LLVM  6.0.0svn
CloneFunction.cpp
Go to the documentation of this file.
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
41  const Twine &NameSuffix, Function *F,
42  ClonedCodeInfo *CodeInfo,
43  DebugInfoFinder *DIFinder) {
45  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
47 
48  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
49  Module *TheModule = F ? F->getParent() : nullptr;
50 
51  // Loop over all instructions, and copy them over.
52  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
53  II != IE; ++II) {
54 
55  if (DIFinder && TheModule) {
56  if (auto *DDI = dyn_cast<DbgDeclareInst>(II))
57  DIFinder->processDeclare(*TheModule, DDI);
58  else if (auto *DVI = dyn_cast<DbgValueInst>(II))
59  DIFinder->processValue(*TheModule, DVI);
60 
61  if (auto DbgLoc = II->getDebugLoc())
62  DIFinder->processLocation(*TheModule, DbgLoc.get());
63  }
64 
65  Instruction *NewInst = II->clone();
66  if (II->hasName())
67  NewInst->setName(II->getName()+NameSuffix);
68  NewBB->getInstList().push_back(NewInst);
69  VMap[&*II] = NewInst; // Add instruction map to value.
70 
71  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
72  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
73  if (isa<ConstantInt>(AI->getArraySize()))
74  hasStaticAllocas = true;
75  else
76  hasDynamicAllocas = true;
77  }
78  }
79 
80  if (CodeInfo) {
81  CodeInfo->ContainsCalls |= hasCalls;
82  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
83  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
84  BB != &BB->getParent()->getEntryBlock();
85  }
86  return NewBB;
87 }
88 
89 // Clone OldFunc into NewFunc, transforming the old arguments into references to
90 // VMap values.
91 //
92 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
93  ValueToValueMapTy &VMap,
94  bool ModuleLevelChanges,
96  const char *NameSuffix, ClonedCodeInfo *CodeInfo,
97  ValueMapTypeRemapper *TypeMapper,
98  ValueMaterializer *Materializer) {
99  assert(NameSuffix && "NameSuffix cannot be null!");
100 
101 #ifndef NDEBUG
102  for (const Argument &I : OldFunc->args())
103  assert(VMap.count(&I) && "No mapping from source argument specified!");
104 #endif
105 
106  // Copy all attributes other than those stored in the AttributeList. We need
107  // to remap the parameter indices of the AttributeList.
108  AttributeList NewAttrs = NewFunc->getAttributes();
109  NewFunc->copyAttributesFrom(OldFunc);
110  NewFunc->setAttributes(NewAttrs);
111 
112  // Fix up the personality function that got copied over.
113  if (OldFunc->hasPersonalityFn())
114  NewFunc->setPersonalityFn(
115  MapValue(OldFunc->getPersonalityFn(), VMap,
116  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
117  TypeMapper, Materializer));
118 
119  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
120  AttributeList OldAttrs = OldFunc->getAttributes();
121 
122  // Clone any argument attributes that are present in the VMap.
123  for (const Argument &OldArg : OldFunc->args()) {
124  if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
125  NewArgAttrs[NewArg->getArgNo()] =
126  OldAttrs.getParamAttributes(OldArg.getArgNo());
127  }
128  }
129 
130  NewFunc->setAttributes(
131  AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
132  OldAttrs.getRetAttributes(), NewArgAttrs));
133 
134  bool MustCloneSP =
135  OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
136  DISubprogram *SP = OldFunc->getSubprogram();
137  if (SP) {
138  assert(!MustCloneSP || ModuleLevelChanges);
139  // Add mappings for some DebugInfo nodes that we don't want duplicated
140  // even if they're distinct.
141  auto &MD = VMap.MD();
142  MD[SP->getUnit()].reset(SP->getUnit());
143  MD[SP->getType()].reset(SP->getType());
144  MD[SP->getFile()].reset(SP->getFile());
145  // If we're not cloning into the same module, no need to clone the
146  // subprogram
147  if (!MustCloneSP)
148  MD[SP].reset(SP);
149  }
150 
152  OldFunc->getAllMetadata(MDs);
153  for (auto MD : MDs) {
154  NewFunc->addMetadata(
155  MD.first,
156  *MapMetadata(MD.second, VMap,
157  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
158  TypeMapper, Materializer));
159  }
160 
161  // When we remap instructions, we want to avoid duplicating inlined
162  // DISubprograms, so record all subprograms we find as we duplicate
163  // instructions and then freeze them in the MD map.
