LLVM 19.0.0git
InstCombineCasts.cpp
Go to the documentation of this file.
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for cast operations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/SetVector.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/DebugInfo.h"
21#include <optional>
22
23using namespace llvm;
24using namespace PatternMatch;
25
26#define DEBUG_TYPE "instcombine"
27
28/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29/// true for, actually insert the code to evaluate the expression.
31 bool isSigned) {
32 if (Constant *C = dyn_cast<Constant>(V))
34
35 // Otherwise, it must be an instruction.
36 Instruction *I = cast<Instruction>(V);
37 Instruction *Res = nullptr;
38 unsigned Opc = I->getOpcode();
39 switch (Opc) {
40 case Instruction::Add:
41 case Instruction::Sub:
42 case Instruction::Mul:
43 case Instruction::And:
44 case Instruction::Or:
45 case Instruction::Xor:
46 case Instruction::AShr:
47 case Instruction::LShr:
48 case Instruction::Shl:
49 case Instruction::UDiv:
50 case Instruction::URem: {
51 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
52 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
54 break;
55 }
56 case Instruction::Trunc:
57 case Instruction::ZExt:
58 case Instruction::SExt:
59 // If the source type of the cast is the type we're trying for then we can
60 // just return the source. There's no need to insert it because it is not
61 // new.
62 if (I->getOperand(0)->getType() == Ty)
63 return I->getOperand(0);
64
65 // Otherwise, must be the same type of cast, so just reinsert a new one.
66 // This also handles the case of zext(trunc(x)) -> zext(x).
67 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
68 Opc == Instruction::SExt);
69 break;
70 case Instruction::Select: {
71 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
72 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
73 Res = SelectInst::Create(I->getOperand(0), True, False);
74 break;
75 }
76 case Instruction::PHI: {
77 PHINode *OPN = cast<PHINode>(I);
79 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
80 Value *V =
82 NPN->addIncoming(V, OPN->getIncomingBlock(i));
83 }
84 Res = NPN;
85 break;
86 }
87 case Instruction::FPToUI:
88 case Instruction::FPToSI:
89 Res = CastInst::Create(
90 static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
91 break;
92 case Instruction::Call:
93 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
94 switch (II->getIntrinsicID()) {
95 default:
96 llvm_unreachable("Unsupported call!");
97 case Intrinsic::vscale: {
98 Function *Fn =
99 Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
100 Res = CallInst::Create(Fn->getFunctionType(), Fn);
101 break;
102 }
103 }
104 }
105 break;
106 case Instruction::ShuffleVector: {
107 auto *ScalarTy = cast<VectorType>(Ty)->getElementType();
108 auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
109 auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount());
110 Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned);
111 Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned);
112 Res = new ShuffleVectorInst(Op0, Op1,
113 cast<ShuffleVectorInst>(I)->getShuffleMask());
114 break;
115 }
116 default:
117 // TODO: Can handle more cases here.
118 llvm_unreachable("Unreachable!");
119 }
120
121 Res->takeName(I);
122 return InsertNewInstWith(Res, I->getIterator());
123}
124
126InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
127 const CastInst *CI2) {
128 Type *SrcTy = CI1->getSrcTy();
129 Type *MidTy = CI1->getDestTy();
130 Type *DstTy = CI2->getDestTy();
131
132 Instruction::CastOps firstOp = CI1->getOpcode();
133 Instruction::CastOps secondOp = CI2->getOpcode();
134 Type *SrcIntPtrTy =
135 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
136 Type *MidIntPtrTy =
137 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
138 Type *DstIntPtrTy =
139 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
140 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
141 DstTy, SrcIntPtrTy, MidIntPtrTy,
142 DstIntPtrTy);
143
144 // We don't want to form an inttoptr or ptrtoint that converts to an integer
145 // type that differs from the pointer size.
146 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
147 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
148 Res = 0;
149
150 return Instruction::CastOps(Res);
151}
152
153/// Implement the transforms common to all CastInst visitors.
155 Value *Src = CI.getOperand(0);
156 Type *Ty = CI.getType();
157
158 if (auto *SrcC = dyn_cast<Constant>(Src))
159 if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
160 return replaceInstUsesWith(CI, Res);
161
162 // Try to eliminate a cast of a cast.
163 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
164 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
165 // The first cast (CSrc) is eliminable so we need to fix up or replace
166 // the second cast (CI). CSrc will then have a good chance of being dead.
167 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
168 // Point debug users of the dying cast to the new one.
169 if (CSrc->hasOneUse())
170 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
171 return Res;
172 }
173 }
174
175 if (auto *Sel = dyn_cast<SelectInst>(Src)) {
176 // We are casting a select. Try to fold the cast into the select if the
177 // select does not have a compare instruction with matching operand types
178 // or the select is likely better done in a narrow type.
179 // Creating a select with operands that are different sizes than its
180 // condition may inhibit other folds and lead to worse codegen.
181 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
182 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
183 (CI.getOpcode() == Instruction::Trunc &&
184 shouldChangeType(CI.getSrcTy(), CI.getType()))) {
185
186 // If it's a bitcast involving vectors, make sure it has the same number
187 // of elements on both sides.
188 if (CI.getOpcode() != Instruction::BitCast ||
190 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
191 replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
192 return NV;
193 }
194 }
195 }
196 }
197
198 // If we are casting a PHI, then fold the cast into the PHI.
199 if (auto *PN = dyn_cast<PHINode>(Src)) {
200 // Don't do this if it would create a PHI node with an illegal type from a
201 // legal type.
202 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
203 shouldChangeType(CI.getSrcTy(), CI.getType()))
204 if (Instruction *NV = foldOpIntoPhi(CI, PN))
205 return NV;
206 }
207
208 // Canonicalize a unary shuffle after the cast if neither operation changes
209 // the size or element size of the input vector.
210 // TODO: We could allow size-changing ops if that doesn't harm codegen.
211 // cast (shuffle X, Mask) --> shuffle (cast X), Mask
212 Value *X;
213 ArrayRef<int> Mask;
214 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
215 // TODO: Allow scalable vectors?
216 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
217 auto *DestTy = dyn_cast<FixedVectorType>(Ty);
218 if (SrcTy && DestTy &&
219 SrcTy->getNumElements() == DestTy->getNumElements() &&
220 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
221 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
222 return new ShuffleVectorInst(CastX, Mask);
223 }
224 }
225
226 return nullptr;
227}
228
229/// Constants and extensions/truncates from the destination type are always
230/// free to be evaluated in that type. This is a helper for canEvaluate*.
231static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
232 if (isa<Constant>(V))
233 return match(V, m_ImmConstant());
234
235 Value *X;
236 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
237 X->getType() == Ty)
238 return true;
239
240 return false;
241}
242
243/// Filter out values that we can not evaluate in the destination type for free.
244/// This is a helper for canEvaluate*.
245static bool canNotEvaluateInType(Value *V, Type *Ty) {
246 if (!isa<Instruction>(V))
247 return true;
248 // We don't extend or shrink something that has multiple uses -- doing so
249 // would require duplicating the instruction which isn't profitable.
250 if (!V->hasOneUse())
251 return true;
252
253 return false;
254}
255
256/// Return true if we can evaluate the specified expression tree as type Ty
257/// instead of its larger type, and arrive with the same value.
258/// This is used by code that tries to eliminate truncates.
259///
260/// Ty will always be a type smaller than V. We should return true if trunc(V)
261/// can be computed by computing V in the smaller type. If V is an instruction,
262/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
263/// makes sense if x and y can be efficiently truncated.
264///
265/// This function works on both vectors and scalars.
266///
268 Instruction *CxtI) {
269 if (canAlwaysEvaluateInType(V, Ty))
270 return true;
271 if (canNotEvaluateInType(V, Ty))
272 return false;
273
274 auto *I = cast<Instruction>(V);
275 Type *OrigTy = V->getType();
276 switch (I->getOpcode()) {
277 case Instruction::Add:
278 case Instruction::Sub:
279 case Instruction::Mul:
280 case Instruction::And:
281 case Instruction::Or:
282 case Instruction::Xor:
283 // These operators can all arbitrarily be extended or truncated.
284 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
285 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
286
287 case Instruction::UDiv:
288 case Instruction::URem: {
289 // UDiv and URem can be truncated if all the truncated bits are zero.
290 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
292 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
293 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
294 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
295 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
296 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
297 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
298 }
299 break;
300 }
301 case Instruction::Shl: {
302 // If we are truncating the result of this SHL, and if it's a shift of an
303 // inrange amount, we can always perform a SHL in a smaller type.
305 KnownBits AmtKnownBits =
306 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
307 if (AmtKnownBits.getMaxValue().ult(BitWidth))
308 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
309 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
310 break;
311 }
312 case Instruction::LShr: {
313 // If this is a truncate of a logical shr, we can truncate it to a smaller
314 // lshr iff we know that the bits we would otherwise be shifting in are
315 // already zeros.
316 // TODO: It is enough to check that the bits we would be shifting in are
317 // zero - use AmtKnownBits.getMaxValue().
318 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
320 KnownBits AmtKnownBits =
321 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
322 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
323 if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
324 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
325 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
326 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
327 }
328 break;
329 }
330 case Instruction::AShr: {
331 // If this is a truncate of an arithmetic shr, we can truncate it to a
332 // smaller ashr iff we know that all the bits from the sign bit of the
333 // original type and the sign bit of the truncate type are similar.
334 // TODO: It is enough to check that the bits we would be shifting in are
335 // similar to sign bit of the truncate type.
336 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
338 KnownBits AmtKnownBits =
339 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
340 unsigned ShiftedBits = OrigBitWidth - BitWidth;
341 if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
342 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
343 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
344 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
345 break;
346 }
347 case Instruction::Trunc:
348 // trunc(trunc(x)) -> trunc(x)
349 return true;
350 case Instruction::ZExt:
351 case Instruction::SExt:
352 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
353 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
354 return true;
355 case Instruction::Select: {
356 SelectInst *SI = cast<SelectInst>(I);
357 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
358 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
359 }
360 case Instruction::PHI: {
361 // We can change a phi if we can change all operands. Note that we never
362 // get into trouble with cyclic PHIs here because we only consider
363 // instructions with a single use.
364 PHINode *PN = cast<PHINode>(I);
365 for (Value *IncValue : PN->incoming_values())
366 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
367 return false;
368 return true;
369 }
370 case Instruction::FPToUI:
371 case Instruction::FPToSI: {
372 // If the integer type can hold the max FP value, it is safe to cast
373 // directly to that type. Otherwise, we may create poison via overflow
374 // that did not exist in the original code.
375 Type *InputTy = I->getOperand(0)->getType()->getScalarType();
376 const fltSemantics &Semantics = InputTy->getFltSemantics();
377 uint32_t MinBitWidth =
379 I->getOpcode() == Instruction::FPToSI);
380 return Ty->getScalarSizeInBits() >= MinBitWidth;
381 }
382 case Instruction::ShuffleVector:
383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
384 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
385 default:
386 // TODO: Can handle more cases here.
387 break;
388 }
389
390 return false;
391}
392
393/// Given a vector that is bitcast to an integer, optionally logically
394/// right-shifted, and truncated, convert it to an extractelement.
395/// Example (big endian):
396/// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
397/// --->
398/// extractelement <4 x i32> %X, 1
400 InstCombinerImpl &IC) {
401 Value *TruncOp = Trunc.getOperand(0);
402 Type *DestType = Trunc.getType();
403 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
404 return nullptr;
405
406 Value *VecInput = nullptr;
407 ConstantInt *ShiftVal = nullptr;
408 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
409 m_LShr(m_BitCast(m_Value(VecInput)),
410 m_ConstantInt(ShiftVal)))) ||
411 !isa<VectorType>(VecInput->getType()))
412 return nullptr;
413
414 VectorType *VecType = cast<VectorType>(VecInput->getType());
415 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
416 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
417 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
418
419 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
420 return nullptr;
421
422 // If the element type of the vector doesn't match the result type,
423 // bitcast it to a vector type that we can extract from.
