222// microMIPS: x | x | a | b
223
224static bool needsMMLEByteOrder(unsigned Kind) {
225 return Kind != Mips::fixup_MICROMIPS_PC10_S1 &&
228}
229
230// Calculate index for microMIPS specific little endian byte order
231static unsigned calculateMMLEIndex(unsigned i) {
232 assert(i <= 3 && "Index out of range!");
233
234 return (1 - i / 2) * 2 + i % 2;
235}
236
237/// ApplyFixup - Apply the \p Value for given \p Fixup into the provided
238/// data fragment, at the offset specified by the fixup and following the
239/// fixup kind as appropriate.
241 const MCValue &Target,
243 bool IsResolved,
244 const MCSubtargetInfo *STI) const {
245 MCFixupKind Kind = Fixup.getKind();
246 MCContext &Ctx = Asm.getContext();
248
249 if (!Value)
250 return; // Doesn't change encoding.
251
252 // Where do we start in the object
253 unsigned Offset = Fixup.getOffset();
254 // Number of bytes we need to fixup
255 unsigned NumBytes = (getFixupKindInfo(Kind).TargetSize + 7) / 8;
256 // Used to point to big endian bytes
257 unsigned FullSize;
258
259 switch ((unsigned)Kind) {
260 case FK_Data_2:
263 FullSize = 2;
264 break;
265 case FK_Data_8:
267 FullSize = 8;
268 break;
269 case FK_Data_4:
270 default:
271 FullSize = 4;
272 break;
273 }
274
275 // Grab current value, if any, from bits.
276 uint64_t CurVal = 0;
277
278 bool microMipsLEByteOrder = needsMMLEByteOrder((unsigned) Kind);
279
280 for (unsigned i = 0; i != NumBytes; ++i) {
282 ? (microMipsLEByteOrder ? calculateMMLEIndex(i) : i)
283 : (FullSize - 1 - i);
284 CurVal |= (uint64_t)((uint8_t)Data[Offset + Idx]) << (i*8);
285 }
286
287 uint64_t Mask = ((uint64_t)(-1) >>
288 (64 - getFixupKindInfo(Kind).TargetSize));
289 CurVal |= Value & Mask;
290
291 // Write out the fixed up bytes back to the code/data bits.
292 for (unsigned i = 0; i != NumBytes; ++i) {
294 ? (microMipsLEByteOrder ? calculateMMLEIndex(i) : i)
295 : (FullSize - 1 - i);
296 Data[Offset + Idx] = (uint8_t)((CurVal >> (i*8)) & 0xff);
297 }
298}
299
300std::optional<MCFixupKind> MipsAsmBackend::getFixupKind(StringRef Name) const {
302 .Case("BFD_RELOC_NONE", ELF::R_MIPS_NONE)
303 .Case("BFD_RELOC_16", ELF::R_MIPS_16)
304 .Case("BFD_RELOC_32", ELF::R_MIPS_32)
305 .Case("BFD_RELOC_64", ELF::R_MIPS_64)
306 .Default(-1u);
307 if (Type != -1u)