164  // We also record information about dbg.value and dbg.declare to avoid
165  // duplicating the types.
166  DebugInfoFinder DIFinder;
167 
168  // Loop over all of the basic blocks in the function, cloning them as
169  // appropriate. Note that we save BE this way in order to handle cloning of
170  // recursive functions into themselves.
171  //
172  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
173  BI != BE; ++BI) {
174  const BasicBlock &BB = *BI;
175 
176  // Create a new basic block and copy instructions into it!
177  BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
178  SP ? &DIFinder : nullptr);
179 
180  // Add basic block mapping.
181  VMap[&BB] = CBB;
182 
183  // It is only legal to clone a function if a block address within that
184  // function is never referenced outside of the function. Given that, we
185  // want to map block addresses from the old function to block addresses in
186  // the clone. (This is different from the generic ValueMapper
187  // implementation, which generates an invalid blockaddress when
188  // cloning a function.)
189  if (BB.hasAddressTaken()) {
190  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
191  const_cast<BasicBlock*>(&BB));
192  VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
193  }
194 
195  // Note return instructions for the caller.
196  if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
197  Returns.push_back(RI);
198  }
199 
200  for (DISubprogram *ISP : DIFinder.subprograms()) {
201  if (ISP != SP) {
202  VMap.MD()[ISP].reset(ISP);
203  }
204  }
205 
206  for (auto *Type : DIFinder.types()) {
207  VMap.MD()[Type].reset(Type);
208  }
209 
210  // Loop over all of the instructions in the function, fixing up operand
211  // references as we go. This uses VMap to do all the hard work.
212  for (Function::iterator BB =
213  cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
214  BE = NewFunc->end();
215  BB != BE; ++BB)
216  // Loop over all instructions, fixing each one as we find it...
217  for (Instruction &II : *BB)
218  RemapInstruction(&II, VMap,
219  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
220  TypeMapper, Materializer);
221 }
222 
223 /// Return a copy of the specified function and add it to that function's
224 /// module. Also, any references specified in the VMap are changed to refer to
225 /// their mapped value instead of the original one. If any of the arguments to
226 /// the function are in the VMap, the arguments are deleted from the resultant
227 /// function. The VMap is updated to include mappings from all of the
228 /// instructions and basicblocks in the function from their old to new values.
229 ///
231  ClonedCodeInfo *CodeInfo) {
232  std::vector<Type*> ArgTypes;
233 
234  // The user might be deleting arguments to the function by specifying them in
235  // the VMap. If so, we need to not add the arguments to the arg ty vector
236  //
237  for (const Argument &I : F->args())
238  if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
239  ArgTypes.push_back(I.getType());
240 
241  // Create a new function type...
243  ArgTypes, F->getFunctionType()->isVarArg());
244 
245  // Create the new function...
246  Function *NewF =
247  Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
248 
249  // Loop over the arguments, copying the names of the mapped arguments over...
250  Function::arg_iterator DestI = NewF->arg_begin();
251  for (const Argument & I : F->args())
252  if (VMap.count(&I) == 0) { // Is this argument preserved?
253  DestI->setName(I.getName()); // Copy the name over...
254  VMap[&I] = &*DestI++; // Add mapping to VMap
255  }
256 
257  SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
258  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
259  CodeInfo);
260 
261  return NewF;
262 }
263 
264 
265 
266 namespace {
267  /// This is a private class used to implement CloneAndPruneFunctionInto.
268  struct PruningFunctionCloner {
269  Function *NewFunc;
270  const Function *OldFunc;
271  ValueToValueMapTy &VMap;
272  bool ModuleLevelChanges;
273  const char *NameSuffix;
274  ClonedCodeInfo *CodeInfo;
275 
276  public:
277  PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
278  ValueToValueMapTy &valueMap, bool moduleLevelChanges,
279  const char *nameSuffix, ClonedCodeInfo *codeInfo)
280  : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
281  ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
282  CodeInfo(codeInfo) {}
283 
284  /// The specified block is found to be reachable, clone it and
285  /// anything that it can reach.
