LLVM  12.0.0git
CloneFunction.cpp
Go to the documentation of this file.
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner. This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
41  const Twine &NameSuffix, Function *F,
42  ClonedCodeInfo *CodeInfo,
43  DebugInfoFinder *DIFinder) {
45  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46  if (BB->hasName())
47  NewBB->setName(BB->getName() + NameSuffix);
48 
49  bool hasCalls = false, hasDynamicAllocas = false;
50  Module *TheModule = F ? F->getParent() : nullptr;
51 
52  // Loop over all instructions, and copy them over.
53  for (const Instruction &I : *BB) {
54  if (DIFinder && TheModule)
55  DIFinder->processInstruction(*TheModule, I);
56 
57  Instruction *NewInst = I.clone();
58  if (I.hasName())
59  NewInst->setName(I.getName() + NameSuffix);
60  NewBB->getInstList().push_back(NewInst);
61  VMap[&I] = NewInst; // Add instruction map to value.
62 
63  hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64  if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65  if (!AI->isStaticAlloca()) {
66  hasDynamicAllocas = true;
67  }
68  }
69  }
70 
71  if (CodeInfo) {
72  CodeInfo->ContainsCalls |= hasCalls;
73  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
74  }
75  return NewBB;
76 }
77 
78 // Clone OldFunc into NewFunc, transforming the old arguments into references to
79 // VMap values.
80 //
81 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
82  ValueToValueMapTy &VMap,
83  bool ModuleLevelChanges,
85  const char *NameSuffix, ClonedCodeInfo *CodeInfo,
86  ValueMapTypeRemapper *TypeMapper,
87  ValueMaterializer *Materializer) {
88  assert(NameSuffix && "NameSuffix cannot be null!");
89 
90 #ifndef NDEBUG
91  for (const Argument &I : OldFunc->args())
92  assert(VMap.count(&I) && "No mapping from source argument specified!");
93 #endif
94 
95  // Copy all attributes other than those stored in the AttributeList. We need
96  // to remap the parameter indices of the AttributeList.
97  AttributeList NewAttrs = NewFunc->getAttributes();
98  NewFunc->copyAttributesFrom(OldFunc);
99  NewFunc->setAttributes(NewAttrs);
100 
101  // Fix up the personality function that got copied over.
102  if (OldFunc->hasPersonalityFn())
103  NewFunc->setPersonalityFn(
104  MapValue(OldFunc->getPersonalityFn(), VMap,
105  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
106  TypeMapper, Materializer));
107 
108  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
109  AttributeList OldAttrs = OldFunc->getAttributes();
110 
111  // Clone any argument attributes that are present in the VMap.
112  for (const Argument &OldArg : OldFunc->args()) {
113  if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
114  NewArgAttrs[NewArg->getArgNo()] =
115  OldAttrs.getParamAttributes(OldArg.getArgNo());
116  }
117  }
118 
119  NewFunc->setAttributes(
120  AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
121  OldAttrs.getRetAttributes(), NewArgAttrs));
122 
123  bool MustCloneSP =
124  OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
125  DISubprogram *SP = OldFunc->getSubprogram();
126  if (SP) {
127  assert(!MustCloneSP || ModuleLevelChanges);
128  // Add mappings for some DebugInfo nodes that we don't want duplicated
129  // even if they're distinct.
130  auto &MD = VMap.MD();
131  MD[SP->getUnit()].reset(SP->getUnit());
132  MD[SP->getType()].reset(SP->getType());
133  MD[SP->getFile()].reset(SP->getFile());
134  // If we're not cloning into the same module, no need to clone the
135  // subprogram
136  if (!MustCloneSP)
137  MD[SP].reset(SP);
138  }
139 
141  OldFunc->getAllMetadata(MDs);
142  for (auto MD : MDs) {
143  NewFunc->addMetadata(
144  MD.first,
145  *MapMetadata(MD.second, VMap,
146  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
147  TypeMapper, Materializer));
148  }
149 
150  // When we remap instructions, we want to avoid duplicating inlined
151  // DISubprograms, so record all subprograms we find as we duplicate
152  // instructions and then freeze them in the MD map.
153  // We also record information about dbg.value and dbg.declare to avoid
154  // duplicating the types.
155  DebugInfoFinder DIFinder;
156 
157  // Loop over all of the basic blocks in the function, cloning them as
158  // appropriate. Note that we save BE this way in order to handle cloning of
159  // recursive functions into themselves.