308 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
309
311 .Case("R_MIPS_NONE", FK_NONE)
312 .Case("R_MIPS_32", FK_Data_4)
313 .Case("R_MIPS_CALL_HI16", (MCFixupKind)Mips::fixup_Mips_CALL_HI16)
314 .Case("R_MIPS_CALL_LO16", (MCFixupKind)Mips::fixup_Mips_CALL_LO16)
315 .Case("R_MIPS_CALL16", (MCFixupKind)Mips::fixup_Mips_CALL16)
316 .Case("R_MIPS_GOT16", (MCFixupKind)Mips::fixup_Mips_GOT)
317 .Case("R_MIPS_GOT_PAGE", (MCFixupKind)Mips::fixup_Mips_GOT_PAGE)
318 .Case("R_MIPS_GOT_OFST", (MCFixupKind)Mips::fixup_Mips_GOT_OFST)
319 .Case("R_MIPS_GOT_DISP", (MCFixupKind)Mips::fixup_Mips_GOT_DISP)
320 .Case("R_MIPS_GOT_HI16", (MCFixupKind)Mips::fixup_Mips_GOT_HI16)
321 .Case("R_MIPS_GOT_LO16", (MCFixupKind)Mips::fixup_Mips_GOT_LO16)
322 .Case("R_MIPS_TLS_GOTTPREL", (MCFixupKind)Mips::fixup_Mips_GOTTPREL)
323 .Case("R_MIPS_TLS_DTPREL_HI16", (MCFixupKind)Mips::fixup_Mips_DTPREL_HI)
324 .Case("R_MIPS_TLS_DTPREL_LO16", (MCFixupKind)Mips::fixup_Mips_DTPREL_LO)
325 .Case("R_MIPS_TLS_GD", (MCFixupKind)Mips::fixup_Mips_TLSGD)
326 .Case("R_MIPS_TLS_LDM", (MCFixupKind)Mips::fixup_Mips_TLSLDM)
327 .Case("R_MIPS_TLS_TPREL_HI16", (MCFixupKind)Mips::fixup_Mips_TPREL_HI)
328 .Case("R_MIPS_TLS_TPREL_LO16", (MCFixupKind)Mips::fixup_Mips_TPREL_LO)
329 .Case("R_MICROMIPS_CALL16", (MCFixupKind)Mips::fixup_MICROMIPS_CALL16)
330 .Case("R_MICROMIPS_GOT_DISP", (MCFixupKind)Mips::fixup_MICROMIPS_GOT_DISP)
331 .Case("R_MICROMIPS_GOT_PAGE", (MCFixupKind)Mips::fixup_MICROMIPS_GOT_PAGE)
332 .Case("R_MICROMIPS_GOT_OFST", (MCFixupKind)Mips::fixup_MICROMIPS_GOT_OFST)
333 .Case("R_MICROMIPS_GOT16", (MCFixupKind)Mips::fixup_MICROMIPS_GOT16)
334 .Case("R_MICROMIPS_TLS_GOTTPREL",
336 .Case("R_MICROMIPS_TLS_DTPREL_HI16",
338 .Case("R_MICROMIPS_TLS_DTPREL_LO16",
340 .Case("R_MICROMIPS_TLS_GD", (MCFixupKind)Mips::fixup_MICROMIPS_TLS_GD)
341 .Case("R_MICROMIPS_TLS_LDM", (MCFixupKind)Mips::fixup_MICROMIPS_TLS_LDM)
342 .Case("R_MICROMIPS_TLS_TPREL_HI16",
344 .Case("R_MICROMIPS_TLS_TPREL_LO16",
346 .Case("R_MIPS_JALR", (MCFixupKind)Mips::fixup_Mips_JALR)
347 .Case("R_MICROMIPS_JALR", (MCFixupKind)Mips::fixup_MICROMIPS_JALR)
349}
350
352getFixupKindInfo(MCFixupKind Kind) const {
353 const static MCFixupKindInfo LittleEndianInfos[] = {
354 // This table *must* be in same the order of fixup_* kinds in
355 // MipsFixupKinds.h.
