LLVM  7.0.0svn
LegalizeTypes.cpp
Go to the documentation of this file.
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
11 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
12 // is common code shared among the LegalizeTypes*.cpp files.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "LegalizeTypes.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/SetVector.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/DataLayout.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "legalize-types"
28 
29 static cl::opt<bool>
30 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
31 
32 /// Do extensive, expensive, sanity checking.
33 void DAGTypeLegalizer::PerformExpensiveChecks() {
34  // If a node is not processed, then none of its values should be mapped by any
35  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
36 
37  // If a node is processed, then each value with an illegal type must be mapped
38  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
39  // Values with a legal type may be mapped by ReplacedValues, but not by any of
40  // the other maps.
41 
42  // Note that these invariants may not hold momentarily when processing a node:
43  // the node being processed may be put in a map before being marked Processed.
44 
45  // Note that it is possible to have nodes marked NewNode in the DAG. This can
46  // occur in two ways. Firstly, a node may be created during legalization but
47  // never passed to the legalization core. This is usually due to the implicit
48  // folding that occurs when using the DAG.getNode operators. Secondly, a new
49  // node may be passed to the legalization core, but when analyzed may morph
50  // into a different node, leaving the original node as a NewNode in the DAG.
51  // A node may morph if one of its operands changes during analysis. Whether
52  // it actually morphs or not depends on whether, after updating its operands,
53  // it is equivalent to an existing node: if so, it morphs into that existing
54  // node (CSE). An operand can change during analysis if the operand is a new
55  // node that morphs, or it is a processed value that was mapped to some other
56  // value (as recorded in ReplacedValues) in which case the operand is turned
57  // into that other value. If a node morphs then the node it morphed into will
58  // be used instead of it for legalization, however the original node continues
59  // to live on in the DAG.
60  // The conclusion is that though there may be nodes marked NewNode in the DAG,
61  // all uses of such nodes are also marked NewNode: the result is a fungus of
62  // NewNodes growing on top of the useful nodes, and perhaps using them, but
63  // not used by them.
64 
65  // If a value is mapped by ReplacedValues, then it must have no uses, except
66  // by nodes marked NewNode (see above).
67 
68  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
69  // Note that ReplacedValues should be applied iteratively.
70 
71  // Note that the ReplacedValues map may also map deleted nodes (by iterating
72  // over the DAG we never dereference deleted nodes). This means that it may
73  // also map nodes marked NewNode if the deallocated memory was reallocated as
74  // another node, and that new node was not seen by the LegalizeTypes machinery
75  // (for example because it was created but not used). In general, we cannot
76  // distinguish between new nodes and deleted nodes.
77  SmallVector<SDNode*, 16> NewNodes;
78  for (SDNode &Node : DAG.allnodes()) {
79  // Remember nodes marked NewNode - they are subject to extra checking below.
80  if (Node.getNodeId() == NewNode)
81  NewNodes.push_back(&Node);
82 
83  for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
84  SDValue Res(&Node, i);
85  EVT VT = Res.getValueType();
86  bool Failed = false;
87  // Don't create a value in map.
88  auto ResId = (ValueToIdMap.count(Res)) ? ValueToIdMap[Res] : 0;
89 
90  unsigned Mapped = 0;
91  if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
92  Mapped |= 1;
93  // Check that remapped values are only used by nodes marked NewNode.
94  for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
95  UI != UE; ++UI)
96  if (UI.getUse().getResNo() == i)
97  assert(UI->getNodeId() == NewNode &&
98  "Remapped value has non-trivial use!");
99 
100  // Check that the final result of applying ReplacedValues is not
101  // marked NewNode.
102  auto NewValId = ReplacedValues[ResId];
103  auto I = ReplacedValues.find(NewValId);
104  while (I != ReplacedValues.end()) {
105  NewValId = I->second;
106  I = ReplacedValues.find(NewValId);
107  }
108  SDValue NewVal = getSDValue(NewValId);
109  (void)NewVal;
110  assert(NewVal.getNode()->getNodeId() != NewNode &&
111  "ReplacedValues maps to a new node!");
112  }
113  if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
114  Mapped |= 2;
115  if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
116  Mapped |= 4;
117  if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
118  Mapped |= 8;
119  if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
120  Mapped |= 16;
121  if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
122  Mapped |= 32;
123  if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
124  Mapped |= 64;
125  if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
126  Mapped |= 128;
127  if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
128  Mapped |= 256;
129 
130  if (Node.getNodeId() != Processed) {
131  // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132  // marked NewNode too, since a deleted node may have been reallocated as
133  // another node that has not been seen by the LegalizeTypes machinery.
134  if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135  (Node.getNodeId() != NewNode && Mapped != 0)) {
136  dbgs() << "Unprocessed value in a map!";
137  Failed = true;
138  }
139  } else if (isTypeLegal(VT) || IgnoreNodeResults(&Node)) {
140  if (Mapped > 1) {
141  dbgs() << "Value with legal type was transformed!";
142  Failed = true;
143  }
144  } else {
145  // If the value can be kept in HW registers, softening machinery can
146  // leave it unchanged and don't put it to any map.
