LLVM 20.0.0git
InstrBuilder.cpp
Go to the documentation of this file.
1//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file implements the InstrBuilder interface.
11///
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/Hashing.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/Support/Debug.h"
23
24#define DEBUG_TYPE "llvm-mca-instrbuilder"
25
26namespace llvm {
27namespace mca {
28
29char RecycledInstErr::ID = 0;
30
31InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
32 const llvm::MCInstrInfo &mcii,
33 const llvm::MCRegisterInfo &mri,
34 const llvm::MCInstrAnalysis *mcia,
35 const mca::InstrumentManager &im, unsigned cl)
36 : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), IM(im), FirstCallInst(true),
37 FirstReturnInst(true), CallLatency(cl) {
38 const MCSchedModel &SM = STI.getSchedModel();
39 ProcResourceMasks.resize(SM.getNumProcResourceKinds());
40 computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
41}
42
44 const MCSchedClassDesc &SCDesc,
45 const MCSubtargetInfo &STI,
46 ArrayRef<uint64_t> ProcResourceMasks) {
47 const MCSchedModel &SM = STI.getSchedModel();
48
49 // Populate resources consumed.
50 using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
52
53 // Track cycles contributed by resources that are in a "Super" relationship.
54 // This is required if we want to correctly match the behavior of method
55 // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
56 // of "consumed" processor resources and resource cycles, the logic in
57 // ExpandProcResource() doesn't update the number of resource cycles
58 // contributed by a "Super" resource to a group.
59 // We need to take this into account when we find that a processor resource is
60 // part of a group, and it is also used as the "Super" of other resources.
61 // This map stores the number of cycles contributed by sub-resources that are
62 // part of a "Super" resource. The key value is the "Super" resource mask ID.
63 DenseMap<uint64_t, unsigned> SuperResources;
64
65 unsigned NumProcResources = SM.getNumProcResourceKinds();
66 APInt Buffers(NumProcResources, 0);
67
68 bool AllInOrderResources = true;
69 bool AnyDispatchHazards = false;
70 for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
71 const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
73 if (!PRE->ReleaseAtCycle) {
74#ifndef NDEBUG
76 << "Ignoring invalid write of zero cycles on processor resource "
77 << PR.Name << "\n";
78 WithColor::note() << "found in scheduling class " << SCDesc.Name
79 << " (write index #" << I << ")\n";
80#endif
81 continue;
82 }
83
84 uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
85 if (PR.BufferSize < 0) {
86 AllInOrderResources = false;
87 } else {
88 Buffers.setBit(getResourceStateIndex(Mask));
89 AnyDispatchHazards |= (PR.BufferSize == 0);
90 AllInOrderResources &= (PR.BufferSize <= 1);
91 }
92
93 CycleSegment RCy(0, PRE->ReleaseAtCycle, false);
94 Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
95 if (PR.SuperIdx) {
96 uint64_t Super = ProcResourceMasks[PR.SuperIdx];
97 SuperResources[Super] += PRE->ReleaseAtCycle;
98 }
99 }
100
101 ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
102
103 // Sort elements by mask popcount, so that we prioritize resource units over
104 // resource groups, and smaller groups over larger groups.
105 sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
106 unsigned popcntA = llvm::popcount(A.first);
107 unsigned popcntB = llvm::popcount(B.first);
108 if (popcntA < popcntB)
109 return true;
110 if (popcntA > popcntB)
111 return false;
112 return A.first < B.first;
113 });
114
115 uint64_t UsedResourceUnits = 0;
116 uint64_t UsedResourceGroups = 0;
117 uint64_t UnitsFromResourceGroups = 0;
118
119 // Remove cycles contributed by smaller resources, and check if there
120 // are partially overlapping resource groups.
121 ID.HasPartiallyOverlappingGroups = false;
122
123 for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
124 ResourcePlusCycles &A = Worklist[I];
125 if (!A.second.size()) {
126 assert(llvm::popcount(A.first) > 1 && "Expected a group!");
127 UsedResourceGroups |= llvm::bit_floor(A.first);
128 continue;
129 }
130
131 ID.Resources.emplace_back(A);
132 uint64_t NormalizedMask = A.first;
133
134 if (llvm::popcount(A.first) == 1) {
135 UsedResourceUnits |= A.first;
136 } else {
137 // Remove the leading 1 from the resource group mask.
