161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Enable use of wide lane masks when used for control flow in "
255 "tail-folded loops"));
259 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
264 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
270 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
274 cl::desc(
"A flag that overrides the target's number of scalar registers."));
278 cl::desc(
"A flag that overrides the target's number of vector registers."));
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
287 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
292 cl::desc(
"A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
305 "The cost of a loop that is considered 'small' by the interleaver."));
309 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
317 "Enable runtime interleaving until load/store ports are saturated"));
322 cl::desc(
"Max number of stores to be predicated behind an if."));
326 cl::desc(
"Count the induction variable only once when interleaving"));
330 cl::desc(
"Enable if predication of stores during vectorization."));
334 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
340 cl::desc(
"Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
345 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
351 "Prefer predicating a reduction operation over an after loop select."));
355 cl::desc(
"Enable VPlan-native vectorization path with "
356 "support for outer loop vectorization."));
360#ifdef EXPENSIVE_CHECKS
366 cl::desc(
"Verfiy VPlans after VPlan transforms."));
375 "Build VPlan for every supported loop nest in the function and bail "
376 "out right after the build (stress test the VPlan H-CFG construction "
377 "in the VPlan-native vectorization path)."));
381 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
384 cl::desc(
"Run the Loop vectorization passes"));
387 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
389 "Override cost based safe divisor widening for div/rem instructions"));
392 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
394 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
399 "Enable vectorization of early exit loops with uncountable exits."));
403 cl::desc(
"Discard VFs if their register pressure is too high."));
416 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
451static std::optional<ElementCount>
453 bool CanUseConstantMax =
true) {
463 if (!CanUseConstantMax)
475class GeneratedRTChecks;
507 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
510 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
636 UnrollFactor, CM, Checks,
Plan),
665 EPI.MainLoopVF,
EPI.MainLoopUF) {}
703 EPI.EpilogueVF,
EPI.EpilogueUF) {}
720 if (
I->getDebugLoc() !=
Empty)
721 return I->getDebugLoc();
724 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
725 if (OpInst->getDebugLoc() != Empty)
726 return OpInst->getDebugLoc();
729 return I->getDebugLoc();
738 dbgs() <<
"LV: " << Prefix << DebugMsg;
754static OptimizationRemarkAnalysis
760 if (
I &&
I->getDebugLoc())
761 DL =
I->getDebugLoc();
765 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
773 assert(Ty->isIntegerTy() &&
"Expected an integer step");
781 return B.CreateElementCount(Ty, VFxStep);
786 return B.CreateElementCount(Ty, VF);
797 <<
"loop not vectorized: " << OREMsg);
820 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
826 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
828 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
883 initializeVScaleForTuning();
894 bool runtimeChecksRequired();
913 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
932 void collectValuesToIgnore();
935 void collectElementTypesForWidening();
939 void collectInLoopReductions();
960 "Profitable to scalarize relevant only for VF > 1.");
963 "cost-model should not be used for outer loops (in VPlan-native path)");
965 auto Scalars = InstsToScalarize.find(VF);
966 assert(Scalars != InstsToScalarize.end() &&
967 "VF not yet analyzed for scalarization profitability");
968 return Scalars->second.contains(
I);
975 "cost-model should not be used for outer loops (in VPlan-native path)");
985 auto UniformsPerVF = Uniforms.find(VF);
986 assert(UniformsPerVF != Uniforms.end() &&
987 "VF not yet analyzed for uniformity");
988 return UniformsPerVF->second.count(
I);
995 "cost-model should not be used for outer loops (in VPlan-native path)");
999 auto ScalarsPerVF = Scalars.find(VF);
1000 assert(ScalarsPerVF != Scalars.end() &&
1001 "Scalar values are not calculated for VF");
1002 return ScalarsPerVF->second.count(
I);
1010 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1012 return VF.
isVector() && MinBWs.contains(
I) &&
1034 WideningDecisions[{
I, VF}] = {W,
Cost};
1053 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1056 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1058 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1070 "cost-model should not be used for outer loops (in VPlan-native path)");
1072 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1073 auto Itr = WideningDecisions.find(InstOnVF);
1074 if (Itr == WideningDecisions.end())
1076 return Itr->second.first;
1083 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1084 assert(WideningDecisions.contains(InstOnVF) &&
1085 "The cost is not calculated");
1086 return WideningDecisions[InstOnVF].second;
1099 std::optional<unsigned> MaskPos,
1102 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1108 auto I = CallWideningDecisions.find({CI, VF});
1109 if (
I == CallWideningDecisions.end())
1132 Value *
Op = Trunc->getOperand(0);
1133 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1137 return Legal->isInductionPhi(
Op);
1153 if (VF.
isScalar() || Uniforms.contains(VF))
1156 collectLoopUniforms(VF);
1158 collectLoopScalars(VF);
1166 return Legal->isConsecutivePtr(DataType, Ptr) &&
1174 return Legal->isConsecutivePtr(DataType, Ptr) &&
1189 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1196 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1197 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1198 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1209 return ScalarCost < SafeDivisorCost;
1248 if (!
Legal->blockNeedsPredication(BB))
1257 std::pair<InstructionCost, InstructionCost>
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1292 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1293 "from latch block\n");
1298 "interleaved group requires scalar epilogue\n");
1301 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1319 if (!ChosenTailFoldingStyle)
1321 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1322 : ChosenTailFoldingStyle->second;
1330 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1331 if (!
Legal->canFoldTailByMasking()) {
1337 ChosenTailFoldingStyle = {
1338 TTI.getPreferredTailFoldingStyle(
true),
1339 TTI.getPreferredTailFoldingStyle(
false)};
1349 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1363 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1364 "not try to generate VP Intrinsics "
1366 ?
"since interleave count specified is greater than 1.\n"
1367 :
"due to non-interleaving reasons.\n"));
1412 return InLoopReductions.contains(Phi);
1423 TTI.preferPredicatedReductionSelect();
1438 WideningDecisions.clear();
1439 CallWideningDecisions.clear();
1457 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1458 const unsigned IC)
const;
1466 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1468 Type *VectorTy)
const;
1472 bool shouldConsiderInvariant(
Value *
Op);
1478 unsigned NumPredStores = 0;
1482 std::optional<unsigned> VScaleForTuning;
1487 void initializeVScaleForTuning() {
1492 auto Max = Attr.getVScaleRangeMax();
1493 if (Max && Min == Max) {
1494 VScaleForTuning = Max;
1507 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1508 ElementCount UserVF,
1509 bool FoldTailByMasking);
1513 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1514 bool FoldTailByMasking)
const;
1519 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1520 unsigned SmallestType,
1521 unsigned WidestType,
1522 ElementCount MaxSafeVF,
1523 bool FoldTailByMasking);
1527 bool isScalableVectorizationAllowed();
1531 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1537 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1558 ElementCount VF)
const;
1562 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1567 MapVector<Instruction *, uint64_t> MinBWs;
1572 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1576 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1577 PredicatedBBsAfterVectorization;
1590 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1591 ChosenTailFoldingStyle;
1594 std::optional<bool> IsScalableVectorizationAllowed;
1600 std::optional<unsigned> MaxSafeElements;
1606 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1610 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1614 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1618 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1621 SmallPtrSet<PHINode *, 4> InLoopReductions;
1626 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1634 ScalarCostsTy &ScalarCosts,
1646 void collectLoopUniforms(ElementCount VF);
1655 void collectLoopScalars(ElementCount VF);
1659 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1660 std::pair<InstWidening, InstructionCost>>;
1662 DecisionList WideningDecisions;
1664 using CallDecisionList =
1665 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1667 CallDecisionList CallWideningDecisions;
1671 bool needsExtract(
Value *V, ElementCount VF)
const {
1675 getWideningDecision(
I, VF) == CM_Scalarize ||
1686 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1691 ElementCount VF)
const {
1693 SmallPtrSet<const Value *, 4> UniqueOperands;
1697 !needsExtract(
Op, VF))
1769class GeneratedRTChecks {
1775 Value *SCEVCheckCond =
nullptr;
1782 Value *MemRuntimeCheckCond =
nullptr;
1791 bool CostTooHigh =
false;
1793 Loop *OuterLoop =
nullptr;
1804 : DT(DT), LI(LI),
TTI(
TTI),
1805 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1806 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1814 void create(Loop *L,
const LoopAccessInfo &LAI,
1815 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1835 nullptr,
"vector.scevcheck");
1842 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1843 SCEVCleaner.cleanup();
1848 if (RtPtrChecking.Need) {
1849 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1850 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1853 auto DiffChecks = RtPtrChecking.getDiffChecks();
1855 Value *RuntimeVF =
nullptr;
1858 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1860 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1866 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1869 assert(MemRuntimeCheckCond &&
1870 "no RT checks generated although RtPtrChecking "
1871 "claimed checks are required");
1876 if (!MemCheckBlock && !SCEVCheckBlock)
1886 if (SCEVCheckBlock) {
1889 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1893 if (MemCheckBlock) {
1896 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1902 if (MemCheckBlock) {
1906 if (SCEVCheckBlock) {
1912 OuterLoop =
L->getParentLoop();
1916 if (SCEVCheckBlock || MemCheckBlock)
1928 for (Instruction &
I : *SCEVCheckBlock) {
1929 if (SCEVCheckBlock->getTerminator() == &
I)
1935 if (MemCheckBlock) {
1937 for (Instruction &
I : *MemCheckBlock) {
1938 if (MemCheckBlock->getTerminator() == &
I)
1950 ScalarEvolution *SE = MemCheckExp.
getSE();
1955 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1960 unsigned BestTripCount = 2;
1964 PSE, OuterLoop,
false))
1965 if (EstimatedTC->isFixed())
1966 BestTripCount = EstimatedTC->getFixedValue();
1971 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1972 (InstructionCost::CostType)1);
1974 if (BestTripCount > 1)
1976 <<
"We expect runtime memory checks to be hoisted "
1977 <<
"out of the outer loop. Cost reduced from "
1978 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1980 MemCheckCost = NewMemCheckCost;
1984 RTCheckCost += MemCheckCost;
1987 if (SCEVCheckBlock || MemCheckBlock)
1988 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1996 ~GeneratedRTChecks() {
1997 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1998 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1999 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2000 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2002 SCEVCleaner.markResultUsed();
2004 if (MemChecksUsed) {
2005 MemCheckCleaner.markResultUsed();
2007 auto &SE = *MemCheckExp.
getSE();
2014 I.eraseFromParent();
2017 MemCheckCleaner.cleanup();
2018 SCEVCleaner.cleanup();
2020 if (!SCEVChecksUsed)
2021 SCEVCheckBlock->eraseFromParent();
2023 MemCheckBlock->eraseFromParent();
2028 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2029 using namespace llvm::PatternMatch;
2031 return {
nullptr,
nullptr};
2033 return {SCEVCheckCond, SCEVCheckBlock};
2038 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2039 using namespace llvm::PatternMatch;
2040 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2041 return {
nullptr,
nullptr};
2042 return {MemRuntimeCheckCond, MemCheckBlock};
2046 bool hasChecks()
const {
2047 return getSCEVChecks().first || getMemRuntimeChecks().first;
2090 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2096 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2126 for (
Loop *InnerL : L)
2149 ?
