LLVM 20.0.0git
MVEGatherScatterLowering.cpp
Go to the documentation of this file.
1//===- MVEGatherScatterLowering.cpp - Gather/Scatter lowering -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// This pass custom lowers llvm.gather and llvm.scatter instructions to
10/// arm.mve.gather and arm.mve.scatter intrinsics, optimising the code to
11/// produce a better final result as we go.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMBaseInstrInfo.h"
17#include "ARMSubtarget.h"
24#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/Constant.h"
26#include "llvm/IR/Constants.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/Instruction.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/IntrinsicsARM.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
40#include "llvm/Pass.h"
43#include <cassert>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "arm-mve-gather-scatter-lowering"
48
50 "enable-arm-maskedgatscat", cl::Hidden, cl::init(true),
51 cl::desc("Enable the generation of masked gathers and scatters"));
52
53namespace {
54
55class MVEGatherScatterLowering : public FunctionPass {
56public:
57 static char ID; // Pass identification, replacement for typeid
58
59 explicit MVEGatherScatterLowering() : FunctionPass(ID) {
61 }
62
63 bool runOnFunction(Function &F) override;
64
65 StringRef getPassName() const override {
66 return "MVE gather/scatter lowering";
67 }
68
69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.setPreservesCFG();
74 }
75
76private:
77 LoopInfo *LI = nullptr;
78 const DataLayout *DL;
79
80 // Check this is a valid gather with correct alignment
81 bool isLegalTypeAndAlignment(unsigned NumElements, unsigned ElemSize,
82 Align Alignment);
83 // Check whether Ptr is hidden behind a bitcast and look through it
84 void lookThroughBitcast(Value *&Ptr);
85 // Decompose a ptr into Base and Offsets, potentially using a GEP to return a
86 // scalar base and vector offsets, or else fallback to using a base of 0 and
87 // offset of Ptr where possible.
88 Value *decomposePtr(Value *Ptr, Value *&Offsets, int &Scale,
89 FixedVectorType *Ty, Type *MemoryTy,
90 IRBuilder<> &Builder);
91 // Check for a getelementptr and deduce base and offsets from it, on success
92 // returning the base directly and the offsets indirectly using the Offsets
93 // argument
96 // Compute the scale of this gather/scatter instruction
97 int computeScale(unsigned GEPElemSize, unsigned MemoryElemSize);
98 // If the value is a constant, or derived from constants via additions
99 // and multilications, return its numeric value
100 std::optional<int64_t> getIfConst(const Value *V);
101 // If Inst is an add instruction, check whether one summand is a
102 // constant. If so, scale this constant and return it together with
103 // the other summand.
104 std::pair<Value *, int64_t> getVarAndConst(Value *Inst, int TypeScale);
105
106 Instruction *lowerGather(IntrinsicInst *I);
107 // Create a gather from a base + vector of offsets
108 Instruction *tryCreateMaskedGatherOffset(IntrinsicInst *I, Value *Ptr,
109 Instruction *&Root,
110 IRBuilder<> &Builder);
111 // Create a gather from a vector of pointers
112 Instruction *tryCreateMaskedGatherBase(IntrinsicInst *I, Value *Ptr,
113 IRBuilder<> &Builder,
114 int64_t Increment = 0);
115 // Create an incrementing gather from a vector of pointers
116 Instruction *tryCreateMaskedGatherBaseWB(IntrinsicInst *I, Value *Ptr,
117 IRBuilder<> &Builder,
118 int64_t Increment = 0);
119
120 Instruction *lowerScatter(IntrinsicInst *I);
121 // Create a scatter to a base + vector of offsets
122 Instruction *tryCreateMaskedScatterOffset(IntrinsicInst *I, Value *Offsets,
123 IRBuilder<> &Builder);
124 // Create a scatter to a vector of pointers
125 Instruction *tryCreateMaskedScatterBase(IntrinsicInst *I, Value *Ptr,
126 IRBuilder<> &Builder,
127 int64_t Increment = 0);
128 // Create an incrementing scatter from a vector of pointers
129 Instruction *tryCreateMaskedScatterBaseWB(IntrinsicInst *I, Value *Ptr,
130 IRBuilder<> &Builder,
131 int64_t Increment = 0);
132
133 // QI gathers and scatters can increment their offsets on their own if
134 // the increment is a constant value (digit)
135 Instruction *tryCreateIncrementingGatScat(IntrinsicInst *I, Value *Ptr,
136 IRBuilder<> &Builder);
137 // QI gathers/scatters can increment their offsets on their own if the
138 // increment is a constant value (digit) - this creates a writeback QI
139 // gather/scatter
140 Instruction *tryCreateIncrementingWBGatScat(IntrinsicInst *I, Value *BasePtr,
141 Value *Ptr, unsigned TypeScale,
142 IRBuilder<> &Builder);
143
144 // Optimise the base and offsets of the given address
145 bool optimiseAddress(Value *Address, BasicBlock *BB, LoopInfo *LI);
146 // Try to fold consecutive geps together into one
147 Value *foldGEP(GetElementPtrInst *GEP, Value *&Offsets, unsigned &Scale,
148 IRBuilder<> &Builder);
149 // Check whether these offsets could be moved out of the loop they're in
150 bool optimiseOffsets(Value *Offsets, BasicBlock *BB, LoopInfo *LI);
151 // Pushes the given add out of the loop
152 void pushOutAdd(PHINode *&Phi, Value *OffsSecondOperand, unsigned StartIndex);
153 // Pushes the given mul or shl out of the loop
154 void pushOutMulShl(unsigned Opc, PHINode *&Phi, Value *IncrementPerRound,
155 Value *OffsSecondOperand, unsigned LoopIncrement,
156 IRBuilder<> &Builder);
157};
158
159} // end anonymous namespace
160
161char MVEGatherScatterLowering::ID = 0;
162
163INITIALIZE_PASS(MVEGatherScatterLowering, DEBUG_TYPE,
164 "MVE gather/scattering lowering pass", false, false)
165
167 return new MVEGatherScatterLowering();
168}
169
170bool MVEGatherScatterLowering::isLegalTypeAndAlignment(unsigned NumElements,
171 unsigned ElemSize,
172 Align Alignment) {
173 if (((NumElements == 4 &&
174 (ElemSize == 32 || ElemSize == 16 || ElemSize == 8)) ||
175 (NumElements == 8 && (ElemSize == 16 || ElemSize == 8)) ||
176 (NumElements == 16 && ElemSize == 8)) &&
177 Alignment >= ElemSize / 8)
178 return true;
179 LLVM_DEBUG(dbgs() << "masked gathers/scatters: instruction does not have "
180 << "valid alignment or vector type \n");
181 return false;
182}
183
184static bool checkOffsetSize(Value *Offsets, unsigned TargetElemCount) {
185 // Offsets that are not of type <N x i32> are sign extended by the
186 // getelementptr instruction, and MVE gathers/scatters treat the offset as
187 // unsigned. Thus, if the element size is smaller than 32, we can only allow
188 // positive offsets - i.e., the offsets are not allowed to be variables we
189 // can't look into.
190 // Additionally, <N x i32> offsets have to either originate from a zext of a
191 // vector with element types smaller or equal the type of the gather we're
192 // looking at, or consist of constants that we can check are small enough
193 // to fit into the gather type.
194 // Thus we check that 0 < value < 2^TargetElemSize.
