LLVM 20.0.0git
SampleProfileLoaderBaseImpl.h
Go to the documentation of this file.
1////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file provides the interface for the sampled PGO profile loader base
11/// implementation.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
16#define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/SmallSet.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CFG.h"
32#include "llvm/IR/DebugLoc.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/PseudoProbe.h"
46
47namespace llvm {
48using namespace sampleprof;
49using namespace sampleprofutil;
51
52namespace vfs {
53class FileSystem;
54} // namespace vfs
55
56#define DEBUG_TYPE "sample-profile-impl"
57
58namespace afdo_detail {
59
60template <typename BlockT> struct IRTraits;
61template <> struct IRTraits<BasicBlock> {
66 using LoopT = Loop;
67 using LoopInfoPtrT = std::unique_ptr<LoopInfo>;
68 using DominatorTreePtrT = std::unique_ptr<DominatorTree>;
70 using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>;
75 static Function &getFunction(Function &F) { return F; }
76 static const BasicBlock *getEntryBB(const Function *F) {
77 return &F->getEntryBlock();
78 }
80 static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); }
81};
82
83} // end namespace afdo_detail
84
85// This class serves sample counts correlation for SampleProfileLoader by
86// analyzing pseudo probes and their function descriptors injected by
87// SampleProfileProber.
90
91public:
93 if (NamedMDNode *FuncInfo =
94 M.getNamedMetadata(PseudoProbeDescMetadataName)) {
95 for (const auto *Operand : FuncInfo->operands()) {
96 const auto *MD = cast<MDNode>(Operand);
97 auto GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))
98 ->getZExtValue();
99 auto Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))
100 ->getZExtValue();
101 GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
102 }
103 }
104 }
105
107 auto I = GUIDToProbeDescMap.find(GUID);
108 return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
109 }
110
111 const PseudoProbeDescriptor *getDesc(StringRef FProfileName) const {
112 return getDesc(Function::getGUID(FProfileName));
113 }
114
117 }
118
120 const FunctionSamples &Samples) const {
121 return FuncDesc.getFunctionHash() != Samples.getFunctionHash();
122 }
123
124 bool moduleIsProbed(const Module &M) const {
125 return M.getNamedMetadata(PseudoProbeDescMetadataName);
126 }
127
128 bool profileIsValid(const Function &F, const FunctionSamples &Samples) const {
129 const auto *Desc = getDesc(F);
130 bool IsAvailableExternallyLinkage =
132 // Always check the function attribute to determine checksum mismatch for
133 // `available_externally` functions even if their desc are available. This
134 // is because the desc is computed based on the original internal function
135 // and it's substituted by the `available_externally` function during link
136 // time. However, when unstable IR or ODR violation issue occurs, the
137 // definitions of the same function across different translation units could
138 // be different and result in different checksums. So we should use the
139 // state from the new (available_externally) function, which is saved in its
140 // attribute.
141 // TODO: If the function's profile only exists as nested inlinee profile in
142 // a different module, we don't have the attr mismatch state(unknown), we
143 // need to fix it later.
144 if (IsAvailableExternallyLinkage || !Desc)
145 return !F.hasFnAttribute("profile-checksum-mismatch");
146
147 return Desc && !profileIsHashMismatched(*Desc, Samples);
148 }
149};
150
151
152
153extern cl::opt<bool> SampleProfileUseProfi;
154
155static inline bool skipProfileForFunction(const Function &F) {
156 return F.isDeclaration() || !F.hasFnAttribute("use-sample-profile");
157}
158
159static inline void
161 std::vector<Function *> &FunctionOrderList) {
162 CG.buildRefSCCs();
164 for (LazyCallGraph::SCC &C : RC) {
165 for (LazyCallGraph::Node &N : C) {
166 Function &F = N.getFunction();
168 FunctionOrderList.push_back(&F);
169 }
170 }
171 }
172 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
173}
174
175template <typename FT> class SampleProfileLoaderBaseImpl {
176public:
177 SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName,
179 : Filename(Name), RemappingFilename(RemapName), FS(std::move(FS)) {}
180 void dump() { Reader->dump(); }
181
183 using BT = std::remove_pointer_t<NodeRef>;
203
207 using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
211
212protected:
215
218 }
221 }
224 }
227 }
228
229 unsigned getFunctionLoc(FunctionT &Func);
236 virtual const FunctionSamples *
244 ArrayRef<BasicBlockT *> Descendants,
245 PostDominatorTreeT *DomTree);
248 BlockWeightMap &SampleBlockWeights,
250 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
252 bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
253 void clearFunctionData(bool ResetDT = true);
255 bool
257 const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
259 const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
260 void
262 const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
264
265 /// Map basic blocks to their computed weights.
266 ///
267 /// The weight of a basic block is defined to be the maximum
268 /// of all the instruction weights in that block.
270
271 /// Map edges to their computed weights.
272 ///
273 /// Edge weights are computed by propagating basic block weights in
274 /// SampleProfile::propagateWeights.
276
277 /// Set of visited blocks during propagation.
279
280 /// Set of visited edges during propagation.
282
283 /// Equivalence classes for block weights.
284 ///
285 /// Two blocks BB1 and BB2 are in the same equivalence class if they
286 /// dominate and post-dominate each other, and they are in the same loop
287 /// nest. When this happens, the two blocks are guaranteed to execute
288 /// the same number of times.
290
291 /// Dominance, post-dominance and loop information.
295
296 /// Predecessors for each basic block in the CFG.
