LLVM 20.0.0git
LoopVectorizationPlanner.h
Go to the documentation of this file.
1//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file provides a LoopVectorizationPlanner class.
11/// InnerLoopVectorizer vectorizes loops which contain only one basic
12/// LoopVectorizationPlanner - drives the vectorization process after having
13/// passed Legality checks.
14/// The planner builds and optimizes the Vectorization Plans which record the
15/// decisions how to vectorize the given loop. In particular, represent the
16/// control-flow of the vectorized version, the replication of instructions that
17/// are to be scalarized, and interleave access groups.
18///
19/// Also provides a VPlan-based builder utility analogous to IRBuilder.
20/// It provides an instruction-level API for generating VPInstructions while
21/// abstracting away the Recipe manipulation details.
22//===----------------------------------------------------------------------===//
23
24#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26
27#include "VPlan.h"
28#include "llvm/ADT/SmallSet.h"
30
31namespace llvm {
32
33class LoopInfo;
34class DominatorTree;
35class LoopVectorizationLegality;
36class LoopVectorizationCostModel;
37class PredicatedScalarEvolution;
38class LoopVectorizeHints;
39class OptimizationRemarkEmitter;
40class TargetTransformInfo;
41class TargetLibraryInfo;
42class VPRecipeBuilder;
43
44/// VPlan-based builder utility analogous to IRBuilder.
45class VPBuilder {
46 VPBasicBlock *BB = nullptr;
48
49 /// Insert \p VPI in BB at InsertPt if BB is set.
50 template <typename T> T *tryInsertInstruction(T *R) {
51 if (BB)
52 BB->insert(R, InsertPt);
53 return R;
54 }
55
56 VPInstruction *createInstruction(unsigned Opcode,
58 const Twine &Name = "") {
59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60 }
61
62 VPInstruction *createInstruction(unsigned Opcode,
63 std::initializer_list<VPValue *> Operands,
64 DebugLoc DL, const Twine &Name = "") {
65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66 }
67
68public:
69 VPBuilder() = default;
70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
71 VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
73 setInsertPoint(TheBB, IP);
74 }
75
76 /// Clear the insertion point: created instructions will not be inserted into
77 /// a block.
79 BB = nullptr;
80 InsertPt = VPBasicBlock::iterator();
81 }
82
83 VPBasicBlock *getInsertBlock() const { return BB; }
84 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
85
86 /// Create a VPBuilder to insert after \p R.
89 B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
90 return B;
91 }
92
93 /// InsertPoint - A saved insertion point.
95 VPBasicBlock *Block = nullptr;
97
98 public:
99 /// Creates a new insertion point which doesn't point to anything.
100 VPInsertPoint() = default;
101
102 /// Creates a new insertion point at the given location.
104 : Block(InsertBlock), Point(InsertPoint) {}
105
106 /// Returns true if this insert point is set.
107 bool isSet() const { return Block != nullptr; }
108
109 VPBasicBlock *getBlock() const { return Block; }
110 VPBasicBlock::iterator getPoint() const { return Point; }
111 };
112
113 /// Sets the current insert point to a previously-saved location.
115 if (IP.isSet())
116 setInsertPoint(IP.getBlock(), IP.getPoint());
117 else
119 }
120
121 /// This specifies that created VPInstructions should be appended to the end
122 /// of the specified block.
124 assert(TheBB && "Attempting to set a null insert point");
125 BB = TheBB;
126 InsertPt = BB->end();
127 }
128
129 /// This specifies that created instructions should be inserted at the
130 /// specified point.
132 BB = TheBB;
133 InsertPt = IP;
134 }
135
136 /// This specifies that created instructions should be inserted at the
137 /// specified point.
139 BB = IP->getParent();
140 InsertPt = IP->getIterator();
141 }
142
143 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
144 /// its underlying Instruction.
