LLVM  9.0.0svn
SelectionDAG.h
Go to the documentation of this file.
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
16 
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
58 
59 namespace llvm {
60 
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
83 
84 class SDVTListNode : public FoldingSetNode {
85  friend struct FoldingSetTrait<SDVTListNode>;
86 
87  /// A reference to an Interned FoldingSetNodeID for this node.
88  /// The Allocator in SelectionDAG holds the data.
89  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90  /// The size of this list is not expected to be big so it won't introduce
91  /// a memory penalty.
92  FoldingSetNodeIDRef FastID;
93  const EVT *VTs;
94  unsigned int NumVTs;
95  /// The hash value for SDVTList is fixed, so cache it to avoid
96  /// hash calculation.
97  unsigned HashValue;
98 
99 public:
100  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101  FastID(ID), VTs(VT), NumVTs(Num) {
102  HashValue = ID.ComputeHash();
103  }
104 
106  SDVTList result = {VTs, NumVTs};
107  return result;
108  }
109 };
110 
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115  ID = X.FastID;
116  }
117 
118  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119  unsigned IDHash, FoldingSetNodeID &TempID) {
120  if (X.HashValue != IDHash)
121  return false;
122  return ID == X.FastID;
123  }
124 
125  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126  return X.HashValue;
127  }
128 };
129 
130 template <> struct ilist_alloc_traits<SDNode> {
131  static void deleteNode(SDNode *) {
132  llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
133  }
134 };
135 
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148  BumpPtrAllocator Alloc;
150  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151  SmallVector<SDDbgLabel*, 4> DbgLabels;
153  DbgValMapType DbgValMap;
154 
155 public:
156  SDDbgInfo() = default;
157  SDDbgInfo(const SDDbgInfo &) = delete;
158  SDDbgInfo &operator=(const SDDbgInfo &) = delete;
159 
160  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161  if (isParameter) {
162  ByvalParmDbgValues.push_back(V);
163  } else DbgValues.push_back(V);
164  if (Node)
165  DbgValMap[Node].push_back(V);
166  }
167 
168  void add(SDDbgLabel *L) {
169  DbgLabels.push_back(L);
170  }
171 
172  /// Invalidate all DbgValues attached to the node and remove
173  /// it from the Node-to-DbgValues map.
174  void erase(const SDNode *Node);
175 
176  void clear() {
177  DbgValMap.clear();
178  DbgValues.clear();
179  ByvalParmDbgValues.clear();
180  DbgLabels.clear();
181  Alloc.Reset();
182  }
183 
184  BumpPtrAllocator &getAlloc() { return Alloc; }
185 
186  bool empty() const {
187  return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
188  }
189 
191  auto I = DbgValMap.find(Node);
192  if (I != DbgValMap.end())
193  return I->second;
194  return ArrayRef<SDDbgValue*>();
195  }
196 
199 
200  DbgIterator DbgBegin() { return DbgValues.begin(); }
201  DbgIterator DbgEnd() { return DbgValues.end(); }
202  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203  DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
204  DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205  DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
206 };
207 
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
209 
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
215 ///
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
220 ///
222  const TargetMachine &TM;
223  const SelectionDAGTargetInfo *TSI = nullptr;
224  const TargetLowering *TLI = nullptr;
225  const TargetLibraryInfo *LibInfo = nullptr;
226  MachineFunction *MF;
227  Pass *SDAGISelPass = nullptr;
229  CodeGenOpt::Level OptLevel;
230 
231  LegacyDivergenceAnalysis * DA = nullptr;
232  FunctionLoweringInfo * FLI = nullptr;
233 
234  /// The function-level optimization remark emitter. Used to emit remarks
235  /// whenever manipulating the DAG.
237 
238  /// The starting token.
239  SDNode EntryNode;
240 
241  /// The root of the entire DAG.
242  SDValue Root;
243 
244  /// A linked list of nodes in the current DAG.
245  ilist<SDNode> AllNodes;
246 
247  /// The AllocatorType for allocating SDNodes. We use
248  /// pool allocation with recycling.
250  sizeof(LargestSDNode),
251  alignof(MostAlignedSDNode)>;
252 
253  /// Pool allocation for nodes.
254  NodeAllocatorType NodeAllocator;
255 
256  /// This structure is used to memoize nodes, automatically performing
257  /// CSE with existing nodes when a duplicate is requested.
258  FoldingSet<SDNode> CSEMap;
259 
260  /// Pool allocation for machine-opcode SDNode operands.
261  BumpPtrAllocator OperandAllocator;
262  ArrayRecycler<SDUse> OperandRecycler;
263 
264  /// Pool allocation for misc. objects that are created once per SelectionDAG.
265  BumpPtrAllocator Allocator;
266 
267  /// Tracks dbg_value and dbg_label information through SDISel.
268  SDDbgInfo *DbgInfo;
269 
270  uint16_t NextPersistentId = 0;
271 
272 public:
273  /// Clients of various APIs that cause global effects on
274  /// the DAG can optionally implement this interface. This allows the clients
275  /// to handle the various sorts of updates that happen.
276  ///
277  /// A DAGUpdateListener automatically registers itself with DAG when it is
278  /// constructed, and removes itself when destroyed in RAII fashion.
282 
284  : Next(D.UpdateListeners), DAG(D) {
285  DAG.UpdateListeners = this;
286  }
287 
288  virtual ~DAGUpdateListener() {
289  assert(DAG.UpdateListeners == this &&
290  "DAGUpdateListeners must be destroyed in LIFO order");
291  DAG.UpdateListeners = Next;
292  }
293 
294  /// The node N that was deleted and, if E is not null, an
295  /// equivalent node E that replaced it.
296  virtual void NodeDeleted(SDNode *N, SDNode *E);
297 
298  /// The node N that was updated.
299  virtual void NodeUpdated(SDNode *N);
300  };
301 
303  std::function<void(SDNode *, SDNode *)> Callback;
304 
306  std::function<void(SDNode *, SDNode *)> Callback)
307  : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
308 
309  void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
310 
311  private:
312  virtual void anchor();
313  };
314 
315  /// When true, additional steps are taken to
316  /// ensure that getConstant() and similar functions return DAG nodes that
317  /// have legal types. This is important after type legalization since
318  /// any illegally typed nodes generated after this point will not experience
319  /// type legalization.
320  bool NewNodesMustHaveLegalTypes = false;
321 
322 private:
323  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
324  friend struct DAGUpdateListener;
325 
326  /// Linked list of registered DAGUpdateListener instances.
327  /// This stack is maintained by DAGUpdateListener RAII.
328  DAGUpdateListener *UpdateListeners = nullptr;
329 
330  /// Implementation of setSubgraphColor.
331  /// Return whether we had to truncate the search.
332  bool setSubgraphColorHelper(SDNode *N, const char *Color,
333  DenseSet<SDNode *> &visited,
334  int level, bool &printed);
335 
336  template <typename SDNodeT, typename... ArgTypes>
337  SDNodeT *newSDNode(ArgTypes &&... Args) {
338  return new (NodeAllocator.template Allocate<SDNodeT>())
339  SDNodeT(std::forward<ArgTypes>(Args)...);
340  }
341 
342  /// Build a synthetic SDNodeT with the given args and extract its subclass
343  /// data as an integer (e.g. for use in a folding set).
344  ///
345  /// The args to this function are the same as the args to SDNodeT's
346  /// constructor, except the second arg (assumed to be a const DebugLoc&) is
347  /// omitted.
348  template <typename SDNodeT, typename... ArgTypes>
349  static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
350  ArgTypes &&... Args) {
351  // The compiler can reduce this expression to a constant iff we pass an
352  // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
353  // on the subclass data.
