LLVM 19.0.0git
X86ATTInstPrinter.cpp
Go to the documentation of this file.
1//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file includes code for rendering MCInst instances as AT&T-style
10// assembly.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86ATTInstPrinter.h"
15#include "X86BaseInfo.h"
16#include "X86InstComments.h"
17#include "llvm/MC/MCExpr.h"
18#include "llvm/MC/MCInst.h"
20#include "llvm/MC/MCInstrInfo.h"
24#include "llvm/Support/Format.h"
26#include <cassert>
27#include <cinttypes>
28#include <cstdint>
29
30using namespace llvm;
31
32#define DEBUG_TYPE "asm-printer"
33
34// Include the auto-generated portion of the assembly writer.
35#define PRINT_ALIAS_INSTR
36#include "X86GenAsmWriter.inc"
37
40}
41
43 StringRef Annot, const MCSubtargetInfo &STI,
44 raw_ostream &OS) {
45 // If verbose assembly is enabled, we can print some informative comments.
46 if (CommentStream)
47 HasCustomInstComment = EmitAnyX86InstComments(MI, *CommentStream, MII);
48
49 printInstFlags(MI, OS, STI);
50
51 // Output CALLpcrel32 as "callq" in 64-bit mode.
52 // In Intel annotation it's always emitted as "call".
53 //
54 // TODO: Probably this hack should be redesigned via InstAlias in
55 // InstrInfo.td as soon as Requires clause is supported properly
56 // for InstAlias.
57 if (MI->getOpcode() == X86::CALLpcrel32 &&
58 (STI.hasFeature(X86::Is64Bit))) {
59 OS << "\tcallq\t";
61 }
62 // data16 and data32 both have the same encoding of 0x66. While data32 is
63 // valid only in 16 bit systems, data16 is valid in the rest.
64 // There seems to be some lack of support of the Requires clause that causes
65 // 0x66 to be interpreted as "data16" by the asm printer.
66 // Thus we add an adjustment here in order to print the "right" instruction.
67 else if (MI->getOpcode() == X86::DATA16_PREFIX &&
68 STI.hasFeature(X86::Is16Bit)) {
69 OS << "\tdata32";
70 }
71 // Try to print any aliases first.
74
75 // Next always print the annotation.
76 printAnnotation(OS, Annot);
77}
78
80 raw_ostream &OS) {
81 if (MI->getNumOperands() == 0 ||
82 !MI->getOperand(MI->getNumOperands() - 1).isImm())
83 return false;
84
85 int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
86
87 const MCInstrDesc &Desc = MII.get(MI->getOpcode());
88
89 // Custom print the vector compare instructions to get the immediate
90 // translated into the mnemonic.
91 switch (MI->getOpcode()) {
92 case X86::CMPPDrmi: case X86::CMPPDrri:
93 case X86::CMPPSrmi: case X86::CMPPSrri:
94 case X86::CMPSDrmi: case X86::CMPSDrri:
95 case X86::CMPSDrmi_Int: case X86::CMPSDrri_Int:
96 case X86::CMPSSrmi: case X86::CMPSSrri:
97 case X86::CMPSSrmi_Int: case X86::CMPSSrri_Int:
98 if (Imm >= 0 && Imm <= 7) {
99 OS << '\t';
100 printCMPMnemonic(MI, /*IsVCMP*/false, OS);
101
102 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
103 if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
104 printdwordmem(MI, 2, OS);
105 else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
106 printqwordmem(MI, 2, OS);
107 else
108 printxmmwordmem(MI, 2, OS);
109 } else
110 printOperand(MI, 2, OS);
111
112 // Skip operand 1 as its tied to the dest.
