LLVM 20.0.0git
RuntimeDyldELF.cpp
Go to the documentation of this file.
1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RuntimeDyldELF.h"
15#include "llvm/ADT/StringRef.h"
20#include "llvm/Support/Endian.h"
23
24using namespace llvm;
25using namespace llvm::object;
26using namespace llvm::support::endian;
27
28#define DEBUG_TYPE "dyld"
29
30static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
31
32static void or32AArch64Imm(void *L, uint64_t Imm) {
33 or32le(L, (Imm & 0xFFF) << 10);
34}
35
36template <class T> static void write(bool isBE, void *P, T V) {
37 isBE ? write<T, llvm::endianness::big>(P, V)
38 : write<T, llvm::endianness::little>(P, V);
39}
40
41static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46}
47
48// Return the bits [Start, End] from Val shifted Start bits.
49// For instance, getBits(0xF0, 4, 8) returns 0xF.
50static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
53}
54
55namespace {
56
57template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59
60 typedef typename ELFT::uint addr_type;
61
62 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
63
64public:
67
68 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
69
70 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
71
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary *v) {
74 return (isa<ELFObjectFile<ELFT>>(v) &&
76 }
77 static bool classof(const ELFObjectFile<ELFT> *v) {
78 return v->isDyldType();
79 }
80};
81
82
83
84// The MemoryBuffer passed into this constructor is just a wrapper around the
85// actual memory. Ultimately, the Binary parent class will take ownership of
86// this MemoryBuffer object but not the underlying memory.
87template <class ELFT>
88DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89 : ELFObjectFile<ELFT>(std::move(Obj)) {
90 this->isDyldELFObject = true;
91}
92
93template <class ELFT>
95DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
97 if (auto E = Obj.takeError())
98 return std::move(E);
99 std::unique_ptr<DyldELFObject<ELFT>> Ret(
100 new DyldELFObject<ELFT>(std::move(*Obj)));
101 return std::move(Ret);
102}
103
104template <class ELFT>
105void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106 uint64_t Addr) {
107 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108 Elf_Shdr *shdr =
109 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
110
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr->sh_addr = static_cast<addr_type>(Addr);
114}
115
116template <class ELFT>
117void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118 uint64_t Addr) {
119
120 Elf_Sym *sym = const_cast<Elf_Sym *>(
122
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym->st_value = static_cast<addr_type>(Addr);
126}
127
128class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130 RuntimeDyld::LoadedObjectInfo> {
131public:
132 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
134
136 getObjectForDebug(const ObjectFile &Obj) const override;
137};
138
139template <typename ELFT>
141createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142 const LoadedELFObjectInfo &L) {
143 typedef typename ELFT::Shdr Elf_Shdr;
144 typedef typename ELFT::uint addr_type;
145
147 DyldELFObject<ELFT>::create(Buffer);
148 if (Error E = ObjOrErr.takeError())
149 return std::move(E);
150
151 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
152
153 // Iterate over all sections in the object.
154 auto SI = SourceObject.section_begin();
155 for (const auto &Sec : Obj->sections()) {
156 Expected<StringRef> NameOrErr = Sec.getName();
157 if (!NameOrErr) {
158 consumeError(NameOrErr.takeError());
159 continue;
160 }
161
162 if (*NameOrErr != "") {
163 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
166
167 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
171 }
172 }
173 ++SI;
174 }
175
176 return std::move(Obj);
177}
178
180createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181 assert(Obj.isELF() && "Not an ELF object file.");
182
183 std::unique_ptr<MemoryBuffer> Buffer =
185
186 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187 handleAllErrors(DebugObj.takeError());
188 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189 DebugObj =
190 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200 else
201 llvm_unreachable("Unexpected ELF format");
202
203 handleAllErrors(DebugObj.takeError());
204 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
205}
206
208LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209 return createELFDebugObject(Obj, *this);
210}
211
212} // anonymous namespace
213
214namespace llvm {
215
218 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
220
222 for (SID EHFrameSID : UnregisteredEHFrameSections) {
223 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
224 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
225 size_t EHFrameSize = Sections[EHFrameSID].getSize();
226 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
227 }
228 UnregisteredEHFrameSections.clear();
229}
230
231std::unique_ptr<RuntimeDyldELF>
235 switch (Arch) {
236 default:
237 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
238 case Triple::mips:
239 case Triple::mipsel:
240 case Triple::mips64:
241 case Triple::mips64el:
242 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
243 }
244}
245
246std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
249 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
250 else {
251 HasError = true;
252 raw_string_ostream ErrStream(ErrorStr);
253 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
254 return nullptr;
255 }
256}
257
258void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260 uint32_t Type, int64_t Addend,
261 uint64_t SymOffset) {
262 switch (Type) {
263 default:
264 report_fatal_error("Relocation type not implemented yet!");
265 break;
266 case ELF::R_X86_64_NONE:
267 break;
268 case ELF::R_X86_64_8: {
269 Value += Addend;
270 assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
271 uint8_t TruncatedAddr = (Value & 0xFF);
272 *Section.getAddressWithOffset(Offset) = TruncatedAddr;
273 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
274 << format("%p\n", Section.getAddressWithOffset(Offset)));
275 break;
276 }
277 case ELF::R_X86_64_16: {
278 Value += Addend;
279 assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
280 uint16_t TruncatedAddr = (Value & 0xFFFF);
281 support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
282 TruncatedAddr;
283 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
284 << format("%p\n", Section.getAddressWithOffset(Offset)));
285 break;
286 }
287 case ELF::R_X86_64_64: {
288 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
289 Value + Addend;
290 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
291 << format("%p\n", Section.getAddressWithOffset(Offset)));
292 break;
293 }
294 case ELF::R_X86_64_32:
295 case ELF::R_X86_64_32S: {
296 Value += Addend;
297 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
298 (Type == ELF::R_X86_64_32S &&
299 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
300 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
301 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
302 TruncatedAddr;
303 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
304 << format("%p\n", Section.getAddressWithOffset(Offset)));
305 break;
306 }
307 case ELF::R_X86_64_PC8: {
308 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
309 int64_t RealOffset = Value + Addend - FinalAddress;
310 assert(isInt<8>(RealOffset));
311 int8_t TruncOffset = (RealOffset & 0xFF);
312 Section.getAddress()[Offset] = TruncOffset;
313 break;
314 }
315 case ELF::R_X86_64_PC32: {
316 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
317 int64_t RealOffset = Value + Addend - FinalAddress;
318 assert(isInt<32>(RealOffset));
319 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
320 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
321 TruncOffset;
322 break;
323 }
324 case ELF::R_X86_64_PC64: {
325 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
326 int64_t RealOffset = Value + Addend - FinalAddress;
327 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
328 RealOffset;
329 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
330 << format("%p\n", FinalAddress));
331 break;
332 }
333 case ELF::R_X86_64_GOTOFF64: {
334 // Compute Value - GOTBase.
335 uint64_t GOTBase = 0;
336 for (const auto &Section : Sections) {
337 if (Section.getName() == ".got") {
338 GOTBase = Section.getLoadAddressWithOffset(0);
339 break;
340 }
341 }
342 assert(GOTBase != 0 && "missing GOT");
343 int64_t GOTOffset = Value - GOTBase + Addend;
344 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
345 break;
346 }
347 case ELF::R_X86_64_DTPMOD64: {
348 // We only have one DSO, so the module id is always 1.
349 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
350 break;
351 }
352 case ELF::R_X86_64_DTPOFF64:
353 case ELF::R_X86_64_TPOFF64: {
354 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
355 // offset in the *initial* TLS block. Since we are statically linking, all
356 // TLS blocks already exist in the initial block, so resolve both
357 // relocations equally.
358 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
359 Value + Addend;
360 break;
361 }
362 case ELF::R_X86_64_DTPOFF32:
363 case ELF::R_X86_64_TPOFF32: {
364 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
365 // be resolved equally.
366 int64_t RealValue = Value + Addend;
367 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
368 int32_t TruncValue = RealValue;
369 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
370 TruncValue;
371 break;
372 }
373 }
374}
375
376void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378 uint32_t Type, int32_t Addend) {
379 switch (Type) {
380 case ELF::R_386_32: {
381 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
382 Value + Addend;
383 break;
384 }
385 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
386 // reach any 32 bit address.
387 case ELF::R_386_PLT32:
388 case ELF::R_386_PC32: {
389 uint32_t FinalAddress =
390 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
391 uint32_t RealOffset = Value + Addend - FinalAddress;
392 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
393 RealOffset;
394 break;
395 }
396 default:
397 // There are other relocation types, but it appears these are the
398 // only ones currently used by the LLVM ELF object writer
399 report_fatal_error("Relocation type not implemented yet!");
400 break;
401 }
402}
403
404void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406 uint32_t Type, int64_t Addend) {
407 uint32_t *TargetPtr =
408 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
409 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
410 // Data should use target endian. Code should always use little endian.
411 bool isBE = Arch == Triple::aarch64_be;
412
413 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
414 << format("%llx", Section.getAddressWithOffset(Offset))
415 << " FinalAddress: 0x" << format("%llx", FinalAddress)
416 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
417 << format("%x", Type) << " Addend: 0x"
418 << format("%llx", Addend) << "\n");
419
420 switch (Type) {
421 default:
422 report_fatal_error("Relocation type not implemented yet!");
423 break;
424 case ELF::R_AARCH64_NONE:
425 break;
426 case ELF::R_AARCH64_ABS16: {
427 uint64_t Result = Value + Addend;
428 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
429 (Result >> 16) == 0);
430 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
431 break;
432 }
433 case ELF::R_AARCH64_ABS32: {
434 uint64_t Result = Value + Addend;
435 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
436 (Result >> 32) == 0);
437 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
438 break;
439 }
440 case ELF::R_AARCH64_ABS64:
441 write(isBE, TargetPtr, Value + Addend);
442 break;
443 case ELF::R_AARCH64_PLT32: {
444 uint64_t Result = Value + Addend - FinalAddress;
445 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
446 static_cast<int64_t>(Result) <= INT32_MAX);
447 write(isBE, TargetPtr, static_cast<uint32_t>(Result));
448 break;
449 }
450 case ELF::R_AARCH64_PREL16: {
451 uint64_t Result = Value + Addend - FinalAddress;
452 assert(static_cast<int64_t>(Result) >= INT16_MIN &&
453 static_cast<int64_t>(Result) <= UINT16_MAX);
454 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
455 break;
456 }
457 case ELF::R_AARCH64_PREL32: {
458 uint64_t Result = Value + Addend - FinalAddress;
459 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
460 static_cast<int64_t>(Result) <= UINT32_MAX);
461 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
462 break;
463 }
464 case ELF::R_AARCH64_PREL64:
465 write(isBE, TargetPtr, Value + Addend - FinalAddress);
466 break;
467 case ELF::R_AARCH64_CONDBR19: {
468 uint64_t BranchImm = Value + Addend - FinalAddress;
469
470 assert(isInt<21>(BranchImm));
471 *TargetPtr &= 0xff00001fU;
472 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
473 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
474 break;
475 }
476 case ELF::R_AARCH64_TSTBR14: {
477 uint64_t BranchImm = Value + Addend - FinalAddress;
478
479 assert(isInt<16>(BranchImm));
480
481 uint32_t RawInstr = *(support::little32_t *)TargetPtr;
482 *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
483
484 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
485 or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
486 break;
487 }
488 case ELF::R_AARCH64_CALL26: // fallthrough
489 case ELF::R_AARCH64_JUMP26: {
490 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
491 // calculation.
492 uint64_t BranchImm = Value + Addend - FinalAddress;
493
494 // "Check that -2^27 <= result < 2^27".
495 assert(isInt<28>(BranchImm));
496 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
497 break;
498 }
499 case ELF::R_AARCH64_MOVW_UABS_G3:
500 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
501 break;
502 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
503 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
504 break;
505 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
506 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
507 break;
508 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
509 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
510 break;
511 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
512 // Operation: Page(S+A) - Page(P)
514 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
515
516 // Check that -2^32 <= X < 2^32
517 assert(isInt<33>(Result) && "overflow check failed for relocation");
518
519 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
520 // from bits 32:12 of X.
521 write32AArch64Addr(TargetPtr, Result >> 12);
522 break;
523 }
524 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
525 // Operation: S + A
526 // Immediate goes in bits 21:10 of LD/ST instruction, taken
527 // from bits 11:0 of X
528 or32AArch64Imm(TargetPtr, Value + Addend);
529 break;
530 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
531 // Operation: S + A
532 // Immediate goes in bits 21:10 of LD/ST instruction, taken
533 // from bits 11:0 of X
534 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
535 break;
536 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
537 // Operation: S + A
538 // Immediate goes in bits 21:10 of LD/ST instruction, taken
539 // from bits 11:1 of X
540 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
541 break;
542 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
543 // Operation: S + A
544 // Immediate goes in bits 21:10 of LD/ST instruction, taken
545 // from bits 11:2 of X
546 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
547 break;
548 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
549 // Operation: S + A
550 // Immediate goes in bits 21:10 of LD/ST instruction, taken
551 // from bits 11:3 of X
552 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
553 break;
554 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
555 // Operation: S + A
556 // Immediate goes in bits 21:10 of LD/ST instruction, taken
557 // from bits 11:4 of X
558 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
559 break;
560 case ELF::R_AARCH64_LD_PREL_LO19: {
561 // Operation: S + A - P
562 uint64_t Result = Value + Addend - FinalAddress;
563
564 // "Check that -2^20 <= result < 2^20".