298
299 /// Successors for each basic block in the CFG.
301
302 /// Profile coverage tracker.
304
305 /// Profile reader object.
306 std::unique_ptr<SampleProfileReader> Reader;
307
308 /// Synthetic samples created by duplicating the samples of inlined functions
309 /// from the original profile as if they were top level sample profiles.
310 /// Use std::map because insertion may happen while its content is referenced.
311 std::map<SampleContext, FunctionSamples> OutlineFunctionSamples;
312
313 // A pseudo probe helper to correlate the imported sample counts.
314 std::unique_ptr<PseudoProbeManager> ProbeManager;
315
316 /// Samples collected for the body of this function.
318
319 /// Name of the profile file to load.
320 std::string Filename;
321
322 /// Name of the profile remapping file to load.
323 std::string RemappingFilename;
324
325 /// VirtualFileSystem to load profile files from.
327
328 /// Profile Summary Info computed from sample profile.
330
331 /// Optimization Remark Emitter used to emit diagnostic remarks.
333};
334
335/// Clear all the per-function data used to load samples and propagate weights.
336template <typename BT>
338 BlockWeights.clear();
339 EdgeWeights.clear();
340 VisitedBlocks.clear();
341 VisitedEdges.clear();
342 EquivalenceClass.clear();
343 if (ResetDT) {
344 DT = nullptr;
345 PDT = nullptr;
346 LI = nullptr;
347 }
348 Predecessors.clear();
349 Successors.clear();
350 CoverageTracker.clear();
351}
352
353#ifndef NDEBUG
354/// Print the weight of edge \p E on stream \p OS.
355///
356/// \param OS Stream to emit the output to.
357/// \param E Edge to print.
358template <typename BT>
360 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
361 << "]: " << EdgeWeights[E] << "\n";
362}
363
364/// Print the equivalence class of block \p BB on stream \p OS.
365///
366/// \param OS Stream to emit the output to.
367/// \param BB Block to print.
368template <typename BT>
370 raw_ostream &OS, const BasicBlockT *BB) {
371 const BasicBlockT *Equiv = EquivalenceClass[BB];
372 OS << "equivalence[" << BB->getName()
373 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
374}
375
376/// Print the weight of block \p BB on stream \p OS.
377///
378/// \param OS Stream to emit the output to.
379/// \param BB Block to print.
380template <typename BT>
382 raw_ostream &OS, const BasicBlockT *BB) const {
383 const auto &I = BlockWeights.find(BB);
384 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
385 OS << "weight[" << BB->getName() << "]: " << W << "\n";
386}
387#endif
388
389/// Get the weight for an instruction.
390///
391/// The "weight" of an instruction \p Inst is the number of samples
392/// collected on that instruction at runtime. To retrieve it, we
393/// need to compute the line number of \p Inst relative to the start of its
394/// function. We use HeaderLineno to compute the offset. We then
395/// look up the samples collected for \p Inst using BodySamples.
396///
397/// \param Inst Instruction to query.
398///
399/// \returns the weight of \p Inst.
400template <typename BT>
404 return getProbeWeight(Inst);
405 return getInstWeightImpl(Inst);
406}
407
408template <typename BT>
411 const FunctionSamples *FS = findFunctionSamples(Inst);
412 if (!FS)
413 return std::error_code();
414
415 const DebugLoc &DLoc = Inst.getDebugLoc();
416 if (!DLoc)
417 return std::error_code();
418
419 const DILocation *DIL = DLoc;
420 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
421 uint32_t Discriminator;
423 Discriminator = DIL->getDiscriminator();
424 else
425 Discriminator = DIL->getBaseDiscriminator();
426
427 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
428 if (R) {
429 bool FirstMark =
430 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
431 if (FirstMark) {
432 ORE->emit([&]() {
433 OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
434 Remark << "Applied " << ore::NV("NumSamples", *R);
435 Remark << " samples from profile (offset: ";
436 Remark << ore::NV("LineOffset", LineOffset);
437 if (Discriminator) {
438 Remark << ".";
439 Remark << ore::NV("Discriminator", Discriminator);
440 }
441 Remark << ")";
442 return Remark;
443 });
444 }
445 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":"
446 << Inst << " (line offset: " << LineOffset << "."
447 << Discriminator << " - weight: " << R.get() << ")\n");
448 }
449 return R;
450}
451
452template <typename BT>
456 "Profile is not pseudo probe based");
457 std::optional<PseudoProbe> Probe = extractProbe(Inst);
458 // Ignore the non-probe instruction. If none of the instruction in the BB is
459 // probe, we choose to infer the BB's weight.
460 if (!Probe)
461 return std::error_code();
462
463 const FunctionSamples *FS = findFunctionSamples(Inst);
464 if (!FS) {
465 // If we can't find the function samples for a probe, it could be due to the
466 // probe is later optimized away or the inlining context is mismatced. We
467 // treat it as unknown, leaving it to profile inference instead of forcing a
468 // zero count.
