LLVM  7.0.0svn
CloneFunction.cpp
Go to the documentation of this file.
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DebugInfo.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
41  const Twine &NameSuffix, Function *F,
42  ClonedCodeInfo *CodeInfo,
43  DebugInfoFinder *DIFinder) {
45  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46  if (BB->hasName())
47  NewBB->setName(BB->getName() + NameSuffix);
48 
49  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
50  Module *TheModule = F ? F->getParent() : nullptr;
51 
52  // Loop over all instructions, and copy them over.
53  for (const Instruction &I : *BB) {
54  if (DIFinder && TheModule)
55  DIFinder->processInstruction(*TheModule, I);
56 
57  Instruction *NewInst = I.clone();
58  if (I.hasName())
59  NewInst->setName(I.getName() + NameSuffix);
60  NewBB->getInstList().push_back(NewInst);
61  VMap[&I] = NewInst; // Add instruction map to value.
62 
63  hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64  if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65  if (isa<ConstantInt>(AI->getArraySize()))
66  hasStaticAllocas = true;
67  else
68  hasDynamicAllocas = true;
69  }
70  }
71 
72  if (CodeInfo) {
73  CodeInfo->ContainsCalls |= hasCalls;
74  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
75  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
76  BB != &BB->getParent()->getEntryBlock();
77  }
78  return NewBB;
79 }
80 
81 // Clone OldFunc into NewFunc, transforming the old arguments into references to
82 // VMap values.
83 //
84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85  ValueToValueMapTy &VMap,
86  bool ModuleLevelChanges,
88  const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89  ValueMapTypeRemapper *TypeMapper,
90  ValueMaterializer *Materializer) {
91  assert(NameSuffix && "NameSuffix cannot be null!");
92 
93 #ifndef NDEBUG
94  for (const Argument &I : OldFunc->args())
95  assert(VMap.count(&I) && "No mapping from source argument specified!");
96 #endif
97 
98  // Copy all attributes other than those stored in the AttributeList. We need
99  // to remap the parameter indices of the AttributeList.
100  AttributeList NewAttrs = NewFunc->getAttributes();
101  NewFunc->copyAttributesFrom(OldFunc);
102  NewFunc->setAttributes(NewAttrs);
103 
104  // Fix up the personality function that got copied over.
105  if (OldFunc->hasPersonalityFn())
106  NewFunc->setPersonalityFn(
107  MapValue(OldFunc->getPersonalityFn(), VMap,
108  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
109  TypeMapper, Materializer));
110 
111  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
112  AttributeList OldAttrs = OldFunc->getAttributes();
113 
114  // Clone any argument attributes that are present in the VMap.
115  for (const Argument &OldArg : OldFunc->args()) {
116  if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
117  NewArgAttrs[NewArg->getArgNo()] =
118  OldAttrs.getParamAttributes(OldArg.getArgNo());
119  }
120  }
121 
122  NewFunc->setAttributes(
123  AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
124  OldAttrs.getRetAttributes(), NewArgAttrs));
125 
126  bool MustCloneSP =
127  OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
128  DISubprogram *SP = OldFunc->getSubprogram();
129  if (SP) {
130  assert(!MustCloneSP || ModuleLevelChanges);
131  // Add mappings for some DebugInfo nodes that we don't want duplicated
132  // even if they're distinct.
133  auto &MD = VMap.MD();
134  MD[SP->getUnit()].reset(SP->getUnit());
135  MD[SP->getType()].reset(SP->getType());
136  MD[SP->getFile()].reset(SP->getFile());
137  // If we're not cloning into the same module, no need to clone the
138  // subprogram
139  if (!MustCloneSP)
140  MD[SP].reset(SP);
141  }
142 
144  OldFunc->getAllMetadata(MDs);
145  for (auto MD : MDs) {
146  NewFunc->addMetadata(
147  MD.first,
148  *MapMetadata(MD.second, VMap,
149  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150  TypeMapper, Materializer));
151  }
152 
153  // When we remap instructions, we want to avoid duplicating inlined
154  // DISubprograms, so record all subprograms we find as we duplicate
155  // instructions and then freeze them in the MD map.
