LLVM 23.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cmath>
150#include <cstdint>
151#include <functional>
152#include <iterator>
153#include <limits>
154#include <memory>
155#include <string>
156#include <tuple>
157#include <utility>
158
159using namespace llvm;
160using namespace SCEVPatternMatch;
161
162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
164
165#ifndef NDEBUG
166const char VerboseDebug[] = DEBUG_TYPE "-verbose";
167#endif
168
169STATISTIC(LoopsVectorized, "Number of loops vectorized");
170STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
173
175 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
176 cl::desc("Enable vectorization of epilogue loops."));
177
179 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
180 cl::desc("When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
182 "loops."));
183
185 "epilogue-vectorization-minimum-VF", cl::Hidden,
186 cl::desc("Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
188
189/// Loops with a known constant trip count below this number are vectorized only
190/// if no scalar iteration overheads are incurred.
192 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
193 cl::desc("Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
195 "are incurred."));
196
198 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
199 cl::desc("The maximum allowed number of runtime memory checks"));
200
201// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
202// that predication is preferred, and this lists all options. I.e., the
203// vectorizer will try to fold the tail-loop (epilogue) into the vector body
204// and predicate the instructions accordingly. If tail-folding fails, there are
205// different fallback strategies depending on these values:
212} // namespace PreferPredicateTy
213
215 "prefer-predicate-over-epilogue",
218 cl::desc("Tail-folding and predication preferences over creating a scalar "
219 "epilogue loop."),
221 "scalar-epilogue",
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
226 "folding fails."),
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
231
233 "force-tail-folding-style", cl::desc("Force the tail folding style"),
236 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
252
254 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
255 cl::desc("Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
257
259 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
260 cl::desc("Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
262
264 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
266
267/// An interleave-group may need masking if it resides in a block that needs
268/// predication, or in order to mask away gaps.
270 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
271 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
272
274 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
275 cl::desc("A flag that overrides the target's number of scalar registers."));
276
278 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
279 cl::desc("A flag that overrides the target's number of vector registers."));
280
282 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
283 cl::desc("A flag that overrides the target's max interleave factor for "
284 "scalar loops."));
285
287 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
288 cl::desc("A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
290
292 "force-target-instruction-cost", cl::init(0), cl::Hidden,
293 cl::desc("A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
296
298 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
299 cl::desc(
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
302
304 "small-loop-cost", cl::init(20), cl::Hidden,
305 cl::desc(
306 "The cost of a loop that is considered 'small' by the interleaver."));
307
309 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
310 cl::desc("Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
313
314// Runtime interleave loops for load/store throughput.
316 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
317 cl::desc(
318 "Enable runtime interleaving until load/store ports are saturated"));
319
320/// The number of stores in a loop that are allowed to need predication.
322 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
323 cl::desc("Max number of stores to be predicated behind an if."));
324
326 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
327 cl::desc("Count the induction variable only once when interleaving"));
328
330 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
331 cl::desc("Enable if predication of stores during vectorization."));
332
334 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
335 cl::desc("The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
337
338static cl::opt<bool>
339 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
341 cl::desc("Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
343
345 "force-ordered-reductions", cl::init(false), cl::Hidden,
346 cl::desc("Enable the vectorisation of loops with in-order (strict) "
347 "FP reductions"));
348
350 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
351 cl::desc(
352 "Prefer predicating a reduction operation over an after loop select."));
353
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358
360 llvm::VerifyEachVPlan("vplan-verify-each",
361#ifdef EXPENSIVE_CHECKS
362 cl::init(true),
363#else
364 cl::init(false),
365#endif
367 cl::desc("Verfiy VPlans after VPlan transforms."));
368
369// This flag enables the stress testing of the VPlan H-CFG construction in the
370// VPlan-native vectorization path. It must be used in conjuction with
371// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
372// verification of the H-CFGs built.
374 "vplan-build-stress-test", cl::init(false), cl::Hidden,
375 cl::desc(
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
379
381 "interleave-loops", cl::init(true), cl::Hidden,
382 cl::desc("Enable loop interleaving in Loop vectorization passes"));
384 "vectorize-loops", cl::init(true), cl::Hidden,
385 cl::desc("Run the Loop vectorization passes"));
386
388 "force-widen-divrem-via-safe-divisor", cl::Hidden,
389 cl::desc(
390 "Override cost based safe divisor widening for div/rem instructions"));
391
393 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
395 cl::desc("Try wider VFs if they enable the use of vector variants"));
396
398 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
399 cl::desc(
400 "Enable vectorization of early exit loops with uncountable exits."));
401
403 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
404 cl::desc("Discard VFs if their register pressure is too high."));
405
406// Likelyhood of bypassing the vectorized loop because there are zero trips left
407// after prolog. See `emitIterationCountCheck`.
408static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
409
410/// A helper function that returns true if the given type is irregular. The
411/// type is irregular if its allocated size doesn't equal the store size of an
412/// element of the corresponding vector type.
413static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
414 // Determine if an array of N elements of type Ty is "bitcast compatible"
415 // with a <N x Ty> vector.
416 // This is only true if there is no padding between the array elements.
417 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
418}
419
420/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
421/// ElementCount to include loops whose trip count is a function of vscale.
423 const Loop *L) {
424 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
425 return ElementCount::getFixed(ExpectedTC);
426
427 const SCEV *BTC = SE->getBackedgeTakenCount(L);
429 return ElementCount::getFixed(0);
430
431 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
432 if (isa<SCEVVScale>(ExitCount))
434
435 const APInt *Scale;
436 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
437 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
438 if (Scale->getActiveBits() <= 32)
440
441 return ElementCount::getFixed(0);
442}
443
444/// Returns "best known" trip count, which is either a valid positive trip count
445/// or std::nullopt when an estimate cannot be made (including when the trip
446/// count would overflow), for the specified loop \p L as defined by the
447/// following procedure:
448/// 1) Returns exact trip count if it is known.
449/// 2) Returns expected trip count according to profile data if any.
450/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
451/// 4) Returns std::nullopt if all of the above failed.
452static std::optional<ElementCount>
454 bool CanUseConstantMax = true) {
455 // Check if exact trip count is known.
456 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
457 return ExpectedTC;
458
459 // Check if there is an expected trip count available from profile data.
461 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
462 return ElementCount::getFixed(*EstimatedTC);
463
464 if (!CanUseConstantMax)
465 return std::nullopt;
466
467 // Check if upper bound estimate is known.
468 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
469 return ElementCount::getFixed(ExpectedTC);
470
471 return std::nullopt;
472}
473
474namespace {
475// Forward declare GeneratedRTChecks.
476class GeneratedRTChecks;
477
478using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
479} // namespace
480
481namespace llvm {
482
484
485/// InnerLoopVectorizer vectorizes loops which contain only one basic
486/// block to a specified vectorization factor (VF).
487/// This class performs the widening of scalars into vectors, or multiple
488/// scalars. This class also implements the following features:
489/// * It inserts an epilogue loop for handling loops that don't have iteration
490/// counts that are known to be a multiple of the vectorization factor.
491/// * It handles the code generation for reduction variables.
492/// * Scalarization (implementation using scalars) of un-vectorizable
493/// instructions.
494/// InnerLoopVectorizer does not perform any vectorization-legality
495/// checks, and relies on the caller to check for the different legality
496/// aspects. The InnerLoopVectorizer relies on the
497/// LoopVectorizationLegality class to provide information about the induction
498/// and reduction variables that were found to a given vectorization factor.
500public:
504 ElementCount VecWidth, unsigned UnrollFactor,
506 GeneratedRTChecks &RTChecks, VPlan &Plan)
507 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
508 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
512
513 virtual ~InnerLoopVectorizer() = default;
514
515 /// Creates a basic block for the scalar preheader. Both
516 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
517 /// the method to create additional blocks and checks needed for epilogue
518 /// vectorization.
520
521 /// Fix the vectorized code, taking care of header phi's, and more.
523
524 /// Fix the non-induction PHIs in \p Plan.
526
527 /// Returns the original loop trip count.
528 Value *getTripCount() const { return TripCount; }
529
530 /// Used to set the trip count after ILV's construction and after the
531 /// preheader block has been executed. Note that this always holds the trip
532 /// count of the original loop for both main loop and epilogue vectorization.
533 void setTripCount(Value *TC) { TripCount = TC; }
534
535protected:
537
538 /// Create and return a new IR basic block for the scalar preheader whose name
539 /// is prefixed with \p Prefix.
541
542 /// Allow subclasses to override and print debug traces before/after vplan
543 /// execution, when trace information is requested.
544 virtual void printDebugTracesAtStart() {}
545 virtual void printDebugTracesAtEnd() {}
546
547 /// The original loop.
549
550 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
551 /// dynamic knowledge to simplify SCEV expressions and converts them to a
552 /// more usable form.
554
555 /// Loop Info.
557
558 /// Dominator Tree.
560
561 /// Target Transform Info.
563
564 /// Assumption Cache.
566
567 /// The vectorization SIMD factor to use. Each vector will have this many
568 /// vector elements.
570
571 /// The vectorization unroll factor to use. Each scalar is vectorized to this
572 /// many different vector instructions.
573 unsigned UF;
574
575 /// The builder that we use
577
578 // --- Vectorization state ---
579
580 /// Trip count of the original loop.
581 Value *TripCount = nullptr;
582
583 /// The profitablity analysis.
585
586 /// Structure to hold information about generated runtime checks, responsible
587 /// for cleaning the checks, if vectorization turns out unprofitable.
588 GeneratedRTChecks &RTChecks;
589
591
592 /// The vector preheader block of \p Plan, used as target for check blocks
593 /// introduced during skeleton creation.
595};
596
597/// Encapsulate information regarding vectorization of a loop and its epilogue.
598/// This information is meant to be updated and used across two stages of
599/// epilogue vectorization.
602 unsigned MainLoopUF = 0;
604 unsigned EpilogueUF = 0;
607 Value *TripCount = nullptr;
610
612 ElementCount EVF, unsigned EUF,
614 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
616 assert(EUF == 1 &&
617 "A high UF for the epilogue loop is likely not beneficial.");
618 }
619};
620
621/// An extension of the inner loop vectorizer that creates a skeleton for a
622/// vectorized loop that has its epilogue (residual) also vectorized.
623/// The idea is to run the vplan on a given loop twice, firstly to setup the
624/// skeleton and vectorize the main loop, and secondly to complete the skeleton
625/// from the first step and vectorize the epilogue. This is achieved by
626/// deriving two concrete strategy classes from this base class and invoking
627/// them in succession from the loop vectorizer planner.
629public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
667 /// Implements the interface for creating a vectorized skeleton using the
668 /// *main loop* strategy (i.e., the first pass of VPlan execution).
670
671protected:
672 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
673 /// vector preheader and its predecessor, also connecting the new block to the
674 /// scalar preheader.
675 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
676
677 // Create a check to see if the main vector loop should be executed
679 unsigned UF) const;
680
681 /// Emits an iteration count bypass check once for the main loop (when \p
682 /// ForEpilogue is false) and once for the epilogue loop (when \p
683 /// ForEpilogue is true).
685 bool ForEpilogue);
686 void printDebugTracesAtStart() override;
687 void printDebugTracesAtEnd() override;
688};
689
690// A specialized derived class of inner loop vectorizer that performs
691// vectorization of *epilogue* loops in the process of vectorizing loops and
692// their epilogues.
694public:
701 GeneratedRTChecks &Checks, VPlan &Plan)
703 Checks, Plan, EPI.EpilogueVF,
704 EPI.EpilogueVF, EPI.EpilogueUF) {}
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
878 std::function<BlockFrequencyInfo &()> GetBFI,
879 const Function *F, const LoopVectorizeHints *Hints,
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), GetBFI(GetBFI),
885 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
886 initializeVScaleForTuning();
888 }
889
890 /// \return An upper bound for the vectorization factors (both fixed and
891 /// scalable). If the factors are 0, vectorization and interleaving should be
892 /// avoided up front.
893 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
894
895 /// \return True if runtime checks are required for vectorization, and false
896 /// otherwise.
897 bool runtimeChecksRequired();
898
899 /// Setup cost-based decisions for user vectorization factor.
900 /// \return true if the UserVF is a feasible VF to be chosen.
903 return expectedCost(UserVF).isValid();
904 }
905
906 /// \return True if maximizing vector bandwidth is enabled by the target or
907 /// user options, for the given register kind.
908 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
909
910 /// \return True if register pressure should be considered for the given VF.
911 bool shouldConsiderRegPressureForVF(ElementCount VF);
912
913 /// \return The size (in bits) of the smallest and widest types in the code
914 /// that needs to be vectorized. We ignore values that remain scalar such as
915 /// 64 bit loop indices.
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
917
918 /// Memory access instruction may be vectorized in more than one way.
919 /// Form of instruction after vectorization depends on cost.
920 /// This function takes cost-based decisions for Load/Store instructions
921 /// and collects them in a map. This decisions map is used for building
922 /// the lists of loop-uniform and loop-scalar instructions.
923 /// The calculated cost is saved with widening decision in order to
924 /// avoid redundant calculations.
925 void setCostBasedWideningDecision(ElementCount VF);
926
927 /// A call may be vectorized in different ways depending on whether we have
928 /// vectorized variants available and whether the target supports masking.
929 /// This function analyzes all calls in the function at the supplied VF,
930 /// makes a decision based on the costs of available options, and stores that
931 /// decision in a map for use in planning and plan execution.
932 void setVectorizedCallDecision(ElementCount VF);
933
934 /// Collect values we want to ignore in the cost model.
935 void collectValuesToIgnore();
936
937 /// Collect all element types in the loop for which widening is needed.
938 void collectElementTypesForWidening();
939
940 /// Split reductions into those that happen in the loop, and those that happen
941 /// outside. In loop reductions are collected into InLoopReductions.
942 void collectInLoopReductions();
943
944 /// Returns true if we should use strict in-order reductions for the given
945 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
946 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
947 /// of FP operations.
948 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
949 return !Hints->allowReordering() && RdxDesc.isOrdered();
950 }
951
952 /// \returns The smallest bitwidth each instruction can be represented with.
953 /// The vector equivalents of these instructions should be truncated to this
954 /// type.
956 return MinBWs;
957 }
958
959 /// \returns True if it is more profitable to scalarize instruction \p I for
960 /// vectorization factor \p VF.
962 assert(VF.isVector() &&
963 "Profitable to scalarize relevant only for VF > 1.");
964 assert(
965 TheLoop->isInnermost() &&
966 "cost-model should not be used for outer loops (in VPlan-native path)");
967
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(I);
972 }
973
974 /// Returns true if \p I is known to be uniform after vectorization.
976 assert(
977 TheLoop->isInnermost() &&
978 "cost-model should not be used for outer loops (in VPlan-native path)");
979 // Pseudo probe needs to be duplicated for each unrolled iteration and
980 // vector lane so that profiled loop trip count can be accurately
981 // accumulated instead of being under counted.
983 return false;
984
985 if (VF.isScalar())
986 return true;
987
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(I);
992 }
993
994 /// Returns true if \p I is known to be scalar after vectorization.
996 assert(
997 TheLoop->isInnermost() &&
998 "cost-model should not be used for outer loops (in VPlan-native path)");
999 if (VF.isScalar())
1000 return true;
1001
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(I);
1006 }
1007
1008 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1009 /// for vectorization factor \p VF.
1011 // Truncs must truncate at most to their destination type.
1012 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1014 return false;
1015 return VF.isVector() && MinBWs.contains(I) &&
1016 !isProfitableToScalarize(I, VF) &&
1018 }
1019
1020 /// Decision that was taken during cost calculation for memory instruction.
1023 CM_Widen, // For consecutive accesses with stride +1.
1024 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1030 };
1031
1032 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1033 /// instruction \p I and vector width \p VF.
1036 assert(VF.isVector() && "Expected VF >=2");
1037 WideningDecisions[{I, VF}] = {W, Cost};
1038 }
1039
1040 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1041 /// interleaving group \p Grp and vector width \p VF.
1045 assert(VF.isVector() && "Expected VF >=2");
1046 /// Broadcast this decicion to all instructions inside the group.
1047 /// When interleaving, the cost will only be assigned one instruction, the
1048 /// insert position. For other cases, add the appropriate fraction of the
1049 /// total cost to each instruction. This ensures accurate costs are used,
1050 /// even if the insert position instruction is not used.
1051 InstructionCost InsertPosCost = Cost;
1052 InstructionCost OtherMemberCost = 0;
1053 if (W != CM_Interleave)
1054 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1055 ;
1056 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1057 if (auto *I = Grp->getMember(Idx)) {
1058 if (Grp->getInsertPos() == I)
1059 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1060 else
1061 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1062 }
1063 }
1064 }
1065
1066 /// Return the cost model decision for the given instruction \p I and vector
1067 /// width \p VF. Return CM_Unknown if this instruction did not pass
1068 /// through the cost modeling.
1070 assert(VF.isVector() && "Expected VF to be a vector VF");
1071 assert(
1072 TheLoop->isInnermost() &&
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1074
1075 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1078 return CM_Unknown;
1079 return Itr->second.first;
1080 }
1081
1082 /// Return the vectorization cost for the given instruction \p I and vector
1083 /// width \p VF.
1085 assert(VF.isVector() && "Expected VF >=2");
1086 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1090 }
1091
1099
1101 Function *Variant, Intrinsic::ID IID,
1102 std::optional<unsigned> MaskPos,
1104 assert(!VF.isScalar() && "Expected vector VF");
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1106 }
1107
1109 ElementCount VF) const {
1110 assert(!VF.isScalar() && "Expected vector VF");
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (I == CallWideningDecisions.end())
1113 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1114 return I->second;
1115 }
1116
1117 /// Return True if instruction \p I is an optimizable truncate whose operand
1118 /// is an induction variable. Such a truncate will be removed by adding a new
1119 /// induction variable with the destination type.
1121 // If the instruction is not a truncate, return false.
1122 auto *Trunc = dyn_cast<TruncInst>(I);
1123 if (!Trunc)
1124 return false;
1125
1126 // Get the source and destination types of the truncate.
1127 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1128 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1129
1130 // If the truncate is free for the given types, return false. Replacing a
1131 // free truncate with an induction variable would add an induction variable
1132 // update instruction to each iteration of the loop. We exclude from this
1133 // check the primary induction variable since it will need an update
1134 // instruction regardless.
1135 Value *Op = Trunc->getOperand(0);
1136 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1137 return false;
1138
1139 // If the truncated value is not an induction variable, return false.
1140 return Legal->isInductionPhi(Op);
1141 }
1142
1143 /// Collects the instructions to scalarize for each predicated instruction in
1144 /// the loop.
1145 void collectInstsToScalarize(ElementCount VF);
1146
1147 /// Collect values that will not be widened, including Uniforms, Scalars, and
1148 /// Instructions to Scalarize for the given \p VF.
1149 /// The sets depend on CM decision for Load/Store instructions
1150 /// that may be vectorized as interleave, gather-scatter or scalarized.
1151 /// Also make a decision on what to do about call instructions in the loop
1152 /// at that VF -- scalarize, call a known vector routine, or call a
1153 /// vector intrinsic.
1155 // Do the analysis once.
1156 if (VF.isScalar() || Uniforms.contains(VF))
1157 return;
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1163 }
1164
1165 /// Returns true if the target machine supports masked store operation
1166 /// for the given \p DataType and kind of access to \p Ptr.
1167 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1168 unsigned AddressSpace) const {
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1170 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1171 }
1172
1173 /// Returns true if the target machine supports masked load operation
1174 /// for the given \p DataType and kind of access to \p Ptr.
1175 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1176 unsigned AddressSpace) const {
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1178 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1179 }
1180
1181 /// Returns true if the target machine can represent \p V as a masked gather
1182 /// or scatter operation.
1184 bool LI = isa<LoadInst>(V);
1185 bool SI = isa<StoreInst>(V);
1186 if (!LI && !SI)
1187 return false;
1188 auto *Ty = getLoadStoreType(V);
1190 if (VF.isVector())
1191 Ty = VectorType::get(Ty, VF);
1192 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1193 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1194 }
1195
1196 /// Returns true if the target machine supports all of the reduction
1197 /// variables found for the given VF.
1199 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1202 }));
1203 }
1204
1205 /// Given costs for both strategies, return true if the scalar predication
1206 /// lowering should be used for div/rem. This incorporates an override
1207 /// option so it is not simply a cost comparison.
1209 InstructionCost SafeDivisorCost) const {
1210 switch (ForceSafeDivisor) {
1211 case cl::BOU_UNSET:
1212 return ScalarCost < SafeDivisorCost;
1213 case cl::BOU_TRUE:
1214 return false;
1215 case cl::BOU_FALSE:
1216 return true;
1217 }
1218 llvm_unreachable("impossible case value");
1219 }
1220
1221 /// Returns true if \p I is an instruction which requires predication and
1222 /// for which our chosen predication strategy is scalarization (i.e. we
1223 /// don't have an alternate strategy such as masking available).
1224 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1225 bool isScalarWithPredication(Instruction *I, ElementCount VF);
1226
1227 /// Returns true if \p I is an instruction that needs to be predicated
1228 /// at runtime. The result is independent of the predication mechanism.
1229 /// Superset of instructions that return true for isScalarWithPredication.
1230 bool isPredicatedInst(Instruction *I) const;
1231
1232 /// A helper function that returns how much we should divide the cost of a
1233 /// predicated block by. Typically this is the reciprocal of the block
1234 /// probability, i.e. if we return X we are assuming the predicated block will
1235 /// execute once for every X iterations of the loop header so the block should
1236 /// only contribute 1/X of its cost to the total cost calculation, but when
1237 /// optimizing for code size it will just be 1 as code size costs don't depend
1238 /// on execution probabilities.