146 Instruction *Inst = nullptr,
147 const Twine &Name = "") {
148 DebugLoc DL;
149 if (Inst)
150 DL = Inst->getDebugLoc();
151 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
152 NewVPInst->setUnderlyingValue(Inst);
153 return NewVPInst;
154 }
156 DebugLoc DL, const Twine &Name = "") {
157 return createInstruction(Opcode, Operands, DL, Name);
158 }
159 VPInstruction *createNaryOp(unsigned Opcode,
160 std::initializer_list<VPValue *> Operands,
161 std::optional<FastMathFlags> FMFs = {},
162 DebugLoc DL = {}, const Twine &Name = "") {
163 if (FMFs)
164 return tryInsertInstruction(
165 new VPInstruction(Opcode, Operands, *FMFs, DL, Name));
166 return createInstruction(Opcode, Operands, DL, Name);
167 }
168
170 std::initializer_list<VPValue *> Operands,
172 DebugLoc DL = {}, const Twine &Name = "") {
173 return tryInsertInstruction(
174 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
175 }
176
178 const Twine &Name = "") {
179 return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
180 }
181
183 const Twine &Name = "") {
184 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
185 }
186
188 const Twine &Name = "") {
189
190 return tryInsertInstruction(new VPInstruction(
191 Instruction::BinaryOps::Or, {LHS, RHS},
192 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
193 }
194
196 const Twine &Name = "") {
197 return tryInsertInstruction(
199 }
200
202 DebugLoc DL = {}, const Twine &Name = "",
203 std::optional<FastMathFlags> FMFs = std::nullopt) {
204 auto *Select =
205 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
206 *FMFs, DL, Name)
207 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
208 DL, Name);
209 return tryInsertInstruction(Select);
210 }
211
212 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
213 /// and \p B.
214 /// TODO: add createFCmp when needed.
216 DebugLoc DL = {}, const Twine &Name = "") {
218 Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate");
219 return tryInsertInstruction(
220 new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name));
221 }
222
224 const Twine &Name = "") {
225 return tryInsertInstruction(
227 }
229 const Twine &Name = "") {
230 return tryInsertInstruction(
232 }
233
234 /// Convert the input value \p Current to the corresponding value of an
235 /// induction with \p Start and \p Step values, using \p Start + \p Current *
236 /// \p Step.
238 FPMathOperator *FPBinOp, VPValue *Start,
239 VPValue *Current, VPValue *Step,
240 const Twine &Name = "") {
241 return tryInsertInstruction(
242 new VPDerivedIVRecipe(Kind, FPBinOp, Start, Current, Step, Name));
243 }
244
246 Type *ResultTy, DebugLoc DL) {
247 return tryInsertInstruction(
248 new VPScalarCastRecipe(Opcode, Op, ResultTy, DL));
249 }
250
252 Type *ResultTy) {
253 return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy));
254 }
255
258 FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step) {
259 return tryInsertInstruction(new VPScalarIVStepsRecipe(
260 IV, Step, InductionOpcode,
261 FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags()));
262 }
263
264 //===--------------------------------------------------------------------===//
265 // RAII helpers.
266 //===--------------------------------------------------------------------===//
267
268 /// RAII object that stores the current insertion point and restores it when
269 /// the object is destroyed.
271 VPBuilder &Builder;
272 VPBasicBlock *Block;
274
275 public:
277 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
278
281
282 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
283 };
284};
285
286/// TODO: The following VectorizationFactor was pulled out of
287/// LoopVectorizationCostModel class. LV also deals with
288/// VectorizerParams::VectorizationFactor.
289/// We need to streamline them.
290
291/// Information about vectorization costs.
293 /// Vector width with best cost.
295
296 /// Cost of the loop with that width.
298
299 /// Cost of the scalar loop.
301
302 /// The minimum trip count required to make vectorization profitable, e.g. due
303 /// to runtime checks.
305
309
310 /// Width 1 means no vectorization, cost 0 means uncomputed cost.
312 return {ElementCount::getFixed(1), 0, 0};
313 }
314
315 bool operator==(const VectorizationFactor &rhs) const {
316 return Width == rhs.Width && Cost == rhs.Cost;
317 }
318
319 bool operator!=(const VectorizationFactor &rhs) const {
320 return !(*this == rhs);
321 }
322};
323
324/// A class that represents two vectorization factors (initialized with 0 by
325/// default). One for fixed-width vectorization and one for scalable
326/// vectorization. This can be used by the vectorizer to choose from a range of
327/// fixed and/or scalable VFs in order to find the most cost-effective VF to
328/// vectorize with.
332
334 : FixedVF(ElementCount::getFixed(0)),
335 ScalableVF(ElementCount::getScalable(0)) {}
337 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
338 }
343 "Invalid scalable properties");
344 }
345
347
348 /// \return true if either fixed- or scalable VF is non-zero.