160  //
161  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
162  BI != BE; ++BI) {
163  const BasicBlock &BB = *BI;
164 
165  // Create a new basic block and copy instructions into it!
166  BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
167  ModuleLevelChanges ? &DIFinder : nullptr);
168 
169  // Add basic block mapping.
170  VMap[&BB] = CBB;
171 
172  // It is only legal to clone a function if a block address within that
173  // function is never referenced outside of the function. Given that, we
174  // want to map block addresses from the old function to block addresses in
175  // the clone. (This is different from the generic ValueMapper
176  // implementation, which generates an invalid blockaddress when
177  // cloning a function.)
178  if (BB.hasAddressTaken()) {
179  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
180  const_cast<BasicBlock*>(&BB));
181  VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
182  }
183 
184  // Note return instructions for the caller.
185  if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
186  Returns.push_back(RI);
187  }
188 
189  for (DISubprogram *ISP : DIFinder.subprograms())
190  if (ISP != SP)
191  VMap.MD()[ISP].reset(ISP);
192 
193  for (DICompileUnit *CU : DIFinder.compile_units())
194  VMap.MD()[CU].reset(CU);
195 
196  for (DIType *Type : DIFinder.types())
197  VMap.MD()[Type].reset(Type);
198 
199  // Loop over all of the instructions in the function, fixing up operand
200  // references as we go. This uses VMap to do all the hard work.
201  for (Function::iterator BB =
202  cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
203  BE = NewFunc->end();
204  BB != BE; ++BB)
205  // Loop over all instructions, fixing each one as we find it...
206  for (Instruction &II : *BB)
207  RemapInstruction(&II, VMap,
208  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
209  TypeMapper, Materializer);
210 
211  // Register all DICompileUnits of the old parent module in the new parent module
212  auto* OldModule = OldFunc->getParent();
213  auto* NewModule = NewFunc->getParent();
214  if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
215  auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
216  // Avoid multiple insertions of the same DICompileUnit to NMD.
218  for (auto* Operand : NMD->operands())
219  Visited.insert(Operand);
220  for (auto* Unit : DIFinder.compile_units())
221  // VMap.MD()[Unit] == Unit
222  if (Visited.insert(Unit).second)
223  NMD->addOperand(Unit);
224  }
225 }
226 
227 /// Return a copy of the specified function and add it to that function's
228 /// module. Also, any references specified in the VMap are changed to refer to
229 /// their mapped value instead of the original one. If any of the arguments to
230 /// the function are in the VMap, the arguments are deleted from the resultant
231 /// function. The VMap is updated to include mappings from all of the
232 /// instructions and basicblocks in the function from their old to new values.
233 ///
235  ClonedCodeInfo *CodeInfo) {
236  std::vector<Type*> ArgTypes;
237 
238  // The user might be deleting arguments to the function by specifying them in
239  // the VMap. If so, we need to not add the arguments to the arg ty vector
240  //
241  for (const Argument &I : F->args())
242  if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
243  ArgTypes.push_back(I.getType());
244 
245  // Create a new function type...
247  ArgTypes, F->getFunctionType()->isVarArg());
248 
249  // Create the new function...
250  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
251  F->getName(), F->getParent());
252 
253  // Loop over the arguments, copying the names of the mapped arguments over...
254  Function::arg_iterator DestI = NewF->arg_begin();
255  for (const Argument & I : F->args())
256  if (VMap.count(&I) == 0) { // Is this argument preserved?
257  DestI->setName(I.getName()); // Copy the name over...
258  VMap[&I] = &*DestI++; // Add mapping to VMap
259  }
260 
261  SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
262  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
263  CodeInfo);
264 
265  return NewF;
266 }
267 
268 
269 
270 namespace {
271  /// This is a private class used to implement CloneAndPruneFunctionInto.
272  struct PruningFunctionCloner {
273  Function *NewFunc;
274  const Function *OldFunc;
275  ValueToValueMapTy &VMap;
276  bool ModuleLevelChanges;
277  const char *NameSuffix;
278  ClonedCodeInfo *CodeInfo;
279 
280  public:
281  PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
282  ValueToValueMapTy &valueMap, bool moduleLevelChanges,
283  const char *nameSuffix, ClonedCodeInfo *codeInfo)
284  : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
285  ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
286  CodeInfo(codeInfo) {}
287 
288  /// The specified block is found to be reachable, clone it and
289  /// anything that it can reach.
