LLVM 20.0.0git
PPCBranchSelector.cpp
Go to the documentation of this file.
1//===-- PPCBranchSelector.cpp - Emit long conditional branches ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that scans a machine function to determine which
10// conditional branches need more than 16 bits of displacement to reach their
11// target basic block. It does this in two passes; a calculation of basic block
12// positions pass, and a branch pseudo op to machine branch opcode pass. This
13// pass should be run last, just before the assembly printer.
14//
15//===----------------------------------------------------------------------===//
16
18#include "PPC.h"
19#include "PPCInstrInfo.h"
20#include "PPCSubtarget.h"
21#include "llvm/ADT/Statistic.h"
27#include <algorithm>
28using namespace llvm;
29
30#define DEBUG_TYPE "ppc-branch-select"
31
32STATISTIC(NumExpanded, "Number of branches expanded to long format");
33STATISTIC(NumPrefixed, "Number of prefixed instructions");
34STATISTIC(NumPrefixedAligned,
35 "Number of prefixed instructions that have been aligned");
36
37namespace {
38 struct PPCBSel : public MachineFunctionPass {
39 static char ID;
40 PPCBSel() : MachineFunctionPass(ID) {
42 }
43
44 // The sizes of the basic blocks in the function (the first
45 // element of the pair); the second element of the pair is the amount of the
46 // size that is due to potential padding.
47 std::vector<std::pair<unsigned, unsigned>> BlockSizes;
48
49 // The first block number which has imprecise instruction address.
50 int FirstImpreciseBlock = -1;
51
52 unsigned GetAlignmentAdjustment(MachineBasicBlock &MBB, unsigned Offset);
53 unsigned ComputeBlockSizes(MachineFunction &Fn);
54 void modifyAdjustment(MachineFunction &Fn);
55 int computeBranchSize(MachineFunction &Fn,
56 const MachineBasicBlock *Src,
57 const MachineBasicBlock *Dest,
58 unsigned BrOffset);
59
60 bool runOnMachineFunction(MachineFunction &Fn) override;
61
64 MachineFunctionProperties::Property::NoVRegs);
65 }
66
67 StringRef getPassName() const override { return "PowerPC Branch Selector"; }
68 };
69 char PPCBSel::ID = 0;
70}
71
72INITIALIZE_PASS(PPCBSel, "ppc-branch-select", "PowerPC Branch Selector",
73 false, false)
74
75/// createPPCBranchSelectionPass - returns an instance of the Branch Selection
76/// Pass
77///
79 return new PPCBSel();
80}
81
82/// In order to make MBB aligned, we need to add an adjustment value to the
83/// original Offset.
84unsigned PPCBSel::GetAlignmentAdjustment(MachineBasicBlock &MBB,
85 unsigned Offset) {
86 const Align Alignment = MBB.getAlignment();
87 if (Alignment == Align(1))
88 return 0;
89
90 const Align ParentAlign = MBB.getParent()->getAlignment();
91
92 if (Alignment <= ParentAlign)
93 return offsetToAlignment(Offset, Alignment);
94
95 // The alignment of this MBB is larger than the function's alignment, so we
96 // can't tell whether or not it will insert nops. Assume that it will.
97 if (FirstImpreciseBlock < 0)
98 FirstImpreciseBlock = MBB.getNumber();
99 return Alignment.value() + offsetToAlignment(Offset, Alignment);
100}
101
102/// We need to be careful about the offset of the first block in the function
103/// because it might not have the function's alignment. This happens because,
104/// under the ELFv2 ABI, for functions which require a TOC pointer, we add a
105/// two-instruction sequence to the start of the function.
106/// Note: This needs to be synchronized with the check in
107/// PPCLinuxAsmPrinter::EmitFunctionBodyStart.
108static inline unsigned GetInitialOffset(MachineFunction &Fn) {
109 unsigned InitialOffset = 0;
111 !Fn.getRegInfo().use_empty(PPC::X2))
112 InitialOffset = 8;
113 return InitialOffset;
114}
115
116/// Measure each MBB and compute a size for the entire function.
117unsigned PPCBSel::ComputeBlockSizes(MachineFunction &Fn) {
118 const PPCInstrInfo *TII =
119 static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
120 unsigned FuncSize = GetInitialOffset(Fn);
121
122 for (MachineBasicBlock &MBB : Fn) {
123 // The end of the previous block may have extra nops if this block has an
124 // alignment requirement.