1239 ///
1240 /// Note that if a block wasn't originally predicated but was predicated due
1241 /// to tail folding, the divisor will still be 1 because it will execute for
1242 /// every iteration of the loop header.
1243 inline uint64_t
1244 getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind,
1245 const BasicBlock *BB);
1246
1247 /// Return the costs for our two available strategies for lowering a
1248 /// div/rem operation which requires speculating at least one lane.
1249 /// First result is for scalarization (will be invalid for scalable
1250 /// vectors); second is for the safe-divisor strategy.
1251 std::pair<InstructionCost, InstructionCost>
1252 getDivRemSpeculationCost(Instruction *I, ElementCount VF);
1253
1254 /// Returns true if \p I is a memory instruction with consecutive memory
1255 /// access that can be widened.
1256 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1257
1258 /// Returns true if \p I is a memory instruction in an interleaved-group
1259 /// of memory accesses that can be vectorized with wide vector loads/stores
1260 /// and shuffles.
1261 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1262
1263 /// Check if \p Instr belongs to any interleaved access group.
1265 return InterleaveInfo.isInterleaved(Instr);
1266 }
1267
1268 /// Get the interleaved access group that \p Instr belongs to.
1271 return InterleaveInfo.getInterleaveGroup(Instr);
1272 }
1273
1274 /// Returns true if we're required to use a scalar epilogue for at least
1275 /// the final iteration of the original loop.
1276 bool requiresScalarEpilogue(bool IsVectorizing) const {
1277 if (!isScalarEpilogueAllowed()) {
1278 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1279 return false;
1280 }
1281 // If we might exit from anywhere but the latch and early exit vectorization
1282 // is disabled, we must run the exiting iteration in scalar form.
1283 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1284 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1287 return true;
1288 }
1289 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1290 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1291 "interleaved group requires scalar epilogue\n");
1292 return true;
1293 }
1294 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1295 return false;
1296 }
1297
1298 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1299 /// loop hint annotation.
1301 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1302 }
1303
1304 /// Returns true if tail-folding is preferred over a scalar epilogue.
1306 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1307 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Returns true if the use of wide lane masks is requested and the loop is
1371 /// using tail-folding with a lane mask for control flow.
1380
1381 /// Return maximum safe number of elements to be processed per vector
1382 /// iteration, which do not prevent store-load forwarding and are safe with
1383 /// regard to the memory dependencies. Required for EVL-based VPlans to
1384 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1385 /// MaxSafeElements).
1386 /// TODO: need to consider adjusting cost model to use this value as a
1387 /// vectorization factor for EVL-based vectorization.
1388 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1389
1390 /// Returns true if the instructions in this block requires predication
1391 /// for any reason, e.g. because tail folding now requires a predicate
1392 /// or because the block in the original loop was predicated.
1394 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1395 }
1396
1397 /// Returns true if VP intrinsics with explicit vector length support should
1398 /// be generated in the tail folded loop.
1402
1403 /// Returns true if the Phi is part of an inloop reduction.
1404 bool isInLoopReduction(PHINode *Phi) const {
1405 return InLoopReductions.contains(Phi);
1406 }
1407
1408 /// Returns the set of in-loop reduction PHIs.
1410 return InLoopReductions;
1411 }
1412
1413 /// Returns true if the predicated reduction select should be used to set the
1414 /// incoming value for the reduction phi.
1416 // Force to use predicated reduction select since the EVL of the
1417 // second-to-last iteration might not be VF*UF.
1418 if (foldTailWithEVL())
1419 return true;
1421 TTI.preferPredicatedReductionSelect();
1422 }
1423
1424 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1425 /// with factor VF. Return the cost of the instruction, including
1426 /// scalarization overhead if it's needed.
1427 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1428
1429 /// Estimate cost of a call instruction CI if it were vectorized with factor
1430 /// VF. Return the cost of the instruction, including scalarization overhead
1431 /// if it's needed.
1432 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1433
1434 /// Invalidates decisions already taken by the cost model.
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1438 Uniforms.clear();
1439 Scalars.clear();
1440 }
1441
1442 /// Returns the expected execution cost. The unit of the cost does
1443 /// not matter because we use the 'cost' units to compare different
1444 /// vector widths. The cost that is returned is *not* normalized by
1445 /// the factor width.
1446 InstructionCost expectedCost(ElementCount VF);
1447
1448 bool hasPredStores() const { return NumPredStores > 0; }
1449
1450 /// Returns true if epilogue vectorization is considered profitable, and
1451 /// false otherwise.
1452 /// \p VF is the vectorization factor chosen for the original loop.
1453 /// \p Multiplier is an aditional scaling factor applied to VF before
1454 /// comparing to EpilogueVectorizationMinVF.
1455 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1456 const unsigned IC) const;
1457
1458 /// Returns the execution time cost of an instruction for a given vector
1459 /// width. Vector width of one means scalar.
1460 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1461
1462 /// Return the cost of instructions in an inloop reduction pattern, if I is
1463 /// part of that pattern.
1464 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1465 ElementCount VF,
1466 Type *VectorTy) const;
1467
1468 /// Returns true if \p Op should be considered invariant and if it is
1469 /// trivially hoistable.
1470 bool shouldConsiderInvariant(Value *Op);
1471
1472 /// Return the value of vscale used for tuning the cost model.
1473 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1474
1475private:
1476 unsigned NumPredStores = 0;
1477
1478 /// Used to store the value of vscale used for tuning the cost model. It is
1479 /// initialized during object construction.
1480 std::optional<unsigned> VScaleForTuning;
1481
1482 /// Initializes the value of vscale used for tuning the cost model. If
1483 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1484 /// return the value returned by the corresponding TTI method.
1485 void initializeVScaleForTuning() {
1486 const Function *Fn = TheLoop->getHeader()->getParent();
1487 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1488 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1489 auto Min = Attr.getVScaleRangeMin();
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1493 return;
1494 }
1495 }
1496
1497 VScaleForTuning = TTI.getVScaleForTuning();
1498 }
1499
1500 /// \return An upper bound for the vectorization factors for both
1501 /// fixed and scalable vectorization, where the minimum-known number of
1502 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1503 /// disabled or unsupported, then the scalable part will be equal to
1504 /// ElementCount::getScalable(0).
1505 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1508
1509 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1510 /// MaxTripCount.
1511 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1512 bool FoldTailByMasking) const;
1513
1514 /// \return the maximized element count based on the targets vector
1515 /// registers and the loop trip-count, but limited to a maximum safe VF.
1516 /// This is a helper function of computeFeasibleMaxVF.
1517 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1522
1523 /// Checks if scalable vectorization is supported and enabled. Caches the
1524 /// result to avoid repeated debug dumps for repeated queries.
1525 bool isScalableVectorizationAllowed();
1526
1527 /// \return the maximum legal scalable VF, based on the safe max number
1528 /// of elements.
1529 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1530
1531 /// Calculate vectorization cost of memory instruction \p I.
1532 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1533
1534 /// The cost computation for scalarized memory instruction.
1535 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1536
1537 /// The cost computation for interleaving group of memory instructions.
1538 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1539
1540 /// The cost computation for Gather/Scatter instruction.
1541 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1542
1543 /// The cost computation for widening instruction \p I with consecutive
1544 /// memory access.
1545 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1546
1547 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1548 /// Load: scalar load + broadcast.
1549 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1550 /// element)
1551 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1552
1553 /// Estimate the overhead of scalarizing an instruction. This is a
1554 /// convenience wrapper for the type-based getScalarizationOverhead API.
1556 ElementCount VF) const;
1557
1558 /// Returns true if an artificially high cost for emulated masked memrefs
1559 /// should be used.
1560 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1561
1562 /// Map of scalar integer values to the smallest bitwidth they can be legally
1563 /// represented as. The vector equivalents of these values should be truncated
1564 /// to this type.
1565 MapVector<Instruction *, uint64_t> MinBWs;
1566
1567 /// A type representing the costs for instructions if they were to be
1568 /// scalarized rather than vectorized. The entries are Instruction-Cost
1569 /// pairs.
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1571
1572 /// A set containing all BasicBlocks that are known to present after
1573 /// vectorization as a predicated block.
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1576
1577 /// Records whether it is allowed to have the original scalar loop execute at
1578 /// least once. This may be needed as a fallback loop in case runtime
1579 /// aliasing/dependence checks fail, or to handle the tail/remainder
1580 /// iterations when the trip count is unknown or doesn't divide by the VF,
1581 /// or as a peel-loop to handle gaps in interleave-groups.
1582 /// Under optsize and when the trip count is very small we don't allow any
1583 /// iterations to execute in the scalar loop.
1584 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1585
1586 /// Control finally chosen tail folding style. The first element is used if
1587 /// the IV update may overflow, the second element - if it does not.
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1590
1591 /// true if scalable vectorization is supported and enabled.
1592 std::optional<bool> IsScalableVectorizationAllowed;
1593
1594 /// Maximum safe number of elements to be processed per vector iteration,
1595 /// which do not prevent store-load forwarding and are safe with regard to the
1596 /// memory dependencies. Required for EVL-based veectorization, where this
1597 /// value is used as the upper bound of the safe AVL.
1598 std::optional<unsigned> MaxSafeElements;
1599
1600 /// A map holding scalar costs for different vectorization factors. The
1601 /// presence of a cost for an instruction in the mapping indicates that the
1602 /// instruction will be scalarized when vectorizing with the associated
1603 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1605
1606 /// Holds the instructions known to be uniform after vectorization.
1607 /// The data is collected per VF.
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1609
1610 /// Holds the instructions known to be scalar after vectorization.
1611 /// The data is collected per VF.
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1613
1614 /// Holds the instructions (address computations) that are forced to be
1615 /// scalarized.
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1617
1618 /// PHINodes of the reductions that should be expanded in-loop.
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1620
1621 /// A Map of inloop reduction operations and their immediate chain operand.
1622 /// FIXME: This can be removed once reductions can be costed correctly in
1623 /// VPlan. This was added to allow quick lookup of the inloop operations.
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1625
1626 /// Returns the expected difference in cost from scalarizing the expression
1627 /// feeding a predicated instruction \p PredInst. The instructions to
1628 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1629 /// non-negative return value implies the expression will be scalarized.
1630 /// Currently, only single-use chains are considered for scalarization.
1631 InstructionCost computePredInstDiscount(Instruction *PredInst,
1632 ScalarCostsTy &ScalarCosts,
1633 ElementCount VF);
1634
1635 /// Collect the instructions that are uniform after vectorization. An
1636 /// instruction is uniform if we represent it with a single scalar value in
1637 /// the vectorized loop corresponding to each vector iteration. Examples of
1638 /// uniform instructions include pointer operands of consecutive or
1639 /// interleaved memory accesses. Note that although uniformity implies an
1640 /// instruction will be scalar, the reverse is not true. In general, a
1641 /// scalarized instruction will be represented by VF scalar values in the
1642 /// vectorized loop, each corresponding to an iteration of the original
1643 /// scalar loop.
1644 void collectLoopUniforms(ElementCount VF);
1645
1646 /// Collect the instructions that are scalar after vectorization. An
1647 /// instruction is scalar if it is known to be uniform or will be scalarized
1648 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1649 /// to the list if they are used by a load/store instruction that is marked as
1650 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1651 /// VF values in the vectorized loop, each corresponding to an iteration of
1652 /// the original scalar loop.
1653 void collectLoopScalars(ElementCount VF);
1654
1655 /// Keeps cost model vectorization decision and cost for instructions.
1656 /// Right now it is used for memory instructions only.
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1659
1660 DecisionList WideningDecisions;
1661
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1664
1665 CallDecisionList CallWideningDecisions;
1666
1667 /// Returns true if \p V is expected to be vectorized and it needs to be
1668 /// extracted.
1669 bool needsExtract(Value *V, ElementCount VF) const {
1671 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1672 TheLoop->isLoopInvariant(I) ||
1673 getWideningDecision(I, VF) == CM_Scalarize ||
1674 (isa<CallInst>(I) &&
1675 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1676 return false;
1677
1678 // Assume we can vectorize V (and hence we need extraction) if the
1679 // scalars are not computed yet. This can happen, because it is called
1680 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1681 // the scalars are collected. That should be a safe assumption in most
1682 // cases, because we check if the operands have vectorizable types
1683 // beforehand in LoopVectorizationLegality.
1684 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1685 };
1686
1687 /// Returns a range containing only operands needing to be extracted.
1688 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1689 ElementCount VF) const {
1690
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1692 SmallVector<Value *, 4> Res;
1693 for (Value *Op : Ops) {
1694 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1695 !needsExtract(Op, VF))
1696 continue;
1697 Res.push_back(Op);
1698 }
1699 return Res;
1700 }
1701
1702public:
1703 /// The loop that we evaluate.
1705
1706 /// Predicated scalar evolution analysis.
1708
1709 /// Loop Info analysis.
1711
1712 /// Vectorization legality.
1714
1715 /// Vector target information.
1717
1718 /// Target Library Info.
1720
1721 /// Demanded bits analysis.
1723
1724 /// Assumption cache.
1726
1727 /// Interface to emit optimization remarks.
1729
1730 /// A function to lazily fetch BlockFrequencyInfo. This avoids computing it
1731 /// unless necessary, e.g. when the loop isn't legal to vectorize or when
1732 /// there is no predication.
1733 std::function<BlockFrequencyInfo &()> GetBFI;
1734 /// The BlockFrequencyInfo returned from GetBFI.
1736 /// Returns the BlockFrequencyInfo for the function if cached, otherwise
1737 /// fetches it via GetBFI. Avoids an indirect call to the std::function.
1739 if (!BFI)
1740 BFI = &GetBFI();
1741 return *BFI;
1742 }
1743
1745
1746 /// Loop Vectorize Hint.
1748
1749 /// The interleave access information contains groups of interleaved accesses
1750 /// with the same stride and close to each other.
1752
1753 /// Values to ignore in the cost model.
1755
1756 /// Values to ignore in the cost model when VF > 1.
1758
1759 /// All element types found in the loop.
1761
1762 /// The kind of cost that we are calculating
1764
1765 /// Whether this loop should be optimized for size based on function attribute
1766 /// or profile information.
1768
1769 /// The highest VF possible for this loop, without using MaxBandwidth.
1771};
1772} // end namespace llvm
1773
1774namespace {
1775/// Helper struct to manage generating runtime checks for vectorization.
1776///
1777/// The runtime checks are created up-front in temporary blocks to allow better
1778/// estimating the cost and un-linked from the existing IR. After deciding to
1779/// vectorize, the checks are moved back. If deciding not to vectorize, the
1780/// temporary blocks are completely removed.
1781class GeneratedRTChecks {
1782 /// Basic block which contains the generated SCEV checks, if any.
1783 BasicBlock *SCEVCheckBlock = nullptr;
1784
1785 /// The value representing the result of the generated SCEV checks. If it is
1786 /// nullptr no SCEV checks have been generated.
1787 Value *SCEVCheckCond = nullptr;
1788
1789 /// Basic block which contains the generated memory runtime checks, if any.
1790 BasicBlock *MemCheckBlock = nullptr;
1791
1792 /// The value representing the result of the generated memory runtime checks.
1793 /// If it is nullptr no memory runtime checks have been generated.
1794 Value *MemRuntimeCheckCond = nullptr;
1795
1796 DominatorTree *DT;
1797 LoopInfo *LI;
1799
1800 SCEVExpander SCEVExp;
1801 SCEVExpander MemCheckExp;
1802
1803 bool CostTooHigh = false;
1804
1805 Loop *OuterLoop = nullptr;
1806
1808
1809 /// The kind of cost that we are calculating
1811
1812public:
1813 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1816 : DT(DT), LI(LI), TTI(TTI),
1817 SCEVExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1818 MemCheckExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1819 PSE(PSE), CostKind(CostKind) {}
1820
1821 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1822 /// accurately estimate the cost of the runtime checks. The blocks are
1823 /// un-linked from the IR and are added back during vector code generation. If
1824 /// there is no vector code generation, the check blocks are removed
1825 /// completely.
1826 void create(Loop *L, const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC,
1828 OptimizationRemarkEmitter &ORE) {
1829
1830 // Hard cutoff to limit compile-time increase in case a very large number of
1831 // runtime checks needs to be generated.
1832 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1833 // profile info.
1834 CostTooHigh =
1836 if (CostTooHigh) {
1837 // Mark runtime checks as never succeeding when they exceed the threshold.
1838 MemRuntimeCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1839 SCEVCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1840 ORE.emit([&]() {
1841 return OptimizationRemarkAnalysisAliasing(
1842 DEBUG_TYPE, "TooManyMemoryRuntimeChecks", L->getStartLoc(),
1843 L->getHeader())
1844 << "loop not vectorized: too many memory checks needed";
1845 });
1846 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1847 return;
1848 }
1849
1850 BasicBlock *LoopHeader = L->getHeader();
1851 BasicBlock *Preheader = L->getLoopPreheader();
1852
1853 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1854 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1855 // may be used by SCEVExpander. The blocks will be un-linked from their
1856 // predecessors and removed from LI & DT at the end of the function.
1857 if (!UnionPred.isAlwaysTrue()) {
1858 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1859 nullptr, "vector.scevcheck");
1860
1861 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1862 &UnionPred, SCEVCheckBlock->getTerminator());
1863 if (isa<Constant>(SCEVCheckCond)) {
1864 // Clean up directly after expanding the predicate to a constant, to
1865 // avoid further expansions re-using anything left over from SCEVExp.
1866 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1867 SCEVCleaner.cleanup();
1868 }
1869 }
1870
1871 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1872 if (RtPtrChecking.Need) {
1873 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1874 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1875 "vector.memcheck");
1876
1877 auto DiffChecks = RtPtrChecking.getDiffChecks();
1878 if (DiffChecks) {
1879 Value *RuntimeVF = nullptr;
1880 MemRuntimeCheckCond = addDiffRuntimeChecks(
1881 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1882 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1883 if (!RuntimeVF)
1884 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1885 return RuntimeVF;
1886 },
1887 IC);
1888 } else {
1889 MemRuntimeCheckCond = addRuntimeChecks(
1890 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1892 }
1893 assert(MemRuntimeCheckCond &&
1894 "no RT checks generated although RtPtrChecking "
1895 "claimed checks are required");
1896 }
1897
1898 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1899
1900 if (!MemCheckBlock && !SCEVCheckBlock)
1901 return;
1902
1903 // Unhook the temporary block with the checks, update various places
1904 // accordingly.
1905 if (SCEVCheckBlock)
1906 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1907 if (MemCheckBlock)
1908 MemCheckBlock->replaceAllUsesWith(Preheader);
1909
1910 if (SCEVCheckBlock) {
1911 SCEVCheckBlock->getTerminator()->moveBefore(
1912 Preheader->getTerminator()->getIterator());
1913 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1914 UI->setDebugLoc(DebugLoc::getTemporary());
1915 Preheader->getTerminator()->eraseFromParent();
1916 }
1917 if (MemCheckBlock) {
1918 MemCheckBlock->getTerminator()->moveBefore(
1919 Preheader->getTerminator()->getIterator());
1920 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1921 UI->setDebugLoc(DebugLoc::getTemporary());
1922 Preheader->getTerminator()->eraseFromParent();
1923 }
1924
1925 DT->changeImmediateDominator(LoopHeader, Preheader);
1926 if (MemCheckBlock) {
1927 DT->eraseNode(MemCheckBlock);
1928 LI->removeBlock(MemCheckBlock);
1929 }
1930 if (SCEVCheckBlock) {
1931 DT->eraseNode(SCEVCheckBlock);
1932 LI->removeBlock(SCEVCheckBlock);
1933 }
1934
1935 // Outer loop is used as part of the later cost calculations.
1936 OuterLoop = L->getParentLoop();
1937 }
1938
1940 if (SCEVCheckBlock || MemCheckBlock)
1941 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1942
1943 if (CostTooHigh) {
1945 Cost.setInvalid();
1946 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1947 return Cost;
1948 }
1949
1950 InstructionCost RTCheckCost = 0;
1951 if (SCEVCheckBlock)
1952 for (Instruction &I : *SCEVCheckBlock) {
1953 if (SCEVCheckBlock->getTerminator() == &I)
1954 continue;
1956 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1957 RTCheckCost += C;
1958 }
1959 if (MemCheckBlock) {
1960 InstructionCost MemCheckCost = 0;
1961 for (Instruction &I : *MemCheckBlock) {
1962 if (MemCheckBlock->getTerminator() == &I)
1963 continue;
1965 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1966 MemCheckCost += C;
1967 }
1968
1969 // If the runtime memory checks are being created inside an outer loop
1970 // we should find out if these checks are outer loop invariant. If so,
1971 // the checks will likely be hoisted out and so the effective cost will
1972 // reduce according to the outer loop trip count.
1973 if (OuterLoop) {
1974 ScalarEvolution *SE = MemCheckExp.getSE();
1975 // TODO: If profitable, we could refine this further by analysing every
1976 // individual memory check, since there could be a mixture of loop
1977 // variant and invariant checks that mean the final condition is
1978 // variant.
1979 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1980 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1981 // It seems reasonable to assume that we can reduce the effective
1982 // cost of the checks even when we know nothing about the trip
1983 // count. Assume that the outer loop executes at least twice.
1984 unsigned BestTripCount = 2;
1985
1986 // Get the best known TC estimate.
1987 if (auto EstimatedTC = getSmallBestKnownTC(
1988 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1989 if (EstimatedTC->isFixed())
1990 BestTripCount = EstimatedTC->getFixedValue();
1991
1992 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1993
1994 // Let's ensure the cost is always at least 1.
