LLVM 20.0.0git
TypeMetadataUtils.cpp
Go to the documentation of this file.
1//===- TypeMetadataUtils.cpp - Utilities related to type metadata ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains functions that make it easier to manipulate type metadata
10// for devirtualization.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/IR/Constants.h"
16#include "llvm/IR/Dominators.h"
19#include "llvm/IR/Module.h"
20
21using namespace llvm;
22
23// Search for virtual calls that call FPtr and add them to DevirtCalls.
24static void
26 bool *HasNonCallUses, Value *FPtr, uint64_t Offset,
27 const CallInst *CI, DominatorTree &DT) {
28 for (const Use &U : FPtr->uses()) {
29 Instruction *User = cast<Instruction>(U.getUser());
30 // Ignore this instruction if it is not dominated by the type intrinsic
31 // being analyzed. Otherwise we may transform a call sharing the same
32 // vtable pointer incorrectly. Specifically, this situation can arise
33 // after indirect call promotion and inlining, where we may have uses
34 // of the vtable pointer guarded by a function pointer check, and a fallback
35 // indirect call.
36 if (CI->getFunction() != User->getFunction())
37 continue;
38 if (!DT.dominates(CI, User))
39 continue;
40 if (isa<BitCastInst>(User)) {
41 findCallsAtConstantOffset(DevirtCalls, HasNonCallUses, User, Offset, CI,
42 DT);
43 } else if (auto *CI = dyn_cast<CallInst>(User)) {
44 DevirtCalls.push_back({Offset, *CI});
45 } else if (auto *II = dyn_cast<InvokeInst>(User)) {
46 DevirtCalls.push_back({Offset, *II});
47 } else if (HasNonCallUses) {
48 *HasNonCallUses = true;
49 }
50 }
51}
52
53// Search for virtual calls that load from VPtr and add them to DevirtCalls.
55 const Module *M, SmallVectorImpl<DevirtCallSite> &DevirtCalls, Value *VPtr,
56 int64_t Offset, const CallInst *CI, DominatorTree &DT) {
57 for (const Use &U : VPtr->uses()) {
58 Value *User = U.getUser();
59 if (isa<BitCastInst>(User)) {
60 findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset, CI, DT);
61 } else if (isa<LoadInst>(User)) {
62 findCallsAtConstantOffset(DevirtCalls, nullptr, User, Offset, CI, DT);
63 } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
64 // Take into account the GEP offset.
65 if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
66 SmallVector<Value *, 8> Indices(drop_begin(GEP->operands()));
67 int64_t GEPOffset = M->getDataLayout().getIndexedOffsetInType(
68 GEP->getSourceElementType(), Indices);
69 findLoadCallsAtConstantOffset(M, DevirtCalls, User, Offset + GEPOffset,
70 CI, DT);
71 }
72 } else if (auto *Call = dyn_cast<CallInst>(User)) {
73 if (Call->getIntrinsicID() == llvm::Intrinsic::load_relative) {
74 if (auto *LoadOffset = dyn_cast<ConstantInt>(Call->getOperand(1))) {
75 findCallsAtConstantOffset(DevirtCalls, nullptr, User,
76 Offset + LoadOffset->getSExtValue(), CI,
77 DT);
78 }
79 }
80 }
81 }
82}
83
86 SmallVectorImpl<CallInst *> &Assumes, const CallInst *CI,
87 DominatorTree &DT) {
88 assert(CI->getCalledFunction()->getIntrinsicID() == Intrinsic::type_test ||
90 Intrinsic::public_type_test);
91
92 const Module *M = CI->getParent()->getParent()->getParent();
93
94 // Find llvm.assume intrinsics for this llvm.type.test call.
95 for (const Use &CIU : CI->uses())
96 if (auto *Assume = dyn_cast<AssumeInst>(CIU.getUser()))
97 Assumes.push_back(Assume);
98
99 // If we found any, search for virtual calls based on %p and add them to
100 // DevirtCalls.