B.CreateSExtOrTrunc(Index, StepTy)
2150 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2151 if (CastedIndex != Index) {
2153 Index = CastedIndex;
2163 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2168 return B.CreateAdd(
X,
Y);
2174 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2175 "Types don't match!");
2182 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2183 return B.CreateMul(
X,
Y);
2186 switch (InductionKind) {
2189 "Vector indices not supported for integer inductions yet");
2191 "Index type does not match StartValue type");
2193 return B.CreateSub(StartValue, Index);
2198 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2201 "Vector indices not supported for FP inductions yet");
2204 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2205 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2206 "Original bin op should be defined for FP induction");
2208 Value *MulExp =
B.CreateFMul(Step, Index);
2209 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2220 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2223 if (
F.hasFnAttribute(Attribute::VScaleRange))
2224 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2226 return std::nullopt;
2235 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2237 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2239 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2245 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2248 std::optional<unsigned> MaxVScale =
2252 MaxVF *= *MaxVScale;
2255 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2269 return TTI.enableMaskedInterleavedAccessVectorization();
2282 PreVectorPH = CheckVPIRBB;
2292 "must have incoming values for all operands");
2293 R.addOperand(R.getOperand(NumPredecessors - 2));
2319 auto CreateStep = [&]() ->
Value * {
2326 if (!
VF.isScalable())
2328 return Builder.CreateBinaryIntrinsic(
2334 Value *Step = CreateStep();
2343 CheckMinIters =
Builder.getTrue();
2345 TripCountSCEV, SE.
getSCEV(Step))) {
2348 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2350 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2358 Value *MaxUIntTripCount =
2365 return CheckMinIters;
2374 VPlan *Plan =
nullptr) {
2378 auto IP = IRVPBB->
begin();
2380 R.moveBefore(*IRVPBB, IP);
2384 R.moveBefore(*IRVPBB, IRVPBB->
end());
2393 assert(VectorPH &&
"Invalid loop structure");
2395 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2396 "loops not exiting via the latch without required epilogue?");
2403 Twine(Prefix) +
"scalar.ph");
2409 const SCEV2ValueTy &ExpandedSCEVs) {
2410 const SCEV *Step =
ID.getStep();
2412 return C->getValue();
2414 return U->getValue();
2415 Value *V = ExpandedSCEVs.lookup(Step);
2416 assert(V &&
"SCEV must be expanded at this point");
2426 auto *Cmp = L->getLatchCmpInst();
2428 InstsToIgnore.
insert(Cmp);
2429 for (
const auto &KV : IL) {
2438 [&](
const User *U) { return U == IV || U == Cmp; }))
2439 InstsToIgnore.
insert(IVInst);
2451struct CSEDenseMapInfo {
2462 return DenseMapInfo<Instruction *>::getTombstoneKey();
2465 static unsigned getHashValue(
const Instruction *
I) {
2466 assert(canHandle(
I) &&
"Unknown instruction!");
2471 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2472 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2473 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2475 return LHS->isIdenticalTo(
RHS);
2487 if (!CSEDenseMapInfo::canHandle(&In))
2493 In.replaceAllUsesWith(V);
2494 In.eraseFromParent();
2507 std::optional<unsigned> VScale) {
2511 EstimatedVF *= *VScale;
2512 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2530 for (
auto &ArgOp : CI->
args())
2541 return ScalarCallCost;
2554 assert(
ID &&
"Expected intrinsic call!");
2558 FMF = FPMO->getFastMathFlags();
2564 std::back_inserter(ParamTys),
2565 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2570 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2584 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2599 Builder.SetInsertPoint(NewPhi);
2601 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2606void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2611 "This function should not be visited twice for the same VF");
2634 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2635 assert(WideningDecision != CM_Unknown &&
2636 "Widening decision should be ready at this moment");
2638 if (Ptr == Store->getValueOperand())
2639 return WideningDecision == CM_Scalarize;
2641 "Ptr is neither a value or pointer operand");
2642 return WideningDecision != CM_GatherScatter;
2647 auto IsLoopVaryingGEP = [&](
Value *
V) {
2658 if (!IsLoopVaryingGEP(Ptr))
2670 if (IsScalarUse(MemAccess, Ptr) &&
2674 PossibleNonScalarPtrs.
insert(
I);
2690 for (
auto *BB : TheLoop->
blocks())
2691 for (
auto &
I : *BB) {
2693 EvaluatePtrUse(Load,
Load->getPointerOperand());
2695 EvaluatePtrUse(Store,
Store->getPointerOperand());
2696 EvaluatePtrUse(Store,
Store->getValueOperand());
2699 for (
auto *
I : ScalarPtrs)
2700 if (!PossibleNonScalarPtrs.
count(
I)) {
2708 auto ForcedScalar = ForcedScalars.
find(VF);
2709 if (ForcedScalar != ForcedScalars.
end())
2710 for (
auto *
I : ForcedScalar->second) {
2711 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2720 while (Idx != Worklist.
size()) {
2722 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2726 auto *J = cast<Instruction>(U);
2727 return !TheLoop->contains(J) || Worklist.count(J) ||
2728 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2729 IsScalarUse(J, Src));
2732 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2738 for (
const auto &Induction :
Legal->getInductionVars()) {
2739 auto *Ind = Induction.first;
2744 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2749 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2751 return Induction.second.getKind() ==
2759 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2760 auto *I = cast<Instruction>(U);
2761 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2762 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2771 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2776 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2777 auto *I = cast<Instruction>(U);
2778 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2779 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2781 if (!ScalarIndUpdate)
2786 Worklist.
insert(IndUpdate);
2787 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2788 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2802 switch(
I->getOpcode()) {
2805 case Instruction::Call:
2809 case Instruction::Load:
2810 case Instruction::Store: {
2819 TTI.isLegalMaskedGather(VTy, Alignment))
2821 TTI.isLegalMaskedScatter(VTy, Alignment));
2823 case Instruction::UDiv:
2824 case Instruction::SDiv:
2825 case Instruction::SRem:
2826 case Instruction::URem: {
2847 if (
Legal->blockNeedsPredication(
I->getParent()))
2859 switch(
I->getOpcode()) {
2862 "instruction should have been considered by earlier checks");
2863 case Instruction::Call:
2867 "should have returned earlier for calls not needing a mask");
2869 case Instruction::Load:
2872 case Instruction::Store: {
2880 case Instruction::UDiv:
2881 case Instruction::SDiv:
2882 case Instruction::SRem:
2883 case Instruction::URem:
2885 return !
Legal->isInvariant(
I->getOperand(1));
2889std::pair<InstructionCost, InstructionCost>
2892 assert(
I->getOpcode() == Instruction::UDiv ||
2893 I->getOpcode() == Instruction::SDiv ||
2894 I->getOpcode() == Instruction::SRem ||
2895 I->getOpcode() == Instruction::URem);
2904 ScalarizationCost = 0;
2910 ScalarizationCost +=
2914 ScalarizationCost +=
2916 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2934 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2939 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2941 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2942 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2944 return {ScalarizationCost, SafeDivisorCost};
2951 "Decision should not be set yet.");
2953 assert(Group &&
"Must have a group.");
2954 unsigned InterleaveFactor = Group->getFactor();
2958 auto &
DL =
I->getDataLayout();
2970 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2971 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2976 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2978 if (MemberNI != ScalarNI)
2981 if (MemberNI && ScalarNI &&
2982 ScalarTy->getPointerAddressSpace() !=
2983 MemberTy->getPointerAddressSpace())
2992 bool PredicatedAccessRequiresMasking =
2994 Legal->isMaskRequired(
I);
2995 bool LoadAccessWithGapsRequiresEpilogMasking =
2998 bool StoreAccessWithGapsRequiresMasking =
3000 if (!PredicatedAccessRequiresMasking &&
3001 !LoadAccessWithGapsRequiresEpilogMasking &&
3002 !StoreAccessWithGapsRequiresMasking)
3009 "Masked interleave-groups for predicated accesses are not enabled.");
3011 if (Group->isReverse())
3015 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3016 StoreAccessWithGapsRequiresMasking;
3024 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3036 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3046 auto &
DL =
I->getDataLayout();
3053void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3060 "This function should not be visited twice for the same VF");
3064 Uniforms[VF].
clear();
3072 auto IsOutOfScope = [&](
Value *V) ->
bool {
3084 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3085 if (IsOutOfScope(
I)) {
3090 if (isPredicatedInst(
I)) {
3092 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3096 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3106 for (BasicBlock *
E : Exiting) {
3110 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3111 AddToWorklistIfAllowed(Cmp);
3120 if (PrevVF.isVector()) {
3121 auto Iter = Uniforms.
find(PrevVF);
3122 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3125 if (!
Legal->isUniformMemOp(*
I, VF))
3135 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3136 InstWidening WideningDecision = getWideningDecision(
I, VF);
3137 assert(WideningDecision != CM_Unknown &&
3138 "Widening decision should be ready at this moment");
3140 if (IsUniformMemOpUse(
I))
3143 return (WideningDecision == CM_Widen ||
3144 WideningDecision == CM_Widen_Reverse ||
3145 WideningDecision == CM_Interleave);
3155 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3163 SetVector<Value *> HasUniformUse;
3167 for (
auto *BB : TheLoop->
blocks())
3168 for (
auto &
I : *BB) {
3170 switch (
II->getIntrinsicID()) {
3171 case Intrinsic::sideeffect:
3172 case Intrinsic::experimental_noalias_scope_decl:
3173 case Intrinsic::assume:
3174 case Intrinsic::lifetime_start:
3175 case Intrinsic::lifetime_end:
3177 AddToWorklistIfAllowed(&
I);
3185 if (IsOutOfScope(EVI->getAggregateOperand())) {
3186 AddToWorklistIfAllowed(EVI);
3192 "Expected aggregate value to be call return value");
3205 if (IsUniformMemOpUse(&
I))
3206 AddToWorklistIfAllowed(&
I);
3208 if (IsVectorizedMemAccessUse(&
I, Ptr))
3209 HasUniformUse.
insert(Ptr);
3215 for (
auto *V : HasUniformUse) {
3216 if (IsOutOfScope(V))
3219 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3220 auto *UI = cast<Instruction>(U);
3221 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3223 if (UsersAreMemAccesses)
3224 AddToWorklistIfAllowed(
I);
3231 while (Idx != Worklist.
size()) {
3234 for (
auto *OV :
I->operand_values()) {
3236 if (IsOutOfScope(OV))
3241 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3247 auto *J = cast<Instruction>(U);
3248 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3250 AddToWorklistIfAllowed(OI);
3261 for (
const auto &Induction :
Legal->getInductionVars()) {
3262 auto *Ind = Induction.first;
3267 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3268 auto *I = cast<Instruction>(U);
3269 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3270 IsVectorizedMemAccessUse(I, Ind);
3277 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3278 auto *I = cast<Instruction>(U);
3279 return I == Ind || Worklist.count(I) ||
3280 IsVectorizedMemAccessUse(I, IndUpdate);
3282 if (!UniformIndUpdate)
3286 AddToWorklistIfAllowed(Ind);
3287 AddToWorklistIfAllowed(IndUpdate);
3296 if (
Legal->getRuntimePointerChecking()->Need) {
3298 "runtime pointer checks needed. Enable vectorization of this "
3299 "loop with '#pragma clang loop vectorize(enable)' when "
3300 "compiling with -Os/-Oz",
3301 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3305 if (!