1995 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1996 (InstructionCost::CostType)1);
1997
1998 if (BestTripCount > 1)
2000 << "We expect runtime memory checks to be hoisted "
2001 << "out of the outer loop. Cost reduced from "
2002 << MemCheckCost << " to " << NewMemCheckCost << '\n');
2003
2004 MemCheckCost = NewMemCheckCost;
2005 }
2006 }
2007
2008 RTCheckCost += MemCheckCost;
2009 }
2010
2011 if (SCEVCheckBlock || MemCheckBlock)
2012 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2013 << "\n");
2014
2015 return RTCheckCost;
2016 }
2017
2018 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2019 /// unused.
2020 ~GeneratedRTChecks() {
2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2023 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2024 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2025 if (SCEVChecksUsed)
2026 SCEVCleaner.markResultUsed();
2027
2028 if (MemChecksUsed) {
2029 MemCheckCleaner.markResultUsed();
2030 } else {
2031 auto &SE = *MemCheckExp.getSE();
2032 // Memory runtime check generation creates compares that use expanded
2033 // values. Remove them before running the SCEVExpanderCleaners.
2034 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2035 if (MemCheckExp.isInsertedInstruction(&I))
2036 continue;
2037 SE.forgetValue(&I);
2038 I.eraseFromParent();
2039 }
2040 }
2041 MemCheckCleaner.cleanup();
2042 SCEVCleaner.cleanup();
2043
2044 if (!SCEVChecksUsed)
2045 SCEVCheckBlock->eraseFromParent();
2046 if (!MemChecksUsed)
2047 MemCheckBlock->eraseFromParent();
2048 }
2049
2050 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2051 /// outside VPlan.
2052 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2053 using namespace llvm::PatternMatch;
2054 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2055 return {nullptr, nullptr};
2056
2057 return {SCEVCheckCond, SCEVCheckBlock};
2058 }
2059
2060 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2061 /// outside VPlan.
2062 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2063 using namespace llvm::PatternMatch;
2064 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2065 return {nullptr, nullptr};
2066 return {MemRuntimeCheckCond, MemCheckBlock};
2067 }
2068
2069 /// Return true if any runtime checks have been added
2070 bool hasChecks() const {
2071 return getSCEVChecks().first || getMemRuntimeChecks().first;
2072 }
2073};
2074} // namespace
2075
2081
2086
2087// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2088// vectorization. The loop needs to be annotated with #pragma omp simd
2089// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2090// vector length information is not provided, vectorization is not considered
2091// explicit. Interleave hints are not allowed either. These limitations will be
2092// relaxed in the future.
2093// Please, note that we are currently forced to abuse the pragma 'clang
2094// vectorize' semantics. This pragma provides *auto-vectorization hints*
2095// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2096// provides *explicit vectorization hints* (LV can bypass legal checks and
2097// assume that vectorization is legal). However, both hints are implemented
2098// using the same metadata (llvm.loop.vectorize, processed by
2099// LoopVectorizeHints). This will be fixed in the future when the native IR
2100// representation for pragma 'omp simd' is introduced.
2101static bool isExplicitVecOuterLoop(Loop *OuterLp,
2103 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2104 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2105
2106 // Only outer loops with an explicit vectorization hint are supported.
2107 // Unannotated outer loops are ignored.
2109 return false;
2110
2111 Function *Fn = OuterLp->getHeader()->getParent();
2112 if (!Hints.allowVectorization(Fn, OuterLp,
2113 true /*VectorizeOnlyWhenForced*/)) {
2114 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2115 return false;
2116 }
2117
2118 if (Hints.getInterleave() > 1) {
2119 // TODO: Interleave support is future work.
2120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2121 "outer loops.\n");
2122 Hints.emitRemarkWithHints();
2123 return false;
2124 }
2125
2126 return true;
2127}
2128
2132 // Collect inner loops and outer loops without irreducible control flow. For
2133 // now, only collect outer loops that have explicit vectorization hints. If we
2134 // are stress testing the VPlan H-CFG construction, we collect the outermost
2135 // loop of every loop nest.
2136 if (L.isInnermost() || VPlanBuildStressTest ||
2138 LoopBlocksRPO RPOT(&L);
2139 RPOT.perform(LI);
2141 V.push_back(&L);
2142 // TODO: Collect inner loops inside marked outer loops in case
2143 // vectorization fails for the outer loop. Do not invoke
2144 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2145 // already known to be reducible. We can use an inherited attribute for
2146 // that.
2147 return;
2148 }
2149 }
2150 for (Loop *InnerL : L)
2151 collectSupportedLoops(*InnerL, LI, ORE, V);
2152}
2153
2154//===----------------------------------------------------------------------===//
2155// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2156// LoopVectorizationCostModel and LoopVectorizationPlanner.
2157//===----------------------------------------------------------------------===//
2158
2159/// Compute the transformed value of Index at offset StartValue using step
2160/// StepValue.
2161/// For integer induction, returns StartValue + Index * StepValue.
2162/// For pointer induction, returns StartValue[Index * StepValue].
2163/// FIXME: The newly created binary instructions should contain nsw/nuw
2164/// flags, which can be found from the original scalar operations.
2165static Value *
2167 Value *Step,
2169 const BinaryOperator *InductionBinOp) {
2170 using namespace llvm::PatternMatch;
2171 Type *StepTy = Step->getType();
2172 Value *CastedIndex = StepTy->isIntegerTy()
2173 ? B.CreateSExtOrTrunc(Index, StepTy)
2174 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2175 if (CastedIndex != Index) {
2176 CastedIndex->setName(CastedIndex->getName() + ".cast");
2177 Index = CastedIndex;
2178 }
2179
2180 // Note: the IR at this point is broken. We cannot use SE to create any new
2181 // SCEV and then expand it, hoping that SCEV's simplification will give us
2182 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2183 // lead to various SCEV crashes. So all we can do is to use builder and rely
2184 // on InstCombine for future simplifications. Here we handle some trivial
2185 // cases only.
2186 auto CreateAdd = [&B](Value *X, Value *Y) {
2187 assert(X->getType() == Y->getType() && "Types don't match!");
2188 if (match(X, m_ZeroInt()))
2189 return Y;
2190 if (match(Y, m_ZeroInt()))
2191 return X;
2192 return B.CreateAdd(X, Y);
2193 };
2194
2195 // We allow X to be a vector type, in which case Y will potentially be
2196 // splatted into a vector with the same element count.
2197 auto CreateMul = [&B](Value *X, Value *Y) {
2198 assert(X->getType()->getScalarType() == Y->getType() &&
2199 "Types don't match!");
2200 if (match(X, m_One()))
2201 return Y;
2202 if (match(Y, m_One()))
2203 return X;
2204 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2205 if (XVTy && !isa<VectorType>(Y->getType()))
2206 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2207 return B.CreateMul(X, Y);
2208 };
2209
2210 switch (InductionKind) {
2212 assert(!isa<VectorType>(Index->getType()) &&
2213 "Vector indices not supported for integer inductions yet");
2214 assert(Index->getType() == StartValue->getType() &&
2215 "Index type does not match StartValue type");
2216 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2217 return B.CreateSub(StartValue, Index);
2218 auto *Offset = CreateMul(Index, Step);
2219 return CreateAdd(StartValue, Offset);
2220 }
2222 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2224 assert(!isa<VectorType>(Index->getType()) &&
2225 "Vector indices not supported for FP inductions yet");
2226 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2227 assert(InductionBinOp &&
2228 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2229 InductionBinOp->getOpcode() == Instruction::FSub) &&
2230 "Original bin op should be defined for FP induction");
2231
2232 Value *MulExp = B.CreateFMul(Step, Index);
2233 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2234 "induction");
2235 }
2237 return nullptr;
2238 }
2239 llvm_unreachable("invalid enum");
2240}
2241
2242static std::optional<unsigned> getMaxVScale(const Function &F,
2243 const TargetTransformInfo &TTI) {
2244 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2245 return MaxVScale;
2246
2247 if (F.hasFnAttribute(Attribute::VScaleRange))
2248 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2249
2250 return std::nullopt;
2251}
2252
2253/// For the given VF and UF and maximum trip count computed for the loop, return
2254/// whether the induction variable might overflow in the vectorized loop. If not,
2255/// then we know a runtime overflow check always evaluates to false and can be
2256/// removed.
2258 const LoopVectorizationCostModel *Cost,
2259 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2260 // Always be conservative if we don't know the exact unroll factor.
2261 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2262
2263 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2264 APInt MaxUIntTripCount = IdxTy->getMask();
2265
2266 // We know the runtime overflow check is known false iff the (max) trip-count
2267 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2268 // the vector loop induction variable.
2269 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2270 uint64_t MaxVF = VF.getKnownMinValue();
2271 if (VF.isScalable()) {
2272 std::optional<unsigned> MaxVScale =
2273 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2274 if (!MaxVScale)
2275 return false;
2276 MaxVF *= *MaxVScale;
2277 }
2278
2279 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2280 }
2281
2282 return false;
2283}
2284
2285// Return whether we allow using masked interleave-groups (for dealing with
2286// strided loads/stores that reside in predicated blocks, or for dealing
2287// with gaps).
2289 // If an override option has been passed in for interleaved accesses, use it.
2290 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2292
2293 return TTI.enableMaskedInterleavedAccessVectorization();
2294}
2295
2297 BasicBlock *CheckIRBB) {
2298 // Note: The block with the minimum trip-count check is already connected
2299 // during earlier VPlan construction.
2300 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2301 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2302 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2303 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2304 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2305 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2306 PreVectorPH = CheckVPIRBB;
2307 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2308 PreVectorPH->swapSuccessors();
2309
2310 // We just connected a new block to the scalar preheader. Update all
2311 // VPPhis by adding an incoming value for it, replicating the last value.
2312 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2313 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2314 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2315 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2316 "must have incoming values for all operands");
2317 R.addOperand(R.getOperand(NumPredecessors - 2));
2318 }
2319}
2320
2322 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2323 // Generate code to check if the loop's trip count is less than VF * UF, or
2324 // equal to it in case a scalar epilogue is required; this implies that the
2325 // vector trip count is zero. This check also covers the case where adding one
2326 // to the backedge-taken count overflowed leading to an incorrect trip count
2327 // of zero. In this case we will also jump to the scalar loop.
2328 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2330
2331 // Reuse existing vector loop preheader for TC checks.
2332 // Note that new preheader block is generated for vector loop.
2333 BasicBlock *const TCCheckBlock = VectorPH;
2335 TCCheckBlock->getContext(),
2336 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2337 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2338
2339 // If tail is to be folded, vector loop takes care of all iterations.
2341 Type *CountTy = Count->getType();
2342 Value *CheckMinIters = Builder.getFalse();
2343 auto CreateStep = [&]() -> Value * {
2344 // Create step with max(MinProTripCount, UF * VF).
2345 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2346 return createStepForVF(Builder, CountTy, VF, UF);
2347
2348 Value *MinProfTC =
2349 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2350 if (!VF.isScalable())
2351 return MinProfTC;
2352 return Builder.CreateBinaryIntrinsic(
2353 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2354 };
2355
2356 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2357 if (Style == TailFoldingStyle::None) {
2358 Value *Step = CreateStep();
2359 ScalarEvolution &SE = *PSE.getSE();
2360 // TODO: Emit unconditional branch to vector preheader instead of
2361 // conditional branch with known condition.
2362 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2363 // Check if the trip count is < the step.
2364 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2365 // TODO: Ensure step is at most the trip count when determining max VF and
2366 // UF, w/o tail folding.
2367 CheckMinIters = Builder.getTrue();
2369 TripCountSCEV, SE.getSCEV(Step))) {
2370 // Generate the minimum iteration check only if we cannot prove the
2371 // check is known to be true, or known to be false.
2372 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2373 } // else step known to be < trip count, use CheckMinIters preset to false.
2374 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2377 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2378 // an overflow to zero when updating induction variables and so an
2379 // additional overflow check is required before entering the vector loop.
2380
2381 // Get the maximum unsigned value for the type.
2382 Value *MaxUIntTripCount =
2383 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2384 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2385
2386 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2387 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2388 }
2389 return CheckMinIters;
2390}
2391
2392/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2393/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2394/// predecessors and successors of VPBB, if any, are rewired to the new
2395/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2397 BasicBlock *IRBB,
2398 VPlan *Plan = nullptr) {
2399 if (!Plan)
2400 Plan = VPBB->getPlan();
2401 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2402 auto IP = IRVPBB->begin();
2403 for (auto &R : make_early_inc_range(VPBB->phis()))
2404 R.moveBefore(*IRVPBB, IP);
2405
2406 for (auto &R :
2408 R.moveBefore(*IRVPBB, IRVPBB->end());
2409
2410 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2411 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2412 return IRVPBB;
2413}
2414
2416 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2417 assert(VectorPH && "Invalid loop structure");
2418 assert((OrigLoop->getUniqueLatchExitBlock() ||
2419 Cost->requiresScalarEpilogue(VF.isVector())) &&
2420 "loops not exiting via the latch without required epilogue?");
2421
2422 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2423 // wrapping the newly created scalar preheader here at the moment, because the
2424 // Plan's scalar preheader may be unreachable at this point. Instead it is
2425 // replaced in executePlan.
2426 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2427 Twine(Prefix) + "scalar.ph");
2428}
2429
2430/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2431/// expansion results.
2433 const SCEV2ValueTy &ExpandedSCEVs) {
2434 const SCEV *Step = ID.getStep();
2435 if (auto *C = dyn_cast<SCEVConstant>(Step))
2436 return C->getValue();
2437 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2438 return U->getValue();
2439 Value *V = ExpandedSCEVs.lookup(Step);
2440 assert(V && "SCEV must be expanded at this point");
2441 return V;
2442}
2443
2444/// Knowing that loop \p L executes a single vector iteration, add instructions
2445/// that will get simplified and thus should not have any cost to \p
2446/// InstsToIgnore.
2449 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2450 auto *Cmp = L->getLatchCmpInst();
2451 if (Cmp)
2452 InstsToIgnore.insert(Cmp);
2453 for (const auto &KV : IL) {
2454 // Extract the key by hand so that it can be used in the lambda below. Note
2455 // that captured structured bindings are a C++20 extension.
2456 const PHINode *IV = KV.first;
2457
2458 // Get next iteration value of the induction variable.
2459 Instruction *IVInst =
2460 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2461 if (all_of(IVInst->users(),
2462 [&](const User *U) { return U == IV || U == Cmp; }))
2463 InstsToIgnore.insert(IVInst);
2464 }
2465}
2466
2468 // Create a new IR basic block for the scalar preheader.
2469 BasicBlock *ScalarPH = createScalarPreheader("");
2470 return ScalarPH->getSinglePredecessor();
2471}
2472
2473namespace {
2474
2475struct CSEDenseMapInfo {
2476 static bool canHandle(const Instruction *I) {
2479 }
2480
2481 static inline Instruction *getEmptyKey() {
2483 }
2484
2485 static inline Instruction *getTombstoneKey() {
2486 return DenseMapInfo<Instruction *>::getTombstoneKey();
2487 }
2488
2489 static unsigned getHashValue(const Instruction *I) {
2490 assert(canHandle(I) && "Unknown instruction!");
2491 return hash_combine(I->getOpcode(),
2492 hash_combine_range(I->operand_values()));
2493 }
2494
2495 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2496 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2497 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2498 return LHS == RHS;
2499 return LHS->isIdenticalTo(RHS);
2500 }
2501};
2502
2503} // end anonymous namespace
2504
2505/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2506/// removal, in favor of the VPlan-based one.
2507static void legacyCSE(BasicBlock *BB) {
2508 // Perform simple cse.
2510 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2511 if (!CSEDenseMapInfo::canHandle(&In))
2512 continue;
2513
2514 // Check if we can replace this instruction with any of the
2515 // visited instructions.
2516 if (Instruction *V = CSEMap.lookup(&In)) {
2517 In.replaceAllUsesWith(V);
2518 In.eraseFromParent();
2519 continue;
2520 }
2521
2522 CSEMap[&In] = &In;
2523 }
2524}
2525
2526/// This function attempts to return a value that represents the ElementCount
2527/// at runtime. For fixed-width VFs we know this precisely at compile
2528/// time, but for scalable VFs we calculate it based on an estimate of the
2529/// vscale value.
2531 std::optional<unsigned> VScale) {
2532 unsigned EstimatedVF = VF.getKnownMinValue();
2533 if (VF.isScalable())
2534 if (VScale)
2535 EstimatedVF *= *VScale;
2536 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2537 return EstimatedVF;
2538}
2539
2542 ElementCount VF) const {
2543 // We only need to calculate a cost if the VF is scalar; for actual vectors
2544 // we should already have a pre-calculated cost at each VF.
2545 if (!VF.isScalar())
2546 return getCallWideningDecision(CI, VF).Cost;
2547
2548 Type *RetTy = CI->getType();
2550 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2551 return *RedCost;
2552
2554 for (auto &ArgOp : CI->args())
2555 Tys.push_back(ArgOp->getType());
2556
2557 InstructionCost ScalarCallCost =
2558 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2559
2560 // If this is an intrinsic we may have a lower cost for it.
2563 return std::min(ScalarCallCost, IntrinsicCost);
2564 }
2565 return ScalarCallCost;
2566}
2567
2569 if (VF.isScalar() || !canVectorizeTy(Ty))
2570 return Ty;
2571 return toVectorizedTy(Ty, VF);
2572}
2573
2576 ElementCount VF) const {
2578 assert(ID && "Expected intrinsic call!");
2579 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2580 FastMathFlags FMF;
2581 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2582 FMF = FPMO->getFastMathFlags();
2583
2586 SmallVector<Type *> ParamTys;
2587 std::transform(FTy->param_begin(), FTy->param_end(),
2588 std::back_inserter(ParamTys),
2589 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2590
2591 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2594 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2595}
2596
2598 // Fix widened non-induction PHIs by setting up the PHI operands.
2599 fixNonInductionPHIs(State);
2600
2601 // Don't apply optimizations below when no (vector) loop remains, as they all
2602 // require one at the moment.
2603 VPBasicBlock *HeaderVPBB =
2604 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2605 if (!HeaderVPBB)
2606 return;
2607
2608 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2609
2610 // Remove redundant induction instructions.
2611 legacyCSE(HeaderBB);
2612}
2613
2615 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2617 for (VPRecipeBase &P : VPBB->phis()) {
2619 if (!VPPhi)
2620 continue;
2621 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2622 // Make sure the builder has a valid insert point.
2623 Builder.SetInsertPoint(NewPhi);
2624 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2625 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2626 }
2627 }
2628}
2629
2630void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2631 // We should not collect Scalars more than once per VF. Right now, this
2632 // function is called from collectUniformsAndScalars(), which already does
2633 // this check. Collecting Scalars for VF=1 does not make any sense.
2634 assert(VF.isVector() && !Scalars.contains(VF) &&
2635 "This function should not be visited twice for the same VF");
2636
2637 // This avoids any chances of creating a REPLICATE recipe during planning
2638 // since that would result in generation of scalarized code during execution,
2639 // which is not supported for scalable vectors.
2640 if (VF.isScalable()) {
2641 Scalars[VF].insert_range(Uniforms[VF]);
2642 return;
2643 }
2644
2646
2647 // These sets are used to seed the analysis with pointers used by memory
2648 // accesses that will remain scalar.
2650 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2651 auto *Latch = TheLoop->getLoopLatch();
2652
2653 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2654 // The pointer operands of loads and stores will be scalar as long as the
2655 // memory access is not a gather or scatter operation. The value operand of a
2656 // store will remain scalar if the store is scalarized.
2657 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2658 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2659 assert(WideningDecision != CM_Unknown &&
2660 "Widening decision should be ready at this moment");
2661 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2662 if (Ptr == Store->getValueOperand())
2663 return WideningDecision == CM_Scalarize;
2664 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2665 "Ptr is neither a value or pointer operand");
2666 return WideningDecision != CM_GatherScatter;
2667 };
2668
2669 // A helper that returns true if the given value is a getelementptr
2670 // instruction contained in the loop.
2671 auto IsLoopVaryingGEP = [&](Value *V) {
2672 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2673 };
2674
2675 // A helper that evaluates a memory access's use of a pointer. If the use will
2676 // be a scalar use and the pointer is only used by memory accesses, we place
2677 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2678 // PossibleNonScalarPtrs.
2679 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2680 // We only care about bitcast and getelementptr instructions contained in
2681 // the loop.
2682 if (!IsLoopVaryingGEP(Ptr))
2683 return;
2684
2685 // If the pointer has already been identified as scalar (e.g., if it was
2686 // also identified as uniform), there's nothing to do.
2687 auto *I = cast<Instruction>(Ptr);
2688 if (Worklist.count(I))
2689 return;
2690
2691 // If the use of the pointer will be a scalar use, and all users of the
2692 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2693 // place the pointer in PossibleNonScalarPtrs.
2694 if (IsScalarUse(MemAccess, Ptr) &&
2696 ScalarPtrs.insert(I);
2697 else
2698 PossibleNonScalarPtrs.insert(I);
2699 };
2700
2701 // We seed the scalars analysis with three classes of instructions: (1)
2702 // instructions marked uniform-after-vectorization and (2) bitcast,
2703 // getelementptr and (pointer) phi instructions used by memory accesses
2704 // requiring a scalar use.
2705 //
2706 // (1) Add to the worklist all instructions that have been identified as
2707 // uniform-after-vectorization.
2708 Worklist.insert_range(Uniforms[VF]);
2709
2710 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2711 // memory accesses requiring a scalar use. The pointer operands of loads and
2712 // stores will be scalar unless the operation is a gather or scatter.
2713 // The value operand of a store will remain scalar if the store is scalarized.