147  if (Mapped == 0 &&
148  !(getTypeAction(VT) == TargetLowering::TypeSoftenFloat &&
149  isLegalInHWReg(VT))) {
150  dbgs() << "Processed value not in any map!";
151  Failed = true;
152  } else if (Mapped & (Mapped - 1)) {
153  dbgs() << "Value in multiple maps!";
154  Failed = true;
155  }
156  }
157 
158  if (Failed) {
159  if (Mapped & 1)
160  dbgs() << " ReplacedValues";
161  if (Mapped & 2)
162  dbgs() << " PromotedIntegers";
163  if (Mapped & 4)
164  dbgs() << " SoftenedFloats";
165  if (Mapped & 8)
166  dbgs() << " ScalarizedVectors";
167  if (Mapped & 16)
168  dbgs() << " ExpandedIntegers";
169  if (Mapped & 32)
170  dbgs() << " ExpandedFloats";
171  if (Mapped & 64)
172  dbgs() << " SplitVectors";
173  if (Mapped & 128)
174  dbgs() << " WidenedVectors";
175  if (Mapped & 256)
176  dbgs() << " PromotedFloats";
177  dbgs() << "\n";
178  llvm_unreachable(nullptr);
179  }
180  }
181  }
182 
183  // Checked that NewNodes are only used by other NewNodes.
184  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
185  SDNode *N = NewNodes[i];
186  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
187  UI != UE; ++UI)
188  assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
189  }
190 }
191 
192 /// This is the main entry point for the type legalizer. This does a top-down
193 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
194 /// any changes.
196  bool Changed = false;
197 
198  // Create a dummy node (which is not added to allnodes), that adds a reference
199  // to the root node, preventing it from being deleted, and tracking any
200  // changes of the root.
201  HandleSDNode Dummy(DAG.getRoot());
202  Dummy.setNodeId(Unanalyzed);
203 
204  // The root of the dag may dangle to deleted nodes until the type legalizer is
205  // done. Set it to null to avoid confusion.
206  DAG.setRoot(SDValue());
207 
208  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
209  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
210  // non-leaves.
211  for (SDNode &Node : DAG.allnodes()) {
212  if (Node.getNumOperands() == 0) {
213  AddToWorklist(&Node);
214  } else {
215  Node.setNodeId(Unanalyzed);
216  }
217  }
218 
219  // Now that we have a set of nodes to process, handle them all.
220  while (!Worklist.empty()) {
221 #ifndef EXPENSIVE_CHECKS
223 #endif
224  PerformExpensiveChecks();
225 
226  SDNode *N = Worklist.back();
227  Worklist.pop_back();
228  assert(N->getNodeId() == ReadyToProcess &&
229  "Node should be ready if on worklist!");
230 
231  LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
232  if (IgnoreNodeResults(N)) {
233  LLVM_DEBUG(dbgs() << "Ignoring node results\n");
234  goto ScanOperands;
235  }
236 
237  // Scan the values produced by the node, checking to see if any result
238  // types are illegal.
239  for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
240  EVT ResultVT = N->getValueType(i);
241  LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
242  << "\n");
243  switch (getTypeAction(ResultVT)) {
245  LLVM_DEBUG(dbgs() << "Legal result type\n");
246  break;
247  // The following calls must take care of *all* of the node's results,
248  // not just the illegal result they were passed (this includes results
249  // with a legal type). Results can be remapped using ReplaceValueWith,
250  // or their promoted/expanded/etc values registered in PromotedIntegers,
251  // ExpandedIntegers etc.
253  PromoteIntegerResult(N, i);
254  Changed = true;
255  goto NodeDone;
257  ExpandIntegerResult(N, i);
258  Changed = true;
259  goto NodeDone;
261  Changed = SoftenFloatResult(N, i);
262  if (Changed)
263  goto NodeDone;
264  // If not changed, the result type should be legally in register.
265  assert(isLegalInHWReg(ResultVT) &&
266  "Unchanged SoftenFloatResult should be legal in register!");
267  goto ScanOperands;
269  ExpandFloatResult(N, i);
270  Changed = true;
271  goto NodeDone;
273  ScalarizeVectorResult(N, i);
274  Changed = true;
275  goto NodeDone;
277  SplitVectorResult(N, i);
278  Changed = true;
279  goto NodeDone;
281  WidenVectorResult(N, i);
282  Changed = true;
283  goto NodeDone;
285  PromoteFloatResult(N, i);
286  Changed = true;
287  goto NodeDone;
288  }
289  }
290 
291 ScanOperands:
292  // Scan the operand list for the node, handling any nodes with operands that
293  // are illegal.