156  // We also record information about dbg.value and dbg.declare to avoid
157  // duplicating the types.
158  DebugInfoFinder DIFinder;
159 
160  // Loop over all of the basic blocks in the function, cloning them as
161  // appropriate. Note that we save BE this way in order to handle cloning of
162  // recursive functions into themselves.
163  //
164  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
165  BI != BE; ++BI) {
166  const BasicBlock &BB = *BI;
167 
168  // Create a new basic block and copy instructions into it!
169  BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
170  ModuleLevelChanges ? &DIFinder : nullptr);
171 
172  // Add basic block mapping.
173  VMap[&BB] = CBB;
174 
175  // It is only legal to clone a function if a block address within that
176  // function is never referenced outside of the function. Given that, we
177  // want to map block addresses from the old function to block addresses in
178  // the clone. (This is different from the generic ValueMapper
179  // implementation, which generates an invalid blockaddress when
180  // cloning a function.)
181  if (BB.hasAddressTaken()) {
182  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
183  const_cast<BasicBlock*>(&BB));
184  VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
185  }
186 
187  // Note return instructions for the caller.
188  if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
189  Returns.push_back(RI);
190  }
191 
192  for (DISubprogram *ISP : DIFinder.subprograms())
193  if (ISP != SP)
194  VMap.MD()[ISP].reset(ISP);
195 
196  for (DICompileUnit *CU : DIFinder.compile_units())
197  VMap.MD()[CU].reset(CU);
198 
199  for (DIType *Type : DIFinder.types())
200  VMap.MD()[Type].reset(Type);
201 
202  // Loop over all of the instructions in the function, fixing up operand
203  // references as we go. This uses VMap to do all the hard work.
204  for (Function::iterator BB =
205  cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
206  BE = NewFunc->end();
207  BB != BE; ++BB)
208  // Loop over all instructions, fixing each one as we find it...
209  for (Instruction &II : *BB)
210  RemapInstruction(&II, VMap,
211  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
212  TypeMapper, Materializer);
213 }
214 
215 /// Return a copy of the specified function and add it to that function's
216 /// module. Also, any references specified in the VMap are changed to refer to
217 /// their mapped value instead of the original one. If any of the arguments to
218 /// the function are in the VMap, the arguments are deleted from the resultant
219 /// function. The VMap is updated to include mappings from all of the
220 /// instructions and basicblocks in the function from their old to new values.
221 ///
223  ClonedCodeInfo *CodeInfo) {
224  std::vector<Type*> ArgTypes;
225 
226  // The user might be deleting arguments to the function by specifying them in
227  // the VMap. If so, we need to not add the arguments to the arg ty vector
228  //
229  for (const Argument &I : F->args())
230  if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
231  ArgTypes.push_back(I.getType());
232 
233  // Create a new function type...
235  ArgTypes, F->getFunctionType()->isVarArg());
236 
237  // Create the new function...
238  Function *NewF =
239  Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
240 
241  // Loop over the arguments, copying the names of the mapped arguments over...
242  Function::arg_iterator DestI = NewF->arg_begin();
243  for (const Argument & I : F->args())
244  if (VMap.count(&I) == 0) { // Is this argument preserved?
245  DestI->setName(I.getName()); // Copy the name over...
246  VMap[&I] = &*DestI++; // Add mapping to VMap
247  }
248 
249  SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
250  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
251  CodeInfo);
252 
253  return NewF;
254 }
255 
256 
257 
258 namespace {
259  /// This is a private class used to implement CloneAndPruneFunctionInto.
260  struct PruningFunctionCloner {
261  Function *NewFunc;
262  const Function *OldFunc;
263  ValueToValueMapTy &VMap;
264  bool ModuleLevelChanges;
265  const char *NameSuffix;
266  ClonedCodeInfo *CodeInfo;
267 
268  public:
269  PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
270  ValueToValueMapTy &valueMap, bool moduleLevelChanges,
271  const char *nameSuffix, ClonedCodeInfo *codeInfo)
272  : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
273  ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
274  CodeInfo(codeInfo) {}
275 
276  /// The specified block is found to be reachable, clone it and
277  /// anything that it can reach.
278  void CloneBlock(const BasicBlock *BB,
279  BasicBlock::const_iterator StartingInst,
280  std::vector<const BasicBlock*> &ToClone);
281  };
282 }
283 
284 /// The specified block is found to be reachable, clone it and
285 /// anything that it can reach.
286 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
287  BasicBlock::const_iterator StartingInst,
288  std::vector<const BasicBlock*> &ToClone){
289  WeakTrackingVH &BBEntry = VMap[BB];
290 
291  // Have we already cloned this block?
292  if (BBEntry) return;
293 
294  // Nope, clone it now.
295  BasicBlock *NewBB;
296  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
297  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
298 
299  // It is only legal to clone a function if a block address within that
300  // function is never referenced outside of the function. Given that, we
301  // want to map block addresses from the old function to block addresses in
302  // the clone. (This is different from the generic ValueMapper
303  // implementation, which generates an invalid blockaddress when
304  // cloning a function.)
305  //
306  // Note that we don't need to fix the mapping for unreachable blocks;
307  // the default mapping there is safe.
308  if (BB->hasAddressTaken()) {
309  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
310  const_cast<BasicBlock*>(BB));
311  VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
312  }
313 
314  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
315 
316  // Loop over all instructions, and copy them over, DCE'ing as we go. This
317  // loop doesn't include the terminator.
318  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
319  II != IE; ++II) {
320 
321  Instruction *NewInst = II->clone();
322 
323  // Eagerly remap operands to the newly cloned instruction, except for PHI
324  // nodes for which we defer processing until we update the CFG.
325  if (!isa<PHINode>(NewInst)) {
326  RemapInstruction(NewInst, VMap,
327  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
328 
329  // If we can simplify this instruction to some other value, simply add
330  // a mapping to that value rather than inserting a new instruction into
331  // the basic block.
332  if (Value *V =
333  SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
334  // On the off-chance that this simplifies to an instruction in the old
335  // function, map it back into the new function.
336  if (NewFunc != OldFunc)
337  if (Value *MappedV = VMap.lookup(V))
338  V = MappedV;
339 
340  if (!NewInst->mayHaveSideEffects()) {
341  VMap[&*II] = V;
342  NewInst->deleteValue();
343  continue;
344  }
345  }
346  }
347 
348  if (II->hasName())
349  NewInst->setName(II->getName()+NameSuffix);
350  VMap[&*II] = NewInst; // Add instruction map to value.
351  NewBB->getInstList().push_back(NewInst);
352  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
353 
354  if (CodeInfo)
355  if (auto CS = ImmutableCallSite(&*II))
356  if (CS.hasOperandBundles())
357  CodeInfo->OperandBundleCallSites.push_back(NewInst);
358 
359  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
360  if (isa<ConstantInt>(AI->getArraySize()))
361  hasStaticAllocas = true;
362  else
363  hasDynamicAllocas = true;
364  }
365  }
366 
367  // Finally, clone over the terminator.
368  const TerminatorInst *OldTI = BB->getTerminator();
369  bool TerminatorDone = false;
370  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
371  if (BI->isConditional()) {
372  // If the condition was a known constant in the callee...
373  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
374  // Or is a known constant in the caller...
375  if (!Cond) {
376  Value *V = VMap.lookup(BI->getCondition());
377  Cond = dyn_cast_or_null<ConstantInt>(V);
378  }
379 
380  // Constant fold to uncond branch!
381  if (Cond) {
382  BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
383  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
384  ToClone.push_back(Dest);
385  TerminatorDone = true;
386  }
387  }
388  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
389  // If switching on a value known constant in the caller.
390  ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
391  if (!Cond) { // Or known constant after constant prop in the callee...
392  Value *V = VMap.lookup(SI->getCondition());
393  Cond = dyn_cast_or_null<ConstantInt>(V);
394  }
395  if (Cond) { // Constant fold to uncond branch!
396  SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
397  BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
398  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
399  ToClone.push_back(Dest);
400  TerminatorDone = true;
401  }
402  }
403 
404  if (!TerminatorDone) {
405  Instruction *NewInst = OldTI->clone();
406  if (OldTI->hasName())
407  NewInst->setName(OldTI->getName()+NameSuffix);
408  NewBB->getInstList().push_back(NewInst);
409  VMap[OldTI] = NewInst; // Add instruction map to value.
410 
411  if (CodeInfo)
412  if (auto CS = ImmutableCallSite(OldTI))
413  if (CS.hasOperandBundles())
414  CodeInfo->OperandBundleCallSites.push_back(NewInst);
415 
416  // Recursively clone any reachable successor blocks.
417  const TerminatorInst *TI = BB->getTerminator();
418  for (const BasicBlock *Succ : TI->successors())
419  ToClone.push_back(Succ);
420  }
421 
422  if (CodeInfo) {
423  CodeInfo->ContainsCalls |= hasCalls;
424  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
425  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
426  BB != &BB->getParent()->front();
427  }
428 }
429 
430 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
431 /// entire function. Instead it starts at an instruction provided by the caller
432 /// and copies (and prunes) only the code reachable from that instruction.
433 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
434  const Instruction *StartingInst,
435  ValueToValueMapTy &VMap,
436  bool ModuleLevelChanges,
438  const char *NameSuffix,
439  ClonedCodeInfo *CodeInfo) {
440  assert(NameSuffix && "NameSuffix cannot be null!");
441 
442  ValueMapTypeRemapper *TypeMapper = nullptr;
443  ValueMaterializer *Materializer = nullptr;
444 
445 #ifndef NDEBUG
446  // If the cloning starts at the beginning of the function, verify that
447  // the function arguments are mapped.
448  if (!StartingInst)
449  for (const Argument &II : OldFunc->args())
450  assert(VMap.count(&II) && "No mapping from source argument specified!");
451 #endif
452 
453  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
454  NameSuffix, CodeInfo);
455  const BasicBlock *StartingBB;
456  if (StartingInst)
457  StartingBB = StartingInst->getParent();
458  else {
459  StartingBB = &OldFunc->getEntryBlock();
460  StartingInst = &StartingBB->front();
461  }
462 
463  // Clone the entry block, and anything recursively reachable from it.
464  std::vector<const BasicBlock*> CloneWorklist;
465  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
466  while (!CloneWorklist.empty()) {
467  const BasicBlock *BB = CloneWorklist.back();
468  CloneWorklist.pop_back();
469  PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
470  }
471 
472  // Loop over all of the basic blocks in the old function. If the block was
473  // reachable, we have cloned it and the old block is now in the value map:
474  // insert it into the new function in the right order. If not, ignore it.
475  //
476  // Defer PHI resolution until rest of function is resolved.
477  SmallVector<const PHINode*, 16> PHIToResolve;
478  for (const BasicBlock &BI : *OldFunc) {
479  Value *V = VMap.lookup(&BI);
480  BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
481  if (!NewBB) continue; // Dead block.
482 
483  // Add the new block to the new function.
484  NewFunc->getBasicBlockList().push_back(NewBB);
485 
486  // Handle PHI nodes specially, as we have to remove references to dead
487  // blocks.
488  for (const PHINode &PN : BI.phis()) {
489  // PHI nodes may have been remapped to non-PHI nodes by the caller or
490  // during the cloning process.
491  if (isa<PHINode>(VMap[&PN]))
492  PHIToResolve.push_back(&PN);
493  else
494  break;
495  }
496 
497  // Finally, remap the terminator instructions, as those can't be remapped
498  // until all BBs are mapped.
499  RemapInstruction(NewBB->getTerminator(), VMap,
500  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
501  TypeMapper, Materializer);
502  }
503 
504  // Defer PHI resolution until rest of function is resolved, PHI resolution
505  // requires the CFG to be up-to-date.
506  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
507  const PHINode *OPN = PHIToResolve[phino];
508  unsigned NumPreds = OPN->getNumIncomingValues();
509  const BasicBlock *OldBB = OPN->getParent();
510  BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
511 
512  // Map operands for blocks that are live and remove operands for blocks
513  // that are dead.
514  for (; phino != PHIToResolve.size() &&
515  PHIToResolve[phino]->getParent() == OldBB; ++phino) {
516  OPN = PHIToResolve[phino];
517  PHINode *PN = cast<PHINode>(VMap[OPN]);
518  for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
519  Value *V = VMap.lookup(PN->getIncomingBlock(pred));
520  if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
521  Value *InVal = MapValue(PN->getIncomingValue(pred),
522  VMap,
523  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
524  assert(InVal && "Unknown input value?");
525  PN->setIncomingValue(pred, InVal);
526  PN->setIncomingBlock(pred, MappedBlock);
527  } else {
528  PN->removeIncomingValue(pred, false);
529  --pred; // Revisit the next entry.
530  --e;
531  }
532  }
533  }
534 
535  // The loop above has removed PHI entries for those blocks that are dead
536  // and has updated others. However, if a block is live (i.e. copied over)
537  // but its terminator has been changed to not go to this block, then our
538  // phi nodes will have invalid entries. Update the PHI nodes in this
539  // case.
540  PHINode *PN = cast<PHINode>(NewBB->begin());
541  NumPreds = pred_size(NewBB);
542  if (NumPreds != PN->getNumIncomingValues()) {
543  assert(NumPreds < PN->getNumIncomingValues());
544  // Count how many times each predecessor comes to this block.
545  std::map<BasicBlock*, unsigned> PredCount;
546  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
547  PI != E; ++PI)
548  --PredCount[*PI];
549 
550  // Figure out how many entries to remove from each PHI.
551  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
552  ++PredCount[PN->getIncomingBlock(i)];
553 
554  // At this point, the excess predecessor entries are positive in the
555  // map. Loop over all of the PHIs and remove excess predecessor
556  // entries.
557  BasicBlock::iterator I = NewBB->begin();
558  for (; (PN = dyn_cast<PHINode>(I)); ++I) {
559  for (const auto &PCI : PredCount) {
560  BasicBlock *Pred = PCI.first;
561  for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
562  PN->removeIncomingValue(Pred, false);
563  }
564  }
565  }
566 
567  // If the loops above have made these phi nodes have 0 or 1 operand,
568  // replace them with undef or the input value. We must do this for
569  // correctness, because 0-operand phis are not valid.
570  PN = cast<PHINode>(NewBB->begin());
571  if (PN->getNumIncomingValues() == 0) {
572  BasicBlock::iterator I = NewBB->begin();
573  BasicBlock::const_iterator OldI = OldBB->begin();
574  while ((PN = dyn_cast<PHINode>(I++))) {
575  Value *NV = UndefValue::get(PN->getType());
576  PN->replaceAllUsesWith(NV);
577  assert(VMap[&*OldI] == PN && "VMap mismatch");
578  VMap[&*OldI] = NV;
579  PN->eraseFromParent();
580  ++OldI;
581  }
582  }
583  }
584 
585  // Make a second pass over the PHINodes now that all of them have been
586  // remapped into the new function, simplifying the PHINode and performing any
587  // recursive simplifications exposed. This will transparently update the
588  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
589  // two PHINodes, the iteration over the old PHIs remains valid, and the
590  // mapping will just map us to the new node (which may not even be a PHI
591  // node).
592  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
594  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
595  if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
596  Worklist.insert(PHIToResolve[Idx]);
597 
598  // Note that we must test the size on each iteration, the worklist can grow.
599  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
600  const Value *OrigV = Worklist[Idx];
601  auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
602  if (!I)
603  continue;
604 
605  // Skip over non-intrinsic callsites, we don't want to remove any nodes from
606  // the CGSCC.
607  CallSite CS = CallSite(I);
608  if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
609  continue;
610 
611  // See if this instruction simplifies.
612  Value *SimpleV = SimplifyInstruction(I, DL);
613  if (!SimpleV)
614  continue;
615 
616  // Stash away all the uses of the old instruction so we can check them for
617  // recursive simplifications after a RAUW. This is cheaper than checking all
618  // uses of To on the recursive step in most cases.
619  for (const User *U : OrigV->users())
620  Worklist.insert(cast<Instruction>(U));
621 
622  // Replace the instruction with its simplified value.
623  I->replaceAllUsesWith(SimpleV);
624 
625  // If the original instruction had no side effects, remove it.