286  void CloneBlock(const BasicBlock *BB,
287  BasicBlock::const_iterator StartingInst,
288  std::vector<const BasicBlock*> &ToClone);
289  };
290 }
291 
292 /// The specified block is found to be reachable, clone it and
293 /// anything that it can reach.
294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
295  BasicBlock::const_iterator StartingInst,
296  std::vector<const BasicBlock*> &ToClone){
297  WeakTrackingVH &BBEntry = VMap[BB];
298 
299  // Have we already cloned this block?
300  if (BBEntry) return;
301 
302  // Nope, clone it now.
303  BasicBlock *NewBB;
304  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
305  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
306 
307  // It is only legal to clone a function if a block address within that
308  // function is never referenced outside of the function. Given that, we
309  // want to map block addresses from the old function to block addresses in
310  // the clone. (This is different from the generic ValueMapper
311  // implementation, which generates an invalid blockaddress when
312  // cloning a function.)
313  //
314  // Note that we don't need to fix the mapping for unreachable blocks;
315  // the default mapping there is safe.
316  if (BB->hasAddressTaken()) {
317  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
318  const_cast<BasicBlock*>(BB));
319  VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
320  }
321 
322  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
323 
324  // Loop over all instructions, and copy them over, DCE'ing as we go. This
325  // loop doesn't include the terminator.
326  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
327  II != IE; ++II) {
328 
329  Instruction *NewInst = II->clone();
330 
331  // Eagerly remap operands to the newly cloned instruction, except for PHI
332  // nodes for which we defer processing until we update the CFG.
333  if (!isa<PHINode>(NewInst)) {
334  RemapInstruction(NewInst, VMap,
335  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
336 
337  // If we can simplify this instruction to some other value, simply add
338  // a mapping to that value rather than inserting a new instruction into
339  // the basic block.
340  if (Value *V =
341  SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
342  // On the off-chance that this simplifies to an instruction in the old
343  // function, map it back into the new function.
344  if (NewFunc != OldFunc)
345  if (Value *MappedV = VMap.lookup(V))
346  V = MappedV;
347 
348  if (!NewInst->mayHaveSideEffects()) {
349  VMap[&*II] = V;
350  NewInst->deleteValue();
351  continue;
352  }
353  }
354  }
355 
356  if (II->hasName())
357  NewInst->setName(II->getName()+NameSuffix);
358  VMap[&*II] = NewInst; // Add instruction map to value.
359  NewBB->getInstList().push_back(NewInst);
360  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
361 
362  if (CodeInfo)
363  if (auto CS = ImmutableCallSite(&*II))
364  if (CS.hasOperandBundles())
365  CodeInfo->OperandBundleCallSites.push_back(NewInst);
366 
367  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
368  if (isa<ConstantInt>(AI->getArraySize()))
369  hasStaticAllocas = true;
370  else
371  hasDynamicAllocas = true;
372  }
373  }
374 
375  // Finally, clone over the terminator.
376  const TerminatorInst *OldTI = BB->getTerminator();
377  bool TerminatorDone = false;
378  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
379  if (BI->isConditional()) {
380  // If the condition was a known constant in the callee...
381  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
382  // Or is a known constant in the caller...
383  if (!Cond) {
384  Value *V = VMap.lookup(BI->getCondition());
385  Cond = dyn_cast_or_null<ConstantInt>(V);
386  }
387 
388  // Constant fold to uncond branch!
389  if (Cond) {
390  BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
391  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
392  ToClone.push_back(Dest);
393  TerminatorDone = true;
394  }
395  }
396  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
397  // If switching on a value known constant in the caller.
398  ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
399  if (!Cond) { // Or known constant after constant prop in the callee...
400  Value *V = VMap.lookup(SI->getCondition());
401  Cond = dyn_cast_or_null<ConstantInt>(V);
402  }
403  if (Cond) { // Constant fold to uncond branch!