354  return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
355  .getRawSubclassData();
356  }
357 
358  template <typename SDNodeTy>
359  static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
360  SDVTList VTs, EVT MemoryVT,
361  MachineMemOperand *MMO) {
362  return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
363  .getRawSubclassData();
364  }
365 
366  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
367 
368  void removeOperands(SDNode *Node) {
369  if (!Node->OperandList)
370  return;
371  OperandRecycler.deallocate(
372  ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
373  Node->OperandList);
374  Node->NumOperands = 0;
375  Node->OperandList = nullptr;
376  }
377  void CreateTopologicalOrder(std::vector<SDNode*>& Order);
378 public:
379  explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
380  SelectionDAG(const SelectionDAG &) = delete;
381  SelectionDAG &operator=(const SelectionDAG &) = delete;
382  ~SelectionDAG();
383 
384  /// Prepare this SelectionDAG to process code in the given MachineFunction.
385  void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
386  Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
387  LegacyDivergenceAnalysis * Divergence);
388 
390  FLI = FuncInfo;
391  }
392 
393  /// Clear state and free memory necessary to make this
394  /// SelectionDAG ready to process a new block.
395  void clear();
396 
397  MachineFunction &getMachineFunction() const { return *MF; }
398  const Pass *getPass() const { return SDAGISelPass; }
399 
400  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
401  const TargetMachine &getTarget() const { return TM; }
402  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
403  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
404  const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
405  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
406  LLVMContext *getContext() const {return Context; }
407  OptimizationRemarkEmitter &getORE() const { return *ORE; }
408 
409  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
410  void viewGraph(const std::string &Title);
411  void viewGraph();
412 
413 #ifndef NDEBUG
414  std::map<const SDNode *, std::string> NodeGraphAttrs;
415 #endif
416 
417  /// Clear all previously defined node graph attributes.
418  /// Intended to be used from a debugging tool (eg. gdb).
419  void clearGraphAttrs();
420 
421  /// Set graph attributes for a node. (eg. "color=red".)
422  void setGraphAttrs(const SDNode *N, const char *Attrs);
423 
424  /// Get graph attributes for a node. (eg. "color=red".)
425  /// Used from getNodeAttributes.
426  const std::string getGraphAttrs(const SDNode *N) const;
427 
428  /// Convenience for setting node color attribute.
429  void setGraphColor(const SDNode *N, const char *Color);
430 
431  /// Convenience for setting subgraph color attribute.
432  void setSubgraphColor(SDNode *N, const char *Color);
433 
435 
436  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
437  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
438 
440 
441  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
442  allnodes_iterator allnodes_end() { return AllNodes.end(); }
443 
445  return AllNodes.size();
446  }
447 
449  return make_range(allnodes_begin(), allnodes_end());
450  }
452  return make_range(allnodes_begin(), allnodes_end());
453  }
454 
455  /// Return the root tag of the SelectionDAG.
456  const SDValue &getRoot() const { return Root; }
457 
458  /// Return the token chain corresponding to the entry of the function.
460  return SDValue(const_cast<SDNode *>(&EntryNode), 0);
461  }
462 
463  /// Set the current root tag of the SelectionDAG.
464  ///
466  assert((!N.getNode() || N.getValueType() == MVT::Other) &&
467  "DAG root value is not a chain!");
468  if (N.getNode())
469  checkForCycles(N.getNode(), this);
470  Root = N;
471  if (N.getNode())
472  checkForCycles(this);
473  return Root;
474  }
475 
476 #ifndef NDEBUG
477  void VerifyDAGDiverence();
478 #endif
479 
480  /// This iterates over the nodes in the SelectionDAG, folding
481  /// certain types of nodes together, or eliminating superfluous nodes. The
482  /// Level argument controls whether Combine is allowed to produce nodes and
483  /// types that are illegal on the target.
484  void Combine(CombineLevel Level, AliasAnalysis *AA,
485  CodeGenOpt::Level OptLevel);
486 
487  /// This transforms the SelectionDAG into a SelectionDAG that
488  /// only uses types natively supported by the target.
489  /// Returns "true" if it made any changes.
490  ///
491  /// Note that this is an involved process that may invalidate pointers into
492  /// the graph.
493  bool LegalizeTypes();
494 
495  /// This transforms the SelectionDAG into a SelectionDAG that is
496  /// compatible with the target instruction selector, as indicated by the
497  /// TargetLowering object.
498  ///
499  /// Note that this is an involved process that may invalidate pointers into
500  /// the graph.
501  void Legalize();
502 
503  /// Transforms a SelectionDAG node and any operands to it into a node
504  /// that is compatible with the target instruction selector, as indicated by
505  /// the TargetLowering object.
506  ///
507  /// \returns true if \c N is a valid, legal node after calling this.
508  ///
509  /// This essentially runs a single recursive walk of the \c Legalize process
510  /// over the given node (and its operands). This can be used to incrementally
511  /// legalize the DAG. All of the nodes which are directly replaced,
512  /// potentially including N, are added to the output parameter \c
513  /// UpdatedNodes so that the delta to the DAG can be understood by the
514  /// caller.
515  ///
516  /// When this returns false, N has been legalized in a way that make the
517  /// pointer passed in no longer valid. It may have even been deleted from the
518  /// DAG, and so it shouldn't be used further. When this returns true, the
519  /// N passed in is a legal node, and can be immediately processed as such.
520  /// This may still have done some work on the DAG, and will still populate
521  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
522  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
523 
524  /// This transforms the SelectionDAG into a SelectionDAG
525  /// that only uses vector math operations supported by the target. This is
526  /// necessary as a separate step from Legalize because unrolling a vector
527  /// operation can introduce illegal types, which requires running
528  /// LegalizeTypes again.
529  ///
530  /// This returns true if it made any changes; in that case, LegalizeTypes
531  /// is called again before Legalize.
532  ///
533  /// Note that this is an involved process that may invalidate pointers into
534  /// the graph.
535  bool LegalizeVectors();
536 
537  /// This method deletes all unreachable nodes in the SelectionDAG.
538  void RemoveDeadNodes();
539 
540  /// Remove the specified node from the system. This node must
541  /// have no referrers.
542  void DeleteNode(SDNode *N);
543 
544  /// Return an SDVTList that represents the list of values specified.
545  SDVTList getVTList(EVT VT);
546  SDVTList getVTList(EVT VT1, EVT VT2);
547  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
548  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
549  SDVTList getVTList(ArrayRef<EVT> VTs);
550 
551  //===--------------------------------------------------------------------===//
552  // Node creation methods.
553 
554  /// Create a ConstantSDNode wrapping a constant value.
555  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
556  ///
557  /// If only legal types can be produced, this does the necessary
558  /// transformations (e.g., if the vector element type is illegal).
559  /// @{
560  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
561  bool isTarget = false, bool isOpaque = false);
562  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
563  bool isTarget = false, bool isOpaque = false);
564 
565  SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
566  bool IsOpaque = false) {
568  VT, IsTarget, IsOpaque);
569  }
570 
571  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
572  bool isTarget = false, bool isOpaque = false);
573  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
574  bool isTarget = false);
575  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
576  bool isOpaque = false) {
577  return getConstant(Val, DL, VT, true, isOpaque);
578  }
579  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
580  bool isOpaque = false) {
581  return getConstant(Val, DL, VT, true, isOpaque);
582  }
583  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
584  bool isOpaque = false) {
585  return getConstant(Val, DL, VT, true, isOpaque);
586  }
587 
588  /// Create a true or false constant of type \p VT using the target's
589  /// BooleanContent for type \p OpVT.
590  SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
591  /// @}
592 
593  /// Create a ConstantFPSDNode wrapping a constant value.
594  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
595  ///
596  /// If only legal types can be produced, this does the necessary
597  /// transformations (e.g., if the vector element type is illegal).
598  /// The forms that take a double should only be used for simple constants
599  /// that can be exactly represented in VT. No checks are made.