294  {
295  unsigned NumOperands = N->getNumOperands();
296  bool NeedsReanalyzing = false;
297  unsigned i;
298  for (i = 0; i != NumOperands; ++i) {
299  if (IgnoreNodeResults(N->getOperand(i).getNode()))
300  continue;
301 
302  const auto Op = N->getOperand(i);
303  LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
304  EVT OpVT = Op.getValueType();
305  switch (getTypeAction(OpVT)) {
307  LLVM_DEBUG(dbgs() << "Legal operand\n");
308  continue;
309  // The following calls must either replace all of the node's results
310  // using ReplaceValueWith, and return "false"; or update the node's
311  // operands in place, and return "true".
313  NeedsReanalyzing = PromoteIntegerOperand(N, i);
314  Changed = true;
315  break;
317  NeedsReanalyzing = ExpandIntegerOperand(N, i);
318  Changed = true;
319  break;
321  NeedsReanalyzing = SoftenFloatOperand(N, i);
322  Changed = true;
323  break;
325  NeedsReanalyzing = ExpandFloatOperand(N, i);
326  Changed = true;
327  break;
329  NeedsReanalyzing = ScalarizeVectorOperand(N, i);
330  Changed = true;
331  break;
333  NeedsReanalyzing = SplitVectorOperand(N, i);
334  Changed = true;
335  break;
337  NeedsReanalyzing = WidenVectorOperand(N, i);
338  Changed = true;
339  break;
341  NeedsReanalyzing = PromoteFloatOperand(N, i);
342  Changed = true;
343  break;
344  }
345  break;
346  }
347 
348  // The sub-method updated N in place. Check to see if any operands are new,
349  // and if so, mark them. If the node needs revisiting, don't add all users
350  // to the worklist etc.
351  if (NeedsReanalyzing) {
352  assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
353 
354  N->setNodeId(NewNode);
355  // Recompute the NodeId and correct processed operands, adding the node to
356  // the worklist if ready.
357  SDNode *M = AnalyzeNewNode(N);
358  if (M == N)
359  // The node didn't morph - nothing special to do, it will be revisited.
360  continue;
361 
362  // The node morphed - this is equivalent to legalizing by replacing every
363  // value of N with the corresponding value of M. So do that now.
364  assert(N->getNumValues() == M->getNumValues() &&
365  "Node morphing changed the number of results!");
366  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
367  // Replacing the value takes care of remapping the new value.
368  ReplaceValueWith(SDValue(N, i), SDValue(M, i));
369  assert(N->getNodeId() == NewNode && "Unexpected node state!");
370  // The node continues to live on as part of the NewNode fungus that
371  // grows on top of the useful nodes. Nothing more needs to be done
372  // with it - move on to the next node.
373  continue;
374  }
375 
376  if (i == NumOperands) {
377  LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
378  dbgs() << "\n");
379  }
380  }
381 NodeDone:
382 
383  // If we reach here, the node was processed, potentially creating new nodes.
384  // Mark it as processed and add its users to the worklist as appropriate.
385  assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
386  N->setNodeId(Processed);
387 
388  for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
389  UI != E; ++UI) {
390  SDNode *User = *UI;
391  int NodeId = User->getNodeId();
392 
393  // This node has two options: it can either be a new node or its Node ID
394  // may be a count of the number of operands it has that are not ready.
395  if (NodeId > 0) {
396  User->setNodeId(NodeId-1);
397 
398  // If this was the last use it was waiting on, add it to the ready list.
399  if (NodeId-1 == ReadyToProcess)
400  Worklist.push_back(User);
401  continue;
402  }
403 
404  // If this is an unreachable new node, then ignore it. If it ever becomes
405  // reachable by being used by a newly created node then it will be handled
406  // by AnalyzeNewNode.
407  if (NodeId == NewNode)
408  continue;
409 
410  // Otherwise, this node is new: this is the first operand of it that
411  // became ready. Its new NodeId is the number of operands it has minus 1
412  // (as this node is now processed).
413  assert(NodeId == Unanalyzed && "Unknown node ID!");
414  User->setNodeId(User->getNumOperands() - 1);
415 
416  // If the node only has a single operand, it is now ready.
417  if (User->getNumOperands() == 1)
418  Worklist.push_back(User);
419  }
420  }
421 
422 #ifndef EXPENSIVE_CHECKS
424 #endif
425  PerformExpensiveChecks();
426 
427  // If the root changed (e.g. it was a dead load) update the root.
428  DAG.setRoot(Dummy.getValue());
429 
430  // Remove dead nodes. This is important to do for cleanliness but also before
431  // the checking loop below. Implicit folding by the DAG.getNode operators and
432  // node morphing can cause unreachable nodes to be around with their flags set
433  // to new.
434  DAG.RemoveDeadNodes();
435 
436  // In a debug build, scan all the nodes to make sure we found them all. This
437  // ensures that there are no cycles and that everything got processed.
438 #ifndef NDEBUG
439  for (SDNode &Node : DAG.allnodes()) {
440  bool Failed = false;
441 
442  // Check that all result types are legal.
443  // A value type is illegal if its TypeAction is not TypeLegal,
444  // and TLI.RegClassForVT does not have a register class for this type.
445  // For example, the x86_64 target has f128 that is not TypeLegal,
446  // to have softened operators, but it also has FR128 register class to
447  // pass and return f128 values. Hence a legalized node can have f128 type.