404  SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
405  BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
406  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
407  ToClone.push_back(Dest);
408  TerminatorDone = true;
409  }
410  }
411 
412  if (!TerminatorDone) {
413  Instruction *NewInst = OldTI->clone();
414  if (OldTI->hasName())
415  NewInst->setName(OldTI->getName()+NameSuffix);
416  NewBB->getInstList().push_back(NewInst);
417  VMap[OldTI] = NewInst; // Add instruction map to value.
418 
419  if (CodeInfo)
420  if (auto CS = ImmutableCallSite(OldTI))
421  if (CS.hasOperandBundles())
422  CodeInfo->OperandBundleCallSites.push_back(NewInst);
423 
424  // Recursively clone any reachable successor blocks.
425  const TerminatorInst *TI = BB->getTerminator();
426  for (const BasicBlock *Succ : TI->successors())
427  ToClone.push_back(Succ);
428  }
429 
430  if (CodeInfo) {
431  CodeInfo->ContainsCalls |= hasCalls;
432  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
433  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
434  BB != &BB->getParent()->front();
435  }
436 }
437 
438 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
439 /// entire function. Instead it starts at an instruction provided by the caller
440 /// and copies (and prunes) only the code reachable from that instruction.
441 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
442  const Instruction *StartingInst,
443  ValueToValueMapTy &VMap,
444  bool ModuleLevelChanges,
446  const char *NameSuffix,
447  ClonedCodeInfo *CodeInfo) {
448  assert(NameSuffix && "NameSuffix cannot be null!");
449 
450  ValueMapTypeRemapper *TypeMapper = nullptr;
451  ValueMaterializer *Materializer = nullptr;
452 
453 #ifndef NDEBUG
454  // If the cloning starts at the beginning of the function, verify that
455  // the function arguments are mapped.
456  if (!StartingInst)
457  for (const Argument &II : OldFunc->args())
458  assert(VMap.count(&II) && "No mapping from source argument specified!");
459 #endif
460 
461  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
462  NameSuffix, CodeInfo);
463  const BasicBlock *StartingBB;
464  if (StartingInst)
465  StartingBB = StartingInst->getParent();
466  else {
467  StartingBB = &OldFunc->getEntryBlock();
468  StartingInst = &StartingBB->front();
469  }
470 
471  // Clone the entry block, and anything recursively reachable from it.
472  std::vector<const BasicBlock*> CloneWorklist;
473  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
474  while (!CloneWorklist.empty()) {
475  const BasicBlock *BB = CloneWorklist.back();
476  CloneWorklist.pop_back();
477  PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
478  }
479 
480  // Loop over all of the basic blocks in the old function. If the block was
481  // reachable, we have cloned it and the old block is now in the value map:
482  // insert it into the new function in the right order. If not, ignore it.
483  //
484  // Defer PHI resolution until rest of function is resolved.
485  SmallVector<const PHINode*, 16> PHIToResolve;
486  for (const BasicBlock &BI : *OldFunc) {
487  Value *V = VMap.lookup(&BI);
488  BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
489  if (!NewBB) continue; // Dead block.
490 
491  // Add the new block to the new function.
492  NewFunc->getBasicBlockList().push_back(NewBB);
493 
494  // Handle PHI nodes specially, as we have to remove references to dead
495  // blocks.
496  for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
497  // PHI nodes may have been remapped to non-PHI nodes by the caller or
498  // during the cloning process.
499  if (const PHINode *PN = dyn_cast<PHINode>(I)) {
500  if (isa<PHINode>(VMap[PN]))
501  PHIToResolve.push_back(PN);
502  else
503  break;
504  } else {
505  break;
506  }
507  }
508 
509  // Finally, remap the terminator instructions, as those can't be remapped
510  // until all BBs are mapped.
511  RemapInstruction(NewBB->getTerminator(), VMap,
512  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
513  TypeMapper, Materializer);
514  }
515 
516  // Defer PHI resolution until rest of function is resolved, PHI resolution
517  // requires the CFG to be up-to-date.
518  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
519  const PHINode *OPN = PHIToResolve[phino];
520  unsigned NumPreds = OPN->getNumIncomingValues();
521  const BasicBlock *OldBB = OPN->getParent();
522  BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
523 
524  // Map operands for blocks that are live and remove operands for blocks
525  // that are dead.