600  /// @{
601  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
602  bool isTarget = false);
603  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
604  bool isTarget = false);
605  SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
606  bool isTarget = false);
607  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
608  return getConstantFP(Val, DL, VT, true);
609  }
610  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
611  return getConstantFP(Val, DL, VT, true);
612  }
613  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
614  return getConstantFP(Val, DL, VT, true);
615  }
616  /// @}
617 
618  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
619  int64_t offset = 0, bool isTargetGA = false,
620  unsigned char TargetFlags = 0);
622  int64_t offset = 0,
623  unsigned char TargetFlags = 0) {
624  return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
625  }
626  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
628  return getFrameIndex(FI, VT, true);
629  }
630  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
631  unsigned char TargetFlags = 0);
632  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
633  return getJumpTable(JTI, VT, true, TargetFlags);
634  }
635  SDValue getConstantPool(const Constant *C, EVT VT,
636  unsigned Align = 0, int Offs = 0, bool isT=false,
637  unsigned char TargetFlags = 0);
639  unsigned Align = 0, int Offset = 0,
640  unsigned char TargetFlags = 0) {
641  return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
642  }
643  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
644  unsigned Align = 0, int Offs = 0, bool isT=false,
645  unsigned char TargetFlags = 0);
647  EVT VT, unsigned Align = 0,
648  int Offset = 0, unsigned char TargetFlags=0) {
649  return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
650  }
651  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
652  unsigned char TargetFlags = 0);
653  // When generating a branch to a BB, we don't in general know enough
654  // to provide debug info for the BB at that time, so keep this one around.
655  SDValue getBasicBlock(MachineBasicBlock *MBB);
656  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
657  SDValue getExternalSymbol(const char *Sym, EVT VT);
658  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
659  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
660  unsigned char TargetFlags = 0);
661  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
662 
663  SDValue getValueType(EVT);
664  SDValue getRegister(unsigned Reg, EVT VT);
665  SDValue getRegisterMask(const uint32_t *RegMask);
666  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
667  SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
668  MCSymbol *Label);
669  SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
670  int64_t Offset = 0, bool isTarget = false,
671  unsigned char TargetFlags = 0);
673  int64_t Offset = 0,
674  unsigned char TargetFlags = 0) {
675  return getBlockAddress(BA, VT, Offset, true, TargetFlags);
676  }
677 
678  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
679  SDValue N) {
680  return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
681  getRegister(Reg, N.getValueType()), N);
682  }
683 
684  // This version of the getCopyToReg method takes an extra operand, which
685  // indicates that there is potentially an incoming glue value (if Glue is not
686  // null) and that there should be a glue result.
687  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
688  SDValue Glue) {
689  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
690  SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
691  return getNode(ISD::CopyToReg, dl, VTs,
692  makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
693  }
694 
695  // Similar to last getCopyToReg() except parameter Reg is a SDValue
696  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
697  SDValue Glue) {
698  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
699  SDValue Ops[] = { Chain, Reg, N, Glue };
700  return getNode(ISD::CopyToReg, dl, VTs,
701  makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
702  }
703 
704  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
705  SDVTList VTs = getVTList(VT, MVT::Other);
706  SDValue Ops[] = { Chain, getRegister(Reg, VT) };
707  return getNode(ISD::CopyFromReg, dl, VTs, Ops);
708  }
709 
710  // This version of the getCopyFromReg method takes an extra operand, which
711  // indicates that there is potentially an incoming glue value (if Glue is not
712  // null) and that there should be a glue result.
713  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
714  SDValue Glue) {
715  SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
716  SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
717  return getNode(ISD::CopyFromReg, dl, VTs,
718  makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
719  }
720 
722 
723  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
724  /// which must be a vector type, must match the number of mask elements
725  /// NumElts. An integer mask element equal to -1 is treated as undefined.
726  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
728 
729  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
730  /// which must be a vector type, must match the number of operands in Ops.
731  /// The operands must have the same type as (or, for integers, a type wider
732  /// than) VT's element type.
734  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
735  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
736  }
737 
738  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
739  /// which must be a vector type, must match the number of operands in Ops.
740  /// The operands must have the same type as (or, for integers, a type wider
741  /// than) VT's element type.
743  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
744  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
745  }
746 
747  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
748  /// elements. VT must be a vector type. Op's type must be the same as (or,
749  /// for integers, a type wider than) VT's element type.
751  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
752  if (Op.getOpcode() == ISD::UNDEF) {
753  assert((VT.getVectorElementType() == Op.getValueType() ||
754  (VT.isInteger() &&
756  "A splatted value must have a width equal or (for integers) "
757  "greater than the vector element type!");
758  return getNode(ISD::UNDEF, SDLoc(), VT);
759  }
760 
762  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
763  }
764 
765  /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
766  /// the shuffle node in input but with swapped operands.
767  ///
768  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
769  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
770 
771  /// Convert Op, which must be of float type, to the
772  /// float type VT, by either extending or rounding (by truncation).
773  SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
774 
775  /// Convert Op, which must be of integer type, to the
776  /// integer type VT, by either any-extending or truncating it.
777  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
778 
779  /// Convert Op, which must be of integer type, to the
780  /// integer type VT, by either sign-extending or truncating it.
781  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
782 
783  /// Convert Op, which must be of integer type, to the
784  /// integer type VT, by either zero-extending or truncating it.
785  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
786 
787  /// Return the expression required to zero extend the Op
788  /// value assuming it was the smaller SrcTy value.
789  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
790 
791  /// Convert Op, which must be of integer type, to the integer type VT,
792  /// by using an extension appropriate for the target's
793  /// BooleanContent for type OpVT or truncating it.
794  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
795 
796  /// Create a bitwise NOT operation as (XOR Val, -1).
797  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
798 
799  /// Create a logical NOT operation as (XOR Val, BooleanOne).
800  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
801 
802  /// Create an add instruction with appropriate flags when used for
803  /// addressing some offset of an object. i.e. if a load is split into multiple
804  /// components, create an add nuw from the base pointer to the offset.
805  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
806  EVT VT = Op.getValueType();
807  return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
808  }
809 
811  EVT VT = Op.getValueType();
812 
813  // The object itself can't wrap around the address space, so it shouldn't be
814  // possible for the adds of the offsets to the split parts to overflow.
815  SDNodeFlags Flags;
816  Flags.setNoUnsignedWrap(true);
817  return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
818  }
819 
820  /// Return a new CALLSEQ_START node, that starts new call frame, in which
821  /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
822  /// OutSize specifies part of the frame set up prior to the sequence.
823  SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
824  const SDLoc &DL) {
825  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
826  SDValue Ops[] = { Chain,
827  getIntPtrConstant(InSize, DL, true),
828  getIntPtrConstant(OutSize, DL, true) };
829  return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
830  }
831 
832  /// Return a new CALLSEQ_END node, which always must have a
833  /// glue result (to ensure it's not CSE'd).
834  /// CALLSEQ_END does not have a useful SDLoc.
836  SDValue InGlue, const SDLoc &DL) {
837  SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
839  Ops.push_back(Chain);
840  Ops.push_back(Op1);
841  Ops.push_back(Op2);
842  if (InGlue.getNode())
843  Ops.push_back(InGlue);
844  return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
845  }
846 
847  /// Return true if the result of this operation is always undefined.
848  bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
849 
850  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
852  return getNode(ISD::UNDEF, SDLoc(), VT);
853  }
854 
855  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
857  return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
858  }
859 
860  /// Gets or creates the specified node.
861  ///
862  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
863  ArrayRef<SDUse> Ops);
864  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
865  ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
866  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
867  ArrayRef<SDValue> Ops);
868  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
869  ArrayRef<SDValue> Ops);
870 
871  // Specialize based on number of operands.
872  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
873  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
874  const SDNodeFlags Flags = SDNodeFlags());
875  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
876  SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
877  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
878  SDValue N2, SDValue N3,
879  const SDNodeFlags Flags = SDNodeFlags());
880  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
881  SDValue N2, SDValue N3, SDValue N4);
882  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
883  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
884 
885  // Specialize again based on number of operands for nodes with a VTList
886  // rather than a single VT.
887  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
888  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
889  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
890  SDValue N2);
891  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
892  SDValue N2, SDValue N3);
893  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
894  SDValue N2, SDValue N3, SDValue N4);
895  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
896  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
897 
898  /// Compute a TokenFactor to force all the incoming stack arguments to be
899  /// loaded from the stack. This is used in tail call lowering to protect
900  /// stack arguments from being clobbered.