195 unsigned TargetElemSize = 128 / TargetElemCount;
196 unsigned OffsetElemSize = cast<FixedVectorType>(Offsets->getType())
197 ->getElementType()
198 ->getScalarSizeInBits();
199 if (OffsetElemSize != TargetElemSize || OffsetElemSize != 32) {
200 Constant *ConstOff = dyn_cast<Constant>(Offsets);
201 if (!ConstOff)
202 return false;
203 int64_t TargetElemMaxSize = (1ULL << TargetElemSize);
204 auto CheckValueSize = [TargetElemMaxSize](Value *OffsetElem) {
205 ConstantInt *OConst = dyn_cast<ConstantInt>(OffsetElem);
206 if (!OConst)
207 return false;
208 int SExtValue = OConst->getSExtValue();
209 if (SExtValue >= TargetElemMaxSize || SExtValue < 0)
210 return false;
211 return true;
212 };
213 if (isa<FixedVectorType>(ConstOff->getType())) {
214 for (unsigned i = 0; i < TargetElemCount; i++) {
215 if (!CheckValueSize(ConstOff->getAggregateElement(i)))
216 return false;
217 }
218 } else {
219 if (!CheckValueSize(ConstOff))
220 return false;
221 }
222 }
223 return true;
224}
225
226Value *MVEGatherScatterLowering::decomposePtr(Value *Ptr, Value *&Offsets,
227 int &Scale, FixedVectorType *Ty,
228 Type *MemoryTy,
229 IRBuilder<> &Builder) {
230 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
231 if (Value *V = decomposeGEP(Offsets, Ty, GEP, Builder)) {
232 Scale =
233 computeScale(GEP->getSourceElementType()->getPrimitiveSizeInBits(),
234 MemoryTy->getScalarSizeInBits());
235 return Scale == -1 ? nullptr : V;
236 }
237 }
238
239 // If we couldn't use the GEP (or it doesn't exist), attempt to use a
240 // BasePtr of 0 with Ptr as the Offsets, so long as there are only 4
241 // elements.
242 FixedVectorType *PtrTy = cast<FixedVectorType>(Ptr->getType());
243 if (PtrTy->getNumElements() != 4 || MemoryTy->getScalarSizeInBits() == 32)
244 return nullptr;
245 Value *Zero = ConstantInt::get(Builder.getInt32Ty(), 0);
246 Value *BasePtr = Builder.CreateIntToPtr(Zero, Builder.getPtrTy());
247 Offsets = Builder.CreatePtrToInt(
248 Ptr, FixedVectorType::get(Builder.getInt32Ty(), 4));
249 Scale = 0;
250 return BasePtr;
251}
252
253Value *MVEGatherScatterLowering::decomposeGEP(Value *&Offsets,
254 FixedVectorType *Ty,
256 IRBuilder<> &Builder) {
257 if (!GEP) {
258 LLVM_DEBUG(dbgs() << "masked gathers/scatters: no getelementpointer "
259 << "found\n");
260 return nullptr;
261 }
262 LLVM_DEBUG(dbgs() << "masked gathers/scatters: getelementpointer found."
263 << " Looking at intrinsic for base + vector of offsets\n");
264 Value *GEPPtr = GEP->getPointerOperand();
265 Offsets = GEP->getOperand(1);
266 if (GEPPtr->getType()->isVectorTy() ||
267 !isa<FixedVectorType>(Offsets->getType()))
268 return nullptr;
269
270 if (GEP->getNumOperands() != 2) {
271 LLVM_DEBUG(dbgs() << "masked gathers/scatters: getelementptr with too many"
272 << " operands. Expanding.\n");
273 return nullptr;
274 }
275 Offsets = GEP->getOperand(1);
276 unsigned OffsetsElemCount =
277 cast<FixedVectorType>(Offsets->getType())->getNumElements();
278 // Paranoid check whether the number of parallel lanes is the same
279 assert(Ty->getNumElements() == OffsetsElemCount);
280
281 ZExtInst *ZextOffs = dyn_cast<ZExtInst>(Offsets);
282 if (ZextOffs)
283 Offsets = ZextOffs->getOperand(0);
284 FixedVectorType *OffsetType = cast<FixedVectorType>(Offsets->getType());
285
286 // If the offsets are already being zext-ed to <N x i32>, that relieves us of
287 // having to make sure that they won't overflow.
288 if (!ZextOffs || cast<FixedVectorType>(ZextOffs->getDestTy())
289 ->getElementType()
290 ->getScalarSizeInBits() != 32)
291 if (!checkOffsetSize(Offsets, OffsetsElemCount))
292 return nullptr;
293
294 // The offset sizes have been checked; if any truncating or zext-ing is
295 // required to fix them, do that now
296 if (Ty != Offsets->getType()) {
297 if ((Ty->getElementType()->getScalarSizeInBits() <
298 OffsetType->getElementType()->getScalarSizeInBits())) {
299 Offsets = Builder.CreateTrunc(Offsets, Ty);
300 } else {
301 Offsets = Builder.CreateZExt(Offsets, VectorType::getInteger(Ty));
302 }
303 }
304 // If none of the checks failed, return the gep's base pointer
305 LLVM_DEBUG(dbgs() << "masked gathers/scatters: found correct offsets\n");
306 return GEPPtr;
307}
308
309void MVEGatherScatterLowering::lookThroughBitcast(Value *&Ptr) {
310 // Look through bitcast instruction if #elements is the same
311 if (auto *BitCast = dyn_cast<BitCastInst>(Ptr)) {
312 auto *BCTy = cast<FixedVectorType>(BitCast->getType());
313 auto *BCSrcTy = cast<FixedVectorType>(BitCast->getOperand(0)->getType());
314 if (BCTy->getNumElements() == BCSrcTy->getNumElements()) {
315 LLVM_DEBUG(dbgs() << "masked gathers/scatters: looking through "
316 << "bitcast\n");
317 Ptr = BitCast->getOperand(0);
318 }
319 }
320}
321
322int MVEGatherScatterLowering::computeScale(unsigned GEPElemSize,
323 unsigned MemoryElemSize) {
324 // This can be a 32bit load/store scaled by 4, a 16bit load/store scaled by 2,
325 // or a 8bit, 16bit or 32bit load/store scaled by 1
326 if (GEPElemSize == 32 && MemoryElemSize == 32)
327 return 2;
328 else if (GEPElemSize == 16 && MemoryElemSize == 16)
329 return 1;
330 else if (GEPElemSize == 8)
331 return 0;
332 LLVM_DEBUG(dbgs() << "masked gathers/scatters: incorrect scale. Can't "
333 << "create intrinsic\n");
334 return -1;
335}
336
337std::optional<int64_t> MVEGatherScatterLowering::getIfConst(const Value *V) {
338 const Constant *C = dyn_cast<Constant>(V);
339 if (C && C->getSplatValue())
340 return std::optional<int64_t>{C->getUniqueInteger().getSExtValue()};
341 if (!isa<Instruction>(V))
342 return std::optional<int64_t>{};
343
344 const Instruction *I = cast<Instruction>(V);
345 if (I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Or ||
346 I->getOpcode() == Instruction::Mul ||
347 I->getOpcode() == Instruction::Shl) {
348 std::optional<int64_t> Op0 = getIfConst(I->getOperand(0));
349 std::optional<int64_t> Op1 = getIfConst(I->getOperand(1));
350 if (!Op0 || !Op1)
351 return std::optional<int64_t>{};
352 if (I->getOpcode() == Instruction::Add)
353 return std::optional<int64_t>{*Op0 + *Op1};
354 if (I->getOpcode() == Instruction::Mul)
355 return std::optional<int64_t>{*Op0 * *Op1};
356 if (I->getOpcode() == Instruction::Shl)
357 return std::optional<int64_t>{*Op0 << *Op1};
358 if (I->getOpcode() == Instruction::Or)
359 return std::optional<int64_t>{*Op0 | *Op1};
360 }
361 return std::optional<int64_t>{};
362}
363
364// Return true if I is an Or instruction that is equivalent to an add, due to
365// the operands having no common bits set.