565 assert(isInt<21>(Result));
566
567 *TargetPtr &= 0xff00001fU;
568 // Immediate goes in bits 23:5 of LD imm instruction, taken
569 // from bits 20:2 of X
570 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
571 break;
572 }
573 case ELF::R_AARCH64_ADR_PREL_LO21: {
574 // Operation: S + A - P
575 uint64_t Result = Value + Addend - FinalAddress;
576
577 // "Check that -2^20 <= result < 2^20".
578 assert(isInt<21>(Result));
579
580 *TargetPtr &= 0x9f00001fU;
581 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
582 // from bits 20:0 of X
583 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
584 *TargetPtr |= (Result & 0x3) << 29;
585 break;
586 }
587 }
588}
589
590void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
592 uint32_t Type, int32_t Addend) {
593 // TODO: Add Thumb relocations.
594 uint32_t *TargetPtr =
595 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
596 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
597 Value += Addend;
598
599 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
600 << Section.getAddressWithOffset(Offset)
601 << " FinalAddress: " << format("%p", FinalAddress)
602 << " Value: " << format("%x", Value)
603 << " Type: " << format("%x", Type)
604 << " Addend: " << format("%x", Addend) << "\n");
605
606 switch (Type) {
607 default:
608 llvm_unreachable("Not implemented relocation type!");
609
610 case ELF::R_ARM_NONE:
611 break;
612 // Write a 31bit signed offset
613 case ELF::R_ARM_PREL31:
614 support::ulittle32_t::ref{TargetPtr} =
615 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
616 ((Value - FinalAddress) & ~0x80000000);
617 break;
618 case ELF::R_ARM_TARGET1:
619 case ELF::R_ARM_ABS32:
620 support::ulittle32_t::ref{TargetPtr} = Value;
621 break;
622 // Write first 16 bit of 32 bit value to the mov instruction.
623 // Last 4 bit should be shifted.
624 case ELF::R_ARM_MOVW_ABS_NC:
625 case ELF::R_ARM_MOVT_ABS:
626 if (Type == ELF::R_ARM_MOVW_ABS_NC)
627 Value = Value & 0xFFFF;
628 else if (Type == ELF::R_ARM_MOVT_ABS)
629 Value = (Value >> 16) & 0xFFFF;
630 support::ulittle32_t::ref{TargetPtr} =
631 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
632 (((Value >> 12) & 0xF) << 16);
633 break;
634 // Write 24 bit relative value to the branch instruction.
635 case ELF::R_ARM_PC24: // Fall through.
636 case ELF::R_ARM_CALL: // Fall through.
637 case ELF::R_ARM_JUMP24:
638 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
639 RelValue = (RelValue & 0x03FFFFFC) >> 2;
640 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
641 support::ulittle32_t::ref{TargetPtr} =
642 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
643 break;
644 }
645}
646
647bool RuntimeDyldELF::resolveLoongArch64ShortBranch(
648 unsigned SectionID, relocation_iterator RelI,
649 const RelocationValueRef &Value) {
651 if (Value.SymbolName) {
652 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
653 // Don't create direct branch for external symbols.
654 if (Loc == GlobalSymbolTable.end())
655 return false;
656 const auto &SymInfo = Loc->second;
657 Address =
658 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
659 SymInfo.getOffset()));
660 } else {
661 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
662 }
663 uint64_t Offset = RelI->getOffset();
664 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
665 if (!isInt<28>(Address + Value.Addend - SourceAddress))
666 return false;
667 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
668 Value.Addend);
669 return true;
670}
671
672void RuntimeDyldELF::resolveLoongArch64Branch(unsigned SectionID,
675 StubMap &Stubs) {
676 LLVM_DEBUG(dbgs() << "\t\tThis is an LoongArch64 branch relocation.\n");
677
678 if (resolveLoongArch64ShortBranch(SectionID, RelI, Value))
679 return;
680
681 SectionEntry &Section = Sections[SectionID];
682 uint64_t Offset = RelI->getOffset();
683 unsigned RelType = RelI->getType();
684 // Look for an existing stub.
685 StubMap::const_iterator i = Stubs.find(Value);
686 if (i != Stubs.end()) {
687 resolveRelocation(Section, Offset,
688 (uint64_t)Section.getAddressWithOffset(i->second),
689 RelType, 0);
690 LLVM_DEBUG(dbgs() << " Stub function found\n");
691 return;
692 }
693 // Create a new stub function.
694 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
695 Stubs[Value] = Section.getStubOffset();
696 uint8_t *StubTargetAddr =
697 createStubFunction(Section.getAddressWithOffset(Section.getStubOffset()));
698 RelocationEntry LU12I_W(SectionID, StubTargetAddr - Section.getAddress(),
699 ELF::R_LARCH_ABS_HI20, Value.Addend);
700 RelocationEntry ORI(SectionID, StubTargetAddr - Section.getAddress() + 4,
701 ELF::R_LARCH_ABS_LO12, Value.Addend);
702 RelocationEntry LU32I_D(SectionID, StubTargetAddr - Section.getAddress() + 8,
703 ELF::R_LARCH_ABS64_LO20, Value.Addend);
704 RelocationEntry LU52I_D(SectionID, StubTargetAddr - Section.getAddress() + 12,
705 ELF::R_LARCH_ABS64_HI12, Value.Addend);
706 if (Value.SymbolName) {
707 addRelocationForSymbol(LU12I_W, Value.SymbolName);
708 addRelocationForSymbol(ORI, Value.SymbolName);
709 addRelocationForSymbol(LU32I_D, Value.SymbolName);
710 addRelocationForSymbol(LU52I_D, Value.SymbolName);
711 } else {
712 addRelocationForSection(LU12I_W, Value.SectionID);
713 addRelocationForSection(ORI, Value.SectionID);
714 addRelocationForSection(LU32I_D, Value.SectionID);
715
716 addRelocationForSection(LU52I_D, Value.SectionID);
717 }
718 resolveRelocation(Section, Offset,
719 reinterpret_cast<uint64_t>(
720 Section.getAddressWithOffset(Section.getStubOffset())),
721 RelType, 0);
722 Section.advanceStubOffset(getMaxStubSize());
723}
724
725// Returns extract bits Val[Hi:Lo].
727 return Hi == 63 ? Val >> Lo : (Val & (((1ULL << (Hi + 1)) - 1))) >> Lo;
728}
729
730void RuntimeDyldELF::resolveLoongArch64Relocation(const SectionEntry &Section,
733 int64_t Addend) {
734 auto *TargetPtr = Section.getAddressWithOffset(Offset);
735 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
736
737 LLVM_DEBUG(dbgs() << "resolveLoongArch64Relocation, LocalAddress: 0x"
738 << format("%llx", Section.getAddressWithOffset(Offset))
739 << " FinalAddress: 0x" << format("%llx", FinalAddress)
740 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
741 << format("%x", Type) << " Addend: 0x"
742 << format("%llx", Addend) << "\n");
743
744 switch (Type) {
745 default:
746 report_fatal_error("Relocation type not implemented yet!");
747 break;
748 case ELF::R_LARCH_32:
749 support::ulittle32_t::ref{TargetPtr} =
750 static_cast<uint32_t>(Value + Addend);
751 break;
752 case ELF::R_LARCH_64:
753 support::ulittle64_t::ref{TargetPtr} = Value + Addend;
754 break;
755 case ELF::R_LARCH_32_PCREL:
756 support::ulittle32_t::ref{TargetPtr} =
757 static_cast<uint32_t>(Value + Addend - FinalAddress);
758 break;
759 case ELF::R_LARCH_B26: {
760 uint64_t B26 = (Value + Addend - FinalAddress) >> 2;
761 auto Instr = support::ulittle32_t::ref(TargetPtr);
762 uint32_t Imm15_0 = extractBits(B26, /*Hi=*/15, /*Lo=*/0) << 10;
763 uint32_t Imm25_16 = extractBits(B26, /*Hi=*/25, /*Lo=*/16);
764 Instr = (Instr & 0xfc000000) | Imm15_0 | Imm25_16;
765 break;
766 }
767 case ELF::R_LARCH_CALL36: {
768 uint64_t Call36 = (Value + Addend - FinalAddress) >> 2;
769 auto Pcaddu18i = support::ulittle32_t::ref(TargetPtr);
770 uint32_t Imm35_16 =
771 extractBits((Call36 + (1UL << 15)), /*Hi=*/35, /*Lo=*/16) << 5;
772 Pcaddu18i = (Pcaddu18i & 0xfe00001f) | Imm35_16;
773 auto Jirl = support::ulittle32_t::ref(TargetPtr + 4);
774 uint32_t Imm15_0 = extractBits(Call36, /*Hi=*/15, /*Lo=*/0) << 10;
775 Jirl = (Jirl & 0xfc0003ff) | Imm15_0;
776 break;
777 }
778 case ELF::R_LARCH_GOT_PC_HI20:
779 case ELF::R_LARCH_PCALA_HI20: {
780 uint64_t Target = Value + Addend;
781 uint64_t TargetPage =
782 (Target + (Target & 0x800)) & ~static_cast<uint64_t>(0xfff);
783 uint64_t PCPage = FinalAddress & ~static_cast<uint64_t>(0xfff);
784 int64_t PageDelta = TargetPage - PCPage;
785 auto Instr = support::ulittle32_t::ref(TargetPtr);
786 uint32_t Imm31_12 = extractBits(PageDelta, /*Hi=*/31, /*Lo=*/12) << 5;
787 Instr = (Instr & 0xfe00001f) | Imm31_12;
788 break;
789 }
790 case ELF::R_LARCH_GOT_PC_LO12:
791 case ELF::R_LARCH_PCALA_LO12: {
792 uint64_t TargetOffset = (Value + Addend) & 0xfff;
793 auto Instr = support::ulittle32_t::ref(TargetPtr);
794 uint32_t Imm11_0 = TargetOffset << 10;
795 Instr = (Instr & 0xffc003ff) | Imm11_0;
796 break;
797 }
798 case ELF::R_LARCH_ABS_HI20: {
799 uint64_t Target = Value + Addend;
800 auto Instr = support::ulittle32_t::ref(TargetPtr);
801 uint32_t Imm31_12 = extractBits(Target, /*Hi=*/31, /*Lo=*/12) << 5;
802 Instr = (Instr & 0xfe00001f) | Imm31_12;
803 break;
804 }
805 case ELF::R_LARCH_ABS_LO12: {
806 uint64_t Target = Value + Addend;
807 auto Instr = support::ulittle32_t::ref(TargetPtr);
808 uint32_t Imm11_0 = extractBits(Target, /*Hi=*/11, /*Lo=*/0) << 10;
809 Instr = (Instr & 0xffc003ff) | Imm11_0;
810 break;
811 }
812 case ELF::R_LARCH_ABS64_LO20: {
813 uint64_t Target = Value + Addend;
814 auto Instr = support::ulittle32_t::ref(TargetPtr);
815 uint32_t Imm51_32 = extractBits(Target, /*Hi=*/51, /*Lo=*/32) << 5;
816 Instr = (Instr & 0xfe00001f) | Imm51_32;
817 break;
818 }
819 case ELF::R_LARCH_ABS64_HI12: {
820 uint64_t Target = Value + Addend;
821 auto Instr = support::ulittle32_t::ref(TargetPtr);
822 uint32_t Imm63_52 = extractBits(Target, /*Hi=*/63, /*Lo=*/52) << 10;
823 Instr = (Instr & 0xffc003ff) | Imm63_52;
824 break;
825 }
826 case ELF::R_LARCH_ADD32:
827 support::ulittle32_t::ref{TargetPtr} =
828 (support::ulittle32_t::ref{TargetPtr} +
829 static_cast<uint32_t>(Value + Addend));
830 break;
831 case ELF::R_LARCH_SUB32:
832 support::ulittle32_t::ref{TargetPtr} =
833 (support::ulittle32_t::ref{TargetPtr} -
834 static_cast<uint32_t>(Value + Addend));
835 break;
836 case ELF::R_LARCH_ADD64:
837 support::ulittle64_t::ref{TargetPtr} =
838 (support::ulittle64_t::ref{TargetPtr} + Value + Addend);
839 break;
840 case ELF::R_LARCH_SUB64:
841 support::ulittle64_t::ref{TargetPtr} =
842 (support::ulittle64_t::ref{TargetPtr} - Value - Addend);
843 break;
844 }
845}
846
847void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
848 if (Arch == Triple::UnknownArch ||
849 Triple::getArchTypePrefix(Arch) != "mips") {
850 IsMipsO32ABI = false;
851 IsMipsN32ABI = false;
852 IsMipsN64ABI = false;
853 return;
854 }
855 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
856 unsigned AbiVariant = E->getPlatformFlags();
857 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
858 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
859 }
860 IsMipsN64ABI = Obj.getFileFormatName() == "elf64-mips";
861}
862
863// Return the .TOC. section and offset.
864Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
865 ObjSectionToIDMap &LocalSections,
866 RelocationValueRef &Rel) {
867 // Set a default SectionID in case we do not find a TOC section below.
868 // This may happen for references to TOC base base (sym@toc, .odp
869 // relocation) without a .toc directive. In this case just use the
870 // first section (which is usually the .odp) since the code won't
871 // reference the .toc base directly.
872 Rel.SymbolName = nullptr;
873 Rel.SectionID = 0;
874
875 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
876 // order. The TOC starts where the first of these sections starts.
877 for (auto &Section : Obj.sections()) {
878 Expected<StringRef> NameOrErr = Section.getName();
879 if (!NameOrErr)
880 return NameOrErr.takeError();
881 StringRef SectionName = *NameOrErr;
882
883 if (SectionName == ".got"
884 || SectionName == ".toc"
885 || SectionName == ".tocbss"
886 || SectionName == ".plt") {
887 if (auto SectionIDOrErr =
888 findOrEmitSection(Obj, Section, false, LocalSections))
889 Rel.SectionID = *SectionIDOrErr;
890 else
891 return SectionIDOrErr.takeError();
892 break;
893 }
894 }
895
896 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
897 // thus permitting a full 64 Kbytes segment.
898 Rel.Addend = 0x8000;
899
900 return Error::success();
901}
902
903// Returns the sections and offset associated with the ODP entry referenced
904// by Symbol.
905Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
906 ObjSectionToIDMap &LocalSections,
907 RelocationValueRef &Rel) {
908 // Get the ELF symbol value (st_value) to compare with Relocation offset in
909 // .opd entries
910 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
911 si != se; ++si) {
912
913 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
914 if (!RelSecOrErr)
916
917 section_iterator RelSecI = *RelSecOrErr;
918 if (RelSecI == Obj.section_end())
919 continue;
920
921 Expected<StringRef> NameOrErr = RelSecI->getName();
922 if (!NameOrErr)
923 return NameOrErr.takeError();
924 StringRef RelSectionName = *NameOrErr;
925
926 if (RelSectionName != ".opd")
927 continue;
928
929 for (elf_relocation_iterator i = si->relocation_begin(),
930 e = si->relocation_end();
931 i != e;) {
932 // The R_PPC64_ADDR64 relocation indicates the first field
933 // of a .opd entry
934 uint64_t TypeFunc = i->getType();
935 if (TypeFunc != ELF::R_PPC64_ADDR64) {
936 ++i;
937 continue;
938 }
939
940 uint64_t TargetSymbolOffset = i->getOffset();
941 symbol_iterator TargetSymbol = i->getSymbol();
942 int64_t Addend;
943 if (auto AddendOrErr = i->getAddend())
944 Addend = *AddendOrErr;
945 else
946 return AddendOrErr.takeError();
947
948 ++i;
949 if (i == e)
950 break;
951
952 // Just check if following relocation is a R_PPC64_TOC
953 uint64_t TypeTOC = i->getType();
954 if (TypeTOC != ELF::R_PPC64_TOC)
955 continue;
956
957 // Finally compares the Symbol value and the target symbol offset
958 // to check if this .opd entry refers to the symbol the relocation
959 // points to.
960 if (Rel.Addend != (int64_t)TargetSymbolOffset)
961 continue;
962
963 section_iterator TSI = Obj.section_end();
964 if (auto TSIOrErr = TargetSymbol->getSection())
965 TSI = *TSIOrErr;
966 else
967 return TSIOrErr.takeError();
968 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
969
970 bool IsCode = TSI->isText();
971 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
972 LocalSections))
973 Rel.SectionID = *SectionIDOrErr;
974 else
975 return SectionIDOrErr.takeError();
976 Rel.Addend = (intptr_t)Addend;
977 return Error::success();
978 }
979 }
980 llvm_unreachable("Attempting to get address of ODP entry!");
981}
982
983// Relocation masks following the #lo(value), #hi(value), #ha(value),
984// #higher(value), #highera(value), #highest(value), and #highesta(value)
985// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
986// document.
987
988static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
989
991 return (value >> 16) & 0xffff;
992}
993
995 return ((value + 0x8000) >> 16) & 0xffff;
996}
997
999 return (value >> 32) & 0xffff;
1000}
1001
1003 return ((value + 0x8000) >> 32) & 0xffff;
1004}
1005
1007 return (value >> 48) & 0xffff;
1008}
1009
1011 return ((value + 0x8000) >> 48) & 0xffff;
1012}
1013
1014void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
1016 uint32_t Type, int64_t Addend) {
1017 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1018 switch (Type) {
1019 default:
1020 report_fatal_error("Relocation type not implemented yet!");
1021 break;
1022 case ELF::R_PPC_ADDR16_LO:
1023 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
1024 break;
1025 case ELF::R_PPC_ADDR16_HI:
1026 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
1027 break;
1028 case ELF::R_PPC_ADDR16_HA:
1029 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
1030 break;
1031 }
1032}
1033
1034void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
1036 uint32_t Type, int64_t Addend) {
1037 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1038 switch (Type) {
1039 default:
1040 report_fatal_error("Relocation type not implemented yet!");
1041 break;
1042 case ELF::R_PPC64_ADDR16:
1043 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
1044 break;
1045 case ELF::R_PPC64_ADDR16_DS:
1046 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
1047 break;
1048 case ELF::R_PPC64_ADDR16_LO:
1049 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
1050 break;
1051 case ELF::R_PPC64_ADDR16_LO_DS:
1052 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
1053 break;
1054 case ELF::R_PPC64_ADDR16_HI:
1055 case ELF::R_PPC64_ADDR16_HIGH:
1056 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
1057 break;
1058 case ELF::R_PPC64_ADDR16_HA:
1059 case ELF::R_PPC64_ADDR16_HIGHA:
1060 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
1061 break;
1062 case ELF::R_PPC64_ADDR16_HIGHER:
1063 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
1064 break;
1065 case ELF::R_PPC64_ADDR16_HIGHERA:
1066 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
1067 break;
1068 case ELF::R_PPC64_ADDR16_HIGHEST:
1069 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
1070 break;
1071 case ELF::R_PPC64_ADDR16_HIGHESTA:
1072 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
1073 break;
1074 case ELF::R_PPC64_ADDR14: {
1075 assert(((Value + Addend) & 3) == 0);
1076 // Preserve the AA/LK bits in the branch instruction
1077 uint8_t aalk = *(LocalAddress + 3);
1078 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
1079 } break;
1080 case ELF::R_PPC64_REL16_LO: {
1081 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1082 uint64_t Delta = Value - FinalAddress + Addend;
1083 writeInt16BE(LocalAddress, applyPPClo(Delta));
1084 } break;
1085 case ELF::R_PPC64_REL16_HI: {
1086 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1087 uint64_t Delta = Value - FinalAddress + Addend;
1088 writeInt16BE(LocalAddress, applyPPChi(Delta));
1089 } break;
1090 case ELF::R_PPC64_REL16_HA: {
1091 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1092 uint64_t Delta = Value - FinalAddress + Addend;
1093 writeInt16BE(LocalAddress, applyPPCha(Delta));
1094 } break;
1095 case ELF::R_PPC64_ADDR32: {
1096 int64_t Result = static_cast<int64_t>(Value + Addend);
1097 if (SignExtend64<32>(Result) != Result)
1098 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
1099 writeInt32BE(LocalAddress, Result);
1100 } break;
1101 case ELF::R_PPC64_REL24: {
1102 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1103 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
1104 if (SignExtend64<26>(delta) != delta)
1105 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
1106 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
1107 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
1108 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
1109 } break;
1110 case ELF::R_PPC64_REL32: {
1111 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1112 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
1113 if (SignExtend64<32>(delta) != delta)
1114 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1115 writeInt32BE(LocalAddress, delta);
1116 } break;
1117 case ELF::R_PPC64_REL64: {
1118 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1119 uint64_t Delta = Value - FinalAddress + Addend;
1120 writeInt64BE(LocalAddress, Delta);
1121 } break;
1122 case ELF::R_PPC64_ADDR64:
1123 writeInt64BE(LocalAddress, Value + Addend);
1124 break;
1125 }
1126}
1127
1128void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
1130 uint32_t Type, int64_t Addend) {
1131 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1132 switch (Type) {
1133 default:
1134 report_fatal_error("Relocation type not implemented yet!");
1135 break;
1136 case ELF::R_390_PC16DBL:
1137 case ELF::R_390_PLT16DBL: {
1138 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1139 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
1140 writeInt16BE(LocalAddress, Delta / 2);
1141 break;
1142 }
1143 case ELF::R_390_PC32DBL:
1144 case ELF::R_390_PLT32DBL: {
1145 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1146 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
1147 writeInt32BE(LocalAddress, Delta / 2);
1148 break;
1149 }
1150 case ELF::R_390_PC16: {
1151 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1152 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
1153 writeInt16BE(LocalAddress, Delta);
1154 break;
1155 }
1156 case ELF::R_390_PC32: {
1157 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1158 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
1159 writeInt32BE(LocalAddress, Delta);
1160 break;
1161 }
1162 case ELF::R_390_PC64: {
1163 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1164 writeInt64BE(LocalAddress, Delta);
1165 break;
1166 }
1167 case ELF::R_390_8:
1168 *LocalAddress = (uint8_t)(Value + Addend);
1169 break;
1170 case ELF::R_390_16:
1171 writeInt16BE(LocalAddress, Value + Addend);
1172 break;
1173 case ELF::R_390_32:
1174 writeInt32BE(LocalAddress, Value + Addend);
1175 break;
1176 case ELF::R_390_64:
1177 writeInt64BE(LocalAddress, Value + Addend);
1178 break;
1179 }
1180}
1181
1182void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
1184 uint32_t Type, int64_t Addend) {
1185 bool isBE = Arch == Triple::bpfeb;
1186
1187 switch (Type) {
1188 default:
1189 report_fatal_error("Relocation type not implemented yet!");
1190 break;
1191 case ELF::R_BPF_NONE:
1192 case ELF::R_BPF_64_64:
1193 case ELF::R_BPF_64_32:
1194 case ELF::R_BPF_64_NODYLD32:
1195 break;
1196 case ELF::R_BPF_64_ABS64: {
1197 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
1198 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1199 << format("%p\n", Section.getAddressWithOffset(Offset)));
1200 break;
1201 }
1202 case ELF::R_BPF_64_ABS32: {
1203 Value += Addend;
1204 assert(Value <= UINT32_MAX);
1205 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1206 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1207 << format("%p\n", Section.getAddressWithOffset(Offset)));
1208 break;
1209 }
1210 }
1211}
1212
1213static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) {
1214 uint32_t UpperImm = (Imm + 0x800) & 0xfffff000;
1215 auto Instr = support::ulittle32_t::ref(InstrAddr);
1216 Instr = (Instr & 0xfff) | UpperImm;
1217}
1218
1219static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) {
1220 uint32_t LowerImm = Imm & 0xfff;
1221 auto Instr = support::ulittle32_t::ref(InstrAddr);
1222 Instr = (Instr & 0xfffff) | (LowerImm << 20);
1223}
1224
1225void RuntimeDyldELF::resolveRISCVRelocation(const SectionEntry &Section,
1227 uint32_t Type, int64_t Addend,
1228 SID SectionID) {
1229 switch (Type) {
1230 default: {
1231 std::string Err = "Unimplemented reloc type: " + std::to_string(Type);
1232 llvm::report_fatal_error(Err.c_str());
1233 }
1234 // 32-bit PC-relative function call, macros call, tail (PIC)
1235 // Write first 20 bits of 32 bit value to the auipc instruction
1236 // Last 12 bits to the jalr instruction
1237 case ELF::R_RISCV_CALL:
1238 case ELF::R_RISCV_CALL_PLT: {
1239 uint64_t P = Section.getLoadAddressWithOffset(Offset);
1240 uint64_t PCOffset = Value + Addend - P;
1241 applyUTypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1242 applyITypeImmRISCV(Section.getAddressWithOffset(Offset + 4), PCOffset);
1243 break;
1244 }
1245 // High 20 bits of 32-bit absolute address, %hi(symbol)
1246 case ELF::R_RISCV_HI20: {
1247 uint64_t PCOffset = Value + Addend;
1248 applyUTypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1249 break;
1250 }
1251 // Low 12 bits of 32-bit absolute address, %lo(symbol)
1252 case ELF::R_RISCV_LO12_I: {
1253 uint64_t PCOffset = Value + Addend;
1254 applyITypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1255 break;
1256 }
1257 // High 20 bits of 32-bit PC-relative reference, %pcrel_hi(symbol)
1258 case ELF::R_RISCV_GOT_HI20:
1259 case ELF::R_RISCV_PCREL_HI20: {
1260 uint64_t P = Section.getLoadAddressWithOffset(Offset);
1261 uint64_t PCOffset = Value + Addend - P;
1262 applyUTypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1263 break;
1264 }
1265
1266 // label:
1267 // auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20
1268 // addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_LO12_I
1269 //
1270 // The low 12 bits of relative address between pc and symbol.