901  SDValue getStackArgumentTokenFactor(SDValue Chain);
902 
903  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
904  SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
905  bool isTailCall, MachinePointerInfo DstPtrInfo,
906  MachinePointerInfo SrcPtrInfo);
907 
908  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
909  SDValue Size, unsigned Align, bool isVol, bool isTailCall,
910  MachinePointerInfo DstPtrInfo,
911  MachinePointerInfo SrcPtrInfo);
912 
913  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
914  SDValue Size, unsigned Align, bool isVol, bool isTailCall,
915  MachinePointerInfo DstPtrInfo);
916 
917  SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
918  unsigned DstAlign, SDValue Src, unsigned SrcAlign,
919  SDValue Size, Type *SizeTy, unsigned ElemSz,
920  bool isTailCall, MachinePointerInfo DstPtrInfo,
921  MachinePointerInfo SrcPtrInfo);
922 
923  SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
924  unsigned DstAlign, SDValue Src, unsigned SrcAlign,
925  SDValue Size, Type *SizeTy, unsigned ElemSz,
926  bool isTailCall, MachinePointerInfo DstPtrInfo,
927  MachinePointerInfo SrcPtrInfo);
928 
929  SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
930  unsigned DstAlign, SDValue Value, SDValue Size,
931  Type *SizeTy, unsigned ElemSz, bool isTailCall,
932  MachinePointerInfo DstPtrInfo);
933 
934  /// Helper function to make it easier to build SetCC's if you just have an
935  /// ISD::CondCode instead of an SDValue.
936  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
937  ISD::CondCode Cond) {
938  assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
939  "Cannot compare scalars to vectors");
940  assert(LHS.getValueType().isVector() == VT.isVector() &&
941  "Cannot compare scalars to vectors");
942  assert(Cond != ISD::SETCC_INVALID &&
943  "Cannot create a setCC of an invalid node.");
944  return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
945  }
946 
947  /// Helper function to make it easier to build Select's if you just have
948  /// operands and don't want to check for vector.
949  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
950  SDValue RHS) {
951  assert(LHS.getValueType() == RHS.getValueType() &&
952  "Cannot use select on differing types");
953  assert(VT.isVector() == LHS.getValueType().isVector() &&
954  "Cannot mix vectors and scalars");
955  auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
956  return getNode(Opcode, DL, VT, Cond, LHS, RHS);
957  }
958 
959  /// Helper function to make it easier to build SelectCC's if you just have an
960  /// ISD::CondCode instead of an SDValue.
961  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
962  SDValue False, ISD::CondCode Cond) {
963  return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
964  False, getCondCode(Cond));
965  }
966 
967  /// Try to simplify a select/vselect into 1 of its operands or a constant.
968  SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
969 
970  /// Try to simplify a shift into 1 of its operands or a constant.
971  SDValue simplifyShift(SDValue X, SDValue Y);
972 
973  /// VAArg produces a result and token chain, and takes a pointer
974  /// and a source value as input.
975  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
976  SDValue SV, unsigned Align);
977 
978  /// Gets a node for an atomic cmpxchg op. There are two
979  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
980  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
981  /// a success flag (initially i1), and a chain.
982  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
983  SDVTList VTs, SDValue Chain, SDValue Ptr,
984  SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
985  unsigned Alignment, AtomicOrdering SuccessOrdering,
986  AtomicOrdering FailureOrdering,
987  SyncScope::ID SSID);
988  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
989  SDVTList VTs, SDValue Chain, SDValue Ptr,
990  SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
991 
992  /// Gets a node for an atomic op, produces result (if relevant)
993  /// and chain and takes 2 operands.
994  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
995  SDValue Ptr, SDValue Val, const Value *PtrVal,
996  unsigned Alignment, AtomicOrdering Ordering,
997  SyncScope::ID SSID);
998  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
999  SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1000 
1001  /// Gets a node for an atomic op, produces result and chain and
1002  /// takes 1 operand.
1003  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1004  SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1005 
1006  /// Gets a node for an atomic op, produces result and chain and takes N
1007  /// operands.
1008  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1009  SDVTList VTList, ArrayRef<SDValue> Ops,
1010  MachineMemOperand *MMO);
1011 
1012  /// Creates a MemIntrinsicNode that may produce a
1013  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1014  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1015  /// less than FIRST_TARGET_MEMORY_OPCODE.
1016  SDValue getMemIntrinsicNode(
1017  unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1018  ArrayRef<SDValue> Ops, EVT MemVT,
1019  MachinePointerInfo PtrInfo,
1020  unsigned Align = 0,
1023  unsigned Size = 0);
1024 
1025  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1026  ArrayRef<SDValue> Ops, EVT MemVT,
1027  MachineMemOperand *MMO);
1028 
1029  /// Create a MERGE_VALUES node from the given operands.
1030  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1031 
1032  /// Loads are not normal binary operators: their result type is not
1033  /// determined by their operands, and they produce a value AND a token chain.
1034  ///
1035  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1036  /// you want. The MOStore flag must not be set.
1037  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1038  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1040  const AAMDNodes &AAInfo = AAMDNodes(),
1041  const MDNode *Ranges = nullptr);
1042  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1043  MachineMemOperand *MMO);
1044  SDValue
1045  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1046  SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1047  unsigned Alignment = 0,
1049  const AAMDNodes &AAInfo = AAMDNodes());
1050  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1051  SDValue Chain, SDValue Ptr, EVT MemVT,
1052  MachineMemOperand *MMO);
1053  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1055  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1056  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1057  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1059  const AAMDNodes &AAInfo = AAMDNodes(),
1060  const MDNode *Ranges = nullptr);
1061  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1062  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1063  EVT MemVT, MachineMemOperand *MMO);
1064 
1065  /// Helper function to build ISD::STORE nodes.
1066  ///
1067  /// This function will set the MOStore flag on MMOFlags, but you can set it if
1068  /// you want. The MOLoad and MOInvariant flags must not be set.
1069  SDValue
1070  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1071  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1073  const AAMDNodes &AAInfo = AAMDNodes());
1074  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1075  MachineMemOperand *MMO);
1076  SDValue
1077  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1078  MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1080  const AAMDNodes &AAInfo = AAMDNodes());
1081  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1082  SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1083  SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1084  SDValue Offset, ISD::MemIndexedMode AM);
1085 
1086  /// Returns sum of the base pointer and offset.
1087  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1088 
1089  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1090  SDValue Mask, SDValue Src0, EVT MemVT,
1092  bool IsExpanding = false);
1093  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1094  SDValue Ptr, SDValue Mask, EVT MemVT,
1095  MachineMemOperand *MMO, bool IsTruncating = false,
1096  bool IsCompressing = false);
1097  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1099  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1101 
1102  /// Return (create a new or find existing) a target-specific node.
1103  /// TargetMemSDNode should be derived class from MemSDNode.
1104  template <class TargetMemSDNode>
1105  SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1106  const SDLoc &dl, EVT MemVT,
1107  MachineMemOperand *MMO);
1108 
1109  /// Construct a node to track a Value* through the backend.
1110  SDValue getSrcValue(const Value *v);
1111 
1112  /// Return an MDNodeSDNode which holds an MDNode.
1113  SDValue getMDNode(const MDNode *MD);
1114 
1115  /// Return a bitcast using the SDLoc of the value operand, and casting to the
1116  /// provided type. Use getNode to set a custom SDLoc.
1117  SDValue getBitcast(EVT VT, SDValue V);
1118 
1119  /// Return an AddrSpaceCastSDNode.
1120  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1121  unsigned DestAS);
1122 
1123  /// Return the specified value casted to
1124  /// the target's desired shift amount type.
1125  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1126 
1127  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1128  SDValue expandVAArg(SDNode *Node);
1129 
1130  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1131  SDValue expandVACopy(SDNode *Node);
1132 
1133  /// Returs an GlobalAddress of the function from the current module with
1134  /// name matching the given ExternalSymbol. Additionally can provide the
1135  /// matched function.
1136  /// Panics the function doesn't exists.