366static bool isAddLikeOr(Instruction *I, const DataLayout &DL) {
367 return I->getOpcode() == Instruction::Or &&
368 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL);
369}
370
371std::pair<Value *, int64_t>
372MVEGatherScatterLowering::getVarAndConst(Value *Inst, int TypeScale) {
373 std::pair<Value *, int64_t> ReturnFalse =
374 std::pair<Value *, int64_t>(nullptr, 0);
375 // At this point, the instruction we're looking at must be an add or an
376 // add-like-or.
377 Instruction *Add = dyn_cast<Instruction>(Inst);
378 if (Add == nullptr ||
379 (Add->getOpcode() != Instruction::Add && !isAddLikeOr(Add, *DL)))
380 return ReturnFalse;
381
382 Value *Summand;
383 std::optional<int64_t> Const;
384 // Find out which operand the value that is increased is
385 if ((Const = getIfConst(Add->getOperand(0))))
386 Summand = Add->getOperand(1);
387 else if ((Const = getIfConst(Add->getOperand(1))))
388 Summand = Add->getOperand(0);
389 else
390 return ReturnFalse;
391
392 // Check that the constant is small enough for an incrementing gather
393 int64_t Immediate = *Const << TypeScale;
394 if (Immediate > 512 || Immediate < -512 || Immediate % 4 != 0)
395 return ReturnFalse;
396
397 return std::pair<Value *, int64_t>(Summand, Immediate);
398}
399
400Instruction *MVEGatherScatterLowering::lowerGather(IntrinsicInst *I) {
401 using namespace PatternMatch;
402 LLVM_DEBUG(dbgs() << "masked gathers: checking transform preconditions\n"
403 << *I << "\n");
404
405 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
406 // Attempt to turn the masked gather in I into a MVE intrinsic
407 // Potentially optimising the addressing modes as we do so.
408 auto *Ty = cast<FixedVectorType>(I->getType());
409 Value *Ptr = I->getArgOperand(0);
410 Align Alignment = cast<ConstantInt>(I->getArgOperand(1))->getAlignValue();
411 Value *Mask = I->getArgOperand(2);
412 Value *PassThru = I->getArgOperand(3);
413
414 if (!isLegalTypeAndAlignment(Ty->getNumElements(), Ty->getScalarSizeInBits(),
415 Alignment))
416 return nullptr;
417 lookThroughBitcast(Ptr);
418 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
419
420 IRBuilder<> Builder(I->getContext());
421 Builder.SetInsertPoint(I);
422 Builder.SetCurrentDebugLocation(I->getDebugLoc());
423
424 Instruction *Root = I;
425
426 Instruction *Load = tryCreateIncrementingGatScat(I, Ptr, Builder);
427 if (!Load)
428 Load = tryCreateMaskedGatherOffset(I, Ptr, Root, Builder);
429 if (!Load)
430 Load = tryCreateMaskedGatherBase(I, Ptr, Builder);
431 if (!Load)
432 return nullptr;
433
434 if (!isa<UndefValue>(PassThru) && !match(PassThru, m_Zero())) {
435 LLVM_DEBUG(dbgs() << "masked gathers: found non-trivial passthru - "
436 << "creating select\n");
437 Load = SelectInst::Create(Mask, Load, PassThru);
438 Builder.Insert(Load);
439 }
440
441 Root->replaceAllUsesWith(Load);
442 Root->eraseFromParent();
443 if (Root != I)
444 // If this was an extending gather, we need to get rid of the sext/zext
445 // sext/zext as well as of the gather itself
446 I->eraseFromParent();
447
448 LLVM_DEBUG(dbgs() << "masked gathers: successfully built masked gather\n"
449 << *Load << "\n");
450 return Load;
451}
452
453Instruction *MVEGatherScatterLowering::tryCreateMaskedGatherBase(
454 IntrinsicInst *I, Value *Ptr, IRBuilder<> &Builder, int64_t Increment) {
455 using namespace PatternMatch;
456 auto *Ty = cast<FixedVectorType>(I->getType());
457 LLVM_DEBUG(dbgs() << "masked gathers: loading from vector of pointers\n");
458 if (Ty->getNumElements() != 4 || Ty->getScalarSizeInBits() != 32)
459 // Can't build an intrinsic for this
460 return nullptr;
461 Value *Mask = I->getArgOperand(2);
462 if (match(Mask, m_One()))
463 return Builder.CreateIntrinsic(Intrinsic::arm_mve_vldr_gather_base,
464 {Ty, Ptr->getType()},
465 {Ptr, Builder.getInt32(Increment)});
466 else
467 return Builder.CreateIntrinsic(
468 Intrinsic::arm_mve_vldr_gather_base_predicated,
469 {Ty, Ptr->getType(), Mask->getType()},
470 {Ptr, Builder.getInt32(Increment), Mask});
471}
472
473Instruction *MVEGatherScatterLowering::tryCreateMaskedGatherBaseWB(
474 IntrinsicInst *I, Value *Ptr, IRBuilder<> &Builder, int64_t Increment) {
475 using namespace PatternMatch;
476 auto *Ty = cast<FixedVectorType>(I->getType());
477 LLVM_DEBUG(dbgs() << "masked gathers: loading from vector of pointers with "
478 << "writeback\n");
479 if (Ty->getNumElements() != 4 || Ty->getScalarSizeInBits() != 32)
480 // Can't build an intrinsic for this
481 return nullptr;
482 Value *Mask = I->getArgOperand(2);
483 if (match(Mask, m_One()))
484 return Builder.CreateIntrinsic(Intrinsic::arm_mve_vldr_gather_base_wb,
485 {Ty, Ptr->getType()},
486 {Ptr, Builder.getInt32(Increment)});
487 else
488 return Builder.CreateIntrinsic(
489 Intrinsic::arm_mve_vldr_gather_base_wb_predicated,
490 {Ty, Ptr->getType(), Mask->getType()},
491 {Ptr, Builder.getInt32(Increment), Mask});
492}
493
494Instruction *MVEGatherScatterLowering::tryCreateMaskedGatherOffset(
495 IntrinsicInst *I, Value *Ptr, Instruction *&Root, IRBuilder<> &Builder) {
496 using namespace PatternMatch;
497
498 Type *MemoryTy = I->getType();
499 Type *ResultTy = MemoryTy;
500
501 unsigned Unsigned = 1;
502 // The size of the gather was already checked in isLegalTypeAndAlignment;
503 // if it was not a full vector width an appropriate extend should follow.
504 auto *Extend = Root;
505 bool TruncResult = false;
506 if (MemoryTy->getPrimitiveSizeInBits() < 128) {
507 if (I->hasOneUse()) {
508 // If the gather has a single extend of the correct type, use an extending
509 // gather and replace the ext. In which case the correct root to replace
510 // is not the CallInst itself, but the instruction which extends it.
511 Instruction* User = cast<Instruction>(*I->users().begin());
512 if (isa<SExtInst>(User) &&
513 User->getType()->getPrimitiveSizeInBits() == 128) {
514 LLVM_DEBUG(dbgs() << "masked gathers: Incorporating extend: "
515 << *User << "\n");
516 Extend = User;
517 ResultTy = User->getType();
518 Unsigned = 0;
519 } else if (isa<ZExtInst>(User) &&
520 User->getType()->getPrimitiveSizeInBits() == 128) {
521 LLVM_DEBUG(dbgs() << "masked gathers: Incorporating extend: "
522 << *ResultTy << "\n");
523 Extend = User;
524 ResultTy = User->getType();
525 }
526 }
527
528 // If an extend hasn't been found and the type is an integer, create an
529 // extending gather and truncate back to the original type.