448  if (!IgnoreNodeResults(&Node))
449  for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
450  if (!isTypeLegal(Node.getValueType(i)) &&
451  !TLI.isTypeLegal(Node.getValueType(i))) {
452  dbgs() << "Result type " << i << " illegal: ";
453  Node.dump(&DAG);
454  Failed = true;
455  }
456 
457  // Check that all operand types are legal.
458  for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
459  if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
460  !isTypeLegal(Node.getOperand(i).getValueType()) &&
461  !TLI.isTypeLegal(Node.getOperand(i).getValueType())) {
462  dbgs() << "Operand type " << i << " illegal: ";
463  Node.getOperand(i).dump(&DAG);
464  Failed = true;
465  }
466 
467  if (Node.getNodeId() != Processed) {
468  if (Node.getNodeId() == NewNode)
469  dbgs() << "New node not analyzed?\n";
470  else if (Node.getNodeId() == Unanalyzed)
471  dbgs() << "Unanalyzed node not noticed?\n";
472  else if (Node.getNodeId() > 0)
473  dbgs() << "Operand not processed?\n";
474  else if (Node.getNodeId() == ReadyToProcess)
475  dbgs() << "Not added to worklist?\n";
476  Failed = true;
477  }
478 
479  if (Failed) {
480  Node.dump(&DAG); dbgs() << "\n";
481  llvm_unreachable(nullptr);
482  }
483  }
484 #endif
485 
486  return Changed;
487 }
488 
489 /// The specified node is the root of a subtree of potentially new nodes.
490 /// Correct any processed operands (this may change the node) and calculate the
491 /// NodeId. If the node itself changes to a processed node, it is not remapped -
492 /// the caller needs to take care of this. Returns the potentially changed node.
493 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
494  // If this was an existing node that is already done, we're done.
495  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
496  return N;
497 
498  // Okay, we know that this node is new. Recursively walk all of its operands
499  // to see if they are new also. The depth of this walk is bounded by the size
500  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
501  // about revisiting of nodes.
502  //
503  // As we walk the operands, keep track of the number of nodes that are
504  // processed. If non-zero, this will become the new nodeid of this node.
505  // Operands may morph when they are analyzed. If so, the node will be
506  // updated after all operands have been analyzed. Since this is rare,
507  // the code tries to minimize overhead in the non-morphing case.
508 
509  std::vector<SDValue> NewOps;
510  unsigned NumProcessed = 0;
511  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
512  SDValue OrigOp = N->getOperand(i);
513  SDValue Op = OrigOp;
514 
515  AnalyzeNewValue(Op); // Op may morph.
516 
517  if (Op.getNode()->getNodeId() == Processed)
518  ++NumProcessed;
519 
520  if (!NewOps.empty()) {
521  // Some previous operand changed. Add this one to the list.
522  NewOps.push_back(Op);
523  } else if (Op != OrigOp) {
524  // This is the first operand to change - add all operands so far.
525  NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
526  NewOps.push_back(Op);
527  }
528  }
529 
530  // Some operands changed - update the node.
531  if (!NewOps.empty()) {
532  SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
533  if (M != N) {
534  // The node morphed into a different node. Normally for this to happen
535  // the original node would have to be marked NewNode. However this can
536  // in theory momentarily not be the case while ReplaceValueWith is doing
537  // its stuff. Mark the original node NewNode to help sanity checking.
538  N->setNodeId(NewNode);
539  if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
540  // It morphed into a previously analyzed node - nothing more to do.
541  return M;
542 
543  // It morphed into a different new node. Do the equivalent of passing
544  // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
545  // to remap the operands, since they are the same as the operands we
546  // remapped above.
547  N = M;
548  }
549  }
550 
551  // Calculate the NodeId.
552  N->setNodeId(N->getNumOperands() - NumProcessed);
553  if (N->getNodeId() == ReadyToProcess)
554  Worklist.push_back(N);
555 
556  return N;
557 }
558 
559 /// Call AnalyzeNewNode, updating the node in Val if needed.
560 /// If the node changes to a processed node, then remap it.
561 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
562  Val.setNode(AnalyzeNewNode(Val.getNode()));
563  if (Val.getNode()->getNodeId() == Processed)
564  // We were passed a processed node, or it morphed into one - remap it.
565  RemapValue(Val);
566 }
567 
568 /// If the specified value was already legalized to another value,
569 /// replace it by that value.
570 void DAGTypeLegalizer::RemapValue(SDValue &V) {
571  auto Id = getTableId(V);
572  V = getSDValue(Id);
573 }
574 
575 void DAGTypeLegalizer::RemapId(TableId &Id) {
576  auto I = ReplacedValues.find(Id);
577  if (I != ReplacedValues.end()) {
578  assert(Id != I->second && "Id is mapped to itself.");
579  // Use path compression to speed up future lookups if values get multiply
580  // replaced with other values.