1137  SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1138  Function **TargetFunction = nullptr);
1139 
1140  /// *Mutate* the specified node in-place to have the
1141  /// specified operands. If the resultant node already exists in the DAG,
1142  /// this does not modify the specified node, instead it returns the node that
1143  /// already exists. If the resultant node does not exist in the DAG, the
1144  /// input node is returned. As a degenerate case, if you specify the same
1145  /// input operands as the node already has, the input node is returned.
1146  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1147  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1148  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1149  SDValue Op3);
1150  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1151  SDValue Op3, SDValue Op4);
1152  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1153  SDValue Op3, SDValue Op4, SDValue Op5);
1154  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1155 
1156  /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1157  /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1158  /// the final TokenFactor has less than 64k operands.
1159  SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1160 
1161  /// *Mutate* the specified machine node's memory references to the provided
1162  /// list.
1163  void setNodeMemRefs(MachineSDNode *N,
1164  ArrayRef<MachineMemOperand *> NewMemRefs);
1165 
1166  // Propagates the change in divergence to users
1167  void updateDivergence(SDNode * N);
1168 
1169  /// These are used for target selectors to *mutate* the
1170  /// specified node to have the specified return type, Target opcode, and
1171  /// operands. Note that target opcodes are stored as
1172  /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1173  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1174  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1175  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1176  SDValue Op1, SDValue Op2);
1177  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1178  SDValue Op1, SDValue Op2, SDValue Op3);
1179  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1180  ArrayRef<SDValue> Ops);
1181  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1182  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1183  EVT VT2, ArrayRef<SDValue> Ops);
1184  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1185  EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1186  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1187  EVT VT2, SDValue Op1);
1188  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1189  EVT VT2, SDValue Op1, SDValue Op2);
1190  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1191  ArrayRef<SDValue> Ops);
1192 
1193  /// This *mutates* the specified node to have the specified
1194  /// return type, opcode, and operands.
1195  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1196  ArrayRef<SDValue> Ops);
1197 
1198  /// Mutate the specified strict FP node to its non-strict equivalent,
1199  /// unlinking the node from its chain and dropping the metadata arguments.
1200  /// The node must be a strict FP node.
1201  SDNode *mutateStrictFPToFP(SDNode *Node);
1202 
1203  /// These are used for target selectors to create a new node
1204  /// with specified return type(s), MachineInstr opcode, and operands.
1205  ///
1206  /// Note that getMachineNode returns the resultant node. If there is already
1207  /// a node of the specified opcode and operands, it returns that node instead
1208  /// of the current one.
1209  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1210  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1211  SDValue Op1);
1212  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1213  SDValue Op1, SDValue Op2);
1214  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1215  SDValue Op1, SDValue Op2, SDValue Op3);
1216  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1217  ArrayRef<SDValue> Ops);
1218  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1219  EVT VT2, SDValue Op1, SDValue Op2);
1220  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1221  EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1222  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1223  EVT VT2, ArrayRef<SDValue> Ops);
1224  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1225  EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1226  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1227  EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1228  SDValue Op3);
1229  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1230  EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1231  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1232  ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1233  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1234  ArrayRef<SDValue> Ops);
1235 
1236  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1237  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1238  SDValue Operand);
1239 
1240  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1241  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1242  SDValue Operand, SDValue Subreg);
1243 
1244  /// Get the specified node if it's already available, or else return NULL.
1245  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1246  const SDNodeFlags Flags = SDNodeFlags());
1247 
1248  /// Creates a SDDbgValue node.
1249  SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1250  unsigned R, bool IsIndirect, const DebugLoc &DL,
1251  unsigned O);
1252 
1253  /// Creates a constant SDDbgValue node.
1254  SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1255  const Value *C, const DebugLoc &DL,
1256  unsigned O);
1257 
1258  /// Creates a FrameIndex SDDbgValue node.
1259  SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1260  unsigned FI, bool IsIndirect,
1261  const DebugLoc &DL, unsigned O);
1262 
1263  /// Creates a VReg SDDbgValue node.
1264  SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1265  unsigned VReg, bool IsIndirect,
1266  const DebugLoc &DL, unsigned O);
1267 
1268  /// Creates a SDDbgLabel node.
1269  SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1270 
1271  /// Transfer debug values from one node to another, while optionally
1272  /// generating fragment expressions for split-up values. If \p InvalidateDbg
1273  /// is set, debug values are invalidated after they are transferred.
1274  void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1275  unsigned SizeInBits = 0, bool InvalidateDbg = true);
1276 
1277  /// Remove the specified node from the system. If any of its
1278  /// operands then becomes dead, remove them as well. Inform UpdateListener
1279  /// for each node deleted.
1280  void RemoveDeadNode(SDNode *N);
1281 
1282  /// This method deletes the unreachable nodes in the
1283  /// given list, and any nodes that become unreachable as a result.
1284  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1285 
1286  /// Modify anything using 'From' to use 'To' instead.
1287  /// This can cause recursive merging of nodes in the DAG. Use the first
1288  /// version if 'From' is known to have a single result, use the second
1289  /// if you have two nodes with identical results (or if 'To' has a superset
1290  /// of the results of 'From'), use the third otherwise.
1291  ///
1292  /// These methods all take an optional UpdateListener, which (if not null) is
1293  /// informed about nodes that are deleted and modified due to recursive
1294  /// changes in the dag.
1295  ///
1296  /// These functions only replace all existing uses. It's possible that as
1297  /// these replacements are being performed, CSE may cause the From node
1298  /// to be given new uses. These new uses of From are left in place, and
1299  /// not automatically transferred to To.
1300  ///
1301  void ReplaceAllUsesWith(SDValue From, SDValue To);
1302  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1303  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1304 
1305  /// Replace any uses of From with To, leaving
1306  /// uses of other values produced by From.getNode() alone.
1307  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1308 
1309  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1310  /// This correctly handles the case where
1311  /// there is an overlap between the From values and the To values.
1312  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1313  unsigned Num);
1314 
1315  /// If an existing load has uses of its chain, create a token factor node with
1316  /// that chain and the new memory node's chain and update users of the old
1317  /// chain to the token factor. This ensures that the new memory node will have
1318  /// the same relative memory dependency position as the old load. Returns the
1319  /// new merged load chain.
1320  SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1321 
1322  /// Topological-sort the AllNodes list and a
1323  /// assign a unique node id for each node in the DAG based on their
1324  /// topological order. Returns the number of nodes.
1325  unsigned AssignTopologicalOrder();
1326 
1327  /// Move node N in the AllNodes list to be immediately
1328  /// before the given iterator Position. This may be used to update the
1329  /// topological ordering when the list of nodes is modified.
1331  AllNodes.insert(Position, AllNodes.remove(N));
1332  }
1333 
1334  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1335  /// a vector type, the element semantics are returned.
1337  switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1338  default: llvm_unreachable("Unknown FP format");
1339  case MVT::f16: return APFloat::IEEEhalf();
1340  case MVT::f32: return APFloat::IEEEsingle();
1341  case MVT::f64: return APFloat::IEEEdouble();
1342  case MVT::f80: return APFloat::x87DoubleExtended();
1343  case MVT::f128: return APFloat::IEEEquad();
1344  case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1345  }
1346  }
1347 
1348  /// Add a dbg_value SDNode. If SD is non-null that means the
1349  /// value is produced by SD.
1350  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1351 
1352  /// Add a dbg_label SDNode.
1353  void AddDbgLabel(SDDbgLabel *DB);
1354 
1355  /// Get the debug values which reference the given SDNode.
1356  ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1357  return DbgInfo->getSDDbgValues(SD);
1358  }
1359 
1360 public:
1361  /// Return true if there are any SDDbgValue nodes associated
1362  /// with this SelectionDAG.
1363  bool hasDebugValues() const { return !DbgInfo->empty(); }
1364 
1365  SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1366  SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
1367 
1369  return DbgInfo->ByvalParmDbgBegin();
1370  }
1372  return DbgInfo->ByvalParmDbgEnd();
1373  }
1374 
1376  return DbgInfo->DbgLabelBegin();
1377  }
1379  return DbgInfo->DbgLabelEnd();
1380  }
1381 
1382  /// To be invoked on an SDNode that is slated to be erased. This
1383  /// function mirrors \c llvm::salvageDebugInfo.