526  for (; phino != PHIToResolve.size() &&
527  PHIToResolve[phino]->getParent() == OldBB; ++phino) {
528  OPN = PHIToResolve[phino];
529  PHINode *PN = cast<PHINode>(VMap[OPN]);
530  for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
531  Value *V = VMap.lookup(PN->getIncomingBlock(pred));
532  if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
533  Value *InVal = MapValue(PN->getIncomingValue(pred),
534  VMap,
535  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
536  assert(InVal && "Unknown input value?");
537  PN->setIncomingValue(pred, InVal);
538  PN->setIncomingBlock(pred, MappedBlock);
539  } else {
540  PN->removeIncomingValue(pred, false);
541  --pred; // Revisit the next entry.
542  --e;
543  }
544  }
545  }
546 
547  // The loop above has removed PHI entries for those blocks that are dead
548  // and has updated others. However, if a block is live (i.e. copied over)
549  // but its terminator has been changed to not go to this block, then our
550  // phi nodes will have invalid entries. Update the PHI nodes in this
551  // case.
552  PHINode *PN = cast<PHINode>(NewBB->begin());
553  NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
554  if (NumPreds != PN->getNumIncomingValues()) {
555  assert(NumPreds < PN->getNumIncomingValues());
556  // Count how many times each predecessor comes to this block.
557  std::map<BasicBlock*, unsigned> PredCount;
558  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
559  PI != E; ++PI)
560  --PredCount[*PI];
561 
562  // Figure out how many entries to remove from each PHI.
563  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
564  ++PredCount[PN->getIncomingBlock(i)];
565 
566  // At this point, the excess predecessor entries are positive in the
567  // map. Loop over all of the PHIs and remove excess predecessor
568  // entries.
569  BasicBlock::iterator I = NewBB->begin();
570  for (; (PN = dyn_cast<PHINode>(I)); ++I) {
571  for (const auto &PCI : PredCount) {
572  BasicBlock *Pred = PCI.first;
573  for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
574  PN->removeIncomingValue(Pred, false);
575  }
576  }
577  }
578 
579  // If the loops above have made these phi nodes have 0 or 1 operand,
580  // replace them with undef or the input value. We must do this for
581  // correctness, because 0-operand phis are not valid.
582  PN = cast<PHINode>(NewBB->begin());
583  if (PN->getNumIncomingValues() == 0) {
584  BasicBlock::iterator I = NewBB->begin();
585  BasicBlock::const_iterator OldI = OldBB->begin();
586  while ((PN = dyn_cast<PHINode>(I++))) {
587  Value *NV = UndefValue::get(PN->getType());
588  PN->replaceAllUsesWith(NV);
589  assert(VMap[&*OldI] == PN && "VMap mismatch");
590  VMap[&*OldI] = NV;
591  PN->eraseFromParent();
592  ++OldI;
593  }
594  }
595  }
596 
597  // Make a second pass over the PHINodes now that all of them have been
598  // remapped into the new function, simplifying the PHINode and performing any
599  // recursive simplifications exposed. This will transparently update the
600  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
601  // two PHINodes, the iteration over the old PHIs remains valid, and the
602  // mapping will just map us to the new node (which may not even be a PHI
603  // node).
604  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
606  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
607  if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
608  Worklist.insert(PHIToResolve[Idx]);
609 
610  // Note that we must test the size on each iteration, the worklist can grow.
611  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
612  const Value *OrigV = Worklist[Idx];
613  auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
614  if (!I)
615  continue;
616 
617  // Skip over non-intrinsic callsites, we don't want to remove any nodes from
618  // the CGSCC.
619  CallSite CS = CallSite(I);
620  if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
621  continue;
622 
623  // See if this instruction simplifies.
624  Value *SimpleV = SimplifyInstruction(I, DL);
625  if (!SimpleV)
626  continue;
627 
628  // Stash away all the uses of the old instruction so we can check them for
629  // recursive simplifications after a RAUW. This is cheaper than checking all
630  // uses of To on the recursive step in most cases.
631  for (const User *U : OrigV->users())
632  Worklist.insert(cast<Instruction>(U));
633 
634  // Replace the instruction with its simplified value.
