LLVM  10.0.0svn
LegalizeTypes.cpp
Go to the documentation of this file.
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LegalizeTypes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/DataLayout.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "legalize-types"
27 
28 static cl::opt<bool>
29 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
30 
31 /// Do extensive, expensive, sanity checking.
32 void DAGTypeLegalizer::PerformExpensiveChecks() {
33  // If a node is not processed, then none of its values should be mapped by any
34  // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35 
36  // If a node is processed, then each value with an illegal type must be mapped
37  // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
38  // Values with a legal type may be mapped by ReplacedValues, but not by any of
39  // the other maps.
40 
41  // Note that these invariants may not hold momentarily when processing a node:
42  // the node being processed may be put in a map before being marked Processed.
43 
44  // Note that it is possible to have nodes marked NewNode in the DAG. This can
45  // occur in two ways. Firstly, a node may be created during legalization but
46  // never passed to the legalization core. This is usually due to the implicit
47  // folding that occurs when using the DAG.getNode operators. Secondly, a new
48  // node may be passed to the legalization core, but when analyzed may morph
49  // into a different node, leaving the original node as a NewNode in the DAG.
50  // A node may morph if one of its operands changes during analysis. Whether
51  // it actually morphs or not depends on whether, after updating its operands,
52  // it is equivalent to an existing node: if so, it morphs into that existing
53  // node (CSE). An operand can change during analysis if the operand is a new
54  // node that morphs, or it is a processed value that was mapped to some other
55  // value (as recorded in ReplacedValues) in which case the operand is turned
56  // into that other value. If a node morphs then the node it morphed into will
57  // be used instead of it for legalization, however the original node continues
58  // to live on in the DAG.
59  // The conclusion is that though there may be nodes marked NewNode in the DAG,
60  // all uses of such nodes are also marked NewNode: the result is a fungus of
61  // NewNodes growing on top of the useful nodes, and perhaps using them, but
62  // not used by them.
63 
64  // If a value is mapped by ReplacedValues, then it must have no uses, except
65  // by nodes marked NewNode (see above).
66 
67  // The final node obtained by mapping by ReplacedValues is not marked NewNode.
68  // Note that ReplacedValues should be applied iteratively.
69 
70  // Note that the ReplacedValues map may also map deleted nodes (by iterating
71  // over the DAG we never dereference deleted nodes). This means that it may
72  // also map nodes marked NewNode if the deallocated memory was reallocated as
73  // another node, and that new node was not seen by the LegalizeTypes machinery
74  // (for example because it was created but not used). In general, we cannot
75  // distinguish between new nodes and deleted nodes.
76  SmallVector<SDNode*, 16> NewNodes;
77  for (SDNode &Node : DAG.allnodes()) {
78  // Remember nodes marked NewNode - they are subject to extra checking below.
79  if (Node.getNodeId() == NewNode)
80  NewNodes.push_back(&Node);
81 
82  for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
83  SDValue Res(&Node, i);
84  EVT VT = Res.getValueType();
85  bool Failed = false;
86  // Don't create a value in map.
87  auto ResId = (ValueToIdMap.count(Res)) ? ValueToIdMap[Res] : 0;
88 
89  unsigned Mapped = 0;
90  if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
91  Mapped |= 1;
92  // Check that remapped values are only used by nodes marked NewNode.
93  for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
94  UI != UE; ++UI)
95  if (UI.getUse().getResNo() == i)
96  assert(UI->getNodeId() == NewNode &&
97  "Remapped value has non-trivial use!");
98 
99  // Check that the final result of applying ReplacedValues is not
100  // marked NewNode.
101  auto NewValId = ReplacedValues[ResId];
102  auto I = ReplacedValues.find(NewValId);
103  while (I != ReplacedValues.end()) {
104  NewValId = I->second;
105  I = ReplacedValues.find(NewValId);
106  }
107  SDValue NewVal = getSDValue(NewValId);
108  (void)NewVal;
109  assert(NewVal.getNode()->getNodeId() != NewNode &&
110  "ReplacedValues maps to a new node!");
111  }
112  if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
113  Mapped |= 2;
114  if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
115  Mapped |= 4;
116  if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
117  Mapped |= 8;
118  if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
119  Mapped |= 16;
120  if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
121  Mapped |= 32;
122  if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
123  Mapped |= 64;
124  if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
125  Mapped |= 128;
126  if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
127  Mapped |= 256;
128 
129  if (Node.getNodeId() != Processed) {
130  // Since we allow ReplacedValues to map deleted nodes, it may map nodes
131  // marked NewNode too, since a deleted node may have been reallocated as
132  // another node that has not been seen by the LegalizeTypes machinery.
133  if ((Node.getNodeId() == NewNode && Mapped > 1) ||
134  (Node.getNodeId() != NewNode && Mapped != 0)) {
135  dbgs() << "Unprocessed value in a map!";
136  Failed = true;
137  }
138  } else if (isTypeLegal(VT) || IgnoreNodeResults(&Node)) {
139  if (Mapped > 1) {
140  dbgs() << "Value with legal type was transformed!";
141  Failed = true;
142  }
143  } else {
144  // If the value can be kept in HW registers, softening machinery can
145  // leave it unchanged and don't put it to any map.
