LLVM 19.0.0git
LegalizeTypes.h
Go to the documentation of this file.
1//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the DAGTypeLegalizer class. This is a private interface
10// shared between the code that implements the SelectionDAG::LegalizeTypes
11// method.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16#define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17
18#include "MatchContext.h"
19#include "llvm/ADT/DenseMap.h"
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27/// This takes an arbitrary SelectionDAG as input and hacks on it until only
28/// value types the target machine can handle are left. This involves promoting
29/// small sizes to large sizes or splitting up large values into small values.
30///
32 const TargetLowering &TLI;
33 SelectionDAG &DAG;
34public:
35 /// This pass uses the NodeId on the SDNodes to hold information about the
36 /// state of the node. The enum has all the values.
38 /// All operands have been processed, so this node is ready to be handled.
39 ReadyToProcess = 0,
40
41 /// This is a new node, not before seen, that was created in the process of
42 /// legalizing some other node.
43 NewNode = -1,
44
45 /// This node's ID needs to be set to the number of its unprocessed
46 /// operands.
47 Unanalyzed = -2,
48
49 /// This is a node that has already been processed.
50 Processed = -3
51
52 // 1+ - This is a node which has this many unprocessed operands.
53 };
54private:
55
56 /// This is a bitvector that contains two bits for each simple value type,
57 /// where the two bits correspond to the LegalizeAction enum from
58 /// TargetLowering. This can be queried with "getTypeAction(VT)".
60
61 /// Return how we should legalize values of this type.
62 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63 return TLI.getTypeAction(*DAG.getContext(), VT);
64 }
65
66 /// Return true if this type is legal on this target.
67 bool isTypeLegal(EVT VT) const {
68 return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
69 }
70
71 /// Return true if this is a simple legal type.
72 bool isSimpleLegalType(EVT VT) const {
73 return VT.isSimple() && TLI.isTypeLegal(VT);
74 }
75
76 EVT getSetCCResultType(EVT VT) const {
77 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
78 }
79
80 /// Pretend all of this node's results are legal.
81 bool IgnoreNodeResults(SDNode *N) const {
82 return N->getOpcode() == ISD::TargetConstant ||
83 N->getOpcode() == ISD::Register;
84 }
85
86 // Bijection from SDValue to unique id. As each created node gets a
87 // new id we do not need to worry about reuse expunging. Should we
88 // run out of ids, we can do a one time expensive compactifcation.
89 typedef unsigned TableId;
90
91 TableId NextValueId = 1;
92
95
96 /// For integer nodes that are below legal width, this map indicates what
97 /// promoted value to use.
99
100 /// For integer nodes that need to be expanded this map indicates which
101 /// operands are the expanded version of the input.
103
104 /// For floating-point nodes converted to integers of the same size, this map
105 /// indicates the converted value to use.
107
108 /// For floating-point nodes that have a smaller precision than the smallest
109 /// supported precision, this map indicates what promoted value to use.
111
112 /// For floating-point nodes that have a smaller precision than the smallest
113 /// supported precision, this map indicates the converted value to use.
114 SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
115
116 /// For float nodes that need to be expanded this map indicates which operands
117 /// are the expanded version of the input.
119
120 /// For nodes that are <1 x ty>, this map indicates the scalar value of type
121 /// 'ty' to use.
122 SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
123
124 /// For nodes that need to be split this map indicates which operands are the
125 /// expanded version of the input.
127
128 /// For vector nodes that need to be widened, indicates the widened value to
129 /// use.
131
132 /// For values that have been replaced with another, indicates the replacement
133 /// value to use.
135
136 /// This defines a worklist of nodes to process. In order to be pushed onto
137 /// this worklist, all operands of a node must have already been processed.
139
140 TableId getTableId(SDValue V) {
141 assert(V.getNode() && "Getting TableId on SDValue()");
142
143 auto I = ValueToIdMap.find(V);
144 if (I != ValueToIdMap.end()) {
145 // replace if there's been a shift.
146 RemapId(I->second);
147 assert(I->second && "All Ids should be nonzero");
148 return I->second;
149 }
150 // Add if it's not there.
151 ValueToIdMap.insert(std::make_pair(V, NextValueId));
152 IdToValueMap.insert(std::make_pair(NextValueId, V));
153 ++NextValueId;
154 assert(NextValueId != 0 &&
155 "Ran out of Ids. Increase id type size or add compactification");
156 return NextValueId - 1;
157 }
158
159 const SDValue &getSDValue(TableId &Id) {
160 RemapId(Id);
161 assert(Id && "TableId should be non-zero");
162 auto I = IdToValueMap.find(Id);
163 assert(I != IdToValueMap.end() && "cannot find Id in map");
164 return I->second;
165 }
166
167public:
169 : TLI(dag.getTargetLoweringInfo()), DAG(dag),
170 ValueTypeActions(TLI.getValueTypeActions()) {
171 }
172
173 /// This is the main entry point for the type legalizer. This does a
174 /// top-down traversal of the dag, legalizing types as it goes. Returns
175 /// "true" if it made any changes.