113
114 OS << ", ";
115 printOperand(MI, 0, OS);
116 return true;
117 }
118 break;
119
120 case X86::VCMPPDrmi: case X86::VCMPPDrri:
121 case X86::VCMPPDYrmi: case X86::VCMPPDYrri:
122 case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri:
123 case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri:
124 case X86::VCMPPDZrmi: case X86::VCMPPDZrri:
125 case X86::VCMPPSrmi: case X86::VCMPPSrri:
126 case X86::VCMPPSYrmi: case X86::VCMPPSYrri:
127 case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri:
128 case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri:
129 case X86::VCMPPSZrmi: case X86::VCMPPSZrri:
130 case X86::VCMPSDrmi: case X86::VCMPSDrri:
131 case X86::VCMPSDZrmi: case X86::VCMPSDZrri:
132 case X86::VCMPSDrmi_Int: case X86::VCMPSDrri_Int:
133 case X86::VCMPSDZrmi_Int: case X86::VCMPSDZrri_Int:
134 case X86::VCMPSSrmi: case X86::VCMPSSrri:
135 case X86::VCMPSSZrmi: case X86::VCMPSSZrri:
136 case X86::VCMPSSrmi_Int: case X86::VCMPSSrri_Int:
137 case X86::VCMPSSZrmi_Int: case X86::VCMPSSZrri_Int:
138 case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
139 case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
140 case X86::VCMPPDZrmik: case X86::VCMPPDZrrik:
141 case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
142 case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
143 case X86::VCMPPSZrmik: case X86::VCMPPSZrrik:
144 case X86::VCMPSDZrmi_Intk: case X86::VCMPSDZrri_Intk:
145 case X86::VCMPSSZrmi_Intk: case X86::VCMPSSZrri_Intk:
146 case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
147 case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
148 case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik:
149 case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
150 case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
151 case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik:
152 case X86::VCMPPDZrrib: case X86::VCMPPDZrribk:
153 case X86::VCMPPSZrrib: case X86::VCMPPSZrribk:
154 case X86::VCMPSDZrrib_Int: case X86::VCMPSDZrrib_Intk:
155 case X86::VCMPSSZrrib_Int: case X86::VCMPSSZrrib_Intk:
156 case X86::VCMPPHZ128rmi: case X86::VCMPPHZ128rri:
157 case X86::VCMPPHZ256rmi: case X86::VCMPPHZ256rri:
158 case X86::VCMPPHZrmi: case X86::VCMPPHZrri:
159 case X86::VCMPSHZrmi: case X86::VCMPSHZrri:
160 case X86::VCMPSHZrmi_Int: case X86::VCMPSHZrri_Int:
161 case X86::VCMPPHZ128rmik: case X86::VCMPPHZ128rrik:
162 case X86::VCMPPHZ256rmik: case X86::VCMPPHZ256rrik:
163 case X86::VCMPPHZrmik: case X86::VCMPPHZrrik:
164 case X86::VCMPSHZrmi_Intk: case X86::VCMPSHZrri_Intk:
165 case X86::VCMPPHZ128rmbi: case X86::VCMPPHZ128rmbik:
166 case X86::VCMPPHZ256rmbi: case X86::VCMPPHZ256rmbik:
167 case X86::VCMPPHZrmbi: case X86::VCMPPHZrmbik:
168 case X86::VCMPPHZrrib: case X86::VCMPPHZrribk:
169 case X86::VCMPSHZrrib_Int: case X86::VCMPSHZrrib_Intk:
170 if (Imm >= 0 && Imm <= 31) {
171 OS << '\t';
172 printCMPMnemonic(MI, /*IsVCMP*/true, OS);
173
174 unsigned CurOp = (Desc.TSFlags & X86II::EVEX_K) ? 3 : 2;
175
176 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
177 if (Desc.TSFlags & X86II::EVEX_B) {
178 // Broadcast form.
179 // Load size is word for TA map. Otherwise it is based on W-bit.
180 if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
181 assert(!(Desc.TSFlags & X86II::REX_W) && "Unknown W-bit value!");
182 printwordmem(MI, CurOp--, OS);
183 } else if (Desc.TSFlags & X86II::REX_W) {
184 printqwordmem(MI, CurOp--, OS);
185 } else {
186 printdwordmem(MI, CurOp--, OS);
187 }
188
189 // Print the number of elements broadcasted.
190 unsigned NumElts;
191 if (Desc.TSFlags & X86II::EVEX_L2)
192 NumElts = (Desc.TSFlags & X86II::REX_W) ? 8 : 16;
193 else if (Desc.TSFlags & X86II::VEX_L)
194 NumElts = (Desc.TSFlags & X86II::REX_W) ? 4 : 8;
195 else
196 NumElts = (Desc.TSFlags & X86II::REX_W) ? 2 : 4;
197 if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA) {
198 assert(!(Desc.TSFlags & X86II::REX_W) && "Unknown W-bit value!");
199 NumElts *= 2;
200 }
201 OS << "{1to" << NumElts << "}";
202 } else {
203 if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS) {
204 if ((Desc.TSFlags & X86II::OpMapMask) == X86II::TA)
205 printwordmem(MI, CurOp--, OS);
206 else
207 printdwordmem(MI, CurOp--, OS);
208 } else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD) {
209 assert((Desc.TSFlags & X86II::OpMapMask) != X86II::TA &&
210 "Unexpected op map!");
211 printqwordmem(MI, CurOp--, OS);
212 } else if (Desc.TSFlags & X86II::EVEX_L2) {
213 printzmmwordmem(MI, CurOp--, OS);
214 } else if (Desc.TSFlags & X86II::VEX_L) {
215 printymmwordmem(MI, CurOp--, OS);
216 } else {
217 printxmmwordmem(MI, CurOp--, OS);
218 }
219 }
220 } else {
221 if (Desc.TSFlags & X86II::EVEX_B)
222 OS << "{sae}, ";
223 printOperand(MI, CurOp--, OS);
224 }
225
226 OS << ", ";
227 printOperand(MI, CurOp--, OS);
228 OS << ", ";
229 printOperand(MI, 0, OS);
230 if (CurOp > 0) {
231 // Print mask operand.