581  RemapId(I->second);
582  Id = I->second;
583 
584  // Note that N = IdToValueMap[Id] it is possible to have
585  // N.getNode()->getNodeId() == NewNode at this point because it is possible
586  // for a node to be put in the map before being processed.
587  }
588 }
589 
590 namespace {
591  /// This class is a DAGUpdateListener that listens for updates to nodes and
592  /// recomputes their ready state.
593  class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
594  DAGTypeLegalizer &DTL;
595  SmallSetVector<SDNode*, 16> &NodesToAnalyze;
596  public:
597  explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
600  DTL(dtl), NodesToAnalyze(nta) {}
601 
602  void NodeDeleted(SDNode *N, SDNode *E) override {
605  "Invalid node ID for RAUW deletion!");
606  // It is possible, though rare, for the deleted node N to occur as a
607  // target in a map, so note the replacement N -> E in ReplacedValues.
608  assert(E && "Node not replaced?");
609  DTL.NoteDeletion(N, E);
610 
611  // In theory the deleted node could also have been scheduled for analysis.
612  // So remove it from the set of nodes which will be analyzed.
613  NodesToAnalyze.remove(N);
614 
615  // In general nothing needs to be done for E, since it didn't change but
616  // only gained new uses. However N -> E was just added to ReplacedValues,
617  // and the result of a ReplacedValues mapping is not allowed to be marked
618  // NewNode. So if E is marked NewNode, then it needs to be analyzed.
620  NodesToAnalyze.insert(E);
621  }
622 
623  void NodeUpdated(SDNode *N) override {
624  // Node updates can mean pretty much anything. It is possible that an
625  // operand was set to something already processed (f.e.) in which case
626  // this node could become ready. Recompute its flags.
629  "Invalid node ID for RAUW deletion!");
631  NodesToAnalyze.insert(N);
632  }
633  };
634 }
635 
636 
637 /// The specified value was legalized to the specified other value.
638 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
639 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
640  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
641 
642  // If expansion produced new nodes, make sure they are properly marked.
643  AnalyzeNewValue(To);
644 
645  // Anything that used the old node should now use the new one. Note that this
646  // can potentially cause recursive merging.
647  SmallSetVector<SDNode*, 16> NodesToAnalyze;
648  NodeUpdateListener NUL(*this, NodesToAnalyze);
649  do {
650 
651  // The old node may be present in a map like ExpandedIntegers or
652  // PromotedIntegers. Inform maps about the replacement.
653  auto FromId = getTableId(From);
654  auto ToId = getTableId(To);
655 
656  if (FromId != ToId)
657  ReplacedValues[FromId] = ToId;
658  DAG.ReplaceAllUsesOfValueWith(From, To);
659 
660  // Process the list of nodes that need to be reanalyzed.
661  while (!NodesToAnalyze.empty()) {
662  SDNode *N = NodesToAnalyze.back();
663  NodesToAnalyze.pop_back();
665  // The node was analyzed while reanalyzing an earlier node - it is safe
666  // to skip. Note that this is not a morphing node - otherwise it would
667  // still be marked NewNode.
668  continue;
669 
670  // Analyze the node's operands and recalculate the node ID.
671  SDNode *M = AnalyzeNewNode(N);
672  if (M != N) {
673  // The node morphed into a different node. Make everyone use the new
674  // node instead.
675  assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
676  assert(N->getNumValues() == M->getNumValues() &&
677  "Node morphing changed the number of results!");
678  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
679  SDValue OldVal(N, i);
680  SDValue NewVal(M, i);
681  if (M->getNodeId() == Processed)
682  RemapValue(NewVal);
683  // OldVal may be a target of the ReplacedValues map which was marked
684  // NewNode to force reanalysis because it was updated. Ensure that
685  // anything that ReplacedValues mapped to OldVal will now be mapped
686  // all the way to NewVal.
687  auto OldValId = getTableId(OldVal);
688  auto NewValId = getTableId(NewVal);
689  DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
690  if (OldValId != NewValId)
691  ReplacedValues[OldValId] = NewValId;
692  }
693  // The original node continues to exist in the DAG, marked NewNode.
694  }
695  }
696  // When recursively update nodes with new nodes, it is possible to have
697  // new uses of From due to CSE. If this happens, replace the new uses of
698  // From with To.
699  } while (!From.use_empty());
700 }
701 
702 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
703  assert(Result.getValueType() ==
704  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
705  "Invalid type for promoted integer");
706  AnalyzeNewValue(Result);
707 
708  auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
709  assert((OpIdEntry == 0) && "Node is already promoted!");
710  OpIdEntry = getTableId(Result);
711 
712  DAG.transferDbgValues(Op, Result);
713 }
714 
715 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
716  // f128 of x86_64 could be kept in SSE registers,
717  // but sometimes softened to i128.
718  assert((Result.getValueType() ==
719  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) ||
720  Op.getValueType() ==
721  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
722  "Invalid type for softened float");
723  AnalyzeNewValue(Result);
724 
725  auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
726  // Allow repeated calls to save f128 type nodes
727  // or any node with type that transforms to itself.