146  if (Mapped == 0 &&
147  !(getTypeAction(VT) == TargetLowering::TypeSoftenFloat &&
148  isLegalInHWReg(VT))) {
149  dbgs() << "Processed value not in any map!";
150  Failed = true;
151  } else if (Mapped & (Mapped - 1)) {
152  dbgs() << "Value in multiple maps!";
153  Failed = true;
154  }
155  }
156 
157  if (Failed) {
158  if (Mapped & 1)
159  dbgs() << " ReplacedValues";
160  if (Mapped & 2)
161  dbgs() << " PromotedIntegers";
162  if (Mapped & 4)
163  dbgs() << " SoftenedFloats";
164  if (Mapped & 8)
165  dbgs() << " ScalarizedVectors";
166  if (Mapped & 16)
167  dbgs() << " ExpandedIntegers";
168  if (Mapped & 32)
169  dbgs() << " ExpandedFloats";
170  if (Mapped & 64)
171  dbgs() << " SplitVectors";
172  if (Mapped & 128)
173  dbgs() << " WidenedVectors";
174  if (Mapped & 256)
175  dbgs() << " PromotedFloats";
176  dbgs() << "\n";
177  llvm_unreachable(nullptr);
178  }
179  }
180  }
181 
182  // Checked that NewNodes are only used by other NewNodes.
183  for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
184  SDNode *N = NewNodes[i];
185  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
186  UI != UE; ++UI)
187  assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
188  }
189 }
190 
191 /// This is the main entry point for the type legalizer. This does a top-down
192 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
193 /// any changes.
195  bool Changed = false;
196 
197  // Create a dummy node (which is not added to allnodes), that adds a reference
198  // to the root node, preventing it from being deleted, and tracking any
199  // changes of the root.
200  HandleSDNode Dummy(DAG.getRoot());
201  Dummy.setNodeId(Unanalyzed);
202 
203  // The root of the dag may dangle to deleted nodes until the type legalizer is
204  // done. Set it to null to avoid confusion.
205  DAG.setRoot(SDValue());
206 
207  // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
208  // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
209  // non-leaves.
210  for (SDNode &Node : DAG.allnodes()) {
211  if (Node.getNumOperands() == 0) {
212  AddToWorklist(&Node);
213  } else {
214  Node.setNodeId(Unanalyzed);
215  }
216  }
217 
218  // Now that we have a set of nodes to process, handle them all.
219  while (!Worklist.empty()) {
220 #ifndef EXPENSIVE_CHECKS
222 #endif
223  PerformExpensiveChecks();
224 
225  SDNode *N = Worklist.back();
226  Worklist.pop_back();
227  assert(N->getNodeId() == ReadyToProcess &&
228  "Node should be ready if on worklist!");
229 
230  LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
231  if (IgnoreNodeResults(N)) {
232  LLVM_DEBUG(dbgs() << "Ignoring node results\n");
233  goto ScanOperands;
234  }
235 
236  // Scan the values produced by the node, checking to see if any result
237  // types are illegal.
238  for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
239  EVT ResultVT = N->getValueType(i);
240  LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
241  << "\n");
242  switch (getTypeAction(ResultVT)) {
244  LLVM_DEBUG(dbgs() << "Legal result type\n");
245  break;
246  // The following calls must take care of *all* of the node's results,
247  // not just the illegal result they were passed (this includes results
248  // with a legal type). Results can be remapped using ReplaceValueWith,
249  // or their promoted/expanded/etc values registered in PromotedIntegers,
250  // ExpandedIntegers etc.
252  PromoteIntegerResult(N, i);
253  Changed = true;
254  goto NodeDone;
256  ExpandIntegerResult(N, i);
257  Changed = true;
258  goto NodeDone;
260  Changed = SoftenFloatResult(N, i);
261  if (Changed)
262  goto NodeDone;
263  // If not changed, the result type should be legally in register.
264  assert(isLegalInHWReg(ResultVT) &&
265  "Unchanged SoftenFloatResult should be legal in register!");
266  goto ScanOperands;
268  ExpandFloatResult(N, i);
269  Changed = true;
270  goto NodeDone;
272  ScalarizeVectorResult(N, i);
273  Changed = true;
274  goto NodeDone;
276  SplitVectorResult(N, i);
277  Changed = true;
278  goto NodeDone;
280  WidenVectorResult(N, i);
281  Changed = true;
282  goto NodeDone;
284  PromoteFloatResult(N, i);
285  Changed = true;
286  goto NodeDone;
287  }
288  }
289 
290 ScanOperands:
291  // Scan the operand list for the node, handling any nodes with operands that
292  // are illegal.