635  I->replaceAllUsesWith(SimpleV);
636 
637  // If the original instruction had no side effects, remove it.
639  I->eraseFromParent();
640  else
641  VMap[OrigV] = I;
642  }
643 
644  // Now that the inlined function body has been fully constructed, go through
645  // and zap unconditional fall-through branches. This happens all the time when
646  // specializing code: code specialization turns conditional branches into
647  // uncond branches, and this code folds them.
648  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
649  Function::iterator I = Begin;
650  while (I != NewFunc->end()) {
651  // Check if this block has become dead during inlining or other
652  // simplifications. Note that the first block will appear dead, as it has
653  // not yet been wired up properly.
654  if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
655  I->getSinglePredecessor() == &*I)) {
656  BasicBlock *DeadBB = &*I++;
657  DeleteDeadBlock(DeadBB);
658  continue;
659  }
660 
661  // We need to simplify conditional branches and switches with a constant
662  // operand. We try to prune these out when cloning, but if the
663  // simplification required looking through PHI nodes, those are only
664  // available after forming the full basic block. That may leave some here,
665  // and we still want to prune the dead code as early as possible.
667 
668  BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
669  if (!BI || BI->isConditional()) { ++I; continue; }
670 
671  BasicBlock *Dest = BI->getSuccessor(0);
672  if (!Dest->getSinglePredecessor()) {
673  ++I; continue;
674  }
675 
676  // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
677  // above should have zapped all of them..
678  assert(!isa<PHINode>(Dest->begin()));
679 
680  // We know all single-entry PHI nodes in the inlined function have been
681  // removed, so we just need to splice the blocks.
682  BI->eraseFromParent();
683 
684  // Make all PHI nodes that referred to Dest now refer to I as their source.
685  Dest->replaceAllUsesWith(&*I);
686 
687  // Move all the instructions in the succ to the pred.
688  I->getInstList().splice(I->end(), Dest->getInstList());
689 
690  // Remove the dest block.
691  Dest->eraseFromParent();
692 
693  // Do not increment I, iteratively merge all things this block branches to.
694  }
695 
696  // Make a final pass over the basic blocks from the old function to gather
697  // any return instructions which survived folding. We have to do this here
698  // because we can iteratively remove and merge returns above.
699  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
700  E = NewFunc->end();
701  I != E; ++I)
702  if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
703  Returns.push_back(RI);
704 }
705 
706 
707 /// This works exactly like CloneFunctionInto,
708 /// except that it does some simple constant prop and DCE on the fly. The
709 /// effect of this is to copy significantly less code in cases where (for
710 /// example) a function call with constant arguments is inlined, and those
711 /// constant arguments cause a significant amount of code in the callee to be
712 /// dead. Since this doesn't produce an exact copy of the input, it can't be
713 /// used for things like CloneFunction or CloneModule.
714 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
715  ValueToValueMapTy &VMap,
716  bool ModuleLevelChanges,
718  const char *NameSuffix,
719  ClonedCodeInfo *CodeInfo,
720  Instruction *TheCall) {
721  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
722  ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
723 }
724 
725 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
727  const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
728  // Rewrite the code to refer to itself.
729  for (auto *BB : Blocks)
730  for (auto &Inst : *BB)
731  RemapInstruction(&Inst, VMap,
733 }
734 
735 /// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
736 /// Blocks.
737 ///
738 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
739 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
741  Loop *OrigLoop, ValueToValueMapTy &VMap,
742  const Twine &NameSuffix, LoopInfo *LI,
743  DominatorTree *DT,
745  assert(OrigLoop->getSubLoops().empty() &&
746  "Loop to be cloned cannot have inner loop");
747  Function *F = OrigLoop->getHeader()->getParent();
748  Loop *ParentLoop = OrigLoop->getParentLoop();
749 
750  Loop *NewLoop = LI->AllocateLoop();
751  if (ParentLoop)
752  ParentLoop->addChildLoop(NewLoop);
753  else
754  LI->addTopLevelLoop(NewLoop);
755 
756  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
757  assert(OrigPH && "No preheader");
758  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
759  // To rename the loop PHIs.