424 unsigned NumVecElts = VecWidth / DestWidth;
425 if (VecType->getElementType() != DestType) {
426 VecType = FixedVectorType::get(DestType, NumVecElts);
427 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
428 }
429
430 unsigned Elt = ShiftAmount / DestWidth;
431 if (IC.getDataLayout().isBigEndian())
432 Elt = NumVecElts - 1 - Elt;
433
434 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
435}
436
437/// Funnel/Rotate left/right may occur in a wider type than necessary because of
438/// type promotion rules. Try to narrow the inputs and convert to funnel shift.
439Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
440 assert((isa<VectorType>(Trunc.getSrcTy()) ||
441 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
442 "Don't narrow to an illegal scalar type");
443
444 // Bail out on strange types. It is possible to handle some of these patterns
445 // even with non-power-of-2 sizes, but it is not a likely scenario.
446 Type *DestTy = Trunc.getType();
447 unsigned NarrowWidth = DestTy->getScalarSizeInBits();
448 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
449 if (!isPowerOf2_32(NarrowWidth))
450 return nullptr;
451
452 // First, find an or'd pair of opposite shifts:
453 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
454 BinaryOperator *Or0, *Or1;
455 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
456 return nullptr;
457
458 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
459 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
460 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
461 Or0->getOpcode() == Or1->getOpcode())
462 return nullptr;
463
464 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
465 if (Or0->getOpcode() == BinaryOperator::LShr) {
466 std::swap(Or0, Or1);
467 std::swap(ShVal0, ShVal1);
468 std::swap(ShAmt0, ShAmt1);
469 }
470 assert(Or0->getOpcode() == BinaryOperator::Shl &&
471 Or1->getOpcode() == BinaryOperator::LShr &&
472 "Illegal or(shift,shift) pair");
473
474 // Match the shift amount operands for a funnel/rotate pattern. This always
475 // matches a subtraction on the R operand.
476 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
477 // The shift amounts may add up to the narrow bit width:
478 // (shl ShVal0, L) | (lshr ShVal1, Width - L)
479 // If this is a funnel shift (different operands are shifted), then the
480 // shift amount can not over-shift (create poison) in the narrow type.
481 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
482 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
483 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
484 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
485 return L;
486
487 // The following patterns currently only work for rotation patterns.
488 // TODO: Add more general funnel-shift compatible patterns.
489 if (ShVal0 != ShVal1)
490 return nullptr;
491
492 // The shift amount may be masked with negation:
493 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
494 Value *X;
495 unsigned Mask = Width - 1;
496 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
498 return X;
499
500 // Same as above, but the shift amount may be extended after masking:
501 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
503 return X;
504
505 return nullptr;
506 };
507
508 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
509 bool IsFshl = true; // Sub on LSHR.
510 if (!ShAmt) {
511 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
512 IsFshl = false; // Sub on SHL.
513 }
514 if (!ShAmt)
515 return nullptr;
516
517 // The right-shifted value must have high zeros in the wide type (for example
518 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
519 // truncated, so those do not matter.
520 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
521 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
522 return nullptr;
523
524 // Adjust the width of ShAmt for narrowed funnel shift operation:
525 // - Zero-extend if ShAmt is narrower than the destination type.
526 // - Truncate if ShAmt is wider, discarding non-significant high-order bits.
527 // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal),
528 // zext/trunc(ShAmt)).
529 Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy);
530
531 Value *X, *Y;
532 X = Y = Builder.CreateTrunc(ShVal0, DestTy);
533 if (ShVal0 != ShVal1)
534 Y = Builder.CreateTrunc(ShVal1, DestTy);
535 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
536 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
537 return CallInst::Create(F, {X, Y, NarrowShAmt});
538}
539
540/// Try to narrow the width of math or bitwise logic instructions by pulling a
541/// truncate ahead of binary operators.
542Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
543 Type *SrcTy = Trunc.getSrcTy();
544 Type *DestTy = Trunc.getType();
545 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
546 unsigned DestWidth = DestTy->getScalarSizeInBits();
547
548 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
549 return nullptr;
550
551 BinaryOperator *BinOp;
552 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
553 return nullptr;
554
555 Value *BinOp0 = BinOp->getOperand(0);
556 Value *BinOp1 = BinOp->getOperand(1);
557 switch (BinOp->getOpcode()) {
558 case Instruction::And:
559 case Instruction::Or:
560 case Instruction::Xor:
561 case Instruction::Add:
562 case Instruction::Sub:
563 case Instruction::Mul: {
564 Constant *C;
565 if (match(BinOp0, m_Constant(C))) {
566 // trunc (binop C, X) --> binop (trunc C', X)
567 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
568 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
569 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
570 }
571 if (match(BinOp1, m_Constant(C))) {
572 // trunc (binop X, C) --> binop (trunc X, C')
573 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
574 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
575 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
576 }
577 Value *X;
578 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
579 // trunc (binop (ext X), Y) --> binop X, (trunc Y)
580 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
581 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
582 }
583 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
584 // trunc (binop Y, (ext X)) --> binop (trunc Y), X
585 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
586 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
587 }
588 break;
589 }
590 case Instruction::LShr:
591 case Instruction::AShr: {
592 // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
593 Value *A;
594 Constant *C;
595 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
596 unsigned MaxShiftAmt = SrcWidth - DestWidth;
597 // If the shift is small enough, all zero/sign bits created by the shift
598 // are removed by the trunc.
600 APInt(SrcWidth, MaxShiftAmt)))) {
601 auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
602 bool IsExact = OldShift->isExact();
603 if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(),
604 /*IsSigned*/ true, DL)) {
605 ShAmt = Constant::mergeUndefsWith(ShAmt, C);
606 Value *Shift =
607 OldShift->getOpcode() == Instruction::AShr
608 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
609 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
610 return CastInst::CreateTruncOrBitCast(Shift, DestTy);
611 }
612 }
613 }
614 break;
615 }
616 default: break;
617 }
618
619 if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
620 return NarrowOr;
621
622 return nullptr;
623}
624
625/// Try to narrow the width of a splat shuffle. This could be generalized to any
626/// shuffle with a constant operand, but we limit the transform to avoid
627/// creating a shuffle type that targets may not be able to lower effectively.
629 InstCombiner::BuilderTy &Builder) {
630 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
631 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
632 all_equal(Shuf->getShuffleMask()) &&
633 Shuf->getType() == Shuf->getOperand(0)->getType()) {
634 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
635 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
636 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
637 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
638 }
639
640 return nullptr;
641}
642
643/// Try to narrow the width of an insert element. This could be generalized for
644/// any vector constant, but we limit the transform to insertion into undef to
645/// avoid potential backend problems from unsupported insertion widths. This
646/// could also be extended to handle the case of inserting a scalar constant
647/// into a vector variable.
649 InstCombiner::BuilderTy &Builder) {
650 Instruction::CastOps Opcode = Trunc.getOpcode();
651 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
652 "Unexpected instruction for shrinking");
653
654 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
655 if (!InsElt || !InsElt->hasOneUse())
656 return nullptr;
657
658 Type *DestTy = Trunc.getType();
659 Type *DestScalarTy = DestTy->getScalarType();
660 Value *VecOp = InsElt->getOperand(0);
661 Value *ScalarOp = InsElt->getOperand(1);
662 Value *Index = InsElt->getOperand(2);
663
664 if (match(VecOp, m_Undef())) {
665 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
666 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
667 UndefValue *NarrowUndef = UndefValue::get(DestTy);
668 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
669 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
670 }
671
672 return nullptr;
673}
674
676 if (Instruction *Result = commonCastTransforms(Trunc))
677 return Result;
678
679 Value *Src = Trunc.getOperand(0);
680 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
681 unsigned DestWidth = DestTy->getScalarSizeInBits();
682 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
683
684 // Attempt to truncate the entire input expression tree to the destination
685 // type. Only do this if the dest type is a simple type, don't convert the
686 // expression tree to something weird like i93 unless the source is also
687 // strange.
688 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
689 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
690
691 // If this cast is a truncate, evaluting in a different type always
692 // eliminates the cast, so it is always a win.
694 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
695 " to avoid cast: "
696 << Trunc << '\n');
697 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
698 assert(Res->getType() == DestTy);
699 return replaceInstUsesWith(Trunc, Res);
700 }
701
702 // For integer types, check if we can shorten the entire input expression to
703 // DestWidth * 2, which won't allow removing the truncate, but reducing the
704 // width may enable further optimizations, e.g. allowing for larger
705 // vectorization factors.
706 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
707 if (DestWidth * 2 < SrcWidth) {
708 auto *NewDestTy = DestITy->getExtendedType();
709 if (shouldChangeType(SrcTy, NewDestTy) &&
710 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
712 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
713 " to reduce the width of operand of"
714 << Trunc << '\n');
715 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
716 return new TruncInst(Res, DestTy);
717 }
718 }
719 }
720
721 // Test if the trunc is the user of a select which is part of a
722 // minimum or maximum operation. If so, don't do any more simplification.
723 // Even simplifying demanded bits can break the canonical form of a
724 // min/max.
725 Value *LHS, *RHS;
726 if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
727 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
728 return nullptr;
729
730 // See if we can simplify any instructions used by the input whose sole
731 // purpose is to compute bits we don't care about.
733 return &Trunc;
734
735 if (DestWidth == 1) {
736 Value *Zero = Constant::getNullValue(SrcTy);
737
738 Value *X;
739 const APInt *C1;
740 Constant *C2;
741 if (match(Src, m_OneUse(m_Shr(m_Shl(m_Power2(C1), m_Value(X)),
742 m_ImmConstant(C2))))) {
743 // trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2
744 Constant *Log2C1 = ConstantInt::get(SrcTy, C1->exactLogBase2());
745 Constant *CmpC = ConstantExpr::getSub(C2, Log2C1);
746 return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC);
747 }
748
749 Constant *C;
750 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
751 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
752 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
753 Constant *MaskC = ConstantExpr::getShl(One, C);
754 Value *And = Builder.CreateAnd(X, MaskC);
755 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
756 }
758 m_Deferred(X))))) {
759 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
760 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
761 Constant *MaskC = ConstantExpr::getShl(One, C);
762 Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
763 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
764 }
765
766 {
767 const APInt *C;
768 if (match(Src, m_Shl(m_APInt(C), m_Value(X))) && (*C)[0] == 1) {
769 // trunc (C << X) to i1 --> X == 0, where C is odd
770 return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero);
771 }
772 }
773 }
774
775 Value *A, *B;
776 Constant *C;
777 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
778 unsigned AWidth = A->getType()->getScalarSizeInBits();
779 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
780 auto *OldSh = cast<Instruction>(Src);
781 bool IsExact = OldSh->isExact();
782
783 // If the shift is small enough, all zero bits created by the shift are
784 // removed by the trunc.
786 APInt(SrcWidth, MaxShiftAmt)))) {
787 auto GetNewShAmt = [&](unsigned Width) {
788 Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
789 Constant *Cmp =
791 Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
792 return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
793 DL);
794 };
795
796 // trunc (lshr (sext A), C) --> ashr A, C
797 if (A->getType() == DestTy) {
798 Constant *ShAmt = GetNewShAmt(DestWidth);
799 ShAmt = Constant::mergeUndefsWith(ShAmt, C);
800 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
801 : BinaryOperator::CreateAShr(A, ShAmt);
802 }
803 // The types are mismatched, so create a cast after shifting:
804 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
805 if (Src->hasOneUse()) {
806 Constant *ShAmt = GetNewShAmt(AWidth);
807 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
808 return CastInst::CreateIntegerCast(Shift, DestTy, true);
809 }
810 }
811 // TODO: Mask high bits with 'and'.
812 }
813
814 if (Instruction *I = narrowBinOp(Trunc))
815 return I;
816
818 return I;
819
820 if (Instruction *I = shrinkInsertElt(Trunc, Builder))
821 return I;
822
823 if (Src->hasOneUse() &&
824 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
825 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
826 // dest type is native and cst < dest size.
827 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
828 !match(A, m_Shr(m_Value(), m_Constant()))) {
829 // Skip shifts of shift by constants. It undoes a combine in
830 // FoldShiftByConstant and is the extend in reg pattern.