293  {
294  unsigned NumOperands = N->getNumOperands();
295  bool NeedsReanalyzing = false;
296  unsigned i;
297  for (i = 0; i != NumOperands; ++i) {
298  if (IgnoreNodeResults(N->getOperand(i).getNode()))
299  continue;
300 
301  const auto Op = N->getOperand(i);
302  LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
303  EVT OpVT = Op.getValueType();
304  switch (getTypeAction(OpVT)) {
306  LLVM_DEBUG(dbgs() << "Legal operand\n");
307  continue;
308  // The following calls must either replace all of the node's results
309  // using ReplaceValueWith, and return "false"; or update the node's
310  // operands in place, and return "true".
312  NeedsReanalyzing = PromoteIntegerOperand(N, i);
313  Changed = true;
314  break;
316  NeedsReanalyzing = ExpandIntegerOperand(N, i);
317  Changed = true;
318  break;
320  NeedsReanalyzing = SoftenFloatOperand(N, i);
321  Changed = true;
322  break;
324  NeedsReanalyzing = ExpandFloatOperand(N, i);
325  Changed = true;
326  break;
328  NeedsReanalyzing = ScalarizeVectorOperand(N, i);
329  Changed = true;
330  break;
332  NeedsReanalyzing = SplitVectorOperand(N, i);
333  Changed = true;
334  break;
336  NeedsReanalyzing = WidenVectorOperand(N, i);
337  Changed = true;
338  break;
340  NeedsReanalyzing = PromoteFloatOperand(N, i);
341  Changed = true;
342  break;
343  }
344  break;
345  }
346 
347  // The sub-method updated N in place. Check to see if any operands are new,
348  // and if so, mark them. If the node needs revisiting, don't add all users
349  // to the worklist etc.
350  if (NeedsReanalyzing) {
351  assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
352 
353  N->setNodeId(NewNode);
354  // Recompute the NodeId and correct processed operands, adding the node to
355  // the worklist if ready.
356  SDNode *M = AnalyzeNewNode(N);
357  if (M == N)
358  // The node didn't morph - nothing special to do, it will be revisited.
359  continue;
360 
361  // The node morphed - this is equivalent to legalizing by replacing every
362  // value of N with the corresponding value of M. So do that now.
363  assert(N->getNumValues() == M->getNumValues() &&
364  "Node morphing changed the number of results!");
365  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
366  // Replacing the value takes care of remapping the new value.
367  ReplaceValueWith(SDValue(N, i), SDValue(M, i));
368  assert(N->getNodeId() == NewNode && "Unexpected node state!");
369  // The node continues to live on as part of the NewNode fungus that
370  // grows on top of the useful nodes. Nothing more needs to be done
371  // with it - move on to the next node.
372  continue;
373  }
374 
375  if (i == NumOperands) {
376  LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
377  dbgs() << "\n");
378  }
379  }
380 NodeDone:
381 
382  // If we reach here, the node was processed, potentially creating new nodes.
383  // Mark it as processed and add its users to the worklist as appropriate.
384  assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
385  N->setNodeId(Processed);
386 
387  for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
388  UI != E; ++UI) {
389  SDNode *User = *UI;
390  int NodeId = User->getNodeId();
391 
392  // This node has two options: it can either be a new node or its Node ID
393  // may be a count of the number of operands it has that are not ready.
394  if (NodeId > 0) {
395  User->setNodeId(NodeId-1);
396 
397  // If this was the last use it was waiting on, add it to the ready list.
398  if (NodeId-1 == ReadyToProcess)
399  Worklist.push_back(User);
400  continue;
401  }
402 
403  // If this is an unreachable new node, then ignore it. If it ever becomes
404  // reachable by being used by a newly created node then it will be handled
405  // by AnalyzeNewNode.
406  if (NodeId == NewNode)
407  continue;
408 
409  // Otherwise, this node is new: this is the first operand of it that
410  // became ready. Its new NodeId is the number of operands it has minus 1
411  // (as this node is now processed).
412  assert(NodeId == Unanalyzed && "Unknown node ID!");
413  User->setNodeId(User->getNumOperands() - 1);
414 
415  // If the node only has a single operand, it is now ready.
416  if (User->getNumOperands() == 1)
417  Worklist.push_back(User);
418  }
419  }
420 
421 #ifndef EXPENSIVE_CHECKS
423 #endif
424  PerformExpensiveChecks();
425 
426  // If the root changed (e.g. it was a dead load) update the root.
427  DAG.setRoot(Dummy.getValue());
428 
429  // Remove dead nodes. This is important to do for cleanliness but also before
430  // the checking loop below. Implicit folding by the DAG.getNode operators and
431  // node morphing can cause unreachable nodes to be around with their flags set
432  // to new.
433  DAG.RemoveDeadNodes();
434 
435  // In a debug build, scan all the nodes to make sure we found them all. This
436  // ensures that there are no cycles and that everything got processed.
437 #ifndef NDEBUG
438  for (SDNode &Node : DAG.allnodes()) {
439  bool Failed = false;
440 
441  // Check that all result types are legal.
442  // A value type is illegal if its TypeAction is not TypeLegal,
443  // and TLI.RegClassForVT does not have a register class for this type.
444  // For example, the x86_64 target has f128 that is not TypeLegal,
445  // to have softened operators, but it also has FR128 register class to
446  // pass and return f128 values. Hence a legalized node can have f128 type.