760  VMap[OrigPH] = NewPH;
761  Blocks.push_back(NewPH);
762 
763  // Update LoopInfo.
764  if (ParentLoop)
765  ParentLoop->addBasicBlockToLoop(NewPH, *LI);
766 
767  // Update DominatorTree.
768  DT->addNewBlock(NewPH, LoopDomBB);
769 
770  for (BasicBlock *BB : OrigLoop->getBlocks()) {
771  BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
772  VMap[BB] = NewBB;
773 
774  // Update LoopInfo.
775  NewLoop->addBasicBlockToLoop(NewBB, *LI);
776 
777  // Add DominatorTree node. After seeing all blocks, update to correct IDom.
778  DT->addNewBlock(NewBB, NewPH);
779 
780  Blocks.push_back(NewBB);
781  }
782 
783  for (BasicBlock *BB : OrigLoop->getBlocks()) {
784  // Update DominatorTree.
785  BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
786  DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
787  cast<BasicBlock>(VMap[IDomBB]));
788  }
789 
790  // Move them physically from the end of the block list.
791  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
792  NewPH);
793  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
794  NewLoop->getHeader()->getIterator(), F->end());
795 
796  return NewLoop;
797 }
798 
799 /// \brief Duplicate non-Phi instructions from the beginning of block up to
800 /// StopAt instruction into a split block between BB and its predecessor.
801 BasicBlock *
803  Instruction *StopAt,
805  // We are going to have to map operands from the original BB block to the new
806  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
807  // account for entry from PredBB.
808  BasicBlock::iterator BI = BB->begin();
809  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
810  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
811 
812  BasicBlock *NewBB = SplitEdge(PredBB, BB);
813  NewBB->setName(PredBB->getName() + ".split");
814  Instruction *NewTerm = NewBB->getTerminator();
815 
816  // Clone the non-phi instructions of BB into NewBB, keeping track of the
817  // mapping and using it to remap operands in the cloned instructions.
818  for (; StopAt != &*BI; ++BI) {
819  Instruction *New = BI->clone();
820  New->setName(BI->getName());
821  New->insertBefore(NewTerm);
822  ValueMapping[&*BI] = New;
823 
824  // Remap operands to patch up intra-block references.
825  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
826  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
827  auto I = ValueMapping.find(Inst);
828  if (I != ValueMapping.end())
829  New->setOperand(i, I->second);
830  }
831  }
832 
833  return NewBB;
834 }
DomTreeNodeBase< NodeT > * getNode(NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Return a value (possibly void), from a function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:180
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:69
void processLocation(const Module &M, const DILocation *Loc)
Process debug info location.
Definition: DebugInfo.cpp:108
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
DiagnosticInfoOptimizationBase::Argument NV
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:78
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:136
iterator end()
Definition: Function.h:590
void DeleteDeadBlock(BasicBlock *BB)
Delete the specified block, which must have no predecessors.
DIFile * getFile() const
This file contains the declarations for metadata subclasses.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Definition: LoopInfoImpl.h:106
Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
CloneFunction - Return a copy of the specified function and add it to that function&#39;s module...
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:95
BasicBlock * getSuccessor(unsigned i) const
F(f)
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1404
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
Metadata * MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Lookup or compute a mapping for a piece of metadata.
Definition: ValueMapper.h:228
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:252
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr it the function does no...
Definition: BasicBlock.cpp:116
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values...
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:361
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:102
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
Utility to find all debug info in a module.
Definition: DebugInfo.h:65
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:286
BlockT * getHeader() const
Definition: LoopInfo.h:100
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Subprogram description.
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, Instruction *TheCall=nullptr)
CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, except that it does some simpl...
Class to represent function types.
Definition: DerivedTypes.h:103
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:182
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
Definition: LoopInfoImpl.h:183
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
Definition: LoopInfo.h:729
bool isVarArg() const
Definition: DerivedTypes.h:123
iterator find(const KeyT &Val)
Definition: ValueMap.h:158
iterator_range< type_iterator > types() const
Definition: DebugInfo.h:113
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:205
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:634
LinkageTypes getLinkage() const
Definition: GlobalValue.h:441
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:430
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:167
iterator begin()
Definition: Function.h:588
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:140
Value * getOperand(unsigned i) const
Definition: User.h:154
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:73
const BasicBlock & getEntryBlock() const
Definition: Function.h:572
NodeT * getBlock() const
succ_range successors()
Definition: InstrTypes.h:267
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:51
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
Subclasses of this class are all able to terminate a basic block.
