LLVM 18.0.0git
X86InstPrinterCommon.cpp
Go to the documentation of this file.
1//===--- X86InstPrinterCommon.cpp - X86 assembly instruction printing -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file includes common code for rendering MCInst instances as Intel-style
10// and Intel-style assembly.
11//
12//===----------------------------------------------------------------------===//
13
15#include "X86BaseInfo.h"
16#include "llvm/MC/MCAsmInfo.h"
17#include "llvm/MC/MCExpr.h"
18#include "llvm/MC/MCInst.h"
19#include "llvm/MC/MCInstrDesc.h"
20#include "llvm/MC/MCInstrInfo.h"
24#include <cassert>
25#include <cstdint>
26
27using namespace llvm;
28
30 raw_ostream &O) {
31 int64_t Imm = MI->getOperand(Op).getImm();
32 bool Flavor = MI->getOpcode() == X86::CMPCCXADDmr32 ||
33 MI->getOpcode() == X86::CMPCCXADDmr64;
34 switch (Imm) {
35 default: llvm_unreachable("Invalid condcode argument!");
36 case 0: O << "o"; break;
37 case 1: O << "no"; break;
38 case 2: O << "b"; break;
39 case 3: O << (Flavor ? "nb" : "ae"); break;
40 case 4: O << (Flavor ? "z" : "e"); break;
41 case 5: O << (Flavor ? "nz" : "ne"); break;
42 case 6: O << "be"; break;
43 case 7: O << (Flavor ? "nbe" : "a"); break;
44 case 8: O << "s"; break;
45 case 9: O << "ns"; break;
46 case 0xa: O << "p"; break;
47 case 0xb: O << "np"; break;
48 case 0xc: O << "l"; break;
49 case 0xd: O << (Flavor ? "nl" : "ge"); break;
50 case 0xe: O << "le"; break;
51 case 0xf: O << (Flavor ? "nle" : "g"); break;
52 }
53}
54
56 raw_ostream &O) {
57 int64_t Imm = MI->getOperand(Op).getImm();
58 switch (Imm) {
59 default: llvm_unreachable("Invalid ssecc/avxcc argument!");
60 case 0: O << "eq"; break;
61 case 1: O << "lt"; break;
62 case 2: O << "le"; break;
63 case 3: O << "unord"; break;
64 case 4: O << "neq"; break;
65 case 5: O << "nlt"; break;
66 case 6: O << "nle"; break;
67 case 7: O << "ord"; break;
68 case 8: O << "eq_uq"; break;
69 case 9: O << "nge"; break;
70 case 0xa: O << "ngt"; break;
71 case 0xb: O << "false"; break;
72 case 0xc: O << "neq_oq"; break;
73 case 0xd: O << "ge"; break;
74 case 0xe: O << "gt"; break;
75 case 0xf: O << "true"; break;
76 case 0x10: O << "eq_os"; break;
77 case 0x11: O << "lt_oq"; break;
78 case 0x12: O << "le_oq"; break;
79 case 0x13: O << "unord_s"; break;
80 case 0x14: O << "neq_us"; break;
81 case 0x15: O << "nlt_uq"; break;
82 case 0x16: O << "nle_uq"; break;
83 case 0x17: O << "ord_s"; break;
84 case 0x18: O << "eq_us"; break;
85 case 0x19: O << "nge_uq"; break;
86 case 0x1a: O << "ngt_uq"; break;
87 case 0x1b: O << "false_os"; break;
88 case 0x1c: O << "neq_os"; break;
89 case 0x1d: O << "ge_oq"; break;
90 case 0x1e: O << "gt_oq"; break;
91 case 0x1f: O << "true_us"; break;
92 }
93}
94
96 raw_ostream &OS) {
97 OS << "vpcom";
98
99 int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
100 switch (Imm) {
101 default: llvm_unreachable("Invalid vpcom argument!");
102 case 0: OS << "lt"; break;
103 case 1: OS << "le"; break;
104 case 2: OS << "gt"; break;
105 case 3: OS << "ge"; break;
106 case 4: OS << "eq"; break;
107 case 5: OS << "neq"; break;
108 case 6: OS << "false"; break;
109 case 7: OS << "true"; break;
110 }
111
112 switch (MI->getOpcode()) {
113 default: llvm_unreachable("Unexpected opcode!");
114 case X86::VPCOMBmi: case X86::VPCOMBri: OS << "b\t"; break;
115 case X86::VPCOMDmi: case X86::VPCOMDri: OS << "d\t"; break;
116 case X86::VPCOMQmi: case X86::VPCOMQri: OS << "q\t"; break;
117 case X86::VPCOMUBmi: case X86::VPCOMUBri: OS << "ub\t"; break;
118 case X86::VPCOMUDmi: case X86::VPCOMUDri: OS << "ud\t"; break;
119 case X86::VPCOMUQmi: case X86::VPCOMUQri: OS << "uq\t"; break;
120 case X86::VPCOMUWmi: case X86::VPCOMUWri: OS << "uw\t"; break;
121 case X86::VPCOMWmi: case X86::VPCOMWri: OS << "w\t"; break;
122 }
123}
124
126 raw_ostream &OS) {
127 OS << "vpcmp";
128
129 printSSEAVXCC(MI, MI->getNumOperands() - 1, OS);
130
131 switch (MI->getOpcode()) {
132 default: llvm_unreachable("Unexpected opcode!");