138 NormalizedMask ^= llvm::bit_floor(NormalizedMask);
139 if (UnitsFromResourceGroups & NormalizedMask)
140 ID.HasPartiallyOverlappingGroups = true;
141
142 UnitsFromResourceGroups |= NormalizedMask;
143 UsedResourceGroups |= (A.first ^ NormalizedMask);
144 }
145
146 for (unsigned J = I + 1; J < E; ++J) {
147 ResourcePlusCycles &B = Worklist[J];
148 if ((NormalizedMask & B.first) == NormalizedMask) {
149 B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
150 if (llvm::popcount(B.first) > 1)
151 B.second.NumUnits++;
152 }
153 }
154 }
155
156 // A SchedWrite may specify a number of cycles in which a resource group
157 // is reserved. For example (on target x86; cpu Haswell):
158 //
159 // SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
160 // let ReleaseAtCycles = [2, 2, 3];
161 // }
162 //
163 // This means:
164 // Resource units HWPort0 and HWPort1 are both used for 2cy.
165 // Resource group HWPort01 is the union of HWPort0 and HWPort1.
166 // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
167 // will not be usable for 2 entire cycles from instruction issue.
168 //
169 // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
170 // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
171 // extra delay on top of the 2 cycles latency.
172 // During those extra cycles, HWPort01 is not usable by other instructions.
173 for (ResourcePlusCycles &RPC : ID.Resources) {
174 if (llvm::popcount(RPC.first) > 1 && !RPC.second.isReserved()) {
175 // Remove the leading 1 from the resource group mask.
176 uint64_t Mask = RPC.first ^ llvm::bit_floor(RPC.first);
177 uint64_t MaxResourceUnits = llvm::popcount(Mask);
178 if (RPC.second.NumUnits > (unsigned)llvm::popcount(Mask)) {
179 RPC.second.setReserved();
180 RPC.second.NumUnits = MaxResourceUnits;
181 }
182 }
183 }
184
185 // Identify extra buffers that are consumed through super resources.
186 for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
187 for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
188 const MCProcResourceDesc &PR = *SM.getProcResource(I);
189 if (PR.BufferSize == -1)
190 continue;
191
192 uint64_t Mask = ProcResourceMasks[I];
193 if (Mask != SR.first && ((Mask & SR.first) == SR.first))
194 Buffers.setBit(getResourceStateIndex(Mask));
195 }
196 }
197
198 ID.UsedBuffers = Buffers.getZExtValue();
199 ID.UsedProcResUnits = UsedResourceUnits;
200 ID.UsedProcResGroups = UsedResourceGroups;
201
202 LLVM_DEBUG({
203 for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
204 dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
205 << "Reserved=" << R.second.isReserved() << ", "
206 << "#Units=" << R.second.NumUnits << ", "
207 << "cy=" << R.second.size() << '\n';
208 uint64_t BufferIDs = ID.UsedBuffers;
209 while (BufferIDs) {
210 uint64_t Current = BufferIDs & (-BufferIDs);
211 dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
212 BufferIDs ^= Current;
213 }
214 dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
215 dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
216 << '\n';
217 dbgs() << "\t\tHasPartiallyOverlappingGroups="
218 << ID.HasPartiallyOverlappingGroups << '\n';
219 });
220}
221
222static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
223 const MCSchedClassDesc &SCDesc,
224 const MCSubtargetInfo &STI,
225 unsigned CallLatency) {
226 if (MCDesc.isCall()) {
227 // We cannot estimate how long this call will take.
228 // Artificially set an arbitrarily high latency.
229 ID.MaxLatency = CallLatency;
230 return;
231 }
232
234 // If latency is unknown, then conservatively assume the MaxLatency set for
235 // calls.
236 ID.MaxLatency = Latency < 0 ? CallLatency : static_cast<unsigned>(Latency);
237}
238
239static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
240 // Count register definitions, and skip non register operands in the process.
241 unsigned I, E;
242 unsigned NumExplicitDefs = MCDesc.getNumDefs();
243 for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
244 const MCOperand &Op = MCI.getOperand(I);
245 if (Op.isReg())
246 --NumExplicitDefs;
247 }
248
249 if (NumExplicitDefs) {
250 return make_error<InstructionError<MCInst>>(
251 "Expected more register operand definitions.", MCI);
252 }
253
254 if (MCDesc.hasOptionalDef()) {
255 // Always assume that the optional definition is the last operand.
256 const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
257 if (I == MCI.getNumOperands() || !Op.isReg()) {
258 std::string Message =
259 "expected a register operand for an optional definition. Instruction "
260 "has not been correctly analyzed.";
261 return make_error<InstructionError<MCInst>>(Message, MCI);
262 }
263 }
264
265 return ErrorSuccess();
266}
267
268void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
269 unsigned SchedClassID) {
270 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
271 const MCSchedModel &SM = STI.getSchedModel();
272 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
273
274 // Assumptions made by this algorithm:
275 // 1. The number of explicit and implicit register definitions in a MCInst
276 // matches the number of explicit and implicit definitions according to
277 // the opcode descriptor (MCInstrDesc).