831 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
832 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
833 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
834 return BinaryOperator::Create(Instruction::Shl, NewTrunc,
835 ConstantExpr::getTrunc(C, DestTy));
836 }
837 }
838 }
839
840 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
841 return I;
842
843 // Whenever an element is extracted from a vector, and then truncated,
844 // canonicalize by converting it to a bitcast followed by an
845 // extractelement.
846 //
847 // Example (little endian):
848 // trunc (extractelement <4 x i64> %X, 0) to i32
849 // --->
850 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
851 Value *VecOp;
852 ConstantInt *Cst;
853 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
854 auto *VecOpTy = cast<VectorType>(VecOp->getType());
855 auto VecElts = VecOpTy->getElementCount();
856
857 // A badly fit destination size would result in an invalid cast.
858 if (SrcWidth % DestWidth == 0) {
859 uint64_t TruncRatio = SrcWidth / DestWidth;
860 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
861 uint64_t VecOpIdx = Cst->getZExtValue();
862 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
863 : VecOpIdx * TruncRatio;
864 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
865 "overflow 32-bits");
866
867 auto *BitCastTo =
868 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
869 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
870 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
871 }
872 }
873
874 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
875 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
876 m_Value(B))))) {
877 unsigned AWidth = A->getType()->getScalarSizeInBits();
878 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
879 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
880 Value *NarrowCtlz =
881 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
882 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
883 }
884 }
885
886 if (match(Src, m_VScale())) {
887 if (Trunc.getFunction() &&
888 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
889 Attribute Attr =
890 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
891 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
892 if (Log2_32(*MaxVScale) < DestWidth) {
893 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
894 return replaceInstUsesWith(Trunc, VScale);
895 }
896 }
897 }
898 }
899
900 bool Changed = false;
901 if (!Trunc.hasNoSignedWrap() &&
902 ComputeMaxSignificantBits(Src, /*Depth=*/0, &Trunc) <= DestWidth) {
903 Trunc.setHasNoSignedWrap(true);
904 Changed = true;
905 }
906 if (!Trunc.hasNoUnsignedWrap() &&
907 MaskedValueIsZero(Src, APInt::getBitsSetFrom(SrcWidth, DestWidth),
908 /*Depth=*/0, &Trunc)) {
909 Trunc.setHasNoUnsignedWrap(true);
910 Changed = true;
911 }
912
913 return Changed ? &Trunc : nullptr;
914}
915
916Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
917 ZExtInst &Zext) {
918 // If we are just checking for a icmp eq of a single bit and zext'ing it
919 // to an integer, then shift the bit to the appropriate place and then
920 // cast to integer to avoid the comparison.
921
922 // FIXME: This set of transforms does not check for extra uses and/or creates
923 // an extra instruction (an optional final cast is not included
924 // in the transform comments). We may also want to favor icmp over
925 // shifts in cases of equal instructions because icmp has better
926 // analysis in general (invert the transform).
927
928 const APInt *Op1CV;
929 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
930
931 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
932 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
933 Value *In = Cmp->getOperand(0);
934 Value *Sh = ConstantInt::get(In->getType(),
935 In->getType()->getScalarSizeInBits() - 1);
936 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
937 if (In->getType() != Zext.getType())
938 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
939
940 return replaceInstUsesWith(Zext, In);
941 }
942
943 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
944 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
945 // zext (X != 0) to i32 --> X iff X has only the low bit set.
946 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
947
948 if (Op1CV->isZero() && Cmp->isEquality()) {
949 // Exactly 1 possible 1? But not the high-bit because that is
950 // canonicalized to this form.
951 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
952 APInt KnownZeroMask(~Known.Zero);
953 uint32_t ShAmt = KnownZeroMask.logBase2();
954 bool IsExpectShAmt = KnownZeroMask.isPowerOf2() &&
955 (Zext.getType()->getScalarSizeInBits() != ShAmt + 1);
956 if (IsExpectShAmt &&
957 (Cmp->getOperand(0)->getType() == Zext.getType() ||
958 Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) {
959 Value *In = Cmp->getOperand(0);
960 if (ShAmt) {
961 // Perform a logical shr by shiftamt.
962 // Insert the shift to put the result in the low bit.
963 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
964 In->getName() + ".lobit");
965 }
966
967 // Toggle the low bit for "X == 0".
968 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
969 In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
970
971 if (Zext.getType() == In->getType())
972 return replaceInstUsesWith(Zext, In);
973
974 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
975 return replaceInstUsesWith(Zext, IntCast);
976 }
977 }
978 }
979
980 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
981 // Test if a bit is clear/set using a shifted-one mask:
982 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
983 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
984 Value *X, *ShAmt;
985 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
986 match(Cmp->getOperand(0),
987 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
988 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
989 X = Builder.CreateNot(X);
990 Value *Lshr = Builder.CreateLShr(X, ShAmt);
991 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
992 return replaceInstUsesWith(Zext, And1);
993 }
994 }
995
996 return nullptr;
997}
998
999/// Determine if the specified value can be computed in the specified wider type
1000/// and produce the same low bits. If not, return false.
1001///
1002/// If this function returns true, it can also return a non-zero number of bits
1003/// (in BitsToClear) which indicates that the value it computes is correct for
1004/// the zero extend, but that the additional BitsToClear bits need to be zero'd
1005/// out. For example, to promote something like:
1006///
1007/// %B = trunc i64 %A to i32
1008/// %C = lshr i32 %B, 8
1009/// %E = zext i32 %C to i64
1010///
1011/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1012/// set to 8 to indicate that the promoted value needs to have bits 24-31
1013/// cleared in addition to bits 32-63. Since an 'and' will be generated to
1014/// clear the top bits anyway, doing this has no extra cost.
1015///
1016/// This function works on both vectors and scalars.
1017static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1018 InstCombinerImpl &IC, Instruction *CxtI) {
1019 BitsToClear = 0;
1020 if (canAlwaysEvaluateInType(V, Ty))
1021 return true;
1022 if (canNotEvaluateInType(V, Ty))
1023 return false;
1024
1025 auto *I = cast<Instruction>(V);
1026 unsigned Tmp;
1027 switch (I->getOpcode()) {
1028 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
1029 case Instruction::SExt: // zext(sext(x)) -> sext(x).
1030 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1031 return true;
1032 case Instruction::And:
1033 case Instruction::Or:
1034 case Instruction::Xor:
1035 case Instruction::Add:
1036 case Instruction::Sub:
1037 case Instruction::Mul:
1038 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1039 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1040 return false;
1041 // These can all be promoted if neither operand has 'bits to clear'.
1042 if (BitsToClear == 0 && Tmp == 0)
1043 return true;
1044
1045 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1046 // other side, BitsToClear is ok.
1047 if (Tmp == 0 && I->isBitwiseLogicOp()) {
1048 // We use MaskedValueIsZero here for generality, but the case we care
1049 // about the most is constant RHS.
1050 unsigned VSize = V->getType()->getScalarSizeInBits();
1051 if (IC.MaskedValueIsZero(I->getOperand(1),
1052 APInt::getHighBitsSet(VSize, BitsToClear),
1053 0, CxtI)) {
1054 // If this is an And instruction and all of the BitsToClear are
1055 // known to be zero we can reset BitsToClear.
1056 if (I->getOpcode() == Instruction::And)
1057 BitsToClear = 0;
1058 return true;
1059 }
1060 }
1061
1062 // Otherwise, we don't know how to analyze this BitsToClear case yet.
1063 return false;
1064
1065 case Instruction::Shl: {
1066 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
1067 // upper bits we can reduce BitsToClear by the shift amount.
1068 const APInt *Amt;
1069 if (match(I->getOperand(1), m_APInt(Amt))) {
1070 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1071 return false;
1072 uint64_t ShiftAmt = Amt->getZExtValue();
1073 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1074 return true;
1075 }
1076 return false;
1077 }
1078 case Instruction::LShr: {
1079 // We can promote lshr(x, cst) if we can promote x. This requires the
1080 // ultimate 'and' to clear out the high zero bits we're clearing out though.
1081 const APInt *Amt;
1082 if (match(I->getOperand(1), m_APInt(Amt))) {
1083 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1084 return false;
1085 BitsToClear += Amt->getZExtValue();
1086 if (BitsToClear > V->getType()->getScalarSizeInBits())
1087 BitsToClear = V->getType()->getScalarSizeInBits();
1088 return true;
1089 }
1090 // Cannot promote variable LSHR.
1091 return false;
1092 }
1093 case Instruction::Select:
1094 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1095 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1096 // TODO: If important, we could handle the case when the BitsToClear are
1097 // known zero in the disagreeing side.
1098 Tmp != BitsToClear)
1099 return false;
1100 return true;
1101
1102 case Instruction::PHI: {
1103 // We can change a phi if we can change all operands. Note that we never
1104 // get into trouble with cyclic PHIs here because we only consider
1105 // instructions with a single use.
1106 PHINode *PN = cast<PHINode>(I);
1107 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1108 return false;
1109 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1110 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1111 // TODO: If important, we could handle the case when the BitsToClear
1112 // are known zero in the disagreeing input.
1113 Tmp != BitsToClear)
1114 return false;
1115 return true;
1116 }
1117 case Instruction::Call:
1118 // llvm.vscale() can always be executed in larger type, because the
1119 // value is automatically zero-extended.
1120 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1121 if (II->getIntrinsicID() == Intrinsic::vscale)
1122 return true;
1123 return false;
1124 default:
1125 // TODO: Can handle more cases here.
1126 return false;
1127 }
1128}
1129
1131 // If this zero extend is only used by a truncate, let the truncate be
1132 // eliminated before we try to optimize this zext.
1133 if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1134 !isa<Constant>(Zext.getOperand(0)))
1135 return nullptr;
1136
1137 // If one of the common conversion will work, do it.
1138 if (Instruction *Result = commonCastTransforms(Zext))
1139 return Result;
1140
1141 Value *Src = Zext.getOperand(0);
1142 Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1143
1144 // zext nneg bool x -> 0
1145 if (SrcTy->isIntOrIntVectorTy(1) && Zext.hasNonNeg())
1147
1148 // Try to extend the entire expression tree to the wide destination type.
1149 unsigned BitsToClear;
1150 if (shouldChangeType(SrcTy, DestTy) &&
1151 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1152 assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1153 "Can't clear more bits than in SrcTy");
1154
1155 // Okay, we can transform this! Insert the new expression now.
1156 LLVM_DEBUG(
1157 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1158 " to avoid zero extend: "
1159 << Zext << '\n');
1160 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1161 assert(Res->getType() == DestTy);
1162
1163 // Preserve debug values referring to Src if the zext is its last use.
1164 if (auto *SrcOp = dyn_cast<Instruction>(Src))
1165 if (SrcOp->hasOneUse())
1166 replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1167
1168 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1169 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1170
1171 // If the high bits are already filled with zeros, just replace this
1172 // cast with the result.
1173 if (MaskedValueIsZero(Res,
1174 APInt::getHighBitsSet(DestBitSize,
1175 DestBitSize - SrcBitsKept),
1176 0, &Zext))
1177 return replaceInstUsesWith(Zext, Res);
1178
1179 // We need to emit an AND to clear the high bits.
1180 Constant *C = ConstantInt::get(Res->getType(),
1181 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1182 return BinaryOperator::CreateAnd(Res, C);
1183 }
1184
1185 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1186 // types and if the sizes are just right we can convert this into a logical
1187 // 'and' which will be much cheaper than the pair of casts.
1188 if (auto *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
1189 // TODO: Subsume this into EvaluateInDifferentType.
1190
1191 // Get the sizes of the types involved. We know that the intermediate type
1192 // will be smaller than A or C, but don't know the relation between A and C.
1193 Value *A = CSrc->getOperand(0);
1194 unsigned SrcSize = A->getType()->getScalarSizeInBits();
1195 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1196 unsigned DstSize = DestTy->getScalarSizeInBits();
1197 // If we're actually extending zero bits, then if
1198 // SrcSize < DstSize: zext(a & mask)
1199 // SrcSize == DstSize: a & mask
1200 // SrcSize > DstSize: trunc(a) & mask
1201 if (SrcSize < DstSize) {
1202 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1203 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1204 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1205 return new ZExtInst(And, DestTy);
1206 }
1207
1208 if (SrcSize == DstSize) {
1209 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1210 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1211 AndValue));
1212 }
1213 if (SrcSize > DstSize) {
1214 Value *Trunc = Builder.CreateTrunc(A, DestTy);
1215 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1216 return BinaryOperator::CreateAnd(Trunc,
1217 ConstantInt::get(Trunc->getType(),
1218 AndValue));
1219 }
1220 }
1221
1222 if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1223 return transformZExtICmp(Cmp, Zext);
1224
1225 // zext(trunc(X) & C) -> (X & zext(C)).