PSE.getPredicate().isAlwaysTrue()) {
3307 "runtime SCEV checks needed. Enable vectorization of this "
3308 "loop with '#pragma clang loop vectorize(enable)' when "
3309 "compiling with -Os/-Oz",
3310 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3315 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3317 "runtime stride == 1 checks needed. Enable vectorization of "
3318 "this loop without such check by compiling with -Os/-Oz",
3319 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3326bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3327 if (IsScalableVectorizationAllowed)
3328 return *IsScalableVectorizationAllowed;
3330 IsScalableVectorizationAllowed =
false;
3334 if (Hints->isScalableVectorizationDisabled()) {
3336 "ScalableVectorizationDisabled", ORE, TheLoop);
3340 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3343 std::numeric_limits<ElementCount::ScalarTy>::max());
3352 if (!canVectorizeReductions(MaxScalableVF)) {
3354 "Scalable vectorization not supported for the reduction "
3355 "operations found in this loop.",
3356 "ScalableVFUnfeasible", ORE, TheLoop);
3362 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3367 "for all element types found in this loop.",
3368 "ScalableVFUnfeasible", ORE, TheLoop);
3374 "for safe distance analysis.",
3375 "ScalableVFUnfeasible", ORE, TheLoop);
3379 IsScalableVectorizationAllowed =
true;
3384LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3385 if (!isScalableVectorizationAllowed())
3389 std::numeric_limits<ElementCount::ScalarTy>::max());
3390 if (
Legal->isSafeForAnyVectorWidth())
3391 return MaxScalableVF;
3399 "Max legal vector width too small, scalable vectorization "
3401 "ScalableVFUnfeasible", ORE, TheLoop);
3403 return MaxScalableVF;
3406FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3407 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3409 unsigned SmallestType, WidestType;
3410 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3416 unsigned MaxSafeElementsPowerOf2 =
3418 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3419 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3420 MaxSafeElementsPowerOf2 =
3421 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3424 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3426 if (!
Legal->isSafeForAnyVectorWidth())
3427 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3429 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3431 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3436 auto MaxSafeUserVF =
3437 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3439 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3442 return FixedScalableVFPair(
3448 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3454 <<
" is unsafe, clamping to max safe VF="
3455 << MaxSafeFixedVF <<
".\n");
3457 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3460 <<
"User-specified vectorization factor "
3461 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3462 <<
" is unsafe, clamping to maximum safe vectorization factor "
3463 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3465 return MaxSafeFixedVF;
3470 <<
" is ignored because scalable vectors are not "
3473 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3476 <<
"User-specified vectorization factor "
3477 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3478 <<
" is ignored because the target does not support scalable "
3479 "vectors. The compiler will pick a more suitable value.";
3483 <<
" is unsafe. Ignoring scalable UserVF.\n");
3485 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3488 <<
"User-specified vectorization factor "
3489 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3490 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3491 "more suitable value.";
3496 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3497 <<
" / " << WidestType <<
" bits.\n");
3502 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3503 MaxSafeFixedVF, FoldTailByMasking))
3507 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3508 MaxSafeScalableVF, FoldTailByMasking))
3509 if (MaxVF.isScalable()) {
3510 Result.ScalableVF = MaxVF;
3511 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3520 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3524 "Not inserting runtime ptr check for divergent target",
3525 "runtime pointer checks needed. Not enabled for divergent target",
3526 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3532 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3535 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3538 "loop trip count is one, irrelevant for vectorization",
3549 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3553 "Trip count computation wrapped",
3554 "backedge-taken count is -1, loop trip count wrapped to 0",
3559 switch (ScalarEpilogueStatus) {
3561 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3566 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3567 <<
"LV: Not allowing scalar epilogue, creating predicated "
3568 <<
"vector loop.\n");
3575 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3577 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3593 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3594 "No decisions should have been taken at this point");
3604 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3608 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3609 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3610 *MaxPowerOf2RuntimeVF,
3613 MaxPowerOf2RuntimeVF = std::nullopt;
3616 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3620 !
Legal->hasUncountableEarlyExit())
3622 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3627 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3629 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3630 "Invalid loop count");
3632 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3639 if (MaxPowerOf2RuntimeVF > 0u) {
3641 "MaxFixedVF must be a power of 2");
3642 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3644 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3650 if (ExpectedTC && ExpectedTC->isFixed() &&
3651 ExpectedTC->getFixedValue() <=
3652 TTI.getMinTripCountTailFoldingThreshold()) {
3653 if (MaxPowerOf2RuntimeVF > 0u) {
3659 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3660 "remain for any chosen VF.\n");
3667 "The trip count is below the minial threshold value.",
3668 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3683 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3684 "try to generate VP Intrinsics with scalable vector "
3689 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3699 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3700 "scalar epilogue instead.\n");
3706 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3712 "unable to calculate the loop count due to complex control flow",
3718 "Cannot optimize for size and vectorize at the same time.",
3719 "cannot optimize for size and vectorize at the same time. "
3720 "Enable vectorization of this loop with '#pragma clang loop "
3721 "vectorize(enable)' when compiling with -Os/-Oz",
3733 if (
TTI.shouldConsiderVectorizationRegPressure())
3749 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3751 Legal->hasVectorCallVariants())));
3754ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3755 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3757 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3758 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3759 auto Min = Attr.getVScaleRangeMin();
3766 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3769 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3777 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3778 "exceeding the constant trip count: "
3779 << ClampedUpperTripCount <<
"\n");
3781 FoldTailByMasking ? VF.
isScalable() :
false);
3786ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3787 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3788 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3789 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3795 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3797 "Scalable flags must match");
3805 ComputeScalableMaxVF);
3806 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3808 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3810 if (!MaxVectorElementCount) {
3812 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3813 <<
" vector registers.\n");
3817 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3818 MaxTripCount, FoldTailByMasking);
3821 if (MaxVF != MaxVectorElementCount)
3829 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3831 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3833 if (useMaxBandwidth(RegKind)) {
3836 ComputeScalableMaxVF);
3837 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3839 if (ElementCount MinVF =
3841 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3843 <<
") with target's minimum: " << MinVF <<
'\n');
3848 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3850 if (MaxVectorElementCount != MaxVF) {
3854 invalidateCostModelingDecisions();
3862 const unsigned MaxTripCount,
3864 bool IsEpilogue)
const {
3870 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3871 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3872 if (
A.Width.isScalable())
3873 EstimatedWidthA *= *VScale;
3874 if (
B.Width.isScalable())
3875 EstimatedWidthB *= *VScale;
3882 return CostA < CostB ||
3883 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3889 A.Width.isScalable() && !
B.Width.isScalable();
3900 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3902 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3914 return VectorCost * (MaxTripCount / VF) +
3915 ScalarCost * (MaxTripCount % VF);
3916 return VectorCost *
divideCeil(MaxTripCount, VF);
3919 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3920 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3921 return CmpFn(RTCostA, RTCostB);
3927 bool IsEpilogue)
const {
3929 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3935 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3937 for (
const auto &Plan : VPlans) {
3946 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3947 *CM.PSE.getSE(), OrigLoop);
3948 precomputeCosts(*Plan, VF, CostCtx);
3951 for (
auto &R : *VPBB) {
3952 if (!R.cost(VF, CostCtx).isValid())
3958 if (InvalidCosts.
empty())
3966 for (
auto &Pair : InvalidCosts)
3971 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3972 unsigned NA = Numbering[
A.first];
3973 unsigned NB = Numbering[
B.first];
3988 Subset =
Tail.take_front(1);
3995 [](
const auto *R) {
return Instruction::PHI; })
3996 .Case<VPWidenSelectRecipe>(
3997 [](
const auto *R) {
return Instruction::Select; })
3998 .Case<VPWidenStoreRecipe>(
3999 [](
const auto *R) {
return Instruction::Store; })
4000 .Case<VPWidenLoadRecipe>(
4001 [](
const auto *R) {
return Instruction::Load; })
4002 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4003 [](
const auto *R) {
return Instruction::Call; })
4006 [](
const auto *R) {
return R->getOpcode(); })
4008 return R->getStoredValues().empty() ? Instruction::Load
4009 : Instruction::Store;
4011 .Case<VPReductionRecipe>([](
const auto *R) {
4020 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4021 std::string OutString;
4023 assert(!Subset.empty() &&
"Unexpected empty range");
4024 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4025 for (
const auto &Pair : Subset)
4026 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4028 if (Opcode == Instruction::Call) {
4031 Name =
Int->getIntrinsicName();
4035 WidenCall ? WidenCall->getCalledScalarFunction()
4037 ->getLiveInIRValue());
4040 OS <<
" call to " << Name;
4045 Tail =
Tail.drop_front(Subset.size());
4049 Subset =
Tail.take_front(Subset.size() + 1);
4050 }
while (!
Tail.empty());
4072 switch (R.getVPDefID()) {
4073 case VPDef::VPDerivedIVSC:
4074 case VPDef::VPScalarIVStepsSC:
4075 case VPDef::VPReplicateSC:
4076 case VPDef::VPInstructionSC:
4077 case VPDef::VPCanonicalIVPHISC:
4078 case VPDef::VPVectorPointerSC:
4079 case VPDef::VPVectorEndPointerSC:
4080 case VPDef::VPExpandSCEVSC:
4081 case VPDef::VPEVLBasedIVPHISC:
4082 case VPDef::VPPredInstPHISC:
4083 case VPDef::VPBranchOnMaskSC:
4085 case VPDef::VPReductionSC:
4086 case VPDef::VPActiveLaneMaskPHISC:
4087 case VPDef::VPWidenCallSC:
4088 case VPDef::VPWidenCanonicalIVSC:
4089 case VPDef::VPWidenCastSC:
4090 case VPDef::VPWidenGEPSC:
4091 case VPDef::VPWidenIntrinsicSC:
4092 case VPDef::VPWidenSC:
4093 case VPDef::VPWidenSelectSC:
4094 case VPDef::VPBlendSC:
4095 case VPDef::VPFirstOrderRecurrencePHISC:
4096 case VPDef::VPHistogramSC:
4097 case VPDef::VPWidenPHISC:
4098 case VPDef::VPWidenIntOrFpInductionSC:
4099 case VPDef::VPWidenPointerInductionSC:
4100 case VPDef::VPReductionPHISC:
4101 case VPDef::VPInterleaveEVLSC:
4102 case VPDef::VPInterleaveSC:
4103 case VPDef::VPWidenLoadEVLSC:
4104 case VPDef::VPWidenLoadSC:
4105 case VPDef::VPWidenStoreEVLSC:
4106 case VPDef::VPWidenStoreSC:
4112 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4113 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4129 if (R.getNumDefinedValues() == 0 &&
4138 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4140 if (!Visited.
insert({ScalarTy}).second)
4154 [](
auto *VPRB) { return VPRB->isReplicator(); });
4160 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4161 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4164 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4165 "Expected Scalar VF to be a candidate");
4172 if (ForceVectorization &&
4173 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4177 ChosenFactor.