278 // 2. Uses start at index #(MCDesc.getNumDefs()).
279 // 3. There can only be a single optional register definition, an it is
280 // either the last operand of the sequence (excluding extra operands
281 // contributed by variadic opcodes) or one of the explicit register
282 // definitions. The latter occurs for some Thumb1 instructions.
283 //
284 // These assumptions work quite well for most out-of-order in-tree targets
285 // like x86. This is mainly because the vast majority of instructions is
286 // expanded to MCInst using a straightforward lowering logic that preserves
287 // the ordering of the operands.
288 //
289 // About assumption 1.
290 // The algorithm allows non-register operands between register operand
291 // definitions. This helps to handle some special ARM instructions with
292 // implicit operand increment (-mtriple=armv7):
293 //
294 // vld1.32 {d18, d19}, [r1]! @ <MCInst #1463 VLD1q32wb_fixed
295 // @ <MCOperand Reg:59>
296 // @ <MCOperand Imm:0> (!!)
297 // @ <MCOperand Reg:67>
298 // @ <MCOperand Imm:0>
299 // @ <MCOperand Imm:14>
300 // @ <MCOperand Reg:0>>
301 //
302 // MCDesc reports:
303 // 6 explicit operands.
304 // 1 optional definition
305 // 2 explicit definitions (!!)
306 //
307 // The presence of an 'Imm' operand between the two register definitions
308 // breaks the assumption that "register definitions are always at the
309 // beginning of the operand sequence".
310 //
311 // To workaround this issue, this algorithm ignores (i.e. skips) any
312 // non-register operands between register definitions. The optional
313 // definition is still at index #(NumOperands-1).
314 //
315 // According to assumption 2. register reads start at #(NumExplicitDefs-1).
316 // That means, register R1 from the example is both read and written.
317 unsigned NumExplicitDefs = MCDesc.getNumDefs();
318 unsigned NumImplicitDefs = MCDesc.implicit_defs().size();
319 unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
320 unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
321 if (MCDesc.hasOptionalDef())
322 TotalDefs++;
323
324 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
325 ID.Writes.resize(TotalDefs + NumVariadicOps);
326 // Iterate over the operands list, and skip non-register or constant register
327 // operands. The first NumExplicitDefs register operands are expected to be
328 // register definitions.
329 unsigned CurrentDef = 0;
330 unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;
331 unsigned i = 0;
332 for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
333 const MCOperand &Op = MCI.getOperand(i);
334 if (!Op.isReg())
335 continue;
336
337 if (MCDesc.operands()[CurrentDef].isOptionalDef()) {
338 OptionalDefIdx = CurrentDef++;
339 continue;
340 }
341 if (MRI.isConstant(Op.getReg())) {
342 CurrentDef++;
343 continue;
344 }
345
346 WriteDescriptor &Write = ID.Writes[CurrentDef];
347 Write.OpIndex = i;
348 if (CurrentDef < NumWriteLatencyEntries) {
349 const MCWriteLatencyEntry &WLE =
350 *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
351 // Conservatively default to MaxLatency.
352 Write.Latency =
353 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
354 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
355 } else {
356 // Assign a default latency for this write.
357 Write.Latency = ID.MaxLatency;
358 Write.SClassOrWriteResourceID = 0;
359 }
360 Write.IsOptionalDef = false;
361 LLVM_DEBUG({
362 dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
363 << ", Latency=" << Write.Latency
364 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
365 });
366 CurrentDef++;
367 }
368
369 assert(CurrentDef == NumExplicitDefs &&
370 "Expected more register operand definitions.");
371 for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
372 unsigned Index = NumExplicitDefs + CurrentDef;
373 WriteDescriptor &Write = ID.Writes[Index];
374 Write.OpIndex = ~CurrentDef;
375 Write.RegisterID = MCDesc.implicit_defs()[CurrentDef];
376 if (Index < NumWriteLatencyEntries) {
377 const MCWriteLatencyEntry &WLE =
378 *STI.getWriteLatencyEntry(&SCDesc, Index);
379 // Conservatively default to MaxLatency.
380 Write.Latency =
381 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
382 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
383 } else {
384 // Assign a default latency for this write.
385 Write.Latency = ID.MaxLatency;
386 Write.SClassOrWriteResourceID = 0;
387 }
388
389 Write.IsOptionalDef = false;
390 assert(Write.RegisterID != 0 && "Expected a valid phys register!");
391 LLVM_DEBUG({
392 dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
393 << ", PhysReg=" << MRI.getName(Write.RegisterID)
394 << ", Latency=" << Write.Latency
395 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
396 });
397 }
398
399 if (MCDesc.hasOptionalDef()) {
400 WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
401 Write.OpIndex = OptionalDefIdx;
402 // Assign a default latency for this write.