1226 Constant *C;
1227 Value *X;
1228 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1229 X->getType() == DestTy)
1230 return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy));
1231
1232 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1233 Value *And;
1234 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1236 X->getType() == DestTy) {
1237 Value *ZC = Builder.CreateZExt(C, DestTy);
1238 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1239 }
1240
1241 // If we are truncating, masking, and then zexting back to the original type,
1242 // that's just a mask. This is not handled by canEvaluateZextd if the
1243 // intermediate values have extra uses. This could be generalized further for
1244 // a non-constant mask operand.
1245 // zext (and (trunc X), C) --> and X, (zext C)
1246 if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1247 X->getType() == DestTy) {
1248 Value *ZextC = Builder.CreateZExt(C, DestTy);
1249 return BinaryOperator::CreateAnd(X, ZextC);
1250 }
1251
1252 if (match(Src, m_VScale())) {
1253 if (Zext.getFunction() &&
1254 Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1255 Attribute Attr =
1256 Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1257 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1258 unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1259 if (Log2_32(*MaxVScale) < TypeWidth) {
1260 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1261 return replaceInstUsesWith(Zext, VScale);
1262 }
1263 }
1264 }
1265 }
1266
1267 if (!Zext.hasNonNeg()) {
1268 // If this zero extend is only used by a shift, add nneg flag.
1269 if (Zext.hasOneUse() &&
1270 SrcTy->getScalarSizeInBits() >
1271 Log2_64_Ceil(DestTy->getScalarSizeInBits()) &&
1272 match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) {
1273 Zext.setNonNeg();
1274 return &Zext;
1275 }
1276
1277 if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) {
1278 Zext.setNonNeg();
1279 return &Zext;
1280 }
1281 }
1282
1283 return nullptr;
1284}
1285
1286/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1287Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1288 SExtInst &Sext) {
1289 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1290 ICmpInst::Predicate Pred = Cmp->getPredicate();
1291
1292 // Don't bother if Op1 isn't of vector or integer type.
1293 if (!Op1->getType()->isIntOrIntVectorTy())
1294 return nullptr;
1295
1296 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1297 // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1298 Value *Sh = ConstantInt::get(Op0->getType(),
1299 Op0->getType()->getScalarSizeInBits() - 1);
1300 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1301 if (In->getType() != Sext.getType())
1302 In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1303
1304 return replaceInstUsesWith(Sext, In);
1305 }
1306
1307 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1308 // If we know that only one bit of the LHS of the icmp can be set and we
1309 // have an equality comparison with zero or a power of 2, we can transform
1310 // the icmp and sext into bitwise/integer operations.
1311 if (Cmp->hasOneUse() &&
1312 Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1313 KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1314
1315 APInt KnownZeroMask(~Known.Zero);
1316 if (KnownZeroMask.isPowerOf2()) {
1317 Value *In = Cmp->getOperand(0);
1318
1319 // If the icmp tests for a known zero bit we can constant fold it.
1320 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1321 Value *V = Pred == ICmpInst::ICMP_NE ?
1323 ConstantInt::getNullValue(Sext.getType());
1324 return replaceInstUsesWith(Sext, V);
1325 }
1326
1327 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1328 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1329 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1330 unsigned ShiftAmt = KnownZeroMask.countr_zero();
1331 // Perform a right shift to place the desired bit in the LSB.
1332 if (ShiftAmt)
1333 In = Builder.CreateLShr(In,
1334 ConstantInt::get(In->getType(), ShiftAmt));
1335
1336 // At this point "In" is either 1 or 0. Subtract 1 to turn
1337 // {1, 0} -> {0, -1}.
1338 In = Builder.CreateAdd(In,
1339 ConstantInt::getAllOnesValue(In->getType()),
1340 "sext");
1341 } else {
1342 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1343 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1344 unsigned ShiftAmt = KnownZeroMask.countl_zero();
1345 // Perform a left shift to place the desired bit in the MSB.
1346 if (ShiftAmt)
1347 In = Builder.CreateShl(In,
1348 ConstantInt::get(In->getType(), ShiftAmt));
1349
1350 // Distribute the bit over the whole bit width.
1351 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1352 KnownZeroMask.getBitWidth() - 1), "sext");
1353 }
1354
1355 if (Sext.getType() == In->getType())
1356 return replaceInstUsesWith(Sext, In);
1357 return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1358 }
1359 }
1360 }
1361
1362 return nullptr;
1363}
1364
1365/// Return true if we can take the specified value and return it as type Ty
1366/// without inserting any new casts and without changing the value of the common
1367/// low bits. This is used by code that tries to promote integer operations to
1368/// a wider types will allow us to eliminate the extension.
1369///
1370/// This function works on both vectors and scalars.
1371///
1372static bool canEvaluateSExtd(Value *V, Type *Ty) {
1373 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1374 "Can't sign extend type to a smaller type");
1375 if (canAlwaysEvaluateInType(V, Ty))
1376 return true;
1377 if (canNotEvaluateInType(V, Ty))
1378 return false;
1379
1380 auto *I = cast<Instruction>(V);
1381 switch (I->getOpcode()) {
1382 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1383 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1384 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1385 return true;
1386 case Instruction::And:
1387 case Instruction::Or:
1388 case Instruction::Xor:
1389 case Instruction::Add:
1390 case Instruction::Sub:
1391 case Instruction::Mul:
1392 // These operators can all arbitrarily be extended if their inputs can.
1393 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1394 canEvaluateSExtd(I->getOperand(1), Ty);
1395
1396 //case Instruction::Shl: TODO
1397 //case Instruction::LShr: TODO
1398
1399 case Instruction::Select:
1400 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1401 canEvaluateSExtd(I->getOperand(2), Ty);
1402
1403 case Instruction::PHI: {
1404 // We can change a phi if we can change all operands. Note that we never
1405 // get into trouble with cyclic PHIs here because we only consider
1406 // instructions with a single use.
1407 PHINode *PN = cast<PHINode>(I);
1408 for (Value *IncValue : PN->incoming_values())
1409 if (!canEvaluateSExtd(IncValue, Ty)) return false;
1410 return true;
1411 }
1412 default:
1413 // TODO: Can handle more cases here.
1414 break;
1415 }
1416
1417 return false;
1418}
1419
1421 // If this sign extend is only used by a truncate, let the truncate be
1422 // eliminated before we try to optimize this sext.
1423 if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1424 return nullptr;
1425
1426 if (Instruction *I = commonCastTransforms(Sext))
1427 return I;
1428
1429 Value *Src = Sext.getOperand(0);
1430 Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1431 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1432 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1433
1434 // If the value being extended is zero or positive, use a zext instead.
1435 if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) {
1436 auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy);
1437 CI->setNonNeg(true);
1438 return CI;
1439 }
1440
1441 // Try to extend the entire expression tree to the wide destination type.
1442 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1443 // Okay, we can transform this! Insert the new expression now.
1444 LLVM_DEBUG(
1445 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1446 " to avoid sign extend: "
1447 << Sext << '\n');
1448 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1449 assert(Res->getType() == DestTy);
1450
1451 // If the high bits are already filled with sign bit, just replace this
1452 // cast with the result.
1453 if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1454 return replaceInstUsesWith(Sext, Res);
1455
1456 // We need to emit a shl + ashr to do the sign extend.
1457 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1458 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1459 ShAmt);
1460 }
1461
1462 Value *X;
1463 if (match(Src, m_Trunc(m_Value(X)))) {
1464 // If the input has more sign bits than bits truncated, then convert
1465 // directly to final type.
1466 unsigned XBitSize = X->getType()->getScalarSizeInBits();
1467 if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1468 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1469
1470 // If input is a trunc from the destination type, then convert into shifts.
1471 if (Src->hasOneUse() && X->getType() == DestTy) {
1472 // sext (trunc X) --> ashr (shl X, C), C
1473 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1474 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1475 }
1476
1477 // If we are replacing shifted-in high zero bits with sign bits, convert
1478 // the logic shift to arithmetic shift and eliminate the cast to
1479 // intermediate type:
1480 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1481 Value *Y;
1482 if (Src->hasOneUse() &&
1484 m_SpecificIntAllowPoison(XBitSize - SrcBitSize)))) {
1485 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1486 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1487 }
1488 }
1489
1490 if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1491 return transformSExtICmp(Cmp, Sext);
1492
1493 // If the input is a shl/ashr pair of a same constant, then this is a sign
1494 // extension from a smaller value. If we could trust arbitrary bitwidth
1495 // integers, we could turn this into a truncate to the smaller bit and then
1496 // use a sext for the whole extension. Since we don't, look deeper and check
1497 // for a truncate. If the source and dest are the same type, eliminate the
1498 // trunc and extend and just do shifts. For example, turn:
1499 // %a = trunc i32 %i to i8
1500 // %b = shl i8 %a, C
1501 // %c = ashr i8 %b, C
1502 // %d = sext i8 %c to i32
1503 // into:
1504 // %a = shl i32 %i, 32-(8-C)
1505 // %d = ashr i32 %a, 32-(8-C)
1506 Value *A = nullptr;
1507 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1508 Constant *BA = nullptr, *CA = nullptr;
1509 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1510 m_ImmConstant(CA))) &&
1511 BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1512 Constant *WideCurrShAmt =
1513 ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL);
1514 assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail");
1515 Constant *NumLowbitsLeft = ConstantExpr::getSub(
1516 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1517 Constant *NewShAmt = ConstantExpr::getSub(
1518 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1519 NumLowbitsLeft);
1520 NewShAmt =
1522 A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1523 return BinaryOperator::CreateAShr(A, NewShAmt);
1524 }
1525
1526 // Splatting a bit of constant-index across a value:
1527 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1528 // If the dest type is different, use a cast (adjust use check).
1529 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1530 m_SpecificInt(SrcBitSize - 1))))) {
1531 Type *XTy = X->getType();
1532 unsigned XBitSize = XTy->getScalarSizeInBits();
1533 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1534 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1535 if (XTy == DestTy)
1536 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1537 AshrAmtC);
1538 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1539 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1540 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1541 }
1542 }
1543
1544 if (match(Src, m_VScale())) {
1545 if (Sext.getFunction() &&
1546 Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1547 Attribute Attr =
1548 Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1549 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1550 if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1551 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1552 return replaceInstUsesWith(Sext, VScale);
1553 }
1554 }
1555 }
1556 }
1557
1558 return nullptr;
1559}
1560
1561/// Return a Constant* for the specified floating-point constant if it fits
1562/// in the specified FP type without changing its value.
1563static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1564 bool losesInfo;
1565 APFloat F = CFP->getValueAPF();
1566 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1567 return !losesInfo;
1568}
1569
1570static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) {
1571 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1572 return nullptr; // No constant folding of this.
1573 // See if the value can be truncated to bfloat and then reextended.
1574 if (PreferBFloat && fitsInFPType(CFP, APFloat::BFloat()))
1575 return Type::getBFloatTy(CFP->getContext());
1576 // See if the value can be truncated to half and then reextended.
1577 if (!PreferBFloat && fitsInFPType(CFP, APFloat::IEEEhalf()))
1578 return Type::getHalfTy(CFP->getContext());
1579 // See if the value can be truncated to float and then reextended.
1581 return Type::getFloatTy(CFP->getContext());
1582 if (CFP->getType()->isDoubleTy())
1583 return nullptr; // Won't shrink.
1585 return Type::getDoubleTy(CFP->getContext());
1586 // Don't try to shrink to various long double types.
1587 return nullptr;
1588}
1589
1590// Determine if this is a vector of ConstantFPs and if so, return the minimal
1591// type we can safely truncate all elements to.