Cost = InstructionCost::getMax();
4180 for (
auto &
P : VPlans) {
4182 P->vectorFactors().end());
4185 if (
any_of(VFs, [
this](ElementCount VF) {
4186 return CM.shouldConsiderRegPressureForVF(VF);
4190 for (
unsigned I = 0;
I < VFs.size();
I++) {
4191 ElementCount VF = VFs[
I];
4199 if (CM.shouldConsiderRegPressureForVF(VF) &&
4207 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4208 *CM.PSE.getSE(), OrigLoop);
4209 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4210 assert(VectorRegion &&
"Expected to have a vector region!");
4213 for (VPRecipeBase &R : *VPBB) {
4217 switch (VPI->getOpcode()) {
4220 case Instruction::Select: {
4223 switch (WR->getOpcode()) {
4224 case Instruction::UDiv:
4225 case Instruction::SDiv:
4226 case Instruction::URem:
4227 case Instruction::SRem:
4233 C += VPI->cost(VF, CostCtx);
4237 unsigned Multiplier =
4240 C += VPI->cost(VF * Multiplier, CostCtx);
4244 C += VPI->cost(VF, CostCtx);
4256 <<
" costs: " << (Candidate.Cost / Width));
4259 << CM.getVScaleForTuning().value_or(1) <<
")");
4265 <<
"LV: Not considering vector loop of width " << VF
4266 <<
" because it will not generate any vector instructions.\n");
4273 <<
"LV: Not considering vector loop of width " << VF
4274 <<
" because it would cause replicated blocks to be generated,"
4275 <<
" which isn't allowed when optimizing for size.\n");
4279 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4280 ChosenFactor = Candidate;
4286 "There are conditional stores.",
4287 "store that is conditionally executed prevents vectorization",
4288 "ConditionalStore", ORE, OrigLoop);
4289 ChosenFactor = ScalarCost;
4293 !isMoreProfitable(ChosenFactor, ScalarCost,
4294 !CM.foldTailByMasking()))
dbgs()
4295 <<
"LV: Vectorization seems to be not beneficial, "
4296 <<
"but was forced by a user.\n");
4297 return ChosenFactor;
4301bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4302 ElementCount VF)
const {
4305 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4306 if (!Legal->isReductionVariable(&Phi))
4307 return Legal->isFixedOrderRecurrence(&Phi);
4308 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4309 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4315 for (
const auto &Entry :
Legal->getInductionVars()) {
4318 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4319 for (User *U :
PostInc->users())
4323 for (User *U :
Entry.first->users())
4332 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4346 if (!
TTI.preferEpilogueVectorization())
4351 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4356 :
TTI.getEpilogueVectorizationMinVF();
4364 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4368 if (!CM.isScalarEpilogueAllowed()) {
4369 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4370 "epilogue is allowed.\n");
4376 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4377 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4378 "is not a supported candidate.\n");
4383 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4386 return {ForcedEC, 0, 0};
4388 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4393 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4395 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4399 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4400 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4412 Type *TCType = Legal->getWidestInductionType();
4413 const SCEV *RemainingIterations =
nullptr;
4414 unsigned MaxTripCount = 0;
4418 const SCEV *KnownMinTC;
4420 bool ScalableRemIter =
false;
4423 ScalableRemIter = ScalableTC;
4424 RemainingIterations =
4426 }
else if (ScalableTC) {
4429 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4433 RemainingIterations =
4437 if (RemainingIterations->
isZero())
4447 << MaxTripCount <<
"\n");
4450 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4453 for (
auto &NextVF : ProfitableVFs) {
4460 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4462 (NextVF.Width.isScalable() &&
4464 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4473 if (!ScalableRemIter) {
4477 if (NextVF.Width.isScalable())
4484 if (Result.Width.isScalar() ||
4485 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4492 << Result.Width <<
"\n");
4496std::pair<unsigned, unsigned>
4498 unsigned MinWidth = -1U;
4499 unsigned MaxWidth = 8;
4505 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4509 MinWidth = std::min(
4513 MaxWidth = std::max(MaxWidth,
4518 MinWidth = std::min<unsigned>(
4519 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4520 MaxWidth = std::max<unsigned>(
4521 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4524 return {MinWidth, MaxWidth};
4532 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4546 if (!
Legal->isReductionVariable(PN))
4549 Legal->getRecurrenceDescriptor(PN);
4559 T = ST->getValueOperand()->getType();
4562 "Expected the load/store/recurrence type to be sized");
4590 if (!CM.isScalarEpilogueAllowed() &&
4591 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4596 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4597 "Unroll factor forced to be 1.\n");
4602 if (!Legal->isSafeForAnyVectorWidth())
4611 const bool HasReductions =
4617 if (LoopCost == 0) {
4619 LoopCost = CM.expectedCost(VF);
4621 LoopCost = cost(Plan, VF);
4622 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4633 for (
auto &Pair : R.MaxLocalUsers) {
4634 Pair.second = std::max(Pair.second, 1U);
4648 unsigned IC = UINT_MAX;
4650 for (
const auto &Pair : R.MaxLocalUsers) {
4651 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4654 << TTI.getRegisterClassName(Pair.first)
4655 <<
" register class\n");
4663 unsigned MaxLocalUsers = Pair.second;
4664 unsigned LoopInvariantRegs = 0;
4665 if (R.LoopInvariantRegs.contains(Pair.first))
4666 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4668 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4672 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4673 std::max(1U, (MaxLocalUsers - 1)));
4676 IC = std::min(IC, TmpIC);
4680 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4696 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4698 unsigned AvailableTC =
4704 if (CM.requiresScalarEpilogue(VF.
isVector()))
4707 unsigned InterleaveCountLB =
bit_floor(std::max(
4708 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4722 unsigned InterleaveCountUB =
bit_floor(std::max(
4723 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4724 MaxInterleaveCount = InterleaveCountLB;
4726 if (InterleaveCountUB != InterleaveCountLB) {
4727 unsigned TailTripCountUB =
4728 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4729 unsigned TailTripCountLB =
4730 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4733 if (TailTripCountUB == TailTripCountLB)
4734 MaxInterleaveCount = InterleaveCountUB;
4742 MaxInterleaveCount = InterleaveCountLB;
4746 assert(MaxInterleaveCount > 0 &&
4747 "Maximum interleave count must be greater than 0");
4751 if (IC > MaxInterleaveCount)
4752 IC = MaxInterleaveCount;
4755 IC = std::max(1u, IC);
4757 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4761 if (VF.
isVector() && HasReductions) {
4762 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4770 bool ScalarInterleavingRequiresPredication =
4772 return Legal->blockNeedsPredication(BB);
4774 bool ScalarInterleavingRequiresRuntimePointerCheck =
4775 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4780 <<
"LV: IC is " << IC <<
'\n'
4781 <<
"LV: VF is " << VF <<
'\n');
4782 const bool AggressivelyInterleaveReductions =
4783 TTI.enableAggressiveInterleaving(HasReductions);
4784 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4785 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4794 unsigned NumStores = 0;
4795 unsigned NumLoads = 0;
4809 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4810 NumStores += StoreOps;
4812 NumLoads += InterleaveR->getNumDefinedValues();
4827 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4828 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4834 bool HasSelectCmpReductions =
4838 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4839 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4840 RedR->getRecurrenceKind()) ||
4841 RecurrenceDescriptor::isFindIVRecurrenceKind(
4842 RedR->getRecurrenceKind()));
4844 if (HasSelectCmpReductions) {
4845 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4854 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4855 bool HasOrderedReductions =
4858 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4860 return RedR && RedR->isOrdered();
4862 if (HasOrderedReductions) {
4864 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4869 SmallIC = std::min(SmallIC,
F);
4870 StoresIC = std::min(StoresIC,
F);
4871 LoadsIC = std::min(LoadsIC,
F);
4875 std::max(StoresIC, LoadsIC) > SmallIC) {
4877 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4878 return std::max(StoresIC, LoadsIC);
4883 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4887 return std::max(IC / 2, SmallIC);
4890 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4896 if (AggressivelyInterleaveReductions) {
4905bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4915 assert((isPredicatedInst(
I)) &&
4916 "Expecting a scalar emulated instruction");
4929 if (InstsToScalarize.contains(VF) ||
4930 PredicatedBBsAfterVectorization.contains(VF))
4936 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4946 ScalarCostsTy ScalarCosts;
4953 !useEmulatedMaskMemRefHack(&
I, VF) &&
4954 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4955 for (
const auto &[
I, IC] : ScalarCosts)
4956 ScalarCostsVF.
insert({
I, IC});
4959 for (
const auto &[
I,
Cost] : ScalarCosts) {
4961 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4964 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4968 PredicatedBBsAfterVectorization[VF].insert(BB);
4970 if (Pred->getSingleSuccessor() == BB)
4971 PredicatedBBsAfterVectorization[VF].insert(Pred);
4979 assert(!isUniformAfterVectorization(PredInst, VF) &&
4980 "Instruction marked uniform-after-vectorization will be predicated");
4998 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4999 isScalarAfterVectorization(
I, VF))
5004 if (isScalarWithPredication(
I, VF))
5017 for (
Use &U :
I->operands())
5019 if (isUniformAfterVectorization(J, VF))
5030 while (!Worklist.
empty()) {
5034 if (ScalarCosts.contains(
I))
5054 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5057 ScalarCost +=
TTI.getScalarizationOverhead(
5070 for (Use &U :
I->operands())
5073 "Instruction has non-scalar type");
5074 if (CanBeScalarized(J))
5076 else if (needsExtract(J, VF)) {
5088 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5092 Discount += VectorCost - ScalarCost;
5093 ScalarCosts[
I] = ScalarCost;
5109 ValuesToIgnoreForVF);
5116 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5129 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5130 << VF <<
" For instruction: " <<
I <<
'\n');
5159 const Loop *TheLoop) {
5167 auto *SE = PSE.
getSE();
5168 unsigned NumOperands = Gep->getNumOperands();
5169 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5170 Value *Opd = Gep->getOperand(Idx);
5172 !
Legal->isInductionVariable(Opd))
5181LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5184 "Scalarization cost of instruction implies vectorization.");
5186 return InstructionCost::getInvalid();
5189 auto *SE = PSE.
getSE();
5220 if (isPredicatedInst(
I)) {
5225 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5231 if (useEmulatedMaskMemRefHack(
I, VF))
5241LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5247 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5249 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5250 "Stride should be 1 or -1 for consecutive memory access");
5253 if (
Legal->isMaskRequired(
I)) {
5254 unsigned IID =
I->getOpcode() == Instruction::Load
5255 ? Intrinsic::masked_load
5256 : Intrinsic::masked_store;
5258 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5265 bool Reverse = ConsecutiveStride < 0;
5273LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5291 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5299 if (!IsLoopInvariantStoreValue)
5306LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5314 if (!
Legal->isUniform(Ptr, VF))
5317 unsigned IID =
I->getOpcode() == Instruction::Load
5318 ? Intrinsic::masked_gather
5319 : Intrinsic::masked_scatter;
5322 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5323 Legal->isMaskRequired(
I), Alignment,
I),
5328LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5330 const auto *Group = getInterleavedAccessGroup(
I);
5331 assert(Group &&
"Fail to get an interleaved access group.");
5338 unsigned InterleaveFactor = Group->getFactor();
5339 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5342 SmallVector<unsigned, 4> Indices;
5343 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5344 if (Group->getMember(IF))
5348 bool UseMaskForGaps =
5349 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5352 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5356 if (Group->isReverse()) {
5359 "Reverse masked interleaved access not supported.");
5360 Cost += Group->getNumMembers() *
5367std::optional<InstructionCost>
5374 return std::nullopt;
5392 return std::nullopt;
5403 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5405 return std::nullopt;
5411 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5420 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5423 BaseCost =
TTI.getArithmeticReductionCost(
5431 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5448 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5454 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5466 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5469 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5471 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5479 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5480 return I == RetI ? RedCost : 0;
5482 !