403 Write.Latency = ID.MaxLatency;
404 Write.SClassOrWriteResourceID = 0;
405 Write.IsOptionalDef = true;
406 LLVM_DEBUG({
407 dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
408 << ", Latency=" << Write.Latency
409 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
410 });
411 }
412
413 if (!NumVariadicOps)
414 return;
415
416 bool AssumeUsesOnly = !MCDesc.variadicOpsAreDefs();
417 CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
418 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
419 I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
420 const MCOperand &Op = MCI.getOperand(OpIndex);
421 if (!Op.isReg())
422 continue;
423 if (MRI.isConstant(Op.getReg()))
424 continue;
425
426 WriteDescriptor &Write = ID.Writes[CurrentDef];
427 Write.OpIndex = OpIndex;
428 // Assign a default latency for this write.
429 Write.Latency = ID.MaxLatency;
430 Write.SClassOrWriteResourceID = 0;
431 Write.IsOptionalDef = false;
432 ++CurrentDef;
433 LLVM_DEBUG({
434 dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
435 << ", Latency=" << Write.Latency
436 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
437 });
438 }
439
440 ID.Writes.resize(CurrentDef);
441}
442
443void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
444 unsigned SchedClassID) {
445 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
446 unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
447 unsigned NumImplicitUses = MCDesc.implicit_uses().size();
448 // Remove the optional definition.
449 if (MCDesc.hasOptionalDef())
450 --NumExplicitUses;
451 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
452 unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
453 ID.Reads.resize(TotalUses);
454 unsigned CurrentUse = 0;
455 for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
456 ++I, ++OpIndex) {
457 const MCOperand &Op = MCI.getOperand(OpIndex);
458 if (!Op.isReg())
459 continue;
460 if (MRI.isConstant(Op.getReg()))
461 continue;
462
463 ReadDescriptor &Read = ID.Reads[CurrentUse];
464 Read.OpIndex = OpIndex;
465 Read.UseIndex = I;
466 Read.SchedClassID = SchedClassID;
467 ++CurrentUse;
468 LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex
469 << ", UseIndex=" << Read.UseIndex << '\n');
470 }
471
472 // For the purpose of ReadAdvance, implicit uses come directly after explicit
473 // uses. The "UseIndex" must be updated according to that implicit layout.
474 for (unsigned I = 0; I < NumImplicitUses; ++I) {
475 ReadDescriptor &Read = ID.Reads[CurrentUse + I];
476 Read.OpIndex = ~I;
477 Read.UseIndex = NumExplicitUses + I;
478 Read.RegisterID = MCDesc.implicit_uses()[I];
479 if (MRI.isConstant(Read.RegisterID))
480 continue;
481 Read.SchedClassID = SchedClassID;
482 LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
483 << ", UseIndex=" << Read.UseIndex << ", RegisterID="
484 << MRI.getName(Read.RegisterID) << '\n');
485 }
486
487 CurrentUse += NumImplicitUses;
488
489 bool AssumeDefsOnly = MCDesc.variadicOpsAreDefs();
490 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
491 I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
492 const MCOperand &Op = MCI.getOperand(OpIndex);
493 if (!Op.isReg())
494 continue;
495
496 ReadDescriptor &Read = ID.Reads[CurrentUse];
497 Read.OpIndex = OpIndex;
498 Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
499 Read.SchedClassID = SchedClassID;
500 ++CurrentUse;
501 LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
502 << ", UseIndex=" << Read.UseIndex << '\n');
503 }
504
505 ID.Reads.resize(CurrentUse);
506}
507
509 hash_code TypeHash = hash_combine(MCO.isReg(), MCO.isImm(), MCO.isSFPImm(),
510 MCO.isDFPImm(), MCO.isExpr(), MCO.isInst());
511 if (MCO.isReg())
512 return hash_combine(TypeHash, MCO.getReg());
513
514 return TypeHash;
515}
516
518 hash_code InstructionHash = hash_combine(MCI.getOpcode(), MCI.getFlags());
519 for (unsigned I = 0; I < MCI.getNumOperands(); ++I) {
520 InstructionHash =
521 hash_combine(InstructionHash, hashMCOperand(MCI.getOperand(I)));
522 }
523 return InstructionHash;
524}
525
526Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
527 const MCInst &MCI) const {
528 if (ID.NumMicroOps != 0)
529 return ErrorSuccess();
530
531 bool UsesBuffers = ID.UsedBuffers;
532 bool UsesResources = !ID.Resources.empty();
533 if (!UsesBuffers && !UsesResources)
534 return ErrorSuccess();
535
536 // FIXME: see PR44797. We should revisit these checks and possibly move them
537 // in CodeGenSchedule.cpp.