1271 // The symbol is related to the high part instruction which is marked by
1272 // label.
1273 case ELF::R_RISCV_PCREL_LO12_I: {
1274 for (auto &&PendingReloc : PendingRelocs) {
1275 const RelocationValueRef &MatchingValue = PendingReloc.first;
1276 RelocationEntry &Reloc = PendingReloc.second;
1277 uint64_t HIRelocPC =
1278 getSectionLoadAddress(Reloc.SectionID) + Reloc.Offset;
1279 if (Value + Addend == HIRelocPC) {
1281 MatchingValue.Addend;
1282 auto PCOffset = Symbol - HIRelocPC;
1283 applyITypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1284 return;
1285 }
1286 }
1287
1289 "R_RISCV_PCREL_LO12_I without matching R_RISCV_PCREL_HI20");
1290 }
1291 case ELF::R_RISCV_32_PCREL: {
1292 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1293 int64_t RealOffset = Value + Addend - FinalAddress;
1294 int32_t TruncOffset = Lo_32(RealOffset);
1295 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
1296 TruncOffset;
1297 break;
1298 }
1299 case ELF::R_RISCV_32: {
1300 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1301 Ref = Value + Addend;
1302 break;
1303 }
1304 case ELF::R_RISCV_64: {
1305 auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(Offset));
1306 Ref = Value + Addend;
1307 break;
1308 }
1309 case ELF::R_RISCV_ADD16: {
1310 auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(Offset));
1311 Ref = Ref + Value + Addend;
1312 break;
1313 }
1314 case ELF::R_RISCV_ADD32: {
1315 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1316 Ref = Ref + Value + Addend;
1317 break;
1318 }
1319 case ELF::R_RISCV_ADD64: {
1320 auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(Offset));
1321 Ref = Ref + Value + Addend;
1322 break;
1323 }
1324 case ELF::R_RISCV_SUB16: {
1325 auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(Offset));
1326 Ref = Ref - Value - Addend;
1327 break;
1328 }
1329 case ELF::R_RISCV_SUB32: {
1330 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1331 Ref = Ref - Value - Addend;
1332 break;
1333 }
1334 case ELF::R_RISCV_SUB64: {
1335 auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(Offset));
1336 Ref = Ref - Value - Addend;
1337 break;
1338 }
1339 }
1340}
1341
1342// The target location for the relocation is described by RE.SectionID and
1343// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1344// SectionEntry has three members describing its location.
1345// SectionEntry::Address is the address at which the section has been loaded
1346// into memory in the current (host) process. SectionEntry::LoadAddress is the
1347// address that the section will have in the target process.
1348// SectionEntry::ObjAddress is the address of the bits for this section in the
1349// original emitted object image (also in the current address space).
1350//
1351// Relocations will be applied as if the section were loaded at
1352// SectionEntry::LoadAddress, but they will be applied at an address based
1353// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1354// Target memory contents if they are required for value calculations.
1355//
1356// The Value parameter here is the load address of the symbol for the
1357// relocation to be applied. For relocations which refer to symbols in the
1358// current object Value will be the LoadAddress of the section in which
1359// the symbol resides (RE.Addend provides additional information about the
1360// symbol location). For external symbols, Value will be the address of the
1361// symbol in the target address space.
1362void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1363 uint64_t Value) {
1364 const SectionEntry &Section = Sections[RE.SectionID];
1365 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1366 RE.SymOffset, RE.SectionID);
1367}
1368
1369void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1371 uint32_t Type, int64_t Addend,
1372 uint64_t SymOffset, SID SectionID) {
1373 switch (Arch) {
1374 case Triple::x86_64:
1375 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1376 break;
1377 case Triple::x86:
1378 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1379 (uint32_t)(Addend & 0xffffffffL));
1380 break;
1381 case Triple::aarch64:
1382 case Triple::aarch64_be:
1383 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1384 break;
1385 case Triple::arm: // Fall through.
1386 case Triple::armeb:
1387 case Triple::thumb:
1388 case Triple::thumbeb:
1389 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1390 (uint32_t)(Addend & 0xffffffffL));
1391 break;
1393 resolveLoongArch64Relocation(Section, Offset, Value, Type, Addend);
1394 break;
1395 case Triple::ppc: // Fall through.
1396 case Triple::ppcle:
1397 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1398 break;
1399 case Triple::ppc64: // Fall through.
1400 case Triple::ppc64le:
1401 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1402 break;
1403 case Triple::systemz:
1404 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1405 break;
1406 case Triple::bpfel:
1407 case Triple::bpfeb:
1408 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1409 break;
1410 case Triple::riscv32: // Fall through.
1411 case Triple::riscv64:
1412 resolveRISCVRelocation(Section, Offset, Value, Type, Addend, SectionID);
1413 break;
1414 default:
1415 llvm_unreachable("Unsupported CPU type!");
1416 }
1417}
1418
1419void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID,
1420 uint64_t Offset) const {
1421 return (void *)(Sections[SectionID].getObjAddress() + Offset);
1422}
1423
1424void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1425 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1426 if (Value.SymbolName)
1427 addRelocationForSymbol(RE, Value.SymbolName);
1428 else
1429 addRelocationForSection(RE, Value.SectionID);
1430}
1431
1432uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1433 bool IsLocal) const {
1434 switch (RelType) {
1435 case ELF::R_MICROMIPS_GOT16:
1436 if (IsLocal)
1437 return ELF::R_MICROMIPS_LO16;
1438 break;
1439 case ELF::R_MICROMIPS_HI16:
1440 return ELF::R_MICROMIPS_LO16;
1441 case ELF::R_MIPS_GOT16:
1442 if (IsLocal)
1443 return ELF::R_MIPS_LO16;
1444 break;
1445 case ELF::R_MIPS_HI16:
1446 return ELF::R_MIPS_LO16;
1447 case ELF::R_MIPS_PCHI16:
1448 return ELF::R_MIPS_PCLO16;
1449 default:
1450 break;
1451 }
1452 return ELF::R_MIPS_NONE;
1453}
1454
1455// Sometimes we don't need to create thunk for a branch.
1456// This typically happens when branch target is located
1457// in the same object file. In such case target is either
1458// a weak symbol or symbol in a different executable section.
1459// This function checks if branch target is located in the
1460// same object file and if distance between source and target
1461// fits R_AARCH64_CALL26 relocation. If both conditions are
1462// met, it emits direct jump to the target and returns true.
1463// Otherwise false is returned and thunk is created.
1464bool RuntimeDyldELF::resolveAArch64ShortBranch(
1465 unsigned SectionID, relocation_iterator RelI,
1466 const RelocationValueRef &Value) {
1467 uint64_t TargetOffset;
1468 unsigned TargetSectionID;
1469 if (Value.SymbolName) {
1470 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1471
1472 // Don't create direct branch for external symbols.
1473 if (Loc == GlobalSymbolTable.end())
1474 return false;
1475
1476 const auto &SymInfo = Loc->second;
1477
1478 TargetSectionID = SymInfo.getSectionID();
1479 TargetOffset = SymInfo.getOffset();
1480 } else {
1481 TargetSectionID = Value.SectionID;
1482 TargetOffset = 0;
1483 }
1484
1485 // We don't actually know the load addresses at this point, so if the
1486 // branch is cross-section, we don't know exactly how far away it is.
1487 if (TargetSectionID != SectionID)
1488 return false;
1489
1490 uint64_t SourceOffset = RelI->getOffset();
1491
1492 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1493 // If distance between source and target is out of range then we should
1494 // create thunk.
1495 if (!isInt<28>(TargetOffset + Value.Addend - SourceOffset))
1496 return false;
1497
1498 RelocationEntry RE(SectionID, SourceOffset, RelI->getType(), Value.Addend);
1499 if (Value.SymbolName)
1500 addRelocationForSymbol(RE, Value.SymbolName);
1501 else
1502 addRelocationForSection(RE, Value.SectionID);
1503
1504 return true;
1505}
1506
1507void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1510 StubMap &Stubs) {
1511
1512 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1513 SectionEntry &Section = Sections[SectionID];
1514
1515 uint64_t Offset = RelI->getOffset();
1516 unsigned RelType = RelI->getType();
1517 // Look for an existing stub.
1518 StubMap::const_iterator i = Stubs.find(Value);
1519 if (i != Stubs.end()) {
1520 resolveRelocation(Section, Offset,
1521 Section.getLoadAddressWithOffset(i->second), RelType, 0);
1522 LLVM_DEBUG(dbgs() << " Stub function found\n");
1523 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1524 // Create a new stub function.
1525 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1526 Stubs[Value] = Section.getStubOffset();
1527 uint8_t *StubTargetAddr = createStubFunction(
1528 Section.getAddressWithOffset(Section.getStubOffset()));
1529
1530 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1531 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1532 RelocationEntry REmovk_g2(SectionID,
1533 StubTargetAddr - Section.getAddress() + 4,
1534 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1535 RelocationEntry REmovk_g1(SectionID,
1536 StubTargetAddr - Section.getAddress() + 8,
1537 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1538 RelocationEntry REmovk_g0(SectionID,
1539 StubTargetAddr - Section.getAddress() + 12,
1540 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1541
1542 if (Value.SymbolName) {
1543 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1544 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1545 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1546 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1547 } else {
1548 addRelocationForSection(REmovz_g3, Value.SectionID);
1549 addRelocationForSection(REmovk_g2, Value.SectionID);
1550 addRelocationForSection(REmovk_g1, Value.SectionID);
1551 addRelocationForSection(REmovk_g0, Value.SectionID);
1552 }
1553 resolveRelocation(Section, Offset,
1554 Section.getLoadAddressWithOffset(Section.getStubOffset()),
1555 RelType, 0);
1556 Section.advanceStubOffset(getMaxStubSize());
1557 }
1558}
1559
1562 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1563 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1564 const auto &Obj = cast<ELFObjectFileBase>(O);
1565 uint64_t RelType = RelI->getType();
1566 int64_t Addend = 0;
1567 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1568 Addend = *AddendOrErr;
1569 else
1570 consumeError(AddendOrErr.takeError());
1571 elf_symbol_iterator Symbol = RelI->getSymbol();
1572
1573 // Obtain the symbol name which is referenced in the relocation
1574 StringRef TargetName;
1575 if (Symbol != Obj.symbol_end()) {
1576 if (auto TargetNameOrErr = Symbol->getName())
1577 TargetName = *TargetNameOrErr;
1578 else
1579 return TargetNameOrErr.takeError();
1580 }
1581 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1582 << " TargetName: " << TargetName << "\n");
1584 // First search for the symbol in the local symbol table
1586
1587 // Search for the symbol in the global symbol table
1589 if (Symbol != Obj.symbol_end()) {
1590 gsi = GlobalSymbolTable.find(TargetName.data());
1591 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1592 if (!SymTypeOrErr) {
1593 std::string Buf;
1595 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1597 }
1598 SymType = *SymTypeOrErr;
1599 }
1600 if (gsi != GlobalSymbolTable.end()) {
1601 const auto &SymInfo = gsi->second;
1602 Value.SectionID = SymInfo.getSectionID();
1603 Value.Offset = SymInfo.getOffset();
1604 Value.Addend = SymInfo.getOffset() + Addend;
1605 } else {
1606 switch (SymType) {
1607 case SymbolRef::ST_Debug: {
1608 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1609 // and can be changed by another developers. Maybe best way is add
1610 // a new symbol type ST_Section to SymbolRef and use it.
1611 auto SectionOrErr = Symbol->getSection();
1612 if (!SectionOrErr) {
1613 std::string Buf;
1615 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1617 }
1618 section_iterator si = *SectionOrErr;
1619 if (si == Obj.section_end())
1620 llvm_unreachable("Symbol section not found, bad object file format!");
1621 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1622 bool isCode = si->isText();
1623 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1624 ObjSectionToID))
1625 Value.SectionID = *SectionIDOrErr;
1626 else
1627 return SectionIDOrErr.takeError();
1628 Value.Addend = Addend;
1629 break;
1630 }
1631 case SymbolRef::ST_Data:
1634 case SymbolRef::ST_Unknown: {
1635 Value.SymbolName = TargetName.data();
1636 Value.Addend = Addend;
1637
1638 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1639 // will manifest here as a NULL symbol name.
1640 // We can set this as a valid (but empty) symbol name, and rely
1641 // on addRelocationForSymbol to handle this.
1642 if (!Value.SymbolName)
1643 Value.SymbolName = "";
1644 break;
1645 }
1646 default:
1647 llvm_unreachable("Unresolved symbol type!");
1648 break;
1649 }
1650 }
1651
1652 uint64_t Offset = RelI->getOffset();
1653
1654 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1655 << "\n");
1657 if ((RelType == ELF::R_AARCH64_CALL26 ||
1658 RelType == ELF::R_AARCH64_JUMP26) &&
1660 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1661 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1662 // Create new GOT entry or find existing one. If GOT entry is
1663 // to be created, then we also emit ABS64 relocation for it.
1664 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1665 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1666 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1667
1668 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1669 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1670 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1671 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1672 } else {
1673 processSimpleRelocation(SectionID, Offset, RelType, Value);
1674 }
1675 } else if (Arch == Triple::arm) {
1676 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1677 RelType == ELF::R_ARM_JUMP24) {
1678 // This is an ARM branch relocation, need to use a stub function.
1679 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1680 SectionEntry &Section = Sections[SectionID];
1681
1682 // Look for an existing stub.
1683 StubMap::const_iterator i = Stubs.find(Value);
1684 if (i != Stubs.end()) {
1685 resolveRelocation(Section, Offset,
1686 Section.getLoadAddressWithOffset(i->second), RelType,
1687 0);
1688 LLVM_DEBUG(dbgs() << " Stub function found\n");
1689 } else {
1690 // Create a new stub function.
1691 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1692 Stubs[Value] = Section.getStubOffset();
1693 uint8_t *StubTargetAddr = createStubFunction(
1694 Section.getAddressWithOffset(Section.getStubOffset()));
1695 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1696 ELF::R_ARM_ABS32, Value.Addend);
1697 if (Value.SymbolName)
1698 addRelocationForSymbol(RE, Value.SymbolName);
1699 else
1700 addRelocationForSection(RE, Value.SectionID);
1701
1702 resolveRelocation(
1703 Section, Offset,
1704 Section.getLoadAddressWithOffset(Section.getStubOffset()), RelType,
1705 0);
1706 Section.advanceStubOffset(getMaxStubSize());
1707 }
1708 } else {
1709 uint32_t *Placeholder =
1710 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1711 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1712 RelType == ELF::R_ARM_ABS32) {
1713 Value.Addend += *Placeholder;
1714 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1715 // See ELF for ARM documentation
1716 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1717 }
1718 processSimpleRelocation(SectionID, Offset, RelType, Value);
1719 }
1720 } else if (Arch == Triple::loongarch64) {
1721 if (RelType == ELF::R_LARCH_B26 && MemMgr.allowStubAllocation()) {
1722 resolveLoongArch64Branch(SectionID, Value, RelI, Stubs);
1723 } else if (RelType == ELF::R_LARCH_GOT_PC_HI20 ||
1724 RelType == ELF::R_LARCH_GOT_PC_LO12) {
1725 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_LARCH_64);
1726 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1727 RelType);
1728 } else {
1729 processSimpleRelocation(SectionID, Offset, RelType, Value);
1730 }
1731 } else if (IsMipsO32ABI) {
1732 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1733 computePlaceholderAddress(SectionID, Offset));
1734 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1735 if (RelType == ELF::R_MIPS_26) {
1736 // This is an Mips branch relocation, need to use a stub function.
1737 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1738 SectionEntry &Section = Sections[SectionID];
1739
1740 // Extract the addend from the instruction.
1741 // We shift up by two since the Value will be down shifted again
1742 // when applying the relocation.
1743 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1744
1745 Value.Addend += Addend;
1746
1747 // Look up for existing stub.
1748 StubMap::const_iterator i = Stubs.find(Value);
1749 if (i != Stubs.end()) {
1750 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1751 addRelocationForSection(RE, SectionID);
1752 LLVM_DEBUG(dbgs() << " Stub function found\n");
1753 } else {
1754 // Create a new stub function.
1755 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1756 Stubs[Value] = Section.getStubOffset();
1757
1758 unsigned AbiVariant = Obj.getPlatformFlags();
1759
1760 uint8_t *StubTargetAddr = createStubFunction(
1761 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1762
1763 // Creating Hi and Lo relocations for the filled stub instructions.
1764 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1765 ELF::R_MIPS_HI16, Value.Addend);
1766 RelocationEntry RELo(SectionID,
1767 StubTargetAddr - Section.getAddress() + 4,
1768 ELF::R_MIPS_LO16, Value.Addend);
1769
1770 if (Value.SymbolName) {
1771 addRelocationForSymbol(REHi, Value.SymbolName);
1772 addRelocationForSymbol(RELo, Value.SymbolName);
1773 } else {
1774 addRelocationForSection(REHi, Value.SectionID);
1775 addRelocationForSection(RELo, Value.SectionID);
1776 }
1777
1778 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1779 addRelocationForSection(RE, SectionID);
1780 Section.advanceStubOffset(getMaxStubSize());
1781 }
1782 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1783 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1784 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1785 PendingRelocs.push_back(std::make_pair(Value, RE));
1786 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1787 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1788 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1789 const RelocationValueRef &MatchingValue = I->first;
1790 RelocationEntry &Reloc = I->second;
1791 if (MatchingValue == Value &&
1792 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1793 SectionID == Reloc.SectionID) {
1794 Reloc.Addend += Addend;
1795 if (Value.SymbolName)
1796 addRelocationForSymbol(Reloc, Value.SymbolName);
1797 else
1798 addRelocationForSection(Reloc, Value.SectionID);
1799 I = PendingRelocs.erase(I);
1800 } else
1801 ++I;
1802 }
1803 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1804 if (Value.SymbolName)
1805 addRelocationForSymbol(RE, Value.SymbolName);
1806 else
1807 addRelocationForSection(RE, Value.SectionID);
1808 } else {
1809 if (RelType == ELF::R_MIPS_32)
1810 Value.Addend += Opcode;
1811 else if (RelType == ELF::R_MIPS_PC16)
1812 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1813 else if (RelType == ELF::R_MIPS_PC19_S2)
1814 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1815 else if (RelType == ELF::R_MIPS_PC21_S2)
1816 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1817 else if (RelType == ELF::R_MIPS_PC26_S2)
1818 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1819 processSimpleRelocation(SectionID, Offset, RelType, Value);
1820 }
1821 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1822 uint32_t r_type = RelType & 0xff;
1823 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1824 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1825 || r_type == ELF::R_MIPS_GOT_DISP) {
1826 auto [I, Inserted] = GOTSymbolOffsets.try_emplace(TargetName);
1827 if (Inserted)
1828 I->second = allocateGOTEntries(1);
1829 RE.SymOffset = I->second;
1830 if (Value.SymbolName)
1831 addRelocationForSymbol(RE, Value.SymbolName);
1832 else
1833 addRelocationForSection(RE, Value.SectionID);
1834 } else if (RelType == ELF::R_MIPS_26) {
1835 // This is an Mips branch relocation, need to use a stub function.
1836 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1837 SectionEntry &Section = Sections[SectionID];
1838
1839 // Look up for existing stub.
1840 StubMap::const_iterator i = Stubs.find(Value);
1841 if (i != Stubs.end()) {
1842 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1843 addRelocationForSection(RE, SectionID);
1844 LLVM_DEBUG(dbgs() << " Stub function found\n");
1845 } else {
1846 // Create a new stub function.
1847 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1848 Stubs[Value] = Section.getStubOffset();
1849
1850 unsigned AbiVariant = Obj.getPlatformFlags();
1851
1852 uint8_t *StubTargetAddr = createStubFunction(
1853 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1854
1855 if (IsMipsN32ABI) {
1856 // Creating Hi and Lo relocations for the filled stub instructions.
1857 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1858 ELF::R_MIPS_HI16, Value.Addend);
1859 RelocationEntry RELo(SectionID,
1860 StubTargetAddr - Section.getAddress() + 4,
1861 ELF::R_MIPS_LO16, Value.Addend);
1862 if (Value.SymbolName) {
1863 addRelocationForSymbol(REHi, Value.SymbolName);
1864 addRelocationForSymbol(RELo, Value.SymbolName);
1865 } else {
1866 addRelocationForSection(REHi, Value.SectionID);
1867 addRelocationForSection(RELo, Value.SectionID);
1868 }
1869 } else {
1870 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1871 // instructions.
1872 RelocationEntry REHighest(SectionID,
1873 StubTargetAddr - Section.getAddress(),
1874 ELF::R_MIPS_HIGHEST, Value.Addend);
1875 RelocationEntry REHigher(SectionID,
1876 StubTargetAddr - Section.getAddress() + 4,
1877 ELF::R_MIPS_HIGHER, Value.Addend);
1878 RelocationEntry REHi(SectionID,
1879 StubTargetAddr - Section.getAddress() + 12,
1880 ELF::R_MIPS_HI16, Value.Addend);
1881 RelocationEntry RELo(SectionID,
1882 StubTargetAddr - Section.getAddress() + 20,
1883 ELF::R_MIPS_LO16, Value.Addend);
1884 if (Value.SymbolName) {
1885 addRelocationForSymbol(REHighest, Value.SymbolName);
1886 addRelocationForSymbol(REHigher, Value.SymbolName);
1887 addRelocationForSymbol(REHi, Value.SymbolName);
1888 addRelocationForSymbol(RELo, Value.SymbolName);
1889 } else {
1890 addRelocationForSection(REHighest, Value.SectionID);
1891 addRelocationForSection(REHigher, Value.SectionID);
1892 addRelocationForSection(REHi, Value.SectionID);
1893 addRelocationForSection(RELo, Value.SectionID);
1894 }
1895 }
1896 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1897 addRelocationForSection(RE, SectionID);
1898 Section.advanceStubOffset(getMaxStubSize());
1899 }
1900 } else {
1901 processSimpleRelocation(SectionID, Offset, RelType, Value);
1902 }
1903
1904 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1905 if (RelType == ELF::R_PPC64_REL24) {
1906 // Determine ABI variant in use for this object.
1907 unsigned AbiVariant = Obj.getPlatformFlags();
1908 AbiVariant &= ELF::EF_PPC64_ABI;
1909 // A PPC branch relocation will need a stub function if the target is
1910 // an external symbol (either Value.SymbolName is set, or SymType is
1911 // Symbol::ST_Unknown) or if the target address is not within the
1912 // signed 24-bits branch address.
1913 SectionEntry &Section = Sections[SectionID];
1914 uint8_t *Target = Section.getAddressWithOffset(Offset);
1915 bool RangeOverflow = false;
1916 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1917 if (!IsExtern) {
1918 if (AbiVariant != 2) {
1919 // In the ELFv1 ABI, a function call may point to the .opd entry,
1920 // so the final symbol value is calculated based on the relocation
1921 // values in the .opd section.
1922 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1923 return std::move(Err);
1924 } else {
1925 // In the ELFv2 ABI, a function symbol may provide a local entry
1926 // point, which must be used for direct calls.
1927 if (Value.SectionID == SectionID){
1928 uint8_t SymOther = Symbol->getOther();
1929 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1930 }
1931 }
1932 uint8_t *RelocTarget =
1933 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1934 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1935 // If it is within 26-bits branch range, just set the branch target
1936 if (SignExtend64<26>(delta) != delta) {
1937 RangeOverflow = true;
1938 } else if ((AbiVariant != 2) ||
1939 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1940 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1941 addRelocationForSection(RE, Value.SectionID);
1942 }
1943 }
1944 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1945 RangeOverflow) {
1946 // It is an external symbol (either Value.SymbolName is set, or
1947 // SymType is SymbolRef::ST_Unknown) or out of range.
1948 StubMap::const_iterator i = Stubs.find(Value);
1949 if (i != Stubs.end()) {
1950 // Symbol function stub already created, just relocate to it
1951 resolveRelocation(Section, Offset,
1952 Section.getLoadAddressWithOffset(i->second),
1953 RelType, 0);
1954 LLVM_DEBUG(dbgs() << " Stub function found\n");
1955 } else {
1956 // Create a new stub function.
1957 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1958 Stubs[Value] = Section.getStubOffset();
1959 uint8_t *StubTargetAddr = createStubFunction(
1960 Section.getAddressWithOffset(Section.getStubOffset()),
1961 AbiVariant);
1962 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1963 ELF::R_PPC64_ADDR64, Value.Addend);
1964
1965 // Generates the 64-bits address loads as exemplified in section
1966 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1967 // apply to the low part of the instructions, so we have to update
1968 // the offset according to the target endianness.
1969 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1971 StubRelocOffset += 2;
1972
1973 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1974 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1975 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1976 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1977 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1978 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1979 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1980 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1981
1982 if (Value.SymbolName) {
1983 addRelocationForSymbol(REhst, Value.SymbolName);
1984 addRelocationForSymbol(REhr, Value.SymbolName);
1985 addRelocationForSymbol(REh, Value.SymbolName);
1986 addRelocationForSymbol(REl, Value.SymbolName);
1987 } else {
1988 addRelocationForSection(REhst, Value.SectionID);
1989 addRelocationForSection(REhr, Value.SectionID);
1990 addRelocationForSection(REh, Value.SectionID);
1991 addRelocationForSection(REl, Value.SectionID);
1992 }
1993
1994 resolveRelocation(
1995 Section, Offset,
1996 Section.getLoadAddressWithOffset(Section.getStubOffset()),
1997 RelType, 0);
1998 Section.advanceStubOffset(getMaxStubSize());
1999 }
2000 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
2001 // Restore the TOC for external calls
2002 if (AbiVariant == 2)
2003 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
2004 else
2005 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
2006 }
2007 }
2008 } else if (RelType == ELF::R_PPC64_TOC16 ||
2009 RelType == ELF::R_PPC64_TOC16_DS ||
2010 RelType == ELF::R_PPC64_TOC16_LO ||
2011 RelType == ELF::R_PPC64_TOC16_LO_DS ||
2012 RelType == ELF::R_PPC64_TOC16_HI ||
2013 RelType == ELF::R_PPC64_TOC16_HA) {
2014 // These relocations are supposed to subtract the TOC address from
2015 // the final value. This does not fit cleanly into the RuntimeDyld
2016 // scheme, since there may be *two* sections involved in determining
2017 // the relocation value (the section of the symbol referred to by the
2018 // relocation, and the TOC section associated with the current module).
2019 //
2020 // Fortunately, these relocations are currently only ever generated
2021 // referring to symbols that themselves reside in the TOC, which means
2022 // that the two sections are actually the same. Thus they cancel out
2023 // and we can immediately resolve the relocation right now.
2024 switch (RelType) {
2025 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
2026 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
2027 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
2028 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
2029 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
2030 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
2031 default: llvm_unreachable("Wrong relocation type.");
2032 }
2033
2034 RelocationValueRef TOCValue;
2035 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
2036 return std::move(Err);
2037 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
2038 llvm_unreachable("Unsupported TOC relocation.");
2039 Value.Addend -= TOCValue.Addend;
2040 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
2041 } else {
2042 // There are two ways to refer to the TOC address directly: either
2043 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
2044 // ignored), or via any relocation that refers to the magic ".TOC."
2045 // symbols (in which case the addend is respected).
2046 if (RelType == ELF::R_PPC64_TOC) {
2047 RelType = ELF::R_PPC64_ADDR64;
2048 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
2049 return std::move(Err);
2050 } else if (TargetName == ".TOC.") {
2051 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
2052 return std::move(Err);
2053 Value.Addend += Addend;
2054 }
2055
2056 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
2057
2058 if (Value.SymbolName)
2059 addRelocationForSymbol(RE, Value.SymbolName);
2060 else
2061 addRelocationForSection(RE, Value.SectionID);
2062 }
2063 } else if (Arch == Triple::systemz &&
2064 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
2065 // Create function stubs for both PLT and GOT references, regardless of
2066 // whether the GOT reference is to data or code. The stub contains the
2067 // full address of the symbol, as needed by GOT references, and the
2068 // executable part only adds an overhead of 8 bytes.
2069 //
2070 // We could try to conserve space by allocating the code and data
2071 // parts of the stub separately. However, as things stand, we allocate
2072 // a stub for every relocation, so using a GOT in JIT code should be
2073 // no less space efficient than using an explicit constant pool.
2074 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
2075 SectionEntry &Section = Sections[SectionID];
2076
2077 // Look for an existing stub.
2078 StubMap::const_iterator i = Stubs.find(Value);
2079 uintptr_t StubAddress;
2080 if (i != Stubs.end()) {
2081 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
2082 LLVM_DEBUG(dbgs() << " Stub function found\n");
2083 } else {
2084 // Create a new stub function.
2085 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2086
2087 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
2088 StubAddress =
2089 alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
2090 unsigned StubOffset = StubAddress - BaseAddress;
2091
2092 Stubs[Value] = StubOffset;
2093 createStubFunction((uint8_t *)StubAddress);
2094 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
2095 Value.Offset);
2096 if (Value.SymbolName)
2097 addRelocationForSymbol(RE, Value.SymbolName);
2098 else
2099 addRelocationForSection(RE, Value.SectionID);
2100 Section.advanceStubOffset(getMaxStubSize());
2101 }
2102
2103 if (RelType == ELF::R_390_GOTENT)
2104 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
2105 Addend);
2106 else
2107 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
2108 } else if (Arch == Triple::x86_64) {
2109 if (RelType == ELF::R_X86_64_PLT32) {
2110 // The way the PLT relocations normally work is that the linker allocates
2111 // the
2112 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
2113 // entry will then jump to an address provided by the GOT. On first call,
2114 // the
2115 // GOT address will point back into PLT code that resolves the symbol. After
2116 // the first call, the GOT entry points to the actual function.
2117 //
2118 // For local functions we're ignoring all of that here and just replacing
2119 // the PLT32 relocation type with PC32, which will translate the relocation
2120 // into a PC-relative call directly to the function. For external symbols we
2121 // can't be sure the function will be within 2^32 bytes of the call site, so
2122 // we need to create a stub, which calls into the GOT. This case is
2123 // equivalent to the usual PLT implementation except that we use the stub
2124 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
2125 // rather than allocating a PLT section.
2126 if (Value.SymbolName && MemMgr.allowStubAllocation()) {
2127 // This is a call to an external function.
2128 // Look for an existing stub.
2129 SectionEntry *Section = &Sections[SectionID];
2130 StubMap::const_iterator i = Stubs.find(Value);
2131 uintptr_t StubAddress;
2132 if (i != Stubs.end()) {
2133 StubAddress = uintptr_t(Section->getAddress()) + i->second;
2134 LLVM_DEBUG(dbgs() << " Stub function found\n");
2135 } else {
2136 // Create a new stub function (equivalent to a PLT entry).
2137 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2138
2139 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
2140 StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
2141 getStubAlignment());
2142 unsigned StubOffset = StubAddress - BaseAddress;
2143 Stubs[Value] = StubOffset;
2144 createStubFunction((uint8_t *)StubAddress);
2145
2146 // Bump our stub offset counter
2147 Section->advanceStubOffset(getMaxStubSize());
2148
2149 // Allocate a GOT Entry
2150 uint64_t GOTOffset = allocateGOTEntries(1);
2151 // This potentially creates a new Section which potentially
2152 // invalidates the Section pointer, so reload it.
2153 Section = &Sections[SectionID];
2154
2155 // The load of the GOT address has an addend of -4
2156 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
2157 ELF::R_X86_64_PC32);
2158
2159 // Fill in the value of the symbol we're targeting into the GOT
2161 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
2162 Value.SymbolName);
2163 }
2164
2165 // Make the target call a call into the stub table.
2166 resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
2167 Addend);
2168 } else {
2170 computePlaceholderAddress(SectionID, Offset));
2171 processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
2172 }
2173 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
2174 RelType == ELF::R_X86_64_GOTPCRELX ||
2175 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
2176 uint64_t GOTOffset = allocateGOTEntries(1);
2177 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2178 ELF::R_X86_64_PC32);
2179
2180 // Fill in the value of the symbol we're targeting into the GOT
2181 RelocationEntry RE =
2182 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
2183 if (Value.SymbolName)
2184 addRelocationForSymbol(RE, Value.SymbolName);
2185 else
2186 addRelocationForSection(RE, Value.SectionID);
2187 } else if (RelType == ELF::R_X86_64_GOT64) {
2188 // Fill in a 64-bit GOT offset.
2189 uint64_t GOTOffset = allocateGOTEntries(1);
2190 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
2191 ELF::R_X86_64_64, 0);
2192
2193 // Fill in the value of the symbol we're targeting into the GOT
2194 RelocationEntry RE =
2195 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
2196 if (Value.SymbolName)
2197 addRelocationForSymbol(RE, Value.SymbolName);
2198 else
2199 addRelocationForSection(RE, Value.SectionID);
2200 } else if (RelType == ELF::R_X86_64_GOTPC32) {
2201 // Materialize the address of the base of the GOT relative to the PC.
2202 // This doesn't create a GOT entry, but it does mean we need a GOT
2203 // section.
2204 (void)allocateGOTEntries(0);
2205 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
2206 } else if (RelType == ELF::R_X86_64_GOTPC64) {
2207 (void)allocateGOTEntries(0);
2208 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
2209 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
2210 // GOTOFF relocations ultimately require a section difference relocation.
2211 (void)allocateGOTEntries(0);
2212 processSimpleRelocation(SectionID, Offset, RelType, Value);
2213 } else if (RelType == ELF::R_X86_64_PC32) {
2214 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
2215 processSimpleRelocation(SectionID, Offset, RelType, Value);
2216 } else if (RelType == ELF::R_X86_64_PC64) {
2218 computePlaceholderAddress(SectionID, Offset));
2219 processSimpleRelocation(SectionID, Offset, RelType, Value);
2220 } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
2221 processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
2222 } else if (RelType == ELF::R_X86_64_TLSGD ||
2223 RelType == ELF::R_X86_64_TLSLD) {
2224 // The next relocation must be the relocation for __tls_get_addr.
2225 ++RelI;
2226 auto &GetAddrRelocation = *RelI;
2227 processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
2228 GetAddrRelocation);
2229 } else {
2230 processSimpleRelocation(SectionID, Offset, RelType, Value);
2231 }
2232 } else if (Arch == Triple::riscv32 || Arch == Triple::riscv64) {
2233 // *_LO12 relocation receive information about a symbol from the
2234 // corresponding *_HI20 relocation, so we have to collect this information
2235 // before resolving
2236 if (RelType == ELF::R_RISCV_GOT_HI20 ||
2237 RelType == ELF::R_RISCV_PCREL_HI20 ||
2238 RelType == ELF::R_RISCV_TPREL_HI20 ||
2239 RelType == ELF::R_RISCV_TLS_GD_HI20 ||
2240 RelType == ELF::R_RISCV_TLS_GOT_HI20) {
2241 RelocationEntry RE(SectionID, Offset, RelType, Addend);
2242 PendingRelocs.push_back({Value, RE});
2243 }
2244 processSimpleRelocation(SectionID, Offset, RelType, Value);
2245 } else {
2246 if (Arch == Triple::x86) {
2248 computePlaceholderAddress(SectionID, Offset));
2249 }
2250 processSimpleRelocation(SectionID, Offset, RelType, Value);
2251 }
2252 return ++RelI;
2253}
2254
2255void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
2258 int64_t Addend) {
2259 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2260 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
2261 // only mentions one optimization even though there are two different
2262 // code sequences for the Initial Exec TLS Model. We match the code to
2263 // find out which one was used.
2264
2265 // A possible TLS code sequence and its replacement
2266 struct CodeSequence {
2267 // The expected code sequence
2268 ArrayRef<uint8_t> ExpectedCodeSequence;
2269 // The negative offset of the GOTTPOFF relocation to the beginning of
2270 // the sequence
2271 uint64_t TLSSequenceOffset;
2272 // The new code sequence
2273 ArrayRef<uint8_t> NewCodeSequence;
2274 // The offset of the new TPOFF relocation
2275 uint64_t TpoffRelocationOffset;
2276 };
2277
2278 std::array<CodeSequence, 2> CodeSequences;
2279
2280 // Initial Exec Code Model Sequence
2281 {
2282 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
2283 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2284 0x00, // mov %fs:0, %rax
2285 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
2286 // %rax
2287 };
2288 CodeSequences[0].ExpectedCodeSequence =
2289 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
2290 CodeSequences[0].TLSSequenceOffset = 12;
2291
2292 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
2293 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
2294 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
2295 };
2296 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
2297 CodeSequences[0].TpoffRelocationOffset = 12;
2298 }
2299
2300 // Initial Exec Code Model Sequence, II
2301 {
2302 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
2303 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
2304 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
2305 };
2306 CodeSequences[1].ExpectedCodeSequence =
2307 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
2308 CodeSequences[1].TLSSequenceOffset = 3;
2309
2310 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
2311 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
2312 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
2313 };
2314 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
2315 CodeSequences[1].TpoffRelocationOffset = 10;
2316 }
2317
2318 bool Resolved = false;
2319 auto &Section = Sections[SectionID];
2320 for (const auto &C : CodeSequences) {
2321 assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
2322 "Old and new code sequences must have the same size");
2323
2324 if (Offset < C.TLSSequenceOffset ||
2325 (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
2326 Section.getSize()) {
2327 // This can't be a matching sequence as it doesn't fit in the current
2328 // section
2329 continue;
2330 }
2331
2332 auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
2333 auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
2334 if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
2335 C.ExpectedCodeSequence) {
2336 continue;
2337 }
2338
2339 memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
2340
2341 // The original GOTTPOFF relocation has an addend as it is PC relative,
2342 // so it needs to be corrected. The TPOFF32 relocation is used as an
2343 // absolute value (which is an offset from %fs:0), so remove the addend
2344 // again.
2345 RelocationEntry RE(SectionID,
2346 TLSSequenceStartOffset + C.TpoffRelocationOffset,
2347 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2348
2349 if (Value.SymbolName)
2350 addRelocationForSymbol(RE, Value.SymbolName);
2351 else
2352 addRelocationForSection(RE, Value.SectionID);
2353
2354 Resolved = true;
2355 break;
2356 }
2357
2358 if (!Resolved) {
2359 // The GOTTPOFF relocation was not used in one of the sequences
2360 // described in the spec, so we can't optimize it to a TPOFF
2361 // relocation.
2362 uint64_t GOTOffset = allocateGOTEntries(1);
2363 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2364 ELF::R_X86_64_PC32);
2365 RelocationEntry RE =
2366 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2367 if (Value.SymbolName)
2368 addRelocationForSymbol(RE, Value.SymbolName);
2369 else
2370 addRelocationForSection(RE, Value.SectionID);
2371 }
2372}
2373
2374void RuntimeDyldELF::processX86_64TLSRelocation(
2375 unsigned SectionID, uint64_t Offset, uint64_t RelType,
2376 RelocationValueRef Value, int64_t Addend,
2377 const RelocationRef &GetAddrRelocation) {
2378 // Since we are statically linking and have no additional DSOs, we can resolve
2379 // the relocation directly without using __tls_get_addr.
2380 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2381 // to replace it with the Local Exec relocation variant.
2382
2383 // Find out whether the code was compiled with the large or small memory
2384 // model. For this we look at the next relocation which is the relocation
2385 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2386 // small code model, with a 64 bit relocation it's the large code model.
2387 bool IsSmallCodeModel;
2388 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2389 bool IsGOTPCRel = false;
2390
2391 switch (GetAddrRelocation.getType()) {
2392 case ELF::R_X86_64_GOTPCREL:
2393 case ELF::R_X86_64_REX_GOTPCRELX:
2394 case ELF::R_X86_64_GOTPCRELX:
2395 IsGOTPCRel = true;
2396 [[fallthrough]];
2397 case ELF::R_X86_64_PLT32:
2398 IsSmallCodeModel = true;
2399 break;
2400 case ELF::R_X86_64_PLTOFF64:
2401 IsSmallCodeModel = false;
2402 break;
2403 default:
2405 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2406 "expected PLT or GOT relocation for __tls_get_addr function");
2407 }
2408
2409 // The negative offset to the start of the TLS code sequence relative to
2410 // the offset of the TLSGD/TLSLD relocation
2411 uint64_t TLSSequenceOffset;
2412 // The expected start of the code sequence
2413 ArrayRef<uint8_t> ExpectedCodeSequence;
2414 // The new TLS code sequence that will replace the existing code
2415 ArrayRef<uint8_t> NewCodeSequence;
2416
2417 if (RelType == ELF::R_X86_64_TLSGD) {
2418 // The offset of the new TPOFF32 relocation (offset starting from the
2419 // beginning of the whole TLS sequence)
2420 uint64_t TpoffRelocOffset;
2421
2422 if (IsSmallCodeModel) {
2423 if (!IsGOTPCRel) {
2424 static const std::initializer_list<uint8_t> CodeSequence = {
2425 0x66, // data16 (no-op prefix)
2426 0x48, 0x8d, 0x3d, 0x00, 0x00,
2427 0x00, 0x00, // lea <disp32>(%rip), %rdi
2428 0x66, 0x66, // two data16 prefixes
2429 0x48, // rex64 (no-op prefix)
2430 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2431 };
2432 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2433 TLSSequenceOffset = 4;
2434 } else {
2435 // This code sequence is not described in the TLS spec but gcc
2436 // generates it sometimes.
2437 static const std::initializer_list<uint8_t> CodeSequence = {
2438 0x66, // data16 (no-op prefix)
2439 0x48, 0x8d, 0x3d, 0x00, 0x00,
2440 0x00, 0x00, // lea <disp32>(%rip), %rdi
2441 0x66, // data16 prefix (no-op prefix)
2442 0x48, // rex64 (no-op prefix)
2443 0xff, 0x15, 0x00, 0x00, 0x00,
2444 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2445 };
2446 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2447 TLSSequenceOffset = 4;
2448 }
2449
2450 // The replacement code for the small code model. It's the same for
2451 // both sequences.
2452 static const std::initializer_list<uint8_t> SmallSequence = {
2453 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2454 0x00, // mov %fs:0, %rax
2455 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2456 // %rax
2457 };
2458 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2459 TpoffRelocOffset = 12;
2460 } else {
2461 static const std::initializer_list<uint8_t> CodeSequence = {
2462 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2463 // %rdi
2464 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2465 0x00, // movabs $__tls_get_addr@pltoff, %rax
2466 0x48, 0x01, 0xd8, // add %rbx, %rax
2467 0xff, 0xd0 // call *%rax
2468 };
2469 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2470 TLSSequenceOffset = 3;
2471
2472 // The replacement code for the large code model
2473 static const std::initializer_list<uint8_t> LargeSequence = {
2474 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2475 0x00, // mov %fs:0, %rax
2476 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2477 // %rax
2478 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2479 };
2480 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2481 TpoffRelocOffset = 12;
2482 }
2483
2484 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2485 // The new TPOFF32 relocations is used as an absolute offset from
2486 // %fs:0, so remove the TLSGD/TLSLD addend again.
2487 RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2488 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2489 if (Value.SymbolName)
2490 addRelocationForSymbol(RE, Value.SymbolName);
2491 else
2492 addRelocationForSection(RE, Value.SectionID);
2493 } else if (RelType == ELF::R_X86_64_TLSLD) {
2494 if (IsSmallCodeModel) {
2495 if (!IsGOTPCRel) {
2496 static const std::initializer_list<uint8_t> CodeSequence = {
2497 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2498 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2499 };
2500 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2501 TLSSequenceOffset = 3;
2502
2503 // The replacement code for the small code model
2504 static const std::initializer_list<uint8_t> SmallSequence = {
2505 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2506 0x64, 0x48, 0x8b, 0x04, 0x25,
2507 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2508 };
2509 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2510 } else {
2511 // This code sequence is not described in the TLS spec but gcc
2512 // generates it sometimes.
2513 static const std::initializer_list<uint8_t> CodeSequence = {
2514 0x48, 0x8d, 0x3d, 0x00,
2515 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2516 0xff, 0x15, 0x00, 0x00,
2517 0x00, 0x00 // call
2518 // *__tls_get_addr@gotpcrel(%rip)
2519 };
2520 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2521 TLSSequenceOffset = 3;
2522
2523 // The replacement is code is just like above but it needs to be
2524 // one byte longer.
2525 static const std::initializer_list<uint8_t> SmallSequence = {
2526 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2527 0x64, 0x48, 0x8b, 0x04, 0x25,
2528 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2529 };
2530 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2531 }
2532 } else {
2533 // This is the same sequence as for the TLSGD sequence with the large
2534 // memory model above
2535 static const std::initializer_list<uint8_t> CodeSequence = {
2536 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2537 // %rdi
2538 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2539 0x48, // movabs $__tls_get_addr@pltoff, %rax
2540 0x01, 0xd8, // add %rbx, %rax
2541 0xff, 0xd0 // call *%rax
2542 };
2543 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2544 TLSSequenceOffset = 3;
2545
2546 // The replacement code for the large code model
2547 static const std::initializer_list<uint8_t> LargeSequence = {
2548 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2549 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2550 0x00, // 10 byte nop
2551 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2552 };
2553 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2554 }
2555 } else {
2556 llvm_unreachable("both TLS relocations handled above");
2557 }
2558
2559 assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2560 "Old and new code sequences must have the same size");
2561
2562 auto &Section = Sections[SectionID];
2563 if (Offset < TLSSequenceOffset ||
2564 (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2565 Section.getSize()) {
2566 report_fatal_error("unexpected end of section in TLS sequence");
2567 }
2568
2569 auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2570 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2571 ExpectedCodeSequence) {
2573 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2574 }
2575
2576 memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2577}
2578
2580 // We don't use the GOT in all of these cases, but it's essentially free
2581 // to put them all here.
2582 size_t Result = 0;
2583 switch (Arch) {
2584 case Triple::x86_64:
2585 case Triple::aarch64:
2586 case Triple::aarch64_be:
2588 case Triple::ppc64:
2589 case Triple::ppc64le:
2590 case Triple::systemz:
2591 Result = sizeof(uint64_t);
2592 break;
2593 case Triple::x86:
2594 case Triple::arm:
2595 case Triple::thumb:
2596 Result = sizeof(uint32_t);
2597 break;
2598 case Triple::mips:
2599 case Triple::mipsel:
2600 case Triple::mips64:
2601 case Triple::mips64el:
2603 Result = sizeof(uint32_t);
2604 else if (IsMipsN64ABI)
2605 Result = sizeof(uint64_t);
2606 else
2607 llvm_unreachable("Mips ABI not handled");
2608 break;
2609 default:
2610 llvm_unreachable("Unsupported CPU type!");
2611 }
2612 return Result;
2613}
2614
2615uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2616 if (GOTSectionID == 0) {
2617 GOTSectionID = Sections.size();
2618 // Reserve a section id. We'll allocate the section later
2619 // once we know the total size
2620 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2621 }
2622 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2623 CurrentGOTIndex += no;
2624 return StartOffset;
2625}
2626
2627uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2628 unsigned GOTRelType) {
2629 auto E = GOTOffsetMap.insert({Value, 0});
2630 if (E.second) {
2631 uint64_t GOTOffset = allocateGOTEntries(1);
2632
2633 // Create relocation for newly created GOT entry
2634 RelocationEntry RE =
2635 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2636 if (Value.SymbolName)
2637 addRelocationForSymbol(RE, Value.SymbolName);
2638 else
2639 addRelocationForSection(RE, Value.SectionID);
2640
2641 E.first->second = GOTOffset;
2642 }
2643
2644 return E.first->second;
2645}
2646
2647void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2649 uint64_t GOTOffset,
2650 uint32_t Type) {
2651 // Fill in the relative address of the GOT Entry into the stub
2652 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2653 addRelocationForSection(GOTRE, GOTSectionID);
2654}
2655
2656RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2657 uint64_t SymbolOffset,
2658 uint32_t Type) {
2659 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2660}
2661
2662void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2663 // This should never return an error as `processNewSymbol` wouldn't have been
2664 // called if getFlags() returned an error before.
2665 auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2666
2667 if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2668 if (IFuncStubSectionID == 0) {
2669 // Create a dummy section for the ifunc stubs. It will be actually
2670 // allocated in finalizeLoad() below.
2671 IFuncStubSectionID = Sections.size();
2672 Sections.push_back(
2673 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2674 // First 64B are reserverd for the IFunc resolver
2675 IFuncStubOffset = 64;
2676 }
2677
2678 IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2679 // Modify the symbol so that it points to the ifunc stub instead of to the
2680 // resolver function.
2681 Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2682 Symbol.getFlags());
2683 IFuncStubOffset += getMaxIFuncStubSize();
2684 }
2685}
2686
2688 ObjSectionToIDMap &SectionMap) {
2689 if (IsMipsO32ABI)
2690 if (!PendingRelocs.empty())
2691 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2692
2693 // Create the IFunc stubs if necessary. This must be done before processing
2694 // the GOT entries, as the IFunc stubs may create some.
2695 if (IFuncStubSectionID != 0) {
2696 uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2697 IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2698 if (!IFuncStubsAddr)
2699 return make_error<RuntimeDyldError>(
2700 "Unable to allocate memory for IFunc stubs!");
2701 Sections[IFuncStubSectionID] =
2702 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2703 IFuncStubOffset, 0);
2704
2705 createIFuncResolver(IFuncStubsAddr);
2706
2707 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2708 << IFuncStubSectionID << " Addr: "
2709 << Sections[IFuncStubSectionID].getAddress() << '\n');
2710 for (auto &IFuncStub : IFuncStubs) {
2711 auto &Symbol = IFuncStub.OriginalSymbol;
2712 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2713 << " Offset: " << format("%p", Symbol.getOffset())
2714 << " IFuncStubOffset: "
2715 << format("%p\n", IFuncStub.StubOffset));
2716 createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2717 Symbol.getSectionID(), Symbol.getOffset());
2718 }
2719
2720 IFuncStubSectionID = 0;
2721 IFuncStubOffset = 0;
2722 IFuncStubs.clear();
2723 }
2724
2725 // If necessary, allocate the global offset table
2726 if (GOTSectionID != 0) {
2727 // Allocate memory for the section
2728 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2730 GOTSectionID, ".got", false);
2731 if (!Addr)
2732 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2733
2734 Sections[GOTSectionID] =
2735 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2736
2737 // For now, initialize all GOT entries to zero. We'll fill them in as
2738 // needed when GOT-based relocations are applied.
2739 memset(Addr, 0, TotalSize);
2740 if (IsMipsN32ABI || IsMipsN64ABI) {
2741 // To correctly resolve Mips GOT relocations, we need a mapping from
2742 // object's sections to GOTs.
2743 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2744 SI != SE; ++SI) {
2745 if (SI->relocation_begin() != SI->relocation_end()) {
2746 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2747 if (!RelSecOrErr)
2748 return make_error<RuntimeDyldError>(
2749 toString(RelSecOrErr.takeError()));
2750
2751 section_iterator RelocatedSection = *RelSecOrErr;
2752 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2753 assert(i != SectionMap.end());
2754 SectionToGOTMap[i->second] = GOTSectionID;
2755 }
2756 }
2757 GOTSymbolOffsets.clear();
2758 }
2759 }
2760
2761 // Look for and record the EH frame section.
2762 ObjSectionToIDMap::iterator i, e;
2763 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2764 const SectionRef &Section = i->first;
2765
2767 Expected<StringRef> NameOrErr = Section.getName();
2768 if (NameOrErr)
2769 Name = *NameOrErr;
2770 else
2771 consumeError(NameOrErr.takeError());
2772
2773 if (Name == ".eh_frame") {
2774 UnregisteredEHFrameSections.push_back(i->second);
2775 break;
2776 }
2777 }
2778
2779 GOTOffsetMap.clear();
2780 GOTSectionID = 0;
2781 CurrentGOTIndex = 0;
2782
2783 return Error::success();
2784}
2785
2787 return Obj.isELF();
2788}
2789
2790void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2791 if (Arch == Triple::x86_64) {
2792 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2793 // (see createIFuncStub() for details)
2794 // The following code first saves all registers that contain the original
2795 // function arguments as those registers are not saved by the resolver
2796 // function. %r11 is saved as well so that the GOT2 entry can be updated
2797 // afterwards. Then it calls the actual IFunc resolver function whose
2798 // address is stored in GOT2. After the resolver function returns, all
2799 // saved registers are restored and the return value is written to GOT1.
2800 // Finally, jump to the now resolved function.
2801 // clang-format off
2802 const uint8_t StubCode[] = {
2803 0x57, // push %rdi
2804 0x56, // push %rsi
2805 0x52, // push %rdx
2806 0x51, // push %rcx
2807 0x41, 0x50, // push %r8
2808 0x41, 0x51, // push %r9
2809 0x41, 0x53, // push %r11
2810 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2811 0x41, 0x5b, // pop %r11
2812 0x41, 0x59, // pop %r9
2813 0x41, 0x58, // pop %r8
2814 0x59, // pop %rcx
2815 0x5a, // pop %rdx
2816 0x5e, // pop %rsi
2817 0x5f, // pop %rdi
2818 0x49, 0x89, 0x03, // mov %rax,(%r11)
2819 0xff, 0xe0 // jmp *%rax
2820 };
2821 // clang-format on
2822 static_assert(sizeof(StubCode) <= 64,
2823 "maximum size of the IFunc resolver is 64B");
2824 memcpy(Addr, StubCode, sizeof(StubCode));
2825 } else {
2827 "IFunc resolver is not supported for target architecture");
2828 }
2829}
2830
2831void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2832 uint64_t IFuncResolverOffset,
2833 uint64_t IFuncStubOffset,
2834 unsigned IFuncSectionID,
2835 uint64_t IFuncOffset) {
2836 auto &IFuncStubSection = Sections[IFuncStubSectionID];
2837 auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2838
2839 if (Arch == Triple::x86_64) {
2840 // The first instruction loads a PC-relative address into %r11 which is a
2841 // GOT entry for this stub. This initially contains the address to the
2842 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2843 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2844 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2845 // entry.
2846 //
2847 // The next instruction just jumps to the address contained in the GOT
2848 // entry. As mentioned above, we do this two-step jump by first setting
2849 // %r11 so that the IFunc resolver has access to it.
2850 //
2851 // The IFunc resolver of course also needs to know the actual address of
2852 // the actual IFunc resolver function. This will be stored in a GOT entry
2853 // right next to the first one for this stub. So, the IFunc resolver will
2854 // be able to call it with %r11+8.
2855 //
2856 // In total, two adjacent GOT entries (+relocation) and one additional
2857 // relocation are required:
2858 // GOT1: Address of the IFunc resolver.
2859 // GOT2: Address of the IFunc resolver function.
2860 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2861 uint64_t GOT1 = allocateGOTEntries(2);
2862 uint64_t GOT2 = GOT1 + getGOTEntrySize();
2863
2864 RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2865 IFuncResolverOffset, {});
2866 addRelocationForSection(RE1, IFuncStubSectionID);
2867 RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2868 addRelocationForSection(RE2, IFuncSectionID);
2869
2870 const uint8_t StubCode[] = {
2871 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2872 0x41, 0xff, 0x23 // jmpq *(%r11)
2873 };
2874 assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2875 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2876 memcpy(Addr, StubCode, sizeof(StubCode));
2877
2878 // The PC-relative value starts 4 bytes from the end of the leaq
2879 // instruction, so the addend is -4.
2880 resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2881 GOT1 - 4, ELF::R_X86_64_PC32);
2882 } else {
2883 report_fatal_error("IFunc stub is not supported for target architecture");
2884 }
2885}
2886
2887unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2888 if (Arch == Triple::x86_64) {
2889 return 10;
2890 }
2891 return 0;
2892}
2893
2894bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2895 unsigned RelTy = R.getType();
2897 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2898 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2899
2901 return RelTy == ELF::R_LARCH_GOT_PC_HI20 ||
2902 RelTy == ELF::R_LARCH_GOT_PC_LO12;
2903
2904 if (Arch == Triple::x86_64)
2905 return RelTy == ELF::R_X86_64_GOTPCREL ||
2906 RelTy == ELF::R_X86_64_GOTPCRELX ||
2907 RelTy == ELF::R_X86_64_GOT64 ||
2908 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2909 return false;
2910}
2911
2912bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2913 if (Arch != Triple::x86_64)
2914 return true; // Conservative answer
2915
2916 switch (R.getType()) {
2917 default:
2918 return true; // Conservative answer
2919
2920
2921 case ELF::R_X86_64_GOTPCREL:
2922 case ELF::R_X86_64_GOTPCRELX:
2923 case ELF::R_X86_64_REX_GOTPCRELX:
2924 case ELF::R_X86_64_GOTPC64:
2925 case ELF::R_X86_64_GOT64:
2926 case ELF::R_X86_64_GOTOFF64:
2927 case ELF::R_X86_64_PC32:
2928 case ELF::R_X86_64_PC64:
2929 case ELF::R_X86_64_64:
2930 // We know that these reloation types won't need a stub function. This list
2931 // can be extended as needed.
2932 return false;
2933 }
2934}
2935
2936} // namespace llvm
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
Given that RA is a live value
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Addr
std::string Name
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Definition: ELFTypes.h:106
bool End
Definition: ELF_riscv.cpp:480
#define I(x, y, z)
Definition: MD5.cpp:58
#define P(N)
static void or32le(void *P, int32_t V)
static void or32AArch64Imm(void *L, uint64_t Imm)
static void write(bool isBE, void *P, T V)
static uint64_t getBits(uint64_t Val, int Start, int End)
static void write32AArch64Addr(void *L, uint64_t Imm)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
const Value * getAddress(const DbgVariableIntrinsic *DVI)
Definition: SROA.cpp:5023
raw_pwrite_stream & OS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
const T * data() const
Definition: ArrayRef.h:165
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:337
Tagged union holding either a T or a Error.
Definition: Error.h:481
Error takeError()
Take ownership of the stored error.
Definition: Error.h:608
Symbol resolution interface.
Definition: JITSymbol.h:371
static std::unique_ptr< MemoryBuffer > getMemBufferCopy(StringRef InputData, const Twine &BufferName="")
Open the specified memory range as a MemoryBuffer, copying the contents and taking ownership of it.
RelocationEntry - used to represent relocations internally in the dynamic linker.
uint32_t RelType
RelType - relocation type.
uint64_t Offset
Offset - offset into the section.
int64_t Addend
Addend - the relocation addend encoded in the instruction itself.
unsigned SectionID
SectionID - the section this relocation points to.
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Definition: Record.h:2203
void registerEHFrames() override
size_t getGOTEntrySize() override
~RuntimeDyldELF() override
static std::unique_ptr< RuntimeDyldELF > create(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Error finalizeLoad(const ObjectFile &Obj, ObjSectionToIDMap &SectionMap) override
DenseMap< SID, SID > SectionToGOTMap
bool isCompatibleFile(const object::ObjectFile &Obj) const override
std::unique_ptr< RuntimeDyld::LoadedObjectInfo > loadObject(const object::ObjectFile &O) override
RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Expected< relocation_iterator > processRelocationRef(unsigned SectionID, relocation_iterator RelI, const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) override
Parses one or more object file relocations (some object files use relocation pairs) and stores it to ...
std::map< SectionRef, unsigned > ObjSectionToIDMap
void writeInt32BE(uint8_t *Addr, uint32_t Value)
void writeInt64BE(uint8_t *Addr, uint64_t Value)
std::map< RelocationValueRef, uintptr_t > StubMap
void writeInt16BE(uint8_t *Addr, uint16_t Value)
void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName)
RuntimeDyld::MemoryManager & MemMgr
void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID)
Expected< unsigned > findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections)
Find Section in LocalSections.
Triple::ArchType Arch
uint8_t * createStubFunction(uint8_t *Addr, unsigned AbiVariant=0)
Emits long jump instruction to Addr.
uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const
Endian-aware read Read the least significant Size bytes from Src.
uint64_t getSectionLoadAddress(unsigned SectionID) const
RTDyldSymbolTable GlobalSymbolTable
Expected< ObjSectionToIDMap > loadObjectImpl(const object::ObjectFile &Obj)
virtual uint8_t * allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly)=0
Allocate a memory block of (at least) the given size suitable for data.
virtual uint8_t * allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName)=0
Allocate a memory block of (at least) the given size suitable for executable code.
virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size)=0
Register the EH frames with the runtime so that c++ exceptions work.
virtual bool allowStubAllocation() const
Override to return false to tell LLVM no stub space will be needed.
Definition: RuntimeDyld.h:148
SectionEntry - represents a section emitted into memory by the dynamic linker.
void push_back(const T &Elt)
Definition: SmallVector.h:413
iterator end()
Definition: StringMap.h:220
iterator find(StringRef Key)
Definition: StringMap.h:233
std::pair< iterator, bool > try_emplace(StringRef Key, ArgsTy &&...Args)
Emplace a new element for the specified key into the map if the key isn't already in the map.
Definition: StringMap.h:368
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:144
Symbol info for RuntimeDyld.
Target - Wrapper for Target specific information.
@ UnknownArch
Definition: Triple.h:47
@ aarch64_be
Definition: Triple.h:52
@ loongarch64
Definition: Triple.h:62
@ mips64el
Definition: Triple.h:67
static StringRef getArchTypePrefix(ArchType Kind)
Get the "prefix" canonical name for the Kind architecture.
Definition: Triple.cpp:147
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
Expected< uint32_t > getFlags() const
Get symbol flags (bitwise OR of SymbolRef::Flags)
Definition: SymbolicFile.h:206
DataRefImpl getRawDataRefImpl() const
Definition: SymbolicFile.h:210
StringRef getData() const
Definition: Binary.cpp:39
bool isLittleEndian() const
Definition: Binary.h:155
StringRef getFileName() const
Definition: Binary.cpp:41
bool isELF() const
Definition: Binary.h:123
virtual unsigned getPlatformFlags() const =0
Returns platform-specific object flags, if any.
static bool classof(const Binary *v)
Expected< const Elf_Sym * > getSymbol(DataRefImpl Sym) const
static Expected< ELFObjectFile< ELFT > > create(MemoryBufferRef Object, bool InitContent=true)
Expected< int64_t > getAddend() const
This class is the base class for all object file types.
Definition: ObjectFile.h:229
virtual section_iterator section_end() const =0
virtual uint8_t getBytesInAddress() const =0
The number of bytes used to represent an address in this object file format.
section_iterator_range sections() const
Definition: ObjectFile.h:329
virtual StringRef getFileFormatName() const =0
virtual section_iterator section_begin() const =0
This is a value type class that represents a single relocation in the list of relocations in the obje...
Definition: ObjectFile.h:52
uint64_t getType() const
Definition: ObjectFile.h:628
This is a value type class that represents a single section in the list of sections in the object fil...
Definition: ObjectFile.h:81
DataRefImpl getRawDataRefImpl() const
Definition: ObjectFile.h:598
bool isText() const
Whether this section contains instructions.
Definition: ObjectFile.h:550
Expected< StringRef > getName() const
Definition: ObjectFile.h:517
This is a value type class that represents a single symbol in the list of symbols in the object file.
Definition: ObjectFile.h:168
Expected< section_iterator > getSection() const
Get section this symbol is defined in reference to.
Definition: ObjectFile.h:480
virtual basic_symbol_iterator symbol_end() const =0
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
static int64_t decodePPC64LocalEntryOffset(unsigned Other)
Definition: ELF.h:415
@ EF_MIPS_ABI_O32
Definition: ELF.h:523
@ EF_MIPS_ABI2
Definition: ELF.h:515
@ EF_PPC64_ABI
Definition: ELF.h:407
@ Resolved
Queried, materialization begun.
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
void write32le(void *P, uint32_t V)
Definition: Endian.h:468
uint32_t read32le(const void *P)
Definition: Endian.h:425
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner={})
Log all errors (if any) in E to OS.
Definition: Error.cpp:65
static uint16_t applyPPChighera(uint64_t value)
static uint16_t applyPPChi(uint64_t value)
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
Definition: Error.h:977
static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm)
static uint16_t applyPPChighesta(uint64_t value)
static uint16_t applyPPChighest(uint64_t value)
Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, OnCuIndexOverflow OverflowOptValue)
Definition: DWP.cpp:625
static uint16_t applyPPCha(uint64_t value)
static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition: MathExtras.h:159
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
static uint16_t applyPPClo(uint64_t value)
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
@ Ref
The access may reference the value stored in memory.
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
Definition: Error.h:756
static uint16_t applyPPChigher(uint64_t value)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
static void or32le(void *P, int32_t V)
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition: Casting.h:565
static uint32_t extractBits(uint64_t Val, uint32_t Hi, uint32_t Lo)
const char * toString(DWARFSectionKind Kind)
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:581
void consumeError(Error Err)
Consume a Error without doing anything.
Definition: Error.h:1069
static void write32AArch64Addr(void *T, uint64_t s, uint64_t p, int shift)
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
SymInfo contains information about symbol: it's address and section index which is -1LL for absolute ...