TheLoop->isLoopInvariant(RedOp)) {
5491 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5493 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5494 return I == RetI ? RedCost : 0;
5495 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5499 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5518 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5524 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5525 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5526 ExtraExtCost =
TTI.getCastInstrCost(
5533 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5534 return I == RetI ? RedCost : 0;
5538 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5544 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5545 return I == RetI ? RedCost : 0;
5549 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5553LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5564 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5565 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5568 return getWideningCost(
I, VF);
5572LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5573 ElementCount VF)
const {
5578 return InstructionCost::getInvalid();
5606 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5611 for (
auto *V : filterExtractingOperands(
Ops, VF))
5634 if (
Legal->isUniformMemOp(
I, VF)) {
5635 auto IsLegalToScalarize = [&]() {
5655 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5667 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5673 if (GatherScatterCost < ScalarizationCost)
5683 int ConsecutiveStride =
Legal->isConsecutivePtr(
5685 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5686 "Expected consecutive stride.");
5695 unsigned NumAccesses = 1;
5698 assert(Group &&
"Fail to get an interleaved access group.");
5704 NumAccesses = Group->getNumMembers();
5706 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5711 ? getGatherScatterCost(&
I, VF) * NumAccesses
5715 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5721 if (InterleaveCost <= GatherScatterCost &&
5722 InterleaveCost < ScalarizationCost) {
5724 Cost = InterleaveCost;
5725 }
else if (GatherScatterCost < ScalarizationCost) {
5727 Cost = GatherScatterCost;
5730 Cost = ScalarizationCost;
5737 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5738 if (
auto *
I = Group->getMember(Idx)) {
5740 getMemInstScalarizationCost(
I, VF));
5756 if (
TTI.prefersVectorizedAddressing())
5765 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5773 while (!Worklist.
empty()) {
5775 for (
auto &
Op :
I->operands())
5778 AddrDefs.
insert(InstOp).second)
5782 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5786 for (
User *U :
LI->users()) {
5796 for (
auto *
I : AddrDefs) {
5817 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5818 if (
Instruction *Member = Group->getMember(Idx)) {
5822 getMemoryInstructionCost(Member,
5824 : getMemInstScalarizationCost(Member, VF);
5837 ForcedScalars[VF].insert(
I);
5844 "Trying to set a vectorization decision for a scalar VF");
5846 auto ForcedScalar = ForcedScalars.find(VF);
5861 for (
auto &ArgOp : CI->
args())
5870 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5880 "Unexpected valid cost for scalarizing scalable vectors");
5887 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5888 ForcedScalar->second.contains(CI)) ||
5896 bool MaskRequired =
Legal->isMaskRequired(CI);
5899 for (
Type *ScalarTy : ScalarTys)
5908 std::nullopt, *RedCost);
5919 if (Info.Shape.VF != VF)
5923 if (MaskRequired && !Info.isMasked())
5927 bool ParamsOk =
true;
5929 switch (Param.ParamKind) {
5935 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5972 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5983 if (VectorCost <=
Cost) {
6005 return !OpI || !
TheLoop->contains(OpI) ||
6009 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6021 return InstsToScalarize[VF][
I];
6024 auto ForcedScalar = ForcedScalars.find(VF);
6025 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6026 auto InstSet = ForcedScalar->second;
6027 if (InstSet.count(
I))
6032 Type *RetTy =
I->getType();
6035 auto *SE =
PSE.getSE();
6039 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6044 auto Scalarized = InstsToScalarize.find(VF);
6045 assert(Scalarized != InstsToScalarize.end() &&
6046 "VF not yet analyzed for scalarization profitability");
6047 return !Scalarized->second.count(
I) &&
6049 auto *UI = cast<Instruction>(U);
6050 return !Scalarized->second.count(UI);
6059 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6060 I->getOpcode() == Instruction::PHI ||
6061 (
I->getOpcode() == Instruction::BitCast &&
6062 I->getType()->isPointerTy()) ||
6063 HasSingleCopyAfterVectorization(
I, VF));
6069 !
TTI.getNumberOfParts(VectorTy))
6073 switch (
I->getOpcode()) {
6074 case Instruction::GetElementPtr:
6080 case Instruction::Br: {
6087 bool ScalarPredicatedBB =
false;
6090 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6091 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6093 ScalarPredicatedBB =
true;
6095 if (ScalarPredicatedBB) {
6103 TTI.getScalarizationOverhead(
6111 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6119 case Instruction::Switch: {
6121 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6123 return Switch->getNumCases() *
6124 TTI.getCmpSelInstrCost(
6126 toVectorTy(Switch->getCondition()->getType(), VF),
6130 case Instruction::PHI: {
6147 Type *ResultTy = Phi->getType();
6153 auto *Phi = dyn_cast<PHINode>(U);
6154 if (Phi && Phi->getParent() == TheLoop->getHeader())
6159 auto &ReductionVars =
Legal->getReductionVars();
6160 auto Iter = ReductionVars.find(HeaderUser);
6161 if (Iter != ReductionVars.end() &&
6163 Iter->second.getRecurrenceKind()))
6166 return (Phi->getNumIncomingValues() - 1) *
6167 TTI.getCmpSelInstrCost(
6168 Instruction::Select,
toVectorTy(ResultTy, VF),
6178 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6179 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6183 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6185 case Instruction::UDiv:
6186 case Instruction::SDiv:
6187 case Instruction::URem:
6188 case Instruction::SRem:
6192 ScalarCost : SafeDivisorCost;
6196 case Instruction::Add:
6197 case Instruction::Sub: {
6198 auto Info =
Legal->getHistogramInfo(
I);
6205 if (!RHS || RHS->getZExtValue() != 1)
6207 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6211 Type *ScalarTy =
I->getType();
6215 {PtrTy, ScalarTy, MaskTy});
6218 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6219 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6223 case Instruction::FAdd:
6224 case Instruction::FSub:
6225 case Instruction::Mul:
6226 case Instruction::FMul:
6227 case Instruction::FDiv:
6228 case Instruction::FRem:
6229 case Instruction::Shl:
6230 case Instruction::LShr:
6231 case Instruction::AShr:
6232 case Instruction::And:
6233 case Instruction::Or:
6234 case Instruction::Xor: {
6238 if (
I->getOpcode() == Instruction::Mul &&
6239 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6240 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6241 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6242 PSE.getSCEV(
I->getOperand(1))->isOne())))
6251 Value *Op2 =
I->getOperand(1);
6257 auto Op2Info =
TTI.getOperandInfo(Op2);
6263 return TTI.getArithmeticInstrCost(
6265 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6266 Op2Info, Operands,
I,
TLI);
6268 case Instruction::FNeg: {
6269 return TTI.getArithmeticInstrCost(
6271 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6272 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6273 I->getOperand(0),
I);
6275 case Instruction::Select: {
6280 const Value *Op0, *Op1;
6291 return TTI.getArithmeticInstrCost(
6293 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6296 Type *CondTy =
SI->getCondition()->getType();
6302 Pred = Cmp->getPredicate();
6303 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6304 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6305 {TTI::OK_AnyValue, TTI::OP_None},
I);
6307 case Instruction::ICmp:
6308 case Instruction::FCmp: {
6309 Type *ValTy =
I->getOperand(0)->getType();
6315 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6316 "if both the operand and the compare are marked for "
6317 "truncation, they must have the same bitwidth");
6322 return TTI.getCmpSelInstrCost(
6325 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6327 case Instruction::Store:
6328 case Instruction::Load: {
6333 "CM decision should be taken at this point");
6340 return getMemoryInstructionCost(
I, VF);
6342 case Instruction::BitCast:
6343 if (
I->getType()->isPointerTy())
6346 case Instruction::ZExt:
6347 case Instruction::SExt:
6348 case Instruction::FPToUI:
6349 case Instruction::FPToSI:
6350 case Instruction::FPExt:
6351 case Instruction::PtrToInt:
6352 case Instruction::IntToPtr:
6353 case Instruction::SIToFP:
6354 case Instruction::UIToFP:
6355 case Instruction::Trunc:
6356 case Instruction::FPTrunc: {
6360 "Expected a load or a store!");
6386 unsigned Opcode =
I->getOpcode();
6389 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6392 CCH = ComputeCCH(Store);
6395 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6396 Opcode == Instruction::FPExt) {
6398 CCH = ComputeCCH(Load);
6406 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6407 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6414 Type *SrcScalarTy =
I->getOperand(0)->getType();
6426 (
I->getOpcode() == Instruction::ZExt ||
6427 I->getOpcode() == Instruction::SExt))
6431 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6433 case Instruction::Call:
6435 case Instruction::ExtractValue:
6437 case Instruction::Alloca:
6445 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6460 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6461 return RequiresScalarEpilogue &&
6475 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6476 return VecValuesToIgnore.contains(U) ||
6477 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6486 if (Group->getInsertPos() == &
I)
6489 DeadInterleavePointerOps.
push_back(PointerOp);
6495 if (Br->isConditional())
6502 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6505 Instruction *UI = cast<Instruction>(U);
6506 return !VecValuesToIgnore.contains(U) &&
6507 (!isAccessInterleaved(UI) ||
6508 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6528 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6540 if ((ThenEmpty && ElseEmpty) ||
6542 ElseBB->
phis().empty()) ||
6544 ThenBB->
phis().empty())) {
6556 return !VecValuesToIgnore.contains(U) &&
6557 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6565 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6574 for (
const auto &Reduction :
Legal->getReductionVars()) {
6581 for (
const auto &Induction :
Legal->getInductionVars()) {
6589 if (!InLoopReductions.empty())
6592 for (
const auto &Reduction :
Legal->getReductionVars()) {
6593 PHINode *Phi = Reduction.first;
6614 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6622 bool InLoop = !ReductionOperations.