530 if (ResultTy->getPrimitiveSizeInBits() < 128 &&
531 ResultTy->isIntOrIntVectorTy()) {
532 ResultTy = ResultTy->getWithNewBitWidth(
533 128 / cast<FixedVectorType>(ResultTy)->getNumElements());
534 TruncResult = true;
535 LLVM_DEBUG(dbgs() << "masked gathers: Small input type, truncing to: "
536 << *ResultTy << "\n");
537 }
538
539 // The final size of the gather must be a full vector width
540 if (ResultTy->getPrimitiveSizeInBits() != 128) {
541 LLVM_DEBUG(dbgs() << "masked gathers: Extend needed but not provided "
542 "from the correct type. Expanding\n");
543 return nullptr;
544 }
545 }
546
547 Value *Offsets;
548 int Scale;
549 Value *BasePtr = decomposePtr(
550 Ptr, Offsets, Scale, cast<FixedVectorType>(ResultTy), MemoryTy, Builder);
551 if (!BasePtr)
552 return nullptr;
553
554 Root = Extend;
555 Value *Mask = I->getArgOperand(2);
556 Instruction *Load = nullptr;
557 if (!match(Mask, m_One()))
558 Load = Builder.CreateIntrinsic(
559 Intrinsic::arm_mve_vldr_gather_offset_predicated,
560 {ResultTy, BasePtr->getType(), Offsets->getType(), Mask->getType()},
561 {BasePtr, Offsets, Builder.getInt32(MemoryTy->getScalarSizeInBits()),
562 Builder.getInt32(Scale), Builder.getInt32(Unsigned), Mask});
563 else
564 Load = Builder.CreateIntrinsic(
565 Intrinsic::arm_mve_vldr_gather_offset,
566 {ResultTy, BasePtr->getType(), Offsets->getType()},
567 {BasePtr, Offsets, Builder.getInt32(MemoryTy->getScalarSizeInBits()),
568 Builder.getInt32(Scale), Builder.getInt32(Unsigned)});
569
570 if (TruncResult) {
571 Load = TruncInst::Create(Instruction::Trunc, Load, MemoryTy);
572 Builder.Insert(Load);
573 }
574 return Load;
575}
576
577Instruction *MVEGatherScatterLowering::lowerScatter(IntrinsicInst *I) {
578 using namespace PatternMatch;
579 LLVM_DEBUG(dbgs() << "masked scatters: checking transform preconditions\n"
580 << *I << "\n");
581
582 // @llvm.masked.scatter.*(data, ptrs, alignment, mask)
583 // Attempt to turn the masked scatter in I into a MVE intrinsic
584 // Potentially optimising the addressing modes as we do so.
585 Value *Input = I->getArgOperand(0);
586 Value *Ptr = I->getArgOperand(1);
587 Align Alignment = cast<ConstantInt>(I->getArgOperand(2))->getAlignValue();
588 auto *Ty = cast<FixedVectorType>(Input->getType());
589
590 if (!isLegalTypeAndAlignment(Ty->getNumElements(), Ty->getScalarSizeInBits(),
591 Alignment))
592 return nullptr;
593
594 lookThroughBitcast(Ptr);
595 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
596
597 IRBuilder<> Builder(I->getContext());
598 Builder.SetInsertPoint(I);
599 Builder.SetCurrentDebugLocation(I->getDebugLoc());
600
601 Instruction *Store = tryCreateIncrementingGatScat(I, Ptr, Builder);
602 if (!Store)
603 Store = tryCreateMaskedScatterOffset(I, Ptr, Builder);
604 if (!Store)
605 Store = tryCreateMaskedScatterBase(I, Ptr, Builder);
606 if (!Store)
607 return nullptr;
608
609 LLVM_DEBUG(dbgs() << "masked scatters: successfully built masked scatter\n"
610 << *Store << "\n");
611 I->eraseFromParent();
612 return Store;
613}
614
615Instruction *MVEGatherScatterLowering::tryCreateMaskedScatterBase(
616 IntrinsicInst *I, Value *Ptr, IRBuilder<> &Builder, int64_t Increment) {
617 using namespace PatternMatch;
618 Value *Input = I->getArgOperand(0);
619 auto *Ty = cast<FixedVectorType>(Input->getType());
620 // Only QR variants allow truncating
621 if (!(Ty->getNumElements() == 4 && Ty->getScalarSizeInBits() == 32)) {
622 // Can't build an intrinsic for this
623 return nullptr;
624 }
625 Value *Mask = I->getArgOperand(3);
626 // int_arm_mve_vstr_scatter_base(_predicated) addr, offset, data(, mask)
627 LLVM_DEBUG(dbgs() << "masked scatters: storing to a vector of pointers\n");
628 if (match(Mask, m_One()))
629 return Builder.CreateIntrinsic(Intrinsic::arm_mve_vstr_scatter_base,
630 {Ptr->getType(), Input->getType()},
631 {Ptr, Builder.getInt32(Increment), Input});
632 else
633 return Builder.CreateIntrinsic(
634 Intrinsic::arm_mve_vstr_scatter_base_predicated,
635 {Ptr->getType(), Input->getType(), Mask->getType()},
636 {Ptr, Builder.getInt32(Increment), Input, Mask});
637}
638
639Instruction *MVEGatherScatterLowering::tryCreateMaskedScatterBaseWB(
640 IntrinsicInst *I, Value *Ptr, IRBuilder<> &Builder, int64_t Increment) {
641 using namespace PatternMatch;
642 Value *Input = I->getArgOperand(0);
643 auto *Ty = cast<FixedVectorType>(Input->getType());
644 LLVM_DEBUG(dbgs() << "masked scatters: storing to a vector of pointers "
645 << "with writeback\n");
646 if (Ty->getNumElements() != 4 || Ty->getScalarSizeInBits() != 32)
647 // Can't build an intrinsic for this
648 return nullptr;
649 Value *Mask = I->getArgOperand(3);
650 if (match(Mask, m_One()))
651 return Builder.CreateIntrinsic(Intrinsic::arm_mve_vstr_scatter_base_wb,
652 {Ptr->getType(), Input->getType()},
653 {Ptr, Builder.getInt32(Increment), Input});
654 else
655 return Builder.CreateIntrinsic(
656 Intrinsic::arm_mve_vstr_scatter_base_wb_predicated,
657 {Ptr->getType(), Input->getType(), Mask->getType()},
658 {Ptr, Builder.getInt32(Increment), Input, Mask});
659}
660
661Instruction *MVEGatherScatterLowering::tryCreateMaskedScatterOffset(
662 IntrinsicInst *I, Value *Ptr, IRBuilder<> &Builder) {
663 using namespace PatternMatch;
664 Value *Input = I->getArgOperand(0);
665 Value *Mask = I->getArgOperand(3);
666 Type *InputTy = Input->getType();
667 Type *MemoryTy = InputTy;
668
669 LLVM_DEBUG(dbgs() << "masked scatters: getelementpointer found. Storing"
670 << " to base + vector of offsets\n");
671 // If the input has been truncated, try to integrate that trunc into the
672 // scatter instruction (we don't care about alignment here)
673 if (TruncInst *Trunc = dyn_cast<TruncInst>(Input)) {
674 Value *PreTrunc = Trunc->getOperand(0);
675 Type *PreTruncTy = PreTrunc->getType();
676 if (PreTruncTy->getPrimitiveSizeInBits() == 128) {
677 Input = PreTrunc;
678 InputTy = PreTruncTy;
679 }
680 }
681 bool ExtendInput = false;
682 if (InputTy->getPrimitiveSizeInBits() < 128 &&
683 InputTy->isIntOrIntVectorTy()) {
684 // If we can't find a trunc to incorporate into the instruction, create an
685 // implicit one with a zext, so that we can still create a scatter. We know
686 // that the input type is 4x/8x/16x and of type i8/i16/i32, so any type
687 // smaller than 128 bits will divide evenly into a 128bit vector.
688 InputTy = InputTy->getWithNewBitWidth(
689 128 / cast<FixedVectorType>(InputTy)->getNumElements());
690 ExtendInput = true;
691 LLVM_DEBUG(dbgs() << "masked scatters: Small input type, will extend:\n"
692 << *Input << "\n");
693 }
694 if (InputTy->getPrimitiveSizeInBits() != 128) {
695 LLVM_DEBUG(dbgs() << "masked scatters: cannot create scatters for "
696 "non-standard input types. Expanding.\n");
697 return nullptr;
698 }
699
700 Value *Offsets;
701 int Scale;
702 Value *BasePtr = decomposePtr(
703 Ptr, Offsets, Scale, cast<FixedVectorType>(InputTy), MemoryTy, Builder);
704 if (!BasePtr)
705 return nullptr;
706
707 if (ExtendInput)
708 Input = Builder.CreateZExt(Input, InputTy);
709 if (!match(Mask, m_One()))
710 return Builder.CreateIntrinsic(
711 Intrinsic::arm_mve_vstr_scatter_offset_predicated,
712 {BasePtr->getType(), Offsets->getType(), Input->getType(),
713 Mask->getType()},
714 {BasePtr, Offsets, Input,
715 Builder.getInt32(MemoryTy->getScalarSizeInBits()),
716 Builder.getInt32(Scale), Mask});
717 else
718 return Builder.CreateIntrinsic(
719 Intrinsic::arm_mve_vstr_scatter_offset,
720 {BasePtr->getType(), Offsets->getType(), Input->getType()},
721 {BasePtr, Offsets, Input,
722 Builder.getInt32(MemoryTy->getScalarSizeInBits()),
723 Builder.getInt32(Scale)});
724}
725
726Instruction *MVEGatherScatterLowering::tryCreateIncrementingGatScat(
727 IntrinsicInst *I, Value *Ptr, IRBuilder<> &Builder) {
728 FixedVectorType *Ty;
729 if (I->getIntrinsicID() == Intrinsic::masked_gather)
730 Ty = cast<FixedVectorType>(I->getType());
731 else
732 Ty = cast<FixedVectorType>(I->getArgOperand(0)->getType());
733
734 // Incrementing gathers only exist for v4i32
735 if (Ty->getNumElements() != 4 || Ty->getScalarSizeInBits() != 32)
736 return nullptr;
737 // Incrementing gathers are not beneficial outside of a loop
738 Loop *L = LI->getLoopFor(I->getParent());
739 if (L == nullptr)
740 return nullptr;
741
742 // Decompose the GEP into Base and Offsets
743 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
744 Value *Offsets;
745 Value *BasePtr = decomposeGEP(Offsets, Ty, GEP, Builder);
746 if (!BasePtr)
747 return nullptr;
748
749 LLVM_DEBUG(dbgs() << "masked gathers/scatters: trying to build incrementing "
750 "wb gather/scatter\n");
751
752 // The gep was in charge of making sure the offsets are scaled correctly
753 // - calculate that factor so it can be applied by hand
754 int TypeScale =
755 computeScale(DL->getTypeSizeInBits(GEP->getOperand(0)->getType()),
756 DL->getTypeSizeInBits(GEP->getType()) /
757 cast<FixedVectorType>(GEP->getType())->getNumElements());
758 if (TypeScale == -1)
759 return nullptr;
760
761 if (GEP->hasOneUse()) {
762 // Only in this case do we want to build a wb gather, because the wb will
763 // change the phi which does affect other users of the gep (which will still
764 // be using the phi in the old way)
765 if (auto *Load = tryCreateIncrementingWBGatScat(I, BasePtr, Offsets,
766 TypeScale, Builder))
767 return Load;
768 }
769
770 LLVM_DEBUG(dbgs() << "masked gathers/scatters: trying to build incrementing "
771 "non-wb gather/scatter\n");
772
773 std::pair<Value *, int64_t> Add = getVarAndConst(Offsets, TypeScale);
774 if (Add.first == nullptr)
775 return nullptr;
776 Value *OffsetsIncoming = Add.first;
777 int64_t Immediate = Add.second;
778
779 // Make sure the offsets are scaled correctly
780 Instruction *ScaledOffsets = BinaryOperator::Create(
781 Instruction::Shl, OffsetsIncoming,
782 Builder.CreateVectorSplat(Ty->getNumElements(),
783 Builder.getInt32(TypeScale)),
784 "ScaledIndex", I->getIterator());
785 // Add the base to the offsets
786 OffsetsIncoming = BinaryOperator::Create(
787 Instruction::Add, ScaledOffsets,
788 Builder.CreateVectorSplat(
789 Ty->getNumElements(),
790 Builder.CreatePtrToInt(
791 BasePtr,
792 cast<VectorType>(ScaledOffsets->getType())->getElementType())),
793 "StartIndex", I->getIterator());
794
795 if (I->getIntrinsicID() == Intrinsic::masked_gather)
796 return tryCreateMaskedGatherBase(I, OffsetsIncoming, Builder, Immediate);
797 else
798 return tryCreateMaskedScatterBase(I, OffsetsIncoming, Builder, Immediate);
799}
800
801Instruction *MVEGatherScatterLowering::tryCreateIncrementingWBGatScat(
802 IntrinsicInst *I, Value *BasePtr, Value *Offsets, unsigned TypeScale,
803 IRBuilder<> &Builder) {
804 // Check whether this gather's offset is incremented by a constant - if so,
805 // and the load is of the right type, we can merge this into a QI gather
806 Loop *L = LI->getLoopFor(I->getParent());
807 // Offsets that are worth merging into this instruction will be incremented
808 // by a constant, thus we're looking for an add of a phi and a constant
809 PHINode *Phi = dyn_cast<PHINode>(Offsets);
810 if (Phi == nullptr || Phi->getNumIncomingValues() != 2 ||
811 Phi->getParent() != L->getHeader() || Phi->getNumUses() != 2)
812 // No phi means no IV to write back to; if there is a phi, we expect it
813 // to have exactly two incoming values; the only phis we are interested in
814 // will be loop IV's and have exactly two uses, one in their increment and
815 // one in the gather's gep
816 return nullptr;
817
818 unsigned IncrementIndex =
819 Phi->getIncomingBlock(0) == L->getLoopLatch() ? 0 : 1;
820 // Look through the phi to the phi increment
821 Offsets = Phi->getIncomingValue(IncrementIndex);
822
823 std::pair<Value *, int64_t> Add = getVarAndConst(Offsets, TypeScale);
824 if (Add.first == nullptr)
825 return nullptr;
826 Value *OffsetsIncoming = Add.first;
827 int64_t Immediate = Add.second;
828 if (OffsetsIncoming != Phi)
829 // Then the increment we are looking at is not an increment of the
830 // induction variable, and we don't want to do a writeback
831 return nullptr;
832
833 Builder.SetInsertPoint(&Phi->getIncomingBlock(1 - IncrementIndex)->back());
834 unsigned NumElems =
835 cast<FixedVectorType>(OffsetsIncoming->getType())->getNumElements();
836
837 // Make sure the offsets are scaled correctly
838 Instruction *ScaledOffsets = BinaryOperator::Create(
839 Instruction::Shl, Phi->getIncomingValue(1 - IncrementIndex),
840 Builder.CreateVectorSplat(NumElems, Builder.getInt32(TypeScale)),
841 "ScaledIndex",
842 Phi->getIncomingBlock(1 - IncrementIndex)->back().getIterator());
843 // Add the base to the offsets
844 OffsetsIncoming = BinaryOperator::Create(
845 Instruction::Add, ScaledOffsets,
846 Builder.CreateVectorSplat(
847 NumElems,