2714 for (auto *BB : TheLoop->blocks())
2715 for (auto &I : *BB) {
2716 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2717 EvaluatePtrUse(Load, Load->getPointerOperand());
2718 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2719 EvaluatePtrUse(Store, Store->getPointerOperand());
2720 EvaluatePtrUse(Store, Store->getValueOperand());
2721 }
2722 }
2723 for (auto *I : ScalarPtrs)
2724 if (!PossibleNonScalarPtrs.count(I)) {
2725 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2726 Worklist.insert(I);
2727 }
2728
2729 // Insert the forced scalars.
2730 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2731 // induction variable when the PHI user is scalarized.
2732 auto ForcedScalar = ForcedScalars.find(VF);
2733 if (ForcedScalar != ForcedScalars.end())
2734 for (auto *I : ForcedScalar->second) {
2735 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2736 Worklist.insert(I);
2737 }
2738
2739 // Expand the worklist by looking through any bitcasts and getelementptr
2740 // instructions we've already identified as scalar. This is similar to the
2741 // expansion step in collectLoopUniforms(); however, here we're only
2742 // expanding to include additional bitcasts and getelementptr instructions.
2743 unsigned Idx = 0;
2744 while (Idx != Worklist.size()) {
2745 Instruction *Dst = Worklist[Idx++];
2746 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2747 continue;
2748 auto *Src = cast<Instruction>(Dst->getOperand(0));
2749 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2750 auto *J = cast<Instruction>(U);
2751 return !TheLoop->contains(J) || Worklist.count(J) ||
2752 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2753 IsScalarUse(J, Src));
2754 })) {
2755 Worklist.insert(Src);
2756 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2757 }
2758 }
2759
2760 // An induction variable will remain scalar if all users of the induction
2761 // variable and induction variable update remain scalar.
2762 for (const auto &Induction : Legal->getInductionVars()) {
2763 auto *Ind = Induction.first;
2764 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2765
2766 // If tail-folding is applied, the primary induction variable will be used
2767 // to feed a vector compare.
2768 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2769 continue;
2770
2771 // Returns true if \p Indvar is a pointer induction that is used directly by
2772 // load/store instruction \p I.
2773 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2774 Instruction *I) {
2775 return Induction.second.getKind() ==
2778 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2779 };
2780
2781 // Determine if all users of the induction variable are scalar after
2782 // vectorization.
2783 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2787 });
2788 if (!ScalarInd)
2789 continue;
2790
2791 // If the induction variable update is a fixed-order recurrence, neither the
2792 // induction variable or its update should be marked scalar after
2793 // vectorization.
2794 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2795 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2796 continue;
2797
2798 // Determine if all users of the induction variable update instruction are
2799 // scalar after vectorization.
2800 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2801 auto *I = cast<Instruction>(U);
2802 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2803 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2804 });
2805 if (!ScalarIndUpdate)
2806 continue;
2807
2808 // The induction variable and its update instruction will remain scalar.
2809 Worklist.insert(Ind);
2810 Worklist.insert(IndUpdate);
2811 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2812 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2813 << "\n");
2814 }
2815
2816 Scalars[VF].insert_range(Worklist);
2817}
2818
2820 ElementCount VF) {
2821 if (!isPredicatedInst(I))
2822 return false;
2823
2824 // Do we have a non-scalar lowering for this predicated
2825 // instruction? No - it is scalar with predication.
2826 switch(I->getOpcode()) {
2827 default:
2828 return true;
2829 case Instruction::Call:
2830 if (VF.isScalar())
2831 return true;
2833 case Instruction::Load:
2834 case Instruction::Store: {
2835 auto *Ptr = getLoadStorePointerOperand(I);
2836 auto *Ty = getLoadStoreType(I);
2837 unsigned AS = getLoadStoreAddressSpace(I);
2838 Type *VTy = Ty;
2839 if (VF.isVector())
2840 VTy = VectorType::get(Ty, VF);
2841 const Align Alignment = getLoadStoreAlignment(I);
2842 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2843 TTI.isLegalMaskedGather(VTy, Alignment))
2844 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2845 TTI.isLegalMaskedScatter(VTy, Alignment));
2846 }
2847 case Instruction::UDiv:
2848 case Instruction::SDiv:
2849 case Instruction::SRem:
2850 case Instruction::URem: {
2851 // We have the option to use the safe-divisor idiom to avoid predication.
2852 // The cost based decision here will always select safe-divisor for
2853 // scalable vectors as scalarization isn't legal.
2854 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2855 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2856 }
2857 }
2858}
2859
2860// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2862 // TODO: We can use the loop-preheader as context point here and get
2863 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2865 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2867 return false;
2868
2869 // If the instruction was executed conditionally in the original scalar loop,
2870 // predication is needed with a mask whose lanes are all possibly inactive.
2871 if (Legal->blockNeedsPredication(I->getParent()))
2872 return true;
2873
2874 // If we're not folding the tail by masking, predication is unnecessary.
2875 if (!foldTailByMasking())
2876 return false;
2877
2878 // All that remain are instructions with side-effects originally executed in
2879 // the loop unconditionally, but now execute under a tail-fold mask (only)
2880 // having at least one active lane (the first). If the side-effects of the
2881 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2882 // - it will cause the same side-effects as when masked.
2883 switch(I->getOpcode()) {
2884 default:
2886 "instruction should have been considered by earlier checks");
2887 case Instruction::Call:
2888 // Side-effects of a Call are assumed to be non-invariant, needing a
2889 // (fold-tail) mask.
2890 assert(Legal->isMaskRequired(I) &&
2891 "should have returned earlier for calls not needing a mask");
2892 return true;
2893 case Instruction::Load:
2894 // If the address is loop invariant no predication is needed.
2895 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2896 case Instruction::Store: {
2897 // For stores, we need to prove both speculation safety (which follows from
2898 // the same argument as loads), but also must prove the value being stored
2899 // is correct. The easiest form of the later is to require that all values
2900 // stored are the same.
2901 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2902 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2903 }
2904 case Instruction::UDiv:
2905 case Instruction::URem:
2906 // If the divisor is loop-invariant no predication is needed.
2907 return !Legal->isInvariant(I->getOperand(1));
2908 case Instruction::SDiv:
2909 case Instruction::SRem:
2910 // Conservative for now, since masked-off lanes may be poison and could
2911 // trigger signed overflow.
2912 return true;
2913 }
2914}
2915
2919 return 1;
2920 // If the block wasn't originally predicated then return early to avoid
2921 // computing BlockFrequencyInfo unnecessarily.
2922 if (!Legal->blockNeedsPredication(BB))
2923 return 1;
2924
2925 uint64_t HeaderFreq =
2926 getBFI().getBlockFreq(TheLoop->getHeader()).getFrequency();
2927 uint64_t BBFreq = getBFI().getBlockFreq(BB).getFrequency();
2928 assert(HeaderFreq >= BBFreq &&
2929 "Header has smaller block freq than dominated BB?");
2930 return std::round((double)HeaderFreq / BBFreq);
2931}
2932
2933std::pair<InstructionCost, InstructionCost>
2935 ElementCount VF) {
2936 assert(I->getOpcode() == Instruction::UDiv ||
2937 I->getOpcode() == Instruction::SDiv ||
2938 I->getOpcode() == Instruction::SRem ||
2939 I->getOpcode() == Instruction::URem);
2941
2942 // Scalarization isn't legal for scalable vector types
2943 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2944 if (!VF.isScalable()) {
2945 // Get the scalarization cost and scale this amount by the probability of
2946 // executing the predicated block. If the instruction is not predicated,
2947 // we fall through to the next case.
2948 ScalarizationCost = 0;
2949
2950 // These instructions have a non-void type, so account for the phi nodes
2951 // that we will create. This cost is likely to be zero. The phi node
2952 // cost, if any, should be scaled by the block probability because it
2953 // models a copy at the end of each predicated block.
2954 ScalarizationCost +=
2955 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2956
2957 // The cost of the non-predicated instruction.
2958 ScalarizationCost +=
2959 VF.getFixedValue() *
2960 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2961
2962 // The cost of insertelement and extractelement instructions needed for
2963 // scalarization.
2964 ScalarizationCost += getScalarizationOverhead(I, VF);
2965
2966 // Scale the cost by the probability of executing the predicated blocks.
2967 // This assumes the predicated block for each vector lane is equally
2968 // likely.
2969 ScalarizationCost =
2970 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2971 }
2972
2973 InstructionCost SafeDivisorCost = 0;
2974 auto *VecTy = toVectorTy(I->getType(), VF);
2975 // The cost of the select guard to ensure all lanes are well defined
2976 // after we speculate above any internal control flow.
2977 SafeDivisorCost +=
2978 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2979 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2981
2982 SmallVector<const Value *, 4> Operands(I->operand_values());
2983 SafeDivisorCost += TTI.getArithmeticInstrCost(
2984 I->getOpcode(), VecTy, CostKind,
2985 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2986 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2987 Operands, I);
2988 return {ScalarizationCost, SafeDivisorCost};
2989}
2990
2992 Instruction *I, ElementCount VF) const {
2993 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2995 "Decision should not be set yet.");
2996 auto *Group = getInterleavedAccessGroup(I);
2997 assert(Group && "Must have a group.");
2998 unsigned InterleaveFactor = Group->getFactor();
2999
3000 // If the instruction's allocated size doesn't equal its type size, it
3001 // requires padding and will be scalarized.
3002 auto &DL = I->getDataLayout();
3003 auto *ScalarTy = getLoadStoreType(I);
3004 if (hasIrregularType(ScalarTy, DL))
3005 return false;
3006
3007 // For scalable vectors, the interleave factors must be <= 8 since we require
3008 // the (de)interleaveN intrinsics instead of shufflevectors.
3009 if (VF.isScalable() && InterleaveFactor > 8)
3010 return false;
3011
3012 // If the group involves a non-integral pointer, we may not be able to
3013 // losslessly cast all values to a common type.
3014 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
3015 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3016 Instruction *Member = Group->getMember(Idx);
3017 if (!Member)
3018 continue;
3019 auto *MemberTy = getLoadStoreType(Member);
3020 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3021 // Don't coerce non-integral pointers to integers or vice versa.
3022 if (MemberNI != ScalarNI)
3023 // TODO: Consider adding special nullptr value case here
3024 return false;
3025 if (MemberNI && ScalarNI &&
3026 ScalarTy->getPointerAddressSpace() !=
3027 MemberTy->getPointerAddressSpace())
3028 return false;
3029 }
3030
3031 // Check if masking is required.
3032 // A Group may need masking for one of two reasons: it resides in a block that
3033 // needs predication, or it was decided to use masking to deal with gaps
3034 // (either a gap at the end of a load-access that may result in a speculative
3035 // load, or any gaps in a store-access).
3036 bool PredicatedAccessRequiresMasking =
3037 blockNeedsPredicationForAnyReason(I->getParent()) &&
3038 Legal->isMaskRequired(I);
3039 bool LoadAccessWithGapsRequiresEpilogMasking =
3040 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3042 bool StoreAccessWithGapsRequiresMasking =
3043 isa<StoreInst>(I) && !Group->isFull();
3044 if (!PredicatedAccessRequiresMasking &&
3045 !LoadAccessWithGapsRequiresEpilogMasking &&
3046 !StoreAccessWithGapsRequiresMasking)
3047 return true;
3048
3049 // If masked interleaving is required, we expect that the user/target had
3050 // enabled it, because otherwise it either wouldn't have been created or
3051 // it should have been invalidated by the CostModel.
3053 "Masked interleave-groups for predicated accesses are not enabled.");
3054
3055 if (Group->isReverse())
3056 return false;
3057
3058 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3059 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3060 StoreAccessWithGapsRequiresMasking;
3061 if (VF.isScalable() && NeedsMaskForGaps)
3062 return false;
3063
3064 auto *Ty = getLoadStoreType(I);
3065 const Align Alignment = getLoadStoreAlignment(I);
3066 unsigned AS = getLoadStoreAddressSpace(I);
3067 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3068 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3069}
3070
3072 Instruction *I, ElementCount VF) {
3073 // Get and ensure we have a valid memory instruction.
3074 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3075
3076 auto *Ptr = getLoadStorePointerOperand(I);
3077 auto *ScalarTy = getLoadStoreType(I);
3078
3079 // In order to be widened, the pointer should be consecutive, first of all.
3080 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3081 return false;
3082
3083 // If the instruction is a store located in a predicated block, it will be
3084 // scalarized.
3085 if (isScalarWithPredication(I, VF))
3086 return false;
3087
3088 // If the instruction's allocated size doesn't equal it's type size, it
3089 // requires padding and will be scalarized.
3090 auto &DL = I->getDataLayout();
3091 if (hasIrregularType(ScalarTy, DL))
3092 return false;
3093
3094 return true;
3095}
3096
3097void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3098 // We should not collect Uniforms more than once per VF. Right now,
3099 // this function is called from collectUniformsAndScalars(), which
3100 // already does this check. Collecting Uniforms for VF=1 does not make any
3101 // sense.
3102
3103 assert(VF.isVector() && !Uniforms.contains(VF) &&
3104 "This function should not be visited twice for the same VF");
3105
3106 // Visit the list of Uniforms. If we find no uniform value, we won't
3107 // analyze again. Uniforms.count(VF) will return 1.
3108 Uniforms[VF].clear();
3109
3110 // Now we know that the loop is vectorizable!
3111 // Collect instructions inside the loop that will remain uniform after
3112 // vectorization.
3113
3114 // Global values, params and instructions outside of current loop are out of
3115 // scope.
3116 auto IsOutOfScope = [&](Value *V) -> bool {
3118 return (!I || !TheLoop->contains(I));
3119 };
3120
3121 // Worklist containing uniform instructions demanding lane 0.
3122 SetVector<Instruction *> Worklist;
3123
3124 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3125 // that require predication must not be considered uniform after
3126 // vectorization, because that would create an erroneous replicating region
3127 // where only a single instance out of VF should be formed.
3128 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3129 if (IsOutOfScope(I)) {
3130 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3131 << *I << "\n");
3132 return;
3133 }
3134 if (isPredicatedInst(I)) {
3135 LLVM_DEBUG(
3136 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3137 << "\n");
3138 return;
3139 }
3140 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3141 Worklist.insert(I);
3142 };
3143
3144 // Start with the conditional branches exiting the loop. If the branch
3145 // condition is an instruction contained in the loop that is only used by the
3146 // branch, it is uniform. Note conditions from uncountable early exits are not
3147 // uniform.
3149 TheLoop->getExitingBlocks(Exiting);
3150 for (BasicBlock *E : Exiting) {
3151 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3152 continue;
3153 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3154 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3155 AddToWorklistIfAllowed(Cmp);
3156 }
3157
3158 auto PrevVF = VF.divideCoefficientBy(2);
3159 // Return true if all lanes perform the same memory operation, and we can
3160 // thus choose to execute only one.
3161 auto IsUniformMemOpUse = [&](Instruction *I) {
3162 // If the value was already known to not be uniform for the previous
3163 // (smaller VF), it cannot be uniform for the larger VF.
3164 if (PrevVF.isVector()) {
3165 auto Iter = Uniforms.find(PrevVF);
3166 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3167 return false;
3168 }
3169 if (!Legal->isUniformMemOp(*I, VF))
3170 return false;
3171 if (isa<LoadInst>(I))
3172 // Loading the same address always produces the same result - at least
3173 // assuming aliasing and ordering which have already been checked.
3174 return true;
3175 // Storing the same value on every iteration.
3176 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3177 };
3178
3179 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3180 InstWidening WideningDecision = getWideningDecision(I, VF);
3181 assert(WideningDecision != CM_Unknown &&
3182 "Widening decision should be ready at this moment");
3183
3184 if (IsUniformMemOpUse(I))
3185 return true;
3186
3187 return (WideningDecision == CM_Widen ||
3188 WideningDecision == CM_Widen_Reverse ||
3189 WideningDecision == CM_Interleave);
3190 };
3191
3192 // Returns true if Ptr is the pointer operand of a memory access instruction
3193 // I, I is known to not require scalarization, and the pointer is not also
3194 // stored.
3195 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3196 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3197 return false;
3198 return getLoadStorePointerOperand(I) == Ptr &&
3199 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3200 };
3201
3202 // Holds a list of values which are known to have at least one uniform use.
3203 // Note that there may be other uses which aren't uniform. A "uniform use"
3204 // here is something which only demands lane 0 of the unrolled iterations;
3205 // it does not imply that all lanes produce the same value (e.g. this is not
3206 // the usual meaning of uniform)
3207 SetVector<Value *> HasUniformUse;
3208
3209 // Scan the loop for instructions which are either a) known to have only
3210 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3211 for (auto *BB : TheLoop->blocks())
3212 for (auto &I : *BB) {
3213 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3214 switch (II->getIntrinsicID()) {
3215 case Intrinsic::sideeffect:
3216 case Intrinsic::experimental_noalias_scope_decl:
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_start:
3219 case Intrinsic::lifetime_end:
3220 if (TheLoop->hasLoopInvariantOperands(&I))
3221 AddToWorklistIfAllowed(&I);
3222 break;
3223 default:
3224 break;
3225 }
3226 }
3227
3228 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3229 if (IsOutOfScope(EVI->getAggregateOperand())) {
3230 AddToWorklistIfAllowed(EVI);
3231 continue;
3232 }
3233 // Only ExtractValue instructions where the aggregate value comes from a
3234 // call are allowed to be non-uniform.
3235 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3236 "Expected aggregate value to be call return value");
3237 }
3238
3239 // If there's no pointer operand, there's nothing to do.
3240 auto *Ptr = getLoadStorePointerOperand(&I);
3241 if (!Ptr)
3242 continue;
3243
3244 // If the pointer can be proven to be uniform, always add it to the
3245 // worklist.
3246 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3247 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3248
3249 if (IsUniformMemOpUse(&I))
3250 AddToWorklistIfAllowed(&I);
3251
3252 if (IsVectorizedMemAccessUse(&I, Ptr))
3253 HasUniformUse.insert(Ptr);
3254 }
3255
3256 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3257 // demanding) users. Since loops are assumed to be in LCSSA form, this
3258 // disallows uses outside the loop as well.
3259 for (auto *V : HasUniformUse) {
3260 if (IsOutOfScope(V))
3261 continue;
3262 auto *I = cast<Instruction>(V);
3263 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3264 auto *UI = cast<Instruction>(U);
3265 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3266 });
3267 if (UsersAreMemAccesses)
3268 AddToWorklistIfAllowed(I);
3269 }
3270
3271 // Expand Worklist in topological order: whenever a new instruction
3272 // is added , its users should be already inside Worklist. It ensures
3273 // a uniform instruction will only be used by uniform instructions.
3274 unsigned Idx = 0;
3275 while (Idx != Worklist.size()) {
3276 Instruction *I = Worklist[Idx++];
3277
3278 for (auto *OV : I->operand_values()) {
3279 // isOutOfScope operands cannot be uniform instructions.
3280 if (IsOutOfScope(OV))
3281 continue;
3282 // First order recurrence Phi's should typically be considered
3283 // non-uniform.
3284 auto *OP = dyn_cast<PHINode>(OV);
3285 if (OP && Legal->isFixedOrderRecurrence(OP))
3286 continue;
3287 // If all the users of the operand are uniform, then add the
3288 // operand into the uniform worklist.
3289 auto *OI = cast<Instruction>(OV);
3290 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3291 auto *J = cast<Instruction>(U);
3292 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3293 }))
3294 AddToWorklistIfAllowed(OI);
3295 }
3296 }
3297
3298 // For an instruction to be added into Worklist above, all its users inside
3299 // the loop should also be in Worklist. However, this condition cannot be
3300 // true for phi nodes that form a cyclic dependence. We must process phi
3301 // nodes separately. An induction variable will remain uniform if all users
3302 // of the induction variable and induction variable update remain uniform.
3303 // The code below handles both pointer and non-pointer induction variables.
3304 BasicBlock *Latch = TheLoop->getLoopLatch();
3305 for (const auto &Induction : Legal->getInductionVars()) {
3306 auto *Ind = Induction.first;
3307 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3308
3309 // Determine if all users of the induction variable are uniform after
3310 // vectorization.
3311 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3312 auto *I = cast<Instruction>(U);
3313 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3314 IsVectorizedMemAccessUse(I, Ind);
3315 });
3316 if (!UniformInd)
3317 continue;
3318
3319 // Determine if all users of the induction variable update instruction are
3320 // uniform after vectorization.
3321 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3322 auto *I = cast<Instruction>(U);
3323 return I == Ind || Worklist.count(I) ||
3324 IsVectorizedMemAccessUse(I, IndUpdate);
3325 });
3326 if (!UniformIndUpdate)
3327 continue;
3328
3329 // The induction variable and its update instruction will remain uniform.
3330 AddToWorklistIfAllowed(Ind);
3331 AddToWorklistIfAllowed(IndUpdate);
3332 }
3333
3334 Uniforms[VF].insert_range(Worklist);
3335}
3336
3338 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3339
3340 if (Legal->getRuntimePointerChecking()->Need) {
3341 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3342 "runtime pointer checks needed. Enable vectorization of this "
3343 "loop with '#pragma clang loop vectorize(enable)' when "
3344 "compiling with -Os/-Oz",
3345 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3346 return true;
3347 }
3348
3349 if (!PSE.getPredicate().isAlwaysTrue()) {
3350 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3351 "runtime SCEV checks needed. Enable vectorization of this "
3352 "loop with '#pragma clang loop vectorize(enable)' when "
3353 "compiling with -Os/-Oz",
3354 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3355 return true;
3356 }
3357
3358 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3359 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3360 reportVectorizationFailure("Runtime stride check for small trip count",
3361 "runtime stride == 1 checks needed. Enable vectorization of "
3362 "this loop without such check by compiling with -Os/-Oz",
3363 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3364 return true;
3365 }
3366
3367 return false;
3368}
3369
3370bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3371 if (IsScalableVectorizationAllowed)
3372 return *IsScalableVectorizationAllowed;
3373
3374 IsScalableVectorizationAllowed = false;
3375 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3376 return false;
3377
3378 if (Hints->isScalableVectorizationDisabled()) {
3379 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3380 "ScalableVectorizationDisabled", ORE, TheLoop);
3381 return false;
3382 }
3383
3384 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3385
3386 auto MaxScalableVF = ElementCount::getScalable(
3387 std::numeric_limits<ElementCount::ScalarTy>::max());
3388
3389 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3390 // FIXME: While for scalable vectors this is currently sufficient, this should
3391 // be replaced by a more detailed mechanism that filters out specific VFs,
3392 // instead of invalidating vectorization for a whole set of VFs based on the
3393 // MaxVF.
3394
3395 // Disable scalable vectorization if the loop contains unsupported reductions.
3396 if (!canVectorizeReductions(MaxScalableVF)) {
3398 "Scalable vectorization not supported for the reduction "
3399 "operations found in this loop.",
3400 "ScalableVFUnfeasible", ORE, TheLoop);
3401 return false;
3402 }
3403
3404 // Disable scalable vectorization if the loop contains any instructions
3405 // with element types not supported for scalable vectors.
3406 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3407 return !Ty->isVoidTy() &&
3409 })) {
3410 reportVectorizationInfo("Scalable vectorization is not supported "
3411 "for all element types found in this loop.",
3412 "ScalableVFUnfeasible", ORE, TheLoop);
3413 return false;
3414 }
3415
3416 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3417 reportVectorizationInfo("The target does not provide maximum vscale value "
3418 "for safe distance analysis.",
3419 "ScalableVFUnfeasible", ORE, TheLoop);
3420 return false;
3421 }
3422
3423 IsScalableVectorizationAllowed = true;
3424 return true;
3425}
3426
3427ElementCount
3428LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3429 if (!isScalableVectorizationAllowed())
3430 return ElementCount::getScalable(0);
3431
3432 auto MaxScalableVF = ElementCount::getScalable(
3433 std::numeric_limits<ElementCount::ScalarTy>::max());
3434 if (Legal->isSafeForAnyVectorWidth())
3435 return MaxScalableVF;
3436
3437 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3438 // Limit MaxScalableVF by the maximum safe dependence distance.
3439 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3440
3441 if (!MaxScalableVF)
3443 "Max legal vector width too small, scalable vectorization "
3444 "unfeasible.",
3445 "ScalableVFUnfeasible", ORE, TheLoop);
3446
3447 return MaxScalableVF;
3448}
3449
3450FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3451 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3452 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3453 unsigned SmallestType, WidestType;
3454 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3455
3456 // Get the maximum safe dependence distance in bits computed by LAA.
3457 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3458 // the memory accesses that is most restrictive (involved in the smallest
3459 // dependence distance).
3460 unsigned MaxSafeElementsPowerOf2 =
3461 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3462 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3463 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3464 MaxSafeElementsPowerOf2 =
3465 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3466 }
3467 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3468 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3469
3470 if (!Legal->isSafeForAnyVectorWidth())
3471 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3472
3473 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3474 << ".\n");
3475 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3476 << ".\n");
3477
3478 // First analyze the UserVF, fall back if the UserVF should be ignored.
3479 if (UserVF) {
3480 auto MaxSafeUserVF =
3481 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3482
3483 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3484 // If `VF=vscale x N` is safe, then so is `VF=N`
3485 if (UserVF.isScalable())
3486 return FixedScalableVFPair(
3487 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3488
3489 return UserVF;
3490 }
3491
3492 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3493
3494 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3495 // is better to ignore the hint and let the compiler choose a suitable VF.
3496 if (!UserVF.isScalable()) {
3497 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3498 << " is unsafe, clamping to max safe VF="
3499 << MaxSafeFixedVF << ".\n");
3500 ORE->emit([&]() {
3501 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3502 TheLoop->getStartLoc(),
3503 TheLoop->getHeader())
3504 << "User-specified vectorization factor "
3505 << ore::NV("UserVectorizationFactor", UserVF)
3506 << " is unsafe, clamping to maximum safe vectorization factor "
3507 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3508 });
3509 return MaxSafeFixedVF;
3510 }
3511
3513 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3514 << " is ignored because scalable vectors are not "
3515 "available.\n");
3516 ORE->emit([&]() {
3517 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3518 TheLoop->getStartLoc(),
3519 TheLoop->getHeader())
3520 << "User-specified vectorization factor "
3521 << ore::NV("UserVectorizationFactor", UserVF)
3522 << " is ignored because the target does not support scalable "
3523 "vectors. The compiler will pick a more suitable value.";
3524 });
3525 } else {
3526 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3527 << " is unsafe. Ignoring scalable UserVF.\n");
3528 ORE->emit([&]() {
3529 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3530 TheLoop->getStartLoc(),
3531 TheLoop->getHeader())
3532 << "User-specified vectorization factor "
3533 << ore::NV("UserVectorizationFactor", UserVF)
3534 << " is unsafe. Ignoring the hint to let the compiler pick a "
3535 "more suitable value.";
3536 });
3537 }
3538 }
3539
3540 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3541 << " / " << WidestType << " bits.\n");
3542
3543 FixedScalableVFPair Result(ElementCount::getFixed(1),
3545 if (auto MaxVF =
3546 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3547 MaxSafeFixedVF, FoldTailByMasking))
3548 Result.FixedVF = MaxVF;
3549
3550 if (auto MaxVF =
3551 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3552 MaxSafeScalableVF, FoldTailByMasking))
3553 if (MaxVF.isScalable()) {
3554 Result.ScalableVF = MaxVF;
3555 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3556 << "\n");
3557 }
3558
3559 return Result;
3560}
3561
3562FixedScalableVFPair
3564 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3565 // TODO: It may be useful to do since it's still likely to be dynamically
3566 // uniform if the target can skip.
3568 "Not inserting runtime ptr check for divergent target",
3569 "runtime pointer checks needed. Not enabled for divergent target",
3570 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3572 }
3573
3574 ScalarEvolution *SE = PSE.getSE();
3576 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3577 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3578 if (TC != ElementCount::getFixed(MaxTC))
3579 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3580 if (TC.isScalar()) {
3581 reportVectorizationFailure("Single iteration (non) loop",
3582 "loop trip count is one, irrelevant for vectorization",
3583 "SingleIterationLoop", ORE, TheLoop);
3585 }
3586
3587 // If BTC matches the widest induction type and is -1 then the trip count
3588 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3589 // to vectorize.
3590 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3591 if (!isa<SCEVCouldNotCompute>(BTC) &&
3592 BTC->getType()->getScalarSizeInBits() >=
3593 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3595 SE->getMinusOne(BTC->getType()))) {
3597 "Trip count computation wrapped",
3598 "backedge-taken count is -1, loop trip count wrapped to 0",
3599 "TripCountWrapped", ORE, TheLoop);
3601 }
3602
3603 switch (ScalarEpilogueStatus) {
3605 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3607 [[fallthrough]];
3609 LLVM_DEBUG(
3610 dbgs() << "LV: vector predicate hint/switch found.\n"
3611 << "LV: Not allowing scalar epilogue, creating predicated "
3612 << "vector loop.\n");
3613 break;
3615 // fallthrough as a special case of OptForSize
3617 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3618 LLVM_DEBUG(
3619 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3620 else
3621 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3622 << "count.\n");
3623
3624 // Bail if runtime checks are required, which are not good when optimising
3625 // for size.
3628
3629 break;
3630 }
3631
3632 // Now try the tail folding
3633
3634 // Invalidate interleave groups that require an epilogue if we can't mask
3635 // the interleave-group.
3637 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3638 "No decisions should have been taken at this point");
3639 // Note: There is no need to invalidate any cost modeling decisions here, as
3640 // none were taken so far.
3641 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3642 }
3643
3644 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3645
3646 // Avoid tail folding if the trip count is known to be a multiple of any VF
3647 // we choose.
3648 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3649 MaxFactors.FixedVF.getFixedValue();
3650 if (MaxFactors.ScalableVF) {
3651 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3652 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3653 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3654 *MaxPowerOf2RuntimeVF,
3655 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3656 } else
3657 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3658 }
3659
3660 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3661 // Return false if the loop is neither a single-latch-exit loop nor an
3662 // early-exit loop as tail-folding is not supported in that case.
3663 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3664 !Legal->hasUncountableEarlyExit())
3665 return false;
3666 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3667 ScalarEvolution *SE = PSE.getSE();
3668 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3669 // with uncountable exits. For countable loops, the symbolic maximum must
3670 // remain identical to the known back-edge taken count.
3671 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3672 assert((Legal->hasUncountableEarlyExit() ||
3673 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3674 "Invalid loop count");
3675 const SCEV *ExitCount = SE->getAddExpr(
3676 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3677 const SCEV *Rem = SE->getURemExpr(
3678 SE->applyLoopGuards(ExitCount, TheLoop),
3679 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3680 return Rem->isZero();
3681 };
3682
3683 if (MaxPowerOf2RuntimeVF > 0u) {
3684 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3685 "MaxFixedVF must be a power of 2");
3686 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3687 // Accept MaxFixedVF if we do not have a tail.
3688 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3689 return MaxFactors;
3690 }
3691 }
3692
3693 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3694 if (ExpectedTC && ExpectedTC->isFixed() &&
3695 ExpectedTC->getFixedValue() <=
3696 TTI.getMinTripCountTailFoldingThreshold()) {
3697 if (MaxPowerOf2RuntimeVF > 0u) {
3698 // If we have a low-trip-count, and the fixed-width VF is known to divide
3699 // the trip count but the scalable factor does not, use the fixed-width
3700 // factor in preference to allow the generation of a non-predicated loop.
3701 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3702 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3703 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3704 "remain for any chosen VF.\n");
3705 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3706 return MaxFactors;
3707 }
3708 }
3709
3711 "The trip count is below the minial threshold value.",
3712 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3713 ORE, TheLoop);
3715 }
3716
3717 // If we don't know the precise trip count, or if the trip count that we
3718 // found modulo the vectorization factor is not zero, try to fold the tail
3719 // by masking.
3720 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3721 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3722 setTailFoldingStyles(ContainsScalableVF, UserIC);
3723 if (foldTailByMasking()) {
3724 if (foldTailWithEVL()) {
3725 LLVM_DEBUG(
3726 dbgs()
3727 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3728 "try to generate VP Intrinsics with scalable vector "
3729 "factors only.\n");
3730 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3731 // for now.
3732 // TODO: extend it for fixed vectors, if required.
3733 assert(ContainsScalableVF && "Expected scalable vector factor.");
3734
3735 MaxFactors.FixedVF = ElementCount::getFixed(1);
3736 }
3737 return MaxFactors;
3738 }
3739
3740 // If there was a tail-folding hint/switch, but we can't fold the tail by
3741 // masking, fallback to a vectorization with a scalar epilogue.
3742 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3743 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3744 "scalar epilogue instead.\n");
3745 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3746 return MaxFactors;
3747 }
3748
3749 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3750 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3752 }
3753
3754 if (TC.isZero()) {
3756 "unable to calculate the loop count due to complex control flow",
3757 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3759 }
3760
3762 "Cannot optimize for size and vectorize at the same time.",
3763 "cannot optimize for size and vectorize at the same time. "
3764 "Enable vectorization of this loop with '#pragma clang loop "
3765 "vectorize(enable)' when compiling with -Os/-Oz",
3766 "NoTailLoopWithOptForSize", ORE, TheLoop);
3768}
3769
3771 ElementCount VF) {
3772 if (ConsiderRegPressure.getNumOccurrences())
3773 return ConsiderRegPressure;
3774
3775 // TODO: We should eventually consider register pressure for all targets. The
3776 // TTI hook is temporary whilst target-specific issues are being fixed.
3777 if (TTI.shouldConsiderVectorizationRegPressure())
3778 return true;
3779
3780 if (!useMaxBandwidth(VF.isScalable()
3783 return false;
3784 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3786 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3788}
3789
3792 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3793 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3795 Legal->hasVectorCallVariants())));
3796}
3797
3798ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3799 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3800 unsigned EstimatedVF = VF.getKnownMinValue();
3801 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3802 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3803 auto Min = Attr.getVScaleRangeMin();
3804 EstimatedVF *= Min;
3805 }
3806
3807 // When a scalar epilogue is required, at least one iteration of the scalar
3808 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3809 // max VF that results in a dead vector loop.
3810 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3811 MaxTripCount -= 1;
3812
3813 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3814 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3815 // If upper bound loop trip count (TC) is known at compile time there is no
3816 // point in choosing VF greater than TC (as done in the loop below). Select
3817 // maximum power of two which doesn't exceed TC. If VF is
3818 // scalable, we only fall back on a fixed VF when the TC is less than or
3819 // equal to the known number of lanes.
3820 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3821 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3822 "exceeding the constant trip count: "
3823 << ClampedUpperTripCount << "\n");
3824 return ElementCount::get(ClampedUpperTripCount,
3825 FoldTailByMasking ? VF.isScalable() : false);
3826 }
3827 return VF;
3828}
3829
3830ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3831 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3832 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3833 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3834 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3835 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3837
3838 // Convenience function to return the minimum of two ElementCounts.
3839 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3840 assert((LHS.isScalable() == RHS.isScalable()) &&
3841 "Scalable flags must match");
3842 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3843 };
3844
3845 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3846 // Note that both WidestRegister and WidestType may not be a powers of 2.
3847 auto MaxVectorElementCount = ElementCount::get(
3848 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3849 ComputeScalableMaxVF);
3850 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3851 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3852 << (MaxVectorElementCount * WidestType) << " bits.\n");
3853
3854 if (!MaxVectorElementCount) {
3855 LLVM_DEBUG(dbgs() << "LV: The target has no "
3856 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3857 << " vector registers.\n");
3858 return ElementCount::getFixed(1);
3859 }
3860
3861 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3862 MaxTripCount, FoldTailByMasking);
3863 // If the MaxVF was already clamped, there's no point in trying to pick a
3864 // larger one.
3865 if (MaxVF != MaxVectorElementCount)
3866 return MaxVF;
3867
3869 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3871
3872 if (MaxVF.isScalable())
3873 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3874 else
3875 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3876
3877 if (useMaxBandwidth(RegKind)) {
3878 auto MaxVectorElementCountMaxBW = ElementCount::get(
3879 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3880 ComputeScalableMaxVF);
3881 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3882
3883 if (ElementCount MinVF =
3884 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3885 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3886 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3887 << ") with target's minimum: " << MinVF << '\n');
3888 MaxVF = MinVF;
3889 }
3890 }
3891
3892 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3893
3894 if (MaxVectorElementCount != MaxVF) {
3895 // Invalidate any widening decisions we might have made, in case the loop
3896 // requires prediction (decided later), but we have already made some
3897 // load/store widening decisions.
3898 invalidateCostModelingDecisions();
3899 }
3900 }
3901 return MaxVF;
3902}
3903
3904bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3905 const VectorizationFactor &B,
3906 const unsigned MaxTripCount,
3907 bool HasTail,
3908 bool IsEpilogue) const {
3909 InstructionCost CostA = A.Cost;
3910 InstructionCost CostB = B.Cost;
3911
3912 // Improve estimate for the vector width if it is scalable.
3913 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3914 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3915 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3916 if (A.Width.isScalable())
3917 EstimatedWidthA *= *VScale;
3918 if (B.Width.isScalable())
3919 EstimatedWidthB *= *VScale;
3920 }
3921
3922 // When optimizing for size choose whichever is smallest, which will be the
3923 // one with the smallest cost for the whole loop. On a tie pick the larger
3924 // vector width, on the assumption that throughput will be greater.
3925 if (CM.CostKind == TTI::TCK_CodeSize)
3926 return CostA < CostB ||
3927 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3928
3929 // Assume vscale may be larger than 1 (or the value being tuned for),
3930 // so that scalable vectorization is slightly favorable over fixed-width
3931 // vectorization.
3932 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3933 A.Width.isScalable() && !B.Width.isScalable();
3934
3935 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3936 const InstructionCost &RHS) {
3937 return PreferScalable ? LHS <= RHS : LHS < RHS;
3938 };
3939
3940 // To avoid the need for FP division:
3941 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3942 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3943 if (!MaxTripCount)
3944 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3945
3946 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3947 InstructionCost VectorCost,
3948 InstructionCost ScalarCost) {
3949 // If the trip count is a known (possibly small) constant, the trip count
3950 // will be rounded up to an integer number of iterations under
3951 // FoldTailByMasking. The total cost in that case will be
3952 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3953 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3954 // some extra overheads, but for the purpose of comparing the costs of
3955 // different VFs we can use this to compare the total loop-body cost
3956 // expected after vectorization.
3957 if (HasTail)
3958 return VectorCost * (MaxTripCount / VF) +
3959 ScalarCost * (MaxTripCount % VF);
3960 return VectorCost * divideCeil(MaxTripCount, VF);
3961 };
3962
3963 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3964 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3965 return CmpFn(RTCostA, RTCostB);
3966}
3967
3968bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3969 const VectorizationFactor &B,
3970 bool HasTail,
3971 bool IsEpilogue) const {
3972 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3973 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3974 IsEpilogue);
3975}
3976
3979 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3980 SmallVector<RecipeVFPair> InvalidCosts;
3981 for (const auto &Plan : VPlans) {
3982 for (ElementCount VF : Plan->vectorFactors()) {
3983 // The VPlan-based cost model is designed for computing vector cost.
3984 // Querying VPlan-based cost model with a scarlar VF will cause some
3985 // errors because we expect the VF is vector for most of the widen
3986 // recipes.
3987 if (VF.isScalar())
3988 continue;
3989
3990 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
3991 OrigLoop);
3992 precomputeCosts(*Plan, VF, CostCtx);
3993 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3995 for (auto &R : *VPBB) {
3996 if (!R.cost(VF, CostCtx).isValid())
3997 InvalidCosts.emplace_back(&R, VF);
3998 }
3999 }
4000 }
4001 }
4002 if (InvalidCosts.empty())
4003 return;
4004
4005 // Emit a report of VFs with invalid costs in the loop.
4006
4007 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
4009 unsigned I = 0;
4010 for (auto &Pair : InvalidCosts)
4011 if (Numbering.try_emplace(Pair.first, I).second)
4012 ++I;
4013
4014 // Sort the list, first on recipe(number) then on VF.
4015 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
4016 unsigned NA = Numbering[A.first];
4017 unsigned NB = Numbering[B.first];
4018 if (NA != NB)
4019 return NA < NB;
4020 return ElementCount::isKnownLT(A.second, B.second);
4021 });
4022
4023 // For a list of ordered recipe-VF pairs:
4024 // [(load, VF1), (load, VF2), (store, VF1)]
4025 // group the recipes together to emit separate remarks for:
4026 // load (VF1, VF2)
4027 // store (VF1)
4028 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4029 auto Subset = ArrayRef<RecipeVFPair>();
4030 do {
4031 if (Subset.empty())
4032 Subset = Tail.take_front(1);
4033
4034 VPRecipeBase *R = Subset.front().first;
4035
4036 unsigned Opcode =
4039 [](const auto *R) { return Instruction::PHI; })
4040 .Case<VPWidenStoreRecipe>(
4041 [](const auto *R) { return Instruction::Store; })
4042 .Case<VPWidenLoadRecipe>(
4043 [](const auto *R) { return Instruction::Load; })
4044 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4045 [](const auto *R) { return Instruction::Call; })
4048 [](const auto *R) { return R->getOpcode(); })
4049 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4050 return R->getStoredValues().empty() ? Instruction::Load
4051 : Instruction::Store;
4052 })
4053 .Case<VPReductionRecipe>([](const auto *R) {
4054 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4055 });
4056
4057 // If the next recipe is different, or if there are no other pairs,
4058 // emit a remark for the collated subset. e.g.
4059 // [(load, VF1), (load, VF2))]
4060 // to emit:
4061 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4062 if (Subset == Tail || Tail[Subset.size()].first != R) {
4063 std::string OutString;
4064 raw_string_ostream OS(OutString);
4065 assert(!Subset.empty() && "Unexpected empty range");
4066 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4067 for (const auto &Pair : Subset)
4068 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4069 OS << "):";
4070 if (Opcode == Instruction::Call) {
4071 StringRef Name = "";
4072 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4073 Name = Int->getIntrinsicName();
4074 } else {
4075 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4076 Function *CalledFn =
4077 WidenCall ? WidenCall->getCalledScalarFunction()
4078 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4079 ->getLiveInIRValue());
4080 Name = CalledFn->getName();
4081 }
4082 OS << " call to " << Name;
4083 } else
4084 OS << " " << Instruction::getOpcodeName(Opcode);
4085 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4086 R->getDebugLoc());
4087 Tail = Tail.drop_front(Subset.size());
4088 Subset = {};
4089 } else
4090 // Grow the subset by one element
4091 Subset = Tail.take_front(Subset.size() + 1);
4092 } while (!Tail.empty());
4093}
4094
4095/// Check if any recipe of \p Plan will generate a vector value, which will be
4096/// assigned a vector register.
4098 const TargetTransformInfo &TTI) {
4099 assert(VF.isVector() && "Checking a scalar VF?");
4100 VPTypeAnalysis TypeInfo(Plan);
4101 DenseSet<VPRecipeBase *> EphemeralRecipes;
4102 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4103 // Set of already visited types.