290  void CloneBlock(const BasicBlock *BB,
291  BasicBlock::const_iterator StartingInst,
292  std::vector<const BasicBlock*> &ToClone);
293  };
294 }
295 
296 /// The specified block is found to be reachable, clone it and
297 /// anything that it can reach.
298 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
299  BasicBlock::const_iterator StartingInst,
300  std::vector<const BasicBlock*> &ToClone){
301  WeakTrackingVH &BBEntry = VMap[BB];
302 
303  // Have we already cloned this block?
304  if (BBEntry) return;
305 
306  // Nope, clone it now.
307  BasicBlock *NewBB;
308  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
309  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
310 
311  // It is only legal to clone a function if a block address within that
312  // function is never referenced outside of the function. Given that, we
313  // want to map block addresses from the old function to block addresses in
314  // the clone. (This is different from the generic ValueMapper
315  // implementation, which generates an invalid blockaddress when
316  // cloning a function.)
317  //
318  // Note that we don't need to fix the mapping for unreachable blocks;
319  // the default mapping there is safe.
320  if (BB->hasAddressTaken()) {
321  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
322  const_cast<BasicBlock*>(BB));
323  VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
324  }
325 
326  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
327 
328  // Loop over all instructions, and copy them over, DCE'ing as we go. This
329  // loop doesn't include the terminator.
330  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
331  II != IE; ++II) {
332 
333  Instruction *NewInst = II->clone();
334 
335  // Eagerly remap operands to the newly cloned instruction, except for PHI
336  // nodes for which we defer processing until we update the CFG.
337  if (!isa<PHINode>(NewInst)) {
338  RemapInstruction(NewInst, VMap,
339  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
340 
341  // If we can simplify this instruction to some other value, simply add
342  // a mapping to that value rather than inserting a new instruction into
343  // the basic block.
344  if (Value *V =
345  SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
346  // On the off-chance that this simplifies to an instruction in the old
347  // function, map it back into the new function.
348  if (NewFunc != OldFunc)
349  if (Value *MappedV = VMap.lookup(V))
350  V = MappedV;
351 
352  if (!NewInst->mayHaveSideEffects()) {
353  VMap[&*II] = V;
354  NewInst->deleteValue();
355  continue;
356  }
357  }
358  }
359 
360  if (II->hasName())
361  NewInst->setName(II->getName()+NameSuffix);
362  VMap[&*II] = NewInst; // Add instruction map to value.
363  NewBB->getInstList().push_back(NewInst);
364  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
365 
366  if (CodeInfo)
367  if (auto *CB = dyn_cast<CallBase>(&*II))
368  if (CB->hasOperandBundles())
369  CodeInfo->OperandBundleCallSites.push_back(NewInst);
370 
371  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
372  if (isa<ConstantInt>(AI->getArraySize()))
373  hasStaticAllocas = true;
374  else
375  hasDynamicAllocas = true;
376  }
377  }
378 
379  // Finally, clone over the terminator.
380  const Instruction *OldTI = BB->getTerminator();
381  bool TerminatorDone = false;
382  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
383  if (BI->isConditional()) {
384  // If the condition was a known constant in the callee...
385  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
386  // Or is a known constant in the caller...
387  if (!Cond) {
388  Value *V = VMap.lookup(BI->getCondition());
389  Cond = dyn_cast_or_null<ConstantInt>(V);
390  }
391 
392  // Constant fold to uncond branch!
393  if (Cond) {
394  BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
395  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
396  ToClone.push_back(Dest);
397  TerminatorDone = true;
398  }
399  }
400  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
401  // If switching on a value known constant in the caller.
402  ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
403  if (!Cond) { // Or known constant after constant prop in the callee...
404  Value *V = VMap.lookup(SI->getCondition());
405  Cond = dyn_cast_or_null<ConstantInt>(V);
406  }
407  if (Cond) { // Constant fold to uncond branch!
408  SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
409  BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
410  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
411  ToClone.push_back(Dest);
412  TerminatorDone = true;
413  }
414  }
415 
416  if (!TerminatorDone) {
417  Instruction *NewInst = OldTI->clone();
418  if (OldTI->hasName())
419  NewInst->setName(OldTI->getName()+NameSuffix);
420  NewBB->getInstList().push_back(NewInst);
421  VMap[OldTI] = NewInst; // Add instruction map to value.
422 
423  if (CodeInfo)
424  if (auto *CB = dyn_cast<CallBase>(OldTI))
425  if (CB->hasOperandBundles())
426  CodeInfo->OperandBundleCallSites.push_back(NewInst);
427 
428  // Recursively clone any reachable successor blocks.