848 Builder.CreatePtrToInt(
849 BasePtr,
850 cast<VectorType>(ScaledOffsets->getType())->getElementType())),
851 "StartIndex",
852 Phi->getIncomingBlock(1 - IncrementIndex)->back().getIterator());
853 // The gather is pre-incrementing
854 OffsetsIncoming = BinaryOperator::Create(
855 Instruction::Sub, OffsetsIncoming,
856 Builder.CreateVectorSplat(NumElems, Builder.getInt32(Immediate)),
857 "PreIncrementStartIndex",
858 Phi->getIncomingBlock(1 - IncrementIndex)->back().getIterator());
859 Phi->setIncomingValue(1 - IncrementIndex, OffsetsIncoming);
860
861 Builder.SetInsertPoint(I);
862
863 Instruction *EndResult;
864 Instruction *NewInduction;
865 if (I->getIntrinsicID() == Intrinsic::masked_gather) {
866 // Build the incrementing gather
867 Value *Load = tryCreateMaskedGatherBaseWB(I, Phi, Builder, Immediate);
868 // One value to be handed to whoever uses the gather, one is the loop
869 // increment
870 EndResult = ExtractValueInst::Create(Load, 0, "Gather");
871 NewInduction = ExtractValueInst::Create(Load, 1, "GatherIncrement");
872 Builder.Insert(EndResult);
873 Builder.Insert(NewInduction);
874 } else {
875 // Build the incrementing scatter
876 EndResult = NewInduction =
877 tryCreateMaskedScatterBaseWB(I, Phi, Builder, Immediate);
878 }
879 Instruction *AddInst = cast<Instruction>(Offsets);
880 AddInst->replaceAllUsesWith(NewInduction);
881 AddInst->eraseFromParent();
882 Phi->setIncomingValue(IncrementIndex, NewInduction);
883
884 return EndResult;
885}
886
887void MVEGatherScatterLowering::pushOutAdd(PHINode *&Phi,
888 Value *OffsSecondOperand,
889 unsigned StartIndex) {
890 LLVM_DEBUG(dbgs() << "masked gathers/scatters: optimising add instruction\n");
892 Phi->getIncomingBlock(StartIndex)->back().getIterator();
893 // Initialize the phi with a vector that contains a sum of the constants
895 Instruction::Add, Phi->getIncomingValue(StartIndex), OffsSecondOperand,
896 "PushedOutAdd", InsertionPoint);
897 unsigned IncrementIndex = StartIndex == 0 ? 1 : 0;
898
899 // Order such that start index comes first (this reduces mov's)
900 Phi->addIncoming(NewIndex, Phi->getIncomingBlock(StartIndex));
901 Phi->addIncoming(Phi->getIncomingValue(IncrementIndex),
902 Phi->getIncomingBlock(IncrementIndex));
903 Phi->removeIncomingValue(1);
904 Phi->removeIncomingValue((unsigned)0);
905}
906
907void MVEGatherScatterLowering::pushOutMulShl(unsigned Opcode, PHINode *&Phi,
908 Value *IncrementPerRound,
909 Value *OffsSecondOperand,
910 unsigned LoopIncrement,
911 IRBuilder<> &Builder) {
912 LLVM_DEBUG(dbgs() << "masked gathers/scatters: optimising mul instruction\n");
913
914 // Create a new scalar add outside of the loop and transform it to a splat
915 // by which loop variable can be incremented
917 Phi->getIncomingBlock(LoopIncrement == 1 ? 0 : 1)->back().getIterator();
918
919 // Create a new index
920 Value *StartIndex =
922 Phi->getIncomingValue(LoopIncrement == 1 ? 0 : 1),
923 OffsSecondOperand, "PushedOutMul", InsertionPoint);
924
925 Instruction *Product =
926 BinaryOperator::Create((Instruction::BinaryOps)Opcode, IncrementPerRound,
927 OffsSecondOperand, "Product", InsertionPoint);
928
929 BasicBlock::iterator NewIncrInsertPt =
930 Phi->getIncomingBlock(LoopIncrement)->back().getIterator();
931 NewIncrInsertPt = std::prev(NewIncrInsertPt);
932
933 // Increment NewIndex by Product instead of the multiplication
934 Instruction *NewIncrement = BinaryOperator::Create(
935 Instruction::Add, Phi, Product, "IncrementPushedOutMul", NewIncrInsertPt);
936
937 Phi->addIncoming(StartIndex,
938 Phi->getIncomingBlock(LoopIncrement == 1 ? 0 : 1));
939 Phi->addIncoming(NewIncrement, Phi->getIncomingBlock(LoopIncrement));
940 Phi->removeIncomingValue((unsigned)0);
941 Phi->removeIncomingValue((unsigned)0);
942}
943
944// Check whether all usages of this instruction are as offsets of
945// gathers/scatters or simple arithmetics only used by gathers/scatters
947 if (I->hasNUses(0)) {
948 return false;
949 }
950 bool Gatscat = true;
951 for (User *U : I->users()) {
952 if (!isa<Instruction>(U))
953 return false;
954 if (isa<GetElementPtrInst>(U) ||
955 isGatherScatter(dyn_cast<IntrinsicInst>(U))) {
956 return Gatscat;
957 } else {
958 unsigned OpCode = cast<Instruction>(U)->getOpcode();
959 if ((OpCode == Instruction::Add || OpCode == Instruction::Mul ||
960 OpCode == Instruction::Shl ||
961 isAddLikeOr(cast<Instruction>(U), DL)) &&
962 hasAllGatScatUsers(cast<Instruction>(U), DL)) {
963 continue;
964 }
965 return false;
966 }
967 }
968 return Gatscat;
969}
970
971bool MVEGatherScatterLowering::optimiseOffsets(Value *Offsets, BasicBlock *BB,
972 LoopInfo *LI) {
973 LLVM_DEBUG(dbgs() << "masked gathers/scatters: trying to optimize: "
974 << *Offsets << "\n");
975 // Optimise the addresses of gathers/scatters by moving invariant
976 // calculations out of the loop
977 if (!isa<Instruction>(Offsets))
978 return false;
979 Instruction *Offs = cast<Instruction>(Offsets);
980 if (Offs->getOpcode() != Instruction::Add && !isAddLikeOr(Offs, *DL) &&
981 Offs->getOpcode() != Instruction::Mul &&
982 Offs->getOpcode() != Instruction::Shl)
983 return false;
984 Loop *L = LI->getLoopFor(BB);
985 if (L == nullptr)
986 return false;
987 if (!Offs->hasOneUse()) {
988 if (!hasAllGatScatUsers(Offs, *DL))
989 return false;
990 }
991
992 // Find out which, if any, operand of the instruction
993 // is a phi node
994 PHINode *Phi;
995 int OffsSecondOp;
996 if (isa<PHINode>(Offs->getOperand(0))) {
997 Phi = cast<PHINode>(Offs->getOperand(0));
998 OffsSecondOp = 1;
999 } else if (isa<PHINode>(Offs->getOperand(1))) {
1000 Phi = cast<PHINode>(Offs->getOperand(1));
1001 OffsSecondOp = 0;
1002 } else {
1003 bool Changed = false;
1004 if (isa<Instruction>(Offs->getOperand(0)) &&
1005 L->contains(cast<Instruction>(Offs->getOperand(0))))
1006 Changed |= optimiseOffsets(Offs->getOperand(0), BB, LI);
1007 if (isa<Instruction>(Offs->getOperand(1)) &&
1008 L->contains(cast<Instruction>(Offs->getOperand(1))))
1009 Changed |= optimiseOffsets(Offs->getOperand(1), BB, LI);
1010 if (!Changed)
1011 return false;
1012 if (isa<PHINode>(Offs->getOperand(0))) {
1013 Phi = cast<PHINode>(Offs->getOperand(0));
1014 OffsSecondOp = 1;
1015 } else if (isa<PHINode>(Offs->getOperand(1))) {
1016 Phi = cast<PHINode>(Offs->getOperand(1));
1017 OffsSecondOp = 0;
1018 } else {
1019 return false;
1020 }
1021 }
1022 // A phi node we want to perform this function on should be from the
1023 // loop header.