469 return std::error_code();
470 }
471
472 auto R = FS->findSamplesAt(Probe->Id, Probe->Discriminator);
473 if (R) {
474 uint64_t Samples = R.get() * Probe->Factor;
475 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
476 if (FirstMark) {
477 ORE->emit([&]() {
478 OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
479 Remark << "Applied " << ore::NV("NumSamples", Samples);
480 Remark << " samples from profile (ProbeId=";
481 Remark << ore::NV("ProbeId", Probe->Id);
482 if (Probe->Discriminator) {
483 Remark << ".";
484 Remark << ore::NV("Discriminator", Probe->Discriminator);
485 }
486 Remark << ", Factor=";
487 Remark << ore::NV("Factor", Probe->Factor);
488 Remark << ", OriginalSamples=";
489 Remark << ore::NV("OriginalSamples", R.get());
490 Remark << ")";
491 return Remark;
492 });
493 }
494 LLVM_DEBUG({dbgs() << " " << Probe->Id;
495 if (Probe->Discriminator)
496 dbgs() << "." << Probe->Discriminator;
497 dbgs() << ":" << Inst << " - weight: " << R.get()
498 << " - factor: " << format("%0.2f", Probe->Factor) << ")\n";});
499 return Samples;
500 }
501 return R;
502}
503
504/// Compute the weight of a basic block.
505///
506/// The weight of basic block \p BB is the maximum weight of all the
507/// instructions in BB.
508///
509/// \param BB The basic block to query.
510///
511/// \returns the weight for \p BB.
512template <typename BT>
515 uint64_t Max = 0;
516 bool HasWeight = false;
517 for (auto &I : *BB) {
518 const ErrorOr<uint64_t> &R = getInstWeight(I);
519 if (R) {
520 Max = std::max(Max, R.get());
521 HasWeight = true;
522 }
523 }
524 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
525}
526
527/// Compute and store the weights of every basic block.
528///
529/// This populates the BlockWeights map by computing
530/// the weights of every basic block in the CFG.
531///
532/// \param F The function to query.
533template <typename BT>
535 bool Changed = false;
536 LLVM_DEBUG(dbgs() << "Block weights\n");
537 for (const auto &BB : F) {
538 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
539 if (Weight) {
540 BlockWeights[&BB] = Weight.get();
541 VisitedBlocks.insert(&BB);
542 Changed = true;
543 }
544 LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
545 }
546
547 return Changed;
548}
549
550/// Get the FunctionSamples for an instruction.
551///
552/// The FunctionSamples of an instruction \p Inst is the inlined instance
553/// in which that instruction is coming from. We traverse the inline stack
554/// of that instruction, and match it with the tree nodes in the profile.
555///
556/// \param Inst Instruction to query.
557///
558/// \returns the FunctionSamples pointer to the inlined instance.
559template <typename BT>
561 const InstructionT &Inst) const {
562 const DILocation *DIL = Inst.getDebugLoc();
563 if (!DIL)
564 return Samples;
565
566 auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
567 if (it.second) {
568 it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
569 }
570 return it.first->second;
571}
572
573/// Find equivalence classes for the given block.
574///
575/// This finds all the blocks that are guaranteed to execute the same
576/// number of times as \p BB1. To do this, it traverses all the
577/// descendants of \p BB1 in the dominator or post-dominator tree.
578///
579/// A block BB2 will be in the same equivalence class as \p BB1 if
580/// the following holds:
581///
582/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
583/// is a descendant of \p BB1 in the dominator tree, then BB2 should
584/// dominate BB1 in the post-dominator tree.
585///
586/// 2- Both BB2 and \p BB1 must be in the same loop.
587///
588/// For every block BB2 that meets those two requirements, we set BB2's
589/// equivalence class to \p BB1.
590///
591/// \param BB1 Block to check.
592/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
593/// \param DomTree Opposite dominator tree. If \p Descendants is filled
594/// with blocks from \p BB1's dominator tree, then
595/// this is the post-dominator tree, and vice versa.
596template <typename BT>
598 BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
599 PostDominatorTreeT *DomTree) {
600 const BasicBlockT *EC = EquivalenceClass[BB1];
601 uint64_t Weight = BlockWeights[EC];
602 for (const auto *BB2 : Descendants) {
603 bool IsDomParent = DomTree->dominates(BB2, BB1);
604 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
605 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
606 EquivalenceClass[BB2] = EC;
607 // If BB2 is visited, then the entire EC should be marked as visited.
608 if (VisitedBlocks.count(BB2)) {
609 VisitedBlocks.insert(EC);
610 }
611
612 // If BB2 is heavier than BB1, make BB2 have the same weight
613 // as BB1.
614 //
615 // Note that we don't worry about the opposite situation here
616 // (when BB2 is lighter than BB1). We will deal with this
617 // during the propagation phase. Right now, we just want to
618 // make sure that BB1 has the largest weight of all the
619 // members of its equivalence set.
620 Weight = std::max(Weight, BlockWeights[BB2]);
621 }
622 }
623 const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
624 if (EC == EntryBB) {
625 BlockWeights[EC] = Samples->getHeadSamples() + 1;
626 } else {
627 BlockWeights[EC] = Weight;
628 }
629}
630
631/// Find equivalence classes.
632///
633/// Since samples may be missing from blocks, we can fill in the gaps by setting
634/// the weights of all the blocks in the same equivalence class to the same
635/// weight. To compute the concept of equivalence, we use dominance and loop
636/// information. Two blocks B1 and B2 are in the same equivalence class if B1
637/// dominates B2, B2 post-dominates B1 and both are in the same loop.
638///
639/// \param F The function to query.
640template <typename BT>
643 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
644 // Find equivalence sets based on dominance and post-dominance information.
645 for (auto &BB : F) {
646 BasicBlockT *BB1 = &BB;
647
648 // Compute BB1's equivalence class once.
649 if (EquivalenceClass.count(BB1)) {
650 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
651 continue;
652 }
653
654 // By default, blocks are in their own equivalence class.