728  // Many operations on these types are not softened.
729  assert(((OpIdEntry == 0) ||
730  Op.getValueType() ==
731  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
732  "Node is already converted to integer!");
733  OpIdEntry = getTableId(Result);
734 }
735 
736 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
737  assert(Result.getValueType() ==
738  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
739  "Invalid type for promoted float");
740  AnalyzeNewValue(Result);
741 
742  auto &OpIdEntry = PromotedFloats[getTableId(Op)];
743  assert((OpIdEntry == 0) && "Node is already promoted!");
744  OpIdEntry = getTableId(Result);
745 }
746 
747 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
748  // Note that in some cases vector operation operands may be greater than
749  // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
750  // a constant i8 operand.
752  "Invalid type for scalarized vector");
753  AnalyzeNewValue(Result);
754 
755  auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
756  assert((OpIdEntry == 0) && "Node is already scalarized!");
757  OpIdEntry = getTableId(Result);
758 }
759 
760 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
761  SDValue &Hi) {
762  std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
763  assert((Entry.first != 0) && "Operand isn't expanded");
764  Lo = getSDValue(Entry.first);
765  Hi = getSDValue(Entry.second);
766 }
767 
768 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
769  SDValue Hi) {
770  assert(Lo.getValueType() ==
771  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
772  Hi.getValueType() == Lo.getValueType() &&
773  "Invalid type for expanded integer");
774  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
775  AnalyzeNewValue(Lo);
776  AnalyzeNewValue(Hi);
777 
778  // Transfer debug values. Don't invalidate the source debug value until it's
779  // been transferred to the high and low bits.
780  if (DAG.getDataLayout().isBigEndian()) {
781  DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
782  DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
783  Lo.getValueSizeInBits());
784  } else {
785  DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
786  DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
787  Hi.getValueSizeInBits());
788  }
789 
790  // Remember that this is the result of the node.
791  std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
792  assert((Entry.first == 0) && "Node already expanded");
793  Entry.first = getTableId(Lo);
794  Entry.second = getTableId(Hi);
795 }
796 
797 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
798  SDValue &Hi) {
799  std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
800  assert((Entry.first != 0) && "Operand isn't expanded");
801  Lo = getSDValue(Entry.first);
802  Hi = getSDValue(Entry.second);
803 }
804 
805 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
806  SDValue Hi) {
807  assert(Lo.getValueType() ==
808  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
809  Hi.getValueType() == Lo.getValueType() &&
810  "Invalid type for expanded float");
811  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
812  AnalyzeNewValue(Lo);
813  AnalyzeNewValue(Hi);
814 
815  std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
816  assert((Entry.first == 0) && "Node already expanded");
817  Entry.first = getTableId(Lo);
818  Entry.second = getTableId(Hi);
819 }
820 
821 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
822  SDValue &Hi) {
823  std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
824  Lo = getSDValue(Entry.first);
825  Hi = getSDValue(Entry.second);
826  assert(Lo.getNode() && "Operand isn't split");
827  ;
828 }
829 
830 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
831  SDValue Hi) {
836  Hi.getValueType() == Lo.getValueType() &&
837  "Invalid type for split vector");
838  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
839  AnalyzeNewValue(Lo);
840  AnalyzeNewValue(Hi);
841 
842  // Remember that this is the result of the node.
843  std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
844  assert((Entry.first == 0) && "Node already split");
845  Entry.first = getTableId(Lo);
846  Entry.second = getTableId(Hi);
847 }
848 
849 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
850  assert(Result.getValueType() ==
851  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
852  "Invalid type for widened vector");
853  AnalyzeNewValue(Result);
854 
855  auto &OpIdEntry = WidenedVectors[getTableId(Op)];
856  assert((OpIdEntry == 0) && "Node already widened!");
857  OpIdEntry = getTableId(Result);
858 }
859 
860 
861 //===----------------------------------------------------------------------===//
862 // Utilities.
863 //===----------------------------------------------------------------------===//
864 
865 /// Convert to an integer of the same size.
866 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
867  unsigned BitWidth = Op.getValueSizeInBits();
868  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
869  EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
870 }
871 
872 /// Convert to a vector of integers of the same size.
873 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
874  assert(Op.getValueType().isVector() && "Only applies to vectors!");
875  unsigned EltWidth = Op.getScalarValueSizeInBits();
876  EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
877  auto EltCnt = Op.getValueType().getVectorElementCount();
878  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
879  EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
880 }
881 
882 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
883  EVT DestVT) {
884  SDLoc dl(Op);
885  // Create the stack frame object. Make sure it is aligned for both
886  // the source and destination types.
887  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
888  // Emit a store to the stack slot.
889  SDValue Store =
890  DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, MachinePointerInfo());
891  // Result is a load from the stack slot.
892  return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo());
893 }
894 
895 /// Replace the node's results with custom code provided by the target and
896 /// return "true", or do nothing and return "false".
897 /// The last parameter is FALSE if we are dealing with a node with legal
898 /// result types and illegal operand. The second parameter denotes the type of
899 /// illegal OperandNo in that case.