empty();
6625 InLoopReductions.insert(Phi);
6628 for (
auto *
I : ReductionOperations) {
6629 InLoopReductionImmediateChains[
I] = LastChain;
6633 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6634 <<
" reduction for phi: " << *Phi <<
"\n");
6647 unsigned WidestType;
6651 TTI.enableScalableVectorization()
6656 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6667 if (!OrigLoop->isInnermost()) {
6677 <<
"overriding computed VF.\n");
6680 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6682 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6683 <<
"not supported by the target.\n");
6685 "Scalable vectorization requested but not supported by the target",
6686 "the scalable user-specified vectorization width for outer-loop "
6687 "vectorization cannot be used because the target does not support "
6688 "scalable vectors.",
6689 "ScalableVFUnfeasible", ORE, OrigLoop);
6694 "VF needs to be a power of two");
6696 <<
"VF " << VF <<
" to build VPlans.\n");
6706 return {VF, 0 , 0 };
6710 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6711 "VPlan-native path.\n");
6716 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6717 CM.collectValuesToIgnore();
6718 CM.collectElementTypesForWidening();
6725 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6729 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6730 "which requires masked-interleaved support.\n");
6731 if (CM.InterleaveInfo.invalidateGroups())
6735 CM.invalidateCostModelingDecisions();
6738 if (CM.foldTailByMasking())
6739 Legal->prepareToFoldTailByMasking();
6746 "UserVF ignored because it may be larger than the maximal safe VF",
6747 "InvalidUserVF", ORE, OrigLoop);
6750 "VF needs to be a power of two");
6753 CM.collectInLoopReductions();
6754 if (CM.selectUserVectorizationFactor(UserVF)) {
6756 buildVPlansWithVPRecipes(UserVF, UserVF);
6761 "InvalidCost", ORE, OrigLoop);
6774 CM.collectInLoopReductions();
6775 for (
const auto &VF : VFCandidates) {
6777 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6796 return CM.isUniformAfterVectorization(
I, VF);
6800 return CM.ValuesToIgnore.contains(UI) ||
6801 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6806 return CM.getPredBlockCostDivisor(
CostKind, BB);
6825 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6827 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6829 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6830 for (
Value *
Op : IVInsts[
I]->operands()) {
6832 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6838 for (User *U :
IV->users()) {
6851 if (TC == VF && !CM.foldTailByMasking())
6855 for (Instruction *IVInst : IVInsts) {
6860 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6861 <<
": induction instruction " << *IVInst <<
"\n";
6863 Cost += InductionCost;
6873 CM.TheLoop->getExitingBlocks(Exiting);
6874 SetVector<Instruction *> ExitInstrs;
6876 for (BasicBlock *EB : Exiting) {
6881 ExitInstrs.
insert(CondI);
6885 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6887 if (!OrigLoop->contains(CondI) ||
6892 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6893 <<
": exit condition instruction " << *CondI <<
"\n";
6899 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6900 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6901 !ExitInstrs.contains(cast<Instruction>(U));
6913 for (BasicBlock *BB : OrigLoop->blocks()) {
6917 if (BB == OrigLoop->getLoopLatch())
6919 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6926 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6932 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6933 <<
": forced scalar " << *ForcedScalar <<
"\n";
6937 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6942 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6943 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6952 ElementCount VF)
const {
6953 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE(),
6962 <<
" (Estimated cost per lane: ");
6964 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6987 return &WidenMem->getIngredient();
6996 if (!VPI || VPI->getOpcode() != Instruction::Select)
7000 switch (WR->getOpcode()) {
7001 case Instruction::UDiv:
7002 case Instruction::SDiv:
7003 case Instruction::URem:
7004 case Instruction::SRem:
7017 auto *IG =
IR->getInterleaveGroup();
7018 unsigned NumMembers = IG->getNumMembers();
7019 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7037 if (VPR->isPartialReduction())
7054 if (RepR->isSingleScalar() &&
7056 RepR->getUnderlyingInstr(), VF))
7059 if (
Instruction *UI = GetInstructionForCost(&R)) {
7064 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7076 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7078 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7081 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7082 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7084 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7094 VPlan &FirstPlan = *VPlans[0];
7100 ?
"Reciprocal Throughput\n"
7102 ?
"Instruction Latency\n"
7105 ?
"Code Size and Latency\n"
7110 "More than a single plan/VF w/o any plan having scalar VF");
7114 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7119 if (ForceVectorization) {
7126 for (
auto &
P : VPlans) {
7128 P->vectorFactors().end());
7132 return CM.shouldConsiderRegPressureForVF(VF);
7136 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7143 <<
"LV: Not considering vector loop of width " << VF
7144 <<
" because it will not generate any vector instructions.\n");
7150 <<
"LV: Not considering vector loop of width " << VF
7151 <<
" because it would cause replicated blocks to be generated,"
7152 <<
" which isn't allowed when optimizing for size.\n");
7159 if (CM.shouldConsiderRegPressureForVF(VF) &&
7161 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7162 << VF <<
" because it uses too many registers\n");
7166 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7167 BestFactor = CurrentFactor;
7170 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7171 ProfitableVFs.push_back(CurrentFactor);
7187 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7188 *CM.PSE.getSE(), OrigLoop);
7189 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7196 bool UsesEVLGatherScatter =
7200 return any_of(*VPBB, [](VPRecipeBase &R) {
7201 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7202 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7206 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7207 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7209 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7211 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7212 " VPlan cost model and legacy cost model disagreed");
7213 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7214 "when vectorizing, the scalar cost must be computed.");
7217 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7224 "RdxResult must be ComputeFindIVResult");
7242 if (!EpiRedResult ||
7248 auto *EpiRedHeaderPhi =
7250 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7251 Value *MainResumeValue;
7255 "unexpected start recipe");
7256 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7258 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7260 [[maybe_unused]]
Value *StartV =
7261 EpiRedResult->getOperand(1)->getLiveInIRValue();
7264 "AnyOf expected to start with ICMP_NE");
7265 assert(Cmp->getOperand(1) == StartV &&
7266 "AnyOf expected to start by comparing main resume value to original "
7268 MainResumeValue = Cmp->getOperand(0);
7271 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7273 Value *Cmp, *OrigResumeV, *CmpOp;
7274 [[maybe_unused]]
bool IsExpectedPattern =
7275 match(MainResumeValue,
7281 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7282 MainResumeValue = OrigResumeV;
7297 "Trying to execute plan with unsupported VF");
7299 "Trying to execute plan with unsupported UF");
7301 ++LoopsEarlyExitVectorized;
7309 bool HasBranchWeights =
7311 if (HasBranchWeights) {
7312 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7314 BestVPlan, BestVF, VScale);
7319 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7332 OrigLoop->getStartLoc(),
7333 OrigLoop->getHeader())
7334 <<
"Created vector loop never executes due to insufficient trip "
7355 BestVPlan, VectorPH, CM.foldTailByMasking(),
7356 CM.requiresScalarEpilogue(BestVF.
isVector()));
7368 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7369 "count during epilogue vectorization");
7373 OrigLoop->getParentLoop(),
7374 Legal->getWidestInductionType());
7376#ifdef EXPENSIVE_CHECKS
7377 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7388 "final VPlan is invalid");
7395 if (!Exit->hasPredecessors())
7417 MDNode *LID = OrigLoop->getLoopID();
7418 unsigned OrigLoopInvocationWeight = 0;
7419 std::optional<unsigned> OrigAverageTripCount =
7431 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7433 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7435 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7436 OrigLoopInvocationWeight,
7438 DisableRuntimeUnroll);
7446 return ExpandedSCEVs;
7461 EPI.EpilogueIterationCountCheck =
7463 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7473 EPI.MainLoopIterationCountCheck =
7482 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7483 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7484 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7485 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7486 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7492 dbgs() <<
"intermediate fn:\n"
7493 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7499 assert(Bypass &&
"Expected valid bypass basic block.");
7503 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7504 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7508 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7534 return TCCheckBlock;
7547 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7555 R.moveBefore(*NewEntry, NewEntry->
end());
7559 Plan.setEntry(NewEntry);
7562 return OriginalScalarPH;
7567 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7568 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7569 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7575 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7582 VPI->
getOpcode() == Instruction::Store) &&
7583 "Must be called with either a load or store");
7590 "CM decision should be taken at this point.");
7603 if (
Legal->isMaskRequired(
I))
7628 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7634 GEP ?
GEP->getNoWrapFlags()
7638 Builder.insert(VectorPtr);
7641 if (VPI->
getOpcode() == Instruction::Load) {
7643 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse, *VPI,
7648 return new VPWidenStoreRecipe(*Store, Ptr, VPI->
getOperand(0), Mask,
7659 "step must be loop invariant");
7663 "Start VPValue must match IndDesc's start value");
7685VPRecipeBuilder::tryToOptimizeInductionPHI(
VPInstruction *VPI) {
7690 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7694 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7696 return new VPWidenPointerInductionRecipe(Phi, VPI->
getOperand(0), Step,
7697 &Plan.getVFxUF(), *
II,
7704VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7714 auto IsOptimizableIVTruncate =
7715 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7716 return [=](ElementCount VF) ->
bool {
7717 return CM.isOptimizableIVTruncate(K, VF);
7722 IsOptimizableIVTruncate(
I),
Range))
7729 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7737 return new VPWidenIntOrFpInductionRecipe(
7738 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7745 [
this, CI](ElementCount VF) {
7746 return CM.isScalarWithPredication(CI, VF);
7754 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7755 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7756 ID == Intrinsic::pseudoprobe ||
7757 ID == Intrinsic::experimental_noalias_scope_decl))
7764 bool ShouldUseVectorIntrinsic =
7766 [&](ElementCount VF) ->
bool {
7767 return CM.getCallWideningDecision(CI, VF).Kind ==
7771 if (ShouldUseVectorIntrinsic)
7772 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7776 std::optional<unsigned> MaskPos;
7780 [&](ElementCount VF) ->
bool {
7795 LoopVectorizationCostModel::CallWideningDecision Decision =
7796 CM.getCallWideningDecision(CI, VF);
7806 if (ShouldUseVectorCall) {
7807 if (MaskPos.has_value()) {
7815 VPValue *
Mask =
nullptr;
7816 if (Legal->isMaskRequired(CI))
7819 Mask = Plan.getOrAddLiveIn(
7822 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7826 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7835 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7838 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7839 return CM.isScalarAfterVectorization(
I, VF) ||
7840 CM.isProfitableToScalarize(
I, VF) ||
7841 CM.isScalarWithPredication(
I, VF);
7852 case Instruction::SDiv:
7853 case Instruction::UDiv:
7854 case Instruction::SRem:
7855 case Instruction::URem: {
7858 if (CM.isPredicatedInst(
I)) {
7861 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7869 case Instruction::Add:
7870 case Instruction::And:
7871 case Instruction::AShr:
7872 case Instruction::FAdd:
7873 case Instruction::FCmp:
7874 case Instruction::FDiv:
7875 case Instruction::FMul:
7876 case Instruction::FNeg:
7877 case Instruction::FRem:
7878 case Instruction::FSub:
7879 case Instruction::ICmp:
7880 case Instruction::LShr:
7881 case Instruction::Mul:
7882 case Instruction::Or:
7883 case Instruction::Select:
7884 case Instruction::Shl:
7885 case Instruction::Sub:
7886 case Instruction::Xor:
7887 case Instruction::Freeze: {
7893 ScalarEvolution &SE = *PSE.getSE();
7894 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7895 if (!