538 StringRef Message = "found an inconsistent instruction that decodes to zero "
539 "opcodes and that consumes scheduler resources.";
540 return make_error<InstructionError<MCInst>>(std::string(Message), MCI);
541}
542
543Expected<unsigned> InstrBuilder::getVariantSchedClassID(const MCInst &MCI,
544 unsigned SchedClassID) {
545 const MCSchedModel &SM = STI.getSchedModel();
546 unsigned CPUID = SM.getProcessorID();
547 while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
548 SchedClassID =
549 STI.resolveVariantSchedClass(SchedClassID, &MCI, &MCII, CPUID);
550
551 if (!SchedClassID) {
552 return make_error<InstructionError<MCInst>>(
553 "unable to resolve scheduling class for write variant.", MCI);
554 }
555
556 return SchedClassID;
557}
558
559Expected<const InstrDesc &>
560InstrBuilder::createInstrDescImpl(const MCInst &MCI,
561 const SmallVector<Instrument *> &IVec) {
563 "Itineraries are not yet supported!");
564
565 // Obtain the instruction descriptor from the opcode.
566 unsigned short Opcode = MCI.getOpcode();
567 const MCInstrDesc &MCDesc = MCII.get(Opcode);
568 const MCSchedModel &SM = STI.getSchedModel();
569
570 // Then obtain the scheduling class information from the instruction.
571 // Allow InstrumentManager to override and use a different SchedClassID
572 unsigned SchedClassID = IM.getSchedClassID(MCII, MCI, IVec);
573 bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
574
575 // Try to solve variant scheduling classes.
576 if (IsVariant) {
577 Expected<unsigned> VariantSchedClassIDOrErr =
578 getVariantSchedClassID(MCI, SchedClassID);
579 if (!VariantSchedClassIDOrErr) {
580 return VariantSchedClassIDOrErr.takeError();
581 }
582
583 SchedClassID = *VariantSchedClassIDOrErr;
584 }
585
586 // Check if this instruction is supported. Otherwise, report an error.
587 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
588 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
589 return make_error<InstructionError<MCInst>>(
590 "found an unsupported instruction in the input assembly sequence", MCI);
591 }
592
593 LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
594 LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
595 LLVM_DEBUG(dbgs() << "\t\tOpcode=" << Opcode << '\n');
596
597 // Create a new empty descriptor.
598 std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
599 ID->NumMicroOps = SCDesc.NumMicroOps;
600 ID->SchedClassID = SchedClassID;
601
602 if (MCDesc.isCall() && FirstCallInst) {
603 // We don't correctly model calls.
604 WithColor::warning() << "found a call in the input assembly sequence.\n";
605 WithColor::note() << "call instructions are not correctly modeled. "
606 << "Assume a latency of " << CallLatency << "cy.\n";
607 FirstCallInst = false;
608 }
609
610 if (MCDesc.isReturn() && FirstReturnInst) {
611 WithColor::warning() << "found a return instruction in the input"
612 << " assembly sequence.\n";
613 WithColor::note() << "program counter updates are ignored.\n";
614 FirstReturnInst = false;
615 }
616
617 initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
618 computeMaxLatency(*ID, MCDesc, SCDesc, STI, CallLatency);
619
620 if (Error Err = verifyOperands(MCDesc, MCI))
621 return std::move(Err);
622
623 populateWrites(*ID, MCI, SchedClassID);
624 populateReads(*ID, MCI, SchedClassID);
625
626 LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
627 LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
628
629 // Validation check on the instruction descriptor.
630 if (Error Err = verifyInstrDesc(*ID, MCI))
631 return std::move(Err);
632
633 // Now add the new descriptor.
634 bool IsVariadic = MCDesc.isVariadic();
635 if ((ID->IsRecyclable = !IsVariadic && !IsVariant)) {
636 auto DKey = std::make_pair(MCI.getOpcode(), SchedClassID);
637 Descriptors[DKey] = std::move(ID);
638 return *Descriptors[DKey];
639 }
640
641 auto VDKey = std::make_pair(hashMCInst(MCI), SchedClassID);
642 assert(
643 !VariantDescriptors.contains(VDKey) &&
644 "Expected VariantDescriptors to not already have a value for this key.");
645 VariantDescriptors[VDKey] = std::move(ID);
646 return *VariantDescriptors[VDKey];
647}
648
649Expected<const InstrDesc &>
650InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI,
651 const SmallVector<Instrument *> &IVec) {
652 // Cache lookup using SchedClassID from Instrumentation
653 unsigned SchedClassID = IM.getSchedClassID(MCII, MCI, IVec);
654
655 auto DKey = std::make_pair(MCI.getOpcode(), SchedClassID);
656 if (Descriptors.find_as(DKey) != Descriptors.end())
657 return *Descriptors[DKey];
658
659 Expected<unsigned> VariantSchedClassIDOrErr =
660 getVariantSchedClassID(MCI, SchedClassID);
661 if (!VariantSchedClassIDOrErr) {
662 return VariantSchedClassIDOrErr.takeError();
663 }
664
665 SchedClassID = *VariantSchedClassIDOrErr;
666
667 auto VDKey = std::make_pair(hashMCInst(MCI), SchedClassID);
668 auto It = VariantDescriptors.find(VDKey);
669 if (It != VariantDescriptors.end())
670 return *It->second;
671
672 return createInstrDescImpl(MCI, IVec);
673}
674
675STATISTIC(NumVariantInst, "Number of MCInsts that doesn't have static Desc");
676
679 const SmallVector<Instrument *> &IVec) {
680 Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI, IVec);
681 if (!DescOrErr)
682 return DescOrErr.takeError();
683 const InstrDesc &D = *DescOrErr;
684 Instruction *NewIS = nullptr;
685 std::unique_ptr<Instruction> CreatedIS;
686 bool IsInstRecycled = false;
687
688 if (!D.IsRecyclable)
689 ++NumVariantInst;
690
691 if (D.IsRecyclable && InstRecycleCB) {
692 if (auto *I = InstRecycleCB(D)) {
693 NewIS = I;
694 NewIS->reset();
695 IsInstRecycled = true;
696 }
697 }
698 if (!IsInstRecycled) {
699 CreatedIS = std::make_unique<Instruction>(D, MCI.getOpcode());
700 NewIS = CreatedIS.get();
701 }
702
703 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
704 const MCSchedClassDesc &SCDesc =
705 *STI.getSchedModel().getSchedClassDesc(D.SchedClassID);
706
707 NewIS->setMayLoad(MCDesc.mayLoad());
708 NewIS->setMayStore(MCDesc.mayStore());
710 NewIS->setBeginGroup(SCDesc.BeginGroup);
711 NewIS->setEndGroup(SCDesc.EndGroup);
712 NewIS->setRetireOOO(SCDesc.RetireOOO);
713
714 // Check if this is a dependency breaking instruction.
715 APInt Mask;
716
717 bool IsZeroIdiom = false;
718 bool IsDepBreaking = false;
719 if (MCIA) {
720 unsigned ProcID = STI.getSchedModel().getProcessorID();
721 IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
722 IsDepBreaking =
723 IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
724 if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
725 NewIS->setOptimizableMove();
726 }
727
728 // Initialize Reads first.
729 MCPhysReg RegID = 0;
730 size_t Idx = 0U;
731 for (const ReadDescriptor &RD : D.Reads) {
732 if (!RD.isImplicitRead()) {
733 // explicit read.
734 const MCOperand &Op = MCI.getOperand(RD.OpIndex);
735 // Skip non-register operands.
736 if (!Op.isReg())
737 continue;
738 RegID = Op.getReg();
739 } else {
740 // Implicit read.
741 RegID = RD.RegisterID;
742 }
743
744 // Skip invalid register operands.
745 if (!RegID)
746 continue;
747
748 // Okay, this is a register operand. Create a ReadState for it.
749 ReadState *RS = nullptr;
750 if (IsInstRecycled && Idx < NewIS->getUses().size()) {
751 NewIS->getUses()[Idx] = ReadState(RD, RegID);
752 RS = &NewIS->getUses()[Idx++];
753 } else {
754 NewIS->getUses().emplace_back(RD, RegID);
755 RS = &NewIS->getUses().back();
756 ++Idx;
757 }
758
759 if (IsDepBreaking) {
760 // A mask of all zeroes means: explicit input operands are not
761 // independent.
762 if (Mask.isZero()) {
763 if (!RD.isImplicitRead())
765 } else {
766 // Check if this register operand is independent according to `Mask`.
767 // Note that Mask may not have enough bits to describe all explicit and
768 // implicit input operands. If this register operand doesn't have a
769 // corresponding bit in Mask, then conservatively assume that it is
770 // dependent.
771 if (Mask.getBitWidth() > RD.UseIndex) {
772 // Okay. This map describe register use `RD.UseIndex`.
773 if (Mask[RD.UseIndex])
775 }
776 }
777 }
778 }
779 if (IsInstRecycled && Idx < NewIS->getUses().size())
780 NewIS->getUses().pop_back_n(NewIS->getUses().size() - Idx);
781
782 // Early exit if there are no writes.
783 if (D.Writes.empty()) {
784 if (IsInstRecycled)
785 return llvm::make_error<RecycledInstErr>(NewIS);
786 else
787 return std::move(CreatedIS);
788 }
789
790 // Track register writes that implicitly clear the upper portion of the
791 // underlying super-registers using an APInt.
792 APInt WriteMask(D.Writes.size(), 0);
793
794 // Now query the MCInstrAnalysis object to obtain information about which
795 // register writes implicitly clear the upper portion of a super-register.
796 if (MCIA)
797 MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
798
799 // Initialize writes.
800 unsigned WriteIndex = 0;
801 Idx = 0U;
802 for (const WriteDescriptor &WD : D.Writes) {
803 RegID = WD.isImplicitWrite() ? MCRegister(WD.RegisterID)
804 : MCI.getOperand(WD.OpIndex).getReg();
805 // Check if this is a optional definition that references NoReg or a write
806 // to a constant register.
807 if ((WD.IsOptionalDef && !RegID) || MRI.isConstant(RegID)) {
808 ++WriteIndex;
809 continue;
810 }
811
812 assert(RegID && "Expected a valid register ID!");
813 if (IsInstRecycled && Idx < NewIS->getDefs().size()) {
814 NewIS->getDefs()[Idx++] =
815 WriteState(WD, RegID,
816 /* ClearsSuperRegs */ WriteMask[WriteIndex],
817 /* WritesZero */ IsZeroIdiom);
818 } else {
819 NewIS->getDefs().emplace_back(WD, RegID,
820 /* ClearsSuperRegs */ WriteMask[WriteIndex],
821 /* WritesZero */ IsZeroIdiom);
822 ++Idx;
823 }
824 ++WriteIndex;
825 }
826 if (IsInstRecycled && Idx < NewIS->getDefs().size())
827 NewIS->getDefs().pop_back_n(NewIS->getDefs().size() - Idx);
828
829 if (IsInstRecycled)
830 return llvm::make_error<RecycledInstErr>(NewIS);
831 else
832 return std::move(CreatedIS);
833}
834} // namespace mca
835} // namespace llvm
unsigned const MachineRegisterInfo * MRI
This file implements a class to represent arbitrary precision integral constant values and operations...
basic Basic Alias true
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
uint32_t Index
#define im(i)
A builder class for instructions that are statically analyzed by llvm-mca.
#define I(x, y, z)
Definition: MD5.cpp:58
while(!ToSimplify.empty())
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned OpIndex
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
Class for arbitrary precision integers.
Definition: APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1330
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class represents an Operation in the Expression.
Subclass of Error for the sole purpose of identifying the success path in the type system.
Definition: Error.h:335
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
Tagged union holding either a T or a Error.
Definition: Error.h:481
Error takeError()
Take ownership of the stored error.
Definition: Error.h:608
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
unsigned getNumOperands() const
Definition: MCInst.h:209
unsigned getFlags() const
Definition: MCInst.h:202
unsigned getOpcode() const
Definition: MCInst.h:199
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:207
virtual bool isOptimizableRegisterMove(const MCInst &MI, unsigned CPUID) const
Returns true if MI is a candidate for move elimination.
virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, unsigned CPUID) const
Returns true if MI is a dependency breaking instruction for the subtarget associated with CPUID .
virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, unsigned CPUID) const
Returns true if MI is a dependency breaking zero-idiom for the given subtarget.
virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Writes) const
Returns true if at least one of the register writes performed by.
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
ArrayRef< MCOperandInfo > operands() const
Definition: MCInstrDesc.h:239
bool mayStore() const
Return true if this instruction could possibly modify memory.
Definition: MCInstrDesc.h:444
bool mayLoad() const
Return true if this instruction could possibly read memory.
Definition: MCInstrDesc.h:438
bool hasOptionalDef() const
Set if this instruction has an optional definition, e.g.
Definition: MCInstrDesc.h:265
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
bool variadicOpsAreDefs() const
Return true if variadic operands of this instruction are definitions.
Definition: MCInstrDesc.h:418
ArrayRef< MCPhysReg > implicit_defs() const
Return a list of registers that are potentially written by any instance of this machine instruction.
Definition: MCInstrDesc.h:579
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by other flags.
Definition: MCInstrDesc.h:463
bool isCall() const
Return true if the instruction is a call.
Definition: MCInstrDesc.h:288
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
StringRef getName(unsigned Opcode) const
Returns the name for the instructions with the given opcode.
Definition: MCInstrInfo.h:70
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
bool isSFPImm() const
Definition: MCInst.h:64
bool isImm() const
Definition: MCInst.h:63
bool isInst() const
Definition: MCInst.h:67
bool isReg() const
Definition: MCInst.h:62
MCRegister getReg() const
Returns the register number.
Definition: MCInst.h:70
bool isDFPImm() const
Definition: MCInst.h:65
bool isExpr() const
Definition: MCInst.h:66
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
const char * getName(MCRegister RegNo) const
Return the human-readable symbolic target-specific name for the specified physical register.
bool isConstant(MCRegister RegNo) const
Returns true if the given register is constant.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Generic base class for all target subtargets.
virtual unsigned resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) const
Resolve a variant scheduling class for the given MCInst and CPU.
const MCWriteLatencyEntry * getWriteLatencyEntry(const MCSchedClassDesc *SC, unsigned DefIdx) const
const MCWriteProcResEntry * getWriteProcResBegin(const MCSchedClassDesc *SC) const
Return an iterator at the first process resource consumed by the given scheduling class.
const MCSchedModel & getSchedModel() const
Get the machine model for this subtarget's CPU.
size_t size() const
Definition: SmallVector.h:78
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void resize(size_type N)
Definition: SmallVector.h:638
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
static raw_ostream & warning()
Convenience method for printing "warning: " to stderr.
Definition: WithColor.cpp:85
static raw_ostream & note()
Convenience method for printing "note: " to stderr.
Definition: WithColor.cpp:87
An opaque object representing a hash code.
Definition: Hashing.h:75
A sequence of cycles.
Definition: Instruction.h:389
Expected< std::unique_ptr< Instruction > > createInstruction(const MCInst &MCI, const SmallVector< Instrument * > &IVec)
void setEndGroup(bool newVal)
Definition: Instruction.h:585
void setRetireOOO(bool newVal)
Definition: Instruction.h:586
SmallVectorImpl< WriteState > & getDefs()
Definition: Instruction.h:535
void setBeginGroup(bool newVal)
Definition: Instruction.h:584
SmallVectorImpl< ReadState > & getUses()
Definition: Instruction.h:537
void setHasSideEffects(bool newVal)
Definition: Instruction.h:583
void setMayStore(bool newVal)
Definition: Instruction.h:582
void setMayLoad(bool newVal)
Definition: Instruction.h:581
An instruction propagated through the simulated instruction pipeline.
Definition: Instruction.h:600
This class allows targets to optionally customize the logic that resolves scheduling class IDs.
virtual unsigned getSchedClassID(const MCInstrInfo &MCII, const MCInst &MCI, const SmallVector< Instrument * > &IVec) const
Given an MCInst and a vector of Instrument, a target can return a SchedClassID.
Tracks register operand latency in cycles.
Definition: Instruction.h:326
void setIndependentFromDef()
Definition: Instruction.h:372
Tracks uses of a register definition (e.g.
Definition: Instruction.h:197
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
hash_code hashMCInst(const MCInst &MCI)
static void initializeUsedResources(InstrDesc &ID, const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI, ArrayRef< uint64_t > ProcResourceMasks)
hash_code hashMCOperand(const MCOperand &MCO)
static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc, const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI, unsigned CallLatency)
void computeProcResourceMasks(const MCSchedModel &SM, MutableArrayRef< uint64_t > Masks)
Populates vector Masks with processor resource masks.
Definition: Support.cpp:40
unsigned getResourceStateIndex(uint64_t Mask)
Definition: Support.h:100
static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:385
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
@ Read
Definition: CodeGenData.h:107
@ Write
Definition: CodeGenData.h:108
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Definition: Format.h:187
DWARFExpression::Operation Op
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition: Hashing.h:590
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition: bit.h:327
Define a kind of processor resource that will be modeled by the scheduler.
Definition: MCSchedule.h:34
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Definition: MCSchedule.h:121
static const unsigned short InvalidNumMicroOps
Definition: MCSchedule.h:122
uint16_t NumWriteLatencyEntries
Definition: MCSchedule.h:135
uint16_t NumWriteProcResEntries
Definition: MCSchedule.h:133
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:256
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
Definition: MCSchedule.h:363
unsigned getProcessorID() const
Definition: MCSchedule.h:334
unsigned getNumProcResourceKinds() const
Definition: MCSchedule.h:352
bool hasInstrSchedModel() const
Does this machine model include instruction-level scheduling.
Definition: MCSchedule.h:337
static int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
Definition: MCSchedule.cpp:42
const MCProcResourceDesc * getProcResource(unsigned ProcResourceIdx) const
Definition: MCSchedule.h:356
Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...
Definition: MCSchedule.h:66
uint16_t ReleaseAtCycle
Cycle at which the resource will be released by an instruction, relatively to the cycle in which the ...
Definition: MCSchedule.h:71
An instruction descriptor.
Definition: Instruction.h:447
A register read descriptor.
Definition: Instruction.h:163
bool isImplicitRead() const
Definition: Instruction.h:177
Helper used by class InstrDesc to describe how hardware resources are used.
Definition: Instruction.h:436
A register write descriptor.
Definition: Instruction.h:135
bool isImplicitWrite() const
Definition: Instruction.h:159