133 case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri:
134 case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri:
135 case X86::VPCMPBZrmi: case X86::VPCMPBZrri:
136 case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik:
137 case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik:
138 case X86::VPCMPBZrmik: case X86::VPCMPBZrrik:
139 OS << "b\t";
140 break;
141 case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri:
142 case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri:
143 case X86::VPCMPDZrmi: case X86::VPCMPDZrri:
144 case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik:
145 case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik:
146 case X86::VPCMPDZrmik: case X86::VPCMPDZrrik:
147 case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
148 case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
149 case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
150 OS << "d\t";
151 break;
152 case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri:
153 case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri:
154 case X86::VPCMPQZrmi: case X86::VPCMPQZrri:
155 case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik:
156 case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik:
157 case X86::VPCMPQZrmik: case X86::VPCMPQZrrik:
158 case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
159 case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
160 case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
161 OS << "q\t";
162 break;
163 case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri:
164 case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri:
165 case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri:
166 case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
167 case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
168 case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik:
169 OS << "ub\t";
170 break;
171 case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri:
172 case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri:
173 case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri:
174 case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
175 case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
176 case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik:
177 case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
178 case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
179 case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk:
180 OS << "ud\t";
181 break;
182 case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri:
183 case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri:
184 case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri:
185 case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
186 case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
187 case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik:
188 case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
189 case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
190 case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk:
191 OS << "uq\t";
192 break;
193 case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri:
194 case X86::VPCMPUWZ256rri: case X86::VPCMPUWZ256rmi:
195 case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri:
196 case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
197 case X86::VPCMPUWZ256rrik: case X86::VPCMPUWZ256rmik:
198 case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik:
199 OS << "uw\t";
200 break;
201 case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri:
202 case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri:
203 case X86::VPCMPWZrmi: case X86::VPCMPWZrri:
204 case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik:
205 case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik:
206 case X86::VPCMPWZrmik: case X86::VPCMPWZrrik:
207 OS << "w\t";
208 break;
209 }
210}