1592static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) {
1593 auto *CV = dyn_cast<Constant>(V);
1594 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1595 if (!CV || !CVVTy)
1596 return nullptr;
1597
1598 Type *MinType = nullptr;
1599
1600 unsigned NumElts = CVVTy->getNumElements();
1601
1602 // For fixed-width vectors we find the minimal type by looking
1603 // through the constant values of the vector.
1604 for (unsigned i = 0; i != NumElts; ++i) {
1605 if (isa<UndefValue>(CV->getAggregateElement(i)))
1606 continue;
1607
1608 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1609 if (!CFP)
1610 return nullptr;
1611
1612 Type *T = shrinkFPConstant(CFP, PreferBFloat);
1613 if (!T)
1614 return nullptr;
1615
1616 // If we haven't found a type yet or this type has a larger mantissa than
1617 // our previous type, this is our new minimal type.
1618 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1619 MinType = T;
1620 }
1621
1622 // Make a vector type from the minimal type.
1623 return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1624}
1625
1626/// Find the minimum FP type we can safely truncate to.
1627static Type *getMinimumFPType(Value *V, bool PreferBFloat) {
1628 if (auto *FPExt = dyn_cast<FPExtInst>(V))
1629 return FPExt->getOperand(0)->getType();
1630
1631 // If this value is a constant, return the constant in the smallest FP type
1632 // that can accurately represent it. This allows us to turn
1633 // (float)((double)X+2.0) into x+2.0f.
1634 if (auto *CFP = dyn_cast<ConstantFP>(V))
1635 if (Type *T = shrinkFPConstant(CFP, PreferBFloat))
1636 return T;
1637
1638 // We can only correctly find a minimum type for a scalable vector when it is
1639 // a splat. For splats of constant values the fpext is wrapped up as a
1640 // ConstantExpr.
1641 if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1642 if (FPCExt->getOpcode() == Instruction::FPExt)
1643 return FPCExt->getOperand(0)->getType();
1644
1645 // Try to shrink a vector of FP constants. This returns nullptr on scalable
1646 // vectors
1647 if (Type *T = shrinkFPConstantVector(V, PreferBFloat))
1648 return T;
1649
1650 return V->getType();
1651}
1652
1653/// Return true if the cast from integer to FP can be proven to be exact for all
1654/// possible inputs (the conversion does not lose any precision).
1656 CastInst::CastOps Opcode = I.getOpcode();
1657 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1658 "Unexpected cast");
1659 Value *Src = I.getOperand(0);
1660 Type *SrcTy = Src->getType();
1661 Type *FPTy = I.getType();
1662 bool IsSigned = Opcode == Instruction::SIToFP;
1663 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1664
1665 // Easy case - if the source integer type has less bits than the FP mantissa,
1666 // then the cast must be exact.
1667 int DestNumSigBits = FPTy->getFPMantissaWidth();
1668 if (SrcSize <= DestNumSigBits)
1669 return true;
1670
1671 // Cast from FP to integer and back to FP is independent of the intermediate
1672 // integer width because of poison on overflow.
1673 Value *F;
1674 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1675 // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1676 // potential rounding of negative FP input values.
1677 int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1678 if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1679 SrcNumSigBits++;
1680
1681 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1682 // significant bits than the destination (and make sure neither type is
1683 // weird -- ppc_fp128).
1684 if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1685 SrcNumSigBits <= DestNumSigBits)
1686 return true;
1687 }
1688
1689 // TODO:
1690 // Try harder to find if the source integer type has less significant bits.
1691 // For example, compute number of sign bits.
1692 KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1693 int SigBits = (int)SrcTy->getScalarSizeInBits() -
1694 SrcKnown.countMinLeadingZeros() -
1695 SrcKnown.countMinTrailingZeros();
1696 if (SigBits <= DestNumSigBits)
1697 return true;
1698
1699 return false;
1700}
1701
1704 return I;
1705
1706 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1707 // simplify this expression to avoid one or more of the trunc/extend
1708 // operations if we can do so without changing the numerical results.
1709 //
1710 // The exact manner in which the widths of the operands interact to limit
1711 // what we can and cannot do safely varies from operation to operation, and
1712 // is explained below in the various case statements.
1713 Type *Ty = FPT.getType();
1714 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1715 if (BO && BO->hasOneUse()) {
1716 Type *LHSMinType =
1717 getMinimumFPType(BO->getOperand(0), /*PreferBFloat=*/Ty->isBFloatTy());
1718 Type *RHSMinType =
1719 getMinimumFPType(BO->getOperand(1), /*PreferBFloat=*/Ty->isBFloatTy());
1720 unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1721 unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1722 unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1723 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1724 unsigned DstWidth = Ty->getFPMantissaWidth();
1725 switch (BO->getOpcode()) {
1726 default: break;
1727 case Instruction::FAdd:
1728 case Instruction::FSub:
1729 // For addition and subtraction, the infinitely precise result can
1730 // essentially be arbitrarily wide; proving that double rounding
1731 // will not occur because the result of OpI is exact (as we will for
1732 // FMul, for example) is hopeless. However, we *can* nonetheless
1733 // frequently know that double rounding cannot occur (or that it is
1734 // innocuous) by taking advantage of the specific structure of
1735 // infinitely-precise results that admit double rounding.
1736 //
1737 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1738 // to represent both sources, we can guarantee that the double
1739 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1740 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1741 // for proof of this fact).
1742 //
1743 // Note: Figueroa does not consider the case where DstFormat !=
1744 // SrcFormat. It's possible (likely even!) that this analysis
1745 // could be tightened for those cases, but they are rare (the main
1746 // case of interest here is (float)((double)float + float)).
1747 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1748 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1749 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1750 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1751 RI->copyFastMathFlags(BO);
1752 return RI;
1753 }
1754 break;
1755 case Instruction::FMul:
1756 // For multiplication, the infinitely precise result has at most
1757 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1758 // that such a value can be exactly represented, then no double
1759 // rounding can possibly occur; we can safely perform the operation
1760 // in the destination format if it can represent both sources.
1761 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1762 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1763 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1765 }
1766 break;
1767 case Instruction::FDiv:
1768 // For division, we use again use the bound from Figueroa's
1769 // dissertation. I am entirely certain that this bound can be
1770 // tightened in the unbalanced operand case by an analysis based on
1771 // the diophantine rational approximation bound, but the well-known
1772 // condition used here is a good conservative first pass.
1773 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1774 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1775 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1776 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1778 }
1779 break;
1780 case Instruction::FRem: {
1781 // Remainder is straightforward. Remainder is always exact, so the
1782 // type of OpI doesn't enter into things at all. We simply evaluate
1783 // in whichever source type is larger, then convert to the
1784 // destination type.
1785 if (SrcWidth == OpWidth)
1786 break;
1787 Value *LHS, *RHS;
1788 if (LHSWidth == SrcWidth) {
1789 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1790 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1791 } else {
1792 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1793 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1794 }
1795
1796 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1797 return CastInst::CreateFPCast(ExactResult, Ty);
1798 }
1799 }
1800 }
1801
1802 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1803 Value *X;
1804 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1805 if (Op && Op->hasOneUse()) {
1806 // FIXME: The FMF should propagate from the fptrunc, not the source op.
1808 if (isa<FPMathOperator>(Op))
1809 Builder.setFastMathFlags(Op->getFastMathFlags());
1810
1811 if (match(Op, m_FNeg(m_Value(X)))) {
1812 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1813
1814 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1815 }
1816
1817 // If we are truncating a select that has an extended operand, we can
1818 // narrow the other operand and do the select as a narrow op.
1819 Value *Cond, *X, *Y;
1821 X->getType() == Ty) {
1822 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1823 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1824 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1825 return replaceInstUsesWith(FPT, Sel);
1826 }
1828 X->getType() == Ty) {
1829 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1830 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1831 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1832 return replaceInstUsesWith(FPT, Sel);
1833 }
1834 }
1835
1836 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1837 switch (II->getIntrinsicID()) {
1838 default: break;
1839 case Intrinsic::ceil:
1840 case Intrinsic::fabs:
1841 case Intrinsic::floor:
1842 case Intrinsic::nearbyint:
1843 case Intrinsic::rint:
1844 case Intrinsic::round:
1845 case Intrinsic::roundeven:
1846 case Intrinsic::trunc: {
1847 Value *Src = II->getArgOperand(0);
1848 if (!Src->hasOneUse())
1849 break;
1850
1851 // Except for fabs, this transformation requires the input of the unary FP
1852 // operation to be itself an fpext from the type to which we're
1853 // truncating.
1854 if (II->getIntrinsicID() != Intrinsic::fabs) {
1855 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1856 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1857 break;
1858 }
1859
1860 // Do unary FP operation on smaller type.
1861 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1862 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1864 II->getIntrinsicID(), Ty);
1866 II->getOperandBundlesAsDefs(OpBundles);
1867 CallInst *NewCI =
1868 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1869 NewCI->copyFastMathFlags(II);
1870 return NewCI;
1871 }
1872 }
1873 }
1874
1875 if (Instruction *I = shrinkInsertElt(FPT, Builder))
1876 return I;
1877
1878 Value *Src = FPT.getOperand(0);
1879 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1880 auto *FPCast = cast<CastInst>(Src);
1881 if (isKnownExactCastIntToFP(*FPCast, *this))
1882 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1883 }
1884
1885 return nullptr;
1886}
1887
1889 // If the source operand is a cast from integer to FP and known exact, then
1890 // cast the integer operand directly to the destination type.
1891 Type *Ty = FPExt.getType();
1892 Value *Src = FPExt.getOperand(0);
1893 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1894 auto *FPCast = cast<CastInst>(Src);
1895 if (isKnownExactCastIntToFP(*FPCast, *this))
1896 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1897 }
1898
1899 return commonCastTransforms(FPExt);
1900}
1901
1902/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1903/// This is safe if the intermediate type has enough bits in its mantissa to
1904/// accurately represent all values of X. For example, this won't work with
1905/// i64 -> float -> i64.
1907 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1908 return nullptr;
1909
1910 auto *OpI = cast<CastInst>(FI.getOperand(0));
1911 Value *X = OpI->getOperand(0);
1912 Type *XType = X->getType();
1913 Type *DestType = FI.getType();
1914 bool IsOutputSigned = isa<FPToSIInst>(FI);
1915
1916 // Since we can assume the conversion won't overflow, our decision as to
1917 // whether the input will fit in the float should depend on the minimum
1918 // of the input range and output range.
1919
1920 // This means this is also safe for a signed input and unsigned output, since
1921 // a negative input would lead to undefined behavior.
1922 if (!isKnownExactCastIntToFP(*OpI, *this)) {
1923 // The first cast may not round exactly based on the source integer width
1924 // and FP width, but the overflow UB rules can still allow this to fold.
1925 // If the destination type is narrow, that means the intermediate FP value
1926 // must be large enough to hold the source value exactly.
1927 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1928 int OutputSize = (int)DestType->getScalarSizeInBits();
1929 if (OutputSize > OpI->getType()->getFPMantissaWidth())
1930 return nullptr;
1931 }
1932
1933 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1934 bool IsInputSigned = isa<SIToFPInst>(OpI);
1935 if (IsInputSigned && IsOutputSigned)
1936 return new SExtInst(X, DestType);
1937 return new ZExtInst(X, DestType);
1938 }
1939 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1940 return new TruncInst(X, DestType);
1941
1942 assert(XType == DestType && "Unexpected types for int to FP to int casts");
1943 return replaceInstUsesWith(FI, X);
1944}
1945
1947 // fpto{u/s}i non-norm --> 0
1948 FPClassTest Mask =
1949 FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal;
1950 KnownFPClass FPClass =
1951 computeKnownFPClass(FI.getOperand(0), Mask, /*Depth=*/0,
1953 if (FPClass.isKnownNever(Mask))
1955
1956 return nullptr;
1957}
1958
1960 if (Instruction *I = foldItoFPtoI(FI))
1961 return I;
1962
1963 if (Instruction *I = foldFPtoI(FI, *this))
1964 return I;
1965
1966 return commonCastTransforms(FI);
1967}
1968
1970 if (Instruction *I = foldItoFPtoI(FI))
1971 return I;
1972
1973 if (Instruction *I = foldFPtoI(FI, *this))
1974 return I;
1975
1976 return commonCastTransforms(FI);
1977}
1978
1980 if (Instruction *R = commonCastTransforms(CI))
1981 return R;
1982 if (!CI.hasNonNeg() && isKnownNonNegative(CI.getOperand(0), SQ)) {
1983 CI.setNonNeg();
1984 return &CI;
1985 }
1986 return nullptr;
1987}
1988
1990 if (Instruction *R = commonCastTransforms(CI))
1991 return R;
1992 if (isKnownNonNegative(CI.getOperand(0), SQ)) {
1993 auto *UI =
1994 CastInst::Create(Instruction::UIToFP, CI.getOperand(0), CI.getType());
1995 UI->setNonNeg(true);
1996 return UI;
1997 }
1998 return nullptr;
1999}
2000
2002 // If the source integer type is not the intptr_t type for this target, do a
2003 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
2004 // cast to be exposed to other transforms.