356 //
357 // name offset bits flags
358 { "fixup_Mips_16", 0, 16, 0 },
359 { "fixup_Mips_32", 0, 32, 0 },
360 { "fixup_Mips_REL32", 0, 32, 0 },
361 { "fixup_Mips_26", 0, 26, 0 },
362 { "fixup_Mips_HI16", 0, 16, 0 },
363 { "fixup_Mips_LO16", 0, 16, 0 },
364 { "fixup_Mips_GPREL16", 0, 16, 0 },
365 { "fixup_Mips_LITERAL", 0, 16, 0 },
366 { "fixup_Mips_GOT", 0, 16, 0 },
367 { "fixup_Mips_PC16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
368 { "fixup_Mips_CALL16", 0, 16, 0 },
369 { "fixup_Mips_GPREL32", 0, 32, 0 },
370 { "fixup_Mips_SHIFT5", 6, 5, 0 },
371 { "fixup_Mips_SHIFT6", 6, 5, 0 },
372 { "fixup_Mips_64", 0, 64, 0 },
373 { "fixup_Mips_TLSGD", 0, 16, 0 },
374 { "fixup_Mips_GOTTPREL", 0, 16, 0 },
375 { "fixup_Mips_TPREL_HI", 0, 16, 0 },
376 { "fixup_Mips_TPREL_LO", 0, 16, 0 },
377 { "fixup_Mips_TLSLDM", 0, 16, 0 },
378 { "fixup_Mips_DTPREL_HI", 0, 16, 0 },
379 { "fixup_Mips_DTPREL_LO", 0, 16, 0 },
380 { "fixup_Mips_Branch_PCRel", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
381 { "fixup_Mips_GPOFF_HI", 0, 16, 0 },
382 { "fixup_MICROMIPS_GPOFF_HI",0, 16, 0 },
383 { "fixup_Mips_GPOFF_LO", 0, 16, 0 },
384 { "fixup_MICROMIPS_GPOFF_LO",0, 16, 0 },
385 { "fixup_Mips_GOT_PAGE", 0, 16, 0 },
386 { "fixup_Mips_GOT_OFST", 0, 16, 0 },
387 { "fixup_Mips_GOT_DISP", 0, 16, 0 },
388 { "fixup_Mips_HIGHER", 0, 16, 0 },
389 { "fixup_MICROMIPS_HIGHER", 0, 16, 0 },
390 { "fixup_Mips_HIGHEST", 0, 16, 0 },
391 { "fixup_MICROMIPS_HIGHEST", 0, 16, 0 },
392 { "fixup_Mips_GOT_HI16", 0, 16, 0 },
393 { "fixup_Mips_GOT_LO16", 0, 16, 0 },
394 { "fixup_Mips_CALL_HI16", 0, 16, 0 },
395 { "fixup_Mips_CALL_LO16", 0, 16, 0 },
396 { "fixup_Mips_PC18_S3", 0, 18, MCFixupKindInfo::FKF_IsPCRel },
397 { "fixup_MIPS_PC19_S2", 0, 19, MCFixupKindInfo::FKF_IsPCRel },
398 { "fixup_MIPS_PC21_S2", 0, 21, MCFixupKindInfo::FKF_IsPCRel },
399 { "fixup_MIPS_PC26_S2", 0, 26, MCFixupKindInfo::FKF_IsPCRel },
400 { "fixup_MIPS_PCHI16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
401 { "fixup_MIPS_PCLO16", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
402 { "fixup_MICROMIPS_26_S1", 0, 26, 0 },
403 { "fixup_MICROMIPS_HI16", 0, 16, 0 },
404 { "fixup_MICROMIPS_LO16", 0, 16, 0 },
405 { "fixup_MICROMIPS_GOT16", 0, 16, 0 },
406 { "fixup_MICROMIPS_PC7_S1", 0, 7, MCFixupKindInfo::FKF_IsPCRel },
407 { "fixup_MICROMIPS_PC10_S1", 0, 10, MCFixupKindInfo::FKF_IsPCRel },
408 { "fixup_MICROMIPS_PC16_S1", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
409 { "fixup_MICROMIPS_PC26_S1", 0, 26, MCFixupKindInfo::FKF_IsPCRel },
410 { "fixup_MICROMIPS_PC19_S2", 0, 19, MCFixupKindInfo::FKF_IsPCRel },
411 { "fixup_MICROMIPS_PC18_S3", 0, 18, MCFixupKindInfo::FKF_IsPCRel },
412 { "fixup_MICROMIPS_PC21_S1", 0, 21, MCFixupKindInfo::FKF_IsPCRel },
413 { "fixup_MICROMIPS_CALL16", 0, 16, 0 },
414 { "fixup_MICROMIPS_GOT_DISP", 0, 16, 0 },
415 { "fixup_MICROMIPS_GOT_PAGE", 0, 16, 0 },
416 { "fixup_MICROMIPS_GOT_OFST", 0, 16, 0 },
417 { "fixup_MICROMIPS_TLS_GD", 0, 16, 0 },
418 { "fixup_MICROMIPS_TLS_LDM", 0, 16, 0 },
419 { "fixup_MICROMIPS_TLS_DTPREL_HI16", 0, 16, 0 },
420 { "fixup_MICROMIPS_TLS_DTPREL_LO16", 0, 16, 0 },
421 { "fixup_MICROMIPS_GOTTPREL", 0, 16, 0 },
422 { "fixup_MICROMIPS_TLS_TPREL_HI16", 0, 16, 0 },
423 { "fixup_MICROMIPS_TLS_TPREL_LO16", 0, 16, 0 },
424 { "fixup_Mips_SUB", 0, 64, 0 },
425 { "fixup_MICROMIPS_SUB", 0, 64, 0 },
426 { "fixup_Mips_JALR", 0, 32, 0 },
427 { "fixup_MICROMIPS_JALR", 0, 32, 0 }
428 };
429 static_assert(std::size(LittleEndianInfos) == Mips::NumTargetFixupKinds,
430 "Not all MIPS little endian fixup kinds added!");
431
432 const static MCFixupKindInfo BigEndianInfos[] = {
433 // This table *must* be in same the order of fixup_* kinds in
434 // MipsFixupKinds.h.
435 //
436 // name offset bits flags
437 { "fixup_Mips_16", 16, 16, 0 },
438 { "fixup_Mips_32", 0, 32, 0 },
439 { "fixup_Mips_REL32", 0, 32, 0 },
440 { "fixup_Mips_26", 6, 26, 0 },
441 { "fixup_Mips_HI16", 16, 16, 0 },
442 { "fixup_Mips_LO16", 16, 16, 0 },
443 { "fixup_Mips_GPREL16", 16, 16, 0 },
444 { "fixup_Mips_LITERAL", 16, 16, 0 },
445 { "fixup_Mips_GOT", 16, 16, 0 },
446 { "fixup_Mips_PC16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
447 { "fixup_Mips_CALL16", 16, 16, 0 },
448 { "fixup_Mips_GPREL32", 0, 32, 0 },
449 { "fixup_Mips_SHIFT5", 21, 5, 0 },
450 { "fixup_Mips_SHIFT6", 21, 5, 0 },
451 { "fixup_Mips_64", 0, 64, 0 },
452 { "fixup_Mips_TLSGD", 16, 16, 0 },
453 { "fixup_Mips_GOTTPREL", 16, 16, 0 },
454 { "fixup_Mips_TPREL_HI", 16, 16, 0 },
455 { "fixup_Mips_TPREL_LO", 16, 16, 0 },
456 { "fixup_Mips_TLSLDM", 16, 16, 0 },
457 { "fixup_Mips_DTPREL_HI", 16, 16, 0 },
458 { "fixup_Mips_DTPREL_LO", 16, 16, 0 },
459 { "fixup_Mips_Branch_PCRel",16, 16, MCFixupKindInfo::FKF_IsPCRel },
460 { "fixup_Mips_GPOFF_HI", 16, 16, 0 },
461 { "fixup_MICROMIPS_GPOFF_HI", 16, 16, 0 },
462 { "fixup_Mips_GPOFF_LO", 16, 16, 0 },
463 { "fixup_MICROMIPS_GPOFF_LO", 16, 16, 0 },
464 { "fixup_Mips_GOT_PAGE", 16, 16, 0 },
465 { "fixup_Mips_GOT_OFST", 16, 16, 0 },
466 { "fixup_Mips_GOT_DISP", 16, 16, 0 },
467 { "fixup_Mips_HIGHER", 16, 16, 0 },
468 { "fixup_MICROMIPS_HIGHER", 16, 16, 0 },
469 { "fixup_Mips_HIGHEST", 16, 16, 0 },
470 { "fixup_MICROMIPS_HIGHEST",16, 16, 0 },
471 { "fixup_Mips_GOT_HI16", 16, 16, 0 },
472 { "fixup_Mips_GOT_LO16", 16, 16, 0 },
473 { "fixup_Mips_CALL_HI16", 16, 16, 0 },
474 { "fixup_Mips_CALL_LO16", 16, 16, 0 },
475 { "fixup_Mips_PC18_S3", 14, 18, MCFixupKindInfo::FKF_IsPCRel },
476 { "fixup_MIPS_PC19_S2", 13, 19, MCFixupKindInfo::FKF_IsPCRel },
477 { "fixup_MIPS_PC21_S2", 11, 21, MCFixupKindInfo::FKF_IsPCRel },
478 { "fixup_MIPS_PC26_S2", 6, 26, MCFixupKindInfo::FKF_IsPCRel },
479 { "fixup_MIPS_PCHI16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
480 { "fixup_MIPS_PCLO16", 16, 16, MCFixupKindInfo::FKF_IsPCRel },
481 { "fixup_MICROMIPS_26_S1", 6, 26, 0 },
482 { "fixup_MICROMIPS_HI16", 16, 16, 0 },
483 { "fixup_MICROMIPS_LO16", 16, 16, 0 },
484 { "fixup_MICROMIPS_GOT16", 16, 16, 0 },
485 { "fixup_MICROMIPS_PC7_S1", 9, 7, MCFixupKindInfo::FKF_IsPCRel },
486 { "fixup_MICROMIPS_PC10_S1", 6, 10, MCFixupKindInfo::FKF_IsPCRel },
487 { "fixup_MICROMIPS_PC16_S1",16, 16, MCFixupKindInfo::FKF_IsPCRel },
488 { "fixup_MICROMIPS_PC26_S1", 6, 26, MCFixupKindInfo::FKF_IsPCRel },
489 { "fixup_MICROMIPS_PC19_S2",13, 19, MCFixupKindInfo::FKF_IsPCRel },
490 { "fixup_MICROMIPS_PC18_S3",14, 18, MCFixupKindInfo::FKF_IsPCRel },
491 { "fixup_MICROMIPS_PC21_S1",11, 21, MCFixupKindInfo::FKF_IsPCRel },
492 { "fixup_MICROMIPS_CALL16", 16, 16, 0 },
493 { "fixup_MICROMIPS_GOT_DISP", 16, 16, 0 },
494 { "fixup_MICROMIPS_GOT_PAGE", 16, 16, 0 },
495 { "fixup_MICROMIPS_GOT_OFST", 16, 16, 0 },
496 { "fixup_MICROMIPS_TLS_GD", 16, 16, 0 },
497 { "fixup_MICROMIPS_TLS_LDM", 16, 16, 0 },
498 { "fixup_MICROMIPS_TLS_DTPREL_HI16", 16, 16, 0 },
499 { "fixup_MICROMIPS_TLS_DTPREL_LO16", 16, 16, 0 },
500 { "fixup_MICROMIPS_GOTTPREL", 16, 16, 0 },
501 { "fixup_MICROMIPS_TLS_TPREL_HI16", 16, 16, 0 },
502 { "fixup_MICROMIPS_TLS_TPREL_LO16", 16, 16, 0 },
503 { "fixup_Mips_SUB", 0, 64, 0 },
504 { "fixup_MICROMIPS_SUB", 0, 64, 0 },
505 { "fixup_Mips_JALR", 0, 32, 0 },
506 { "fixup_MICROMIPS_JALR", 0, 32, 0 }
507 };
508 static_assert(std::size(BigEndianInfos) == Mips::NumTargetFixupKinds,
509 "Not all MIPS big endian fixup kinds added!");
510
511 if (Kind >= FirstLiteralRelocationKind)
513 if (Kind < FirstTargetFixupKind)
515
516 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
517 "Invalid kind!");
518
520 return LittleEndianInfos[Kind - FirstTargetFixupKind];
521 return BigEndianInfos[Kind - FirstTargetFixupKind];
522}
523
524/// WriteNopData - Write an (optimal) nop sequence of Count bytes
525/// to the given output. If the target cannot generate such a sequence,
526/// it should return an error.
527///
528/// \return - True on success.
530 const MCSubtargetInfo *STI) const {
531 // Check for a less than instruction size number of bytes
532 // FIXME: 16 bit instructions are not handled yet here.
533 // We shouldn't be using a hard coded number for instruction size.
534
535 // If the count is not 4-byte aligned, we must be writing data into the text
536 // section (otherwise we have unaligned instructions, and thus have far
537 // bigger problems), so just write zeros instead.
538 OS.write_zeros(Count);
539 return true;
540}
541
543 const MCFixup &Fixup,
544 const MCValue &Target,
545 const MCSubtargetInfo *STI) {
546 if (Fixup.getKind() >= FirstLiteralRelocationKind)
547 return true;
548 const unsigned FixupKind = Fixup.getKind();
549 switch (FixupKind) {
550 default:
551 return false;
552 // All these relocations require special processing
553 // at linking time. Delegate this work to a linker.
584 return true;
585 }
586}
587
589 if (const auto *ElfSym = dyn_cast<const MCSymbolELF>(Sym)) {
590 if (ElfSym->getOther() & ELF::STO_MIPS_MICROMIPS)
591 return true;
592 }
593 return false;
594}
595
597 const MCSubtargetInfo &STI,
598 const MCRegisterInfo &MRI,
599 const MCTargetOptions &Options) {
601 STI.getCPU(), Options);
602 return new MipsAsmBackend(T, MRI, STI.getTargetTriple(), STI.getCPU(),
603 ABI.IsN32());
604}
unsigned const MachineRegisterInfo * MRI
static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, uint64_t Value, MCContext &Ctx, const Triple &TheTriple, bool IsResolved)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
Symbol * Sym
Definition: ELF_riscv.cpp:479
static LVOptions Options
Definition: LVOptions.cpp:25
static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value, MCContext &Ctx)
static unsigned calculateMMLEIndex(unsigned i)
static bool needsMMLEByteOrder(unsigned Kind)
PowerPC TLS Dynamic Call Fixup
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:42
const llvm::endianness Endian
Definition: MCAsmBackend.h:51
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
virtual std::optional< MCFixupKind > getFixupKind(StringRef Name) const
Map a relocation name used in .reloc to a fixup kind.
Context object for machine code objects.
Definition: MCContext.h:83
void reportError(SMLoc L, const Twine &Msg)
Definition: MCContext.cpp:1072
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:71
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Generic base class for all target subtargets.
const Triple & getTargetTriple() const
StringRef getCPU() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
This represents an "assembler immediate".
Definition: MCValue.h:36
static MipsABIInfo computeTargetABI(const Triple &TT, StringRef CPU, const MCTargetOptions &Options)
Definition: MipsABIInfo.cpp:56
bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, const MCSubtargetInfo *STI) override
Hook to check if a relocation is needed for some target specific reason.
unsigned getNumFixupKinds() const override
Get the number of target specific fixup kinds.
bool writeNopData(raw_ostream &OS, uint64_t Count, const MCSubtargetInfo *STI) const override
WriteNopData - Write an (optimal) nop sequence of Count bytes to the given output.