1024 if (Phi->getParent() != L->getHeader())
1025 return false;
1026
1027 // We're looking for a simple add recurrence.
1028 BinaryOperator *IncInstruction;
1029 Value *Start, *IncrementPerRound;
1030 if (!matchSimpleRecurrence(Phi, IncInstruction, Start, IncrementPerRound) ||
1031 IncInstruction->getOpcode() != Instruction::Add)
1032 return false;
1033
1034 int IncrementingBlock = Phi->getIncomingValue(0) == IncInstruction ? 0 : 1;
1035
1036 // Get the value that is added to/multiplied with the phi
1037 Value *OffsSecondOperand = Offs->getOperand(OffsSecondOp);
1038
1039 if (IncrementPerRound->getType() != OffsSecondOperand->getType() ||
1040 !L->isLoopInvariant(OffsSecondOperand))
1041 // Something has gone wrong, abort
1042 return false;
1043
1044 // Only proceed if the increment per round is a constant or an instruction
1045 // which does not originate from within the loop
1046 if (!isa<Constant>(IncrementPerRound) &&
1047 !(isa<Instruction>(IncrementPerRound) &&
1048 !L->contains(cast<Instruction>(IncrementPerRound))))
1049 return false;
1050
1051 // If the phi is not used by anything else, we can just adapt it when
1052 // replacing the instruction; if it is, we'll have to duplicate it
1053 PHINode *NewPhi;
1054 if (Phi->getNumUses() == 2) {
1055 // No other users -> reuse existing phi (One user is the instruction
1056 // we're looking at, the other is the phi increment)
1057 if (IncInstruction->getNumUses() != 1) {
1058 // If the incrementing instruction does have more users than
1059 // our phi, we need to copy it
1060 IncInstruction = BinaryOperator::Create(
1061 Instruction::BinaryOps(IncInstruction->getOpcode()), Phi,
1062 IncrementPerRound, "LoopIncrement", IncInstruction->getIterator());
1063 Phi->setIncomingValue(IncrementingBlock, IncInstruction);
1064 }
1065 NewPhi = Phi;
1066 } else {
1067 // There are other users -> create a new phi
1068 NewPhi = PHINode::Create(Phi->getType(), 2, "NewPhi", Phi->getIterator());
1069 // Copy the incoming values of the old phi
1070 NewPhi->addIncoming(Phi->getIncomingValue(IncrementingBlock == 1 ? 0 : 1),
1071 Phi->getIncomingBlock(IncrementingBlock == 1 ? 0 : 1));
1072 IncInstruction = BinaryOperator::Create(
1073 Instruction::BinaryOps(IncInstruction->getOpcode()), NewPhi,
1074 IncrementPerRound, "LoopIncrement", IncInstruction->getIterator());
1075 NewPhi->addIncoming(IncInstruction,
1076 Phi->getIncomingBlock(IncrementingBlock));
1077 IncrementingBlock = 1;
1078 }
1079
1080 IRBuilder<> Builder(BB->getContext());
1081 Builder.SetInsertPoint(Phi);
1082 Builder.SetCurrentDebugLocation(Offs->getDebugLoc());
1083
1084 switch (Offs->getOpcode()) {
1085 case Instruction::Add:
1086 case Instruction::Or:
1087 pushOutAdd(NewPhi, OffsSecondOperand, IncrementingBlock == 1 ? 0 : 1);
1088 break;
1089 case Instruction::Mul:
1090 case Instruction::Shl:
1091 pushOutMulShl(Offs->getOpcode(), NewPhi, IncrementPerRound,
1092 OffsSecondOperand, IncrementingBlock, Builder);
1093 break;
1094 default:
1095 return false;
1096 }
1097 LLVM_DEBUG(dbgs() << "masked gathers/scatters: simplified loop variable "
1098 << "add/mul\n");
1099
1100 // The instruction has now been "absorbed" into the phi value
1101 Offs->replaceAllUsesWith(NewPhi);
1102 if (Offs->hasNUses(0))
1103 Offs->eraseFromParent();
1104 // Clean up the old increment in case it's unused because we built a new
1105 // one
1106 if (IncInstruction->hasNUses(0))
1107 IncInstruction->eraseFromParent();
1108
1109 return true;
1110}
1111
1112static Value *CheckAndCreateOffsetAdd(Value *X, unsigned ScaleX, Value *Y,
1113 unsigned ScaleY, IRBuilder<> &Builder) {
1114 // Splat the non-vector value to a vector of the given type - if the value is
1115 // a constant (and its value isn't too big), we can even use this opportunity
1116 // to scale it to the size of the vector elements
1117 auto FixSummands = [&Builder](FixedVectorType *&VT, Value *&NonVectorVal) {
1118 ConstantInt *Const;
1119 if ((Const = dyn_cast<ConstantInt>(NonVectorVal)) &&
1120 VT->getElementType() != NonVectorVal->getType()) {
1121 unsigned TargetElemSize = VT->getElementType()->getPrimitiveSizeInBits();
1122 uint64_t N = Const->getZExtValue();
1123 if (N < (unsigned)(1 << (TargetElemSize - 1))) {
1124 NonVectorVal = Builder.CreateVectorSplat(
1125 VT->getNumElements(), Builder.getIntN(TargetElemSize, N));
1126 return;
1127 }
1128 }
1129 NonVectorVal =
1130 Builder.CreateVectorSplat(VT->getNumElements(), NonVectorVal);
1131 };
1132
1133 FixedVectorType *XElType = dyn_cast<FixedVectorType>(X->getType());
1134 FixedVectorType *YElType = dyn_cast<FixedVectorType>(Y->getType());
1135 // If one of X, Y is not a vector, we have to splat it in order
1136 // to add the two of them.
1137 if (XElType && !YElType) {
1138 FixSummands(XElType, Y);
1139 YElType = cast<FixedVectorType>(Y->getType());
1140 } else if (YElType && !XElType) {
1141 FixSummands(YElType, X);
1142 XElType = cast<FixedVectorType>(X->getType());
1143 }
1144 assert(XElType && YElType && "Unknown vector types");
1145 // Check that the summands are of compatible types
1146 if (XElType != YElType) {
1147 LLVM_DEBUG(dbgs() << "masked gathers/scatters: incompatible gep offsets\n");
1148 return nullptr;
1149 }
1150
1151 if (XElType->getElementType()->getScalarSizeInBits() != 32) {
1152 // Check that by adding the vectors we do not accidentally
1153 // create an overflow
1154 Constant *ConstX = dyn_cast<Constant>(X);
1155 Constant *ConstY = dyn_cast<Constant>(Y);
1156 if (!ConstX || !ConstY)
1157 return nullptr;
1158 unsigned TargetElemSize = 128 / XElType->getNumElements();
1159 for (unsigned i = 0; i < XElType->getNumElements(); i++) {
1160 ConstantInt *ConstXEl =
1161 dyn_cast<ConstantInt>(ConstX->getAggregateElement(i));
1162 ConstantInt *ConstYEl =
1163 dyn_cast<ConstantInt>(ConstY->getAggregateElement(i));
1164 if (!ConstXEl || !ConstYEl ||
1165 ConstXEl->getZExtValue() * ScaleX +
1166 ConstYEl->getZExtValue() * ScaleY >=
1167 (unsigned)(1 << (TargetElemSize - 1)))
1168 return nullptr;
1169 }
1170 }
1171
1172 Value *XScale = Builder.CreateVectorSplat(
1173 XElType->getNumElements(),
1174 Builder.getIntN(XElType->getScalarSizeInBits(), ScaleX));
1175 Value *YScale = Builder.CreateVectorSplat(
1176 YElType->getNumElements(),
1177 Builder.getIntN(YElType->getScalarSizeInBits(), ScaleY));
1178 Value *Add = Builder.CreateAdd(Builder.CreateMul(X, XScale),
1179 Builder.CreateMul(Y, YScale));
1180
1181 if (checkOffsetSize(Add, XElType->getNumElements()))
1182 return Add;
1183 else
1184 return nullptr;
1185}
1186
1187Value *MVEGatherScatterLowering::foldGEP(GetElementPtrInst *GEP,
1188 Value *&Offsets, unsigned &Scale,
1189 IRBuilder<> &Builder) {
1190 Value *GEPPtr = GEP->getPointerOperand();
1191 Offsets = GEP->getOperand(1);
1192 Scale = DL->getTypeAllocSize(GEP->getSourceElementType());
1193 // We only merge geps with constant offsets, because only for those
1194 // we can make sure that we do not cause an overflow
1195 if (GEP->getNumIndices() != 1 || !isa<Constant>(Offsets))
1196 return nullptr;
1197 if (GetElementPtrInst *BaseGEP = dyn_cast<GetElementPtrInst>(GEPPtr)) {
1198 // Merge the two geps into one
1199 Value *BaseBasePtr = foldGEP(BaseGEP, Offsets, Scale, Builder);
1200 if (!BaseBasePtr)
1201 return nullptr;
1203 Offsets, Scale, GEP->getOperand(1),
1204 DL->getTypeAllocSize(GEP->getSourceElementType()), Builder);
1205 if (Offsets == nullptr)
1206 return nullptr;