Definition: InstrTypes.h:54
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:217
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:75
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1497
Conditional or Unconditional Branch instruction.
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1339
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node&#39;s...
DomTreeNodeBase * getIDom() const
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:463
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:264
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:535
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:113
const Instruction & back() const
Definition: BasicBlock.h:266
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
size_t arg_size() const
Definition: Function.h:630
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:116
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:101
void processValue(const Module &M, const DbgValueInst *DVI)
Process DbgValueInst.
Definition: DebugInfo.cpp:195
self_iterator getIterator()
Definition: ilist_node.h:82
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function...
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:194
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1320
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Look up or compute a value in the value map.
Definition: ValueMapper.h:206
hexagon gen pred
iterator end()
Definition: ValueMap.h:138
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:376
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:317
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:298
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:176
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
void setIncomingBlock(unsigned i, BasicBlock *BB)
iterator end()
Definition: BasicBlock.h:254
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:864
Module.h This file contains the declarations for the Module class.
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1382
LoopT * AllocateLoop(ArgsTy &&... Args)
Definition: LoopInfo.h:642
Type * getReturnType() const
Definition: DerivedTypes.h:124
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isConditional() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition: Function.h:208
void setOperand(unsigned i, Value *Val)
Definition: User.h:159
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:145
void push_back(pointer val)
Definition: ilist.h:326
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
CloneBasicBlock - Return a copy of the specified basic block, but without embedding the block into a ...
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
iterator_range< user_iterator > users()
Definition: Value.h:401
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM...
Definition: ValueMapper.h:251
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:38
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:91
bool ContainsCalls
ContainsCalls - This is set to true if the cloned code contains a normal call instruction.
Definition: Cloning.h:68
LoopT * getParentLoop() const
Definition: LoopInfo.h:101
const std::vector< LoopT * > & getSubLoops() const
Return the loops contained entirely within this loop.
Definition: LoopInfo.h:131
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
Definition: LoopInfo.h:311
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:439
void processDeclare(const Module &M, const DbgDeclareInst *DDI)
Process DbgDeclareInst.
Definition: DebugInfo.cpp:179
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Definition: LoopInfo.h:149
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:220
Establish a view to a call site for examination.
Definition: CallSite.h:713
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:108
SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink &#39;this&#39; from the containing function and delete it.
Definition: BasicBlock.cpp:97
#define I(x, y, z)
Definition: MD5.cpp:58
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
ClonedCodeInfo - This struct can be used to capture information about code being cloned, while it is being cloned.
Definition: Cloning.h:65
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:565
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
Multiway switch.
Helper struct that represents how a value is mapped through different register banks.
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: ValueMap.h:154
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool ContainsDynamicAllocas
ContainsDynamicAllocas - This is set to true if the cloned code contains a &#39;dynamic&#39; alloca...
Definition: Cloning.h:74
const BasicBlock & front() const
Definition: Function.h:595
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:556
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:324
LLVM Value Representation.
Definition: Value.h:73
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1260
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
iterator_range< subprogram_iterator > subprograms() const
Definition: DebugInfo.h:105
Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock *> &Blocks)
Clones a loop OrigLoop.
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr)
Split the edge connecting specified block.
A handle to a particular switch case.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=nullptr)
Definition: Function.h:136
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1265
const TerminatorInst * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
void setIncomingValue(unsigned i, Value *V)
MDMapT & MD()
Definition: ValueMap.h:113
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute >> Attrs)
Create an AttributeList with the specified parameters in it.
Definition: Attributes.cpp:868
iterator_range< arg_iterator > args()
Definition: Function.h:621
const BasicBlock * getParent() const
Definition: Instruction.h:66
an instruction to allocate memory on the stack
Definition: Instructions.h:60
void remapInstructionsInBlocks(const SmallVectorImpl< BasicBlock *> &Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.