655 EquivalenceClass[BB1] = BB1;
656
657 // Traverse all the blocks dominated by BB1. We are looking for
658 // every basic block BB2 such that:
659 //
660 // 1- BB1 dominates BB2.
661 // 2- BB2 post-dominates BB1.
662 // 3- BB1 and BB2 are in the same loop nest.
663 //
664 // If all those conditions hold, it means that BB2 is executed
665 // as many times as BB1, so they are placed in the same equivalence
666 // class by making BB2's equivalence class be BB1.
667 DominatedBBs.clear();
668 DT->getDescendants(BB1, DominatedBBs);
669 findEquivalencesFor(BB1, DominatedBBs, &*PDT);
670
671 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
672 }
673
674 // Assign weights to equivalence classes.
675 //
676 // All the basic blocks in the same equivalence class will execute
677 // the same number of times. Since we know that the head block in
678 // each equivalence class has the largest weight, assign that weight
679 // to all the blocks in that equivalence class.
681 dbgs() << "\nAssign the same weight to all blocks in the same class\n");
682 for (auto &BI : F) {
683 const BasicBlockT *BB = &BI;
684 const BasicBlockT *EquivBB = EquivalenceClass[BB];
685 if (BB != EquivBB)
686 BlockWeights[BB] = BlockWeights[EquivBB];
687 LLVM_DEBUG(printBlockWeight(dbgs(), BB));
688 }
689}
690
691/// Visit the given edge to decide if it has a valid weight.
692///
693/// If \p E has not been visited before, we copy to \p UnknownEdge
694/// and increment the count of unknown edges.
695///
696/// \param E Edge to visit.
697/// \param NumUnknownEdges Current number of unknown edges.
698/// \param UnknownEdge Set if E has not been visited before.
699///
700/// \returns E's weight, if known. Otherwise, return 0.
701template <typename BT>
703 unsigned *NumUnknownEdges,
704 Edge *UnknownEdge) {
705 if (!VisitedEdges.count(E)) {
706 (*NumUnknownEdges)++;
707 *UnknownEdge = E;
708 return 0;
709 }
710
711 return EdgeWeights[E];
712}
713
714/// Propagate weights through incoming/outgoing edges.
715///
716/// If the weight of a basic block is known, and there is only one edge
717/// with an unknown weight, we can calculate the weight of that edge.
718///
719/// Similarly, if all the edges have a known count, we can calculate the
720/// count of the basic block, if needed.
721///
722/// \param F Function to process.
723/// \param UpdateBlockCount Whether we should update basic block counts that
724/// has already been annotated.
725///
726/// \returns True if new weights were assigned to edges or blocks.
727template <typename BT>
729 FunctionT &F, bool UpdateBlockCount) {
730 bool Changed = false;
731 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
732 for (const auto &BI : F) {
733 const BasicBlockT *BB = &BI;
734 const BasicBlockT *EC = EquivalenceClass[BB];
735
736 // Visit all the predecessor and successor edges to determine
737 // which ones have a weight assigned already. Note that it doesn't
738 // matter that we only keep track of a single unknown edge. The
739 // only case we are interested in handling is when only a single
740 // edge is unknown (see setEdgeOrBlockWeight).
741 for (unsigned i = 0; i < 2; i++) {
742 uint64_t TotalWeight = 0;
743 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
744 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
745
746 if (i == 0) {
747 // First, visit all predecessor edges.
748 NumTotalEdges = Predecessors[BB].size();
749 for (auto *Pred : Predecessors[BB]) {
750 Edge E = std::make_pair(Pred, BB);
751 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
752 if (E.first == E.second)
753 SelfReferentialEdge = E;
754 }
755 if (NumTotalEdges == 1) {
756 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
757 }
758 } else {
759 // On the second round, visit all successor edges.
760 NumTotalEdges = Successors[BB].size();
761 for (auto *Succ : Successors[BB]) {
762 Edge E = std::make_pair(BB, Succ);
763 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
764 }
765 if (NumTotalEdges == 1) {
766 SingleEdge = std::make_pair(BB, Successors[BB][0]);
767 }
768 }
769
770 // After visiting all the edges, there are three cases that we
771 // can handle immediately:
772 //
773 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
774 // In this case, we simply check that the sum of all the edges
775 // is the same as BB's weight. If not, we change BB's weight
776 // to match. Additionally, if BB had not been visited before,
777 // we mark it visited.
778 //
779 // - Only one edge is unknown and BB has already been visited.
780 // In this case, we can compute the weight of the edge by
781 // subtracting the total block weight from all the known
782 // edge weights. If the edges weight more than BB, then the
783 // edge of the last remaining edge is set to zero.
784 //
785 // - There exists a self-referential edge and the weight of BB is
786 // known. In this case, this edge can be based on BB's weight.
787 // We add up all the other known edges and set the weight on
788 // the self-referential edge as we did in the previous case.
789 //
790 // In any other case, we must continue iterating. Eventually,
791 // all edges will get a weight, or iteration will stop when
792 // it reaches SampleProfileMaxPropagateIterations.
793 if (NumUnknownEdges <= 1) {
794 uint64_t &BBWeight = BlockWeights[EC];
795 if (NumUnknownEdges == 0) {
796 if (!VisitedBlocks.count(EC)) {
797 // If we already know the weight of all edges, the weight of the
798 // basic block can be computed. It should be no larger than the sum
799 // of all edge weights.