447  if (!IgnoreNodeResults(&Node))
448  for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
449  if (!isTypeLegal(Node.getValueType(i)) &&
450  !TLI.isTypeLegal(Node.getValueType(i))) {
451  dbgs() << "Result type " << i << " illegal: ";
452  Node.dump(&DAG);
453  Failed = true;
454  }
455 
456  // Check that all operand types are legal.
457  for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
458  if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
459  !isTypeLegal(Node.getOperand(i).getValueType()) &&
460  !TLI.isTypeLegal(Node.getOperand(i).getValueType())) {
461  dbgs() << "Operand type " << i << " illegal: ";
462  Node.getOperand(i).dump(&DAG);
463  Failed = true;
464  }
465 
466  if (Node.getNodeId() != Processed) {
467  if (Node.getNodeId() == NewNode)
468  dbgs() << "New node not analyzed?\n";
469  else if (Node.getNodeId() == Unanalyzed)
470  dbgs() << "Unanalyzed node not noticed?\n";
471  else if (Node.getNodeId() > 0)
472  dbgs() << "Operand not processed?\n";
473  else if (Node.getNodeId() == ReadyToProcess)
474  dbgs() << "Not added to worklist?\n";
475  Failed = true;
476  }
477 
478  if (Failed) {
479  Node.dump(&DAG); dbgs() << "\n";
480  llvm_unreachable(nullptr);
481  }
482  }
483 #endif
484 
485  return Changed;
486 }
487 
488 /// The specified node is the root of a subtree of potentially new nodes.
489 /// Correct any processed operands (this may change the node) and calculate the
490 /// NodeId. If the node itself changes to a processed node, it is not remapped -
491 /// the caller needs to take care of this. Returns the potentially changed node.
492 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
493  // If this was an existing node that is already done, we're done.
494  if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
495  return N;
496 
497  // Okay, we know that this node is new. Recursively walk all of its operands
498  // to see if they are new also. The depth of this walk is bounded by the size
499  // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
500  // about revisiting of nodes.
501  //
502  // As we walk the operands, keep track of the number of nodes that are
503  // processed. If non-zero, this will become the new nodeid of this node.
504  // Operands may morph when they are analyzed. If so, the node will be
505  // updated after all operands have been analyzed. Since this is rare,
506  // the code tries to minimize overhead in the non-morphing case.
507 
508  std::vector<SDValue> NewOps;
509  unsigned NumProcessed = 0;
510  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
511  SDValue OrigOp = N->getOperand(i);
512  SDValue Op = OrigOp;
513 
514  AnalyzeNewValue(Op); // Op may morph.
515 
516  if (Op.getNode()->getNodeId() == Processed)
517  ++NumProcessed;
518 
519  if (!NewOps.empty()) {
520  // Some previous operand changed. Add this one to the list.
521  NewOps.push_back(Op);
522  } else if (Op != OrigOp) {
523  // This is the first operand to change - add all operands so far.
524  NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
525  NewOps.push_back(Op);
526  }
527  }
528 
529  // Some operands changed - update the node.
530  if (!NewOps.empty()) {
531  SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
532  if (M != N) {
533  // The node morphed into a different node. Normally for this to happen
534  // the original node would have to be marked NewNode. However this can
535  // in theory momentarily not be the case while ReplaceValueWith is doing
536  // its stuff. Mark the original node NewNode to help sanity checking.
537  N->setNodeId(NewNode);
538  if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
539  // It morphed into a previously analyzed node - nothing more to do.
540  return M;
541 
542  // It morphed into a different new node. Do the equivalent of passing
543  // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
544  // to remap the operands, since they are the same as the operands we
545  // remapped above.
546  N = M;
547  }
548  }
549 
550  // Calculate the NodeId.
551  N->setNodeId(N->getNumOperands() - NumProcessed);
552  if (N->getNodeId() == ReadyToProcess)
553  Worklist.push_back(N);
554 
555  return N;
556 }
557 
558 /// Call AnalyzeNewNode, updating the node in Val if needed.
559 /// If the node changes to a processed node, then remap it.
560 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
561  Val.setNode(AnalyzeNewNode(Val.getNode()));
562  if (Val.getNode()->getNodeId() == Processed)
563  // We were passed a processed node, or it morphed into one - remap it.
564  RemapValue(Val);
565 }
566 
567 /// If the specified value was already legalized to another value,
568 /// replace it by that value.
569 void DAGTypeLegalizer::RemapValue(SDValue &V) {
570  auto Id = getTableId(V);
571  V = getSDValue(Id);
572 }
573 
574 void DAGTypeLegalizer::RemapId(TableId &Id) {
575  auto I = ReplacedValues.find(Id);
576  if (I != ReplacedValues.end()) {
577  assert(Id != I->second && "Id is mapped to itself.");
578  // Use path compression to speed up future lookups if values get multiply
579  // replaced with other values.
580  RemapId(I->second);
581  Id = I->second;
582 
583  // Note that N = IdToValueMap[Id] it is possible to have
584  // N.getNode()->getNodeId() == NewNode at this point because it is possible
585  // for a node to be put in the map before being processed.