1384  void salvageDebugInfo(SDNode &N);
1385 
1386  void dump() const;
1387 
1388  /// Create a stack temporary, suitable for holding the specified value type.
1389  /// If minAlign is specified, the slot size will have at least that alignment.
1390  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1391 
1392  /// Create a stack temporary suitable for holding either of the specified
1393  /// value types.
1394  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1395 
1396  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1397  const GlobalAddressSDNode *GA,
1398  const SDNode *N2);
1399 
1400  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1401  SDNode *Cst1, SDNode *Cst2);
1402 
1403  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1404  const ConstantSDNode *Cst1,
1405  const ConstantSDNode *Cst2);
1406 
1407  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1408  ArrayRef<SDValue> Ops,
1409  const SDNodeFlags Flags = SDNodeFlags());
1410 
1411  /// Constant fold a setcc to true or false.
1412  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1413  const SDLoc &dl);
1414 
1415  /// See if the specified operand can be simplified with the knowledge that only
1416  /// the bits specified by Mask are used. If so, return the simpler operand,
1417  /// otherwise return a null SDValue.
1418  ///
1419  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1420  /// simplify nodes with multiple uses more aggressively.)
1421  SDValue GetDemandedBits(SDValue V, const APInt &Mask);
1422 
1423  /// Return true if the sign bit of Op is known to be zero.
1424  /// We use this predicate to simplify operations downstream.
1425  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1426 
1427  /// Return true if 'Op & Mask' is known to be zero. We
1428  /// use this predicate to simplify operations downstream. Op and Mask are
1429  /// known to be the same type.
1430  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
1431  const;
1432 
1433  /// Determine which bits of Op are known to be either zero or one and return
1434  /// them in Known. For vectors, the known bits are those that are shared by
1435  /// every vector element.
1436  /// Targets can implement the computeKnownBitsForTargetNode method in the
1437  /// TargetLowering class to allow target nodes to be understood.
1438  KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1439 
1440  /// Determine which bits of Op are known to be either zero or one and return
1441  /// them in Known. The DemandedElts argument allows us to only collect the
1442  /// known bits that are shared by the requested vector elements.
1443  /// Targets can implement the computeKnownBitsForTargetNode method in the
1444  /// TargetLowering class to allow target nodes to be understood.
1445  KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1446  unsigned Depth = 0) const;
1447 
1448  /// Used to represent the possible overflow behavior of an operation.
1449  /// Never: the operation cannot overflow.
1450  /// Always: the operation will always overflow.
1451  /// Sometime: the operation may or may not overflow.
1456  };
1457 
1458  /// Determine if the result of the addition of 2 node can overflow.
1459  OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1460 
1461  /// Test if the given value is known to have exactly one bit set. This differs
1462  /// from computeKnownBits in that it doesn't necessarily determine which bit
1463  /// is set.
1464  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1465 
1466  /// Return the number of times the sign bit of the register is replicated into
1467  /// the other bits. We know that at least 1 bit is always equal to the sign
1468  /// bit (itself), but other cases can give us information. For example,
1469  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1470  /// to each other, so we return 3. Targets can implement the
1471  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1472  /// target nodes to be understood.
1473  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1474 
1475  /// Return the number of times the sign bit of the register is replicated into
1476  /// the other bits. We know that at least 1 bit is always equal to the sign
1477  /// bit (itself), but other cases can give us information. For example,
1478  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1479  /// to each other, so we return 3. The DemandedElts argument allows
1480  /// us to only collect the minimum sign bits of the requested vector elements.
1481  /// Targets can implement the ComputeNumSignBitsForTarget method in the
1482  /// TargetLowering class to allow target nodes to be understood.
1483  unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1484  unsigned Depth = 0) const;
1485 
1486  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1487  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1488  /// is guaranteed to have the same semantics as an ADD. This handles the
1489  /// equivalence:
1490  /// X|Cst == X+Cst iff X&Cst = 0.
1491  bool isBaseWithConstantOffset(SDValue Op) const;
1492 
1493  /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1494  /// true, returns if \p Op is known to never be a signaling NaN (it may still
1495  /// be a qNaN).
1496  bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1497 
1498  /// \returns true if \p Op is known to never be a signaling NaN.
1499  bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1500  return isKnownNeverNaN(Op, true, Depth);
1501  }
1502 
1503  /// Test whether the given floating point SDValue is known to never be
1504  /// positive or negative zero.
1505  bool isKnownNeverZeroFloat(SDValue Op) const;
1506 
1507  /// Test whether the given SDValue is known to contain non-zero value(s).
1508  bool isKnownNeverZero(SDValue Op) const;
1509 
1510  /// Test whether two SDValues are known to compare equal. This
1511  /// is true if they are the same value, or if one is negative zero and the
1512  /// other positive zero.
1513  bool isEqualTo(SDValue A, SDValue B) const;
1514 
1515  /// Return true if A and B have no common bits set. As an example, this can
1516  /// allow an 'add' to be transformed into an 'or'.
1517  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1518 
1519  /// Test whether \p V has a splatted value for all the demanded elements.
1520  ///
1521  /// On success \p UndefElts will indicate the elements that have UNDEF
1522  /// values instead of the splat value, this is only guaranteed to be correct
1523  /// for \p DemandedElts.
1524  ///
1525  /// NOTE: The function will return true for a demanded splat of UNDEF values.
1526  bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1527 
1528  /// Test whether \p V has a splatted value.
1529  bool isSplatValue(SDValue V, bool AllowUndefs = false);
1530 
1531  /// Match a binop + shuffle pyramid that represents a horizontal reduction
1532  /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1533  /// Extract. The reduction must use one of the opcodes listed in /p
1534  /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1535  /// Returns the vector that is being reduced on, or SDValue() if a reduction
1536  /// was not matched.
1537  SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1538  ArrayRef<ISD::NodeType> CandidateBinOps);
1539 
1540  /// Utility function used by legalize and lowering to
1541  /// "unroll" a vector operation by splitting out the scalars and operating
1542  /// on each element individually. If the ResNE is 0, fully unroll the vector
1543  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1544  /// If the ResNE is greater than the width of the vector op, unroll the
1545  /// vector op and fill the end of the resulting vector with UNDEFS.
1546  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1547 
1548  /// Return true if loads are next to each other and can be
1549  /// merged. Check that both are nonvolatile and if LD is loading
1550  /// 'Bytes' bytes from a location that is 'Dist' units away from the
1551  /// location that the 'Base' load is loading from.
1552  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1553  unsigned Bytes, int Dist) const;
1554 
1555  /// Infer alignment of a load / store address. Return 0 if
1556  /// it cannot be inferred.
1557  unsigned InferPtrAlignment(SDValue Ptr) const;
1558 
1559  /// Compute the VTs needed for the low/hi parts of a type
1560  /// which is split (or expanded) into two not necessarily identical pieces.
1561  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1562 
1563  /// Split the vector with EXTRACT_SUBVECTOR using the provides
1564  /// VTs and return the low/high part.
1565  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1566  const EVT &LoVT, const EVT &HiVT);
1567 
1568  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1569  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1570  EVT LoVT, HiVT;
1571  std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1572  return SplitVector(N, DL, LoVT, HiVT);
1573  }
1574 
1575  /// Split the node's operand with EXTRACT_SUBVECTOR and
1576  /// return the low/high part.
1577  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1578  {
1579  return SplitVector(N->getOperand(OpNo), SDLoc(N));
1580  }
1581 
1582  /// Append the extracted elements from Start to Count out of the vector Op
1583  /// in Args. If Count is 0, all of the elements will be extracted.
1584  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1585  unsigned Start = 0, unsigned Count = 0);
1586 
1587  /// Compute the default alignment value for the given type.
1588  unsigned getEVTAlignment(EVT MemoryVT) const;
1589 
1590  /// Test whether the given value is a constant int or similar node.
1591  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1592 
1593  /// Test whether the given value is a constant FP or similar node.