800 if (TotalWeight > BBWeight) {
801 BBWeight = TotalWeight;
802 Changed = true;
803 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
804 << " known. Set weight for block: ";
805 printBlockWeight(dbgs(), BB););
806 }
807 } else if (NumTotalEdges == 1 &&
808 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
809 // If there is only one edge for the visited basic block, use the
810 // block weight to adjust edge weight if edge weight is smaller.
811 EdgeWeights[SingleEdge] = BlockWeights[EC];
812 Changed = true;
813 }
814 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
815 // If there is a single unknown edge and the block has been
816 // visited, then we can compute E's weight.
817 if (BBWeight >= TotalWeight)
818 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
819 else
820 EdgeWeights[UnknownEdge] = 0;
821 const BasicBlockT *OtherEC;
822 if (i == 0)
823 OtherEC = EquivalenceClass[UnknownEdge.first];
824 else
825 OtherEC = EquivalenceClass[UnknownEdge.second];
826 // Edge weights should never exceed the BB weights it connects.
827 if (VisitedBlocks.count(OtherEC) &&
828 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
829 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
830 VisitedEdges.insert(UnknownEdge);
831 Changed = true;
832 LLVM_DEBUG(dbgs() << "Set weight for edge: ";
833 printEdgeWeight(dbgs(), UnknownEdge));
834 }
835 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
836 // If a block Weights 0, all its in/out edges should weight 0.
837 if (i == 0) {
838 for (auto *Pred : Predecessors[BB]) {
839 Edge E = std::make_pair(Pred, BB);
840 EdgeWeights[E] = 0;
841 VisitedEdges.insert(E);
842 }
843 } else {
844 for (auto *Succ : Successors[BB]) {
845 Edge E = std::make_pair(BB, Succ);
846 EdgeWeights[E] = 0;
847 VisitedEdges.insert(E);
848 }
849 }
850 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
851 uint64_t &BBWeight = BlockWeights[BB];
852 // We have a self-referential edge and the weight of BB is known.
853 if (BBWeight >= TotalWeight)
854 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
855 else
856 EdgeWeights[SelfReferentialEdge] = 0;
857 VisitedEdges.insert(SelfReferentialEdge);
858 Changed = true;
859 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
860 printEdgeWeight(dbgs(), SelfReferentialEdge));
861 }
862 if (UpdateBlockCount && TotalWeight > 0 &&
863 VisitedBlocks.insert(EC).second) {
864 BlockWeights[EC] = TotalWeight;
865 Changed = true;
866 }
867 }
868 }
869
870 return Changed;
871}
872
873/// Build in/out edge lists for each basic block in the CFG.
874///
875/// We are interested in unique edges. If a block B1 has multiple
876/// edges to another block B2, we only add a single B1->B2 edge.
877template <typename BT>
879 for (auto &BI : F) {
880 BasicBlockT *B1 = &BI;
881
882 // Add predecessors for B1.
884 if (!Predecessors[B1].empty())
885 llvm_unreachable("Found a stale predecessors list in a basic block.");
886 for (auto *B2 : getPredecessors(B1))
887 if (Visited.insert(B2).second)
888 Predecessors[B1].push_back(B2);
889
890 // Add successors for B1.
891 Visited.clear();
892 if (!Successors[B1].empty())
893 llvm_unreachable("Found a stale successors list in a basic block.");
894 for (auto *B2 : getSuccessors(B1))
895 if (Visited.insert(B2).second)
896 Successors[B1].push_back(B2);
897 }
898}
899
900/// Propagate weights into edges
901///
902/// The following rules are applied to every block BB in the CFG:
903///
904/// - If BB has a single predecessor/successor, then the weight
905/// of that edge is the weight of the block.
906///
907/// - If all incoming or outgoing edges are known except one, and the
908/// weight of the block is already known, the weight of the unknown
909/// edge will be the weight of the block minus the sum of all the known
910/// edges. If the sum of all the known edges is larger than BB's weight,
911/// we set the unknown edge weight to zero.
912///
913/// - If there is a self-referential edge, and the weight of the block is
914/// known, the weight for that edge is set to the weight of the block
915/// minus the weight of the other incoming edges to that block (if
916/// known).
917template <typename BT>
919 // Flow-based profile inference is only usable with BasicBlock instantiation
920 // of SampleProfileLoaderBaseImpl.
922 // Prepare block sample counts for inference.
923 BlockWeightMap SampleBlockWeights;
924 for (const auto &BI : F) {
925 ErrorOr<uint64_t> Weight = getBlockWeight(&BI);
926 if (Weight)
927 SampleBlockWeights[&BI] = Weight.get();
928 }
929 // Fill in BlockWeights and EdgeWeights using an inference algorithm.
930 applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights);
931 } else {
932 bool Changed = true;
933 unsigned I = 0;
934
935 // If BB weight is larger than its corresponding loop's header BB weight,
936 // use the BB weight to replace the loop header BB weight.
937 for (auto &BI : F) {
938 BasicBlockT *BB = &BI;
939 LoopT *L = LI->getLoopFor(BB);
940 if (!L) {
941 continue;
942 }
943 BasicBlockT *Header = L->getHeader();
944 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
945 BlockWeights[Header] = BlockWeights[BB];
946 }
947 }
948
949 // Propagate until we converge or we go past the iteration limit.
950 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
951 Changed = propagateThroughEdges(F, false);
952 }
953
954 // The first propagation propagates BB counts from annotated BBs to unknown
955 // BBs. The 2nd propagation pass resets edges weights, and use all BB
956 // weights to propagate edge weights.