232 OS << " {";
233 printOperand(MI, CurOp--, OS);
234 OS << "}";
235 }
236
237 return true;
238 }
239 break;
240
241 case X86::VPCOMBmi: case X86::VPCOMBri:
242 case X86::VPCOMDmi: case X86::VPCOMDri:
243 case X86::VPCOMQmi: case X86::VPCOMQri:
244 case X86::VPCOMUBmi: case X86::VPCOMUBri:
245 case X86::VPCOMUDmi: case X86::VPCOMUDri:
246 case X86::VPCOMUQmi: case X86::VPCOMUQri:
247 case X86::VPCOMUWmi: case X86::VPCOMUWri:
248 case X86::VPCOMWmi: case X86::VPCOMWri:
249 if (Imm >= 0 && Imm <= 7) {
250 OS << '\t';
252
253 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem)
254 printxmmwordmem(MI, 2, OS);
255 else
256 printOperand(MI, 2, OS);
257
258 OS << ", ";
259 printOperand(MI, 1, OS);
260 OS << ", ";
261 printOperand(MI, 0, OS);
262 return true;
263 }
264 break;
265
266 case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri:
267 case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri:
268 case X86::VPCMPBZrmi: case X86::VPCMPBZrri:
269 case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri:
270 case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri:
271 case X86::VPCMPDZrmi: case X86::VPCMPDZrri:
272 case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri:
273 case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri:
274 case X86::VPCMPQZrmi: case X86::VPCMPQZrri:
275 case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri:
276 case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri:
277 case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri:
278 case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri:
279 case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri:
280 case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri:
281 case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri:
282 case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri:
283 case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri:
284 case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri:
285 case X86::VPCMPUWZ256rmi: case X86::VPCMPUWZ256rri:
286 case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri:
287 case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri:
288 case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri:
289 case X86::VPCMPWZrmi: case X86::VPCMPWZrri:
290 case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik:
291 case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik:
292 case X86::VPCMPBZrmik: case X86::VPCMPBZrrik:
293 case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik:
294 case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik:
295 case X86::VPCMPDZrmik: case X86::VPCMPDZrrik:
296 case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik:
297 case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik:
298 case X86::VPCMPQZrmik: case X86::VPCMPQZrrik:
299 case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
300 case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
301 case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik:
302 case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
303 case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
304 case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik:
305 case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
306 case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
307 case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik:
308 case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
309 case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik:
310 case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik:
311 case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik:
312 case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik:
313 case X86::VPCMPWZrmik: case X86::VPCMPWZrrik:
314 case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
315 case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
316 case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
317 case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
318 case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
319 case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
320 case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
321 case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
322 case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk:
323 case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
324 case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
325 case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk:
326 if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) {
327 OS << '\t';
329
330 unsigned CurOp = (Desc.TSFlags & X86II::EVEX_K) ? 3 : 2;
331
332 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
333 if (Desc.TSFlags & X86II::EVEX_B) {
334 // Broadcast form.
335 // Load size is based on W-bit as only D and Q are supported.
336 if (Desc.TSFlags & X86II::REX_W)
337 printqwordmem(MI, CurOp--, OS);
338 else
339 printdwordmem(MI, CurOp--, OS);
340
341 // Print the number of elements broadcasted.
342 unsigned NumElts;
343 if (Desc.TSFlags & X86II::EVEX_L2)
344 NumElts = (Desc.TSFlags & X86II::REX_W) ? 8 : 16;
345 else if (Desc.TSFlags & X86II::VEX_L)
346 NumElts = (Desc.TSFlags & X86II::REX_W) ? 4 : 8;
347 else
348 NumElts = (Desc.TSFlags & X86II::REX_W) ? 2 : 4;
349 OS << "{1to" << NumElts << "}";
350 } else {
351 if (Desc.TSFlags & X86II::EVEX_L2)
352 printzmmwordmem(MI, CurOp--, OS);
353 else if (Desc.TSFlags & X86II::VEX_L)
354 printymmwordmem(MI, CurOp--, OS);
355 else
356 printxmmwordmem(MI, CurOp--, OS);
357 }
358 } else {
359 printOperand(MI, CurOp--, OS);
360 }
361
362 OS << ", ";
363 printOperand(MI, CurOp--, OS);
364 OS << ", ";
365 printOperand(MI, 0, OS);
366 if (CurOp > 0) {
367 // Print mask operand.
368 OS << " {";
369 printOperand(MI, CurOp--, OS);
370 OS << "}";
371 }
372
373 return true;
374 }
375 break;
376 }
377
378 return false;
379}
380
381void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
382 raw_ostream &O) {
383 const MCOperand &Op = MI->getOperand(OpNo);
384 if (Op.isReg()) {
385 printRegName(O, Op.getReg());
386 } else if (Op.isImm()) {
387 // Print immediates as signed values.
388 int64_t Imm = Op.getImm();
389 markup(O, Markup::Immediate) << '$' << formatImm(Imm);
390
391 // TODO: This should be in a helper function in the base class, so it can
392 // be used by other printers.
393
394 // If there are no instruction-specific comments, add a comment clarifying
395 // the hex value of the immediate operand when it isn't in the range
396 // [-256,255].
397 if (CommentStream && !HasCustomInstComment && (Imm > 255 || Imm < -256)) {
398 // Don't print unnecessary hex sign bits.
399 if (Imm == (int16_t)(Imm))
400 *CommentStream << format("imm = 0x%" PRIX16 "\n", (uint16_t)Imm);
401 else if (Imm == (int32_t)(Imm))
402 *CommentStream << format("imm = 0x%" PRIX32 "\n", (uint32_t)Imm);
403 else
404 *CommentStream << format("imm = 0x%" PRIX64 "\n", (uint64_t)Imm);
405 }
406 } else {
407 assert(Op.isExpr() && "unknown operand kind in printOperand");
409 O << '$';
410 Op.getExpr()->print(O, &MAI);
411 }
412}
413
415 raw_ostream &O) {
416 // Do not print the exact form of the memory operand if it references a known
417 // binary object.
418 if (SymbolizeOperands && MIA) {
420 if (MIA->evaluateBranch(*MI, 0, 0, Target))
421 return;
422 if (MIA->evaluateMemoryOperandAddress(*MI, /*STI=*/nullptr, 0, 0))
423 return;
424 }
425
426 const MCOperand &BaseReg = MI->getOperand(Op + X86::AddrBaseReg);
427 const MCOperand &IndexReg = MI->getOperand(Op + X86::AddrIndexReg);
428 const MCOperand &DispSpec = MI->getOperand(Op + X86::AddrDisp);
429
431
432 // If this has a segment register, print it.
434
435 if (DispSpec.isImm()) {
436 int64_t DispVal = DispSpec.getImm();
437 if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
438 O << formatImm(DispVal);
439 } else {
440 assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
441 DispSpec.getExpr()->print(O, &MAI);
442 }
443
444 if (IndexReg.getReg() || BaseReg.getReg()) {
445 O << '(';
446 if (BaseReg.getReg())
448
449 if (IndexReg.getReg()) {
450 O << ',';
452 unsigned ScaleVal = MI->getOperand(Op + X86::AddrScaleAmt).getImm();
453 if (ScaleVal != 1) {
454 O << ',';
455 markup(O, Markup::Immediate) << ScaleVal; // never printed in hex.
456 }
457 }
458 O << ')';
459 }
460}
461
463 raw_ostream &O) {
465
466 // If this has a segment register, print it.
467 printOptionalSegReg(MI, Op + 1, O);
468
469 O << "(";
470 printOperand(MI, Op, O);
471 O << ")";
472}
473
475 raw_ostream &O) {
477
478 O << "%es:(";
479 printOperand(MI, Op, O);
480 O << ")";
481}
482
484 raw_ostream &O) {
485 const MCOperand &DispSpec = MI->getOperand(Op);
486
488
489 // If this has a segment register, print it.
490 printOptionalSegReg(MI, Op + 1, O);
491
492 if (DispSpec.isImm()) {
493 O << formatImm(DispSpec.getImm());
494 } else {
495 assert(DispSpec.isExpr() && "non-immediate displacement?");
496 DispSpec.getExpr()->print(O, &MAI);
497 }
498}
499
501 raw_ostream &O) {
502 if (MI->getOperand(Op).isExpr())
503 return printOperand(MI, Op, O);
504
506 << '$' << formatImm(MI->getOperand(Op).getImm() & 0xff);
507}
508
510 raw_ostream &OS) {
511 const MCOperand &Op = MI->getOperand(OpNo);
512 unsigned Reg = Op.getReg();
513 // Override the default printing to print st(0) instead st.