4104 DenseSet<Type *> Visited;
4107 for (VPRecipeBase &R : *VPBB) {
4108 if (EphemeralRecipes.contains(&R))
4109 continue;
4110 // Continue early if the recipe is considered to not produce a vector
4111 // result. Note that this includes VPInstruction where some opcodes may
4112 // produce a vector, to preserve existing behavior as VPInstructions model
4113 // aspects not directly mapped to existing IR instructions.
4114 switch (R.getVPDefID()) {
4115 case VPDef::VPDerivedIVSC:
4116 case VPDef::VPScalarIVStepsSC:
4117 case VPDef::VPReplicateSC:
4118 case VPDef::VPInstructionSC:
4119 case VPDef::VPCanonicalIVPHISC:
4120 case VPDef::VPVectorPointerSC:
4121 case VPDef::VPVectorEndPointerSC:
4122 case VPDef::VPExpandSCEVSC:
4123 case VPDef::VPEVLBasedIVPHISC:
4124 case VPDef::VPPredInstPHISC:
4125 case VPDef::VPBranchOnMaskSC:
4126 continue;
4127 case VPDef::VPReductionSC:
4128 case VPDef::VPActiveLaneMaskPHISC:
4129 case VPDef::VPWidenCallSC:
4130 case VPDef::VPWidenCanonicalIVSC:
4131 case VPDef::VPWidenCastSC:
4132 case VPDef::VPWidenGEPSC:
4133 case VPDef::VPWidenIntrinsicSC:
4134 case VPDef::VPWidenSC:
4135 case VPDef::VPBlendSC:
4136 case VPDef::VPFirstOrderRecurrencePHISC:
4137 case VPDef::VPHistogramSC:
4138 case VPDef::VPWidenPHISC:
4139 case VPDef::VPWidenIntOrFpInductionSC:
4140 case VPDef::VPWidenPointerInductionSC:
4141 case VPDef::VPReductionPHISC:
4142 case VPDef::VPInterleaveEVLSC:
4143 case VPDef::VPInterleaveSC:
4144 case VPDef::VPWidenLoadEVLSC:
4145 case VPDef::VPWidenLoadSC:
4146 case VPDef::VPWidenStoreEVLSC:
4147 case VPDef::VPWidenStoreSC:
4148 break;
4149 default:
4150 llvm_unreachable("unhandled recipe");
4151 }
4152
4153 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4154 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4155 if (!NumLegalParts)
4156 return false;
4157 if (VF.isScalable()) {
4158 // <vscale x 1 x iN> is assumed to be profitable over iN because
4159 // scalable registers are a distinct register class from scalar
4160 // ones. If we ever find a target which wants to lower scalable
4161 // vectors back to scalars, we'll need to update this code to
4162 // explicitly ask TTI about the register class uses for each part.
4163 return NumLegalParts <= VF.getKnownMinValue();
4164 }
4165 // Two or more elements that share a register - are vectorized.
4166 return NumLegalParts < VF.getFixedValue();
4167 };
4168
4169 // If no def nor is a store, e.g., branches, continue - no value to check.
4170 if (R.getNumDefinedValues() == 0 &&
4172 continue;
4173 // For multi-def recipes, currently only interleaved loads, suffice to
4174 // check first def only.
4175 // For stores check their stored value; for interleaved stores suffice
4176 // the check first stored value only. In all cases this is the second
4177 // operand.
4178 VPValue *ToCheck =
4179 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4180 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4181 if (!Visited.insert({ScalarTy}).second)
4182 continue;
4183 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4184 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4185 return true;
4186 }
4187 }
4188
4189 return false;
4190}
4191
4192static bool hasReplicatorRegion(VPlan &Plan) {
4194 Plan.getVectorLoopRegion()->getEntry())),
4195 [](auto *VPRB) { return VPRB->isReplicator(); });
4196}
4197
4198#ifndef NDEBUG
4199VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4200 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4201 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4202 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4203 assert(
4204 any_of(VPlans,
4205 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4206 "Expected Scalar VF to be a candidate");
4207
4208 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4209 ExpectedCost);
4210 VectorizationFactor ChosenFactor = ScalarCost;
4211
4212 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4213 if (ForceVectorization &&
4214 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4215 // Ignore scalar width, because the user explicitly wants vectorization.
4216 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4217 // evaluation.
4218 ChosenFactor.Cost = InstructionCost::getMax();
4219 }
4220
4221 for (auto &P : VPlans) {
4222 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4223 P->vectorFactors().end());
4224
4226 if (any_of(VFs, [this](ElementCount VF) {
4227 return CM.shouldConsiderRegPressureForVF(VF);
4228 }))
4229 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4230
4231 for (unsigned I = 0; I < VFs.size(); I++) {
4232 ElementCount VF = VFs[I];
4233 // The cost for scalar VF=1 is already calculated, so ignore it.
4234 if (VF.isScalar())
4235 continue;
4236
4237 /// If the register pressure needs to be considered for VF,
4238 /// don't consider the VF as valid if it exceeds the number
4239 /// of registers for the target.
4240 if (CM.shouldConsiderRegPressureForVF(VF) &&
4241 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4242 continue;
4243
4244 InstructionCost C = CM.expectedCost(VF);
4245
4246 // Add on other costs that are modelled in VPlan, but not in the legacy
4247 // cost model.
4248 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind, CM.PSE,
4249 OrigLoop);
4250 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4251 assert(VectorRegion && "Expected to have a vector region!");
4252 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4253 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4254 for (VPRecipeBase &R : *VPBB) {
4255 auto *VPI = dyn_cast<VPInstruction>(&R);
4256 if (!VPI)
4257 continue;
4258 switch (VPI->getOpcode()) {
4259 // Selects are only modelled in the legacy cost model for safe
4260 // divisors.
4261 case Instruction::Select: {
4262 if (auto *WR =
4263 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4264 switch (WR->getOpcode()) {
4265 case Instruction::UDiv:
4266 case Instruction::SDiv:
4267 case Instruction::URem:
4268 case Instruction::SRem:
4269 continue;
4270 default:
4271 break;
4272 }
4273 }
4274 C += VPI->cost(VF, CostCtx);
4275 break;
4276 }
4278 unsigned Multiplier =
4279 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4280 ->getZExtValue();
4281 C += VPI->cost(VF * Multiplier, CostCtx);
4282 break;
4283 }
4285 C += VPI->cost(VF, CostCtx);
4286 break;
4287 default:
4288 break;
4289 }
4290 }
4291 }
4292
4293 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4294 unsigned Width =
4295 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4296 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4297 << " costs: " << (Candidate.Cost / Width));
4298 if (VF.isScalable())
4299 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4300 << CM.getVScaleForTuning().value_or(1) << ")");
4301 LLVM_DEBUG(dbgs() << ".\n");
4302
4303 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4304 LLVM_DEBUG(
4305 dbgs()
4306 << "LV: Not considering vector loop of width " << VF
4307 << " because it will not generate any vector instructions.\n");
4308 continue;
4309 }
4310
4311 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4312 LLVM_DEBUG(
4313 dbgs()
4314 << "LV: Not considering vector loop of width " << VF
4315 << " because it would cause replicated blocks to be generated,"
4316 << " which isn't allowed when optimizing for size.\n");
4317 continue;
4318 }
4319
4320 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4321 ChosenFactor = Candidate;
4322 }
4323 }
4324
4325 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4327 "There are conditional stores.",
4328 "store that is conditionally executed prevents vectorization",
4329 "ConditionalStore", ORE, OrigLoop);
4330 ChosenFactor = ScalarCost;
4331 }
4332
4333 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4334 !isMoreProfitable(ChosenFactor, ScalarCost,
4335 !CM.foldTailByMasking())) dbgs()
4336 << "LV: Vectorization seems to be not beneficial, "
4337 << "but was forced by a user.\n");
4338 return ChosenFactor;
4339}
4340#endif
4341
4342bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4343 ElementCount VF) const {
4344 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4345 // reductions need special handling and are currently unsupported.
4346 // FindLast reductions also require special handling for the synthesized
4347 // mask PHI.
4348 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4349 if (!Legal->isReductionVariable(&Phi))
4350 return Legal->isFixedOrderRecurrence(&Phi);
4351 RecurKind Kind =
4352 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4353 return RecurrenceDescriptor::isFindLastRecurrenceKind(Kind) ||
4354 RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(Kind);
4355 }))
4356 return false;
4357
4358 // Phis with uses outside of the loop require special handling and are
4359 // currently unsupported.
4360 for (const auto &Entry : Legal->getInductionVars()) {
4361 // Look for uses of the value of the induction at the last iteration.
4362 Value *PostInc =
4363 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4364 for (User *U : PostInc->users())
4365 if (!OrigLoop->contains(cast<Instruction>(U)))
4366 return false;
4367 // Look for uses of penultimate value of the induction.
4368 for (User *U : Entry.first->users())
4369 if (!OrigLoop->contains(cast<Instruction>(U)))
4370 return false;
4371 }
4372
4373 // Epilogue vectorization code has not been auditted to ensure it handles
4374 // non-latch exits properly. It may be fine, but it needs auditted and
4375 // tested.
4376 // TODO: Add support for loops with an early exit.
4377 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4378 return false;
4379
4380 return true;
4381}
4382
4384 const ElementCount VF, const unsigned IC) const {
4385 // FIXME: We need a much better cost-model to take different parameters such
4386 // as register pressure, code size increase and cost of extra branches into
4387 // account. For now we apply a very crude heuristic and only consider loops
4388 // with vectorization factors larger than a certain value.
4389
4390 // Allow the target to opt out entirely.
4391 if (!TTI.preferEpilogueVectorization())
4392 return false;
4393
4394 // We also consider epilogue vectorization unprofitable for targets that don't
4395 // consider interleaving beneficial (eg. MVE).
4396 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4397 return false;
4398
4399 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4401 : TTI.getEpilogueVectorizationMinVF();
4402 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4403}
4404
4406 const ElementCount MainLoopVF, unsigned IC) {
4409 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4410 return Result;
4411 }
4412
4413 if (!CM.isScalarEpilogueAllowed()) {
4414 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4415 "epilogue is allowed.\n");
4416 return Result;
4417 }
4418
4419 // Not really a cost consideration, but check for unsupported cases here to
4420 // simplify the logic.
4421 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4422 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4423 "is not a supported candidate.\n");
4424 return Result;
4425 }
4426
4428 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4430 if (hasPlanWithVF(ForcedEC))
4431 return {ForcedEC, 0, 0};
4432
4433 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4434 "viable.\n");
4435 return Result;
4436 }
4437
4438 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4439 LLVM_DEBUG(
4440 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4441 return Result;
4442 }
4443
4444 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4445 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4446 "this loop\n");
4447 return Result;
4448 }
4449
4450 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4451 // the main loop handles 8 lanes per iteration. We could still benefit from
4452 // vectorizing the epilogue loop with VF=4.
4453 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4454 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4455
4456 Type *TCType = Legal->getWidestInductionType();
4457 const SCEV *RemainingIterations = nullptr;
4458 unsigned MaxTripCount = 0;
4460 getPlanFor(MainLoopVF).getTripCount(), PSE);
4461 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4462 const SCEV *KnownMinTC;
4463 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4464 bool ScalableRemIter = false;
4465 ScalarEvolution &SE = *PSE.getSE();
4466 // Use versions of TC and VF in which both are either scalable or fixed.
4467 if (ScalableTC == MainLoopVF.isScalable()) {
4468 ScalableRemIter = ScalableTC;
4469 RemainingIterations =
4470 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4471 } else if (ScalableTC) {
4472 const SCEV *EstimatedTC = SE.getMulExpr(
4473 KnownMinTC,
4474 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4475 RemainingIterations = SE.getURemExpr(
4476 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4477 } else
4478 RemainingIterations =
4479 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4480
4481 // No iterations left to process in the epilogue.
4482 if (RemainingIterations->isZero())
4483 return Result;
4484
4485 if (MainLoopVF.isFixed()) {
4486 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4487 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4488 SE.getConstant(TCType, MaxTripCount))) {
4489 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4490 }
4491 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4492 << MaxTripCount << "\n");
4493 }
4494
4495 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4496 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4497 };
4498 for (auto &NextVF : ProfitableVFs) {
4499 // Skip candidate VFs without a corresponding VPlan.
4500 if (!hasPlanWithVF(NextVF.Width))
4501 continue;
4502
4503 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4504 // vectors) or > the VF of the main loop (fixed vectors).
4505 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4506 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4507 (NextVF.Width.isScalable() &&
4508 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4509 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4510 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4511 continue;
4512
4513 // If NextVF is greater than the number of remaining iterations, the
4514 // epilogue loop would be dead. Skip such factors.
4515 // TODO: We should also consider comparing against a scalable
4516 // RemainingIterations when SCEV be able to evaluate non-canonical
4517 // vscale-based expressions.
4518 if (!ScalableRemIter) {
4519 // Handle the case where NextVF and RemainingIterations are in different
4520 // numerical spaces.
4521 ElementCount EC = NextVF.Width;
4522 if (NextVF.Width.isScalable())
4524 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4525 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4526 continue;
4527 }
4528
4529 if (Result.Width.isScalar() ||
4530 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4531 /*IsEpilogue*/ true))
4532 Result = NextVF;
4533 }
4534
4535 if (Result != VectorizationFactor::Disabled())
4536 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4537 << Result.Width << "\n");
4538 return Result;
4539}
4540
4541std::pair<unsigned, unsigned>
4543 unsigned MinWidth = -1U;
4544 unsigned MaxWidth = 8;
4545 const DataLayout &DL = TheFunction->getDataLayout();
4546 // For in-loop reductions, no element types are added to ElementTypesInLoop
4547 // if there are no loads/stores in the loop. In this case, check through the
4548 // reduction variables to determine the maximum width.
4549 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4550 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4551 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4552 // When finding the min width used by the recurrence we need to account
4553 // for casts on the input operands of the recurrence.
4554 MinWidth = std::min(
4555 MinWidth,
4556 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4558 MaxWidth = std::max(MaxWidth,
4560 }
4561 } else {
4562 for (Type *T : ElementTypesInLoop) {
4563 MinWidth = std::min<unsigned>(
4564 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4565 MaxWidth = std::max<unsigned>(
4566 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4567 }
4568 }
4569 return {MinWidth, MaxWidth};
4570}
4571
4573 ElementTypesInLoop.clear();
4574 // For each block.
4575 for (BasicBlock *BB : TheLoop->blocks()) {
4576 // For each instruction in the loop.
4577 for (Instruction &I : BB->instructionsWithoutDebug()) {
4578 Type *T = I.getType();
4579
4580 // Skip ignored values.
4581 if (ValuesToIgnore.count(&I))
4582 continue;
4583
4584 // Only examine Loads, Stores and PHINodes.
4585 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4586 continue;
4587
4588 // Examine PHI nodes that are reduction variables. Update the type to
4589 // account for the recurrence type.
4590 if (auto *PN = dyn_cast<PHINode>(&I)) {
4591 if (!Legal->isReductionVariable(PN))
4592 continue;
4593 const RecurrenceDescriptor &RdxDesc =
4594 Legal->getRecurrenceDescriptor(PN);
4596 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4597 RdxDesc.getRecurrenceType()))
4598 continue;
4599 T = RdxDesc.getRecurrenceType();
4600 }
4601
4602 // Examine the stored values.
4603 if (auto *ST = dyn_cast<StoreInst>(&I))
4604 T = ST->getValueOperand()->getType();
4605
4606 assert(T->isSized() &&
4607 "Expected the load/store/recurrence type to be sized");
4608
4609 ElementTypesInLoop.insert(T);
4610 }
4611 }
4612}
4613
4614unsigned
4616 InstructionCost LoopCost) {
4617 // -- The interleave heuristics --
4618 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4619 // There are many micro-architectural considerations that we can't predict
4620 // at this level. For example, frontend pressure (on decode or fetch) due to
4621 // code size, or the number and capabilities of the execution ports.
4622 //
4623 // We use the following heuristics to select the interleave count:
4624 // 1. If the code has reductions, then we interleave to break the cross
4625 // iteration dependency.
4626 // 2. If the loop is really small, then we interleave to reduce the loop
4627 // overhead.
4628 // 3. We don't interleave if we think that we will spill registers to memory
4629 // due to the increased register pressure.
4630
4631 // Only interleave tail-folded loops if wide lane masks are requested, as the
4632 // overhead of multiple instructions to calculate the predicate is likely
4633 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4634 // do not interleave.
4635 if (!CM.isScalarEpilogueAllowed() &&
4636 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4637 return 1;
4638
4641 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4642 "Unroll factor forced to be 1.\n");
4643 return 1;
4644 }
4645
4646 // We used the distance for the interleave count.
4647 if (!Legal->isSafeForAnyVectorWidth())
4648 return 1;
4649
4650 // We don't attempt to perform interleaving for loops with uncountable early
4651 // exits because the VPInstruction::AnyOf code cannot currently handle
4652 // multiple parts.
4653 if (Plan.hasEarlyExit())
4654 return 1;
4655
4656 const bool HasReductions =
4659
4660 // FIXME: implement interleaving for FindLast transform correctly.
4661 if (any_of(make_second_range(Legal->getReductionVars()),
4662 [](const RecurrenceDescriptor &RdxDesc) {
4663 return RecurrenceDescriptor::isFindLastRecurrenceKind(
4664 RdxDesc.getRecurrenceKind());
4665 }))
4666 return 1;
4667
4668 // If we did not calculate the cost for VF (because the user selected the VF)
4669 // then we calculate the cost of VF here.
4670 if (LoopCost == 0) {
4671 if (VF.isScalar())
4672 LoopCost = CM.expectedCost(VF);
4673 else
4674 LoopCost = cost(Plan, VF);
4675 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4676
4677 // Loop body is free and there is no need for interleaving.
4678 if (LoopCost == 0)
4679 return 1;
4680 }
4681
4682 VPRegisterUsage R =
4683 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4684 // We divide by these constants so assume that we have at least one
4685 // instruction that uses at least one register.
4686 for (auto &Pair : R.MaxLocalUsers) {
4687 Pair.second = std::max(Pair.second, 1U);
4688 }
4689
4690 // We calculate the interleave count using the following formula.
4691 // Subtract the number of loop invariants from the number of available
4692 // registers. These registers are used by all of the interleaved instances.
4693 // Next, divide the remaining registers by the number of registers that is
4694 // required by the loop, in order to estimate how many parallel instances
4695 // fit without causing spills. All of this is rounded down if necessary to be
4696 // a power of two. We want power of two interleave count to simplify any
4697 // addressing operations or alignment considerations.
4698 // We also want power of two interleave counts to ensure that the induction
4699 // variable of the vector loop wraps to zero, when tail is folded by masking;
4700 // this currently happens when OptForSize, in which case IC is set to 1 above.
4701 unsigned IC = UINT_MAX;
4702
4703 for (const auto &Pair : R.MaxLocalUsers) {
4704 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4705 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4706 << " registers of "
4707 << TTI.getRegisterClassName(Pair.first)
4708 << " register class\n");
4709 if (VF.isScalar()) {
4710 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4711 TargetNumRegisters = ForceTargetNumScalarRegs;
4712 } else {
4713 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4714 TargetNumRegisters = ForceTargetNumVectorRegs;
4715 }
4716 unsigned MaxLocalUsers = Pair.second;
4717 unsigned LoopInvariantRegs = 0;
4718 if (R.LoopInvariantRegs.contains(Pair.first))
4719 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4720
4721 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4722 MaxLocalUsers);
4723 // Don't count the induction variable as interleaved.
4725 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4726 std::max(1U, (MaxLocalUsers - 1)));
4727 }
4728
4729 IC = std::min(IC, TmpIC);
4730 }
4731
4732 // Clamp the interleave ranges to reasonable counts.
4733 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4734
4735 // Check if the user has overridden the max.
4736 if (VF.isScalar()) {
4737 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4738 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4739 } else {
4740 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4741 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4742 }
4743
4744 // Try to get the exact trip count, or an estimate based on profiling data or
4745 // ConstantMax from PSE, failing that.
4746 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4747
4748 // For fixed length VFs treat a scalable trip count as unknown.
4749 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4750 // Re-evaluate trip counts and VFs to be in the same numerical space.
4751 unsigned AvailableTC =
4752 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4753 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4754
4755 // At least one iteration must be scalar when this constraint holds. So the
4756 // maximum available iterations for interleaving is one less.
4757 if (CM.requiresScalarEpilogue(VF.isVector()))
4758 --AvailableTC;
4759
4760 unsigned InterleaveCountLB = bit_floor(std::max(
4761 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4762
4763 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4764 // If the best known trip count is exact, we select between two
4765 // prospective ICs, where
4766 //
4767 // 1) the aggressive IC is capped by the trip count divided by VF
4768 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4769 //
4770 // The final IC is selected in a way that the epilogue loop trip count is
4771 // minimized while maximizing the IC itself, so that we either run the
4772 // vector loop at least once if it generates a small epilogue loop, or
4773 // else we run the vector loop at least twice.
4774
4775 unsigned InterleaveCountUB = bit_floor(std::max(
4776 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4777 MaxInterleaveCount = InterleaveCountLB;
4778
4779 if (InterleaveCountUB != InterleaveCountLB) {
4780 unsigned TailTripCountUB =
4781 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4782 unsigned TailTripCountLB =
4783 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4784 // If both produce same scalar tail, maximize the IC to do the same work
4785 // in fewer vector loop iterations
4786 if (TailTripCountUB == TailTripCountLB)
4787 MaxInterleaveCount = InterleaveCountUB;
4788 }
4789 } else {
4790 // If trip count is an estimated compile time constant, limit the
4791 // IC to be capped by the trip count divided by VF * 2, such that the
4792 // vector loop runs at least twice to make interleaving seem profitable
4793 // when there is an epilogue loop present. Since exact Trip count is not
4794 // known we choose to be conservative in our IC estimate.