125 if (MBB.getNumber() > 0) {
126 unsigned AlignExtra = GetAlignmentAdjustment(MBB, FuncSize);
127
128 auto &BS = BlockSizes[MBB.getNumber()-1];
129 BS.first += AlignExtra;
130 BS.second = AlignExtra;
131
132 FuncSize += AlignExtra;
133 }
134
135 unsigned BlockSize = 0;
136 unsigned UnalignedBytesRemaining = 0;
137 for (MachineInstr &MI : MBB) {
138 unsigned MINumBytes = TII->getInstSizeInBytes(MI);
139 if (MI.isInlineAsm() && (FirstImpreciseBlock < 0))
140 FirstImpreciseBlock = MBB.getNumber();
141 if (TII->isPrefixed(MI.getOpcode())) {
142 NumPrefixed++;
143
144 // All 8 byte instructions may require alignment. Each 8 byte
145 // instruction may be aligned by another 4 bytes.
146 // This means that an 8 byte instruction may require 12 bytes
147 // (8 for the instruction itself and 4 for the alignment nop).
148 // This will happen if an 8 byte instruction can be aligned to 64 bytes
149 // by only adding a 4 byte nop.
150 // We don't know the alignment at this point in the code so we have to
151 // adopt a more pessimistic approach. If an instruction may need
152 // alignment we assume that it does need alignment and add 4 bytes to
153 // it. As a result we may end up with more long branches than before
154 // but we are in the safe position where if we need a long branch we
155 // have one.
156 // The if statement checks to make sure that two 8 byte instructions
157 // are at least 64 bytes away from each other. It is not possible for
158 // two instructions that both need alignment to be within 64 bytes of
159 // each other.
160 if (!UnalignedBytesRemaining) {
161 BlockSize += 4;
162 UnalignedBytesRemaining = 60;
163 NumPrefixedAligned++;
164 }
165 }
166 UnalignedBytesRemaining -= std::min(UnalignedBytesRemaining, MINumBytes);
167 BlockSize += MINumBytes;
168 }
169
170 BlockSizes[MBB.getNumber()].first = BlockSize;
171 FuncSize += BlockSize;
172 }
173
174 return FuncSize;
175}
176
177/// Modify the basic block align adjustment.
178void PPCBSel::modifyAdjustment(MachineFunction &Fn) {
179 unsigned Offset = GetInitialOffset(Fn);
180 for (MachineBasicBlock &MBB : Fn) {
181 if (MBB.getNumber() > 0) {
182 auto &BS = BlockSizes[MBB.getNumber()-1];
183 BS.first -= BS.second;
184 Offset -= BS.second;
185
186 unsigned AlignExtra = GetAlignmentAdjustment(MBB, Offset);
187
188 BS.first += AlignExtra;
189 BS.second = AlignExtra;
190
191 Offset += AlignExtra;
192 }
193
194 Offset += BlockSizes[MBB.getNumber()].first;
195 }
196}
197
198/// Determine the offset from the branch in Src block to the Dest block.
199/// BrOffset is the offset of the branch instruction inside Src block.
200int PPCBSel::computeBranchSize(MachineFunction &Fn,
201 const MachineBasicBlock *Src,
202 const MachineBasicBlock *Dest,
203 unsigned BrOffset) {
204 int BranchSize;
205 Align MaxAlign = Align(4);
206 bool NeedExtraAdjustment = false;
207 if (Dest->getNumber() <= Src->getNumber()) {
208 // If this is a backwards branch, the delta is the offset from the
209 // start of this block to this branch, plus the sizes of all blocks
210 // from this block to the dest.
211 BranchSize = BrOffset;
212 MaxAlign = std::max(MaxAlign, Src->getAlignment());
213
214 int DestBlock = Dest->getNumber();
215 BranchSize += BlockSizes[DestBlock].first;
216 for (unsigned i = DestBlock+1, e = Src->getNumber(); i < e; ++i) {
217 BranchSize += BlockSizes[i].first;
218 MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment());
219 }
220
221 NeedExtraAdjustment = (FirstImpreciseBlock >= 0) &&
222 (DestBlock >= FirstImpreciseBlock);
223 } else {
224 // Otherwise, add the size of the blocks between this block and the
225 // dest to the number of bytes left in this block.
226 unsigned StartBlock = Src->getNumber();
227 BranchSize = BlockSizes[StartBlock].first - BrOffset;
228
229 MaxAlign = std::max(MaxAlign, Dest->getAlignment());
230 for (unsigned i = StartBlock+1, e = Dest->getNumber(); i != e; ++i) {
231 BranchSize += BlockSizes[i].first;
232 MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment());
233 }
234
235 NeedExtraAdjustment = (FirstImpreciseBlock >= 0) &&
236 (Src->getNumber() >= FirstImpreciseBlock);
237 }
238
239 // We tend to over estimate code size due to large alignment and
240 // inline assembly. Usually it causes larger computed branch offset.
241 // But sometimes it may also causes smaller computed branch offset
242 // than actual branch offset. If the offset is close to the limit of
243 // encoding, it may cause problem at run time.
244 // Following is a simplified example.
245 //
246 // actual estimated
247 // address address
248 // ...
249 // bne Far 100 10c
250 // .p2align 4
251 // Near: 110 110
252 // ...
253 // Far: 8108 8108
254 //
255 // Actual offset: 0x8108 - 0x100 = 0x8008
256 // Computed offset: 0x8108 - 0x10c = 0x7ffc
257 //
258 // This example also shows when we can get the largest gap between
259 // estimated offset and actual offset. If there is an aligned block
260 // ABB between branch and target, assume its alignment is <align>
261 // bits. Now consider the accumulated function size FSIZE till the end
262 // of previous block PBB. If the estimated FSIZE is multiple of
263 // 2^<align>, we don't need any padding for the estimated address of
264 // ABB. If actual FSIZE at the end of PBB is 4 bytes more than
265 // multiple of 2^<align>, then we need (2^<align> - 4) bytes of
266 // padding. It also means the actual branch offset is (2^<align> - 4)
267 // larger than computed offset. Other actual FSIZE needs less padding
268 // bytes, so causes smaller gap between actual and computed offset.
269 //
270 // On the other hand, if the inline asm or large alignment occurs
271 // between the branch block and destination block, the estimated address
272 // can be <delta> larger than actual address. If padding bytes are
273 // needed for a later aligned block, the actual number of padding bytes
274 // is at most <delta> more than estimated padding bytes. So the actual
275 // aligned block address is less than or equal to the estimated aligned
276 // block address. So the actual branch offset is less than or equal to
277 // computed branch offset.
278 //
279 // The computed offset is at most ((1 << alignment) - 4) bytes smaller
280 // than actual offset. So we add this number to the offset for safety.
281 if (NeedExtraAdjustment)
282 BranchSize += MaxAlign.value() - 4;
283
284 return BranchSize;
285}
286
287bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
288 const PPCInstrInfo *TII =
289 static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
290 // Give the blocks of the function a dense, in-order, numbering.
291 Fn.RenumberBlocks();
292 BlockSizes.resize(Fn.getNumBlockIDs());
293 FirstImpreciseBlock = -1;
294
295 // Measure each MBB and compute a size for the entire function.
296 unsigned FuncSize = ComputeBlockSizes(Fn);
297
298 // If the entire function is smaller than the displacement of a branch field,
299 // we know we don't need to shrink any branches in this function. This is a
300 // common case.
301 if (FuncSize < (1 << 15)) {
302 BlockSizes.clear();
303 return false;
304 }
305
306 // For each conditional branch, if the offset to its destination is larger
307 // than the offset field allows, transform it into a long branch sequence
308 // like this:
309 // short branch:
310 // bCC MBB
311 // long branch:
312 // b!CC $PC+8
313 // b MBB
314 //
315 bool MadeChange = true;
316 bool EverMadeChange = false;
317 while (MadeChange) {
318 // Iteratively expand branches until we reach a fixed point.
319 MadeChange = false;
320
321 for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
322 ++MFI) {
323 MachineBasicBlock &MBB = *MFI;
324 unsigned MBBStartOffset = 0;
326 I != E; ++I) {
327 MachineBasicBlock *Dest = nullptr;
328 if (I->getOpcode() == PPC::BCC && !I->getOperand(2).isImm())
329 Dest = I->getOperand(2).getMBB();
330 else if ((I->getOpcode() == PPC::BC || I->getOpcode() == PPC::BCn) &&
331 !I->getOperand(1).isImm())
332 Dest = I->getOperand(1).getMBB();
333 else if ((I->getOpcode() == PPC::BDNZ8 || I->getOpcode() == PPC::BDNZ ||
334 I->getOpcode() == PPC::BDZ8 || I->getOpcode() == PPC::BDZ) &&
335 !I->getOperand(0).isImm())
336 Dest = I->getOperand(0).getMBB();
337
338 if (!Dest) {
339 MBBStartOffset += TII->getInstSizeInBytes(*I);
340 continue;
341 }
342
343 // Determine the offset from the current branch to the destination
344 // block.
345 int BranchSize = computeBranchSize(Fn, &MBB, Dest, MBBStartOffset);
346
347 // If this branch is in range, ignore it.
348 if (isInt<16>(BranchSize)) {
349 MBBStartOffset += 4;
350 continue;
351 }
352
353 // Otherwise, we have to expand it to a long branch.
354 MachineInstr &OldBranch = *I;
355 DebugLoc dl = OldBranch.getDebugLoc();
356
357 if (I->getOpcode() == PPC::BCC) {
358 // The BCC operands are:
359 // 0. PPC branch predicate
360 // 1. CR register
361 // 2. Target MBB
362 PPC::Predicate Pred = (PPC::Predicate)I->getOperand(0).getImm();
363 Register CRReg = I->getOperand(1).getReg();
364
365 // Jump over the uncond branch inst (i.e. $PC+8) on opposite condition.
366 BuildMI(MBB, I, dl, TII->get(PPC::BCC))
367 .addImm(PPC::InvertPredicate(Pred)).addReg(CRReg).addImm(2);
368 } else if (I->getOpcode() == PPC::BC) {
369 Register CRBit = I->getOperand(0).getReg();
370 BuildMI(MBB, I, dl, TII->get(PPC::BCn)).addReg(CRBit).addImm(2);
371 } else if (I->getOpcode() == PPC::BCn) {
372 Register CRBit = I->getOperand(0).getReg();
373 BuildMI(MBB, I, dl, TII->get(PPC::BC)).addReg(CRBit).addImm(2);
374 } else if (I->getOpcode() == PPC::BDNZ) {
375 BuildMI(MBB, I, dl, TII->get(PPC::BDZ)).addImm(2);
376 } else if (I->getOpcode() == PPC::BDNZ8) {
377 BuildMI(MBB, I, dl, TII->get(PPC::BDZ8)).addImm(2);
378 } else if (I->getOpcode() == PPC::BDZ) {
379 BuildMI(MBB, I, dl, TII->get(PPC::BDNZ)).addImm(2);
380 } else if (I->getOpcode() == PPC::BDZ8) {
381 BuildMI(MBB, I, dl, TII->get(PPC::BDNZ8)).addImm(2);
382 } else {
383 llvm_unreachable("Unhandled branch type!");
384 }
385
386 // Uncond branch to the real destination.
387 I = BuildMI(MBB, I, dl, TII->get(PPC::B)).addMBB(Dest);
388
389 // Remove the old branch from the function.
390 OldBranch.eraseFromParent();
391
392 // Remember that this instruction is 8-bytes, increase the size of the
393 // block by 4, remember to iterate.
394 BlockSizes[MBB.getNumber()].first += 4;
395 MBBStartOffset += 8;
396 ++NumExpanded;
397 MadeChange = true;
398 }
399 }
400
401 if (MadeChange) {
402 // If we're going to iterate again, make sure we've updated our
403 // padding-based contributions to the block sizes.
404 modifyAdjustment(Fn);
405 }
406
407 EverMadeChange |= MadeChange;
408 }
409
410 BlockSizes.clear();
411 return EverMadeChange;
412}
MachineBasicBlock & MBB
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
static unsigned GetInitialOffset(MachineFunction &Fn)
We need to be careful about the offset of the first block in the function because it might not have t...
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static const int BlockSize
Definition: TarWriter.cpp:33
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
Align getAlignment() const
Return alignment of the basic block.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
MachineBasicBlock * getBlockNumbered(unsigned N) const
getBlockNumbered - MachineBasicBlocks are automatically numbered when they are inserted into the mach...
Align getAlignment() const
getAlignment - Return the alignment of the function.
unsigned getNumBlockIDs() const
getNumBlockIDs - Return the number of MBB ID's allocated.
void RenumberBlocks(MachineBasicBlock *MBBFrom=nullptr)
RenumberBlocks - This discards all of the MachineBasicBlock numbers and recomputes them.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:499
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
bool use_empty(Register RegNo) const
use_empty - Return true if there are no instructions using the specified register.
bool isELFv2ABI() const
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
virtual const TargetInstrInfo * getInstrInfo() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
Predicate InvertPredicate(Predicate Opcode)
Invert the specified predicate. != -> ==, < -> >=.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
uint64_t offsetToAlignment(uint64_t Value, Align Alignment)
Returns the offset to the next integer (mod 2**64) that is greater than or equal to Value and is a mu...
Definition: Alignment.h:197
void initializePPCBSelPass(PassRegistry &)
FunctionPass * createPPCBranchSelectionPass()
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85