514 if (Reg == X86::ST0)
515 markup(OS, Markup::Register) << "%st(0)";
516 else
517 printRegName(OS, Reg);
518}
IRTranslator LLVM IR MI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This class represents an Operation in the Expression.
bool print(raw_ostream &OS, DIDumpOptions DumpOpts, const DWARFExpression *Expr, DWARFUnit *U) const
void print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens=false) const
Definition: MCExpr.cpp:41
const MCInstrInfo & MII
Definition: MCInstPrinter.h:52
raw_ostream * CommentStream
A stream that comments can be emitted to if desired.
Definition: MCInstPrinter.h:50
bool SymbolizeOperands
If true, symbolize branch target and memory reference operands.
Definition: MCInstPrinter.h:77
WithMarkup markup(raw_ostream &OS, Markup M) const
void printAnnotation(raw_ostream &OS, StringRef Annot)
Utility function for printing annotations.
const MCAsmInfo & MAI
Definition: MCInstPrinter.h:51
format_object< int64_t > formatImm(int64_t Value) const
Utility function to print immediates in decimal or hex.
const MCInstrAnalysis * MIA
Definition: MCInstPrinter.h:54
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:184
virtual bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, uint64_t &Target) const
Given a branch instruction try to get the address the branch targets.
virtual std::optional< uint64_t > evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr, uint64_t Size) const
Given an instruction tries to get the address of a memory operand.
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:36
int64_t getImm() const
Definition: MCInst.h:80
bool isImm() const
Definition: MCInst.h:62
unsigned getReg() const
Returns the register number.
Definition: MCInst.h:69
const MCExpr * getExpr() const
Definition: MCInst.h:114
bool isExpr() const
Definition: MCInst.h:65
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Target - Wrapper for Target specific information.
static const char * getRegisterName(MCRegister Reg)
void printInstruction(const MCInst *MI, uint64_t Address, raw_ostream &OS)
void printSrcIdx(const MCInst *MI, unsigned Op, raw_ostream &O)
void printSTiRegOperand(const MCInst *MI, unsigned OpNo, raw_ostream &OS)
bool printAliasInstr(const MCInst *MI, uint64_t Address, raw_ostream &OS)
void printdwordmem(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printOperand(const MCInst *MI, unsigned OpNo, raw_ostream &OS) override
void printMemOffset(const MCInst *MI, unsigned OpNo, raw_ostream &OS)
void printqwordmem(const MCInst *MI, unsigned OpNo, raw_ostream &O)
bool printVecCompareInstr(const MCInst *MI, raw_ostream &OS)
void printymmwordmem(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printMemReference(const MCInst *MI, unsigned Op, raw_ostream &OS)
void printInst(const MCInst *MI, uint64_t Address, StringRef Annot, const MCSubtargetInfo &STI, raw_ostream &OS) override
Print the specified MCInst to the specified raw_ostream.
void printxmmwordmem(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printwordmem(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printRegName(raw_ostream &OS, MCRegister Reg) const override
Print the assembler register name.
void printU8Imm(const MCInst *MI, unsigned Op, raw_ostream &OS)
void printzmmwordmem(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printDstIdx(const MCInst *MI, unsigned Op, raw_ostream &O)
void printPCRelImm(const MCInst *MI, uint64_t Address, unsigned OpNo, raw_ostream &O)
value (e.g.
void printOptionalSegReg(const MCInst *MI, unsigned OpNo, raw_ostream &O)
void printVPCOMMnemonic(const MCInst *MI, raw_ostream &OS)
void printCMPMnemonic(const MCInst *MI, bool IsVCmp, raw_ostream &OS)
void printInstFlags(const MCInst *MI, raw_ostream &O, const MCSubtargetInfo &STI)
void printVPCMPMnemonic(const MCInst *MI, raw_ostream &OS)
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
@ MRMSrcMem
MRMSrcMem - This form is used for instructions that use the Mod/RM byte to specify a source,...
Definition: X86BaseInfo.h:571
@ XS
XS, XD - These prefix codes are for single and double precision scalar floating point operations perf...
Definition: X86BaseInfo.h:738
@ AddrScaleAmt
Definition: X86BaseInfo.h:30
@ AddrSegmentReg
Definition: X86BaseInfo.h:34
@ AddrIndexReg
Definition: X86BaseInfo.h:31
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS, const MCInstrInfo &MCII)
EmitAnyX86InstComments - This function decodes x86 instructions and prints newline terminated strings...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
Description of the encoding of one expression Op.