586  }
587 }
588 
589 namespace {
590  /// This class is a DAGUpdateListener that listens for updates to nodes and
591  /// recomputes their ready state.
592  class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
593  DAGTypeLegalizer &DTL;
594  SmallSetVector<SDNode*, 16> &NodesToAnalyze;
595  public:
596  explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
599  DTL(dtl), NodesToAnalyze(nta) {}
600 
601  void NodeDeleted(SDNode *N, SDNode *E) override {
604  "Invalid node ID for RAUW deletion!");
605  // It is possible, though rare, for the deleted node N to occur as a
606  // target in a map, so note the replacement N -> E in ReplacedValues.
607  assert(E && "Node not replaced?");
608  DTL.NoteDeletion(N, E);
609 
610  // In theory the deleted node could also have been scheduled for analysis.
611  // So remove it from the set of nodes which will be analyzed.
612  NodesToAnalyze.remove(N);
613 
614  // In general nothing needs to be done for E, since it didn't change but
615  // only gained new uses. However N -> E was just added to ReplacedValues,
616  // and the result of a ReplacedValues mapping is not allowed to be marked
617  // NewNode. So if E is marked NewNode, then it needs to be analyzed.
619  NodesToAnalyze.insert(E);
620  }
621 
622  void NodeUpdated(SDNode *N) override {
623  // Node updates can mean pretty much anything. It is possible that an
624  // operand was set to something already processed (f.e.) in which case
625  // this node could become ready. Recompute its flags.
628  "Invalid node ID for RAUW deletion!");
630  NodesToAnalyze.insert(N);
631  }
632  };
633 }
634 
635 
636 /// The specified value was legalized to the specified other value.
637 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
638 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
639  assert(From.getNode() != To.getNode() && "Potential legalization loop!");
640 
641  // If expansion produced new nodes, make sure they are properly marked.
642  AnalyzeNewValue(To);
643 
644  // Anything that used the old node should now use the new one. Note that this
645  // can potentially cause recursive merging.
646  SmallSetVector<SDNode*, 16> NodesToAnalyze;
647  NodeUpdateListener NUL(*this, NodesToAnalyze);
648  do {
649 
650  // The old node may be present in a map like ExpandedIntegers or
651  // PromotedIntegers. Inform maps about the replacement.
652  auto FromId = getTableId(From);
653  auto ToId = getTableId(To);
654 
655  if (FromId != ToId)
656  ReplacedValues[FromId] = ToId;
657  DAG.ReplaceAllUsesOfValueWith(From, To);
658 
659  // Process the list of nodes that need to be reanalyzed.
660  while (!NodesToAnalyze.empty()) {
661  SDNode *N = NodesToAnalyze.back();
662  NodesToAnalyze.pop_back();
664  // The node was analyzed while reanalyzing an earlier node - it is safe
665  // to skip. Note that this is not a morphing node - otherwise it would
666  // still be marked NewNode.
667  continue;
668 
669  // Analyze the node's operands and recalculate the node ID.
670  SDNode *M = AnalyzeNewNode(N);
671  if (M != N) {
672  // The node morphed into a different node. Make everyone use the new
673  // node instead.
674  assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
675  assert(N->getNumValues() == M->getNumValues() &&
676  "Node morphing changed the number of results!");
677  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
678  SDValue OldVal(N, i);
679  SDValue NewVal(M, i);
680  if (M->getNodeId() == Processed)
681  RemapValue(NewVal);
682  // OldVal may be a target of the ReplacedValues map which was marked
683  // NewNode to force reanalysis because it was updated. Ensure that
684  // anything that ReplacedValues mapped to OldVal will now be mapped
685  // all the way to NewVal.
686  auto OldValId = getTableId(OldVal);
687  auto NewValId = getTableId(NewVal);
688  DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
689  if (OldValId != NewValId)
690  ReplacedValues[OldValId] = NewValId;
691  }
692  // The original node continues to exist in the DAG, marked NewNode.
693  }
694  }
695  // When recursively update nodes with new nodes, it is possible to have
696  // new uses of From due to CSE. If this happens, replace the new uses of
697  // From with To.
698  } while (!From.use_empty());
699 }
700 
701 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
702  assert(Result.getValueType() ==
703  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
704  "Invalid type for promoted integer");
705  AnalyzeNewValue(Result);
706 
707  auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
708  assert((OpIdEntry == 0) && "Node is already promoted!");
709  OpIdEntry = getTableId(Result);
710  Result->setFlags(Op->getFlags());
711 
712  DAG.transferDbgValues(Op, Result);
713 }
714 
715 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
716  // f128 of x86_64 could be kept in SSE registers,
717  // but sometimes softened to i128.
718  assert((Result.getValueType() ==
719  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) ||
720  Op.getValueType() ==
721  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
722  "Invalid type for softened float");
723  AnalyzeNewValue(Result);
724 
725  auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
726  // Allow repeated calls to save f128 type nodes
727  // or any node with type that transforms to itself.
728  // Many operations on these types are not softened.