176 bool run();
177
178 void NoteDeletion(SDNode *Old, SDNode *New) {
179 assert(Old != New && "node replaced with self");
180 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
181 TableId NewId = getTableId(SDValue(New, i));
182 TableId OldId = getTableId(SDValue(Old, i));
183
184 if (OldId != NewId) {
185 ReplacedValues[OldId] = NewId;
186
187 // Delete Node from tables. We cannot do this when OldId == NewId,
188 // because NewId can still have table references to it in
189 // ReplacedValues.
190 IdToValueMap.erase(OldId);
191 PromotedIntegers.erase(OldId);
192 ExpandedIntegers.erase(OldId);
193 SoftenedFloats.erase(OldId);
194 PromotedFloats.erase(OldId);
195 SoftPromotedHalfs.erase(OldId);
196 ExpandedFloats.erase(OldId);
197 ScalarizedVectors.erase(OldId);
198 SplitVectors.erase(OldId);
199 WidenedVectors.erase(OldId);
200 }
201
202 ValueToIdMap.erase(SDValue(Old, i));
203 }
204 }
205
206 SelectionDAG &getDAG() const { return DAG; }
207
208private:
209 SDNode *AnalyzeNewNode(SDNode *N);
210 void AnalyzeNewValue(SDValue &Val);
211 void PerformExpensiveChecks();
212 void RemapId(TableId &Id);
213 void RemapValue(SDValue &V);
214
215 // Common routines.
216 SDValue BitConvertToInteger(SDValue Op);
217 SDValue BitConvertVectorToIntegerVector(SDValue Op);
218 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
219 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
220 bool CustomWidenLowerNode(SDNode *N, EVT VT);
221
222 /// Replace each result of the given MERGE_VALUES node with the corresponding
223 /// input operand, except for the result 'ResNo', for which the corresponding
224 /// input operand is returned.
225 SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
226
227 SDValue JoinIntegers(SDValue Lo, SDValue Hi);
228
229 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
230
231 SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
232
233 void ReplaceValueWith(SDValue From, SDValue To);
234 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
235 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
236 SDValue &Lo, SDValue &Hi);
237
238 //===--------------------------------------------------------------------===//
239 // Integer Promotion Support: LegalizeIntegerTypes.cpp
240 //===--------------------------------------------------------------------===//
241
242 /// Given a processed operand Op which was promoted to a larger integer type,
243 /// this returns the promoted value. The low bits of the promoted value
244 /// corresponding to the original type are exactly equal to Op.
245 /// The extra bits contain rubbish, so the promoted value may need to be zero-
246 /// or sign-extended from the original type before it is usable (the helpers
247 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
248 /// For example, if Op is an i16 and was promoted to an i32, then this method
249 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
250 /// 16 bits of which contain rubbish.
251 SDValue GetPromotedInteger(SDValue Op) {
252 TableId &PromotedId = PromotedIntegers[getTableId(Op)];
253 SDValue PromotedOp = getSDValue(PromotedId);
254 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
255 return PromotedOp;
256 }
257 void SetPromotedInteger(SDValue Op, SDValue Result);
258
259 /// Get a promoted operand and sign extend it to the final size.
260 SDValue SExtPromotedInteger(SDValue Op) {
261 EVT OldVT = Op.getValueType();
262 SDLoc dl(Op);
263 Op = GetPromotedInteger(Op);
264 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
265 DAG.getValueType(OldVT));
266 }
267
268 /// Get a promoted operand and zero extend it to the final size.
269 SDValue ZExtPromotedInteger(SDValue Op) {
270 EVT OldVT = Op.getValueType();
271 SDLoc dl(Op);
272 Op = GetPromotedInteger(Op);
273 return DAG.getZeroExtendInReg(Op, dl, OldVT);
274 }
275
276 /// Get a promoted operand and zero extend it to the final size.
277 SDValue VPSExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) {
278 EVT OldVT = Op.getValueType();
279 SDLoc dl(Op);
280 Op = GetPromotedInteger(Op);
281 // FIXME: Add VP_SIGN_EXTEND_INREG.
282 EVT VT = Op.getValueType();
283 unsigned BitsDiff = VT.getScalarSizeInBits() - OldVT.getScalarSizeInBits();
284 SDValue ShiftCst = DAG.getShiftAmountConstant(BitsDiff, VT, dl);
285 SDValue Shl = DAG.getNode(ISD::VP_SHL, dl, VT, Op, ShiftCst, Mask, EVL);
286 return DAG.getNode(ISD::VP_SRA, dl, VT, Shl, ShiftCst, Mask, EVL);
287 }
288
289 /// Get a promoted operand and zero extend it to the final size.
290 SDValue VPZExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) {
291 EVT OldVT = Op.getValueType();
292 SDLoc dl(Op);
293 Op = GetPromotedInteger(Op);
294 return DAG.getVPZeroExtendInReg(Op, Mask, EVL, dl, OldVT);
295 }
296
297 // Promote the given operand V (vector or scalar) according to N's specific
298 // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
299 // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
300 // promoted value.
301 SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
302
303 // Integer Result Promotion.
304 void PromoteIntegerResult(SDNode *N, unsigned ResNo);
305 SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
306 SDValue PromoteIntRes_AssertSext(SDNode *N);
307 SDValue PromoteIntRes_AssertZext(SDNode *N);
308 SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
309 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
310 SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
311 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
312 SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
313 SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
314 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
315 SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
316 SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N);
317 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
318 SDValue PromoteIntRes_ScalarOp(SDNode *N);
319 SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
320 SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
321 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
322 SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
323 SDValue PromoteIntRes_BITCAST(SDNode *N);
324 SDValue PromoteIntRes_BSWAP(SDNode *N);
325 SDValue PromoteIntRes_BITREVERSE(SDNode *N);
326 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
327 SDValue PromoteIntRes_Constant(SDNode *N);
328 SDValue PromoteIntRes_CTLZ(SDNode *N);
329 SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
330 SDValue PromoteIntRes_CTTZ(SDNode *N);
331 SDValue PromoteIntRes_VP_CttzElements(SDNode *N);
332 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
333 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
334 SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
335 SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N);
336 SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N);
337 SDValue PromoteIntRes_XRINT(SDNode *N);
338 SDValue PromoteIntRes_FREEZE(SDNode *N);
339 SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
340 SDValue PromoteIntRes_LOAD(LoadSDNode *N);
341 SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
342 SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
343 SDValue PromoteIntRes_Overflow(SDNode *N);
344 SDValue PromoteIntRes_FFREXP(SDNode *N);
345 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
346 SDValue PromoteIntRes_CMP(SDNode *N);
347 SDValue PromoteIntRes_Select(SDNode *N);
348 SDValue PromoteIntRes_SELECT_CC(SDNode *N);
349 SDValue PromoteIntRes_SETCC(SDNode *N);
350 SDValue PromoteIntRes_SHL(SDNode *N);
351 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
352 SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
353 SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
354 SDValue PromoteIntRes_UMINUMAX(SDNode *N);
355 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
356 SDValue PromoteIntRes_SRA(SDNode *N);
357 SDValue PromoteIntRes_SRL(SDNode *N);
358 SDValue PromoteIntRes_TRUNCATE(SDNode *N);
359 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
360 SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo);
361 SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
362 SDValue PromoteIntRes_UNDEF(SDNode *N);
363 SDValue PromoteIntRes_VAARG(SDNode *N);
364 SDValue PromoteIntRes_VSCALE(SDNode *N);
365 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
366 template <class MatchContextClass>
367 SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
368 SDValue PromoteIntRes_MULFIX(SDNode *N);
369 SDValue PromoteIntRes_DIVFIX(SDNode *N);
370 SDValue PromoteIntRes_GET_ROUNDING(SDNode *N);
371 SDValue PromoteIntRes_VECREDUCE(SDNode *N);
372 SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
373 SDValue PromoteIntRes_ABS(SDNode *N);
374 SDValue PromoteIntRes_Rotate(SDNode *N);
375 SDValue PromoteIntRes_FunnelShift(SDNode *N);
376 SDValue PromoteIntRes_VPFunnelShift(SDNode *N);
377 SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
378
379 // Integer Operand Promotion.
380 bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
381 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
382 SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
383 SDValue PromoteIntOp_BITCAST(SDNode *N);
384 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
385 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
386 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
387 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
388 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
389 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
390 SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
391 SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
392 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
393 SDValue PromoteIntOp_ScalarOp(SDNode *N);
394 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
395 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
396 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
397 SDValue PromoteIntOp_Shift(SDNode *N);
398 SDValue PromoteIntOp_CMP(SDNode *N);
399 SDValue PromoteIntOp_FunnelShift(SDNode *N);
400 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
401 SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N);
402 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
403 SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
404 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
405 SDValue PromoteIntOp_TRUNCATE(SDNode *N);
406 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
407 SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
408 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
409 SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N);
410 SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
411 SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
412 SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
413 SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
414 SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
415 SDValue PromoteIntOp_FIX(SDNode *N);
416 SDValue PromoteIntOp_ExpOp(SDNode *N);
417 SDValue PromoteIntOp_VECREDUCE(SDNode *N);
418 SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
419 SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
420 SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
421 SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
422 SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
423 SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo);
424
425 void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS);
426 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
427
428 //===--------------------------------------------------------------------===//
429 // Integer Expansion Support: LegalizeIntegerTypes.cpp
430 //===--------------------------------------------------------------------===//
431
432 /// Given a processed operand Op which was expanded into two integers of half
433 /// the size, this returns the two halves. The low bits of Op are exactly
434 /// equal to the bits of Lo; the high bits exactly equal Hi.
435 /// For example, if Op is an i64 which was expanded into two i32's, then this
436 /// method returns the two i32's, with Lo being equal to the lower 32 bits of
437 /// Op, and Hi being equal to the upper 32 bits.
438 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
439 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
440
441 // Integer Result Expansion.
442 void ExpandIntegerResult(SDNode *N, unsigned ResNo);
443 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
444 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi);
445 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
446 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi);
447 void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi);
448 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi);
449 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi);
450 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi);
451 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
452 void ExpandIntRes_READCOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi);
453 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
454 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
455 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi);
456 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
457 void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi);
458 void ExpandIntRes_FP_TO_XINT (SDNode *N, SDValue &Lo, SDValue &Hi);
459 void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi);
460 void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
461
462 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi);
463 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
464 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi);
465 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi);
466 void ExpandIntRes_UADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
467 void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi);
468 void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi);
469 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi);
470 void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi);
471 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi);
472 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
473 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi);
474 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
475 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi);
476 void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi);
477 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi);
478
479 void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi);
480
481 void ExpandIntRes_CMP (SDNode *N, SDValue &Lo, SDValue &Hi);
482
483 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
484 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi);
485 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi);
486 void ExpandIntRes_AVG (SDNode *N, SDValue &Lo, SDValue &Hi);
487 void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
488 void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi);
489 void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
490 void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi);
491
492 void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
493 void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi);
494
495 void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi);
496 void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi);
497
498 void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi);
499
500 void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
501 SDValue &Lo, SDValue &Hi);
502 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
503 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
504
505 // Integer Operand Expansion.
506 bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
507 SDValue ExpandIntOp_BR_CC(SDNode *N);
508 SDValue ExpandIntOp_SELECT_CC(SDNode *N);
509 SDValue ExpandIntOp_SETCC(SDNode *N);
510 SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
511 SDValue ExpandIntOp_Shift(SDNode *N);
512 SDValue ExpandIntOp_CMP(SDNode *N);
513 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
514 SDValue ExpandIntOp_TRUNCATE(SDNode *N);
515 SDValue ExpandIntOp_XINT_TO_FP(SDNode *N);
516 SDValue ExpandIntOp_RETURNADDR(SDNode *N);
517 SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
518 SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
519 SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
520 SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
521 SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
522
523 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
524 ISD::CondCode &CCCode, const SDLoc &dl);
525
526 //===--------------------------------------------------------------------===//
527 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
528 //===--------------------------------------------------------------------===//
529
530 /// GetSoftenedFloat - Given a processed operand Op which was converted to an
531 /// integer of the same size, this returns the integer. The integer contains
532 /// exactly the same bits as Op - only the type changed. For example, if Op
533 /// is an f32 which was softened to an i32, then this method returns an i32,
534 /// the bits of which coincide with those of Op
535 SDValue GetSoftenedFloat(SDValue Op) {
536 TableId Id = getTableId(Op);
537 auto Iter = SoftenedFloats.find(Id);
538 if (Iter == SoftenedFloats.end()) {
539 assert(isSimpleLegalType(Op.getValueType()) &&
540 "Operand wasn't converted to integer?");
541 return Op;
542 }
543 SDValue SoftenedOp = getSDValue(Iter->second);
544 assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
545 return SoftenedOp;
546 }
547 void SetSoftenedFloat(SDValue Op, SDValue Result);
548
549 // Convert Float Results to Integer.
550 void SoftenFloatResult(SDNode *N, unsigned ResNo);
551 SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
552 SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
553 SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
554 SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
555 SDValue SoftenFloatRes_BITCAST(SDNode *N);
556 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
557 SDValue SoftenFloatRes_ConstantFP(SDNode *N);
558 SDValue SoftenFloatRes_EXTRACT_ELEMENT(SDNode *N);
559 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
560 SDValue SoftenFloatRes_FABS(SDNode *N);
561 SDValue SoftenFloatRes_FMINNUM(SDNode *N);
562 SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
563 SDValue SoftenFloatRes_FADD(SDNode *N);
564 SDValue SoftenFloatRes_FCBRT(SDNode *N);
565 SDValue SoftenFloatRes_FCEIL(SDNode *N);
566 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
567 SDValue SoftenFloatRes_FCOS(SDNode *N);
568 SDValue SoftenFloatRes_FDIV(SDNode *N);
569 SDValue SoftenFloatRes_FEXP(SDNode *N);
570 SDValue SoftenFloatRes_FEXP2(SDNode *N);
571 SDValue SoftenFloatRes_FEXP10(SDNode *N);
572 SDValue SoftenFloatRes_FFLOOR(SDNode *N);
573 SDValue SoftenFloatRes_FLOG(SDNode *N);
574 SDValue SoftenFloatRes_FLOG2(SDNode *N);
575 SDValue SoftenFloatRes_FLOG10(SDNode *N);
576 SDValue SoftenFloatRes_FMA(SDNode *N);
577 SDValue SoftenFloatRes_FMUL(SDNode *N);
578 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
579 SDValue SoftenFloatRes_FNEG(SDNode *N);
580 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
581 SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
582 SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N);
583 SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
584 SDValue SoftenFloatRes_FPOW(SDNode *N);
585 SDValue SoftenFloatRes_ExpOp(SDNode *N);
586 SDValue SoftenFloatRes_FFREXP(SDNode *N);
587 SDValue SoftenFloatRes_FREEZE(SDNode *N);
588 SDValue SoftenFloatRes_FREM(SDNode *N);
589 SDValue SoftenFloatRes_FRINT(SDNode *N);
590 SDValue SoftenFloatRes_FROUND(SDNode *N);
591 SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
592 SDValue SoftenFloatRes_FSIN(SDNode *N);
593 SDValue SoftenFloatRes_FSQRT(SDNode *N);
594 SDValue SoftenFloatRes_FSUB(SDNode *N);
595 SDValue SoftenFloatRes_FTAN(SDNode *N);
596 SDValue SoftenFloatRes_FTRUNC(SDNode *N);
597 SDValue SoftenFloatRes_LOAD(SDNode *N);
598 SDValue SoftenFloatRes_ATOMIC_LOAD(SDNode *N);
599 SDValue SoftenFloatRes_SELECT(SDNode *N);
600 SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
601 SDValue SoftenFloatRes_UNDEF(SDNode *N);
602 SDValue SoftenFloatRes_VAARG(SDNode *N);
603 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
604 SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
605 SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
606
607 // Convert Float Operand to Integer.
608 bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
609 SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
610 SDValue SoftenFloatOp_BITCAST(SDNode *N);
611 SDValue SoftenFloatOp_BR_CC(SDNode *N);
612 SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
613 SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
614 SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
615 SDValue SoftenFloatOp_LROUND(SDNode *N);
616 SDValue SoftenFloatOp_LLROUND(SDNode *N);
617 SDValue SoftenFloatOp_LRINT(SDNode *N);
618 SDValue SoftenFloatOp_LLRINT(SDNode *N);
619 SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
620 SDValue SoftenFloatOp_SETCC(SDNode *N);
621 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
622 SDValue SoftenFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
623 SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
624
625 //===--------------------------------------------------------------------===//
626 // Float Expansion Support: LegalizeFloatTypes.cpp
627 //===--------------------------------------------------------------------===//
628
629 /// Given a processed operand Op which was expanded into two floating-point
630 /// values of half the size, this returns the two halves.
631 /// The low bits of Op are exactly equal to the bits of Lo; the high bits
632 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded
633 /// into two f64's, then this method returns the two f64's, with Lo being
634 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
635 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
636 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
637
638 // Float Result Expansion.
639 void ExpandFloatResult(SDNode *N, unsigned ResNo);
640 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
641 void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
642 SDValue &Lo, SDValue &Hi);
643 void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
644 SDValue &Lo, SDValue &Hi);
645 // clang-format off
646 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi);
647 void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
648 void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi);
649 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi);
650 void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi);
651 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi);
652 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
653 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi);
654 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi);
655 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
656 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi);
657 void ExpandFloatRes_FEXP10 (SDNode *N, SDValue &Lo, SDValue &Hi);
658 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi);
659 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi);
660 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi);
661 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi);
662 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi);
663 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi);
664 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
665 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi);
666 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
667 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi);
668 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi);
669 void ExpandFloatRes_FLDEXP (SDNode *N, SDValue &Lo, SDValue &Hi);
670 void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
671 void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi);
672 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi);
673 void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi);
674 void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
675 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi);
676 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi);
677 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi);
678 void ExpandFloatRes_FTAN (SDNode *N, SDValue &Lo, SDValue &Hi);
679 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi);
680 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi);
681 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
682 // clang-format on
683
684 // Float Operand Expansion.
685 bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
686 SDValue ExpandFloatOp_BR_CC(SDNode *N);
687 SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
688 SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
689 SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
690 SDValue ExpandFloatOp_LROUND(SDNode *N);
691 SDValue ExpandFloatOp_LLROUND(SDNode *N);
692 SDValue ExpandFloatOp_LRINT(SDNode *N);
693 SDValue ExpandFloatOp_LLRINT(SDNode *N);
694 SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
695 SDValue ExpandFloatOp_SETCC(SDNode *N);
696 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
697
698 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
699 ISD::CondCode &CCCode, const SDLoc &dl,
700 SDValue &Chain, bool IsSignaling = false);
701
702 //===--------------------------------------------------------------------===//
703 // Float promotion support: LegalizeFloatTypes.cpp
704 //===--------------------------------------------------------------------===//
705
706 SDValue GetPromotedFloat(SDValue Op) {
707 TableId &PromotedId = PromotedFloats[getTableId(Op)];
708 SDValue PromotedOp = getSDValue(PromotedId);
709 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
710 return PromotedOp;
711 }
712 void SetPromotedFloat(SDValue Op, SDValue Result);
713
714 void PromoteFloatResult(SDNode *N, unsigned ResNo);
715 SDValue PromoteFloatRes_BITCAST(SDNode *N);
716 SDValue PromoteFloatRes_BinOp(SDNode *N);
717 SDValue PromoteFloatRes_ConstantFP(SDNode *N);
718 SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
719 SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
720 SDValue PromoteFloatRes_FMAD(SDNode *N);
721 SDValue PromoteFloatRes_ExpOp(SDNode *N);
722 SDValue PromoteFloatRes_FFREXP(SDNode *N);
723 SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
724 SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N);
725 SDValue PromoteFloatRes_LOAD(SDNode *N);
726 SDValue PromoteFloatRes_ATOMIC_LOAD(SDNode *N);
727 SDValue PromoteFloatRes_SELECT(SDNode *N);
728 SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
729 SDValue PromoteFloatRes_UnaryOp(SDNode *N);
730 SDValue PromoteFloatRes_UNDEF(SDNode *N);
731 SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
732 SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
733 SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
734 SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
735
736 bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
737 SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
738 SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
739 SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
740 SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo);
741 SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo);
742 SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
743 SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
744 SDValue PromoteFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
745 SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
746 SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
747
748 //===--------------------------------------------------------------------===//
749 // Half soft promotion support: LegalizeFloatTypes.cpp
750 //===--------------------------------------------------------------------===//
751
752 SDValue GetSoftPromotedHalf(SDValue Op) {
753 TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
754 SDValue PromotedOp = getSDValue(PromotedId);
755 assert(PromotedOp.getNode() && "Operand wasn't promoted?");
756 return PromotedOp;
757 }
758 void SetSoftPromotedHalf(SDValue Op, SDValue Result);
759
760 void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
761 SDValue SoftPromoteHalfRes_ARITH_FENCE(SDNode *N);
762 SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
763 SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
764 SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
765 SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
766 SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
767 SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
768 SDValue SoftPromoteHalfRes_ExpOp(SDNode *N);
769 SDValue SoftPromoteHalfRes_FFREXP(SDNode *N);
770 SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
771 SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
772 SDValue SoftPromoteHalfRes_ATOMIC_LOAD(SDNode *N);
773 SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
774 SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
775 SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
776 SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
777 SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
778 SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
779 SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
780
781 bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
782 SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
783 SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
784 SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
785 SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
786 SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
787 SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
788 SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
789 SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
790 SDValue SoftPromoteHalfOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
791 SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
792 SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
793
794 //===--------------------------------------------------------------------===//
795 // Scalarization Support: LegalizeVectorTypes.cpp
796 //===--------------------------------------------------------------------===//
797
798 /// Given a processed one-element vector Op which was scalarized to its
799 /// element type, this returns the element. For example, if Op is a v1i32,
800 /// Op = < i32 val >, this method returns val, an i32.
801 SDValue GetScalarizedVector(SDValue Op) {
802 TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
803 SDValue ScalarizedOp = getSDValue(ScalarizedId);
804 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
805 return ScalarizedOp;
806 }
807 void SetScalarizedVector(SDValue Op, SDValue Result);
808
809 // Vector Result Scalarization: <1 x ty> -> ty.
810 void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
811 SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
812 SDValue ScalarizeVecRes_BinOp(SDNode *N);
813 SDValue ScalarizeVecRes_CMP(SDNode *N);
814 SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
815 SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
816 SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
817 SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
818 SDValue ScalarizeVecRes_InregOp(SDNode *N);
819 SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
820
821 SDValue ScalarizeVecRes_ADDRSPACECAST(SDNode *N);
822 SDValue ScalarizeVecRes_BITCAST(SDNode *N);
823 SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
824 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
825 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
826 SDValue ScalarizeVecRes_ExpOp(SDNode *N);
827 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
828 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
829 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
830 SDValue ScalarizeVecRes_VSELECT(SDNode *N);
831 SDValue ScalarizeVecRes_SELECT(SDNode *N);
832 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
833 SDValue ScalarizeVecRes_SETCC(SDNode *N);
834 SDValue ScalarizeVecRes_UNDEF(SDNode *N);
835 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
836 SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
837 SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
838
839 SDValue ScalarizeVecRes_FIX(SDNode *N);
840 SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo);
841
842 // Vector Operand Scalarization: <1 x ty> -> ty.
843 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
844 SDValue ScalarizeVecOp_BITCAST(SDNode *N);
845 SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
846 SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
847 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
848 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
849 SDValue ScalarizeVecOp_VSELECT(SDNode *N);
850 SDValue ScalarizeVecOp_VSETCC(SDNode *N);
851 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
852 SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
853 SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
854 SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
855 SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
856 SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
857 SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
858 SDValue ScalarizeVecOp_CMP(SDNode *N);
859
860 //===--------------------------------------------------------------------===//
861 // Vector Splitting Support: LegalizeVectorTypes.cpp
862 //===--------------------------------------------------------------------===//
863
864 /// Given a processed vector Op which was split into vectors of half the size,
865 /// this method returns the halves. The first elements of Op coincide with the
866 /// elements of Lo; the remaining elements of Op coincide with the elements of
867 /// Hi: Op is what you would get by concatenating Lo and Hi.
868 /// For example, if Op is a v8i32 that was split into two v4i32's, then this
869 /// method returns the two v4i32's, with Lo corresponding to the first 4
870 /// elements of Op, and Hi to the last 4 elements.
871 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
872 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
873
874 /// Split mask operator of a VP intrinsic.
875 std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
876
877 /// Split mask operator of a VP intrinsic in a given location.
878 std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
879
880 // Helper function for incrementing the pointer when splitting
881 // memory operations
882 void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
883 SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
884
885 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
886 void SplitVectorResult(SDNode *N, unsigned ResNo);
887 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
888 void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
889 void SplitVecRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi);
890 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
891 void SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo, SDValue &Hi);
892 void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi);
893 void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
894 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
895 void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
896 void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
897 void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
898 SDValue &Lo, SDValue &Hi);
899
900 void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
901
902 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
903 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
904 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
905 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
906 void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
907 void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi);
908 void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
909 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
910 void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
911 void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
912 void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo,
913 SDValue &Hi);
914 void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
915 void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
916 bool SplitSETCC = false);
917 void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
918 void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
919 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
920 void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
921 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
922 SDValue &Hi);
923 void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
924 void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N);
925 void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N);
926 void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
927 void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
928 void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
929
930 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
931 bool SplitVectorOperand(SDNode *N, unsigned OpNo);
932 SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
933 SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
934 SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
935 SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
936 SDValue SplitVecOp_UnaryOp(SDNode *N);
937 SDValue SplitVecOp_TruncateHelper(SDNode *N);
938
939 SDValue SplitVecOp_BITCAST(SDNode *N);
940 SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
941 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
942 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
943 SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
944 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
945 SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
946 SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo);
947 SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
948 SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
949 SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
950 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
951 SDValue SplitVecOp_VSETCC(SDNode *N);
952 SDValue SplitVecOp_FP_ROUND(SDNode *N);
953 SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N);
954 SDValue SplitVecOp_CMP(SDNode *N);
955 SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
956 SDValue SplitVecOp_VP_CttzElements(SDNode *N);
957
958 //===--------------------------------------------------------------------===//
959 // Vector Widening Support: LegalizeVectorTypes.cpp
960 //===--------------------------------------------------------------------===//
961
962 /// Given a processed vector Op which was widened into a larger vector, this
963 /// method returns the larger vector. The elements of the returned vector
964 /// consist of the elements of Op followed by elements containing rubbish.
965 /// For example, if Op is a v2i32 that was widened to a v4i32, then this
966 /// method returns a v4i32 for which the first two elements are the same as
967 /// those of Op, while the last two elements contain rubbish.
968 SDValue GetWidenedVector(SDValue Op) {
969 TableId &WidenedId = WidenedVectors[getTableId(Op)];
970 SDValue WidenedOp = getSDValue(WidenedId);
971 assert(WidenedOp.getNode() && "Operand wasn't widened?");
972 return WidenedOp;
973 }
974 void SetWidenedVector(SDValue Op, SDValue Result);
975
976 /// Given a mask Mask, returns the larger vector into which Mask was widened.
977 SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
978 // For VP operations, we must also widen the mask. Note that the mask type
979 // may not actually need widening, leading it be split along with the VP
980 // operation.
981 // FIXME: This could lead to an infinite split/widen loop. We only handle
982 // the case where the mask needs widening to an identically-sized type as
983 // the vector inputs.
984 assert(getTypeAction(Mask.getValueType()) ==
985 TargetLowering::TypeWidenVector &&
986 "Unable to widen binary VP op");
987 Mask = GetWidenedVector(Mask);
988 assert(Mask.getValueType().getVectorElementCount() == EC &&
989 "Unable to widen binary VP op");
990 return Mask;
991 }
992
993 // Widen Vector Result Promotion.
994 void WidenVectorResult(SDNode *N, unsigned ResNo);
995 SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
996 SDValue WidenVecRes_ADDRSPACECAST(SDNode *N);
997 SDValue WidenVecRes_AssertZext(SDNode* N);
998 SDValue WidenVecRes_BITCAST(SDNode* N);
999 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
1000 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
1001 SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
1002 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
1003 SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
1004 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
1005 SDValue WidenVecRes_LOAD(SDNode* N);
1006 SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
1007 SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N);
1008 SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
1009 SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
1010 SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
1011 SDValue WidenVecRes_ScalarOp(SDNode* N);
1012 SDValue WidenVecRes_Select(SDNode *N);
1013 SDValue WidenVSELECTMask(SDNode *N);
1014 SDValue WidenVecRes_SELECT_CC(SDNode* N);
1015 SDValue WidenVecRes_SETCC(SDNode* N);
1016 SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
1017 SDValue WidenVecRes_UNDEF(SDNode *N);
1018 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
1019 SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N);
1020
1021 SDValue WidenVecRes_Ternary(SDNode *N);
1022 SDValue WidenVecRes_Binary(SDNode *N);
1023 SDValue WidenVecRes_CMP(SDNode *N);
1024 SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
1025 SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
1026 SDValue WidenVecRes_StrictFP(SDNode *N);
1027 SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
1028 SDValue WidenVecRes_Convert(SDNode *N);
1029 SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
1030 SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
1031 SDValue WidenVecRes_XRINT(SDNode *N);
1032 SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
1033 SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N);
1034 SDValue WidenVecRes_ExpOp(SDNode *N);
1035 SDValue WidenVecRes_Unary(SDNode *N);
1036 SDValue WidenVecRes_InregOp(SDNode *N);
1037
1038 // Widen Vector Operand.
1039 bool WidenVectorOperand(SDNode *N, unsigned OpNo);
1040 SDValue WidenVecOp_BITCAST(SDNode *N);
1041 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
1042 SDValue WidenVecOp_EXTEND(SDNode *N);
1043 SDValue WidenVecOp_CMP(SDNode *N);
1044 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
1045 SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
1046 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
1047 SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N);
1048 SDValue WidenVecOp_STORE(SDNode* N);
1049 SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
1050 SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo);
1051 SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
1052 SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
1053 SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
1054 SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
1055 SDValue WidenVecOp_SETCC(SDNode* N);
1056 SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
1057 SDValue WidenVecOp_VSELECT(SDNode *N);
1058
1059 SDValue WidenVecOp_Convert(SDNode *N);
1060 SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
1061 SDValue WidenVecOp_UnrollVectorOp(SDNode *N);
1062 SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
1063 SDValue WidenVecOp_VECREDUCE(SDNode *N);
1064 SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
1065 SDValue WidenVecOp_VP_REDUCE(SDNode *N);
1066 SDValue WidenVecOp_ExpOp(SDNode *N);
1067 SDValue WidenVecOp_VP_CttzElements(SDNode *N);
1068
1069 /// Helper function to generate a set of operations to perform
1070 /// a vector operation for a wider type.
1071 ///
1072 SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
1073
1074 //===--------------------------------------------------------------------===//
1075 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
1076 //===--------------------------------------------------------------------===//
1077
1078 /// Helper function to generate a set of loads to load a vector with a
1079 /// resulting wider type. It takes:
1080 /// LdChain: list of chains for the load to be generated.