2005 unsigned AS = CI.getAddressSpace();
2006 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
2008 Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2009 DL.getIntPtrType(CI.getContext(), AS));
2011 return new IntToPtrInst(P, CI.getType());
2012 }
2013
2015 return I;
2016
2017 return nullptr;
2018}
2019
2021 // If the destination integer type is not the intptr_t type for this target,
2022 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
2023 // to be exposed to other transforms.
2025 Type *SrcTy = SrcOp->getType();
2026 Type *Ty = CI.getType();
2027 unsigned AS = CI.getPointerAddressSpace();
2028 unsigned TySize = Ty->getScalarSizeInBits();
2029 unsigned PtrSize = DL.getPointerSizeInBits(AS);
2030 if (TySize != PtrSize) {
2031 Type *IntPtrTy =
2032 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2033 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2034 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2035 }
2036
2037 // (ptrtoint (ptrmask P, M))
2038 // -> (and (ptrtoint P), M)
2039 // This is generally beneficial as `and` is better supported than `ptrmask`.
2040 Value *Ptr, *Mask;
2041 if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr),
2042 m_Value(Mask)))) &&
2043 Mask->getType() == Ty)
2044 return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask);
2045
2046 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) {
2047 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
2048 // While this can increase the number of instructions it doesn't actually
2049 // increase the overall complexity since the arithmetic is just part of
2050 // the GEP otherwise.
2051 if (GEP->hasOneUse() &&
2052 isa<ConstantPointerNull>(GEP->getPointerOperand())) {
2053 return replaceInstUsesWith(CI,
2054 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
2055 /*isSigned=*/false));
2056 }
2057 }
2058
2059 Value *Vec, *Scalar, *Index;
2061 m_Value(Scalar), m_Value(Index)))) &&
2062 Vec->getType() == Ty) {
2063 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2064 // Convert the scalar to int followed by insert to eliminate one cast:
2065 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2066 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2067 return InsertElementInst::Create(Vec, NewCast, Index);
2068 }
2069
2070 return commonCastTransforms(CI);
2071}
2072
2073/// This input value (which is known to have vector type) is being zero extended
2074/// or truncated to the specified vector type. Since the zext/trunc is done
2075/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2076/// endianness will impact which end of the vector that is extended or
2077/// truncated.
2078///
2079/// A vector is always stored with index 0 at the lowest address, which
2080/// corresponds to the most significant bits for a big endian stored integer and
2081/// the least significant bits for little endian. A trunc/zext of an integer
2082/// impacts the big end of the integer. Thus, we need to add/remove elements at
2083/// the front of the vector for big endian targets, and the back of the vector
2084/// for little endian targets.
2085///
2086/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2087///
2088/// The source and destination vector types may have different element types.
2089static Instruction *
2091 InstCombinerImpl &IC) {
2092 // We can only do this optimization if the output is a multiple of the input
2093 // element size, or the input is a multiple of the output element size.
2094 // Convert the input type to have the same element type as the output.
2095 VectorType *SrcTy = cast<VectorType>(InVal->getType());
2096
2097 if (SrcTy->getElementType() != DestTy->getElementType()) {
2098 // The input types don't need to be identical, but for now they must be the
2099 // same size. There is no specific reason we couldn't handle things like
2100 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2101 // there yet.
2102 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2103 DestTy->getElementType()->getPrimitiveSizeInBits())
2104 return nullptr;
2105
2106 SrcTy =
2107 FixedVectorType::get(DestTy->getElementType(),
2108 cast<FixedVectorType>(SrcTy)->getNumElements());
2109 InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2110 }
2111
2112 bool IsBigEndian = IC.getDataLayout().isBigEndian();
2113 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2114 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2115
2116 assert(SrcElts != DestElts && "Element counts should be different.");
2117
2118 // Now that the element types match, get the shuffle mask and RHS of the
2119 // shuffle to use, which depends on whether we're increasing or decreasing the
2120 // size of the input.
2121 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2122 ArrayRef<int> ShuffleMask;
2123 Value *V2;
2124
2125 if (SrcElts > DestElts) {
2126 // If we're shrinking the number of elements (rewriting an integer
2127 // truncate), just shuffle in the elements corresponding to the least
2128 // significant bits from the input and use poison as the second shuffle
2129 // input.
2130 V2 = PoisonValue::get(SrcTy);
2131 // Make sure the shuffle mask selects the "least significant bits" by
2132 // keeping elements from back of the src vector for big endian, and from the
2133 // front for little endian.
2134 ShuffleMask = ShuffleMaskStorage;
2135 if (IsBigEndian)
2136 ShuffleMask = ShuffleMask.take_back(DestElts);
2137 else
2138 ShuffleMask = ShuffleMask.take_front(DestElts);
2139 } else {
2140 // If we're increasing the number of elements (rewriting an integer zext),
2141 // shuffle in all of the elements from InVal. Fill the rest of the result
2142 // elements with zeros from a constant zero.
2143 V2 = Constant::getNullValue(SrcTy);
2144 // Use first elt from V2 when indicating zero in the shuffle mask.
2145 uint32_t NullElt = SrcElts;
2146 // Extend with null values in the "most significant bits" by adding elements
2147 // in front of the src vector for big endian, and at the back for little
2148 // endian.
2149 unsigned DeltaElts = DestElts - SrcElts;
2150 if (IsBigEndian)
2151 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2152 else
2153 ShuffleMaskStorage.append(DeltaElts, NullElt);
2154 ShuffleMask = ShuffleMaskStorage;
2155 }
2156
2157 return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2158}
2159
2160static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2161 return Value % Ty->getPrimitiveSizeInBits() == 0;
2162}
2163
2164static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2165 return Value / Ty->getPrimitiveSizeInBits();
2166}
2167
2168/// V is a value which is inserted into a vector of VecEltTy.
2169/// Look through the value to see if we can decompose it into
2170/// insertions into the vector. See the example in the comment for
2171/// OptimizeIntegerToVectorInsertions for the pattern this handles.
2172/// The type of V is always a non-zero multiple of VecEltTy's size.
2173/// Shift is the number of bits between the lsb of V and the lsb of
2174/// the vector.
2175///
2176/// This returns false if the pattern can't be matched or true if it can,
2177/// filling in Elements with the elements found here.
2178static bool collectInsertionElements(Value *V, unsigned Shift,
2179 SmallVectorImpl<Value *> &Elements,
2180 Type *VecEltTy, bool isBigEndian) {
2181 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2182 "Shift should be a multiple of the element type size");
2183
2184 // Undef values never contribute useful bits to the result.
2185 if (isa<UndefValue>(V)) return true;
2186
2187 // If we got down to a value of the right type, we win, try inserting into the
2188 // right element.
2189 if (V->getType() == VecEltTy) {
2190 // Inserting null doesn't actually insert any elements.
2191 if (Constant *C = dyn_cast<Constant>(V))
2192 if (C->isNullValue())
2193 return true;
2194
2195 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2196 if (isBigEndian)
2197 ElementIndex = Elements.size() - ElementIndex - 1;
2198
2199 // Fail if multiple elements are inserted into this slot.
2200 if (Elements[ElementIndex])
2201 return false;
2202
2203 Elements[ElementIndex] = V;
2204 return true;
2205 }
2206
2207 if (Constant *C = dyn_cast<Constant>(V)) {
2208 // Figure out the # elements this provides, and bitcast it or slice it up
2209 // as required.
2210 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2211 VecEltTy);
2212 // If the constant is the size of a vector element, we just need to bitcast
2213 // it to the right type so it gets properly inserted.
2214 if (NumElts == 1)
2216 Shift, Elements, VecEltTy, isBigEndian);
2217
2218 // Okay, this is a constant that covers multiple elements. Slice it up into
2219 // pieces and insert each element-sized piece into the vector.
2220 if (!isa<IntegerType>(C->getType()))
2221 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2222 C->getType()->getPrimitiveSizeInBits()));
2223 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2224 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2225
2226 for (unsigned i = 0; i != NumElts; ++i) {
2227 unsigned ShiftI = i * ElementSize;
2229 Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI));
2230 if (!Piece)
2231 return false;
2232
2233 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2234 if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy,
2235 isBigEndian))
2236 return false;
2237 }
2238 return true;
2239 }
2240
2241 if (!V->hasOneUse()) return false;
2242
2243 Instruction *I = dyn_cast<Instruction>(V);
2244 if (!I) return false;
2245 switch (I->getOpcode()) {
2246 default: return false; // Unhandled case.
2247 case Instruction::BitCast:
2248 if (I->getOperand(0)->getType()->isVectorTy())
2249 return false;
2250 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2251 isBigEndian);
2252 case Instruction::ZExt:
2254 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2255 VecEltTy))
2256 return false;
2257 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2258 isBigEndian);
2259 case Instruction::Or:
2260 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2261 isBigEndian) &&
2262 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2263 isBigEndian);
2264 case Instruction::Shl: {
2265 // Must be shifting by a constant that is a multiple of the element size.
2266 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2267 if (!CI) return false;
2268 Shift += CI->getZExtValue();
2269 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2270 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2271 isBigEndian);
2272 }
2273
2274 }
2275}
2276
2277
2278/// If the input is an 'or' instruction, we may be doing shifts and ors to
2279/// assemble the elements of the vector manually.
2280/// Try to rip the code out and replace it with insertelements. This is to
2281/// optimize code like this:
2282///
2283/// %tmp37 = bitcast float %inc to i32
2284/// %tmp38 = zext i32 %tmp37 to i64
2285/// %tmp31 = bitcast float %inc5 to i32
2286/// %tmp32 = zext i32 %tmp31 to i64
2287/// %tmp33 = shl i64 %tmp32, 32
2288/// %ins35 = or i64 %tmp33, %tmp38
2289/// %tmp43 = bitcast i64 %ins35 to <2 x float>
2290///
2291/// Into two insertelements that do "buildvector{%inc, %inc5}".
2293 InstCombinerImpl &IC) {
2294 auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2295 Value *IntInput = CI.getOperand(0);
2296
2297 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2298 if (!collectInsertionElements(IntInput, 0, Elements,
2299 DestVecTy->getElementType(),
2300 IC.getDataLayout().isBigEndian()))
2301 return nullptr;
2302
2303 // If we succeeded, we know that all of the element are specified by Elements
2304 // or are zero if Elements has a null entry. Recast this as a set of
2305 // insertions.
2306 Value *Result = Constant::getNullValue(CI.getType());
2307 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2308 if (!Elements[i]) continue; // Unset element.
2309
2310 Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2311 IC.Builder.getInt32(i));
2312 }
2313
2314 return Result;
2315}
2316
2317/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2318/// vector followed by extract element. The backend tends to handle bitcasts of
2319/// vectors better than bitcasts of scalars because vector registers are
2320/// usually not type-specific like scalar integer or scalar floating-point.
2322 InstCombinerImpl &IC) {
2323 Value *VecOp, *Index;
2324 if (!match(BitCast.getOperand(0),
2326 return nullptr;
2327
2328 // The bitcast must be to a vectorizable type, otherwise we can't make a new
2329 // type to extract from.