957 VisitedEdges.clear();
958 Changed = true;
959 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
960 Changed = propagateThroughEdges(F, false);
961 }
962
963 // The 3rd propagation pass allows adjust annotated BB weights that are
964 // obviously wrong.
965 Changed = true;
966 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
967 Changed = propagateThroughEdges(F, true);
968 }
969 }
970}
971
972template <typename FT>
974 FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights,
975 BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) {
976 auto Infer = SampleProfileInference<FT>(F, Successors, SampleBlockWeights);
977 Infer.apply(BlockWeights, EdgeWeights);
978}
979
980/// Generate branch weight metadata for all branches in \p F.
981///
982/// Branch weights are computed out of instruction samples using a
983/// propagation heuristic. Propagation proceeds in 3 phases:
984///
985/// 1- Assignment of block weights. All the basic blocks in the function
986/// are initial assigned the same weight as their most frequently
987/// executed instruction.
988///
989/// 2- Creation of equivalence classes. Since samples may be missing from
990/// blocks, we can fill in the gaps by setting the weights of all the
991/// blocks in the same equivalence class to the same weight. To compute
992/// the concept of equivalence, we use dominance and loop information.
993/// Two blocks B1 and B2 are in the same equivalence class if B1
994/// dominates B2, B2 post-dominates B1 and both are in the same loop.
995///
996/// 3- Propagation of block weights into edges. This uses a simple
997/// propagation heuristic. The following rules are applied to every
998/// block BB in the CFG:
999///
1000/// - If BB has a single predecessor/successor, then the weight
1001/// of that edge is the weight of the block.
1002///
1003/// - If all the edges are known except one, and the weight of the
1004/// block is already known, the weight of the unknown edge will
1005/// be the weight of the block minus the sum of all the known
1006/// edges. If the sum of all the known edges is larger than BB's weight,
1007/// we set the unknown edge weight to zero.
1008///
1009/// - If there is a self-referential edge, and the weight of the block is
1010/// known, the weight for that edge is set to the weight of the block
1011/// minus the weight of the other incoming edges to that block (if
1012/// known).
1013///
1014/// Since this propagation is not guaranteed to finalize for every CFG, we
1015/// only allow it to proceed for a limited number of iterations (controlled
1016/// by -sample-profile-max-propagate-iterations).
1017///
1018/// FIXME: Try to replace this propagation heuristic with a scheme
1019/// that is guaranteed to finalize. A work-list approach similar to
1020/// the standard value propagation algorithm used by SSA-CCP might
1021/// work here.
1022///
1023/// \param F The function to query.
1024///
1025/// \returns true if \p F was modified. Returns false, otherwise.
1026template <typename BT>
1028 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1029 bool Changed = (InlinedGUIDs.size() != 0);
1030
1031 // Compute basic block weights.
1032 Changed |= computeBlockWeights(F);
1033
1034 if (Changed) {
1035 // Initialize propagation.
1036 initWeightPropagation(F, InlinedGUIDs);
1037
1038 // Propagate weights to all edges.
1039 propagateWeights(F);
1040
1041 // Post-process propagated weights.
1042 finalizeWeightPropagation(F, InlinedGUIDs);
1043 }
1044
1045 return Changed;
1046}
1047
1048template <typename BT>
1050 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1051 // Add an entry count to the function using the samples gathered at the
1052 // function entry.
1053 // Sets the GUIDs that are inlined in the profiled binary. This is used
1054 // for ThinLink to make correct liveness analysis, and also make the IR
1055 // match the profiled binary before annotation.
1057 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1058 &InlinedGUIDs);
1059
1060 if (!SampleProfileUseProfi) {
1061 // Compute dominance and loop info needed for propagation.
1062 computeDominanceAndLoopInfo(F);
1063
1064 // Find equivalence classes.
1065 findEquivalenceClasses(F);
1066 }
1067
1068 // Before propagation starts, build, for each block, a list of
1069 // unique predecessors and successors. This is necessary to handle
1070 // identical edges in multiway branches. Since we visit all blocks and all
1071 // edges of the CFG, it is cleaner to build these lists once at the start
1072 // of the pass.
1073 buildEdges(F);
1074}
1075
1076template <typename BT>
1078 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1079 // If we utilize a flow-based count inference, then we trust the computed
1080 // counts and set the entry count as computed by the algorithm. This is
1081 // primarily done to sync the counts produced by profi and BFI inference,
1082 // which uses the entry count for mass propagation.
1083 // If profi produces a zero-value for the entry count, we fallback to
1084 // Samples->getHeadSamples() + 1 to avoid functions with zero count.
1086 const BasicBlockT *EntryBB = getEntryBB(&F);
1087 ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB);
1088 if (BlockWeights[EntryBB] > 0) {
1090 ProfileCount(BlockWeights[EntryBB], Function::PCT_Real),
1091 &InlinedGUIDs);
1092 }
1093 }
1094}
1095
1096template <typename BT>
1098 // If coverage checking was requested, compute it now.
1099 const Function &Func = getFunction(F);
1101 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1102 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1103 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1104 if (Coverage < SampleProfileRecordCoverage) {
1105 Func.getContext().diagnose(DiagnosticInfoSampleProfile(
1106 Func.getSubprogram()->getFilename(), getFunctionLoc(F),
1107 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1108 Twine(Coverage) + "%) were applied",
1109 DS_Warning));
1110 }
1111 }
1112
1114 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1115 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1116 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1117 if (Coverage < SampleProfileSampleCoverage) {
1118 Func.getContext().diagnose(DiagnosticInfoSampleProfile(
1119 Func.getSubprogram()->getFilename(), getFunctionLoc(F),
1120 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1121 Twine(Coverage) + "%) were applied",
1122 DS_Warning));
1123 }
1124 }
1125}
1126
1127/// Get the line number for the function header.
1128///
1129/// This looks up function \p F in the current compilation unit and
1130/// retrieves the line number where the function is defined. This is
1131/// line 0 for all the samples read from the profile file. Every line
1132/// number is relative to this line.
1133///
1134/// \param F Function object to query.
1135///
1136/// \returns the line number where \p F is defined. If it returns 0,
1137/// it means that there is no debug information available for \p F.
1138template <typename BT>
1140 const Function &Func = getFunction(F);
1141 if (DISubprogram *S = Func.getSubprogram())
1142 return S->getLine();
1143
1145 return 0;
1146
1147 // If the start of \p F is missing, emit a diagnostic to inform the user
1148 // about the missed opportunity.
1149 Func.getContext().diagnose(DiagnosticInfoSampleProfile(
1150 "No debug information found in function " + Func.getName() +
1151 ": Function profile not used",
1152 DS_Warning));
1153 return 0;
1154}
1155
1156#undef DEBUG_TYPE
1157
1158} // namespace llvm
1159#endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
std::string Name
static Function * getFunction(Constant *C)
Definition: Evaluator.cpp:235
#define DEBUG_TYPE
This file defines a set of templates that efficiently compute a dominator tree over a generic graph.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This file defines the RefCountedBase, ThreadSafeRefCountedBase, and IntrusiveRefCntPtr classes.
Implements a lazy call graph analysis and related passes for the new pass manager.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file provides the interface for the profile inference algorithm, profi.
This file provides the utility functions for the sampled PGO loader base implementation.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Debug location.
unsigned getBaseDiscriminator() const
Returns the base discriminator stored in the discriminator.
Subprogram description.
A debug info location.
Definition: DebugLoc.h:33
unsigned getLine() const
Definition: DebugLoc.cpp:24
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:226
iterator end()
Definition: DenseMap.h:84
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
Diagnostic information for the sample profiler.
void getDescendants(NodeT *R, SmallVectorImpl< NodeT * > &Result) const
Get all nodes dominated by R, including R itself.
Represents either an error or a value T.
Definition: ErrorOr.h:56
reference get()
Definition: ErrorOr.h:149
Class to represent profile counts.
Definition: Function.h:292
void setEntryCount(ProfileCount Count, const DenseSet< GlobalValue::GUID > *Imports=nullptr)
Set the entry count for this function.
Definition: Function.cpp:1111
static bool isAvailableExternallyLinkage(LinkageTypes Linkage)
Definition: GlobalValue.h:379
GUID getGUID() const
Return a 64-bit global unique ID constructed from global value name (i.e.
Definition: GlobalValue.h:595
A smart pointer to a reference-counted object that inherits from RefCountedBase or ThreadSafeRefCount...
A node in the call graph.
A RefSCC of the call graph.
An SCC of the call graph.
A lazily constructed view of the call graph of a module.
iterator_range< postorder_ref_scc_iterator > postorder_ref_sccs()
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A tuple of MDNodes.
Definition: Metadata.h:1731
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
Analysis providing profile information.
uint64_t getFunctionHash() const
Definition: PseudoProbe.h:114
const PseudoProbeDescriptor * getDesc(StringRef FProfileName) const
bool profileIsHashMismatched(const PseudoProbeDescriptor &FuncDesc, const FunctionSamples &Samples) const
const PseudoProbeDescriptor * getDesc(const Function &F) const
bool moduleIsProbed(const Module &M) const
bool profileIsValid(const Function &F, const FunctionSamples &Samples) const
const PseudoProbeDescriptor * getDesc(uint64_t GUID) const
Sample profile inference pass.
bool computeAndPropagateWeights(FunctionT &F, const DenseSet< GlobalValue::GUID > &InlinedGUIDs)
Generate branch weight metadata for all branches in F.
void computeDominanceAndLoopInfo(FunctionT &F)
typename afdo_detail::IRTraits< BT >::BasicBlockT BasicBlockT
IntrusiveRefCntPtr< vfs::FileSystem > FS
VirtualFileSystem to load profile files from.
typename afdo_detail::IRTraits< BT >::OptRemarkAnalysisT OptRemarkAnalysisT
typename afdo_detail::IRTraits< BT >::SuccRangeT SuccRangeT
EdgeWeightMap EdgeWeights
Map edges to their computed weights.
SmallSet< Edge, 32 > VisitedEdges
Set of visited edges during propagation.
std::map< SampleContext, FunctionSamples > OutlineFunctionSamples
Synthetic samples created by duplicating the samples of inlined functions from the original profile a...
OptRemarkEmitterT * ORE
Optimization Remark Emitter used to emit diagnostic remarks.
const BasicBlockT * getEntryBB(const FunctionT *F)
ErrorOr< uint64_t > getBlockWeight(const BasicBlockT *BB)
Compute the weight of a basic block.
unsigned getFunctionLoc(FunctionT &Func)
Get the line number for the function header.
ErrorOr< uint64_t > getInstWeightImpl(const InstructionT &Inst)
virtual ErrorOr< uint64_t > getInstWeight(const InstructionT &Inst)
Get the weight for an instruction.
SmallPtrSet< const BasicBlockT *, 32 > VisitedBlocks
Set of visited blocks during propagation.