4795 MaxInterleaveCount = InterleaveCountLB;
4796 }
4797 }
4798
4799 assert(MaxInterleaveCount > 0 &&
4800 "Maximum interleave count must be greater than 0");
4801
4802 // Clamp the calculated IC to be between the 1 and the max interleave count
4803 // that the target and trip count allows.
4804 if (IC > MaxInterleaveCount)
4805 IC = MaxInterleaveCount;
4806 else
4807 // Make sure IC is greater than 0.
4808 IC = std::max(1u, IC);
4809
4810 assert(IC > 0 && "Interleave count must be greater than 0.");
4811
4812 // Interleave if we vectorized this loop and there is a reduction that could
4813 // benefit from interleaving.
4814 if (VF.isVector() && HasReductions) {
4815 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4816 return IC;
4817 }
4818
4819 // For any scalar loop that either requires runtime checks or predication we
4820 // are better off leaving this to the unroller. Note that if we've already
4821 // vectorized the loop we will have done the runtime check and so interleaving
4822 // won't require further checks.
4823 bool ScalarInterleavingRequiresPredication =
4824 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4825 return Legal->blockNeedsPredication(BB);
4826 }));
4827 bool ScalarInterleavingRequiresRuntimePointerCheck =
4828 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4829
4830 // We want to interleave small loops in order to reduce the loop overhead and
4831 // potentially expose ILP opportunities.
4832 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4833 << "LV: IC is " << IC << '\n'
4834 << "LV: VF is " << VF << '\n');
4835 const bool AggressivelyInterleaveReductions =
4836 TTI.enableAggressiveInterleaving(HasReductions);
4837 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4838 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4839 // We assume that the cost overhead is 1 and we use the cost model
4840 // to estimate the cost of the loop and interleave until the cost of the
4841 // loop overhead is about 5% of the cost of the loop.
4842 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4843 SmallLoopCost / LoopCost.getValue()));
4844
4845 // Interleave until store/load ports (estimated by max interleave count) are
4846 // saturated.
4847 unsigned NumStores = 0;
4848 unsigned NumLoads = 0;
4851 for (VPRecipeBase &R : *VPBB) {
4853 NumLoads++;
4854 continue;
4855 }
4857 NumStores++;
4858 continue;
4859 }
4860
4861 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4862 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4863 NumStores += StoreOps;
4864 else
4865 NumLoads += InterleaveR->getNumDefinedValues();
4866 continue;
4867 }
4868 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4869 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4870 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4871 continue;
4872 }
4873 if (isa<VPHistogramRecipe>(&R)) {
4874 NumLoads++;
4875 NumStores++;
4876 continue;
4877 }
4878 }
4879 }
4880 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4881 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4882
4883 // There is little point in interleaving for reductions containing selects
4884 // and compares when VF=1 since it may just create more overhead than it's
4885 // worth for loops with small trip counts. This is because we still have to
4886 // do the final reduction after the loop.
4887 bool HasSelectCmpReductions =
4888 HasReductions &&
4890 [](VPRecipeBase &R) {
4891 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4892 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4893 RedR->getRecurrenceKind()) ||
4894 RecurrenceDescriptor::isFindIVRecurrenceKind(
4895 RedR->getRecurrenceKind()));
4896 });
4897 if (HasSelectCmpReductions) {
4898 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4899 return 1;
4900 }
4901
4902 // If we have a scalar reduction (vector reductions are already dealt with
4903 // by this point), we can increase the critical path length if the loop
4904 // we're interleaving is inside another loop. For tree-wise reductions
4905 // set the limit to 2, and for ordered reductions it's best to disable
4906 // interleaving entirely.
4907 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4908 bool HasOrderedReductions =
4910 [](VPRecipeBase &R) {
4911 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4912
4913 return RedR && RedR->isOrdered();
4914 });
4915 if (HasOrderedReductions) {
4916 LLVM_DEBUG(
4917 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4918 return 1;
4919 }
4920
4921 unsigned F = MaxNestedScalarReductionIC;
4922 SmallIC = std::min(SmallIC, F);
4923 StoresIC = std::min(StoresIC, F);
4924 LoadsIC = std::min(LoadsIC, F);
4925 }
4926
4928 std::max(StoresIC, LoadsIC) > SmallIC) {
4929 LLVM_DEBUG(
4930 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4931 return std::max(StoresIC, LoadsIC);
4932 }
4933
4934 // If there are scalar reductions and TTI has enabled aggressive
4935 // interleaving for reductions, we will interleave to expose ILP.
4936 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4937 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4938 // Interleave no less than SmallIC but not as aggressive as the normal IC
4939 // to satisfy the rare situation when resources are too limited.
4940 return std::max(IC / 2, SmallIC);
4941 }
4942
4943 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4944 return SmallIC;
4945 }
4946
4947 // Interleave if this is a large loop (small loops are already dealt with by
4948 // this point) that could benefit from interleaving.
4949 if (AggressivelyInterleaveReductions) {
4950 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4951 return IC;
4952 }
4953
4954 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4955 return 1;
4956}
4957
4958bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4959 ElementCount VF) {
4960 // TODO: Cost model for emulated masked load/store is completely
4961 // broken. This hack guides the cost model to use an artificially
4962 // high enough value to practically disable vectorization with such
4963 // operations, except where previously deployed legality hack allowed
4964 // using very low cost values. This is to avoid regressions coming simply
4965 // from moving "masked load/store" check from legality to cost model.
4966 // Masked Load/Gather emulation was previously never allowed.
4967 // Limited number of Masked Store/Scatter emulation was allowed.
4968 assert((isPredicatedInst(I)) &&
4969 "Expecting a scalar emulated instruction");
4970 return isa<LoadInst>(I) ||
4971 (isa<StoreInst>(I) &&
4972 NumPredStores > NumberOfStoresToPredicate);
4973}
4974
4976 assert(VF.isVector() && "Expected VF >= 2");
4977
4978 // If we've already collected the instructions to scalarize or the predicated
4979 // BBs after vectorization, there's nothing to do. Collection may already have
4980 // occurred if we have a user-selected VF and are now computing the expected
4981 // cost for interleaving.
4982 if (InstsToScalarize.contains(VF) ||
4983 PredicatedBBsAfterVectorization.contains(VF))
4984 return;
4985
4986 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4987 // not profitable to scalarize any instructions, the presence of VF in the
4988 // map will indicate that we've analyzed it already.
4989 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4990
4991 // Find all the instructions that are scalar with predication in the loop and
4992 // determine if it would be better to not if-convert the blocks they are in.
4993 // If so, we also record the instructions to scalarize.
4994 for (BasicBlock *BB : TheLoop->blocks()) {
4996 continue;
4997 for (Instruction &I : *BB)
4998 if (isScalarWithPredication(&I, VF)) {
4999 ScalarCostsTy ScalarCosts;
5000 // Do not apply discount logic for:
5001 // 1. Scalars after vectorization, as there will only be a single copy
5002 // of the instruction.
5003 // 2. Scalable VF, as that would lead to invalid scalarization costs.
5004 // 3. Emulated masked memrefs, if a hacked cost is needed.
5005 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
5006 !useEmulatedMaskMemRefHack(&I, VF) &&
5007 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
5008 for (const auto &[I, IC] : ScalarCosts)
5009 ScalarCostsVF.insert({I, IC});
5010 // Check if we decided to scalarize a call. If so, update the widening
5011 // decision of the call to CM_Scalarize with the computed scalar cost.
5012 for (const auto &[I, Cost] : ScalarCosts) {
5013 auto *CI = dyn_cast<CallInst>(I);
5014 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5015 continue;
5016 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
5017 CallWideningDecisions[{CI, VF}].Cost = Cost;
5018 }
5019 }
5020 // Remember that BB will remain after vectorization.
5021 PredicatedBBsAfterVectorization[VF].insert(BB);
5022 for (auto *Pred : predecessors(BB)) {
5023 if (Pred->getSingleSuccessor() == BB)
5024 PredicatedBBsAfterVectorization[VF].insert(Pred);
5025 }
5026 }
5027 }
5028}
5029
5030InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5031 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5032 assert(!isUniformAfterVectorization(PredInst, VF) &&
5033 "Instruction marked uniform-after-vectorization will be predicated");
5034
5035 // Initialize the discount to zero, meaning that the scalar version and the
5036 // vector version cost the same.
5037 InstructionCost Discount = 0;
5038
5039 // Holds instructions to analyze. The instructions we visit are mapped in
5040 // ScalarCosts. Those instructions are the ones that would be scalarized if
5041 // we find that the scalar version costs less.
5043
5044 // Returns true if the given instruction can be scalarized.
5045 auto CanBeScalarized = [&](Instruction *I) -> bool {
5046 // We only attempt to scalarize instructions forming a single-use chain
5047 // from the original predicated block that would otherwise be vectorized.
5048 // Although not strictly necessary, we give up on instructions we know will
5049 // already be scalar to avoid traversing chains that are unlikely to be
5050 // beneficial.
5051 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5052 isScalarAfterVectorization(I, VF))
5053 return false;
5054
5055 // If the instruction is scalar with predication, it will be analyzed
5056 // separately. We ignore it within the context of PredInst.
5057 if (isScalarWithPredication(I, VF))
5058 return false;
5059
5060 // If any of the instruction's operands are uniform after vectorization,
5061 // the instruction cannot be scalarized. This prevents, for example, a
5062 // masked load from being scalarized.
5063 //
5064 // We assume we will only emit a value for lane zero of an instruction
5065 // marked uniform after vectorization, rather than VF identical values.
5066 // Thus, if we scalarize an instruction that uses a uniform, we would
5067 // create uses of values corresponding to the lanes we aren't emitting code
5068 // for. This behavior can be changed by allowing getScalarValue to clone
5069 // the lane zero values for uniforms rather than asserting.
5070 for (Use &U : I->operands())
5071 if (auto *J = dyn_cast<Instruction>(U.get()))
5072 if (isUniformAfterVectorization(J, VF))
5073 return false;
5074
5075 // Otherwise, we can scalarize the instruction.
5076 return true;
5077 };
5078
5079 // Compute the expected cost discount from scalarizing the entire expression
5080 // feeding the predicated instruction. We currently only consider expressions
5081 // that are single-use instruction chains.
5082 Worklist.push_back(PredInst);
5083 while (!Worklist.empty()) {
5084 Instruction *I = Worklist.pop_back_val();
5085
5086 // If we've already analyzed the instruction, there's nothing to do.
5087 if (ScalarCosts.contains(I))
5088 continue;
5089
5090 // Cannot scalarize fixed-order recurrence phis at the moment.
5091 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5092 continue;
5093
5094 // Compute the cost of the vector instruction. Note that this cost already
5095 // includes the scalarization overhead of the predicated instruction.
5096 InstructionCost VectorCost = getInstructionCost(I, VF);
5097
5098 // Compute the cost of the scalarized instruction. This cost is the cost of
5099 // the instruction as if it wasn't if-converted and instead remained in the
5100 // predicated block. We will scale this cost by block probability after
5101 // computing the scalarization overhead.
5102 InstructionCost ScalarCost =
5103 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5104
5105 // Compute the scalarization overhead of needed insertelement instructions
5106 // and phi nodes.
5107 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5108 Type *WideTy = toVectorizedTy(I->getType(), VF);
5109 for (Type *VectorTy : getContainedTypes(WideTy)) {
5110 ScalarCost += TTI.getScalarizationOverhead(
5112 /*Insert=*/true,
5113 /*Extract=*/false, CostKind);
5114 }
5115 ScalarCost +=
5116 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5117 }
5118
5119 // Compute the scalarization overhead of needed extractelement
5120 // instructions. For each of the instruction's operands, if the operand can
5121 // be scalarized, add it to the worklist; otherwise, account for the
5122 // overhead.
5123 for (Use &U : I->operands())
5124 if (auto *J = dyn_cast<Instruction>(U.get())) {
5125 assert(canVectorizeTy(J->getType()) &&
5126 "Instruction has non-scalar type");
5127 if (CanBeScalarized(J))
5128 Worklist.push_back(J);
5129 else if (needsExtract(J, VF)) {
5130 Type *WideTy = toVectorizedTy(J->getType(), VF);
5131 for (Type *VectorTy : getContainedTypes(WideTy)) {
5132 ScalarCost += TTI.getScalarizationOverhead(
5133 cast<VectorType>(VectorTy),
5134 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5135 /*Extract*/ true, CostKind);
5136 }
5137 }
5138 }
5139
5140 // Scale the total scalar cost by block probability.
5141 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5142
5143 // Compute the discount. A non-negative discount means the vector version
5144 // of the instruction costs more, and scalarizing would be beneficial.
5145 Discount += VectorCost - ScalarCost;
5146 ScalarCosts[I] = ScalarCost;
5147 }
5148
5149 return Discount;
5150}
5151
5154
5155 // If the vector loop gets executed exactly once with the given VF, ignore the
5156 // costs of comparison and induction instructions, as they'll get simplified
5157 // away.
5158 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5159 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5160 if (TC == VF && !foldTailByMasking())
5162 ValuesToIgnoreForVF);
5163
5164 // For each block.
5165 for (BasicBlock *BB : TheLoop->blocks()) {
5166 InstructionCost BlockCost;
5167
5168 // For each instruction in the old loop.
5169 for (Instruction &I : BB->instructionsWithoutDebug()) {
5170 // Skip ignored values.
5171 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5172 (VF.isVector() && VecValuesToIgnore.count(&I)))
5173 continue;
5174
5176
5177 // Check if we should override the cost.
5178 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) {
5179 // For interleave groups, use ForceTargetInstructionCost once for the
5180 // whole group.
5181 if (VF.isVector() && getWideningDecision(&I, VF) == CM_Interleave) {
5182 if (getInterleavedAccessGroup(&I)->getInsertPos() == &I)
5184 else
5185 C = InstructionCost(0);
5186 } else {
5188 }
5189 }
5190
5191 BlockCost += C;
5192 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5193 << VF << " For instruction: " << I << '\n');
5194 }
5195
5196 // If we are vectorizing a predicated block, it will have been
5197 // if-converted. This means that the block's instructions (aside from
5198 // stores and instructions that may divide by zero) will now be
5199 // unconditionally executed. For the scalar case, we may not always execute
5200 // the predicated block, if it is an if-else block. Thus, scale the block's
5201 // cost by the probability of executing it.
5202 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5203 // by the header mask when folding the tail.
5204 if (VF.isScalar())
5205 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5206
5207 Cost += BlockCost;
5208 }
5209
5210 return Cost;
5211}
5212
5213/// Gets Address Access SCEV after verifying that the access pattern
5214/// is loop invariant except the induction variable dependence.
5215///
5216/// This SCEV can be sent to the Target in order to estimate the address
5217/// calculation cost.
5219 Value *Ptr,
5222 const Loop *TheLoop) {
5223
5224 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5225 if (!Gep)
5226 return nullptr;
5227
5228 const SCEV *Addr = PSE.getSCEV(Ptr);
5229 return vputils::isAddressSCEVForCost(Addr, *PSE.getSE(), TheLoop) ? Addr
5230 : nullptr;
5231}
5232
5234LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5235 ElementCount VF) {
5236 assert(VF.isVector() &&
5237 "Scalarization cost of instruction implies vectorization.");
5238 if (VF.isScalable())
5239 return InstructionCost::getInvalid();
5240
5241 Type *ValTy = getLoadStoreType(I);
5242 auto *SE = PSE.getSE();
5243
5244 unsigned AS = getLoadStoreAddressSpace(I);
5246 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5247 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5248 // that it is being called from this specific place.
5249
5250 // Figure out whether the access is strided and get the stride value
5251 // if it's known in compile time
5252 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5253
5254 // Get the cost of the scalar memory instruction and address computation.
5256 PtrTy, SE, PtrSCEV, CostKind);
5257
5258 // Don't pass *I here, since it is scalar but will actually be part of a
5259 // vectorized loop where the user of it is a vectorized instruction.
5260 const Align Alignment = getLoadStoreAlignment(I);
5261 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5262 Cost += VF.getFixedValue() *
5263 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5264 AS, CostKind, OpInfo);
5265
5266 // Get the overhead of the extractelement and insertelement instructions
5267 // we might create due to scalarization.
5269
5270 // If we have a predicated load/store, it will need extra i1 extracts and
5271 // conditional branches, but may not be executed for each vector lane. Scale
5272 // the cost by the probability of executing the predicated block.
5273 if (isPredicatedInst(I)) {
5274 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5275
5276 // Add the cost of an i1 extract and a branch
5277 auto *VecI1Ty =
5278 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5280 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5281 /*Insert=*/false, /*Extract=*/true, CostKind);
5282 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5283
5284 if (useEmulatedMaskMemRefHack(I, VF))
5285 // Artificially setting to a high enough value to practically disable
5286 // vectorization with such operations.
5287 Cost = 3000000;
5288 }
5289
5290 return Cost;
5291}
5292
5294LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5295 ElementCount VF) {
5296 Type *ValTy = getLoadStoreType(I);
5297 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5299 unsigned AS = getLoadStoreAddressSpace(I);
5300 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5301
5302 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5303 "Stride should be 1 or -1 for consecutive memory access");
5304 const Align Alignment = getLoadStoreAlignment(I);
5306 if (Legal->isMaskRequired(I)) {
5307 unsigned IID = I->getOpcode() == Instruction::Load
5308 ? Intrinsic::masked_load
5309 : Intrinsic::masked_store;
5311 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS), CostKind);
5312 } else {
5313 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5314 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5315 CostKind, OpInfo, I);
5316 }
5317
5318 bool Reverse = ConsecutiveStride < 0;
5319 if (Reverse)
5321 VectorTy, {}, CostKind, 0);
5322 return Cost;
5323}
5324
5326LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5327 ElementCount VF) {
5328 assert(Legal->isUniformMemOp(*I, VF));
5329
5330 Type *ValTy = getLoadStoreType(I);
5332 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5333 const Align Alignment = getLoadStoreAlignment(I);
5334 unsigned AS = getLoadStoreAddressSpace(I);
5335 if (isa<LoadInst>(I)) {
5336 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5337 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5338 CostKind) +
5340 VectorTy, {}, CostKind);
5341 }
5342 StoreInst *SI = cast<StoreInst>(I);
5343
5344 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5345 // TODO: We have existing tests that request the cost of extracting element
5346 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5347 // the actual generated code, which involves extracting the last element of
5348 // a scalable vector where the lane to extract is unknown at compile time.
5350 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5351 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5352 if (!IsLoopInvariantStoreValue)
5353 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5354 VectorTy, CostKind, 0);
5355 return Cost;
5356}
5357
5359LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5360 ElementCount VF) {
5361 Type *ValTy = getLoadStoreType(I);
5362 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5363 const Align Alignment = getLoadStoreAlignment(I);
5365 Type *PtrTy = Ptr->getType();
5366
5367 if (!Legal->isUniform(Ptr, VF))
5368 PtrTy = toVectorTy(PtrTy, VF);
5369
5370 unsigned IID = I->getOpcode() == Instruction::Load
5371 ? Intrinsic::masked_gather
5372 : Intrinsic::masked_scatter;
5373 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5375 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5376 Legal->isMaskRequired(I), Alignment, I),
5377 CostKind);
5378}
5379
5381LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5382 ElementCount VF) {
5383 const auto *Group = getInterleavedAccessGroup(I);
5384 assert(Group && "Fail to get an interleaved access group.");
5385
5386 Instruction *InsertPos = Group->getInsertPos();
5387 Type *ValTy = getLoadStoreType(InsertPos);
5388 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5389 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5390
5391 unsigned InterleaveFactor = Group->getFactor();
5392 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5393
5394 // Holds the indices of existing members in the interleaved group.
5395 SmallVector<unsigned, 4> Indices;
5396 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5397 if (Group->getMember(IF))
5398 Indices.push_back(IF);
5399
5400 // Calculate the cost of the whole interleaved group.
5401 bool UseMaskForGaps =
5402 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5403 (isa<StoreInst>(I) && !Group->isFull());
5405 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5406 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5407 UseMaskForGaps);
5408
5409 if (Group->isReverse()) {
5410 // TODO: Add support for reversed masked interleaved access.
5411 assert(!Legal->isMaskRequired(I) &&
5412 "Reverse masked interleaved access not supported.");
5413 Cost += Group->getNumMembers() *
5415 VectorTy, {}, CostKind, 0);
5416 }
5417 return Cost;
5418}
5419
5420std::optional<InstructionCost>
5422 ElementCount VF,
5423 Type *Ty) const {
5424 using namespace llvm::PatternMatch;
5425 // Early exit for no inloop reductions
5426 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5427 return std::nullopt;
5428 auto *VectorTy = cast<VectorType>(Ty);
5429
5430 // We are looking for a pattern of, and finding the minimal acceptable cost:
5431 // reduce(mul(ext(A), ext(B))) or
5432 // reduce(mul(A, B)) or
5433 // reduce(ext(A)) or
5434 // reduce(A).
5435 // The basic idea is that we walk down the tree to do that, finding the root
5436 // reduction instruction in InLoopReductionImmediateChains. From there we find
5437 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5438 // of the components. If the reduction cost is lower then we return it for the
5439 // reduction instruction and 0 for the other instructions in the pattern. If
5440 // it is not we return an invalid cost specifying the orignal cost method
5441 // should be used.
5442 Instruction *RetI = I;
5443 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5444 if (!RetI->hasOneUser())
5445 return std::nullopt;
5446 RetI = RetI->user_back();
5447 }
5448
5449 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5450 RetI->user_back()->getOpcode() == Instruction::Add) {
5451 RetI = RetI->user_back();
5452 }
5453
5454 // Test if the found instruction is a reduction, and if not return an invalid
5455 // cost specifying the parent to use the original cost modelling.