101 if (!Assumes.empty())
103 M, DevirtCalls, CI->getArgOperand(0)->stripPointerCasts(), 0, CI, DT);
104}
105
109 SmallVectorImpl<Instruction *> &Preds, bool &HasNonCallUses,
110 const CallInst *CI, DominatorTree &DT) {
112 Intrinsic::type_checked_load ||
114 Intrinsic::type_checked_load_relative);
115
116 auto *Offset = dyn_cast<ConstantInt>(CI->getArgOperand(1));
117 if (!Offset) {
118 HasNonCallUses = true;
119 return;
120 }
121
122 for (const Use &U : CI->uses()) {
123 auto CIU = U.getUser();
124 if (auto EVI = dyn_cast<ExtractValueInst>(CIU)) {
125 if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 0) {
126 LoadedPtrs.push_back(EVI);
127 continue;
128 }
129 if (EVI->getNumIndices() == 1 && EVI->getIndices()[0] == 1) {
130 Preds.push_back(EVI);
131 continue;
132 }
133 }
134 HasNonCallUses = true;
135 }
136
137 for (Value *LoadedPtr : LoadedPtrs)
138 findCallsAtConstantOffset(DevirtCalls, &HasNonCallUses, LoadedPtr,
139 Offset->getZExtValue(), CI, DT);
140}
141
143 Constant *TopLevelGlobal) {
144 // TODO: Ideally it would be the caller who knows if it's appropriate to strip
145 // the DSOLocalEquicalent. More generally, it would feel more appropriate to
146 // have two functions that handle absolute and relative pointers separately.
147 if (auto *Equiv = dyn_cast<DSOLocalEquivalent>(I))
148 I = Equiv->getGlobalValue();
149
150 if (I->getType()->isPointerTy()) {
151 if (Offset == 0)
152 return I;
153 return nullptr;
154 }
155
156 const DataLayout &DL = M.getDataLayout();
157
158 if (auto *C = dyn_cast<ConstantStruct>(I)) {
159 const StructLayout *SL = DL.getStructLayout(C->getType());
160 if (Offset >= SL->getSizeInBytes())
161 return nullptr;
162
163 unsigned Op = SL->getElementContainingOffset(Offset);
164 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
165 Offset - SL->getElementOffset(Op), M,
166 TopLevelGlobal);
167 }
168 if (auto *C = dyn_cast<ConstantArray>(I)) {
169 ArrayType *VTableTy = C->getType();
170 uint64_t ElemSize = DL.getTypeAllocSize(VTableTy->getElementType());
171
172 unsigned Op = Offset / ElemSize;
173 if (Op >= C->getNumOperands())
174 return nullptr;
175
176 return getPointerAtOffset(cast<Constant>(I->getOperand(Op)),
177 Offset % ElemSize, M, TopLevelGlobal);
178 }
179
180 // Relative-pointer support starts here.
181 if (auto *CI = dyn_cast<ConstantInt>(I)) {
182 if (Offset == 0 && CI->isZero()) {
183 return I;
184 }
185 }
186 if (auto *C = dyn_cast<ConstantExpr>(I)) {
187 switch (C->getOpcode()) {
188 case Instruction::Trunc:
189 case Instruction::PtrToInt:
190 return getPointerAtOffset(cast<Constant>(C->getOperand(0)), Offset, M,
191 TopLevelGlobal);
192 case Instruction::Sub: {
193 auto *Operand0 = cast<Constant>(C->getOperand(0));
194 auto *Operand1 = cast<Constant>(C->getOperand(1));
195
196 auto StripGEP = [](Constant *C) {
197 auto *CE = dyn_cast<ConstantExpr>(C);
198 if (!CE)
199 return C;
200 if (CE->getOpcode() != Instruction::GetElementPtr)
201 return C;
202 return CE->getOperand(0);
203 };
204 auto *Operand1TargetGlobal = StripGEP(getPointerAtOffset(Operand1, 0, M));
205
206 // Check that in the "sub (@a, @b)" expression, @b points back to the top
207 // level global (or a GEP thereof) that we're processing. Otherwise bail.
208 if (Operand1TargetGlobal != TopLevelGlobal)
209 return nullptr;
210
211 return getPointerAtOffset(Operand0, Offset, M, TopLevelGlobal);
212 }
213 default:
214 return nullptr;
215 }
216 }
217 return nullptr;
218}
219
220std::pair<Function *, Constant *>
222 Module &M) {
224 if (!Ptr)
225 return std::pair<Function *, Constant *>(nullptr, nullptr);
226
227 auto C = Ptr->stripPointerCasts();
228 // Make sure this is a function or alias to a function.
229 auto Fn = dyn_cast<Function>(C);
230 auto A = dyn_cast<GlobalAlias>(C);
231 if (!Fn && A)
232 Fn = dyn_cast<Function>(A->getAliasee());
233
234 if (!Fn)
235 return std::pair<Function *, Constant *>(nullptr, nullptr);
236
237 return std::pair<Function *, Constant *>(Fn, C);
238}
239
241 auto *PtrExpr = dyn_cast<ConstantExpr>(U);
242 if (!PtrExpr || PtrExpr->getOpcode() != Instruction::PtrToInt)
243 return;
244
245 for (auto *PtrToIntUser : PtrExpr->users()) {
246 auto *SubExpr = dyn_cast<ConstantExpr>(PtrToIntUser);
247 if (!SubExpr || SubExpr->getOpcode() != Instruction::Sub)
248 return;
249
250 SubExpr->replaceNonMetadataUsesWith(
251 ConstantInt::get(SubExpr->getType(), 0));
252 }
253}
254
256 for (auto *U : C->users()) {
257 if (auto *Equiv = dyn_cast<DSOLocalEquivalent>(U))
259 else
261 }
262}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Hexagon Common GEP
#define I(x, y, z)
Definition: MD5.cpp:58
Module.h This file contains the declarations for the Module class.
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void findLoadCallsAtConstantOffset(const Module *M, SmallVectorImpl< DevirtCallSite > &DevirtCalls, Value *VPtr, int64_t Offset, const CallInst *CI, DominatorTree &DT)
static void findCallsAtConstantOffset(SmallVectorImpl< DevirtCallSite > &DevirtCalls, bool *HasNonCallUses, Value *FPtr, uint64_t Offset, const CallInst *CI, DominatorTree &DT)
static void replaceRelativePointerUserWithZero(User *U)
Class to represent array types.
Definition: DerivedTypes.h:371
Type * getElementType() const
Definition: DerivedTypes.h:384
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:249
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:70
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:571
TypeSize getSizeInBytes() const
Definition: DataLayout.h:578
unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
Definition: DataLayout.cpp:92
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:600
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:694
iterator_range< use_iterator > uses()
Definition: Value.h:376
const ParentTy * getParent() const
Definition: ilist_node.h:32
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
void findDevirtualizableCallsForTypeCheckedLoad(SmallVectorImpl< DevirtCallSite > &DevirtCalls, SmallVectorImpl< Instruction * > &LoadedPtrs, SmallVectorImpl< Instruction * > &Preds, bool &HasNonCallUses, const CallInst *CI, DominatorTree &DT)
Given a call to the intrinsic @llvm.type.checked.load, find all devirtualizable call sites based on t...
void replaceRelativePointerUsersWithZero(Constant *C)
Finds the same "relative pointer" pattern as described above, where the target is C,...
void findDevirtualizableCallsForTypeTest(SmallVectorImpl< DevirtCallSite > &DevirtCalls, SmallVectorImpl< CallInst * > &Assumes, const CallInst *CI, DominatorTree &DT)
Given a call to the intrinsic @llvm.type.test, find all devirtualizable call sites based on the call ...
Constant * getPointerAtOffset(Constant *I, uint64_t Offset, Module &M, Constant *TopLevelGlobal=nullptr)
Processes a Constant recursively looking into elements of arrays, structs and expressions to find a t...
std::pair< Function *, Constant * > getFunctionAtVTableOffset(GlobalVariable *GV, uint64_t Offset, Module &M)
Given a vtable and a specified offset, returns the function and the trivial pointer at the specified ...