1081 /// Ld: load to widen
1082 SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
1083 LoadSDNode *LD);
1084
1085 /// Helper function to generate a set of extension loads to load a vector with
1086 /// a resulting wider type. It takes:
1087 /// LdChain: list of chains for the load to be generated.
1088 /// Ld: load to widen
1089 /// ExtType: extension element type
1090 SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
1091 LoadSDNode *LD, ISD::LoadExtType ExtType);
1092
1093 /// Helper function to generate a set of stores to store a widen vector into
1094 /// non-widen memory. Returns true if successful, false otherwise.
1095 /// StChain: list of chains for the stores we have generated
1096 /// ST: store of a widen value
1097 bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
1098
1099 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
1100 /// input vector must have the same element type as NVT.
1101 /// When FillWithZeroes is "on" the vector will be widened with zeroes.
1102 /// By default, the vector will be widened with undefined values.
1103 SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
1104
1105 /// Return a mask of vector type MaskVT to replace InMask. Also adjust
1106 /// MaskVT to ToMaskVT if needed with vector extension or truncation.
1107 SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
1108
1109 //===--------------------------------------------------------------------===//
1110 // Generic Splitting: LegalizeTypesGeneric.cpp
1111 //===--------------------------------------------------------------------===//
1112
1113 // Legalization methods which only use that the illegal type is split into two
1114 // not necessarily identical types. As such they can be used for splitting
1115 // vectors and expanding integers and floats.
1116
1117 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1118 if (Op.getValueType().isVector())
1119 GetSplitVector(Op, Lo, Hi);
1120 else if (Op.getValueType().isInteger())
1121 GetExpandedInteger(Op, Lo, Hi);
1122 else
1123 GetExpandedFloat(Op, Lo, Hi);
1124 }
1125
1126 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1127 /// given value.
1128 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1129
1130 // Generic Result Splitting.
1131 void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1132 SDValue &Lo, SDValue &Hi);
1133 void SplitVecRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi);
1134 void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
1135 void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi);
1136 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi);
1137 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi);
1138 void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi);
1139
1140 //===--------------------------------------------------------------------===//
1141 // Generic Expansion: LegalizeTypesGeneric.cpp
1142 //===--------------------------------------------------------------------===//
1143
1144 // Legalization methods which only use that the illegal type is split into two
1145 // identical types of half the size, and that the Lo/Hi part is stored first
1146 // in memory on little/big-endian machines, followed by the Hi/Lo part. As
1147 // such they can be used for expanding integers and floats.
1148
1149 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1150 if (Op.getValueType().isInteger())
1151 GetExpandedInteger(Op, Lo, Hi);
1152 else
1153 GetExpandedFloat(Op, Lo, Hi);
1154 }
1155
1156
1157 /// This function will split the integer \p Op into \p NumElements
1158 /// operations of type \p EltVT and store them in \p Ops.
1159 void IntegerToVector(SDValue Op, unsigned NumElements,
1160 SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1161
1162 // Generic Result Expansion.
1163 void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo,
1164 SDValue &Lo, SDValue &Hi);
1165 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi);
1166 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi);
1167 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi);
1168 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1169 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi);
1170 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi);
1171
1172 // Generic Operand Expansion.
1173 SDValue ExpandOp_BITCAST (SDNode *N);
1174 SDValue ExpandOp_BUILD_VECTOR (SDNode *N);
1175 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N);
1176 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1177 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1178 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo);
1179};
1180
1181} // end namespace llvm.
1182
1183#endif
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
#define LLVM_LIBRARY_VISIBILITY
Definition: Compiler.h:131
This file defines the DenseMap class.
#define I(x, y, z)
Definition: MD5.cpp:58
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file describes how to lower LLVM code to machine code.
Value * RHS
Value * LHS
support::ulittle16_t & Lo
Definition: aarch32.cpp:206
support::ulittle16_t & Hi
Definition: aarch32.cpp:205
Class for arbitrary precision integers.
Definition: APInt.h:77
This is an SDNode representing atomic operations.
This takes an arbitrary SelectionDAG as input and hacks on it until only value types the target machi...
Definition: LegalizeTypes.h:31
DAGTypeLegalizer(SelectionDAG &dag)
void NoteDeletion(SDNode *Old, SDNode *New)
SelectionDAG & getDAG() const
NodeIdFlags
This pass uses the NodeId on the SDNodes to hold information about the state of the node.
Definition: LegalizeTypes.h:37
This class represents an Operation in the Expression.
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:345
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
This class is used to represent ISD::LOAD nodes.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This is an abstract virtual class for memory operations.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:227
SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:486
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVMContext * getContext() const
Definition: SelectionDAG.h:499
SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL, bool LegalTypes=true)
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
This class is used to represent ISD::STORE nodes.
LegalizeTypeAction getTypeAction(MVT VT) const
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:812
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition: ISDOpcodes.h:164
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1554
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1534
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
DWARFExpression::Operation Op
#define N
Extended Value Type.
Definition: ValueTypes.h:34
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:136
uint64_t getScalarSizeInBits() const
Definition: ValueTypes.h:370
This class contains a discriminated union of information about pointers in memory operands,...