429  const Instruction *TI = BB->getTerminator();
430  for (const BasicBlock *Succ : successors(TI))
431  ToClone.push_back(Succ);
432  }
433 
434  if (CodeInfo) {
435  CodeInfo->ContainsCalls |= hasCalls;
436  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
437  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
438  BB != &BB->getParent()->front();
439  }
440 }
441 
442 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
443 /// entire function. Instead it starts at an instruction provided by the caller
444 /// and copies (and prunes) only the code reachable from that instruction.
445 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
446  const Instruction *StartingInst,
447  ValueToValueMapTy &VMap,
448  bool ModuleLevelChanges,
450  const char *NameSuffix,
451  ClonedCodeInfo *CodeInfo) {
452  assert(NameSuffix && "NameSuffix cannot be null!");
453 
454  ValueMapTypeRemapper *TypeMapper = nullptr;
455  ValueMaterializer *Materializer = nullptr;
456 
457 #ifndef NDEBUG
458  // If the cloning starts at the beginning of the function, verify that
459  // the function arguments are mapped.
460  if (!StartingInst)
461  for (const Argument &II : OldFunc->args())
462  assert(VMap.count(&II) && "No mapping from source argument specified!");
463 #endif
464 
465  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
466  NameSuffix, CodeInfo);
467  const BasicBlock *StartingBB;
468  if (StartingInst)
469  StartingBB = StartingInst->getParent();
470  else {
471  StartingBB = &OldFunc->getEntryBlock();
472  StartingInst = &StartingBB->front();
473  }
474 
475  // Clone the entry block, and anything recursively reachable from it.
476  std::vector<const BasicBlock*> CloneWorklist;
477  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
478  while (!CloneWorklist.empty()) {
479  const BasicBlock *BB = CloneWorklist.back();
480  CloneWorklist.pop_back();
481  PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
482  }
483 
484  // Loop over all of the basic blocks in the old function. If the block was
485  // reachable, we have cloned it and the old block is now in the value map:
486  // insert it into the new function in the right order. If not, ignore it.
487  //
488  // Defer PHI resolution until rest of function is resolved.
489  SmallVector<const PHINode*, 16> PHIToResolve;
490  for (const BasicBlock &BI : *OldFunc) {
491  Value *V = VMap.lookup(&BI);
492  BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
493  if (!NewBB) continue; // Dead block.
494 
495  // Add the new block to the new function.
496  NewFunc->getBasicBlockList().push_back(NewBB);
497 
498  // Handle PHI nodes specially, as we have to remove references to dead
499  // blocks.
500  for (const PHINode &PN : BI.phis()) {
501  // PHI nodes may have been remapped to non-PHI nodes by the caller or
502  // during the cloning process.
503  if (isa<PHINode>(VMap[&PN]))
504  PHIToResolve.push_back(&PN);
505  else
506  break;
507  }
508 
509  // Finally, remap the terminator instructions, as those can't be remapped
510  // until all BBs are mapped.
511  RemapInstruction(NewBB->getTerminator(), VMap,
512  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
513  TypeMapper, Materializer);
514  }
515 
516  // Defer PHI resolution until rest of function is resolved, PHI resolution
517  // requires the CFG to be up-to-date.
518  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
519  const PHINode *OPN = PHIToResolve[phino];
520  unsigned NumPreds = OPN->getNumIncomingValues();
521  const BasicBlock *OldBB = OPN->getParent();
522  BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
523 
524  // Map operands for blocks that are live and remove operands for blocks
525  // that are dead.
526  for (; phino != PHIToResolve.size() &&
527  PHIToResolve[phino]->getParent() == OldBB; ++phino) {
528  OPN = PHIToResolve[phino];
529  PHINode *PN = cast<PHINode>(VMap[OPN]);
530  for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
531  Value *V = VMap.lookup(PN->getIncomingBlock(pred));
532  if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
533  Value *InVal = MapValue(PN->getIncomingValue(pred),
534  VMap,
535  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
536  assert(InVal && "Unknown input value?");
537  PN->setIncomingValue(pred, InVal);
538  PN->setIncomingBlock(pred, MappedBlock);
539  } else {
540  PN->removeIncomingValue(pred, false);
541  --pred; // Revisit the next entry.