349 explicit operator bool() const { return FixedVF || ScalableVF; }
350
351 /// \return true if either fixed- or scalable VF is a valid vector VF.
352 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
353};
354
355/// Planner drives the vectorization process after having passed
356/// Legality checks.
358 /// The loop that we evaluate.
359 Loop *OrigLoop;
360
361 /// Loop Info analysis.
362 LoopInfo *LI;
363
364 /// The dominator tree.
365 DominatorTree *DT;
366
367 /// Target Library Info.
368 const TargetLibraryInfo *TLI;
369
370 /// Target Transform Info.
372
373 /// The legality analysis.
375
376 /// The profitability analysis.
378
379 /// The interleaved access analysis.
381
383
384 const LoopVectorizeHints &Hints;
385
387
389
390 /// Profitable vector factors.
392
393 /// A builder used to construct the current plan.
394 VPBuilder Builder;
395
396 /// Computes the cost of \p Plan for vectorization factor \p VF.
397 ///
398 /// The current implementation requires access to the
399 /// LoopVectorizationLegality to handle inductions and reductions, which is
400 /// why it is kept separate from the VPlan-only cost infrastructure.
401 ///
402 /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
403 /// been retired.
404 InstructionCost cost(VPlan &Plan, ElementCount VF) const;
405
406 /// Precompute costs for certain instructions using the legacy cost model. The
407 /// function is used to bring up the VPlan-based cost model to initially avoid
408 /// taking different decisions due to inaccuracies in the legacy cost model.
409 InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF,
410 VPCostContext &CostCtx) const;
411
412public:
414 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
419 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
420 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
421
422 /// Build VPlans for the specified \p UserVF and \p UserIC if they are
423 /// non-zero or all applicable candidate VFs otherwise. If vectorization and
424 /// interleaving should be avoided up-front, no plans are generated.
425 void plan(ElementCount UserVF, unsigned UserIC);
426
427 /// Use the VPlan-native path to plan how to best vectorize, return the best
428 /// VF and its cost.
430
431 /// Return the VPlan for \p VF. At the moment, there is always a single VPlan
432 /// for each VF.
433 VPlan &getPlanFor(ElementCount VF) const;
434
435 /// Compute and return the most profitable vectorization factor. Also collect
436 /// all profitable VFs in ProfitableVFs.
438
439 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
440 /// according to the best selected \p VF and \p UF.
441 ///
442 /// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the
443 /// epilogue vector loop. It should be removed once the re-use issue has been
444 /// fixed.
445 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
446 /// to re-use expansion results generated during main plan execution.
447 ///
448 /// Returns a mapping of SCEVs to their expanded IR values.
449 /// Note that this is a temporary workaround needed due to the current
450 /// epilogue handling.
452 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
454 bool VectorizingEpilogue,
455 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
456
457#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
458 void printPlans(raw_ostream &O);
459#endif
460
461 /// Look through the existing plans and return true if we have one with
462 /// vectorization factor \p VF.
464 return any_of(VPlans,
465 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
466 }
467
468 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
469 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
470 /// returned value holds for the entire \p Range.
471 static bool
472 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
473 VFRange &Range);
474
475 /// \return The most profitable vectorization factor and the cost of that VF
476 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
477 /// epilogue vectorization is not supported for the loop.
479 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
480
481 /// Emit remarks for recipes with invalid costs in the available VPlans.
483
484protected:
485 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
486 /// according to the information gathered by Legal when it checked if it is
487 /// legal to vectorize the loop.
488 void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
489
490private:
491 /// Build a VPlan according to the information gathered by Legal. \return a
492 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
493 /// exclusive, possibly decreasing \p Range.End.
494 VPlanPtr buildVPlan(VFRange &Range);
495
496 /// Build a VPlan using VPRecipes according to the information gather by
497 /// Legal. This method is only used for the legacy inner loop vectorizer.
498 /// \p Range's largest included VF is restricted to the maximum VF the
499 /// returned VPlan is valid for. If no VPlan can be built for the input range,
500 /// set the largest included VF to the maximum VF for which no plan could be
501 /// built.