900 /// The last parameter being TRUE means we are dealing with a
901 /// node with illegal result types. The second parameter denotes the type of
902 /// illegal ResNo in that case.
903 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
904  // See if the target wants to custom lower this node.
905  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
906  return false;
907 
909  if (LegalizeResult)
910  TLI.ReplaceNodeResults(N, Results, DAG);
911  else
912  TLI.LowerOperationWrapper(N, Results, DAG);
913 
914  if (Results.empty())
915  // The target didn't want to custom lower it after all.
916  return false;
917 
918  // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
919  // provide the same kind of custom splitting behavior.
920  if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
921  // We've legalized a return type by splitting it. If there is a chain,
922  // replace that too.
923  SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
924  if (N->getNumValues() > 1)
925  ReplaceValueWith(SDValue(N, 1), Results[2]);
926  return true;
927  }
928 
929  // Make everything that once used N's values now use those in Results instead.
930  assert(Results.size() == N->getNumValues() &&
931  "Custom lowering returned the wrong number of results!");
932  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
933  ReplaceValueWith(SDValue(N, i), Results[i]);
934  }
935  return true;
936 }
937 
938 
939 /// Widen the node's results with custom code provided by the target and return
940 /// "true", or do nothing and return "false".
941 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
942  // See if the target wants to custom lower this node.
943  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
944  return false;
945 
947  TLI.ReplaceNodeResults(N, Results, DAG);
948 
949  if (Results.empty())
950  // The target didn't want to custom widen lower its result after all.
951  return false;
952 
953  // Update the widening map.
954  assert(Results.size() == N->getNumValues() &&
955  "Custom lowering returned the wrong number of results!");
956  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
957  // If this is a chain output just replace it.
958  if (Results[i].getValueType() == MVT::Other)
959  ReplaceValueWith(SDValue(N, i), Results[i]);
960  else
961  SetWidenedVector(SDValue(N, i), Results[i]);
962  }
963  return true;
964 }
965 
966 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
967  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
968  if (i != ResNo)
969  ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
970  return SDValue(N->getOperand(ResNo));
971 }
972 
973 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
974 /// given value.
975 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
976  SDValue &Lo, SDValue &Hi) {
977  SDLoc dl(Pair);
978  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
979  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
980  DAG.getIntPtrConstant(0, dl));
981  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
982  DAG.getIntPtrConstant(1, dl));
983 }
984 
985 /// Build an integer with low bits Lo and high bits Hi.
986 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
987  // Arbitrarily use dlHi for result SDLoc
988  SDLoc dlHi(Hi);
989  SDLoc dlLo(Lo);
990  EVT LVT = Lo.getValueType();
991  EVT HVT = Hi.getValueType();
992  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
993  LVT.getSizeInBits() + HVT.getSizeInBits());
994 
995  EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
996  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
997  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
998  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
999  DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1000  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1001 }
1002 
1003 /// Convert the node into a libcall with the same prototype.
1004 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1005  bool isSigned) {
1006  unsigned NumOps = N->getNumOperands();
1007  SDLoc dl(N);
1008  if (NumOps == 0) {
1009  return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned,
1010  dl).first;
1011  } else if (NumOps == 1) {
1012  SDValue Op = N->getOperand(0);
1013  return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned,
1014  dl).first;
1015  } else if (NumOps == 2) {
1016  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1017  return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned,
1018  dl).first;
1019  }
1020  SmallVector<SDValue, 8> Ops(NumOps);
1021  for (unsigned i = 0; i < NumOps; ++i)
1022  Ops[i] = N->getOperand(i);
1023 
1024  return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first;
1025 }
1026 
1027 /// Expand a node into a call to a libcall. Similar to ExpandLibCall except that
1028 /// the first operand is the in-chain.
1029 std::pair<SDValue, SDValue>
1030 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node,
1031  bool isSigned) {
1032  SDValue InChain = Node->getOperand(0);
1033 
1036  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1037  EVT ArgVT = Node->getOperand(i).getValueType();
1038  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1039  Entry.Node = Node->getOperand(i);
1040  Entry.Ty = ArgTy;
1041  Entry.IsSExt = isSigned;
1042  Entry.IsZExt = !isSigned;
1043  Args.push_back(Entry);
1044  }
1045  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1046  TLI.getPointerTy(DAG.getDataLayout()));
1047 
1048  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1049 
1051  CLI.setDebugLoc(SDLoc(Node))
1052  .setChain(InChain)
1053  .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
1054  std::move(Args))
1055  .setSExtResult(isSigned)
1056  .setZExtResult(!isSigned);
1057 
1058  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1059 
1060  return CallInfo;
1061 }
1062 
1063 /// Promote the given target boolean to a target boolean of the given type.
1064 /// A target boolean is an integer value, not necessarily of type i1, the bits
1065 /// of which conform to getBooleanContents.
1066 ///
1067 /// ValVT is the type of values that produced the boolean.