EquivalenceClassMap EquivalenceClass
Equivalence classes for block weights.
typename afdo_detail::IRTraits< BT >::DominatorTreePtrT DominatorTreePtrT
SampleCoverageTracker CoverageTracker
Profile coverage tracker.
typename afdo_detail::IRTraits< BT >::LoopT LoopT
typename GraphTraits< FT * >::NodeRef NodeRef
std::unique_ptr< SampleProfileReader > Reader
Profile reader object.
typename afdo_detail::IRTraits< BT >::OptRemarkEmitterT OptRemarkEmitterT
void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const
Print the weight of block BB on stream OS.
DominatorTreePtrT DT
Dominance, post-dominance and loop information.
void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB)
Print the equivalence class of block BB on stream OS.
std::remove_pointer_t< NodeRef > BT
SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName, IntrusiveRefCntPtr< vfs::FileSystem > FS)
std::unique_ptr< PseudoProbeManager > ProbeManager
typename afdo_detail::IRTraits< BT >::LoopInfoPtrT LoopInfoPtrT
std::string Filename
Name of the profile file to load.
bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount)
Propagate weights through incoming/outgoing edges.
typename afdo_detail::IRTraits< BT >::InstructionT InstructionT
uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge)
Visit the given edge to decide if it has a valid weight.
typename afdo_detail::IRTraits< BT >::PostDominatorTreePtrT PostDominatorTreePtrT
void initWeightPropagation(FunctionT &F, const DenseSet< GlobalValue::GUID > &InlinedGUIDs)
BlockEdgeMap Predecessors
Predecessors for each basic block in the CFG.
void finalizeWeightPropagation(FunctionT &F, const DenseSet< GlobalValue::GUID > &InlinedGUIDs)
bool computeBlockWeights(FunctionT &F)
Compute and store the weights of every basic block.
virtual const FunctionSamples * findFunctionSamples(const InstructionT &I) const
Get the FunctionSamples for an instruction.
typename afdo_detail::IRTraits< BT >::PostDominatorTreeT PostDominatorTreeT
virtual ErrorOr< uint64_t > getProbeWeight(const InstructionT &Inst)
std::string RemappingFilename
Name of the profile remapping file to load.
typename afdo_detail::IRTraits< BT >::PredRangeT PredRangeT
void applyProfi(FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights)
typename afdo_detail::IRTraits< BT >::BlockFrequencyInfoT BlockFrequencyInfoT
BlockEdgeMap Successors
Successors for each basic block in the CFG.
FunctionSamples * Samples
Samples collected for the body of this function.
void findEquivalenceClasses(FunctionT &F)
Find equivalence classes.
std::pair< const BasicBlockT *, const BasicBlockT * > Edge
ProfileSummaryInfo * PSI
Profile Summary Info computed from sample profile.
void clearFunctionData(bool ResetDT=true)
Clear all the per-function data used to load samples and propagate weights.
DenseMap< const DILocation *, const FunctionSamples * > DILocation2SampleMap
void buildEdges(FunctionT &F)
Build in/out edge lists for each basic block in the CFG.
void findEquivalencesFor(BasicBlockT *BB1, ArrayRef< BasicBlockT * > Descendants, PostDominatorTreeT *DomTree)
Find equivalence classes for the given block.
void printEdgeWeight(raw_ostream &OS, Edge E)
Print the weight of edge E on stream OS.
typename afdo_detail::IRTraits< BT >::FunctionT FunctionT
BlockWeightMap BlockWeights
Map basic blocks to their computed weights.
void propagateWeights(FunctionT &F)
Propagate weights into edges.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:132
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
size_type size() const
Definition: DenseSet.h:81
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
Representation of the samples collected for a function.
Definition: SampleProf.h:745
static StringRef getCanonicalFnName(const Function &F)
Return the canonical name for a function, taking into account suffix elision policy attributes.
Definition: SampleProf.h:1090
static unsigned getOffset(const DILocation *DIL)
Returns the line offset to the start line of the subprogram.
Definition: SampleProf.cpp:216
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Function::ProfileCount ProfileCount
auto successors(const MachineBasicBlock *BB)
cl::opt< unsigned > SampleProfileSampleCoverage
static void buildTopDownFuncOrder(LazyCallGraph &CG, std::vector< Function * > &FunctionOrderList)
cl::opt< unsigned > SampleProfileRecordCoverage
cl::opt< unsigned > SampleProfileMaxPropagateIterations
cl::opt< bool > SampleProfileUseProfi
cl::opt< bool > EnableFSDiscriminator
std::optional< PseudoProbe > extractProbe(const Instruction &Inst)
Definition: PseudoProbe.cpp:56
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
iterator_range< succ_iterator > succ_range
Definition: CFG.h:244
cl::opt< bool > NoWarnSampleUnused
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
iterator_range< pred_iterator > pred_range
Definition: CFG.h:107
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
@ DS_Warning
static bool skipProfileForFunction(const Function &F)
auto predecessors(const MachineBasicBlock *BB)
constexpr const char * PseudoProbeDescMetadataName
Definition: PseudoProbe.h:25
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
Description of the encoding of one expression Op.
typename GraphType::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:95
std::unique_ptr< PostDominatorTree > PostDominatorTreePtrT
static pred_range getPredecessors(BasicBlock *BB)
static succ_range getSuccessors(BasicBlock *BB)
std::unique_ptr< DominatorTree > DominatorTreePtrT
static const BasicBlock * getEntryBB(const Function *F)