211
213 raw_ostream &OS) {
214 OS << (IsVCmp ? "vcmp" : "cmp");
215
216 printSSEAVXCC(MI, MI->getNumOperands() - 1, OS);
217
218 switch (MI->getOpcode()) {
219 default: llvm_unreachable("Unexpected opcode!");
220 case X86::CMPPDrmi: case X86::CMPPDrri:
221 case X86::VCMPPDrmi: case X86::VCMPPDrri:
222 case X86::VCMPPDYrmi: case X86::VCMPPDYrri:
223 case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri:
224 case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri:
225 case X86::VCMPPDZrmi: case X86::VCMPPDZrri:
226 case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
227 case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
228 case X86::VCMPPDZrmik: case X86::VCMPPDZrrik:
229 case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
230 case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
231 case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik:
232 case X86::VCMPPDZrrib: case X86::VCMPPDZrribk:
233 OS << "pd\t";
234 break;
235 case X86::CMPPSrmi: case X86::CMPPSrri:
236 case X86::VCMPPSrmi: case X86::VCMPPSrri:
237 case X86::VCMPPSYrmi: case X86::VCMPPSYrri:
238 case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri:
239 case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri:
240 case X86::VCMPPSZrmi: case X86::VCMPPSZrri:
241 case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
242 case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
243 case X86::VCMPPSZrmik: case X86::VCMPPSZrrik:
244 case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
245 case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
246 case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik:
247 case X86::VCMPPSZrrib: case X86::VCMPPSZrribk:
248 OS << "ps\t";
249 break;
250 case X86::CMPSDrm: case X86::CMPSDrr:
251 case X86::CMPSDrm_Int: case X86::CMPSDrr_Int:
252 case X86::VCMPSDrm: case X86::VCMPSDrr:
253 case X86::VCMPSDrm_Int: case X86::VCMPSDrr_Int:
254 case X86::VCMPSDZrm: case X86::VCMPSDZrr:
255 case X86::VCMPSDZrm_Int: case X86::VCMPSDZrr_Int:
256 case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk:
257 case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk:
258 OS << "sd\t";
259 break;
260 case X86::CMPSSrm: case X86::CMPSSrr:
261 case X86::CMPSSrm_Int: case X86::CMPSSrr_Int:
262 case X86::VCMPSSrm: case X86::VCMPSSrr:
263 case X86::VCMPSSrm_Int: case X86::VCMPSSrr_Int:
264 case X86::VCMPSSZrm: case X86::VCMPSSZrr:
265 case X86::VCMPSSZrm_Int: case X86::VCMPSSZrr_Int:
266 case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk:
267 case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk:
268 OS << "ss\t";
269 break;
270 case X86::VCMPPHZ128rmi: case X86::VCMPPHZ128rri:
271 case X86::VCMPPHZ256rmi: case X86::VCMPPHZ256rri:
272 case X86::VCMPPHZrmi: case X86::VCMPPHZrri:
273 case X86::VCMPPHZ128rmik: case X86::VCMPPHZ128rrik:
274 case X86::VCMPPHZ256rmik: case X86::VCMPPHZ256rrik:
275 case X86::VCMPPHZrmik: case X86::VCMPPHZrrik:
276 case X86::VCMPPHZ128rmbi: case X86::VCMPPHZ128rmbik:
277 case X86::VCMPPHZ256rmbi: case X86::VCMPPHZ256rmbik:
278 case X86::VCMPPHZrmbi: case X86::VCMPPHZrmbik:
279 case X86::VCMPPHZrrib: case X86::VCMPPHZrribk:
280 OS << "ph\t";
281 break;
282 case X86::VCMPSHZrm: case X86::VCMPSHZrr:
283 case X86::VCMPSHZrm_Int: case X86::VCMPSHZrr_Int:
284 case X86::VCMPSHZrrb_Int: case X86::VCMPSHZrrb_Intk:
285 case X86::VCMPSHZrm_Intk: case X86::VCMPSHZrr_Intk:
286 OS << "sh\t";
287 break;
288 }
289}
290
292 raw_ostream &O) {
293 int64_t Imm = MI->getOperand(Op).getImm();
294 switch (Imm) {
295 default:
296 llvm_unreachable("Invalid rounding control!");
298 O << "{rn-sae}";
299 break;
300 case X86::TO_NEG_INF:
301 O << "{rd-sae}";
302 break;
303 case X86::TO_POS_INF:
304 O << "{ru-sae}";
305 break;
306 case X86::TO_ZERO:
307 O << "{rz-sae}";
308 break;
309 }
310}
311
312/// value (e.g. for jumps and calls). In Intel-style these print slightly
313/// differently than normal immediates. For example, a $ is not emitted.