502 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
503
504 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
505 /// according to the information gathered by Legal when it checked if it is
506 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
507 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
508
509 // Adjust the recipes for reductions. For in-loop reductions the chain of
510 // instructions leading from the loop exit instr to the phi need to be
511 // converted to reductions, with one operand being vector and the other being
512 // the scalar reduction chain. For other reductions, a select is introduced
513 // between the phi and users outside the vector region when folding the tail.
514 void adjustRecipesForReductions(VPlanPtr &Plan,
515 VPRecipeBuilder &RecipeBuilder,
516 ElementCount MinVF);
517
518#ifndef NDEBUG
519 /// \return The most profitable vectorization factor for the available VPlans
520 /// and the cost of that VF.
521 /// This is now only used to verify the decisions by the new VPlan-based
522 /// cost-model and will be retired once the VPlan-based cost-model is
523 /// stabilized.
524 VectorizationFactor selectVectorizationFactor();
525#endif
526
527 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
528 /// that of B.
529 bool isMoreProfitable(const VectorizationFactor &A,
530 const VectorizationFactor &B) const;
531
532 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
533 /// that of B in the context of vectorizing a loop with known \p MaxTripCount.
534 bool isMoreProfitable(const VectorizationFactor &A,
535 const VectorizationFactor &B,
536 const unsigned MaxTripCount) const;
537
538 /// Determines if we have the infrastructure to vectorize the loop and its
539 /// epilogue, assuming the main loop is vectorized by \p VF.
540 bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
541};
542
543} // namespace llvm
544
545#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
std::string Name
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
mir Rename Register Operands
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallSet class.
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ FIRST_ICMP_PREDICATE
Definition: InstrTypes.h:704
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isVector() const
One or more elements.
Definition: TypeSize.h:326
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:205
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:338
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
InductionKind
This enum represents the kinds of inductions that we support.
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:622
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1637
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, OptimizationRemarkEmitter *ORE)
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1625
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1606
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1651
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
The optimization diagnostic interface.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3478
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3502
iterator end()
Definition: VPlan.h:3512
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:3541
RAII object that stores the current insertion point and restores it when the object is destroyed.
InsertPointGuard(const InsertPointGuard &)=delete
InsertPointGuard & operator=(const InsertPointGuard &)=delete
InsertPoint - A saved insertion point.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
Creates a new insertion point at the given location.
VPBasicBlock::iterator getPoint() const
VPInsertPoint()=default
Creates a new insertion point which doesn't point to anything.
bool isSet() const
Returns true if this insert point is set.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP)
This specifies that created instructions should be inserted at the specified point.
void setInsertPoint(VPRecipeBase *IP)
This specifies that created instructions should be inserted at the specified point.
void restoreIP(VPInsertPoint IP)
Sets the current insert point to a previously-saved location.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPBasicBlock::iterator getInsertPoint() const
VPInstruction * createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL={}, const Twine &Name="")
VPValue * createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL={}, const Twine &Name="")
VPBuilder(VPBasicBlock *InsertBB)
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL, const Twine &Name="")
VPScalarIVStepsRecipe * createScalarIVSteps(Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step)
VPBuilder(VPRecipeBase *InsertPt)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPWidenCastRecipe * createWidenCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
VPValue * createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
void clearInsertionPoint()
Clear the insertion point: created instructions will not be inserted into a block.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPBuilder()=default
VPInstruction * createNaryOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, std::optional< FastMathFlags > FMFs={}, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP)
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition: VPlan.h:3352
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1191
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:714
VPBasicBlock * getParent()
Definition: VPlan.h:739
Helper class to create VPRecipies from IR instructions.
VPScalarCastRecipe is a recipe to create scalar cast instructions.
Definition: VPlan.h:1578
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3421
void setUnderlyingValue(Value *Val)
Definition: VPlanValue.h:187
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition: VPlan.h:1526
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3745
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
A class that represents two vectorization factors (initialized with 0 by default).
FixedScalableVFPair(const ElementCount &FixedVF, const ElementCount &ScalableVF)
FixedScalableVFPair(const ElementCount &Max)
static FixedScalableVFPair getNone()
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:97
Struct to hold various analysis needed for cost computations.
Definition: VPlan.h:682
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
bool operator==(const VectorizationFactor &rhs) const
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
bool operator!=(const VectorizationFactor &rhs) const
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
VectorizationFactor(ElementCount Width, InstructionCost Cost, InstructionCost ScalarCost)