729  assert(((OpIdEntry == 0) ||
730  Op.getValueType() ==
731  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
732  "Node is already converted to integer!");
733  OpIdEntry = getTableId(Result);
734 }
735 
736 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
737  assert(Result.getValueType() ==
738  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
739  "Invalid type for promoted float");
740  AnalyzeNewValue(Result);
741 
742  auto &OpIdEntry = PromotedFloats[getTableId(Op)];
743  assert((OpIdEntry == 0) && "Node is already promoted!");
744  OpIdEntry = getTableId(Result);
745 }
746 
747 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
748  // Note that in some cases vector operation operands may be greater than
749  // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
750  // a constant i8 operand.
752  "Invalid type for scalarized vector");
753  AnalyzeNewValue(Result);
754 
755  auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
756  assert((OpIdEntry == 0) && "Node is already scalarized!");
757  OpIdEntry = getTableId(Result);
758 }
759 
760 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
761  SDValue &Hi) {
762  std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
763  assert((Entry.first != 0) && "Operand isn't expanded");
764  Lo = getSDValue(Entry.first);
765  Hi = getSDValue(Entry.second);
766 }
767 
768 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
769  SDValue Hi) {
770  assert(Lo.getValueType() ==
771  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
772  Hi.getValueType() == Lo.getValueType() &&
773  "Invalid type for expanded integer");
774  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
775  AnalyzeNewValue(Lo);
776  AnalyzeNewValue(Hi);
777 
778  // Transfer debug values. Don't invalidate the source debug value until it's
779  // been transferred to the high and low bits.
780  if (DAG.getDataLayout().isBigEndian()) {
781  DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
782  DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
783  Lo.getValueSizeInBits());
784  } else {
785  DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
786  DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
787  Hi.getValueSizeInBits());
788  }
789 
790  // Remember that this is the result of the node.
791  std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
792  assert((Entry.first == 0) && "Node already expanded");
793  Entry.first = getTableId(Lo);
794  Entry.second = getTableId(Hi);
795 }
796 
797 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
798  SDValue &Hi) {
799  std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
800  assert((Entry.first != 0) && "Operand isn't expanded");
801  Lo = getSDValue(Entry.first);
802  Hi = getSDValue(Entry.second);
803 }
804 
805 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
806  SDValue Hi) {
807  assert(Lo.getValueType() ==
808  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
809  Hi.getValueType() == Lo.getValueType() &&
810  "Invalid type for expanded float");
811  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
812  AnalyzeNewValue(Lo);
813  AnalyzeNewValue(Hi);
814 
815  std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
816  assert((Entry.first == 0) && "Node already expanded");
817  Entry.first = getTableId(Lo);
818  Entry.second = getTableId(Hi);
819 }
820 
821 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
822  SDValue &Hi) {
823  std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
824  Lo = getSDValue(Entry.first);
825  Hi = getSDValue(Entry.second);
826  assert(Lo.getNode() && "Operand isn't split");
827  ;
828 }
829 
830 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
831  SDValue Hi) {
836  Hi.getValueType() == Lo.getValueType() &&
837  "Invalid type for split vector");
838  // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
839  AnalyzeNewValue(Lo);
840  AnalyzeNewValue(Hi);
841 
842  // Remember that this is the result of the node.
843  std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
844  assert((Entry.first == 0) && "Node already split");
845  Entry.first = getTableId(Lo);
846  Entry.second = getTableId(Hi);
847 }
848 
849 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
850  assert(Result.getValueType() ==
851  TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
852  "Invalid type for widened vector");
853  AnalyzeNewValue(Result);
854 
855  auto &OpIdEntry = WidenedVectors[getTableId(Op)];
856  assert((OpIdEntry == 0) && "Node already widened!");
857  OpIdEntry = getTableId(Result);
858 }
859 
860 
861 //===----------------------------------------------------------------------===//
862 // Utilities.
863 //===----------------------------------------------------------------------===//
864 
865 /// Convert to an integer of the same size.
866 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
867  unsigned BitWidth = Op.getValueSizeInBits();
868  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
869  EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
870 }
871 
872 /// Convert to a vector of integers of the same size.
873 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
874  assert(Op.getValueType().isVector() && "Only applies to vectors!");
875  unsigned EltWidth = Op.getScalarValueSizeInBits();
876  EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
877  auto EltCnt = Op.getValueType().getVectorElementCount();
878  return DAG.getNode(ISD::BITCAST, SDLoc(Op),
879  EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
880 }
881 
882 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
883  EVT DestVT) {
884  SDLoc dl(Op);
885  // Create the stack frame object. Make sure it is aligned for both
886  // the source and destination types.
887  SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
888  // Emit a store to the stack slot.
889  SDValue Store =
890  DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, MachinePointerInfo());
891  // Result is a load from the stack slot.
892  return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo());
893 }
894 
895 /// Replace the node's results with custom code provided by the target and
896 /// return "true", or do nothing and return "false".
897 /// The last parameter is FALSE if we are dealing with a node with legal
898 /// result types and illegal operand. The second parameter denotes the type of
899 /// illegal OperandNo in that case.
900 /// The last parameter being TRUE means we are dealing with a
901 /// node with illegal result types. The second parameter denotes the type of
902 /// illegal ResNo in that case.
903 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
904  // See if the target wants to custom lower this node.
905  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
906  return false;
907 
909  if (LegalizeResult)
910  TLI.ReplaceNodeResults(N, Results, DAG);
911  else
912  TLI.LowerOperationWrapper(N, Results, DAG);
913 
914  if (Results.empty())
915  // The target didn't want to custom lower it after all.
916  return false;
917 
918  // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
919  // provide the same kind of custom splitting behavior.
920  if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
921  // We've legalized a return type by splitting it. If there is a chain,
922  // replace that too.
923  SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
924  if (N->getNumValues() > 1)
925  ReplaceValueWith(SDValue(N, 1), Results[2]);
926  return true;
927  }
928 
929  // Make everything that once used N's values now use those in Results instead.
930  assert(Results.size() == N->getNumValues() &&
931  "Custom lowering returned the wrong number of results!");
932  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
933  ReplaceValueWith(SDValue(N, i), Results[i]);
934  }
935  return true;
936 }
937 
938 
939 /// Widen the node's results with custom code provided by the target and return
940 /// "true", or do nothing and return "false".
941 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
942  // See if the target wants to custom lower this node.
943  if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
944  return false;
945 
947  TLI.ReplaceNodeResults(N, Results, DAG);
948 
949  if (Results.empty())
950  // The target didn't want to custom widen lower its result after all.
951  return false;
952 
953  // Update the widening map.
954  assert(Results.size() == N->getNumValues() &&
955  "Custom lowering returned the wrong number of results!");
956  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
957  // If this is a chain output just replace it.
958  if (Results[i].getValueType() == MVT::Other)
959  ReplaceValueWith(SDValue(N, i), Results[i]);
960  else
961  SetWidenedVector(SDValue(N, i), Results[i]);
962  }
963  return true;
964 }
965 
966 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
967  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
968  if (i != ResNo)
969  ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
970  return SDValue(N->getOperand(ResNo));
971 }
972 
973 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
974 /// given value.
975 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
976  SDValue &Lo, SDValue &Hi) {
977  SDLoc dl(Pair);
978  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
979  Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
980  DAG.getIntPtrConstant(0, dl));
981  Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
982  DAG.getIntPtrConstant(1, dl));
983 }
984 
985 /// Build an integer with low bits Lo and high bits Hi.
986 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
987  // Arbitrarily use dlHi for result SDLoc
988  SDLoc dlHi(Hi);
989  SDLoc dlLo(Lo);
990  EVT LVT = Lo.getValueType();
991  EVT HVT = Hi.getValueType();
992  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
993  LVT.getSizeInBits() + HVT.getSizeInBits());
994 
995  EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
996  Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
997  Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
998  Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
999  DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1000  return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1001 }
1002 
1003 /// Convert the node into a libcall with the same prototype.
1004 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1005  bool isSigned) {
1006  unsigned NumOps = N->getNumOperands();
1007  SDLoc dl(N);
1008  if (NumOps == 0) {
1009  return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned,
1010  dl).first;
1011  } else if (NumOps == 1) {
1012  SDValue Op = N->getOperand(0);
1013  return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned,
1014  dl).first;
1015  } else if (NumOps == 2) {
1016  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1017  return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned,
1018  dl).first;
1019  }
1020  SmallVector<SDValue, 8> Ops(NumOps);
1021  for (unsigned i = 0; i < NumOps; ++i)
1022  Ops[i] = N->getOperand(i);
1023 
1024  return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first;
1025 }
1026 
1027 /// Expand a node into a call to a libcall. Similar to ExpandLibCall except that
1028 /// the first operand is the in-chain.
1029 std::pair<SDValue, SDValue>
1030 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node,
1031  bool isSigned) {
1032  SDValue InChain = Node->getOperand(0);
1033 
1036  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1037  EVT ArgVT = Node->getOperand(i).getValueType();
1038  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1039  Entry.Node = Node->getOperand(i);
1040  Entry.Ty = ArgTy;
1041  Entry.IsSExt = isSigned;
1042  Entry.IsZExt = !isSigned;
1043  Args.push_back(Entry);
1044  }
1045  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1046  TLI.getPointerTy(DAG.getDataLayout()));
1047 
1048  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1049 
1051  CLI.setDebugLoc(SDLoc(Node))
1052  .setChain(InChain)
1053  .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
1054  std::move(Args))
1055  .setSExtResult(isSigned)
1056  .setZExtResult(!isSigned);
1057 
1058  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1059 
1060  return CallInfo;
1061 }
1062 
1063 /// Promote the given target boolean to a target boolean of the given type.
1064 /// A target boolean is an integer value, not necessarily of type i1, the bits
1065 /// of which conform to getBooleanContents.
1066 ///
1067 /// ValVT is the type of values that produced the boolean.
1068 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1069  SDLoc dl(Bool);
1070  EVT BoolVT = getSetCCResultType(ValVT);
1071  ISD::NodeType ExtendCode =
1072  TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1073  return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1074 }
1075 
1076 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
1077 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1078  EVT LoVT, EVT HiVT,
1079  SDValue &Lo, SDValue &Hi) {
1080  SDLoc dl(Op);
1081  assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1082  Op.getValueSizeInBits() && "Invalid integer splitting!");
1083  Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1084  unsigned ReqShiftAmountInBits =
1086  MVT ShiftAmountTy =
1087  TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1088  if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1089  ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1090  Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1091  DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1092  Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1093 }
1094 
1095 /// Return the lower and upper halves of Op's bits in a value type half the
1096 /// size of Op's.
1097 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1098  SDValue &Lo, SDValue &Hi) {
1099  EVT HalfVT =
1100  EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1101  SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1102 }
1103 
1104 
1105 //===----------------------------------------------------------------------===//
1106 // Entry Point
1107 //===----------------------------------------------------------------------===//
1108 
1109 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1110 /// natively supported by the target. Returns "true" if it made any changes.
1111 ///
1112 /// Note that this is an involved process that may invalidate pointers into
1113 /// the graph.
1115  return DAGTypeLegalizer(*this).run();
1116 }
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:595
static MVT getIntegerVT(unsigned BitWidth)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:551
EVT getValueType() const
Return the ValueType of the referenced return value.
void setFlags(SDNodeFlags NewFlags)
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant, which is required to be operand #1) half of the integer or float value specified as operand #0.
Definition: ISDOpcodes.h:183
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool LegalizeTypes()
This transforms the SelectionDAG into a SelectionDAG that only uses types natively supported by the t...
This class represents lattice values for constants.
Definition: AllocatorList.h:23
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface...
Definition: SelectionDAG.h:289
friend struct DAGUpdateListener
DAGUpdateListener is a friend so it can manipulate the listener stack.
Definition: SelectionDAG.h:337
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit...
uint32_t NodeId
Definition: RDFGraph.h:260
static ISD::NodeType getExtendForContent(BooleanContent Content)
Function Alias Analysis Results
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
This takes an arbitrary SelectionDAG as input and hacks on it until only value types the target machi...
Definition: LegalizeTypes.h:31
const SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
SDNode * getNode() const
get the SDNode which holds the desired result
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
Definition: SelectionDAG.h:479
const T & back() const
Return the last element of the SetVector.
Definition: SetVector.h:128
unsigned getValueSizeInBits() const
Returns the size of the value in bits.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:38
This node&#39;s ID needs to be set to the number of its unprocessed operands.
Definition: LegalizeTypes.h:47
Shift and rotation operations.
Definition: ISDOpcodes.h:434
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
Definition: ValueTypes.cpp:261
CallLoweringInfo & setChain(SDValue InChain)
unsigned getScalarValueSizeInBits() const
bool remove(const value_type &X)
Remove an item from the set vector.
Definition: SetVector.h:157
void pop_back()
Remove the last element of the SetVector.
Definition: SetVector.h:221
SelectionDAG & getDAG() const
iterator_range< allnodes_iterator > allnodes()
Definition: SelectionDAG.h:462
unsigned getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:291
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:141
CallLoweringInfo & setZExtResult(bool Value=true)
op_iterator op_begin() const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
static cl::opt< bool > EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden)
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
bool run()
This is the main entry point for the type legalizer.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
Machine Value Type.
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:272
This is a new node, not before seen, that was created in the process of legalizing some other node...
Definition: LegalizeTypes.h:43
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
const SDValue & getOperand(unsigned Num) const
void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
This class provides iterator support for SDUse operands that use a specific SDNode.
std::string getEVTString() const
This function returns value type as a string, e.g. "i32".
Definition: ValueTypes.cpp:114
std::vector< ArgListEntry > ArgListTy
Extended Value Type.
Definition: ValueTypes.h:33
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:644
This structure contains all information that is necessary for lowering calls.
size_t size() const
Definition: SmallVector.h:52
This class contains a discriminated union of information about pointers in memory operands...
unsigned getNumOperands() const
Return the number of values used by this operation.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned first
void NoteDeletion(SDNode *Old, SDNode *New)
void dump() const
Dump this node, for debugging.
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:297
BlockVerifier::State From
void setNode(SDNode *N)
set the SDNode
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:264
testing::Matcher< const detail::ErrorHolder & > Failed()
Definition: Error.h:147
SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
This is a node that has already been processed.
Definition: LegalizeTypes.h:50
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT...
Definition: ValueTypes.h:72
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
amdgpu Simplify well known AMD library false FunctionCallee Callee
static use_iterator use_end()
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:492
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:495
ElementCount getVectorElementCount() const
Definition: ValueTypes.h:280
int getNodeId() const
Return the unique node id.
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:150
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:72
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
Definition: SelectionDAG.h:470
This class is used to form a handle around another node that is persistent and is updated across invo...
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
All operands have been processed, so this node is ready to be handled.
Definition: LegalizeTypes.h:39
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:498
#define LLVM_DEBUG(X)
Definition: Debug.h:122
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:63
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
DAGTypeLegalizer(SelectionDAG &dag)