314///
315/// \p Address The address of the next instruction.
316/// \see MCInstPrinter::printInst
318 unsigned OpNo, raw_ostream &O) {
319 // Do not print the numberic target address when symbolizing.
321 return;
322
323 const MCOperand &Op = MI->getOperand(OpNo);
324 if (Op.isImm()) {
326 uint64_t Target = Address + Op.getImm();
327 if (MAI.getCodePointerSize() == 4)
328 Target &= 0xffffffff;
330 } else
331 markup(O, Markup::Immediate) << formatImm(Op.getImm());
332 } else {
333 assert(Op.isExpr() && "unknown pcrel immediate operand");
334 // If a symbolic branch target was added as a constant expression then print
335 // that address in hex.
336 const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
337 int64_t Address;
338 if (BranchTarget && BranchTarget->evaluateAsAbsolute(Address)) {
340 } else {
341 // Otherwise, just print the expression.
342 Op.getExpr()->print(O, &MAI);
343 }
344 }
345}
346
348 raw_ostream &O) {
349 if (MI->getOperand(OpNo).getReg()) {
350 printOperand(MI, OpNo, O);
351 O << ':';
352 }
353}
354
356 const MCSubtargetInfo &STI) {
357 const MCInstrDesc &Desc = MII.get(MI->getOpcode());
358 uint64_t TSFlags = Desc.TSFlags;
359 unsigned Flags = MI->getFlags();
360
361 if ((TSFlags & X86II::LOCK) || (Flags & X86::IP_HAS_LOCK))
362 O << "\tlock\t";
363
364 if ((TSFlags & X86II::NOTRACK) || (Flags & X86::IP_HAS_NOTRACK))
365 O << "\tnotrack\t";
366
367 if (Flags & X86::IP_HAS_REPEAT_NE)
368 O << "\trepne\t";
369 else if (Flags & X86::IP_HAS_REPEAT)
370 O << "\trep\t";
371
372 // These all require a pseudo prefix
373 if ((Flags & X86::IP_USE_VEX) ||
375 O << "\t{vex}";
376 else if (Flags & X86::IP_USE_VEX2)
377 O << "\t{vex2}";
378 else if (Flags & X86::IP_USE_VEX3)
379 O << "\t{vex3}";
380 else if ((Flags & X86::IP_USE_EVEX) ||
382 O << "\t{evex}";
383
384 if (Flags & X86::IP_USE_DISP8)
385 O << "\t{disp8}";
386 else if (Flags & X86::IP_USE_DISP32)
387 O << "\t{disp32}";
388
389 // Determine where the memory operand starts, if present
390 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
391 if (MemoryOperand != -1)
392 MemoryOperand += X86II::getOperandBias(Desc);
393
394 // Address-Size override prefix
395 if (Flags & X86::IP_HAS_AD_SIZE &&
396 !X86_MC::needsAddressSizeOverride(*MI, STI, MemoryOperand, TSFlags)) {
397 if (STI.hasFeature(X86::Is16Bit) || STI.hasFeature(X86::Is64Bit))
398 O << "\taddr32\t";
399 else if (STI.hasFeature(X86::Is32Bit))
400 O << "\taddr16\t";
401 }
402}
403
404void X86InstPrinterCommon::printVKPair(const MCInst *MI, unsigned OpNo,
405 raw_ostream &OS) {
406 // In assembly listings, a pair is represented by one of its members, any
407 // of the two. Here, we pick k0, k2, k4, k6, but we could as well
408 // print K2_K3 as "k3". It would probably make a lot more sense, if
409 // the assembly would look something like:
410 // "vp2intersect %zmm5, %zmm7, {%k2, %k3}"
411 // but this can work too.