1207 Scale = 1; // Scale is always an i8 at this point.
1208 return BaseBasePtr;
1209 }
1210 return GEPPtr;
1211}
1212
1213bool MVEGatherScatterLowering::optimiseAddress(Value *Address, BasicBlock *BB,
1214 LoopInfo *LI) {
1215 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Address);
1216 if (!GEP)
1217 return false;
1218 bool Changed = false;
1219 if (GEP->hasOneUse() && isa<GetElementPtrInst>(GEP->getPointerOperand())) {
1220 IRBuilder<> Builder(GEP->getContext());
1221 Builder.SetInsertPoint(GEP);
1222 Builder.SetCurrentDebugLocation(GEP->getDebugLoc());
1223 Value *Offsets;
1224 unsigned Scale;
1225 Value *Base = foldGEP(GEP, Offsets, Scale, Builder);
1226 // We only want to merge the geps if there is a real chance that they can be
1227 // used by an MVE gather; thus the offset has to have the correct size
1228 // (always i32 if it is not of vector type) and the base has to be a
1229 // pointer.
1230 if (Offsets && Base && Base != GEP) {
1231 assert(Scale == 1 && "Expected to fold GEP to a scale of 1");
1232 Type *BaseTy = Builder.getPtrTy();
1233 if (auto *VecTy = dyn_cast<FixedVectorType>(Base->getType()))
1236 Builder.getInt8Ty(), Builder.CreateBitCast(Base, BaseTy), Offsets,
1237 "gep.merged", GEP->getIterator());
1238 LLVM_DEBUG(dbgs() << "Folded GEP: " << *GEP
1239 << "\n new : " << *NewAddress << "\n");
1240 GEP->replaceAllUsesWith(
1241 Builder.CreateBitCast(NewAddress, GEP->getType()));
1242 GEP = NewAddress;
1243 Changed = true;
1244 }
1245 }
1246 Changed |= optimiseOffsets(GEP->getOperand(1), GEP->getParent(), LI);
1247 return Changed;
1248}
1249
1250bool MVEGatherScatterLowering::runOnFunction(Function &F) {
1252 return false;
1253 auto &TPC = getAnalysis<TargetPassConfig>();
1254 auto &TM = TPC.getTM<TargetMachine>();
1255 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
1256 if (!ST->hasMVEIntegerOps())
1257 return false;
1258 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1259 DL = &F.getDataLayout();
1262
1263 bool Changed = false;
1264
1265 for (BasicBlock &BB : F) {
1266 Changed |= SimplifyInstructionsInBlock(&BB);
1267
1268 for (Instruction &I : BB) {
1269 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
1270 if (II && II->getIntrinsicID() == Intrinsic::masked_gather &&
1271 isa<FixedVectorType>(II->getType())) {
1272 Gathers.push_back(II);
1273 Changed |= optimiseAddress(II->getArgOperand(0), II->getParent(), LI);
1274 } else if (II && II->getIntrinsicID() == Intrinsic::masked_scatter &&
1275 isa<FixedVectorType>(II->getArgOperand(0)->getType())) {
1276 Scatters.push_back(II);
1277 Changed |= optimiseAddress(II->getArgOperand(1), II->getParent(), LI);
1278 }
1279 }
1280 }
1281 for (IntrinsicInst *I : Gathers) {
1282 Instruction *L = lowerGather(I);
1283 if (L == nullptr)
1284 continue;
1285
1286 // Get rid of any now dead instructions
1287 SimplifyInstructionsInBlock(L->getParent());
1288 Changed = true;
1289 }
1290
1291 for (IntrinsicInst *I : Scatters) {
1292 Instruction *S = lowerScatter(I);
1293 if (S == nullptr)
1294 continue;
1295
1296 // Get rid of any now dead instructions
1298 Changed = true;
1299 }
1300 return Changed;
1301}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static Decomposition decomposeGEP(GEPOperator &GEP, SmallVectorImpl< ConditionTy > &Preconditions, bool IsSigned, const DataLayout &DL)
#define LLVM_DEBUG(...)
Definition: Debug.h:106
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static bool isAddLikeOr(Instruction *I, const DataLayout &DL)
static bool hasAllGatScatUsers(Instruction *I, const DataLayout &DL)
static bool checkOffsetSize(Value *Offsets, unsigned TargetElemCount)
static Value * CheckAndCreateOffsetAdd(Value *X, unsigned ScaleX, Value *Y, unsigned ScaleY, IRBuilder<> &Builder)
#define DEBUG_TYPE
cl::opt< bool > EnableMaskedGatherScatters("enable-arm-maskedgatscat", cl::Hidden, cl::init(true), cl::desc("Enable the generation of masked gathers and scatters"))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
This pass exposes codegen information to IR-level passes.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
BinaryOps getOpcode() const
Definition: InstrTypes.h:370
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Type * getDestTy() const
Return the destination type, as a convenience.
Definition: InstrTypes.h:615
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:163
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:157
This is an important base class in LLVM.
Definition: Constant.h:42
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Class to represent fixed width SIMD vectors.
Definition: DerivedTypes.h:563
unsigned getNumElements() const
Definition: DerivedTypes.h:606
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:791
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:956
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1152
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:890
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2150
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:523
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:217
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:483
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:142
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2155
ConstantInt * getIntN(unsigned N, uint64_t C)
Get a constant N-bit value, zero extended or truncated from a 64-bit value.
Definition: IRBuilder.h:494
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2048
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1350
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2145
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2034
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition: IRBuilder.h:566
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:177
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:513
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1384
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:471
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:92
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:274
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:593
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
Target-Independent Code Generator Pass Configuration Options.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:243
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Value * getOperand(unsigned i) const
Definition: User.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:149
unsigned getNumUses() const
This method computes the number of uses of this Value.
Definition: Value.cpp:255
Type * getElementType() const
Definition: DerivedTypes.h:460
This class represents zero extension of integer types.
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
Offsets
Offsets in bytes from the start of the input buffer.
Definition: SIInstrInfo.h:1600
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
Pass * createMVEGatherScatterLoweringPass()
bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr)
Scan the specified basic block and try to simplify any instructions in it and recursively delete dead...
Definition: Local.cpp:737
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
bool isGatherScatter(IntrinsicInst *IntInst)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ Add
Sum of integers.
void initializeMVEGatherScatterLoweringPass(PassRegistry &)
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39