void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, const MCValue &Target, MutableArrayRef< char > Data, uint64_t Value, bool IsResolved, const MCSubtargetInfo *STI) const override
ApplyFixup - Apply the Value for given Fixup into the provided data fragment, at the offset specified...
std::optional< MCFixupKind > getFixupKind(StringRef Name) const override
Map a relocation name used in .reloc to a fixup kind.
const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const override
Get information on a fixup kind.
std::unique_ptr< MCObjectTargetWriter > createObjectTargetWriter() const override
bool isMicroMips(const MCSymbol *Sym) const override
Check whether a given symbol has been flagged with MICROMIPS flag.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:310
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & write_zeros(unsigned NumZeros)
write_zeros - Insert 'NumZeros' nulls.
@ STO_MIPS_MICROMIPS
Definition: ELF.h:591
@ fixup_MICROMIPS_TLS_TPREL_LO16
@ fixup_Mips_DTPREL_HI
@ fixup_MICROMIPS_PC7_S1
@ fixup_MICROMIPS_GOT_PAGE
@ fixup_MICROMIPS_PC16_S1
@ fixup_MICROMIPS_HIGHER
@ fixup_MICROMIPS_TLS_TPREL_HI16
@ fixup_MICROMIPS_PC21_S1
@ fixup_MICROMIPS_GPOFF_LO
@ fixup_MICROMIPS_PC19_S2
@ fixup_MICROMIPS_CALL16
@ fixup_MICROMIPS_TLS_LDM
@ fixup_MICROMIPS_GOT_OFST
@ fixup_MICROMIPS_TLS_DTPREL_HI16
@ fixup_MICROMIPS_PC10_S1
@ fixup_MICROMIPS_TLS_GD
@ fixup_MICROMIPS_HIGHEST
@ fixup_MICROMIPS_GOT_DISP
@ fixup_Mips_DTPREL_LO
@ fixup_MICROMIPS_PC18_S3
@ fixup_MICROMIPS_PC26_S1
@ fixup_MICROMIPS_GOTTPREL
@ fixup_MICROMIPS_TLS_DTPREL_LO16
@ fixup_MICROMIPS_GPOFF_HI
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
std::unique_ptr< MCObjectTargetWriter > createMipsELFObjectWriter(const Triple &TT, bool IsN32)
MCFixupKind
Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:21
@ FirstTargetFixupKind
Definition: MCFixup.h:45
@ FirstLiteralRelocationKind
The range [FirstLiteralRelocationKind, MaxTargetFixupKind) is used for relocations coming from ....
Definition: MCFixup.h:50
@ FK_Data_8
A eight-byte fixup.
Definition: MCFixup.h:26
@ FK_Data_4
A four-byte fixup.
Definition: MCFixup.h:25
@ FK_DTPRel_4
A four-byte dtp relative fixup.
Definition: MCFixup.h:36
@ FK_DTPRel_8
A eight-byte dtp relative fixup.
Definition: MCFixup.h:37
@ FK_NONE
A no-op fixup.
Definition: MCFixup.h:22
@ FK_TPRel_4
A four-byte tp relative fixup.
Definition: MCFixup.h:38
@ FK_GPRel_4
A four-byte gp relative fixup.
Definition: MCFixup.h:34
@ FK_TPRel_8
A eight-byte tp relative fixup.
Definition: MCFixup.h:39
@ FK_Data_2
A two-byte fixup.
Definition: MCFixup.h:24
@ Default
The result values are uniform if and only if all operands are uniform.
MCAsmBackend * createMipsAsmBackend(const Target &T, const MCSubtargetInfo &STI, const MCRegisterInfo &MRI, const MCTargetOptions &Options)
Target independent information on a fixup kind.
@ FKF_IsPCRel
Is this fixup kind PCrelative? This is used by the assembler backend to evaluate fixup values in a ta...
unsigned TargetSize
The number of bits written by this fixup.