Op->isLiveIn())
7897 Value *
V =
Op->getUnderlyingValue();
7903 return Plan.getOrAddLiveIn(
C->getValue());
7906 if (VPI->
getOpcode() == Instruction::Mul)
7907 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7909 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7911 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7913 case Instruction::ExtractValue: {
7916 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7917 unsigned Idx = EVI->getIndices()[0];
7918 NewOps.push_back(Plan.getConstantInt(32, Idx));
7919 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7927 unsigned Opcode =
HI->Update->getOpcode();
7928 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7929 "Histogram update operation must be an Add or Sub");
7939 if (Legal->isMaskRequired(
HI->Store))
7942 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7949 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7952 bool IsPredicated = CM.isPredicatedInst(
I);
7960 case Intrinsic::assume:
7961 case Intrinsic::lifetime_start:
7962 case Intrinsic::lifetime_end:
7984 VPValue *BlockInMask =
nullptr;
7985 if (!IsPredicated) {
7989 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8000 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8002 "Should not predicate a uniform recipe");
8018 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8019 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8020 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8029 for (
const auto &[
_, Chains] : ChainsByPhi)
8030 for (
const auto &[PartialRdx,
_] : Chains)
8031 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8033 auto ExtendIsOnlyUsedByPartialReductions =
8035 return all_of(Extend->users(), [&](
const User *U) {
8036 return PartialReductionOps.contains(U);
8042 for (
const auto &[
_, Chains] : ChainsByPhi) {
8043 for (
const auto &[Chain, Scale] : Chains) {
8044 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8046 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8047 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8055 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8056 for (
const auto &[Chain, Scale] : Chains) {
8057 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8058 this](
const User *U) {
8060 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8061 return UI == RdxPhi;
8062 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8063 !OrigLoop->contains(UI->getParent());
8068 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8069 for (
const auto &[Chain,
_] : Chains)
8070 ScaledReductionMap.erase(Chain.Reduction);
8077bool VPRecipeBuilder::getScaledReductions(
8079 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8087 Value *
Op = Update->getOperand(0);
8088 Value *PhiOp = Update->getOperand(1);
8098 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8102 Op = Cast->getOperand(0);
8109 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8110 PHI = Chains.rbegin()->first.Reduction;
8112 Op = Update->getOperand(0);
8113 PhiOp = Update->getOperand(1);
8126 std::optional<unsigned> BinOpc;
8127 Type *ExtOpTypes[2] = {
nullptr};
8130 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8131 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8136 ExtOpTypes[
I] = ExtOpTypes[0];
8137 ExtKinds[
I] = ExtKinds[0];
8146 if (!CM.TheLoop->contains(Exts[
I]))
8153 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8168 if (!CollectExtInfo(
Ops))
8171 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8175 if (!CollectExtInfo(
Ops))
8178 ExtendUser = Update;
8179 BinOpc = std::nullopt;
8183 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8185 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8192 [&](ElementCount VF) {
8194 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8195 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8200 Chains.emplace_back(Chain, TargetScaleFactor);
8217 "Non-header phis should have been handled during predication");
8219 assert(R->getNumOperands() == 2 &&
"Must have 2 operands for header phis");
8220 if ((Recipe = tryToOptimizeInductionPHI(PhiR)))
8224 assert((Legal->isReductionVariable(Phi) ||
8225 Legal->isFixedOrderRecurrence(Phi)) &&
8226 "can only widen reductions and fixed-order recurrences here");
8227 VPValue *StartV = R->getOperand(0);
8228 if (Legal->isReductionVariable(Phi)) {
8231 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8234 bool UseInLoopReduction = CM.isInLoopReduction(Phi);
8235 bool UseOrderedReductions = CM.useOrderedReductions(RdxDesc);
8236 unsigned ScaleFactor =
8255 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8259 if (VPI->
getOpcode() == Instruction::Trunc &&
8260 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8268 if (VPI->
getOpcode() == Instruction::Call)
8269 return tryToWidenCall(VPI,
Range);
8271 if (VPI->
getOpcode() == Instruction::Store)
8273 return tryToWidenHistogram(*HistInfo, VPI);
8275 if (VPI->
getOpcode() == Instruction::Load ||
8277 return tryToWidenMemory(VPI,
Range);
8282 if (!shouldWiden(Instr,
Range))
8285 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8289 if (VPI->
getOpcode() == Instruction::Select)
8297 CastR->getResultType(), CI, *VPI, *VPI,
8301 return tryToWiden(VPI);
8306 unsigned ScaleFactor) {
8307 assert(Reduction->getNumOperands() == 2 &&
8308 "Unexpected number of operands for partial reduction");
8310 VPValue *BinOp = Reduction->getOperand(0);
8320 "all accumulators in chain must have same scale factor");
8322 auto *ReductionI = Reduction->getUnderlyingInstr();
8323 if (Reduction->getOpcode() == Instruction::Sub) {
8324 auto *
const Zero = ConstantInt::get(ReductionI->getType(), 0);
8326 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8327 Ops.push_back(BinOp);
8334 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8342void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8351 OrigLoop, LI, DT, PSE.
getSE());
8356 LVer.prepareNoAliasMetadata();
8362 OrigLoop, *LI,
Legal->getWidestInductionType(),
8365 auto MaxVFTimes2 = MaxVF * 2;
8367 VFRange SubRange = {VF, MaxVFTimes2};
8368 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8369 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8373 *Plan, CM.getMinimalBitwidths());
8376 if (CM.foldTailWithEVL())
8378 *Plan, CM.getMaxSafeElements());
8380 VPlans.push_back(std::move(Plan));
8386VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8389 using namespace llvm::VPlanPatternMatch;
8390 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8397 bool RequiresScalarEpilogueCheck =
8399 [
this](ElementCount VF) {
8400 return !CM.requiresScalarEpilogue(VF.
isVector());
8405 CM.foldTailByMasking());
8413 bool IVUpdateMayOverflow =
false;
8414 for (ElementCount VF :
Range)
8422 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8428 m_VPInstruction<Instruction::Add>(
8430 "Did not find the canonical IV increment");
8443 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8444 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8446 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8451 "Unsupported interleave factor for scalable vectors");
8456 InterleaveGroups.
insert(IG);
8463 *Plan, CM.foldTailByMasking());
8469 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8470 Builder, BlockMaskCache);
8472 if (!CM.foldTailWithEVL())
8473 RecipeBuilder.collectScaledReductions(
Range);
8478 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8481 auto *MiddleVPBB = Plan->getMiddleBlock();
8485 DenseMap<VPValue *, VPValue *> Old2New;
8490 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8505 Builder.setInsertPoint(SingleDef);
8512 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8514 if (Legal->isInvariantStoreOfReduction(SI)) {
8516 auto *Recipe =
new VPReplicateRecipe(
8517 SI,
R.operands(),
true ,
nullptr , *VPI,
8519 Recipe->insertBefore(*MiddleVPBB, MBIP);
8521 R.eraseFromParent();
8525 VPRecipeBase *Recipe =
8526 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8531 RecipeBuilder.setRecipe(Instr, Recipe);
8537 Builder.insert(Recipe);
8544 "Unexpected multidef recipe");
8545 R.eraseFromParent();
8554 RecipeBuilder.updateBlockMaskCache(Old2New);
8555 for (VPValue *Old : Old2New.
keys())
8556 Old->getDefiningRecipe()->eraseFromParent();
8560 "entry block must be set to a VPRegionBlock having a non-empty entry "
8566 DenseMap<VPValue *, VPValue *> IVEndValues;
8575 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8592 if (!CM.foldTailWithEVL()) {
8593 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8594 *CM.PSE.getSE(), OrigLoop);
8599 for (ElementCount VF :
Range)
8601 Plan->setName(
"Initial VPlan");
8607 InterleaveGroups, RecipeBuilder,
8608 CM.isScalarEpilogueAllowed());
8612 Legal->getLAI()->getSymbolicStrides());
8614 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8615 return Legal->blockNeedsPredication(BB);
8618 BlockNeedsPredication);
8630 bool WithoutRuntimeCheck =
8633 WithoutRuntimeCheck);
8646 assert(!OrigLoop->isInnermost());
8650 OrigLoop, *LI, Legal->getWidestInductionType(),
8659 for (ElementCount VF :
Range)
8664 [
this](PHINode *
P) {
8665 return Legal->getIntOrFpInductionDescriptor(
P);
8674 DenseMap<VPValue *, VPValue *> IVEndValues;
8694void LoopVectorizationPlanner::adjustRecipesForReductions(
8696 using namespace VPlanPatternMatch;
8697 VPTypeAnalysis TypeInfo(*Plan);
8698 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8700 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8703 for (VPRecipeBase &R : Header->phis()) {
8705 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8712 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8714 bool IsFPRecurrence =
8716 FastMathFlags FMFs =
8720 SetVector<VPSingleDefRecipe *> Worklist;
8722 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8723 VPSingleDefRecipe *Cur = Worklist[
I];
8724 for (VPUser *U : Cur->
users()) {
8726 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8727 assert((UserRecipe->getParent() == MiddleVPBB ||
8728 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8729 "U must be either in the loop region, the middle block or the "
8730 "scalar preheader.");
8733 Worklist.
insert(UserRecipe);
8744 VPSingleDefRecipe *PreviousLink = PhiR;
8745 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8747 assert(Blend->getNumIncomingValues() == 2 &&
8748 "Blend must have 2 incoming values");
8749 if (Blend->getIncomingValue(0) == PhiR) {
8750 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8752 assert(Blend->getIncomingValue(1) == PhiR &&
8753 "PhiR must be an operand of the blend");
8754 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8759 if (IsFPRecurrence) {
8760 FastMathFlags CurFMF =
8764 ->getFastMathFlags();
8768 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8771 unsigned IndexOfFirstOperand;
8775 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8779 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8782 CurrentLink->getOperand(2) == PreviousLink &&
8783 "expected a call where the previous link is the added operand");
8789 VPInstruction *FMulRecipe =
new VPInstruction(
8791 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8793 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8797 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8798 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8799 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8800 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8802 Sub->setUnderlyingValue(CurrentLinkI);
8803 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8810 "must be a select recipe");
8811 IndexOfFirstOperand = 1;
8814 "Expected to replace a VPWidenSC");
8815 IndexOfFirstOperand = 0;
8820 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8821 ? IndexOfFirstOperand + 1
8822 : IndexOfFirstOperand;
8823 VecOp = CurrentLink->getOperand(VecOpId);
8824 assert(VecOp != PreviousLink &&
8825 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8826 (VecOpId - IndexOfFirstOperand)) ==
8828 "PreviousLink must be the operand other than VecOp");
8831 VPValue *CondOp =
nullptr;
8832 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8837 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8844 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8848 CurrentLink->replaceAllUsesWith(RedRecipe);
8850 PreviousLink = RedRecipe;
8854 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8856 for (VPRecipeBase &R :
8857 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8862 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8864 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8874 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8875 (!RR || !RR->isPartialReduction())) {
8877 std::optional<FastMathFlags> FMFs =
8882 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8883 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8892 if (CM.usePredicatedReductionSelect())
8903 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8909 VPInstruction *FinalReductionResult;
8910 VPBuilder::InsertPointGuard Guard(Builder);
8911 Builder.setInsertPoint(MiddleVPBB, IP);
8916 FinalReductionResult =
8921 FinalReductionResult =
8923 {PhiR,
Start, NewExitingVPV}, ExitDL);
8929 FinalReductionResult =
8931 {PhiR, NewExitingVPV},
Flags, ExitDL);
8938 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8940 "Unexpected truncated min-max recurrence!");
8942 VPWidenCastRecipe *Trunc;
8944 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8945 VPWidenCastRecipe *Extnd;
8947 VPBuilder::InsertPointGuard Guard(Builder);
8948 Builder.setInsertPoint(
8949 NewExitingVPV->getDefiningRecipe()->getParent(),
8950 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8952 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8953 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8961 FinalReductionResult =
8962 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8967 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8969 if (FinalReductionResult == U || Parent->getParent())
8971 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8983 return isa<VPWidenSelectRecipe>(U) ||
8984 (isa<VPReplicateRecipe>(U) &&
8985 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8986 Instruction::Select);
8991 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8993 Builder.setInsertPoint(
Select);
8997 if (
Select->getOperand(1) == PhiR)
8998 Cmp = Builder.createNot(Cmp);
8999 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9000 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9020 VPBuilder PHBuilder(Plan->getVectorPreheader());
9021 VPValue *Iden = Plan->getOrAddLiveIn(
9024 unsigned ScaleFactor =
9027 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
9028 VPValue *StartV = PHBuilder.createNaryOp(
9036 for (VPRecipeBase *R : ToDelete)
9037 R->eraseFromParent();
9042void LoopVectorizationPlanner::attachRuntimeChecks(
9043 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9044 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9045 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9046 assert((!CM.OptForSize ||
9048 "Cannot SCEV check stride or overflow when optimizing for size");
9052 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9053 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9057 "Runtime checks are not supported for outer loops yet");
9059 if (CM.OptForSize) {
9062 "Cannot emit memory checks when optimizing for size, unless forced "
9065 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9066 OrigLoop->getStartLoc(),
9067 OrigLoop->getHeader())
9068 <<
"Code-size may be reduced by not forcing "
9069 "vectorization, or by source-code modifications "
9070 "eliminating the need for runtime checks "
9071 "(e.g., adding 'restrict').";
9085 bool IsIndvarOverflowCheckNeededForVF =
9086 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9088 CM.getTailFoldingStyle() !=
9095 Plan, VF, UF, MinProfitableTripCount,
9096 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9097 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9098 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9103 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9108 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9116 State.set(
this, DerivedIV,
VPLane(0));
9129 if (
F->hasOptSize() ||
9155 if (
TTI->preferPredicateOverEpilogue(&TFI))
9173 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9177 Function *
F = L->getHeader()->getParent();
9183 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9184 &Hints, IAI, OptForSize);
9188 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9208 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9212 << L->getHeader()->getParent()->getName() <<
"\"\n");
9234 if (S->getValueOperand()->getType()->isFloatTy())
9244 while (!Worklist.