1595 
1596  /// \returns true if \p N is any kind of constant or build_vector of
1597  /// constants, int or float. If a vector, it may not necessarily be a splat.
1599  return isConstantIntBuildVectorOrConstantInt(N) ||
1601  }
1602 
1603 private:
1604  void InsertNode(SDNode *N);
1605  bool RemoveNodeFromCSEMaps(SDNode *N);
1606  void AddModifiedNodeToCSEMaps(SDNode *N);
1607  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1608  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1609  void *&InsertPos);
1610  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1611  void *&InsertPos);
1612  SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1613 
1614  void DeleteNodeNotInCSEMaps(SDNode *N);
1615  void DeallocateNode(SDNode *N);
1616 
1617  void allnodes_clear();
1618 
1619  /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1620  /// not, return the insertion token that will make insertion faster. This
1621  /// overload is for nodes other than Constant or ConstantFP, use the other one
1622  /// for those.
1623  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1624 
1625  /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1626  /// not, return the insertion token that will make insertion faster. Performs
1627  /// additional processing for constant nodes.
1628  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1629  void *&InsertPos);
1630 
1631  /// List of non-single value types.
1632  FoldingSet<SDVTListNode> VTListMap;
1633 
1634  /// Maps to auto-CSE operations.
1635  std::vector<CondCodeSDNode*> CondCodeNodes;
1636 
1637  std::vector<SDNode*> ValueTypeNodes;
1638  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1639  StringMap<SDNode*> ExternalSymbols;
1640 
1641  std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1643 };
1644 
1645 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1647 
1649  return nodes_iterator(G->allnodes_begin());
1650  }
1651 
1653  return nodes_iterator(G->allnodes_end());
1654  }
1655 };
1656 
1657 template <class TargetMemSDNode>
1659  ArrayRef<SDValue> Ops,
1660  const SDLoc &dl, EVT MemVT,
1661  MachineMemOperand *MMO) {
1662  /// Compose node ID and try to find an existing node.
1664  unsigned Opcode =
1665  TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1666  ID.AddInteger(Opcode);
1667  ID.AddPointer(VTs.VTs);
1668  for (auto& Op : Ops) {
1669  ID.AddPointer(Op.getNode());
1670  ID.AddInteger(Op.getResNo());
1671  }
1672  ID.AddInteger(MemVT.getRawBits());
1673  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1674  ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1675  dl.getIROrder(), VTs, MemVT, MMO));
1676 
1677  void *IP = nullptr;
1678  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1679  cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1680  return SDValue(E, 0);
1681  }
1682 
1683  /// Existing node was not found. Create a new one.
1684  auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1685  MemVT, MMO);
1686  createOperands(N, Ops);
1687  CSEMap.InsertNode(N, IP);
1688  InsertNode(N);
1689  return SDValue(N, 0);
1690 }
1691 
1692 } // end namespace llvm
1693 
1694 #endif // LLVM_CODEGEN_SELECTIONDAG_H
Pass interface - Implemented by all &#39;passes&#39;.
Definition: Pass.h:80
uint64_t CallInst * C
static const fltSemantics & IEEEquad() LLVM_READNONE
Definition: APFloat.cpp:125
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
void AddPointer(const void *Ptr)
Add* - Add various data types to Bit data.
Definition: FoldingSet.cpp:51
void add(SDDbgLabel *L)
Definition: SelectionDAG.h:168
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:110
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
EVT getValueType() const
Return the ValueType of the referenced return value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static MSP430CC::CondCodes getCondCode(unsigned Cond)
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT, SDValue Glue)
Definition: SelectionDAG.h:713
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:561
const TargetLibraryInfo & getLibInfo() const
Definition: SelectionDAG.h:404
LLVMContext & Context
Keeps track of dbg_value information through SDISel.
Definition: SelectionDAG.h:147
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond)
Helper function to make it easier to build SetCC&#39;s if you just have an ISD::CondCode instead of an SD...
Definition: SelectionDAG.h:936
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it&#39;s not CSE&#39;d)...
Definition: SelectionDAG.h:835
Atomic ordering constants.
This class represents lattice values for constants.
Definition: AllocatorList.h:23
static void removeOperands(MachineInstr &MI, unsigned i)
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:259
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
DbgIterator ByvalParmDbgEnd()
Definition: SelectionDAG.h:203
Implements a dense probed hash-table based set.
Definition: DenseSet.h:249
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
Clients of various APIs that cause global effects on the DAG can optionally implement this interface...
Definition: SelectionDAG.h:279
unsigned Reg
This file contains the declarations for metadata subclasses.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:252
ArrayRef< SDDbgValue * > getSDDbgValues(const SDNode *Node) const
Definition: SelectionDAG.h:190
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
Definition: SelectionDAG.h:118
bool salvageDebugInfo(Instruction &I)
Assuming the instruction I is going to be deleted, attempt to salvage debug users of I by writing the...
Definition: Local.cpp:1590
static const fltSemantics & EVTToAPFloatSemantics(EVT VT)
Returns an APFloat semantics tag appropriate for the given type.
Recycle small arrays allocated from a BumpPtrAllocator.
Definition: ArrayRecycler.h:28
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:613
A debug info location.
Definition: DebugLoc.h:33
Metadata node.
Definition: Metadata.h:863
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:140
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS)
Helper function to make it easier to build Select&#39;s if you just have operands and don&#39;t want to check...
Definition: SelectionDAG.h:949
DbgIterator DbgBegin()
Definition: SelectionDAG.h:200
SDDbgInfo::DbgLabelIterator DbgLabelBegin() const
SDNode * getNode() const
get the SDNode which holds the desired result
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
Definition: SelectionDAG.h:465
SmallVectorImpl< SDDbgLabel * >::iterator DbgLabelIterator
Definition: SelectionDAG.h:198
The address of the GOT.
Definition: ISDOpcodes.h:65
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:434
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:38
This file defines the MallocAllocator and BumpPtrAllocator interfaces.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
The address of a basic block.
Definition: Constants.h:839
A description of a memory reference used in the backend.
Definition: BitVector.h:937
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined. ...
SDDbgInfo::DbgIterator DbgEnd() const
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:610
void Reset()
Deallocate all but the current slab and reset the current pointer to the beginning of it...
Definition: Allocator.h:194
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:450
static Optional< unsigned > getOpcode(ArrayRef< VPValue *> Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:196
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:41
CopyToReg - This node has three operands: a chain, a register number to set to this value...
Definition: ISDOpcodes.h:169
SimpleValueType SimpleTy
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if &#39;V & Mask&#39; is known to be zero.
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence, and carry arbitrary information that target might want to know.
Definition: ISDOpcodes.h:712
void AddInteger(signed I)
Definition: FoldingSet.cpp:60
SmallVectorImpl< SDDbgValue * >::iterator DbgIterator
Definition: SelectionDAG.h:197
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
Definition: SelectionDAG.h:459
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:400
void setFunctionLoweringInfo(FunctionLoweringInfo *FuncInfo)
Definition: SelectionDAG.h:389
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:583
Position
Position to insert a new instruction relative to an existing instruction.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This file implements a class to represent arbitrary precision integral constant values and operations...
This represents a list of ValueType&#39;s that has been intern&#39;d by a SelectionDAG.
iterator_range< allnodes_iterator > allnodes()
Definition: SelectionDAG.h:448
AtomicOrdering
Atomic ordering for LLVM&#39;s memory model.
static int64_t getConstant(const MachineInstr *MI)
void InsertNode(T *N, void *InsertPos)
InsertNode - Insert the specified node into the folding set, knowing that it is not already in the fo...
Definition: FoldingSet.h:451
unsigned getScalarSizeInBits() const
Definition: ValueTypes.h:297
void checkForCycles(const SelectionDAG *DAG, bool force=false)
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:397
DAGUpdateListener *const Next
Definition: SelectionDAG.h:280
SDValue getTargetFrameIndex(int FI, EVT VT)
Definition: SelectionDAG.h:627
const TargetMachine & getTarget() const
Definition: SelectionDAG.h:401
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition: ISDOpcodes.h:428
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:200
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:32
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
Definition: SelectionDAG.h:851
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out...