627  I->eraseFromParent();
628  else
629  VMap[OrigV] = I;
630  }
631 
632  // Now that the inlined function body has been fully constructed, go through
633  // and zap unconditional fall-through branches. This happens all the time when
634  // specializing code: code specialization turns conditional branches into
635  // uncond branches, and this code folds them.
636  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
637  Function::iterator I = Begin;
638  while (I != NewFunc->end()) {
639  // Check if this block has become dead during inlining or other
640  // simplifications. Note that the first block will appear dead, as it has
641  // not yet been wired up properly.
642  if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
643  I->getSinglePredecessor() == &*I)) {
644  BasicBlock *DeadBB = &*I++;
645  DeleteDeadBlock(DeadBB);
646  continue;
647  }
648 
649  // We need to simplify conditional branches and switches with a constant
650  // operand. We try to prune these out when cloning, but if the
651  // simplification required looking through PHI nodes, those are only
652  // available after forming the full basic block. That may leave some here,
653  // and we still want to prune the dead code as early as possible.
655 
656  BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
657  if (!BI || BI->isConditional()) { ++I; continue; }
658 
659  BasicBlock *Dest = BI->getSuccessor(0);
660  if (!Dest->getSinglePredecessor()) {
661  ++I; continue;
662  }
663 
664  // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
665  // above should have zapped all of them..
666  assert(!isa<PHINode>(Dest->begin()));
667 
668  // We know all single-entry PHI nodes in the inlined function have been
669  // removed, so we just need to splice the blocks.
670  BI->eraseFromParent();
671 
672  // Make all PHI nodes that referred to Dest now refer to I as their source.
673  Dest->replaceAllUsesWith(&*I);
674 
675  // Move all the instructions in the succ to the pred.
676  I->getInstList().splice(I->end(), Dest->getInstList());
677 
678  // Remove the dest block.
679  Dest->eraseFromParent();
680 
681  // Do not increment I, iteratively merge all things this block branches to.
682  }
683 
684  // Make a final pass over the basic blocks from the old function to gather
685  // any return instructions which survived folding. We have to do this here
686  // because we can iteratively remove and merge returns above.
687  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
688  E = NewFunc->end();
689  I != E; ++I)
690  if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
691  Returns.push_back(RI);
692 }
693 
694 
695 /// This works exactly like CloneFunctionInto,
696 /// except that it does some simple constant prop and DCE on the fly. The
697 /// effect of this is to copy significantly less code in cases where (for
698 /// example) a function call with constant arguments is inlined, and those
699 /// constant arguments cause a significant amount of code in the callee to be
700 /// dead. Since this doesn't produce an exact copy of the input, it can't be
701 /// used for things like CloneFunction or CloneModule.
702 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
703  ValueToValueMapTy &VMap,
704  bool ModuleLevelChanges,
706  const char *NameSuffix,
707  ClonedCodeInfo *CodeInfo,
708  Instruction *TheCall) {
709  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
710  ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
711 }
712 
713 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
715  const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
716  // Rewrite the code to refer to itself.
717  for (auto *BB : Blocks)
718  for (auto &Inst : *BB)
719  RemapInstruction(&Inst, VMap,
721 }
722 
723 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
724 /// Blocks.
725 ///
726 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
727 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
729  Loop *OrigLoop, ValueToValueMapTy &VMap,
730  const Twine &NameSuffix, LoopInfo *LI,
731  DominatorTree *DT,
733  assert(OrigLoop->getSubLoops().empty() &&
734  "Loop to be cloned cannot have inner loop");
735  Function *F = OrigLoop->getHeader()->getParent();
736  Loop *ParentLoop = OrigLoop->getParentLoop();
737 
738  Loop *NewLoop = LI->AllocateLoop();
739  if (ParentLoop)
740  ParentLoop->addChildLoop(NewLoop);
741  else
742  LI->addTopLevelLoop(NewLoop);
743 
744  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
745  assert(OrigPH && "No preheader");
746  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
747  // To rename the loop PHIs.
748  VMap[OrigPH] = NewPH;
749  Blocks.push_back(NewPH);
750 
751  // Update LoopInfo.