542  --e;
543  }
544  }
545  }
546 
547  // The loop above has removed PHI entries for those blocks that are dead
548  // and has updated others. However, if a block is live (i.e. copied over)
549  // but its terminator has been changed to not go to this block, then our
550  // phi nodes will have invalid entries. Update the PHI nodes in this
551  // case.
552  PHINode *PN = cast<PHINode>(NewBB->begin());
553  NumPreds = pred_size(NewBB);
554  if (NumPreds != PN->getNumIncomingValues()) {
555  assert(NumPreds < PN->getNumIncomingValues());
556  // Count how many times each predecessor comes to this block.
557  std::map<BasicBlock*, unsigned> PredCount;
558  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
559  PI != E; ++PI)
560  --PredCount[*PI];
561 
562  // Figure out how many entries to remove from each PHI.
563  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
564  ++PredCount[PN->getIncomingBlock(i)];
565 
566  // At this point, the excess predecessor entries are positive in the
567  // map. Loop over all of the PHIs and remove excess predecessor
568  // entries.
569  BasicBlock::iterator I = NewBB->begin();
570  for (; (PN = dyn_cast<PHINode>(I)); ++I) {
571  for (const auto &PCI : PredCount) {
572  BasicBlock *Pred = PCI.first;
573  for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
574  PN->removeIncomingValue(Pred, false);
575  }
576  }
577  }
578 
579  // If the loops above have made these phi nodes have 0 or 1 operand,
580  // replace them with undef or the input value. We must do this for
581  // correctness, because 0-operand phis are not valid.
582  PN = cast<PHINode>(NewBB->begin());
583  if (PN->getNumIncomingValues() == 0) {
584  BasicBlock::iterator I = NewBB->begin();
585  BasicBlock::const_iterator OldI = OldBB->begin();
586  while ((PN = dyn_cast<PHINode>(I++))) {
587  Value *NV = UndefValue::get(PN->getType());
588  PN->replaceAllUsesWith(NV);
589  assert(VMap[&*OldI] == PN && "VMap mismatch");
590  VMap[&*OldI] = NV;
591  PN->eraseFromParent();
592  ++OldI;
593  }
594  }
595  }
596 
597  // Make a second pass over the PHINodes now that all of them have been
598  // remapped into the new function, simplifying the PHINode and performing any
599  // recursive simplifications exposed. This will transparently update the
600  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
601  // two PHINodes, the iteration over the old PHIs remains valid, and the
602  // mapping will just map us to the new node (which may not even be a PHI
603  // node).
604  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
606  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
607  if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
608  Worklist.insert(PHIToResolve[Idx]);
609 
610  // Note that we must test the size on each iteration, the worklist can grow.
611  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
612  const Value *OrigV = Worklist[Idx];
613  auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
614  if (!I)
615  continue;
616 
617  // Skip over non-intrinsic callsites, we don't want to remove any nodes from
618  // the CGSCC.
619  CallBase *CB = dyn_cast<CallBase>(I);
620  if (CB && CB->getCalledFunction() &&
621  !CB->getCalledFunction()->isIntrinsic())
622  continue;
623 
624  // See if this instruction simplifies.
625  Value *SimpleV = SimplifyInstruction(I, DL);
626  if (!SimpleV)
627  continue;
628 
629  // Stash away all the uses of the old instruction so we can check them for
630  // recursive simplifications after a RAUW. This is cheaper than checking all
631  // uses of To on the recursive step in most cases.
632  for (const User *U : OrigV->users())
633  Worklist.insert(cast<Instruction>(U));
634 
635  // Replace the instruction with its simplified value.
636  I->replaceAllUsesWith(SimpleV);
637 
638  // If the original instruction had no side effects, remove it.
640  I->eraseFromParent();
641  else
642  VMap[OrigV] = I;
643  }
644 
645  // Now that the inlined function body has been fully constructed, go through
646  // and zap unconditional fall-through branches. This happens all the time when
647  // specializing code: code specialization turns conditional branches into
648  // uncond branches, and this code folds them.
649  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
650  Function::iterator I = Begin;
651  while (I != NewFunc->end()) {
652  // We need to simplify conditional branches and switches with a constant
653  // operand. We try to prune these out when cloning, but if the
654  // simplification required looking through PHI nodes, those are only
655  // available after forming the full basic block. That may leave some here,
656  // and we still want to prune the dead code as early as possible.
657  //
658  // Do the folding before we check if the block is dead since we want code
659  // like
660  // bb:
661  // br i1 undef, label %bb, label %bb
662  // to be simplified to
663  // bb:
664  // br label %bb
665  // before we call I->getSinglePredecessor().
667 
668  // Check if this block has become dead during inlining or other
669  // simplifications. Note that the first block will appear dead, as it has
670  // not yet been wired up properly.
671  if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
672  I->getSinglePredecessor() == &*I)) {
673  BasicBlock *DeadBB = &*I++;
674  DeleteDeadBlock(DeadBB);
675  continue;
676  }
677 
678  BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
679  if (!BI || BI->isConditional()) { ++I; continue; }
680 
681  BasicBlock *Dest = BI->getSuccessor(0);
682  if (!Dest->getSinglePredecessor()) {
683  ++I; continue;
684  }
685 
686  // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
687  // above should have zapped all of them..
688  assert(!isa<PHINode>(Dest->begin()));
689 
690  // We know all single-entry PHI nodes in the inlined function have been
691  // removed, so we just need to splice the blocks.
692  BI->eraseFromParent();
693 
694  // Make all PHI nodes that referred to Dest now refer to I as their source.
695  Dest->replaceAllUsesWith(&*I);
696 
697  // Move all the instructions in the succ to the pred.
698  I->getInstList().splice(I->end(), Dest->getInstList());
699 
700  // Remove the dest block.
701  Dest->eraseFromParent();
702 
703  // Do not increment I, iteratively merge all things this block branches to.
704  }
705 
706  // Make a final pass over the basic blocks from the old function to gather
707  // any return instructions which survived folding. We have to do this here
708  // because we can iteratively remove and merge returns above.
709  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
710  E = NewFunc->end();
711  I != E; ++I)
712  if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
713  Returns.push_back(RI);
714 }
715 
716 
717 /// This works exactly like CloneFunctionInto,
718 /// except that it does some simple constant prop and DCE on the fly. The
719 /// effect of this is to copy significantly less code in cases where (for
720 /// example) a function call with constant arguments is inlined, and those
721 /// constant arguments cause a significant amount of code in the callee to be
722 /// dead. Since this doesn't produce an exact copy of the input, it can't be
723 /// used for things like CloneFunction or CloneModule.
724 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
725  ValueToValueMapTy &VMap,
726  bool ModuleLevelChanges,
728  const char *NameSuffix,
729  ClonedCodeInfo *CodeInfo,
730  Instruction *TheCall) {
731  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
732  ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
733 }
734 
735 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
737  const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
738  // Rewrite the code to refer to itself.
739  for (auto *BB : Blocks)
740  for (auto &Inst : *BB)
741  RemapInstruction(&Inst, VMap,
743 }
744 
745 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
746 /// Blocks.
747 ///
748 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
749 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
751  Loop *OrigLoop, ValueToValueMapTy &VMap,
752  const Twine &NameSuffix, LoopInfo *LI,
753  DominatorTree *DT,
755  Function *F = OrigLoop->getHeader()->getParent();
756  Loop *ParentLoop = OrigLoop->getParentLoop();
758 
759  Loop *NewLoop = LI->AllocateLoop();
760  LMap[OrigLoop] = NewLoop;
761  if (ParentLoop)
762  ParentLoop->addChildLoop(NewLoop);
763  else
764  LI->addTopLevelLoop(NewLoop);
765 
766  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
767  assert(OrigPH && "No preheader");
768  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
769  // To rename the loop PHIs.
770  VMap[OrigPH] = NewPH;
771  Blocks.push_back(NewPH);
772 
773  // Update LoopInfo.
774  if (ParentLoop)
775  ParentLoop->addBasicBlockToLoop(NewPH, *LI);
776 
777  // Update DominatorTree.
778  DT->addNewBlock(NewPH, LoopDomBB);
779 
780  for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
781  Loop *&NewLoop = LMap[CurLoop];
782  if (!NewLoop) {
783  NewLoop = LI->AllocateLoop();
784 
785  // Establish the parent/child relationship.
786  Loop *OrigParent = CurLoop->getParentLoop();
787  assert(OrigParent && "Could not find the original parent loop");
788  Loop *NewParentLoop = LMap[OrigParent];
789  assert(NewParentLoop && "Could not find the new parent loop");
790 
791  NewParentLoop->addChildLoop(NewLoop);
792  }
793  }
794 
795  for (BasicBlock *BB : OrigLoop->getBlocks()) {
796  Loop *CurLoop = LI->getLoopFor(BB);
797  Loop *&NewLoop = LMap[CurLoop];
798  assert(NewLoop && "Expecting new loop to be allocated");
799 
800  BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
801  VMap[BB] = NewBB;
802 
803  // Update LoopInfo.
804  NewLoop->addBasicBlockToLoop(NewBB, *LI);
805 
806  // Add DominatorTree node. After seeing all blocks, update to correct
807  // IDom.
808  DT->addNewBlock(NewBB, NewPH);
809 
810  Blocks.push_back(NewBB);
811  }
812 
813  for (BasicBlock *BB : OrigLoop->getBlocks()) {
814  // Update loop headers.
815  Loop *CurLoop = LI->getLoopFor(BB);
816  if (BB == CurLoop->getHeader())
817  LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
818 
819  // Update DominatorTree.
820  BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
821  DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
822  cast<BasicBlock>(VMap[IDomBB]));
823  }
824 
825  // Move them physically from the end of the block list.
827  NewPH);
829  NewLoop->getHeader()->getIterator(), F->end());
830 
831  return NewLoop;
832 }
833 
834 /// Duplicate non-Phi instructions from the beginning of block up to
835 /// StopAt instruction into a split block between BB and its predecessor.
837  BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
839 
840  assert(count(successors(PredBB), BB) == 1 &&
841  "There must be a single edge between PredBB and BB!");
842  // We are going to have to map operands from the original BB block to the new
843  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
844  // account for entry from PredBB.
845  BasicBlock::iterator BI = BB->begin();
846  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
847  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
848 
849  BasicBlock *NewBB = SplitEdge(PredBB, BB);
850  NewBB->setName(PredBB->getName() + ".split");
851  Instruction *NewTerm = NewBB->getTerminator();
852 
853  // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
854  // in the update set here.
855  DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
856  {DominatorTree::Insert, PredBB, NewBB},
857  {DominatorTree::Insert, NewBB, BB}});
858 
859  // Clone the non-phi instructions of BB into NewBB, keeping track of the
860  // mapping and using it to remap operands in the cloned instructions.
861  // Stop once we see the terminator too. This covers the case where BB's
862  // terminator gets replaced and StopAt == BB's terminator.
863  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
864  Instruction *New = BI->clone();
865  New->setName(BI->getName());
866  New->insertBefore(NewTerm);
867  ValueMapping[&*BI] = New;
868 
869  // Remap operands to patch up intra-block references.
870  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
871  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
872  auto I = ValueMapping.find(Inst);
873  if (I != ValueMapping.end())
874  New->setOperand(i, I->second);
875  }
876  }
877 
878  return NewBB;
879 }
SmallVector< const LoopT *, 4 > getLoopsInPreorder() const
Return all loops in the loop nest rooted by the loop in preorder, with siblings in forward program or...
Definition: LoopInfo.h:348
Return a value (possibly void), from a function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:200
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:80
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
LLVM_NODISCARD std::enable_if_t< !is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type > dyn_cast(const Y &Val)
Definition: Casting.h:334
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
DiagnosticInfoOptimizationBase::Argument NV
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
This class represents lattice values for constants.
Definition: AllocatorList.h:23
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:77
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:110
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:67
iterator end()
Definition: Function.h:707
DIFile * getFile() const
This file contains the declarations for metadata subclasses.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Definition: LoopInfoImpl.h:159
Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified function and add it to that function&#39;s module.
NamedMDNode * getOrInsertNamedMetadata(StringRef Name)
Return the named MDNode in the module with the specified name.
Definition: Module.cpp:259
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:103
BasicBlock * getSuccessor(unsigned i) const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1100
F(f)
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:150
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1416
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:32
Metadata * MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Lookup or compute a mapping for a piece of metadata.
Definition: ValueMapper.h:228
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:289
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Split the edge connecting specified block.
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:146
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values...
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:397
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:80
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Definition: LoopInfo.h:947
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:43
Utility to find all debug info in a module.
Definition: DebugInfo.h:72
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:342
BlockT * getHeader() const
Definition: LoopInfo.h:104
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Subprogram description.
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, Instruction *TheCall=nullptr)
This works exactly like CloneFunctionInto, except that it does some simple constant prop and DCE on t...
Class to represent function types.
Definition: DerivedTypes.h:108
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:204
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:141
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
Definition: LoopInfoImpl.h:234
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
Definition: LoopInfo.h:1004
bool isVarArg() const
Definition: DerivedTypes.h:128
iterator find(const KeyT &Val)
Definition: ValueMap.h:156
iterator_range< type_iterator > types() const
Definition: DebugInfo.h:121
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:230
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:757
LinkageTypes getLinkage() const
Definition: GlobalValue.h:461
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:486
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:165
iterator begin()
Definition: Function.h:705
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:144
Value * getOperand(unsigned i) const
Definition: User.h:169
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:72
SmallVector< MachineOperand, 4 > Cond
const BasicBlock & getEntryBlock() const
Definition: Function.h:689
NodeT * getBlock() const
unsigned compile_unit_count() const
Definition: DebugInfo.h:129
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:50
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:137
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:142
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:258
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:86
bool hasName() const
Definition: Value.h:250
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1528
Conditional or Unconditional Branch instruction.
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1684
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node&#39;s...
DomTreeNodeBase * getIDom() const
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:556
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:301
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:364
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:619
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:112
void splice(iterator where, iplist_impl &L2)
Definition: ilist.h:329
const Instruction & back() const
Definition: BasicBlock.h:303
unsigned getAddressSpace() const
Definition: Globals.cpp:111
constexpr double e
Definition: MathExtras.h:58
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:311
size_t arg_size() const
Definition: Function.h:753
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:115
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:100
self_iterator getIterator()
Definition: ilist_node.h:81
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function...
iterator_range< compile_unit_iterator > compile_units() const
Definition: DebugInfo.h:109
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:252
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1665
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Look up or compute a value in the value map.
Definition: ValueMapper.h:206
void processInstruction(const Module &M, const Instruction &I)
Process a single instruction and collect debug info anchors.
Definition: DebugInfo.cpp:106
hexagon gen pred
iterator end()
Definition: ValueMap.h:136
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:412
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:354
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:302
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:191
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:439
Base class for types.
This is the shared class of boolean and integer constants.
Definition: Constants.h:77
void setIncomingBlock(unsigned i, BasicBlock *BB)
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
iterator end()
Definition: BasicBlock.h:291
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:883
Module.h This file contains the declarations for the Module class.
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1393
LoopT * AllocateLoop(ArgsTy &&... Args)
Definition: LoopInfo.h:911
Type * getReturnType() const
Definition: DerivedTypes.h:129
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isConditional() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition: Function.h:233
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:165
void push_back(pointer val)
Definition: ilist.h:313
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
iterator_range< user_iterator > users()
Definition: Value.h:418
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM...
Definition: ValueMapper.h:251
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:37
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:90
bool ContainsCalls
This is set to true if the cloned code contains a normal call instruction.
Definition: Cloning.h:66
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Definition: LoopInfo.h:113
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
Definition: LoopInfo.h:382
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:516
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Definition: LoopInfo.h:161
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:270
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation.
Definition: InstrTypes.h:1314
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:107
unsigned pred_size(const BasicBlock *BB)
Get the number of predecessors of BB.
Definition: CFG.h:122
SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink &#39;this&#39; from the containing function and delete it.
Definition: BasicBlock.cpp:127
#define I(x, y, z)
Definition: MD5.cpp:59
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
This struct can be used to capture information about code being cloned, while it is being cloned...
Definition: Cloning.h:64
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:682
uint32_t Size
Definition: Profile.cpp:46
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1567
Multiway switch.
Helper struct that represents how a value is mapped through different register banks.
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: ValueMap.h:152
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool ContainsDynamicAllocas
This is set to true if the cloned code contains a &#39;dynamic&#39; alloca.
Definition: Cloning.h:71
const BasicBlock & front() const
Definition: Function.h:712
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:572
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:360
LLVM Value Representation.
Definition: Value.h:74
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1543
succ_range successors(Instruction *I)
Definition: CFG.h:260
iterator_range< subprogram_iterator > subprograms() const
Definition: DebugInfo.h:113
Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock *> &Blocks)
Clones a loop OrigLoop.
A handle to a particular switch case.
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1548
void setIncomingValue(unsigned i, Value *V)
MDMapT & MD()
Definition: ValueMap.h:115
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute >> Attrs)
Create an AttributeList with the specified parameters in it.
iterator_range< arg_iterator > args()
Definition: Function.h:744
const BasicBlock * getParent() const
Definition: Instruction.h:94
an instruction to allocate memory on the stack
Definition: Instructions.h:60
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
void remapInstructionsInBlocks(const SmallVectorImpl< BasicBlock *> &Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.