2330 Type *DestType = BitCast.getType();
2331 VectorType *VecType = cast<VectorType>(VecOp->getType());
2332 if (VectorType::isValidElementType(DestType)) {
2333 auto *NewVecType = VectorType::get(DestType, VecType);
2334 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2335 return ExtractElementInst::Create(NewBC, Index);
2336 }
2337
2338 // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2339 // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2340 auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2341 if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2342 return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2343
2344 return nullptr;
2345}
2346
2347/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2349 InstCombiner::BuilderTy &Builder) {
2350 Type *DestTy = BitCast.getType();
2351 BinaryOperator *BO;
2352
2353 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2354 !BO->isBitwiseLogicOp())
2355 return nullptr;
2356
2357 // FIXME: This transform is restricted to vector types to avoid backend
2358 // problems caused by creating potentially illegal operations. If a fix-up is
2359 // added to handle that situation, we can remove this check.
2360 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2361 return nullptr;
2362
2363 if (DestTy->isFPOrFPVectorTy()) {
2364 Value *X, *Y;
2365 // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2366 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2368 if (X->getType()->isFPOrFPVectorTy() &&
2369 Y->getType()->isIntOrIntVectorTy()) {
2370 Value *CastedOp =
2371 Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2372 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2373 return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2374 }
2375 if (X->getType()->isIntOrIntVectorTy() &&
2376 Y->getType()->isFPOrFPVectorTy()) {
2377 Value *CastedOp =
2378 Builder.CreateBitCast(BO->getOperand(1), X->getType());
2379 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2380 return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2381 }
2382 }
2383 return nullptr;
2384 }
2385
2386 if (!DestTy->isIntOrIntVectorTy())
2387 return nullptr;
2388
2389 Value *X;
2390 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2391 X->getType() == DestTy && !isa<Constant>(X)) {
2392 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2393 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2394 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2395 }
2396
2397 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2398 X->getType() == DestTy && !isa<Constant>(X)) {
2399 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2400 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2401 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2402 }
2403
2404 // Canonicalize vector bitcasts to come before vector bitwise logic with a
2405 // constant. This eases recognition of special constants for later ops.
2406 // Example:
2407 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2408 Constant *C;
2409 if (match(BO->getOperand(1), m_Constant(C))) {
2410 // bitcast (logic X, C) --> logic (bitcast X, C')
2411 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2412 Value *CastedC = Builder.CreateBitCast(C, DestTy);
2413 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2414 }
2415
2416 return nullptr;
2417}
2418
2419/// Change the type of a select if we can eliminate a bitcast.
2421 InstCombiner::BuilderTy &Builder) {
2422 Value *Cond, *TVal, *FVal;
2423 if (!match(BitCast.getOperand(0),
2424 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2425 return nullptr;
2426
2427 // A vector select must maintain the same number of elements in its operands.
2428 Type *CondTy = Cond->getType();
2429 Type *DestTy = BitCast.getType();
2430 if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2431 if (!DestTy->isVectorTy() ||
2432 CondVTy->getElementCount() !=
2433 cast<VectorType>(DestTy)->getElementCount())
2434 return nullptr;
2435
2436 // FIXME: This transform is restricted from changing the select between
2437 // scalars and vectors to avoid backend problems caused by creating
2438 // potentially illegal operations. If a fix-up is added to handle that
2439 // situation, we can remove this check.
2440 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2441 return nullptr;
2442
2443 auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2444 Value *X;
2445 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2446 !isa<Constant>(X)) {
2447 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2448 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2449 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2450 }
2451
2452 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2453 !isa<Constant>(X)) {
2454 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2455 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2456 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2457 }
2458
2459 return nullptr;
2460}
2461
2462/// Check if all users of CI are StoreInsts.
2463static bool hasStoreUsersOnly(CastInst &CI) {
2464 for (User *U : CI.users()) {
2465 if (!isa<StoreInst>(U))
2466 return false;
2467 }
2468 return true;
2469}
2470
2471/// This function handles following case
2472///
2473/// A -> B cast
2474/// PHI
2475/// B -> A cast
2476///
2477/// All the related PHI nodes can be replaced by new PHI nodes with type A.
2478/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2479Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2480 PHINode *PN) {
2481 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2482 if (hasStoreUsersOnly(CI))
2483 return nullptr;
2484
2485 Value *Src = CI.getOperand(0);
2486 Type *SrcTy = Src->getType(); // Type B
2487 Type *DestTy = CI.getType(); // Type A
2488
2489 SmallVector<PHINode *, 4> PhiWorklist;
2490 SmallSetVector<PHINode *, 4> OldPhiNodes;
2491
2492 // Find all of the A->B casts and PHI nodes.
2493 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2494 // OldPhiNodes is used to track all known PHI nodes, before adding a new
2495 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2496 PhiWorklist.push_back(PN);
2497 OldPhiNodes.insert(PN);
2498 while (!PhiWorklist.empty()) {
2499 auto *OldPN = PhiWorklist.pop_back_val();
2500 for (Value *IncValue : OldPN->incoming_values()) {
2501 if (isa<Constant>(IncValue))
2502 continue;
2503
2504 if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2505 // If there is a sequence of one or more load instructions, each loaded
2506 // value is used as address of later load instruction, bitcast is
2507 // necessary to change the value type, don't optimize it. For
2508 // simplicity we give up if the load address comes from another load.
2509 Value *Addr = LI->getOperand(0);
2510 if (Addr == &CI || isa<LoadInst>(Addr))
2511 return nullptr;
2512 // Don't tranform "load <256 x i32>, <256 x i32>*" to
2513 // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2514 // TODO: Remove this check when bitcast between vector and x86_amx
2515 // is replaced with a specific intrinsic.
2516 if (DestTy->isX86_AMXTy())
2517 return nullptr;
2518 if (LI->hasOneUse() && LI->isSimple())
2519 continue;
2520 // If a LoadInst has more than one use, changing the type of loaded
2521 // value may create another bitcast.
2522 return nullptr;
2523 }
2524
2525 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2526 if (OldPhiNodes.insert(PNode))
2527 PhiWorklist.push_back(PNode);
2528 continue;
2529 }
2530
2531 auto *BCI = dyn_cast<BitCastInst>(IncValue);
2532 // We can't handle other instructions.
2533 if (!BCI)
2534 return nullptr;
2535
2536 // Verify it's a A->B cast.
2537 Type *TyA = BCI->getOperand(0)->getType();
2538 Type *TyB = BCI->getType();
2539 if (TyA != DestTy || TyB != SrcTy)
2540 return nullptr;
2541 }
2542 }
2543
2544 // Check that each user of each old PHI node is something that we can
2545 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2546 for (auto *OldPN : OldPhiNodes) {
2547 for (User *V : OldPN->users()) {
2548 if (auto *SI = dyn_cast<StoreInst>(V)) {
2549 if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2550 return nullptr;
2551 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2552 // Verify it's a B->A cast.
2553 Type *TyB = BCI->getOperand(0)->getType();
2554 Type *TyA = BCI->getType();
2555 if (TyA != DestTy || TyB != SrcTy)
2556 return nullptr;
2557 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2558 // As long as the user is another old PHI node, then even if we don't
2559 // rewrite it, the PHI web we're considering won't have any users
2560 // outside itself, so it'll be dead.
2561 if (!OldPhiNodes.contains(PHI))
2562 return nullptr;
2563 } else {
2564 return nullptr;
2565 }
2566 }
2567 }
2568
2569 // For each old PHI node, create a corresponding new PHI node with a type A.
2571 for (auto *OldPN : OldPhiNodes) {
2572 Builder.SetInsertPoint(OldPN);
2573 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2574 NewPNodes[OldPN] = NewPN;
2575 }
2576
2577 // Fill in the operands of new PHI nodes.
2578 for (auto *OldPN : OldPhiNodes) {
2579 PHINode *NewPN = NewPNodes[OldPN];
2580 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2581 Value *V = OldPN->getOperand(j);
2582 Value *NewV = nullptr;
2583 if (auto *C = dyn_cast<Constant>(V)) {
2584 NewV = ConstantExpr::getBitCast(C, DestTy);
2585 } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2586 // Explicitly perform load combine to make sure no opposing transform
2587 // can remove the bitcast in the meantime and trigger an infinite loop.
2589 NewV = combineLoadToNewType(*LI, DestTy);
2590 // Remove the old load and its use in the old phi, which itself becomes
2591 // dead once the whole transform finishes.
2594 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2595 NewV = BCI->getOperand(0);
2596 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2597 NewV = NewPNodes[PrevPN];
2598 }
2599 assert(NewV);
2600 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2601 }
2602 }
2603
2604 // Traverse all accumulated PHI nodes and process its users,
2605 // which are Stores and BitcCasts. Without this processing
2606 // NewPHI nodes could be replicated and could lead to extra
2607 // moves generated after DeSSA.
2608 // If there is a store with type B, change it to type A.
2609
2610
2611 // Replace users of BitCast B->A with NewPHI. These will help
2612 // later to get rid off a closure formed by OldPHI nodes.
2613 Instruction *RetVal = nullptr;
2614 for (auto *OldPN : OldPhiNodes) {
2615 PHINode *NewPN = NewPNodes[OldPN];
2616 for (User *V : make_early_inc_range(OldPN->users())) {
2617 if (auto *SI = dyn_cast<StoreInst>(V)) {
2618 assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2620 auto *NewBC =
2621 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2622 SI->setOperand(0, NewBC);
2623 Worklist.push(SI);
2624 assert(hasStoreUsersOnly(*NewBC));
2625 }
2626 else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2627 Type *TyB = BCI->getOperand(0)->getType();
2628 Type *TyA = BCI->getType();
2629 assert(TyA == DestTy && TyB == SrcTy);
2630 (void) TyA;
2631 (void) TyB;
2632 Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2633 if (BCI == &CI)
2634 RetVal = I;
2635 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2636 assert(OldPhiNodes.contains(PHI));
2637 (void) PHI;
2638 } else {
2639 llvm_unreachable("all uses should be handled");
2640 }
2641 }
2642 }
2643
2644 return RetVal;
2645}
2646
2648 // If the operands are integer typed then apply the integer transforms,
2649 // otherwise just apply the common ones.
2650 Value *Src = CI.getOperand(0);
2651 Type *SrcTy = Src->getType();
2652 Type *DestTy = CI.getType();
2653
2654 // Get rid of casts from one type to the same type. These are useless and can
2655 // be replaced by the operand.
2656 if (DestTy == Src->getType())
2657 return replaceInstUsesWith(CI, Src);
2658
2659 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2660 // Beware: messing with this target-specific oddity may cause trouble.
2661 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2662 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2663 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2665 }
2666
2667 if (isa<IntegerType>(SrcTy)) {
2668 // If this is a cast from an integer to vector, check to see if the input
2669 // is a trunc or zext of a bitcast from vector. If so, we can replace all
2670 // the casts with a shuffle and (potentially) a bitcast.
2671 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2672 CastInst *SrcCast = cast<CastInst>(Src);
2673 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2674 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2676 BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2677 return I;
2678 }
2679
2680 // If the input is an 'or' instruction, we may be doing shifts and ors to
2681 // assemble the elements of the vector manually. Try to rip the code out
2682 // and replace it with insertelements.
2683 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2684 return replaceInstUsesWith(CI, V);
2685 }
2686 }
2687
2688 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2689 if (SrcVTy->getNumElements() == 1) {
2690 // If our destination is not a vector, then make this a straight
2691 // scalar-scalar cast.
2692 if (!DestTy->isVectorTy()) {
2693 Value *Elem =
2696 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2697 }
2698
2699 // Otherwise, see if our source is an insert. If so, then use the scalar
2700 // component directly:
2701 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2702 if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2703 return new BitCastInst(InsElt->getOperand(1), DestTy);
2704 }
2705
2706 // Convert an artificial vector insert into more analyzable bitwise logic.
2707 unsigned BitWidth = DestTy->getScalarSizeInBits();
2708 Value *X, *Y;
2709 uint64_t IndexC;
2711 m_Value(Y), m_ConstantInt(IndexC)))) &&
2712 DestTy->isIntegerTy() && X->getType() == DestTy &&
2713 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2714 // Adjust for big endian - the LSBs are at the high index.
2715 if (DL.isBigEndian())
2716 IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2717
2718 // We only handle (endian-normalized) insert to index 0. Any other insert
2719 // would require a left-shift, so that is an extra instruction.
2720 if (IndexC == 0) {
2721 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2722 unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2723 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2724 Value *AndX = Builder.CreateAnd(X, MaskC);
2725 Value *ZextY = Builder.CreateZExt(Y, DestTy);
2726 return BinaryOperator::CreateOr(AndX, ZextY);
2727 }
2728 }
2729 }
2730
2731 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2732 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
2733 // a bitcast to a vector with the same # elts.
2734 Value *ShufOp0 = Shuf->getOperand(0);
2735 Value *ShufOp1 = Shuf->getOperand(1);
2736 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2737 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2738 if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2739 cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2740 ShufElts == SrcVecElts) {
2741 BitCastInst *Tmp;
2742 // If either of the operands is a cast from CI.getType(), then
2743 // evaluating the shuffle in the casted destination's type will allow
2744 // us to eliminate at least one cast.
2745 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2746 Tmp->getOperand(0)->getType() == DestTy) ||
2747 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2748 Tmp->getOperand(0)->getType() == DestTy)) {
2749 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2750 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2751 // Return a new shuffle vector. Use the same element ID's, as we
2752 // know the vector types match #elts.
2753 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2754 }
2755 }
2756
2757 // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2758 // as a byte/bit swap:
2759 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2760 // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2761 if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2762 Shuf->hasOneUse() && Shuf->isReverse()) {
2763 unsigned IntrinsicNum = 0;
2764 if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2765 SrcTy->getScalarSizeInBits() == 8) {
2766 IntrinsicNum = Intrinsic::bswap;
2767 } else if (SrcTy->getScalarSizeInBits() == 1) {
2768 IntrinsicNum = Intrinsic::bitreverse;
2769 }
2770 if (IntrinsicNum != 0) {
2771 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2772 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2773 Function *BswapOrBitreverse =
2774 Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2775 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2776 return CallInst::Create(BswapOrBitreverse, {ScalarX});
2777 }
2778 }
2779 }
2780
2781 // Handle the A->B->A cast, and there is an intervening PHI node.
2782 if (PHINode *PN = dyn_cast<PHINode>(Src))
2783 if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2784 return I;
2785
2786 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2787 return I;
2788
2790 return I;
2791
2793 return I;
2794
2795 return commonCastTransforms(CI);
2796}
2797
2799 return commonCastTransforms(CI);
2800}
Rewrite undef for PHI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
Hexagon Common GEP
static bool collectInsertionElements(Value *V, unsigned Shift, SmallVectorImpl< Value * > &Elements, Type *VecEltTy, bool isBigEndian)
V is a value which is inserted into a vector of VecEltTy.
static bool canEvaluateSExtd(Value *V, Type *Ty)
Return true if we can take the specified value and return it as type Ty without inserting any new cas...
static bool hasStoreUsersOnly(CastInst &CI)
Check if all users of CI are StoreInsts.
static Type * shrinkFPConstantVector(Value *V, bool PreferBFloat)
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, InstCombinerImpl &IC, Instruction *CxtI)
Determine if the specified value can be computed in the specified wider type and produce the same low...
static Instruction * canonicalizeBitCastExtElt(BitCastInst &BitCast, InstCombinerImpl &IC)
Canonicalize scalar bitcasts of extracted elements into a bitcast of the vector followed by extract e...
static Instruction * shrinkSplatShuffle(TruncInst &Trunc, InstCombiner::BuilderTy &Builder)
Try to narrow the width of a splat shuffle.
static Type * shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat)
static Instruction * foldFPtoI(Instruction &FI, InstCombiner &IC)
static Instruction * foldBitCastSelect(BitCastInst &BitCast, InstCombiner::BuilderTy &Builder)
Change the type of a select if we can eliminate a bitcast.
static Instruction * foldBitCastBitwiseLogic(BitCastInst &BitCast, InstCombiner::BuilderTy &Builder)
Change the type of a bitwise logic operation if we can eliminate a bitcast.
static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem)
Return a Constant* for the specified floating-point constant if it fits in the specified FP type with...
static Instruction * optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, InstCombinerImpl &IC)
This input value (which is known to have vector type) is being zero extended or truncated to the spec...
static Instruction * shrinkInsertElt(CastInst &Trunc, InstCombiner::BuilderTy &Builder)
Try to narrow the width of an insert element.
static Type * getMinimumFPType(Value *V, bool PreferBFloat)
Find the minimum FP type we can safely truncate to.
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty)
static Value * optimizeIntegerToVectorInsertions(BitCastInst &CI, InstCombinerImpl &IC)
If the input is an 'or' instruction, we may be doing shifts and ors to assemble the elements of the v...
static bool canAlwaysEvaluateInType(Value *V, Type *Ty)
Constants and extensions/truncates from the destination type are always free to be evaluated in that ...
static bool canNotEvaluateInType(Value *V, Type *Ty)
Filter out values that we can not evaluate in the destination type for free.
static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC)
Return true if the cast from integer to FP can be proven to be exact for all possible inputs (the con...
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty)
static Instruction * foldVecTruncToExtElt(TruncInst &Trunc, InstCombinerImpl &IC)
Given a vector that is bitcast to an integer, optionally logically right-shifted, and truncated,...
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can evaluate the specified expression tree as type Ty instead of its larger type,...
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
static unsigned getScalarSizeInBits(Type *Ty)
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1491
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:358
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1089
int32_t exactLogBase2() const
Definition: APInt.h:1725
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:284
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:274
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition: APInt.h:264
This class represents a conversion between pointers from one address space to another.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition: ArrayRef.h:228
ArrayRef< T > take_back(size_t N=1) const
Return a copy of *this with only the last N elements.
Definition: ArrayRef.h:235
std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
Definition: Attributes.cpp:417
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
BinaryOps getOpcode() const
Definition: InstrTypes.h:513
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:332
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:336
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr, BasicBlock::iterator InsertBefore)
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:601
Type * getSrcTy() const
Return the source type, as a convenience.
Definition: InstrTypes.h:935
static CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:930
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Create a Trunc or BitCast cast instruction.
Type * getDestTy() const
Return the destination type, as a convenience.
Definition: InstrTypes.h:937
static CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name, BasicBlock::iterator InsertBefore)
Create a ZExt, BitCast, or Trunc for int -> int casts.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:1022
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:1018
@ ICMP_EQ
equal
Definition: InstrTypes.h:1014
@ ICMP_NE
not equal
Definition: InstrTypes.h:1015
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:1019
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2542
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2560
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2140
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2098
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:268
const APFloat & getValueAPF() const
Definition: Constants.h:311
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:154
This is an important base class in LLVM.
Definition: Constant.h:41
static Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
Definition: Constants.cpp:791
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:417
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:370
bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
Definition: Constants.cpp:298
This class represents an Operation in the Expression.
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:410
bool isLegalInteger(uint64_t Width) const
Returns true if the specified type is known to be a native integer type supported by the CPU.
Definition: DataLayout.h:260
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
Definition: DataLayout.cpp:878
bool isBigEndian() const
Definition: DataLayout.h:239
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock::iterator InsertBefore)
This class represents an extension of floating point types.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
Class to represent fixed width SIMD vectors.
Definition: DerivedTypes.h:539
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:692
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:201
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:701
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:675
This instruction compares its operands according to the predicate given to the constructor.
Value * CreateVScale(Constant *Scaling, const Twine &Name="")
Create a call to llvm.vscale, multiplied by Scaling.
Definition: IRBuilder.cpp:88
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2472
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2460
Value * CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2101
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2039
Value * CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Definition: IRBuilder.h:1654
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:932
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1110
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1437
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:311
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:486
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2397
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1749
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2127
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1416
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2021
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1475
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1327
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2117
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2007
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1497
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1666
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2161
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:2196
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:180
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1456
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1519
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitZExt(ZExtInst &Zext)
Instruction * visitAddrSpaceCast(AddrSpaceCastInst &CI)
Instruction * visitSExt(SExtInst &Sext)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * visitFPToSI(FPToSIInst &FI)
Instruction * visitTrunc(TruncInst &CI)
Instruction * visitUIToFP(CastInst &CI)
Instruction * visitPtrToInt(PtrToIntInst &CI)
Instruction * visitSIToFP(CastInst &CI)
Instruction * commonCastTransforms(CastInst &CI)
Implement the transforms common to all CastInst visitors.
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * foldItoFPtoI(CastInst &FI)
fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) This is safe if the intermediate ty...
Instruction * visitFPTrunc(FPTruncInst &CI)
Instruction * visitBitCast(BitCastInst &CI)
Instruction * visitIntToPtr(IntToPtrInst &CI)
Instruction * visitFPToUI(FPToUIInst &FI)
Value * EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned)
Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns true for,...
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * visitFPExt(CastInst &CI)
LoadInst * combineLoadToNewType(LoadInst &LI, Type *NewTy, const Twine &Suffix="")
Helper to combine a load to a new type.
The core instruction combiner logic.
Definition: InstCombiner.h:47
SimplifyQuery SQ
Definition: InstCombiner.h:76
const DataLayout & getDataLayout() const
Definition: InstCombiner.h:340
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:385
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Definition: InstCombiner.h:64
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
Definition: InstCombiner.h:374
const DataLayout & DL
Definition: InstCombiner.h:75
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombiner.h:451
DominatorTree & DT
Definition: InstCombiner.h:74
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombiner.h:430
BuilderTy & Builder
Definition: InstCombiner.h:60
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombiner.h:446
const SimplifyQuery & getSimplifyQuery() const
Definition: InstCombiner.h:341
unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombiner.h:456
void push(Instruction *I)
Push the instruction onto the worklist stack.
void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction,...
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
Definition: Instruction.h:301
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:82
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:149
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:86
void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
bool hasNonNeg() const LLVM_READONLY
Determine whether the the nneg flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
This class represents a cast from an integer to a pointer.
unsigned getAddressSpace() const
Returns the address space of this instruction's pointer type.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock::iterator InsertBefore)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1827
This class represents a cast from a pointer to an integer.
Value * getPointerOperand()
Gets the pointer operand.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock::iterator InsertBefore, Instruction *MDFrom=nullptr)
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
This instruction constructs a fixed permutation of two input vectors.
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
This class represents a truncation of integer types.
void setHasNoSignedWrap(bool B)
void setHasNoUnsignedWrap(bool B)
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static Type * getHalfTy(LLVMContext &C)
static Type * getDoubleTy(LLVMContext &C)
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
static Type * getBFloatTy(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
Definition: Type.h:146
bool isX86_MMXTy() const
Return true if this is X86 MMX.
Definition: Type.h:201
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
int getFPMantissaWidth() const
Return the width of the mantissa of this type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:157
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:262
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition: Type.h:204
static IntegerType * getInt32Ty(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:216
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static Type * getPPC_FP128Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name, BasicBlock::iterator InsertBefore)
Definition: InstrTypes.h:191
'undef' values are things that do not have specified contents.
Definition: Constants.h:1348
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
iterator_range< user_iterator > users()
Definition: Value.h:421
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:683
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:676
This class represents zero extension of integer types.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1461
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:568
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:160
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:918
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:821
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
Definition: PatternMatch.h:926
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:163
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:541
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
CastOperator_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
CastInst_match< OpTy, FPToUIInst > m_FPToUI(const OpTy &Op)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:839
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:548
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:800
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
VScaleVal_match m_VScale()
CastInst_match< OpTy, FPToSIInst > m_FPToSI(const OpTy &Op)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:294
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::IntToPtr > m_IntToPtr(const OpTy &Op)
Matches IntToPtr.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:234
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
Definition: PatternMatch.h:647
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition: MathExtras.h:332
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:313
@ SPF_UNKNOWN
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:264
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
Definition: Local.cpp:2710
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition: STLExtras.h:2039
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:249
static constexpr roundingMode rmNearestTiesToEven
Definition: APFloat.h:230
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:250
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:247
static const fltSemantics & BFloat() LLVM_READNONE
Definition: APFloat.cpp:248
static unsigned int semanticsIntSizeInBits(const fltSemantics &, bool)
Definition: APFloat.cpp:306
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition: KnownBits.h:238
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition: KnownBits.h:244
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition: KnownBits.h:141
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
SimplifyQuery getWithInstruction(const Instruction *I) const
Definition: SimplifyQuery.h:96