Definition: ISDOpcodes.h:958
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:122
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:575
allnodes_iterator allnodes_end()
Definition: SelectionDAG.h:442
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements. ...
Definition: SelectionDAG.h:750
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
SDDbgInfo::DbgIterator DbgBegin() const
allnodes_iterator allnodes_begin()
Definition: SelectionDAG.h:441
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:607
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDUse > Ops)
Return an ISD::BUILD_VECTOR node.
Definition: SelectionDAG.h:742
UNDEF - An undefined node.
Definition: ISDOpcodes.h:177
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the specified, possibly variable...
Definition: ISDOpcodes.h:326
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:175
unsigned ComputeHash() const
ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, used to lookup the node in th...
Definition: FoldingSet.cpp:29
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:305
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition: Allocator.h:434
Use delete by default for iplist and ilist.
Definition: ilist.h:40
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits...
DAGNodeDeletedListener(SelectionDAG &DAG, std::function< void(SDNode *, SDNode *)> Callback)
Definition: SelectionDAG.h:305
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:422
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition: FoldingSet.h:249
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static nodes_iterator nodes_begin(SelectionDAG *G)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
Definition: SelectionDAG.h:405
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:140
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:272
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
bool hasDebugValues() const
Return true if there are any SDDbgValue nodes associated with this SelectionDAG.
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:128
const SDValue & getOperand(unsigned Num) const
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:933
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition: ValueTypes.h:246
DbgLabelIterator DbgLabelEnd()
Definition: SelectionDAG.h:205
bool empty() const
Definition: SelectionDAG.h:186
bool isKnownNeverSNaN(SDValue Op, unsigned Depth=0) const
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:263
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
Definition: SelectionDAG.h:823
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node&#39;s operand with EXTRACT_SUBVECTOR and return the low/high part.
CombineLevel
Definition: DAGCombine.h:15
This file declares a class to represent arbitrary precision floating point values and provide a varie...
BumpPtrAllocator & getAlloc()
Definition: SelectionDAG.h:184
void RepositionNode(allnodes_iterator Position, SDNode *N)
Move node N in the AllNodes list to be immediately before the given iterator Position.
SDDbgInfo::DbgIterator ByvalParmDbgEnd() const
Base class for variables.
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
Definition: APFloat.cpp:128
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL)
Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
const Pass * getPass() const
Definition: SelectionDAG.h:398
Extended Value Type.
Definition: ValueTypes.h:33
Abstract base class for all machine specific constantpool value subclasses.
SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align=0, int Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:646
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
Definition: SelectionDAG.h:565
iterator_range< allnodes_const_iterator > allnodes() const
Definition: SelectionDAG.h:451
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N, SDValue Glue)
Definition: SelectionDAG.h:687
An intrusive list with ownership and callbacks specified/controlled by ilist_traits, only with API safe for polymorphic types.
Definition: ilist.h:389
This class contains a discriminated union of information about pointers in memory operands...
FoldingSet - This template class is used to instantiate a specialized implementation of the folding s...
Definition: FoldingSet.h:473
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
The memory access writes data.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset)
Definition: SelectionDAG.h:810
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align=0, int Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:638
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:632
static bool isUndef(ArrayRef< int > Mask)
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:119
Basic Register Allocator
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:403
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:297
Iterator for intrusive lists based on ilist_node.
void setNoUnsignedWrap(bool b)
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
Color
A "color", which is either even or odd.
BlockVerifier::State From
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:116
ilist< SDNode >::size_type allnodes_size() const
Definition: SelectionDAG.h:444
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:264
static nodes_iterator nodes_end(SelectionDAG *G)
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:221
SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef< SDValue > Ops, const SDLoc &dl, EVT MemVT, MachineMemOperand *MMO)
Return (create a new or find existing) a target-specific node.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:846
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
Definition: SelectionDAG.h:733
Provides information about what library functions are available for the current target.
const DebugLoc & getDebugLoc() const
const DataFlowGraph & G
Definition: RDFGraph.cpp:210
An SDNode that represents everything that will be needed to construct a MachineInstr.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:643
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Represents one node in the SelectionDAG.
DbgIterator DbgEnd()
Definition: SelectionDAG.h:201
allnodes_const_iterator allnodes_begin() const
Definition: SelectionDAG.h:436
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:678
DWARF expression.
A range adaptor for a pair of iterators.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:219
Class for arbitrary precision integers.
Definition: APInt.h:69
std::function< void(SDNode *, SDNode *)> Callback
Definition: SelectionDAG.h:303
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:419
typename SuperClass::iterator iterator
Definition: SmallVector.h:326
SDDbgInfo::DbgLabelIterator DbgLabelEnd() const
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:211
Flags
Flags values. These may be or&#39;d together.
AlignedCharArrayUnion< AtomicSDNode, TargetIndexSDNode, BlockAddressSDNode, GlobalAddressSDNode > LargestSDNode
A representation of the largest SDNode, for use in sizeof().
The memory access reads data.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isConstantValueOfAnyType(SDValue N)
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:579
std::map< const SDNode *, std::string > NodeGraphAttrs
Definition: SelectionDAG.h:414
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
Definition: APFloat.cpp:134
These are IR-level optimization flags that may be propagated to SDNodes.
allnodes_const_iterator allnodes_end() const
Definition: SelectionDAG.h:437
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:672
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:132
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num)
Definition: SelectionDAG.h:100
const MachinePointerInfo & getPointerInfo() const
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:150
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID, which can be a useful to store node id data rather than using plain FoldingSetNodeIDs, since the 32-element SmallVector is often much larger than necessary, and the possibility of heap allocation means it requires a non-trivial destructor call.
Definition: FoldingSet.h:277
Holds the information from a dbg_label node through SDISel.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:704
Node - This class is used to maintain the singly linked bucket list in a folding set.
Definition: FoldingSet.h:135
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:55
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID)
Definition: SelectionDAG.h:125
#define I(x, y, z)
Definition: MD5.cpp:58
bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if LHS and RHS have no common bits set.
#define N
const TargetSubtargetInfo & getSubtarget() const
Definition: SelectionDAG.h:402
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
iterator end()
Definition: DenseMap.h:108
SDDbgInfo::DbgIterator ByvalParmDbgBegin() const
uint32_t Size
Definition: Profile.cpp:46
unsigned getOpcode() const
bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, SDValue Glue)
Definition: SelectionDAG.h:696
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition: ISDOpcodes.h:174
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
Definition: SelectionDAG.h:456
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
Definition: SelectionDAG.h:856
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:72
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC&#39;s if you just have an ISD::CondCode instead of an...
Definition: SelectionDAG.h:961
SDVTList getSDVTList()
Definition: SelectionDAG.h:105
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:80
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition: FoldingSet.h:220
OptimizationRemarkEmitter & getORE() const
Definition: SelectionDAG.h:407
static void deleteNode(SDNode *)
Definition: SelectionDAG.h:131
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:58
void add(SDDbgValue *V, const SDNode *Node, bool isParameter)
Definition: SelectionDAG.h:160
void deallocate(Capacity Cap, T *Ptr)
Deallocate an array with the specified Capacity.
print Print MemDeps of function
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:442
static SDNode * isConstantFPBuildVectorOrConstantFP(SDValue N)
DbgIterator ByvalParmDbgBegin()
Definition: SelectionDAG.h:202
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object...
Definition: SelectionDAG.h:805
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
Holds the information from a dbg_value node through SDISel.
static void Profile(const SDVTListNode &X, FoldingSetNodeID &ID)
Definition: SelectionDAG.h:114
DbgLabelIterator DbgLabelBegin()
Definition: SelectionDAG.h:204
The optimization diagnostic interface.
void NodeDeleted(SDNode *N, SDNode *E) override
The node N that was deleted and, if E is not null, an equivalent node E that replaced it...
Definition: SelectionDAG.h:309
LLVMContext * getContext() const
Definition: SelectionDAG.h:406
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned getIROrder() const
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:621
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:913
This class is used to represent ISD::LOAD nodes.