752  if (ParentLoop)
753  ParentLoop->addBasicBlockToLoop(NewPH, *LI);
754 
755  // Update DominatorTree.
756  DT->addNewBlock(NewPH, LoopDomBB);
757 
758  for (BasicBlock *BB : OrigLoop->getBlocks()) {
759  BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
760  VMap[BB] = NewBB;
761 
762  // Update LoopInfo.
763  NewLoop->addBasicBlockToLoop(NewBB, *LI);
764 
765  // Add DominatorTree node. After seeing all blocks, update to correct IDom.
766  DT->addNewBlock(NewBB, NewPH);
767 
768  Blocks.push_back(NewBB);
769  }
770 
771  for (BasicBlock *BB : OrigLoop->getBlocks()) {
772  // Update DominatorTree.
773  BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
774  DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
775  cast<BasicBlock>(VMap[IDomBB]));
776  }
777 
778  // Move them physically from the end of the block list.
779  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
780  NewPH);
781  F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
782  NewLoop->getHeader()->getIterator(), F->end());
783 
784  return NewLoop;
785 }
786 
787 /// Duplicate non-Phi instructions from the beginning of block up to
788 /// StopAt instruction into a split block between BB and its predecessor.
789 BasicBlock *
791  Instruction *StopAt,
793  DominatorTree *DT) {
794  // We are going to have to map operands from the original BB block to the new
795  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
796  // account for entry from PredBB.
797  BasicBlock::iterator BI = BB->begin();
798  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
799  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
800 
801  BasicBlock *NewBB = SplitEdge(PredBB, BB, DT);
802  NewBB->setName(PredBB->getName() + ".split");
803  Instruction *NewTerm = NewBB->getTerminator();
804 
805  // Clone the non-phi instructions of BB into NewBB, keeping track of the
806  // mapping and using it to remap operands in the cloned instructions.
807  // Stop once we see the terminator too. This covers the case where BB's
808  // terminator gets replaced and StopAt == BB's terminator.
809  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
810  Instruction *New = BI->clone();
811  New->setName(BI->getName());
812  New->insertBefore(NewTerm);
813  ValueMapping[&*BI] = New;
814 
815  // Remap operands to patch up intra-block references.
816  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
817  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
818  auto I = ValueMapping.find(Inst);
819  if (I != ValueMapping.end())
820  New->setOperand(i, I->second);
821  }
822  }
823 
824  return NewBB;
825 }
Return a value (possibly void), from a function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:185
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:68
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
DiagnosticInfoOptimizationBase::Argument NV
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:78
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
iterator end()
Definition: Function.h:644
DIFile * getFile() const
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DominatorTree *DT=nullptr)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
This file contains the declarations for metadata subclasses.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Definition: LoopInfoImpl.h:174
Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
CloneFunction - Return a copy of the specified function and add it to that function&#39;s module...
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:99
BasicBlock * getSuccessor(unsigned i) const
F(f)
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1417
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
Metadata * MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Lookup or compute a mapping for a piece of metadata.
Definition: ValueMapper.h:228
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:264
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:134
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values...
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:361
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
Utility to find all debug info in a module.
Definition: DebugInfo.h:65
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:295
BlockT * getHeader() const
Definition: LoopInfo.h:100
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Subprogram description.
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, Instruction *TheCall=nullptr)
CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, except that it does some simpl...
Class to represent function types.
Definition: DerivedTypes.h:103
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:182
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
Definition: LoopInfoImpl.h:251
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
Definition: LoopInfo.h:735
bool isVarArg() const
Definition: DerivedTypes.h:123
iterator find(const KeyT &Val)
Definition: ValueMap.h:162
iterator_range< type_iterator > types() const
Definition: DebugInfo.h:116
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:210
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:688
LinkageTypes getLinkage() const
Definition: GlobalValue.h:450
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:439
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:171
iterator begin()
Definition: Function.h:642
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:142
Value * getOperand(unsigned i) const
Definition: User.h:170
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:73
const BasicBlock & getEntryBlock() const
Definition: Function.h:626
NodeT * getBlock() const
succ_range successors()
Definition: InstrTypes.h:268
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:51
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
Subclasses of this class are all able to terminate a basic block.
Definition: InstrTypes.h:55
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:235
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:74
bool hasName() const
Definition: Value.h:251
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1508
Conditional or Unconditional Branch instruction.
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1411
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node&#39;s...
DomTreeNodeBase * getIDom() const
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:471
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:276
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:541
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:113
const Instruction & back() const
Definition: BasicBlock.h:278
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
size_t arg_size() const
Definition: Function.h:684
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:116
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:101
self_iterator getIterator()
Definition: ilist_node.h:82
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function...
iterator_range< compile_unit_iterator > compile_units() const
Definition: DebugInfo.h:104
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DeferredDominance *DDT=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:103
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:194
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1392
size_t size() const
Definition: SmallVector.h:53
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Look up or compute a value in the value map.
Definition: ValueMapper.h:206
void processInstruction(const Module &M, const Instruction &I)
Process a single instruction and collect debug info anchors.
Definition: DebugInfo.cpp:107
hexagon gen pred
iterator end()
Definition: ValueMap.h:142
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:387
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:329
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:298
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:192
Base class for types.
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
void setIncomingBlock(unsigned i, BasicBlock *BB)
iterator end()
Definition: BasicBlock.h:266
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:841
Module.h This file contains the declarations for the Module class.
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1394
LoopT * AllocateLoop(ArgsTy &&... Args)
Definition: LoopInfo.h:648
Type * getReturnType() const
Definition: DerivedTypes.h:124
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isConditional() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition: Function.h:213
void setOperand(unsigned i, Value *Val)
Definition: User.h:175
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:150
void push_back(pointer val)
Definition: ilist.h:313
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
CloneBasicBlock - Return a copy of the specified basic block, but without embedding the block into a ...
iterator_range< user_iterator > users()
Definition: Value.h:399
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM...
Definition: ValueMapper.h:251
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:38
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:91
bool ContainsCalls
ContainsCalls - This is set to true if the cloned code contains a normal call instruction.
Definition: Cloning.h:68
LoopT * getParentLoop() const
Definition: LoopInfo.h:101
const std::vector< LoopT * > & getSubLoops() const
Return the loops contained entirely within this loop.
Definition: LoopInfo.h:131
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
Definition: LoopInfo.h:331
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:459
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Definition: LoopInfo.h:149
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:224
Establish a view to a call site for examination.
Definition: CallSite.h:714
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:108
unsigned pred_size(const BasicBlock *BB)
Definition: CFG.h:110
SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink &#39;this&#39; from the containing function and delete it.
Definition: BasicBlock.cpp:115
#define I(x, y, z)
Definition: MD5.cpp:58
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
ClonedCodeInfo - This struct can be used to capture information about code being cloned, while it is being cloned.
Definition: Cloning.h:65
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:619
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
Multiway switch.
Helper struct that represents how a value is mapped through different register banks.
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: ValueMap.h:158
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool ContainsDynamicAllocas
ContainsDynamicAllocas - This is set to true if the cloned code contains a &#39;dynamic&#39; alloca...
Definition: Cloning.h:74
const BasicBlock & front() const
Definition: Function.h:649
void DeleteDeadBlock(BasicBlock *BB, DeferredDominance *DDT=nullptr)
Delete the specified block, which must have no predecessors.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:565
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:346
LLVM Value Representation.
Definition: Value.h:73
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1288
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
iterator_range< subprogram_iterator > subprograms() const
Definition: DebugInfo.h:108
Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock *> &Blocks)
Clones a loop OrigLoop.
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr)
Split the edge connecting specified block.
A handle to a particular switch case.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=nullptr)
Definition: Function.h:136
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1293
const TerminatorInst * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:138
void setIncomingValue(unsigned i, Value *V)
MDMapT & MD()
Definition: ValueMap.h:117
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute >> Attrs)
Create an AttributeList with the specified parameters in it.
Definition: Attributes.cpp:871
iterator_range< arg_iterator > args()
Definition: Function.h:675
const BasicBlock * getParent() const
Definition: Instruction.h:67
an instruction to allocate memory on the stack
Definition: Instructions.h:60
void remapInstructionsInBlocks(const SmallVectorImpl< BasicBlock *> &Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.