empty()) {
9246 if (!L->contains(
I))
9248 if (!Visited.
insert(
I).second)
9258 I->getDebugLoc(), L->getHeader())
9259 <<
"floating point conversion changes vector width. "
9260 <<
"Mixed floating point precision requires an up/down "
9261 <<
"cast that will negatively impact performance.";
9264 for (
Use &
Op :
I->operands())
9280 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9286 << PredVPBB->getName() <<
":\n");
9287 Cost += PredVPBB->cost(VF, CostCtx);
9307 std::optional<unsigned> VScale) {
9331 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9392 uint64_t MinTC = std::max(MinTC1, MinTC2);
9394 MinTC =
alignTo(MinTC, IntVF);
9398 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9405 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9406 "trip count < minimum profitable VF ("
9417 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9419 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9440 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9459 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9460 bool UpdateResumePhis) {
9470 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9472 if (UpdateResumePhis)
9478 AddFreezeForFindLastIVReductions(MainPlan,
true);
9479 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9486 auto ResumePhiIter =
9488 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9491 VPPhi *ResumePhi =
nullptr;
9492 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9497 {},
"vec.epilog.resume.val");
9500 if (MainScalarPH->
begin() == MainScalarPH->
end())
9502 else if (&*MainScalarPH->
begin() != ResumePhi)
9517 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9522 Header->
setName(
"vec.epilog.vector.body");
9533 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9538 "Must only have a single non-zero incoming value");
9549 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9550 "all incoming values must be 0");
9556 return isa<VPScalarIVStepsRecipe>(U) ||
9557 isa<VPDerivedIVRecipe>(U) ||
9558 cast<VPRecipeBase>(U)->isScalarCast() ||
9559 cast<VPInstruction>(U)->getOpcode() ==
9562 "the canonical IV should only be used by its increment or "
9563 "ScalarIVSteps when resetting the start value");
9564 VPBuilder Builder(Header, Header->getFirstNonPhi());
9566 IV->replaceAllUsesWith(
Add);
9567 Add->setOperand(0,
IV);
9575 Value *ResumeV =
nullptr;
9580 auto *VPI = dyn_cast<VPInstruction>(U);
9582 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9583 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9584 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9587 ->getIncomingValueForBlock(L->getLoopPreheader());
9588 RecurKind RK = ReductionPhi->getRecurrenceKind();
9596 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9601 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9612 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9615 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9616 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9624 "unexpected start value");
9637 assert(ResumeV &&
"Must have a resume value");
9651 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9668 ExpandR->eraseFromParent();
9672 unsigned MainLoopStep =
9674 unsigned EpilogueLoopStep =
9679 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9690 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9695 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9696 if (OrigPhi != OldInduction) {
9697 auto *BinOp =
II.getInductionBinOp();
9703 EndValueFromAdditionalBypass =
9705 II.getStartValue(), Step,
II.getKind(), BinOp);
9706 EndValueFromAdditionalBypass->
setName(
"ind.end");
9708 return EndValueFromAdditionalBypass;
9714 const SCEV2ValueTy &ExpandedSCEVs,
9715 Value *MainVectorTripCount) {
9720 if (Phi.getBasicBlockIndex(Pred) != -1)
9722 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9726 if (ScalarPH->hasPredecessors()) {
9729 for (
const auto &[R, IRPhi] :
9730 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9739 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9741 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9744 Inc->setIncomingValueForBlock(BypassBlock, V);
9767 "expected this to be saved from the previous pass.");
9770 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9773 VecEpilogueIterationCountCheck},
9775 VecEpiloguePreHeader}});
9780 VecEpilogueIterationCountCheck, ScalarPH);
9783 VecEpilogueIterationCountCheck},
9787 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9788 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9789 if (SCEVCheckBlock) {
9791 VecEpilogueIterationCountCheck, ScalarPH);
9793 VecEpilogueIterationCountCheck},
9796 if (MemCheckBlock) {
9798 VecEpilogueIterationCountCheck, ScalarPH);
9811 for (
PHINode *Phi : PhisInBlock) {
9813 Phi->replaceIncomingBlockWith(
9815 VecEpilogueIterationCountCheck);
9822 return EPI.EpilogueIterationCountCheck == IncB;
9827 Phi->removeIncomingValue(SCEVCheckBlock);
9829 Phi->removeIncomingValue(MemCheckBlock);
9833 for (
auto *
I : InstsToMove)
9845 "VPlan-native path is not enabled. Only process inner loops.");
9848 << L->getHeader()->getParent()->getName() <<
"' from "
9849 << L->getLocStr() <<
"\n");
9854 dbgs() <<
"LV: Loop hints:"
9865 Function *
F = L->getHeader()->getParent();
9890 &Requirements, &Hints,
DB,
AC,
9893 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9900 "early exit is not enabled",
9901 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9907 "faulting load is not supported",
9908 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9917 if (!L->isInnermost())
9919 ORE, OptForSize, Hints, Requirements);
9921 assert(L->isInnermost() &&
"Inner loop expected.");
9924 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9938 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9940 "requiring a scalar epilogue is unsupported",
9941 "UncountableEarlyExitUnsupported",
ORE, L);
9954 if (ExpectedTC && ExpectedTC->isFixed() &&
9956 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9957 <<
"This loop is worth vectorizing only if no scalar "
9958 <<
"iteration overheads are incurred.");
9960 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9976 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9978 "Can't vectorize when the NoImplicitFloat attribute is used",
9979 "loop not vectorized due to NoImplicitFloat attribute",
9980 "NoImplicitFloat",
ORE, L);
9990 TTI->isFPVectorizationPotentiallyUnsafe()) {
9992 "Potentially unsafe FP op prevents vectorization",
9993 "loop not vectorized due to unsafe FP support.",
9994 "UnsafeFP",
ORE, L);
9999 bool AllowOrderedReductions;
10004 AllowOrderedReductions =
TTI->enableOrderedReductions();
10009 ExactFPMathInst->getDebugLoc(),
10010 ExactFPMathInst->getParent())
10011 <<
"loop not vectorized: cannot prove it is safe to reorder "
10012 "floating-point operations";
10014 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10015 "reorder floating-point operations\n");
10021 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10022 F, &Hints, IAI, OptForSize);
10024 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10034 LVP.
plan(UserVF, UserIC);
10041 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10046 unsigned SelectedIC = std::max(IC, UserIC);
10055 if (Checks.getSCEVChecks().first &&
10056 match(Checks.getSCEVChecks().first,
m_One()))
10058 if (Checks.getMemRuntimeChecks().first &&
10059 match(Checks.getMemRuntimeChecks().first,
m_One()))
10064 bool ForceVectorization =
10068 if (!ForceVectorization &&
10074 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10076 <<
"loop not vectorized: cannot prove it is safe to reorder "
10077 "memory operations";
10086 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10087 bool VectorizeLoop =
true, InterleaveLoop =
true;
10089 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10091 "VectorizationNotBeneficial",
10092 "the cost-model indicates that vectorization is not beneficial"};
10093 VectorizeLoop =
false;
10098 "UserIC should only be ignored due to unsafe dependencies");
10099 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
10100 IntDiagMsg = {
"InterleavingUnsafe",
10101 "Ignoring user-specified interleave count due to possibly "
10102 "unsafe dependencies in the loop."};
10103 InterleaveLoop =
false;
10107 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10108 "interleaving should be avoided up front\n");
10109 IntDiagMsg = {
"InterleavingAvoided",
10110 "Ignoring UserIC, because interleaving was avoided up front"};
10111 InterleaveLoop =
false;
10112 }
else if (IC == 1 && UserIC <= 1) {
10116 "InterleavingNotBeneficial",
10117 "the cost-model indicates that interleaving is not beneficial"};
10118 InterleaveLoop =
false;
10120 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10121 IntDiagMsg.second +=
10122 " and is explicitly disabled or interleave count is set to 1";
10124 }
else if (IC > 1 && UserIC == 1) {
10126 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10128 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10129 "the cost-model indicates that interleaving is beneficial "
10130 "but is explicitly disabled or interleave count is set to 1"};
10131 InterleaveLoop =
false;
10137 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10138 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10139 <<
"to histogram operations.\n");
10141 "HistogramPreventsScalarInterleaving",
10142 "Unable to interleave without vectorization due to constraints on "
10143 "the order of histogram operations"};
10144 InterleaveLoop =
false;
10148 IC = UserIC > 0 ? UserIC : IC;
10152 if (!VectorizeLoop && !InterleaveLoop) {
10156 L->getStartLoc(), L->getHeader())
10157 << VecDiagMsg.second;
10161 L->getStartLoc(), L->getHeader())
10162 << IntDiagMsg.second;
10167 if (!VectorizeLoop && InterleaveLoop) {
10171 L->getStartLoc(), L->getHeader())
10172 << VecDiagMsg.second;
10174 }
else if (VectorizeLoop && !InterleaveLoop) {
10176 <<
") in " << L->getLocStr() <<
'\n');
10179 L->getStartLoc(), L->getHeader())
10180 << IntDiagMsg.second;
10182 }
else if (VectorizeLoop && InterleaveLoop) {
10184 <<
") in " << L->getLocStr() <<
'\n');
10190 using namespace ore;
10195 <<
"interleaved loop (interleaved count: "
10196 << NV(
"InterleaveCount", IC) <<
")";
10213 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10225 Checks, *BestMainPlan);
10227 *BestMainPlan, MainILV,
DT,
false);
10233 Checks, BestEpiPlan);
10235 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10239 Checks, InstsToMove);
10240 ++LoopsEpilogueVectorized;
10242 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10256 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10257 "DT not preserved correctly");
10272 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10276 bool Changed =
false, CFGChanged =
false;
10283 for (
const auto &L : *
LI)
10295 LoopsAnalyzed += Worklist.
size();
10298 while (!Worklist.
empty()) {
10341 if (
PSI &&
PSI->hasProfileSummary())
10344 if (!Result.MadeAnyChange)
10358 if (Result.MadeCFGChange) {
10374 OS, MapClassName2PassName);
10377 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10378 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags getFast()
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, BasicBlock *BB) const
A helper function that returns how much we should divide the cost of a predicated block by.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks