LLVM  7.0.0svn
SelectionDAG.h
Go to the documentation of this file.
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the SelectionDAG class, and transitively defines the
11 // SDNode class and subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
16 #define LLVM_CODEGEN_SELECTIONDAG_H
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/ilist.h"
28 #include "llvm/ADT/iterator.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CodeGen.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <functional>
54 #include <map>
55 #include <string>
56 #include <tuple>
57 #include <utility>
58 #include <vector>
59 
60 namespace llvm {
61 
62 class BlockAddress;
63 class Constant;
64 class ConstantFP;
65 class ConstantInt;
66 class DataLayout;
67 struct fltSemantics;
68 class GlobalValue;
69 struct KnownBits;
70 class LLVMContext;
71 class MachineBasicBlock;
72 class MachineConstantPoolValue;
73 class MCSymbol;
74 class OptimizationRemarkEmitter;
75 class SDDbgValue;
76 class SDDbgLabel;
77 class SelectionDAG;
78 class SelectionDAGTargetInfo;
79 class TargetLibraryInfo;
80 class TargetLowering;
81 class TargetMachine;
82 class TargetSubtargetInfo;
83 class Value;
84 
85 class SDVTListNode : public FoldingSetNode {
86  friend struct FoldingSetTrait<SDVTListNode>;
87 
88  /// A reference to an Interned FoldingSetNodeID for this node.
89  /// The Allocator in SelectionDAG holds the data.
90  /// SDVTList contains all types which are frequently accessed in SelectionDAG.
91  /// The size of this list is not expected to be big so it won't introduce
92  /// a memory penalty.
93  FoldingSetNodeIDRef FastID;
94  const EVT *VTs;
95  unsigned int NumVTs;
96  /// The hash value for SDVTList is fixed, so cache it to avoid
97  /// hash calculation.
98  unsigned HashValue;
99 
100 public:
101  SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
102  FastID(ID), VTs(VT), NumVTs(Num) {
103  HashValue = ID.ComputeHash();
104  }
105 
107  SDVTList result = {VTs, NumVTs};
108  return result;
109  }
110 };
111 
112 /// Specialize FoldingSetTrait for SDVTListNode
113 /// to avoid computing temp FoldingSetNodeID and hash value.
114 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
115  static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
116  ID = X.FastID;
117  }
118 
119  static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
120  unsigned IDHash, FoldingSetNodeID &TempID) {
121  if (X.HashValue != IDHash)
122  return false;
123  return ID == X.FastID;
124  }
125 
126  static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
127  return X.HashValue;
128  }
129 };
130 
131 template <> struct ilist_alloc_traits<SDNode> {
132  static void deleteNode(SDNode *) {
133  llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
134  }
135 };
136 
137 /// Keeps track of dbg_value information through SDISel. We do
138 /// not build SDNodes for these so as not to perturb the generated code;
139 /// instead the info is kept off to the side in this structure. Each SDNode may
140 /// have one or more associated dbg_value entries. This information is kept in
141 /// DbgValMap.
142 /// Byval parameters are handled separately because they don't use alloca's,
143 /// which busts the normal mechanism. There is good reason for handling all
144 /// parameters separately: they may not have code generated for them, they
145 /// should always go at the beginning of the function regardless of other code
146 /// motion, and debug info for them is potentially useful even if the parameter
147 /// is unused. Right now only byval parameters are handled separately.
148 class SDDbgInfo {
149  BumpPtrAllocator Alloc;
151  SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
152  SmallVector<SDDbgLabel*, 4> DbgLabels;
154  DbgValMapType DbgValMap;
155 
156 public:
157  SDDbgInfo() = default;
158  SDDbgInfo(const SDDbgInfo &) = delete;
159  SDDbgInfo &operator=(const SDDbgInfo &) = delete;
160 
161  void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
162  if (isParameter) {
163  ByvalParmDbgValues.push_back(V);
164  } else DbgValues.push_back(V);
165  if (Node)
166  DbgValMap[Node].push_back(V);
167  }
168 
169  void add(SDDbgLabel *L) {
170  DbgLabels.push_back(L);
171  }
172 
173  /// Invalidate all DbgValues attached to the node and remove
174  /// it from the Node-to-DbgValues map.
175  void erase(const SDNode *Node);
176 
177  void clear() {
178  DbgValMap.clear();
179  DbgValues.clear();
180  ByvalParmDbgValues.clear();
181  DbgLabels.clear();
182  Alloc.Reset();
183  }
184 
185  BumpPtrAllocator &getAlloc() { return Alloc; }
186 
187  bool empty() const {
188  return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
189  }
190 
192  DbgValMapType::iterator I = DbgValMap.find(Node);
193  if (I != DbgValMap.end())
194  return I->second;
195  return ArrayRef<SDDbgValue*>();
196  }
197 
200 
201  DbgIterator DbgBegin() { return DbgValues.begin(); }
202  DbgIterator DbgEnd() { return DbgValues.end(); }
203  DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
204  DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
205  DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
206  DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
207 };
208 
209 void checkForCycles(const SelectionDAG *DAG, bool force = false);
210 
211 /// This is used to represent a portion of an LLVM function in a low-level
212 /// Data Dependence DAG representation suitable for instruction selection.
213 /// This DAG is constructed as the first step of instruction selection in order
214 /// to allow implementation of machine specific optimizations
215 /// and code simplifications.
216 ///
217 /// The representation used by the SelectionDAG is a target-independent
218 /// representation, which has some similarities to the GCC RTL representation,
219 /// but is significantly more simple, powerful, and is a graph form instead of a
220 /// linear form.
221 ///
223  const TargetMachine &TM;
224  const SelectionDAGTargetInfo *TSI = nullptr;
225  const TargetLowering *TLI = nullptr;
226  const TargetLibraryInfo *LibInfo = nullptr;
227  MachineFunction *MF;
228  Pass *SDAGISelPass = nullptr;
230  CodeGenOpt::Level OptLevel;
231 
232  DivergenceAnalysis * DA = nullptr;
233  FunctionLoweringInfo * FLI = nullptr;
234 
235  /// The function-level optimization remark emitter. Used to emit remarks
236  /// whenever manipulating the DAG.
238 
239  /// The starting token.
240  SDNode EntryNode;
241 
242  /// The root of the entire DAG.
243  SDValue Root;
244 
245  /// A linked list of nodes in the current DAG.
246  ilist<SDNode> AllNodes;
247 
248  /// The AllocatorType for allocating SDNodes. We use
249  /// pool allocation with recycling.
251  sizeof(LargestSDNode),
252  alignof(MostAlignedSDNode)>;
253 
254  /// Pool allocation for nodes.
255  NodeAllocatorType NodeAllocator;
256 
257  /// This structure is used to memoize nodes, automatically performing
258  /// CSE with existing nodes when a duplicate is requested.
259  FoldingSet<SDNode> CSEMap;
260 
261  /// Pool allocation for machine-opcode SDNode operands.
262  BumpPtrAllocator OperandAllocator;
263  ArrayRecycler<SDUse> OperandRecycler;
264 
265  /// Pool allocation for misc. objects that are created once per SelectionDAG.
266  BumpPtrAllocator Allocator;
267 
268  /// Tracks dbg_value and dbg_label information through SDISel.
269  SDDbgInfo *DbgInfo;
270 
271  uint16_t NextPersistentId = 0;
272 
273 public:
274  /// Clients of various APIs that cause global effects on
275  /// the DAG can optionally implement this interface. This allows the clients
276  /// to handle the various sorts of updates that happen.
277  ///
278  /// A DAGUpdateListener automatically registers itself with DAG when it is
279  /// constructed, and removes itself when destroyed in RAII fashion.
283 
285  : Next(D.UpdateListeners), DAG(D) {
286  DAG.UpdateListeners = this;
287  }
288 
289  virtual ~DAGUpdateListener() {
290  assert(DAG.UpdateListeners == this &&
291  "DAGUpdateListeners must be destroyed in LIFO order");
292  DAG.UpdateListeners = Next;
293  }
294 
295  /// The node N that was deleted and, if E is not null, an
296  /// equivalent node E that replaced it.
297  virtual void NodeDeleted(SDNode *N, SDNode *E);
298 
299  /// The node N that was updated.
300  virtual void NodeUpdated(SDNode *N);
301  };
302 
304  std::function<void(SDNode *, SDNode *)> Callback;
305 
307  std::function<void(SDNode *, SDNode *)> Callback)
308  : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
309 
310  void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
311  };
312 
313  /// When true, additional steps are taken to
314  /// ensure that getConstant() and similar functions return DAG nodes that
315  /// have legal types. This is important after type legalization since
316  /// any illegally typed nodes generated after this point will not experience
317  /// type legalization.
318  bool NewNodesMustHaveLegalTypes = false;
319 
320 private:
321  /// DAGUpdateListener is a friend so it can manipulate the listener stack.
322  friend struct DAGUpdateListener;
323 
324  /// Linked list of registered DAGUpdateListener instances.
325  /// This stack is maintained by DAGUpdateListener RAII.
326  DAGUpdateListener *UpdateListeners = nullptr;
327 
328  /// Implementation of setSubgraphColor.
329  /// Return whether we had to truncate the search.
330  bool setSubgraphColorHelper(SDNode *N, const char *Color,
331  DenseSet<SDNode *> &visited,
332  int level, bool &printed);
333 
334  template <typename SDNodeT, typename... ArgTypes>
335  SDNodeT *newSDNode(ArgTypes &&... Args) {
336  return new (NodeAllocator.template Allocate<SDNodeT>())
337  SDNodeT(std::forward<ArgTypes>(Args)...);
338  }
339 
340  /// Build a synthetic SDNodeT with the given args and extract its subclass
341  /// data as an integer (e.g. for use in a folding set).
342  ///
343  /// The args to this function are the same as the args to SDNodeT's
344  /// constructor, except the second arg (assumed to be a const DebugLoc&) is
345  /// omitted.
346  template <typename SDNodeT, typename... ArgTypes>
347  static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
348  ArgTypes &&... Args) {
349  // The compiler can reduce this expression to a constant iff we pass an
350  // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
351  // on the subclass data.
352  return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
353  .getRawSubclassData();
354  }
355 
356  template <typename SDNodeTy>
357  static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
358  SDVTList VTs, EVT MemoryVT,
359  MachineMemOperand *MMO) {
360  return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
361  .getRawSubclassData();
362  }
363 
364  void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
365 
366  void removeOperands(SDNode *Node) {
367  if (!Node->OperandList)
368  return;
369  OperandRecycler.deallocate(
370  ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
371  Node->OperandList);
372  Node->NumOperands = 0;
373  Node->OperandList = nullptr;
374  }
375  void CreateTopologicalOrder(std::vector<SDNode*>& Order);
376 public:
377  explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
378  SelectionDAG(const SelectionDAG &) = delete;
379  SelectionDAG &operator=(const SelectionDAG &) = delete;
380  ~SelectionDAG();
381 
382  /// Prepare this SelectionDAG to process code in the given MachineFunction.
383  void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
384  Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
385  DivergenceAnalysis * Divergence);
386 
388  FLI = FuncInfo;
389  }
390 
391  /// Clear state and free memory necessary to make this
392  /// SelectionDAG ready to process a new block.
393  void clear();
394 
395  MachineFunction &getMachineFunction() const { return *MF; }
396  const Pass *getPass() const { return SDAGISelPass; }
397 
398  const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
399  const TargetMachine &getTarget() const { return TM; }
400  const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
401  const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
402  const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
403  const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
404  LLVMContext *getContext() const {return Context; }
405  OptimizationRemarkEmitter &getORE() const { return *ORE; }
406 
407  /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
408  void viewGraph(const std::string &Title);
409  void viewGraph();
410 
411 #ifndef NDEBUG
412  std::map<const SDNode *, std::string> NodeGraphAttrs;
413 #endif
414 
415  /// Clear all previously defined node graph attributes.
416  /// Intended to be used from a debugging tool (eg. gdb).
417  void clearGraphAttrs();
418 
419  /// Set graph attributes for a node. (eg. "color=red".)
420  void setGraphAttrs(const SDNode *N, const char *Attrs);
421 
422  /// Get graph attributes for a node. (eg. "color=red".)
423  /// Used from getNodeAttributes.
424  const std::string getGraphAttrs(const SDNode *N) const;
425 
426  /// Convenience for setting node color attribute.
427  void setGraphColor(const SDNode *N, const char *Color);
428 
429  /// Convenience for setting subgraph color attribute.
430  void setSubgraphColor(SDNode *N, const char *Color);
431 
433 
434  allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
435  allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
436 
438 
439  allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
440  allnodes_iterator allnodes_end() { return AllNodes.end(); }
441 
443  return AllNodes.size();
444  }
445 
447  return make_range(allnodes_begin(), allnodes_end());
448  }
450  return make_range(allnodes_begin(), allnodes_end());
451  }
452 
453  /// Return the root tag of the SelectionDAG.
454  const SDValue &getRoot() const { return Root; }
455 
456  /// Return the token chain corresponding to the entry of the function.
458  return SDValue(const_cast<SDNode *>(&EntryNode), 0);
459  }
460 
461  /// Set the current root tag of the SelectionDAG.
462  ///
464  assert((!N.getNode() || N.getValueType() == MVT::Other) &&
465  "DAG root value is not a chain!");
466  if (N.getNode())
467  checkForCycles(N.getNode(), this);
468  Root = N;
469  if (N.getNode())
470  checkForCycles(this);
471  return Root;
472  }
473 
474  void VerifyDAGDiverence();
475 
476  /// This iterates over the nodes in the SelectionDAG, folding
477  /// certain types of nodes together, or eliminating superfluous nodes. The
478  /// Level argument controls whether Combine is allowed to produce nodes and
479  /// types that are illegal on the target.
480  void Combine(CombineLevel Level, AliasAnalysis *AA,
481  CodeGenOpt::Level OptLevel);
482 
483  /// This transforms the SelectionDAG into a SelectionDAG that
484  /// only uses types natively supported by the target.
485  /// Returns "true" if it made any changes.
486  ///
487  /// Note that this is an involved process that may invalidate pointers into
488  /// the graph.
489  bool LegalizeTypes();
490 
491  /// This transforms the SelectionDAG into a SelectionDAG that is
492  /// compatible with the target instruction selector, as indicated by the
493  /// TargetLowering object.
494  ///
495  /// Note that this is an involved process that may invalidate pointers into
496  /// the graph.
497  void Legalize();
498 
499  /// Transforms a SelectionDAG node and any operands to it into a node
500  /// that is compatible with the target instruction selector, as indicated by
501  /// the TargetLowering object.
502  ///
503  /// \returns true if \c N is a valid, legal node after calling this.
504  ///
505  /// This essentially runs a single recursive walk of the \c Legalize process
506  /// over the given node (and its operands). This can be used to incrementally
507  /// legalize the DAG. All of the nodes which are directly replaced,
508  /// potentially including N, are added to the output parameter \c
509  /// UpdatedNodes so that the delta to the DAG can be understood by the
510  /// caller.
511  ///
512  /// When this returns false, N has been legalized in a way that make the
513  /// pointer passed in no longer valid. It may have even been deleted from the
514  /// DAG, and so it shouldn't be used further. When this returns true, the
515  /// N passed in is a legal node, and can be immediately processed as such.
516  /// This may still have done some work on the DAG, and will still populate
517  /// UpdatedNodes with any new nodes replacing those originally in the DAG.
518  bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
519 
520  /// This transforms the SelectionDAG into a SelectionDAG
521  /// that only uses vector math operations supported by the target. This is
522  /// necessary as a separate step from Legalize because unrolling a vector
523  /// operation can introduce illegal types, which requires running
524  /// LegalizeTypes again.
525  ///
526  /// This returns true if it made any changes; in that case, LegalizeTypes
527  /// is called again before Legalize.
528  ///
529  /// Note that this is an involved process that may invalidate pointers into
530  /// the graph.
531  bool LegalizeVectors();
532 
533  /// This method deletes all unreachable nodes in the SelectionDAG.
534  void RemoveDeadNodes();
535 
536  /// Remove the specified node from the system. This node must
537  /// have no referrers.
538  void DeleteNode(SDNode *N);
539 
540  /// Return an SDVTList that represents the list of values specified.
541  SDVTList getVTList(EVT VT);
542  SDVTList getVTList(EVT VT1, EVT VT2);
543  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
544  SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
545  SDVTList getVTList(ArrayRef<EVT> VTs);
546 
547  //===--------------------------------------------------------------------===//
548  // Node creation methods.
549 
550  /// Create a ConstantSDNode wrapping a constant value.
551  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
552  ///
553  /// If only legal types can be produced, this does the necessary
554  /// transformations (e.g., if the vector element type is illegal).
555  /// @{
556  SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
557  bool isTarget = false, bool isOpaque = false);
558  SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
559  bool isTarget = false, bool isOpaque = false);
560 
561  SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
562  bool IsOpaque = false) {
564  VT, IsTarget, IsOpaque);
565  }
566 
567  SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
568  bool isTarget = false, bool isOpaque = false);
569  SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
570  bool isTarget = false);
571  SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
572  bool isOpaque = false) {
573  return getConstant(Val, DL, VT, true, isOpaque);
574  }
575  SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
576  bool isOpaque = false) {
577  return getConstant(Val, DL, VT, true, isOpaque);
578  }
579  SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
580  bool isOpaque = false) {
581  return getConstant(Val, DL, VT, true, isOpaque);
582  }
583 
584  /// Create a true or false constant of type \p VT using the target's
585  /// BooleanContent for type \p OpVT.
586  SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
587  /// @}
588 
589  /// Create a ConstantFPSDNode wrapping a constant value.
590  /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
591  ///
592  /// If only legal types can be produced, this does the necessary
593  /// transformations (e.g., if the vector element type is illegal).
594  /// The forms that take a double should only be used for simple constants
595  /// that can be exactly represented in VT. No checks are made.
596  /// @{
597  SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
598  bool isTarget = false);
599  SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
600  bool isTarget = false);
601  SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
602  bool isTarget = false);
603  SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
604  return getConstantFP(Val, DL, VT, true);
605  }
606  SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
607  return getConstantFP(Val, DL, VT, true);
608  }
609  SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
610  return getConstantFP(Val, DL, VT, true);
611  }
612  /// @}
613 
614  SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
615  int64_t offset = 0, bool isTargetGA = false,
616  unsigned char TargetFlags = 0);
618  int64_t offset = 0,
619  unsigned char TargetFlags = 0) {
620  return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
621  }
622  SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
624  return getFrameIndex(FI, VT, true);
625  }
626  SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
627  unsigned char TargetFlags = 0);
628  SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
629  return getJumpTable(JTI, VT, true, TargetFlags);
630  }
631  SDValue getConstantPool(const Constant *C, EVT VT,
632  unsigned Align = 0, int Offs = 0, bool isT=false,
633  unsigned char TargetFlags = 0);
635  unsigned Align = 0, int Offset = 0,
636  unsigned char TargetFlags = 0) {
637  return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
638  }
639  SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
640  unsigned Align = 0, int Offs = 0, bool isT=false,
641  unsigned char TargetFlags = 0);
643  EVT VT, unsigned Align = 0,
644  int Offset = 0, unsigned char TargetFlags=0) {
645  return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
646  }
647  SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
648  unsigned char TargetFlags = 0);
649  // When generating a branch to a BB, we don't in general know enough
650  // to provide debug info for the BB at that time, so keep this one around.
651  SDValue getBasicBlock(MachineBasicBlock *MBB);
652  SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
653  SDValue getExternalSymbol(const char *Sym, EVT VT);
654  SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
655  SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
656  unsigned char TargetFlags = 0);
657  SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
658 
659  SDValue getValueType(EVT);
660  SDValue getRegister(unsigned Reg, EVT VT);
661  SDValue getRegisterMask(const uint32_t *RegMask);
662  SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
663  SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
664  MCSymbol *Label);
665  SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
666  int64_t Offset = 0, bool isTarget = false,
667  unsigned char TargetFlags = 0);
669  int64_t Offset = 0,
670  unsigned char TargetFlags = 0) {
671  return getBlockAddress(BA, VT, Offset, true, TargetFlags);
672  }
673 
674  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
675  SDValue N) {
676  return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
677  getRegister(Reg, N.getValueType()), N);
678  }
679 
680  // This version of the getCopyToReg method takes an extra operand, which
681  // indicates that there is potentially an incoming glue value (if Glue is not
682  // null) and that there should be a glue result.
683  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
684  SDValue Glue) {
685  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
686  SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
687  return getNode(ISD::CopyToReg, dl, VTs,
688  makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
689  }
690 
691  // Similar to last getCopyToReg() except parameter Reg is a SDValue
692  SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
693  SDValue Glue) {
694  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
695  SDValue Ops[] = { Chain, Reg, N, Glue };
696  return getNode(ISD::CopyToReg, dl, VTs,
697  makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
698  }
699 
700  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
701  SDVTList VTs = getVTList(VT, MVT::Other);
702  SDValue Ops[] = { Chain, getRegister(Reg, VT) };
703  return getNode(ISD::CopyFromReg, dl, VTs, Ops);
704  }
705 
706  // This version of the getCopyFromReg method takes an extra operand, which
707  // indicates that there is potentially an incoming glue value (if Glue is not
708  // null) and that there should be a glue result.
709  SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
710  SDValue Glue) {
711  SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
712  SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
713  return getNode(ISD::CopyFromReg, dl, VTs,
714  makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
715  }
716 
717  SDValue getCondCode(ISD::CondCode Cond);
718 
719  /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
720  /// which must be a vector type, must match the number of mask elements
721  /// NumElts. An integer mask element equal to -1 is treated as undefined.
722  SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
724 
725  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
726  /// which must be a vector type, must match the number of operands in Ops.
727  /// The operands must have the same type as (or, for integers, a type wider
728  /// than) VT's element type.
730  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
731  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
732  }
733 
734  /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
735  /// which must be a vector type, must match the number of operands in Ops.
736  /// The operands must have the same type as (or, for integers, a type wider
737  /// than) VT's element type.
739  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
740  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
741  }
742 
743  /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
744  /// elements. VT must be a vector type. Op's type must be the same as (or,
745  /// for integers, a type wider than) VT's element type.
747  // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
748  if (Op.getOpcode() == ISD::UNDEF) {
749  assert((VT.getVectorElementType() == Op.getValueType() ||
750  (VT.isInteger() &&
752  "A splatted value must have a width equal or (for integers) "
753  "greater than the vector element type!");
754  return getNode(ISD::UNDEF, SDLoc(), VT);
755  }
756 
758  return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
759  }
760 
761  /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
762  /// the shuffle node in input but with swapped operands.
763  ///
764  /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
765  SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
766 
767  /// Convert Op, which must be of float type, to the
768  /// float type VT, by either extending or rounding (by truncation).
769  SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
770 
771  /// Convert Op, which must be of integer type, to the
772  /// integer type VT, by either any-extending or truncating it.
773  SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
774 
775  /// Convert Op, which must be of integer type, to the
776  /// integer type VT, by either sign-extending or truncating it.
777  SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
778 
779  /// Convert Op, which must be of integer type, to the
780  /// integer type VT, by either zero-extending or truncating it.
781  SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
782 
783  /// Return the expression required to zero extend the Op
784  /// value assuming it was the smaller SrcTy value.
785  SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
786 
787  /// Return an operation which will any-extend the low lanes of the operand
788  /// into the specified vector type. For example,
789  /// this can convert a v16i8 into a v4i32 by any-extending the low four
790  /// lanes of the operand from i8 to i32.
791  SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
792 
793  /// Return an operation which will sign extend the low lanes of the operand
794  /// into the specified vector type. For example,
795  /// this can convert a v16i8 into a v4i32 by sign extending the low four
796  /// lanes of the operand from i8 to i32.
797  SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
798 
799  /// Return an operation which will zero extend the low lanes of the operand
800  /// into the specified vector type. For example,
801  /// this can convert a v16i8 into a v4i32 by zero extending the low four
802  /// lanes of the operand from i8 to i32.
803  SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT);
804 
805  /// Convert Op, which must be of integer type, to the integer type VT,
806  /// by using an extension appropriate for the target's
807  /// BooleanContent for type OpVT or truncating it.
808  SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
809 
810  /// Create a bitwise NOT operation as (XOR Val, -1).
811  SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
812 
813  /// Create a logical NOT operation as (XOR Val, BooleanOne).
814  SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
815 
816  /// Create an add instruction with appropriate flags when used for
817  /// addressing some offset of an object. i.e. if a load is split into multiple
818  /// components, create an add nuw from the base pointer to the offset.
819  SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
820  EVT VT = Op.getValueType();
821  return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
822  }
823 
825  EVT VT = Op.getValueType();
826 
827  // The object itself can't wrap around the address space, so it shouldn't be
828  // possible for the adds of the offsets to the split parts to overflow.
829  SDNodeFlags Flags;
830  Flags.setNoUnsignedWrap(true);
831  return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
832  }
833 
834  /// Return a new CALLSEQ_START node, that starts new call frame, in which
835  /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
836  /// OutSize specifies part of the frame set up prior to the sequence.
837  SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
838  const SDLoc &DL) {
839  SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
840  SDValue Ops[] = { Chain,
841  getIntPtrConstant(InSize, DL, true),
842  getIntPtrConstant(OutSize, DL, true) };
843  return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
844  }
845 
846  /// Return a new CALLSEQ_END node, which always must have a
847  /// glue result (to ensure it's not CSE'd).
848  /// CALLSEQ_END does not have a useful SDLoc.
850  SDValue InGlue, const SDLoc &DL) {
851  SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
853  Ops.push_back(Chain);
854  Ops.push_back(Op1);
855  Ops.push_back(Op2);
856  if (InGlue.getNode())
857  Ops.push_back(InGlue);
858  return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
859  }
860 
861  /// Return true if the result of this operation is always undefined.
862  bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
863 
864  /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
866  return getNode(ISD::UNDEF, SDLoc(), VT);
867  }
868 
869  /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
871  return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
872  }
873 
874  /// Gets or creates the specified node.
875  ///
876  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
877  ArrayRef<SDUse> Ops);
878  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
879  ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
880  SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
881  ArrayRef<SDValue> Ops);
882  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
883  ArrayRef<SDValue> Ops);
884 
885  // Specialize based on number of operands.
886  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
887  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
888  const SDNodeFlags Flags = SDNodeFlags());
889  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
890  SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
891  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
892  SDValue N2, SDValue N3,
893  const SDNodeFlags Flags = SDNodeFlags());
894  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
895  SDValue N2, SDValue N3, SDValue N4);
896  SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
897  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
898 
899  // Specialize again based on number of operands for nodes with a VTList
900  // rather than a single VT.
901  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
902  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
903  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
904  SDValue N2);
905  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
906  SDValue N2, SDValue N3);
907  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
908  SDValue N2, SDValue N3, SDValue N4);
909  SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
910  SDValue N2, SDValue N3, SDValue N4, SDValue N5);
911 
912  /// Compute a TokenFactor to force all the incoming stack arguments to be
913  /// loaded from the stack. This is used in tail call lowering to protect
914  /// stack arguments from being clobbered.
915  SDValue getStackArgumentTokenFactor(SDValue Chain);
916 
917  SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
918  SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
919  bool isTailCall, MachinePointerInfo DstPtrInfo,
920  MachinePointerInfo SrcPtrInfo);
921 
922  SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
923  SDValue Size, unsigned Align, bool isVol, bool isTailCall,
924  MachinePointerInfo DstPtrInfo,
925  MachinePointerInfo SrcPtrInfo);
926 
927  SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
928  SDValue Size, unsigned Align, bool isVol, bool isTailCall,
929  MachinePointerInfo DstPtrInfo);
930 
931  SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
932  unsigned DstAlign, SDValue Src, unsigned SrcAlign,
933  SDValue Size, Type *SizeTy, unsigned ElemSz,
934  bool isTailCall, MachinePointerInfo DstPtrInfo,
935  MachinePointerInfo SrcPtrInfo);
936 
937  SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
938  unsigned DstAlign, SDValue Src, unsigned SrcAlign,
939  SDValue Size, Type *SizeTy, unsigned ElemSz,
940  bool isTailCall, MachinePointerInfo DstPtrInfo,
941  MachinePointerInfo SrcPtrInfo);
942 
943  SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
944  unsigned DstAlign, SDValue Value, SDValue Size,
945  Type *SizeTy, unsigned ElemSz, bool isTailCall,
946  MachinePointerInfo DstPtrInfo);
947 
948  /// Helper function to make it easier to build SetCC's if you just
949  /// have an ISD::CondCode instead of an SDValue.
950  ///
951  SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
952  ISD::CondCode Cond) {
953  assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
954  "Cannot compare scalars to vectors");
955  assert(LHS.getValueType().isVector() == VT.isVector() &&
956  "Cannot compare scalars to vectors");
957  assert(Cond != ISD::SETCC_INVALID &&
958  "Cannot create a setCC of an invalid node.");
959  return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
960  }
961 
962  /// Helper function to make it easier to build Select's if you just
963  /// have operands and don't want to check for vector.
964  SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
965  SDValue RHS) {
966  assert(LHS.getValueType() == RHS.getValueType() &&
967  "Cannot use select on differing types");
968  assert(VT.isVector() == LHS.getValueType().isVector() &&
969  "Cannot mix vectors and scalars");
970  return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
971  Cond, LHS, RHS);
972  }
973 
974  /// Helper function to make it easier to build SelectCC's if you
975  /// just have an ISD::CondCode instead of an SDValue.
976  ///
977  SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
978  SDValue False, ISD::CondCode Cond) {
979  return getNode(ISD::SELECT_CC, DL, True.getValueType(),
980  LHS, RHS, True, False, getCondCode(Cond));
981  }
982 
983  /// VAArg produces a result and token chain, and takes a pointer
984  /// and a source value as input.
985  SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
986  SDValue SV, unsigned Align);
987 
988  /// Gets a node for an atomic cmpxchg op. There are two
989  /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
990  /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
991  /// a success flag (initially i1), and a chain.
992  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
993  SDVTList VTs, SDValue Chain, SDValue Ptr,
994  SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
995  unsigned Alignment, AtomicOrdering SuccessOrdering,
996  AtomicOrdering FailureOrdering,
997  SyncScope::ID SSID);
998  SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
999  SDVTList VTs, SDValue Chain, SDValue Ptr,
1000  SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1001 
1002  /// Gets a node for an atomic op, produces result (if relevant)
1003  /// and chain and takes 2 operands.
1004  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1005  SDValue Ptr, SDValue Val, const Value *PtrVal,
1006  unsigned Alignment, AtomicOrdering Ordering,
1007  SyncScope::ID SSID);
1008  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1009  SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1010 
1011  /// Gets a node for an atomic op, produces result and chain and
1012  /// takes 1 operand.
1013  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1014  SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1015 
1016  /// Gets a node for an atomic op, produces result and chain and takes N
1017  /// operands.
1018  SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1019  SDVTList VTList, ArrayRef<SDValue> Ops,
1020  MachineMemOperand *MMO);
1021 
1022  /// Creates a MemIntrinsicNode that may produce a
1023  /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1024  /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1025  /// less than FIRST_TARGET_MEMORY_OPCODE.
1026  SDValue getMemIntrinsicNode(
1027  unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1028  ArrayRef<SDValue> Ops, EVT MemVT,
1029  MachinePointerInfo PtrInfo,
1030  unsigned Align = 0,
1033  unsigned Size = 0);
1034 
1035  SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1036  ArrayRef<SDValue> Ops, EVT MemVT,
1037  MachineMemOperand *MMO);
1038 
1039  /// Create a MERGE_VALUES node from the given operands.
1040  SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1041 
1042  /// Loads are not normal binary operators: their result type is not
1043  /// determined by their operands, and they produce a value AND a token chain.
1044  ///
1045  /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1046  /// you want. The MOStore flag must not be set.
1047  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1048  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1050  const AAMDNodes &AAInfo = AAMDNodes(),
1051  const MDNode *Ranges = nullptr);
1052  SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1053  MachineMemOperand *MMO);
1054  SDValue
1055  getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1056  SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1057  unsigned Alignment = 0,
1059  const AAMDNodes &AAInfo = AAMDNodes());
1060  SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1061  SDValue Chain, SDValue Ptr, EVT MemVT,
1062  MachineMemOperand *MMO);
1063  SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1065  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1066  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1067  MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1069  const AAMDNodes &AAInfo = AAMDNodes(),
1070  const MDNode *Ranges = nullptr);
1071  SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1072  const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1073  EVT MemVT, MachineMemOperand *MMO);
1074 
1075  /// Helper function to build ISD::STORE nodes.
1076  ///
1077  /// This function will set the MOStore flag on MMOFlags, but you can set it if
1078  /// you want. The MOLoad and MOInvariant flags must not be set.
1079  SDValue
1080  getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1081  MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1083  const AAMDNodes &AAInfo = AAMDNodes());
1084  SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1085  MachineMemOperand *MMO);
1086  SDValue
1087  getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1088  MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1090  const AAMDNodes &AAInfo = AAMDNodes());
1091  SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1092  SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1093  SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1094  SDValue Offset, ISD::MemIndexedMode AM);
1095 
1096  /// Returns sum of the base pointer and offset.
1097  SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1098 
1099  SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1100  SDValue Mask, SDValue Src0, EVT MemVT,
1102  bool IsExpanding = false);
1103  SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1104  SDValue Ptr, SDValue Mask, EVT MemVT,
1105  MachineMemOperand *MMO, bool IsTruncating = false,
1106  bool IsCompressing = false);
1107  SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1109  SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1111 
1112  /// Return (create a new or find existing) a target-specific node.
1113  /// TargetMemSDNode should be derived class from MemSDNode.
1114  template <class TargetMemSDNode>
1115  SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1116  const SDLoc &dl, EVT MemVT,
1117  MachineMemOperand *MMO);
1118 
1119  /// Construct a node to track a Value* through the backend.
1120  SDValue getSrcValue(const Value *v);
1121 
1122  /// Return an MDNodeSDNode which holds an MDNode.
1123  SDValue getMDNode(const MDNode *MD);
1124 
1125  /// Return a bitcast using the SDLoc of the value operand, and casting to the
1126  /// provided type. Use getNode to set a custom SDLoc.
1127  SDValue getBitcast(EVT VT, SDValue V);
1128 
1129  /// Return an AddrSpaceCastSDNode.
1130  SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1131  unsigned DestAS);
1132 
1133  /// Return the specified value casted to
1134  /// the target's desired shift amount type.
1135  SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1136 
1137  /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1138  SDValue expandVAArg(SDNode *Node);
1139 
1140  /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1141  SDValue expandVACopy(SDNode *Node);
1142 
1143  /// *Mutate* the specified node in-place to have the
1144  /// specified operands. If the resultant node already exists in the DAG,
1145  /// this does not modify the specified node, instead it returns the node that
1146  /// already exists. If the resultant node does not exist in the DAG, the
1147  /// input node is returned. As a degenerate case, if you specify the same
1148  /// input operands as the node already has, the input node is returned.
1149  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1150  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1151  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1152  SDValue Op3);
1153  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1154  SDValue Op3, SDValue Op4);
1155  SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1156  SDValue Op3, SDValue Op4, SDValue Op5);
1157  SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1158 
1159  // Propagates the change in divergence to users
1160  void updateDivergence(SDNode * N);
1161 
1162  /// These are used for target selectors to *mutate* the
1163  /// specified node to have the specified return type, Target opcode, and
1164  /// operands. Note that target opcodes are stored as
1165  /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1166  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1167  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1168  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1169  SDValue Op1, SDValue Op2);
1170  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1171  SDValue Op1, SDValue Op2, SDValue Op3);
1172  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1173  ArrayRef<SDValue> Ops);
1174  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1175  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1176  EVT VT2, ArrayRef<SDValue> Ops);
1177  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1178  EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1179  SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1180  EVT VT2, SDValue Op1);
1181  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1182  EVT VT2, SDValue Op1, SDValue Op2);
1183  SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1184  ArrayRef<SDValue> Ops);
1185 
1186  /// This *mutates* the specified node to have the specified
1187  /// return type, opcode, and operands.
1188  SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1189  ArrayRef<SDValue> Ops);
1190 
1191  /// Mutate the specified strict FP node to its non-strict equivalent,
1192  /// unlinking the node from its chain and dropping the metadata arguments.
1193  /// The node must be a strict FP node.
1194  SDNode *mutateStrictFPToFP(SDNode *Node);
1195 
1196  /// These are used for target selectors to create a new node
1197  /// with specified return type(s), MachineInstr opcode, and operands.
1198  ///
1199  /// Note that getMachineNode returns the resultant node. If there is already
1200  /// a node of the specified opcode and operands, it returns that node instead
1201  /// of the current one.
1202  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1203  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1204  SDValue Op1);
1205  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1206  SDValue Op1, SDValue Op2);
1207  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1208  SDValue Op1, SDValue Op2, SDValue Op3);
1209  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1210  ArrayRef<SDValue> Ops);
1211  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1212  EVT VT2, SDValue Op1, SDValue Op2);
1213  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1214  EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1215  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1216  EVT VT2, ArrayRef<SDValue> Ops);
1217  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1218  EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1219  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1220  EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1221  SDValue Op3);
1222  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1223  EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1224  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1225  ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1226  MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1227  ArrayRef<SDValue> Ops);
1228 
1229  /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1230  SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1231  SDValue Operand);
1232 
1233  /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1234  SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1235  SDValue Operand, SDValue Subreg);
1236 
1237  /// Get the specified node if it's already available, or else return NULL.
1238  SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1239  const SDNodeFlags Flags = SDNodeFlags());
1240 
1241  /// Creates a SDDbgValue node.
1242  SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1243  unsigned R, bool IsIndirect, const DebugLoc &DL,
1244  unsigned O);
1245 
1246  /// Creates a constant SDDbgValue node.
1247  SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1248  const Value *C, const DebugLoc &DL,
1249  unsigned O);
1250 
1251  /// Creates a FrameIndex SDDbgValue node.
1252  SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1253  unsigned FI, const DebugLoc &DL,
1254  unsigned O);
1255 
1256  /// Creates a VReg SDDbgValue node.
1257  SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1258  unsigned VReg, bool IsIndirect,
1259  const DebugLoc &DL, unsigned O);
1260 
1261  /// Creates a SDDbgLabel node.
1262  SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1263 
1264  /// Transfer debug values from one node to another, while optionally
1265  /// generating fragment expressions for split-up values. If \p InvalidateDbg
1266  /// is set, debug values are invalidated after they are transferred.
1267  void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1268  unsigned SizeInBits = 0, bool InvalidateDbg = true);
1269 
1270  /// Remove the specified node from the system. If any of its
1271  /// operands then becomes dead, remove them as well. Inform UpdateListener
1272  /// for each node deleted.
1273  void RemoveDeadNode(SDNode *N);
1274 
1275  /// This method deletes the unreachable nodes in the
1276  /// given list, and any nodes that become unreachable as a result.
1277  void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1278 
1279  /// Modify anything using 'From' to use 'To' instead.
1280  /// This can cause recursive merging of nodes in the DAG. Use the first
1281  /// version if 'From' is known to have a single result, use the second
1282  /// if you have two nodes with identical results (or if 'To' has a superset
1283  /// of the results of 'From'), use the third otherwise.
1284  ///
1285  /// These methods all take an optional UpdateListener, which (if not null) is
1286  /// informed about nodes that are deleted and modified due to recursive
1287  /// changes in the dag.
1288  ///
1289  /// These functions only replace all existing uses. It's possible that as
1290  /// these replacements are being performed, CSE may cause the From node
1291  /// to be given new uses. These new uses of From are left in place, and
1292  /// not automatically transferred to To.
1293  ///
1294  void ReplaceAllUsesWith(SDValue From, SDValue To);
1295  void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1296  void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1297 
1298  /// Replace any uses of From with To, leaving
1299  /// uses of other values produced by From.getNode() alone.
1300  void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1301 
1302  /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1303  /// This correctly handles the case where
1304  /// there is an overlap between the From values and the To values.
1305  void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1306  unsigned Num);
1307 
1308  /// If an existing load has uses of its chain, create a token factor node with
1309  /// that chain and the new memory node's chain and update users of the old
1310  /// chain to the token factor. This ensures that the new memory node will have
1311  /// the same relative memory dependency position as the old load. Returns the
1312  /// new merged load chain.
1313  SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1314 
1315  /// Topological-sort the AllNodes list and a
1316  /// assign a unique node id for each node in the DAG based on their
1317  /// topological order. Returns the number of nodes.
1318  unsigned AssignTopologicalOrder();
1319 
1320  /// Move node N in the AllNodes list to be immediately
1321  /// before the given iterator Position. This may be used to update the
1322  /// topological ordering when the list of nodes is modified.
1324  AllNodes.insert(Position, AllNodes.remove(N));
1325  }
1326 
1327  /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1328  /// a vector type, the element semantics are returned.
1330  switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1331  default: llvm_unreachable("Unknown FP format");
1332  case MVT::f16: return APFloat::IEEEhalf();
1333  case MVT::f32: return APFloat::IEEEsingle();
1334  case MVT::f64: return APFloat::IEEEdouble();
1335  case MVT::f80: return APFloat::x87DoubleExtended();
1336  case MVT::f128: return APFloat::IEEEquad();
1337  case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1338  }
1339  }
1340 
1341  /// Add a dbg_value SDNode. If SD is non-null that means the
1342  /// value is produced by SD.
1343  void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1344 
1345  /// Add a dbg_label SDNode.
1346  void AddDbgLabel(SDDbgLabel *DB);
1347 
1348  /// Get the debug values which reference the given SDNode.
1350  return DbgInfo->getSDDbgValues(SD);
1351  }
1352 
1353 public:
1354  /// Return true if there are any SDDbgValue nodes associated
1355  /// with this SelectionDAG.
1356  bool hasDebugValues() const { return !DbgInfo->empty(); }
1357 
1358  SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); }
1359  SDDbgInfo::DbgIterator DbgEnd() { return DbgInfo->DbgEnd(); }
1360 
1362  return DbgInfo->ByvalParmDbgBegin();
1363  }
1364 
1366  return DbgInfo->ByvalParmDbgEnd();
1367  }
1368 
1370  return DbgInfo->DbgLabelBegin();
1371  }
1373  return DbgInfo->DbgLabelEnd();
1374  }
1375 
1376  /// To be invoked on an SDNode that is slated to be erased. This
1377  /// function mirrors \c llvm::salvageDebugInfo.
1378  void salvageDebugInfo(SDNode &N);
1379 
1380  void dump() const;
1381 
1382  /// Create a stack temporary, suitable for holding the specified value type.
1383  /// If minAlign is specified, the slot size will have at least that alignment.
1384  SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1385 
1386  /// Create a stack temporary suitable for holding either of the specified
1387  /// value types.
1388  SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1389 
1390  SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1391  const GlobalAddressSDNode *GA,
1392  const SDNode *N2);
1393 
1394  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1395  SDNode *Cst1, SDNode *Cst2);
1396 
1397  SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1398  const ConstantSDNode *Cst1,
1399  const ConstantSDNode *Cst2);
1400 
1401  SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1402  ArrayRef<SDValue> Ops,
1403  const SDNodeFlags Flags = SDNodeFlags());
1404 
1405  /// Constant fold a setcc to true or false.
1406  SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1407  const SDLoc &dl);
1408 
1409  /// See if the specified operand can be simplified with the knowledge that only
1410  /// the bits specified by Mask are used. If so, return the simpler operand,
1411  /// otherwise return a null SDValue.
1412  ///
1413  /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1414  /// simplify nodes with multiple uses more aggressively.)
1415  SDValue GetDemandedBits(SDValue V, const APInt &Mask);
1416 
1417  /// Return true if the sign bit of Op is known to be zero.
1418  /// We use this predicate to simplify operations downstream.
1419  bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1420 
1421  /// Return true if 'Op & Mask' is known to be zero. We
1422  /// use this predicate to simplify operations downstream. Op and Mask are
1423  /// known to be the same type.
1424  bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
1425  const;
1426 
1427  /// Determine which bits of Op are known to be either zero or one and return
1428  /// them in Known. For vectors, the known bits are those that are shared by
1429  /// every vector element.
1430  /// Targets can implement the computeKnownBitsForTargetNode method in the
1431  /// TargetLowering class to allow target nodes to be understood.
1432  void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const;
1433 
1434  /// Determine which bits of Op are known to be either zero or one and return
1435  /// them in Known. The DemandedElts argument allows us to only collect the
1436  /// known bits that are shared by the requested vector elements.
1437  /// Targets can implement the computeKnownBitsForTargetNode method in the
1438  /// TargetLowering class to allow target nodes to be understood.
1439  void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1440  unsigned Depth = 0) const;
1441 
1442  /// Used to represent the possible overflow behavior of an operation.
1443  /// Never: the operation cannot overflow.
1444  /// Always: the operation will always overflow.
1445  /// Sometime: the operation may or may not overflow.
1450  };
1451 
1452  /// Determine if the result of the addition of 2 node can overflow.
1453  OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1454 
1455  /// Test if the given value is known to have exactly one bit set. This differs
1456  /// from computeKnownBits in that it doesn't necessarily determine which bit
1457  /// is set.
1458  bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1459 
1460  /// Return the number of times the sign bit of the register is replicated into
1461  /// the other bits. We know that at least 1 bit is always equal to the sign
1462  /// bit (itself), but other cases can give us information. For example,
1463  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1464  /// to each other, so we return 3. Targets can implement the
1465  /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1466  /// target nodes to be understood.
1467  unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1468 
1469  /// Return the number of times the sign bit of the register is replicated into
1470  /// the other bits. We know that at least 1 bit is always equal to the sign
1471  /// bit (itself), but other cases can give us information. For example,
1472  /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1473  /// to each other, so we return 3. The DemandedElts argument allows
1474  /// us to only collect the minimum sign bits of the requested vector elements.
1475  /// Targets can implement the ComputeNumSignBitsForTarget method in the
1476  /// TargetLowering class to allow target nodes to be understood.
1477  unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1478  unsigned Depth = 0) const;
1479 
1480  /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1481  /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1482  /// is guaranteed to have the same semantics as an ADD. This handles the
1483  /// equivalence:
1484  /// X|Cst == X+Cst iff X&Cst = 0.
1485  bool isBaseWithConstantOffset(SDValue Op) const;
1486 
1487  /// Test whether the given SDValue is known to never be NaN.
1488  bool isKnownNeverNaN(SDValue Op) const;
1489 
1490  /// Test whether the given floating point SDValue is known to never be
1491  /// positive or negative zero.
1492  bool isKnownNeverZeroFloat(SDValue Op) const;
1493 
1494  /// Test whether the given SDValue is known to contain non-zero value(s).
1495  bool isKnownNeverZero(SDValue Op) const;
1496 
1497  /// Test whether two SDValues are known to compare equal. This
1498  /// is true if they are the same value, or if one is negative zero and the
1499  /// other positive zero.
1500  bool isEqualTo(SDValue A, SDValue B) const;
1501 
1502  /// Return true if A and B have no common bits set. As an example, this can
1503  /// allow an 'add' to be transformed into an 'or'.
1504  bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1505 
1506  /// Utility function used by legalize and lowering to
1507  /// "unroll" a vector operation by splitting out the scalars and operating
1508  /// on each element individually. If the ResNE is 0, fully unroll the vector
1509  /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1510  /// If the ResNE is greater than the width of the vector op, unroll the
1511  /// vector op and fill the end of the resulting vector with UNDEFS.
1512  SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1513 
1514  /// Return true if loads are next to each other and can be
1515  /// merged. Check that both are nonvolatile and if LD is loading
1516  /// 'Bytes' bytes from a location that is 'Dist' units away from the
1517  /// location that the 'Base' load is loading from.
1518  bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1519  unsigned Bytes, int Dist) const;
1520 
1521  /// Infer alignment of a load / store address. Return 0 if
1522  /// it cannot be inferred.
1523  unsigned InferPtrAlignment(SDValue Ptr) const;
1524 
1525  /// Compute the VTs needed for the low/hi parts of a type
1526  /// which is split (or expanded) into two not necessarily identical pieces.
1527  std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1528 
1529  /// Split the vector with EXTRACT_SUBVECTOR using the provides
1530  /// VTs and return the low/high part.
1531  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1532  const EVT &LoVT, const EVT &HiVT);
1533 
1534  /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1535  std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1536  EVT LoVT, HiVT;
1537  std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1538  return SplitVector(N, DL, LoVT, HiVT);
1539  }
1540 
1541  /// Split the node's operand with EXTRACT_SUBVECTOR and
1542  /// return the low/high part.
1543  std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1544  {
1545  return SplitVector(N->getOperand(OpNo), SDLoc(N));
1546  }
1547 
1548  /// Append the extracted elements from Start to Count out of the vector Op
1549  /// in Args. If Count is 0, all of the elements will be extracted.
1550  void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1551  unsigned Start = 0, unsigned Count = 0);
1552 
1553  /// Compute the default alignment value for the given type.
1554  unsigned getEVTAlignment(EVT MemoryVT) const;
1555 
1556  /// Test whether the given value is a constant int or similar node.
1557  SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1558 
1559  /// Test whether the given value is a constant FP or similar node.
1561 
1562  /// \returns true if \p N is any kind of constant or build_vector of
1563  /// constants, int or float. If a vector, it may not necessarily be a splat.
1565  return isConstantIntBuildVectorOrConstantInt(N) ||
1567  }
1568 
1569 private:
1570  void InsertNode(SDNode *N);
1571  bool RemoveNodeFromCSEMaps(SDNode *N);
1572  void AddModifiedNodeToCSEMaps(SDNode *N);
1573  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1574  SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1575  void *&InsertPos);
1576  SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1577  void *&InsertPos);
1578  SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1579 
1580  void DeleteNodeNotInCSEMaps(SDNode *N);
1581  void DeallocateNode(SDNode *N);
1582 
1583  void allnodes_clear();
1584 
1585  /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1586  /// not, return the insertion token that will make insertion faster. This
1587  /// overload is for nodes other than Constant or ConstantFP, use the other one
1588  /// for those.
1589  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1590 
1591  /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1592  /// not, return the insertion token that will make insertion faster. Performs
1593  /// additional processing for constant nodes.
1594  SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1595  void *&InsertPos);
1596 
1597  /// List of non-single value types.
1598  FoldingSet<SDVTListNode> VTListMap;
1599 
1600  /// Maps to auto-CSE operations.
1601  std::vector<CondCodeSDNode*> CondCodeNodes;
1602 
1603  std::vector<SDNode*> ValueTypeNodes;
1604  std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1605  StringMap<SDNode*> ExternalSymbols;
1606 
1607  std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
1609 };
1610 
1611 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1613 
1615  return nodes_iterator(G->allnodes_begin());
1616  }
1617 
1619  return nodes_iterator(G->allnodes_end());
1620  }
1621 };
1622 
1623 template <class TargetMemSDNode>
1625  ArrayRef<SDValue> Ops,
1626  const SDLoc &dl, EVT MemVT,
1627  MachineMemOperand *MMO) {
1628  /// Compose node ID and try to find an existing node.
1630  unsigned Opcode =
1631  TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1632  ID.AddInteger(Opcode);
1633  ID.AddPointer(VTs.VTs);
1634  for (auto& Op : Ops) {
1635  ID.AddPointer(Op.getNode());
1636  ID.AddInteger(Op.getResNo());
1637  }
1638  ID.AddInteger(MemVT.getRawBits());
1639  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1640  ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1641  dl.getIROrder(), VTs, MemVT, MMO));
1642 
1643  void *IP = nullptr;
1644  if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1645  cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1646  return SDValue(E, 0);
1647  }
1648 
1649  /// Existing node was not found. Create a new one.
1650  auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1651  MemVT, MMO);
1652  createOperands(N, Ops);
1653  CSEMap.InsertNode(N, IP);
1654  InsertNode(N);
1655  return SDValue(N, 0);
1656 }
1657 
1658 } // end namespace llvm
1659 
1660 #endif // LLVM_CODEGEN_SELECTIONDAG_H
Pass interface - Implemented by all &#39;passes&#39;.
Definition: Pass.h:81
uint64_t CallInst * C
static const fltSemantics & IEEEquad() LLVM_READNONE
Definition: APFloat.cpp:126
void AddPointer(const void *Ptr)
Add* - Add various data types to Bit data.
Definition: FoldingSet.cpp:52
void add(SDDbgLabel *L)
Definition: SelectionDAG.h:169
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Return true if the given value is known to have exactly one bit set when defined. ...
OverflowKind
Used to represent the possible overflow behavior of an operation.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT, SDValue Glue)
Definition: SelectionDAG.h:709
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:561
const TargetLibraryInfo & getLibInfo() const
Definition: SelectionDAG.h:402
LLVMContext & Context
Keeps track of dbg_value information through SDISel.
Definition: SelectionDAG.h:148
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond)
Helper function to make it easier to build SetCC&#39;s if you just have an ISD::CondCode instead of an SD...
Definition: SelectionDAG.h:951
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it&#39;s not CSE&#39;d)...
Definition: SelectionDAG.h:849
Atomic ordering constants.
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
static void removeOperands(MachineInstr &MI, unsigned i)
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:260
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:42
DbgIterator ByvalParmDbgEnd()
Definition: SelectionDAG.h:204
Implements a dense probed hash-table based set.
Definition: DenseSet.h:221
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
Clients of various APIs that cause global effects on the DAG can optionally implement this interface...
Definition: SelectionDAG.h:280
unsigned Reg
This file contains the declarations for metadata subclasses.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:253
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
Definition: SelectionDAG.h:119
bool salvageDebugInfo(Instruction &I)
Assuming the instruction I is going to be deleted, attempt to salvage debug users of I by writing the...
Definition: Local.cpp:1598
static const fltSemantics & EVTToAPFloatSemantics(EVT VT)
Returns an APFloat semantics tag appropriate for the given type.
Recycle small arrays allocated from a BumpPtrAllocator.
Definition: ArrayRecycler.h:29
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:609
A debug info location.
Definition: DebugLoc.h:34
Metadata node.
Definition: Metadata.h:862
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:141
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS)
Helper function to make it easier to build Select&#39;s if you just have operands and don&#39;t want to check...
Definition: SelectionDAG.h:964
DbgIterator DbgBegin()
Definition: SelectionDAG.h:201
SDNode * getNode() const
get the SDNode which holds the desired result
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
Definition: SelectionDAG.h:463
SmallVectorImpl< SDDbgLabel * >::iterator DbgLabelIterator
Definition: SelectionDAG.h:199
The address of the GOT.
Definition: ISDOpcodes.h:66
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition: ISDOpcodes.h:405
This file defines the MallocAllocator and BumpPtrAllocator interfaces.
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
SDDbgInfo::DbgIterator DbgBegin()
The address of a basic block.
Definition: Constants.h:836
A description of a memory reference used in the backend.
Definition: BitVector.h:921
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:606
void Reset()
Deallocate all but the current slab and reset the current pointer to the beginning of it...
Definition: Allocator.h:194
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:451
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:42
CopyToReg - This node has three operands: a chain, a register number to set to this value...
Definition: ISDOpcodes.h:170
SDDbgInfo::DbgLabelIterator DbgLabelBegin()
SimpleValueType SimpleTy
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence, and carry arbitrary information that target might want to know.
Definition: ISDOpcodes.h:674
void AddInteger(signed I)
Definition: FoldingSet.cpp:61
SmallVectorImpl< SDDbgValue * >::iterator DbgIterator
Definition: SelectionDAG.h:198
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
Definition: SelectionDAG.h:457
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:398
void setFunctionLoweringInfo(FunctionLoweringInfo *FuncInfo)
Definition: SelectionDAG.h:387
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:579
Position
Position to insert a new instruction relative to an existing instruction.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
This file implements a class to represent arbitrary precision integral constant values and operations...
This represents a list of ValueType&#39;s that has been intern&#39;d by a SelectionDAG.
iterator_range< allnodes_iterator > allnodes()
Definition: SelectionDAG.h:446
AtomicOrdering
Atomic ordering for LLVM&#39;s memory model.
static int64_t getConstant(const MachineInstr *MI)
void InsertNode(T *N, void *InsertPos)
InsertNode - Insert the specified node into the folding set, knowing that it is not already in the fo...
Definition: FoldingSet.h:452
unsigned getScalarSizeInBits() const
Definition: ValueTypes.h:298
void checkForCycles(const SelectionDAG *DAG, bool force=false)
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:395
DAGUpdateListener *const Next
Definition: SelectionDAG.h:281
SDValue getTargetFrameIndex(int FI, EVT VT)
Definition: SelectionDAG.h:623
const TargetMachine & getTarget() const
Definition: SelectionDAG.h:399
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition: ISDOpcodes.h:399
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:201
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
Definition: SelectionDAG.h:865
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out...
Definition: ISDOpcodes.h:911
bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Return true if LHS and RHS have no common bits set.
static const fltSemantics & IEEEdouble() LLVM_READNONE
Definition: APFloat.cpp:123
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:571
allnodes_iterator allnodes_end()
Definition: SelectionDAG.h:440
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements. ...
Definition: SelectionDAG.h:746
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
allnodes_iterator allnodes_begin()
Definition: SelectionDAG.h:439
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT)
Definition: SelectionDAG.h:603
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDUse > Ops)
Return an ISD::BUILD_VECTOR node.
Definition: SelectionDAG.h:738
UNDEF - An undefined node.
Definition: ISDOpcodes.h:178
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the specified, possibly variable...
Definition: ISDOpcodes.h:303
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:146
SDDbgInfo::DbgIterator ByvalParmDbgEnd()
unsigned ComputeHash() const
ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, used to lookup the node in th...
Definition: FoldingSet.cpp:30
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:306
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition: Allocator.h:380
Use delete by default for iplist and ilist.
Definition: ilist.h:41
DAGNodeDeletedListener(SelectionDAG &DAG, std::function< void(SDNode *, SDNode *)> Callback)
Definition: SelectionDAG.h:306
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:410
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition: FoldingSet.h:250
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static nodes_iterator nodes_begin(SelectionDAG *G)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
Definition: SelectionDAG.h:403
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:140
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:273
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
bool hasDebugValues() const
Return true if there are any SDDbgValue nodes associated with this SelectionDAG.
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator begin()
Definition: SmallVector.h:124
const SDValue & getOperand(unsigned Num) const
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:886
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition: ValueTypes.h:247
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Return true if &#39;V & Mask&#39; is known to be zero.
DbgLabelIterator DbgLabelEnd()
Definition: SelectionDAG.h:206
bool empty() const
Definition: SelectionDAG.h:187
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
Definition: SelectionDAG.h:837
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node&#39;s operand with EXTRACT_SUBVECTOR and return the low/high part.
CombineLevel
Definition: DAGCombine.h:16
This file declares a class to represent arbitrary precision floating point values and provide a varie...
BumpPtrAllocator & getAlloc()
Definition: SelectionDAG.h:185
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD)
Get the debug values which reference the given SDNode.
void RepositionNode(allnodes_iterator Position, SDNode *N)
Move node N in the AllNodes list to be immediately before the given iterator Position.
Base class for variables.
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
Definition: APFloat.cpp:129
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL)
Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
const Pass * getPass() const
Definition: SelectionDAG.h:396
ArrayRef< SDDbgValue * > getSDDbgValues(const SDNode *Node)
Definition: SelectionDAG.h:191
Extended Value Type.
Definition: ValueTypes.h:34
Abstract base class for all machine specific constantpool value subclasses.
SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align=0, int Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:642
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
Definition: SelectionDAG.h:561
iterator_range< allnodes_const_iterator > allnodes() const
Definition: SelectionDAG.h:449
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N, SDValue Glue)
Definition: SelectionDAG.h:683
An intrusive list with ownership and callbacks specified/controlled by ilist_traits, only with API safe for polymorphic types.
Definition: ilist.h:390
This class contains a discriminated union of information about pointers in memory operands...
FoldingSet - This template class is used to instantiate a specialized implementation of the folding s...
Definition: FoldingSet.h:474
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isKnownNeverNaN(const Value *V)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
The memory access writes data.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset)
Definition: SelectionDAG.h:824
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align=0, int Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:634
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:628
static bool isUndef(ArrayRef< int > Mask)
static const fltSemantics & IEEEsingle() LLVM_READNONE
Definition: APFloat.cpp:120
Basic Register Allocator
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:401
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:298
Iterator for intrusive lists based on ilist_node.
void setNoUnsignedWrap(bool b)
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
Color
A "color", which is either even or odd.
static const fltSemantics & IEEEhalf() LLVM_READNONE
Definition: APFloat.cpp:117
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Return the number of times the sign bit of the register is replicated into the other bits...
ilist< SDNode >::size_type allnodes_size() const
Definition: SelectionDAG.h:442
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:265
static nodes_iterator nodes_end(SelectionDAG *G)
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:222
SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef< SDValue > Ops, const SDLoc &dl, EVT MemVT, MachineMemOperand *MMO)
Return (create a new or find existing) a target-specific node.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:841
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
Definition: SelectionDAG.h:729
Provides information about what library functions are available for the current target.
const DebugLoc & getDebugLoc() const
SDDbgInfo::DbgIterator DbgEnd()
const DataFlowGraph & G
Definition: RDFGraph.cpp:211
An SDNode that represents everything that will be needed to construct a MachineInstr.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:642
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Represents one node in the SelectionDAG.
DbgIterator DbgEnd()
Definition: SelectionDAG.h:202
allnodes_const_iterator allnodes_begin() const
Definition: SelectionDAG.h:434
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:674
DWARF expression.
SDDbgInfo::DbgIterator ByvalParmDbgBegin()
A range adaptor for a pair of iterators.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:220
Class for arbitrary precision integers.
Definition: APInt.h:69
std::function< void(SDNode *, SDNode *)> Callback
Definition: SelectionDAG.h:304
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:390
typename SuperClass::iterator iterator
Definition: SmallVector.h:322
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:211
SDDbgInfo::DbgLabelIterator DbgLabelEnd()
Flags
Flags values. These may be or&#39;d together.
AlignedCharArrayUnion< AtomicSDNode, TargetIndexSDNode, BlockAddressSDNode, GlobalAddressSDNode > LargestSDNode
A representation of the largest SDNode, for use in sizeof().
The memory access reads data.
TargetSubtargetInfo - Generic base class for all target subtargets.
bool isConstantValueOfAnyType(SDValue N)
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
Definition: SelectionDAG.h:575
std::map< const SDNode *, std::string > NodeGraphAttrs
Definition: SelectionDAG.h:412
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
Definition: APFloat.cpp:135
These are IR-level optimization flags that may be propagated to SDNodes.
allnodes_const_iterator allnodes_end() const
Definition: SelectionDAG.h:435
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:668
LLVM_ATTRIBUTE_ALWAYS_INLINE iterator end()
Definition: SmallVector.h:128
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num)
Definition: SelectionDAG.h:101
const MachinePointerInfo & getPointerInfo() const
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:151
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID, which can be a useful to store node id data rather than using plain FoldingSetNodeIDs, since the 32-element SmallVector is often much larger than necessary, and the possibility of heap allocation means it requires a non-trivial destructor call.
Definition: FoldingSet.h:278
Holds the information from a dbg_label node through SDISel.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:700
Node - This class is used to maintain the singly linked bucket list in a folding set.
Definition: FoldingSet.h:136
LLVM_NODISCARD bool empty() const
Definition: SmallVector.h:56
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID)
Definition: SelectionDAG.h:126
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
const TargetSubtargetInfo & getSubtarget() const
Definition: SelectionDAG.h:400
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
iterator end()
Definition: DenseMap.h:79
unsigned getOpcode() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, SDValue Glue)
Definition: SelectionDAG.h:692
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition: ISDOpcodes.h:175
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
Definition: SelectionDAG.h:454
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
Definition: SelectionDAG.h:870
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
LLVM Value Representation.
Definition: Value.h:73
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC&#39;s if you just have an ISD::CondCode instead of an...
Definition: SelectionDAG.h:977
SDVTList getSDVTList()
Definition: SelectionDAG.h:106
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:81
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition: FoldingSet.h:221
OptimizationRemarkEmitter & getORE() const
Definition: SelectionDAG.h:405
static void deleteNode(SDNode *)
Definition: SelectionDAG.h:132
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:59
void add(SDDbgValue *V, const SDNode *Node, bool isParameter)
Definition: SelectionDAG.h:161
void deallocate(Capacity Cap, T *Ptr)
Deallocate an array with the specified Capacity.
print Print MemDeps of function
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:413
static SDNode * isConstantFPBuildVectorOrConstantFP(SDValue N)
DbgIterator ByvalParmDbgBegin()
Definition: SelectionDAG.h:203
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object...
Definition: SelectionDAG.h:819
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation...
Holds the information from a dbg_value node through SDISel.
static void Profile(const SDVTListNode &X, FoldingSetNodeID &ID)
Definition: SelectionDAG.h:115
DbgLabelIterator DbgLabelBegin()
Definition: SelectionDAG.h:205
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
The optimization diagnostic interface.
void NodeDeleted(SDNode *N, SDNode *E) override
The node N that was deleted and, if E is not null, an equivalent node E that replaced it...
Definition: SelectionDAG.h:310
LLVMContext * getContext() const
Definition: SelectionDAG.h:404
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned getIROrder() const
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:617
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:866
This class is used to represent ISD::LOAD nodes.