412 switch (MI->getOperand(OpNo).getReg()) {
413 case X86::K0_K1:
414 printRegName(OS, X86::K0);
415 return;
416 case X86::K2_K3:
417 printRegName(OS, X86::K2);
418 return;
419 case X86::K4_K5:
420 printRegName(OS, X86::K4);
421 return;
422 case X86::K6_K7:
423 printRegName(OS, X86::K6);
424 return;
425 }
426 llvm_unreachable("Unknown mask pair register name");
427}
IRTranslator LLVM IR MI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This class represents an Operation in the Expression.
bool print(raw_ostream &OS, DIDumpOptions DumpOpts, const DWARFExpression *Expr, DWARFUnit *U) const
unsigned getCodePointerSize() const
Get the code pointer size in bytes.
Definition: MCAsmInfo.h:553
format_object< int64_t > formatHex(int64_t Value) const
const MCInstrInfo & MII
Definition: MCInstPrinter.h:52
bool SymbolizeOperands
If true, symbolize branch target and memory reference operands.
Definition: MCInstPrinter.h:77
virtual void printRegName(raw_ostream &OS, MCRegister Reg) const
Print the assembler register name.
WithMarkup markup(raw_ostream &OS, Markup M) const
const MCAsmInfo & MAI
Definition: MCInstPrinter.h:51
format_object< int64_t > formatImm(int64_t Value) const
Utility function to print immediates in decimal or hex.
bool PrintBranchImmAsAddress
If true, a branch immediate (e.g.
Definition: MCInstPrinter.h:74
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:184
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:36
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
Target - Wrapper for Target specific information.
void printRoundingControl(const MCInst *MI, unsigned Op, raw_ostream &O)
void printPCRelImm(const MCInst *MI, uint64_t Address, unsigned OpNo, raw_ostream &O)
value (e.g.
void printOptionalSegReg(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printVPCOMMnemonic(const MCInst *MI, raw_ostream &OS)
void printSSEAVXCC(const MCInst *MI, unsigned Op, raw_ostream &OS)
void printVKPair(const MCInst *MI, unsigned OpNo, raw_ostream &OS)
virtual void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &O)=0
void printCondCode(const MCInst *MI, unsigned Op, raw_ostream &OS)
void printCMPMnemonic(const MCInst *MI, bool IsVCmp, raw_ostream &OS)
void printInstFlags(const MCInst *MI, raw_ostream &O, const MCSubtargetInfo &STI)
void printVPCMPMnemonic(const MCInst *MI, raw_ostream &OS)
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ ExplicitEVEXPrefix
For instructions that are promoted to EVEX space for EGPR.
Definition: X86BaseInfo.h:872
@ ExplicitVEXPrefix
For instructions that use VEX encoding only when {vex}, {vex2} or {vex3} is present.
Definition: X86BaseInfo.h:870
@ ExplicitOpPrefixMask
Definition: X86BaseInfo.h:873
int getMemoryOperandNo(uint64_t TSFlags)
Definition: X86BaseInfo.h:1000
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
Definition: X86BaseInfo.h:963
bool needsAddressSizeOverride(const MCInst &MI, const MCSubtargetInfo &STI, int MemoryOperand, uint64_t TSFlags)
Returns true if this instruction needs an Address-Size override prefix.
@ TO_NEAREST_INT
Definition: X86BaseInfo.h:42
@ IP_HAS_NOTRACK
Definition: X86BaseInfo.h:58
@ IP_USE_DISP8
Definition: X86BaseInfo.h:63
@ IP_HAS_AD_SIZE
Definition: X86BaseInfo.h:54
@ IP_HAS_REPEAT
Definition: X86BaseInfo.h:56
@ IP_USE_DISP32
Definition: X86BaseInfo.h:64
@ IP_HAS_REPEAT_NE
Definition: X86BaseInfo.h:55
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Description of the encoding of one expression Op.