1068 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1069  SDLoc dl(Bool);
1070  EVT BoolVT = getSetCCResultType(ValVT);
1071  ISD::NodeType ExtendCode =
1072  TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1073  return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1074 }
1075 
1076 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1077 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1078  EVT LoVT, EVT HiVT,
1079  SDValue &Lo, SDValue &Hi) {
1080  SDLoc dl(Op);
1081  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1082  Op.getValueSizeInBits() && "Invalid integer splitting!");
1083  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1084  unsigned ReqShiftAmountInBits =
1086  MVT ShiftAmountTy =
1087  TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1088  if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1089  ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1090  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1091  DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1092  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1093 }
1094 
1095 /// Return the lower and upper halves of Op's bits in a value type half the
1096 /// size of Op's.
1097 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1098  SDValue &Lo, SDValue &Hi) {
1099  EVT HalfVT =
1100  EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1101  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1102 }
1103 
1104 
1105 //===----------------------------------------------------------------------===//
1106 // Entry Point
1107 //===----------------------------------------------------------------------===//
1108 
1109 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1110 /// natively supported by the target. Returns "true" if it made any changes.
1111 ///
1112 /// Note that this is an involved process that may invalidate pointers into
1113 /// the graph.
1115  return DAGTypeLegalizer(*this).run();
1116 }
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:539
static MVT getIntegerVT(unsigned BitWidth)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:544
EVT getValueType() const
Return the ValueType of the referenced return value.
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant, which is required to be operand #1) half of the integer or float value specified as operand #0.
Definition: ISDOpcodes.h:184
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool LegalizeTypes()
This transforms the SelectionDAG into a SelectionDAG that only uses types natively supported by the t...
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:137
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface...
Definition: SelectionDAG.h:280
friend struct DAGUpdateListener
DAGUpdateListener is a friend so it can manipulate the listener stack.
Definition: SelectionDAG.h:322
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit...
uint32_t NodeId
Definition: RDFGraph.h:261
static ISD::NodeType getExtendForContent(BooleanContent Content)
Function Alias Analysis Results
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
This takes an arbitrary SelectionDAG as input and hacks on it until only value types the target machi...
Definition: LegalizeTypes.h:32
void setNodeId(int Id)
Set unique node id.
SDNode * getNode() const
get the SDNode which holds the desired result
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
Definition: SelectionDAG.h:463
const T & back() const
Return the last element of the SetVector.
Definition: SetVector.h:129
unsigned getValueSizeInBits() const
Returns the size of the value in bits.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:39
This node&#39;s ID needs to be set to the number of its unprocessed operands.
Definition: LegalizeTypes.h:48
Shift and rotation operations.
Definition: ISDOpcodes.h:380
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
Definition: ValueTypes.cpp:202
CallLoweringInfo & setChain(SDValue InChain)
unsigned getScalarValueSizeInBits() const
MVT::ElementCount getVectorElementCount() const
Definition: ValueTypes.h:281
bool remove(const value_type &X)
Remove an item from the set vector.
Definition: SetVector.h:158
void pop_back()
Remove the last element of the SetVector.
Definition: SetVector.h:222
SelectionDAG & getDAG() const
iterator_range< allnodes_iterator > allnodes()
Definition: SelectionDAG.h:446
unsigned getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:292
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:142
CallLoweringInfo & setZExtResult(bool Value=true)
op_iterator op_begin() const
amdgpu Simplify well known AMD library false Value * Callee
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
static cl::opt< bool > EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden)
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
bool run()
This is the main entry point for the type legalizer.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
Machine Value Type.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:273
This is a new node, not before seen, that was created in the process of legalizing some other node...
Definition: LegalizeTypes.h:44
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
const SDValue & getOperand(unsigned Num) const
void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
This class provides iterator support for SDUse operands that use a specific SDNode.
std::string getEVTString() const
This function returns value type as a string, e.g. "i32".
Definition: ValueTypes.cpp:115
std::vector< ArgListEntry > ArgListTy
Extended Value Type.
Definition: ValueTypes.h:34
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:632
This structure contains all information that is necessary for lowering calls.
This class contains a discriminated union of information about pointers in memory operands...
unsigned getNumOperands() const
Return the number of values used by this operation.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned first
void NoteDeletion(SDNode *Old, SDNode *New)
void dump() const
Dump this node, for debugging.
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:298
void setNode(SDNode *N)
set the SDNode
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:265
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition: Error.h:148
SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:861
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
This is a node that has already been processed.
Definition: LegalizeTypes.h:51
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:133
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT...
Definition: ValueTypes.h:73
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
static use_iterator use_end()
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:438
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:441
int getNodeId() const
Return the unique node id.
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:151
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:62
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:73
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
Definition: SelectionDAG.h:454
This class is used to form a handle around another node that is persistent and is updated across invo...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
All operands have been processed, so this node is ready to be handled.
Definition: LegalizeTypes.h:40
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:444
#define LLVM_DEBUG(X)
Definition: Debug.h:119
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:64
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
DAGTypeLegalizer(SelectionDAG &dag)