5456 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5457 if (!LastChain)
5458 return std::nullopt;
5459
5460 // Find the reduction this chain is a part of and calculate the basic cost of
5461 // the reduction on its own.
5462 Instruction *ReductionPhi = LastChain;
5463 while (!isa<PHINode>(ReductionPhi))
5464 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5465
5466 const RecurrenceDescriptor &RdxDesc =
5467 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5468
5469 InstructionCost BaseCost;
5470 RecurKind RK = RdxDesc.getRecurrenceKind();
5473 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5474 RdxDesc.getFastMathFlags(), CostKind);
5475 } else {
5476 BaseCost = TTI.getArithmeticReductionCost(
5477 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5478 }
5479
5480 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5481 // normal fmul instruction to the cost of the fadd reduction.
5482 if (RK == RecurKind::FMulAdd)
5483 BaseCost +=
5484 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5485
5486 // If we're using ordered reductions then we can just return the base cost
5487 // here, since getArithmeticReductionCost calculates the full ordered
5488 // reduction cost when FP reassociation is not allowed.
5489 if (useOrderedReductions(RdxDesc))
5490 return BaseCost;
5491
5492 // Get the operand that was not the reduction chain and match it to one of the
5493 // patterns, returning the better cost if it is found.
5494 Instruction *RedOp = RetI->getOperand(1) == LastChain
5497
5498 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5499
5500 Instruction *Op0, *Op1;
5501 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5502 match(RedOp,
5504 match(Op0, m_ZExtOrSExt(m_Value())) &&
5505 Op0->getOpcode() == Op1->getOpcode() &&
5506 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5507 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5508 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5509
5510 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5511 // Note that the extend opcodes need to all match, or if A==B they will have
5512 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5513 // which is equally fine.
5514 bool IsUnsigned = isa<ZExtInst>(Op0);
5515 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5516 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5517
5518 InstructionCost ExtCost =
5519 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5521 InstructionCost MulCost =
5522 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5523 InstructionCost Ext2Cost =
5524 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5526
5527 InstructionCost RedCost = TTI.getMulAccReductionCost(
5528 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5529 CostKind);
5530
5531 if (RedCost.isValid() &&
5532 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5533 return I == RetI ? RedCost : 0;
5534 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5535 !TheLoop->isLoopInvariant(RedOp)) {
5536 // Matched reduce(ext(A))
5537 bool IsUnsigned = isa<ZExtInst>(RedOp);
5538 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5539 InstructionCost RedCost = TTI.getExtendedReductionCost(
5540 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5541 RdxDesc.getFastMathFlags(), CostKind);
5542
5543 InstructionCost ExtCost =
5544 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5546 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5547 return I == RetI ? RedCost : 0;
5548 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5549 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5550 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5551 Op0->getOpcode() == Op1->getOpcode() &&
5552 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5553 bool IsUnsigned = isa<ZExtInst>(Op0);
5554 Type *Op0Ty = Op0->getOperand(0)->getType();
5555 Type *Op1Ty = Op1->getOperand(0)->getType();
5556 Type *LargestOpTy =
5557 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5558 : Op0Ty;
5559 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5560
5561 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5562 // different sizes. We take the largest type as the ext to reduce, and add
5563 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5564 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5565 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5567 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5568 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5570 InstructionCost MulCost =
5571 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5572
5573 InstructionCost RedCost = TTI.getMulAccReductionCost(
5574 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5575 CostKind);
5576 InstructionCost ExtraExtCost = 0;
5577 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5578 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5579 ExtraExtCost = TTI.getCastInstrCost(
5580 ExtraExtOp->getOpcode(), ExtType,
5581 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5583 }
5584
5585 if (RedCost.isValid() &&
5586 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5587 return I == RetI ? RedCost : 0;
5588 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5589 // Matched reduce.add(mul())
5590 InstructionCost MulCost =
5591 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5592
5593 InstructionCost RedCost = TTI.getMulAccReductionCost(
5594 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5595 CostKind);
5596
5597 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5598 return I == RetI ? RedCost : 0;
5599 }
5600 }
5601
5602 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5603}
5604
5606LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5607 ElementCount VF) {
5608 // Calculate scalar cost only. Vectorization cost should be ready at this
5609 // moment.
5610 if (VF.isScalar()) {
5611 Type *ValTy = getLoadStoreType(I);
5613 const Align Alignment = getLoadStoreAlignment(I);
5614 unsigned AS = getLoadStoreAddressSpace(I);
5615
5616 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5617 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5618 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5619 OpInfo, I);
5620 }
5621 return getWideningCost(I, VF);
5622}
5623
5625LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5626 ElementCount VF) const {
5627
5628 // There is no mechanism yet to create a scalable scalarization loop,
5629 // so this is currently Invalid.
5630 if (VF.isScalable())
5631 return InstructionCost::getInvalid();
5632
5633 if (VF.isScalar())
5634 return 0;
5635
5637 Type *RetTy = toVectorizedTy(I->getType(), VF);
5638 if (!RetTy->isVoidTy() &&
5640
5641 for (Type *VectorTy : getContainedTypes(RetTy)) {
5644 /*Insert=*/true,
5645 /*Extract=*/false, CostKind);
5646 }
5647 }
5648
5649 // Some targets keep addresses scalar.
5651 return Cost;
5652
5653 // Some targets support efficient element stores.
5655 return Cost;
5656
5657 // Collect operands to consider.
5658 CallInst *CI = dyn_cast<CallInst>(I);
5659 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5660
5661 // Skip operands that do not require extraction/scalarization and do not incur
5662 // any overhead.
5664 for (auto *V : filterExtractingOperands(Ops, VF))
5665 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5667}
5668
5670 if (VF.isScalar())
5671 return;
5672 NumPredStores = 0;
5673 for (BasicBlock *BB : TheLoop->blocks()) {
5674 // For each instruction in the old loop.
5675 for (Instruction &I : *BB) {
5677 if (!Ptr)
5678 continue;
5679
5680 // TODO: We should generate better code and update the cost model for
5681 // predicated uniform stores. Today they are treated as any other
5682 // predicated store (see added test cases in
5683 // invariant-store-vectorization.ll).
5685 NumPredStores++;
5686
5687 if (Legal->isUniformMemOp(I, VF)) {
5688 auto IsLegalToScalarize = [&]() {
5689 if (!VF.isScalable())
5690 // Scalarization of fixed length vectors "just works".
5691 return true;
5692
5693 // We have dedicated lowering for unpredicated uniform loads and
5694 // stores. Note that even with tail folding we know that at least
5695 // one lane is active (i.e. generalized predication is not possible
5696 // here), and the logic below depends on this fact.
5697 if (!foldTailByMasking())
5698 return true;
5699
5700 // For scalable vectors, a uniform memop load is always
5701 // uniform-by-parts and we know how to scalarize that.
5702 if (isa<LoadInst>(I))
5703 return true;
5704
5705 // A uniform store isn't neccessarily uniform-by-part
5706 // and we can't assume scalarization.
5707 auto &SI = cast<StoreInst>(I);
5708 return TheLoop->isLoopInvariant(SI.getValueOperand());
5709 };
5710
5711 const InstructionCost GatherScatterCost =
5713 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5714
5715 // Load: Scalar load + broadcast
5716 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5717 // FIXME: This cost is a significant under-estimate for tail folded
5718 // memory ops.
5719 const InstructionCost ScalarizationCost =
5720 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5722
5723 // Choose better solution for the current VF, Note that Invalid
5724 // costs compare as maximumal large. If both are invalid, we get
5725 // scalable invalid which signals a failure and a vectorization abort.
5726 if (GatherScatterCost < ScalarizationCost)
5727 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5728 else
5729 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5730 continue;
5731 }
5732
5733 // We assume that widening is the best solution when possible.
5734 if (memoryInstructionCanBeWidened(&I, VF)) {
5735 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5736 int ConsecutiveStride = Legal->isConsecutivePtr(
5738 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5739 "Expected consecutive stride.");
5740 InstWidening Decision =
5741 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5742 setWideningDecision(&I, VF, Decision, Cost);
5743 continue;
5744 }
5745
5746 // Choose between Interleaving, Gather/Scatter or Scalarization.
5748 unsigned NumAccesses = 1;
5749 if (isAccessInterleaved(&I)) {
5750 const auto *Group = getInterleavedAccessGroup(&I);
5751 assert(Group && "Fail to get an interleaved access group.");
5752
5753 // Make one decision for the whole group.
5754 if (getWideningDecision(&I, VF) != CM_Unknown)
5755 continue;
5756
5757 NumAccesses = Group->getNumMembers();
5759 InterleaveCost = getInterleaveGroupCost(&I, VF);
5760 }
5761
5762 InstructionCost GatherScatterCost =
5764 ? getGatherScatterCost(&I, VF) * NumAccesses
5766
5767 InstructionCost ScalarizationCost =
5768 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5769
5770 // Choose better solution for the current VF,
5771 // write down this decision and use it during vectorization.
5773 InstWidening Decision;
5774 if (InterleaveCost <= GatherScatterCost &&
5775 InterleaveCost < ScalarizationCost) {
5776 Decision = CM_Interleave;
5777 Cost = InterleaveCost;
5778 } else if (GatherScatterCost < ScalarizationCost) {
5779 Decision = CM_GatherScatter;
5780 Cost = GatherScatterCost;
5781 } else {
5782 Decision = CM_Scalarize;
5783 Cost = ScalarizationCost;
5784 }
5785 // If the instructions belongs to an interleave group, the whole group
5786 // receives the same decision. The whole group receives the cost, but
5787 // the cost will actually be assigned to one instruction.
5788 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5789 if (Decision == CM_Scalarize) {
5790 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5791 if (auto *I = Group->getMember(Idx)) {
5792 setWideningDecision(I, VF, Decision,
5793 getMemInstScalarizationCost(I, VF));
5794 }
5795 }
5796 } else {
5797 setWideningDecision(Group, VF, Decision, Cost);
5798 }
5799 } else
5800 setWideningDecision(&I, VF, Decision, Cost);
5801 }
5802 }
5803
5804 // Make sure that any load of address and any other address computation
5805 // remains scalar unless there is gather/scatter support. This avoids
5806 // inevitable extracts into address registers, and also has the benefit of
5807 // activating LSR more, since that pass can't optimize vectorized
5808 // addresses.
5809 if (TTI.prefersVectorizedAddressing())
5810 return;
5811
5812 // Start with all scalar pointer uses.
5814 for (BasicBlock *BB : TheLoop->blocks())
5815 for (Instruction &I : *BB) {
5816 Instruction *PtrDef =
5818 if (PtrDef && TheLoop->contains(PtrDef) &&
5820 AddrDefs.insert(PtrDef);
5821 }
5822
5823 // Add all instructions used to generate the addresses.
5825 append_range(Worklist, AddrDefs);
5826 while (!Worklist.empty()) {
5827 Instruction *I = Worklist.pop_back_val();
5828 for (auto &Op : I->operands())
5829 if (auto *InstOp = dyn_cast<Instruction>(Op))
5830 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5831 AddrDefs.insert(InstOp).second)
5832 Worklist.push_back(InstOp);
5833 }
5834
5835 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5836 // If there are direct memory op users of the newly scalarized load,
5837 // their cost may have changed because there's no scalarization
5838 // overhead for the operand. Update it.
5839 for (User *U : LI->users()) {
5841 continue;
5843 continue;
5846 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5847 }
5848 };
5849 for (auto *I : AddrDefs) {
5850 if (isa<LoadInst>(I)) {
5851 // Setting the desired widening decision should ideally be handled in
5852 // by cost functions, but since this involves the task of finding out
5853 // if the loaded register is involved in an address computation, it is
5854 // instead changed here when we know this is the case.
5855 InstWidening Decision = getWideningDecision(I, VF);
5856 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5857 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5858 Decision == CM_Scalarize)) {
5859 // Scalarize a widened load of address or update the cost of a scalar
5860 // load of an address.
5862 I, VF, CM_Scalarize,
5863 (VF.getKnownMinValue() *
5864 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5865 UpdateMemOpUserCost(cast<LoadInst>(I));
5866 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5867 // Scalarize all members of this interleaved group when any member
5868 // is used as an address. The address-used load skips scalarization
5869 // overhead, other members include it.
5870 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5871 if (Instruction *Member = Group->getMember(Idx)) {
5873 AddrDefs.contains(Member)
5874 ? (VF.getKnownMinValue() *
5875 getMemoryInstructionCost(Member,
5877 : getMemInstScalarizationCost(Member, VF);
5879 UpdateMemOpUserCost(cast<LoadInst>(Member));
5880 }
5881 }
5882 }
5883 } else {
5884 // Cannot scalarize fixed-order recurrence phis at the moment.
5885 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5886 continue;
5887
5888 // Make sure I gets scalarized and a cost estimate without
5889 // scalarization overhead.
5890 ForcedScalars[VF].insert(I);
5891 }
5892 }
5893}
5894
5896 assert(!VF.isScalar() &&
5897 "Trying to set a vectorization decision for a scalar VF");
5898
5899 auto ForcedScalar = ForcedScalars.find(VF);
5900 for (BasicBlock *BB : TheLoop->blocks()) {
5901 // For each instruction in the old loop.
5902 for (Instruction &I : *BB) {
5904
5905 if (!CI)
5906 continue;
5907
5911 Function *ScalarFunc = CI->getCalledFunction();
5912 Type *ScalarRetTy = CI->getType();
5913 SmallVector<Type *, 4> Tys, ScalarTys;
5914 for (auto &ArgOp : CI->args())
5915 ScalarTys.push_back(ArgOp->getType());
5916
5917 // Estimate cost of scalarized vector call. The source operands are
5918 // assumed to be vectors, so we need to extract individual elements from
5919 // there, execute VF scalar calls, and then gather the result into the
5920 // vector return value.
5921 if (VF.isFixed()) {
5922 InstructionCost ScalarCallCost =
5923 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5924
5925 // Compute costs of unpacking argument values for the scalar calls and
5926 // packing the return values to a vector.
5927 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5928 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5929 } else {
5930 // There is no point attempting to calculate the scalar cost for a
5931 // scalable VF as we know it will be Invalid.
5933 "Unexpected valid cost for scalarizing scalable vectors");
5934 ScalarCost = InstructionCost::getInvalid();
5935 }
5936
5937 // Honor ForcedScalars and UniformAfterVectorization decisions.
5938 // TODO: For calls, it might still be more profitable to widen. Use
5939 // VPlan-based cost model to compare different options.
5940 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5941 ForcedScalar->second.contains(CI)) ||
5942 isUniformAfterVectorization(CI, VF))) {
5943 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5944 Intrinsic::not_intrinsic, std::nullopt,
5945 ScalarCost);
5946 continue;
5947 }
5948
5949 bool MaskRequired = Legal->isMaskRequired(CI);
5950 // Compute corresponding vector type for return value and arguments.
5951 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5952 for (Type *ScalarTy : ScalarTys)
5953 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5954
5955 // An in-loop reduction using an fmuladd intrinsic is a special case;
5956 // we don't want the normal cost for that intrinsic.
5958 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5961 std::nullopt, *RedCost);
5962 continue;
5963 }
5964
5965 // Find the cost of vectorizing the call, if we can find a suitable
5966 // vector variant of the function.
5967 VFInfo FuncInfo;
5968 Function *VecFunc = nullptr;
5969 // Search through any available variants for one we can use at this VF.
5970 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5971 // Must match requested VF.
5972 if (Info.Shape.VF != VF)
5973 continue;
5974
5975 // Must take a mask argument if one is required
5976 if (MaskRequired && !Info.isMasked())
5977 continue;
5978
5979 // Check that all parameter kinds are supported
5980 bool ParamsOk = true;
5981 for (VFParameter Param : Info.Shape.Parameters) {
5982 switch (Param.ParamKind) {
5984 break;
5986 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5987 // Make sure the scalar parameter in the loop is invariant.
5988 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5989 TheLoop))
5990 ParamsOk = false;
5991 break;
5992 }
5994 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5995 // Find the stride for the scalar parameter in this loop and see if
5996 // it matches the stride for the variant.
5997 // TODO: do we need to figure out the cost of an extract to get the
5998 // first lane? Or do we hope that it will be folded away?
5999 ScalarEvolution *SE = PSE.getSE();
6000 if (!match(SE->getSCEV(ScalarParam),
6002 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
6004 ParamsOk = false;
6005 break;
6006 }
6008 break;
6009 default:
6010 ParamsOk = false;
6011 break;
6012 }
6013 }
6014
6015 if (!ParamsOk)
6016 continue;
6017
6018 // Found a suitable candidate, stop here.
6019 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6020 FuncInfo = Info;
6021 break;
6022 }
6023
6024 if (TLI && VecFunc && !CI->isNoBuiltin())
6025 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
6026
6027 // Find the cost of an intrinsic; some targets may have instructions that
6028 // perform the operation without needing an actual call.
6030 if (IID != Intrinsic::not_intrinsic)
6032
6033 InstructionCost Cost = ScalarCost;
6034 InstWidening Decision = CM_Scalarize;
6035
6036 if (VectorCost.isValid() && VectorCost <= Cost) {
6037 Cost = VectorCost;
6038 Decision = CM_VectorCall;
6039 }
6040
6041 if (IntrinsicCost.isValid() && IntrinsicCost <= Cost) {
6043 Decision = CM_IntrinsicCall;
6044 }
6045
6046 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6048 }
6049 }
6050}
6051
6053 if (!Legal->isInvariant(Op))
6054 return false;
6055 // Consider Op invariant, if it or its operands aren't predicated
6056 // instruction in the loop. In that case, it is not trivially hoistable.
6057 auto *OpI = dyn_cast<Instruction>(Op);
6058 return !OpI || !TheLoop->contains(OpI) ||
6059 (!isPredicatedInst(OpI) &&
6060 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6061 all_of(OpI->operands(),
6062 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6063}
6064
6067 ElementCount VF) {
6068 // If we know that this instruction will remain uniform, check the cost of
6069 // the scalar version.
6071 VF = ElementCount::getFixed(1);
6072
6073 if (VF.isVector() && isProfitableToScalarize(I, VF))
6074 return InstsToScalarize[VF][I];
6075
6076 // Forced scalars do not have any scalarization overhead.
6077 auto ForcedScalar = ForcedScalars.find(VF);
6078 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6079 auto InstSet = ForcedScalar->second;
6080 if (InstSet.count(I))
6082 VF.getKnownMinValue();
6083 }
6084
6085 Type *RetTy = I->getType();
6087 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6088 auto *SE = PSE.getSE();
6089
6090 Type *VectorTy;
6091 if (isScalarAfterVectorization(I, VF)) {
6092 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6093 [this](Instruction *I, ElementCount VF) -> bool {
6094 if (VF.isScalar())
6095 return true;
6096
6097 auto Scalarized = InstsToScalarize.find(VF);
6098 assert(Scalarized != InstsToScalarize.end() &&
6099 "VF not yet analyzed for scalarization profitability");
6100 return !Scalarized->second.count(I) &&
6101 llvm::all_of(I->users(), [&](User *U) {
6102 auto *UI = cast<Instruction>(U);
6103 return !Scalarized->second.count(UI);
6104 });
6105 };
6106
6107 // With the exception of GEPs and PHIs, after scalarization there should
6108 // only be one copy of the instruction generated in the loop. This is
6109 // because the VF is either 1, or any instructions that need scalarizing
6110 // have already been dealt with by the time we get here. As a result,
6111 // it means we don't have to multiply the instruction cost by VF.
6112 assert(I->getOpcode() == Instruction::GetElementPtr ||
6113 I->getOpcode() == Instruction::PHI ||
6114 (I->getOpcode() == Instruction::BitCast &&
6115 I->getType()->isPointerTy()) ||
6116 HasSingleCopyAfterVectorization(I, VF));
6117 VectorTy = RetTy;
6118 } else
6119 VectorTy = toVectorizedTy(RetTy, VF);
6120
6121 if (VF.isVector() && VectorTy->isVectorTy() &&
6122 !TTI.getNumberOfParts(VectorTy))
6124
6125 // TODO: We need to estimate the cost of intrinsic calls.
6126 switch (I->getOpcode()) {
6127 case Instruction::GetElementPtr:
6128 // We mark this instruction as zero-cost because the cost of GEPs in
6129 // vectorized code depends on whether the corresponding memory instruction
6130 // is scalarized or not. Therefore, we handle GEPs with the memory
6131 // instruction cost.
6132 return 0;
6133 case Instruction::Br: {
6134 // In cases of scalarized and predicated instructions, there will be VF
6135 // predicated blocks in the vectorized loop. Each branch around these
6136 // blocks requires also an extract of its vector compare i1 element.
6137 // Note that the conditional branch from the loop latch will be replaced by
6138 // a single branch controlling the loop, so there is no extra overhead from
6139 // scalarization.
6140 bool ScalarPredicatedBB = false;
6142 if (VF.isVector() && BI->isConditional() &&
6143 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6144 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6145 BI->getParent() != TheLoop->getLoopLatch())
6146 ScalarPredicatedBB = true;
6147
6148 if (ScalarPredicatedBB) {
6149 // Not possible to scalarize scalable vector with predicated instructions.
6150 if (VF.isScalable())
6152 // Return cost for branches around scalarized and predicated blocks.
6153 auto *VecI1Ty =
6155 return (
6156 TTI.getScalarizationOverhead(
6157 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6158 /*Insert*/ false, /*Extract*/ true, CostKind) +
6159 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6160 }
6161
6162 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6163 // The back-edge branch will remain, as will all scalar branches.
6164 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6165
6166 // This branch will be eliminated by if-conversion.
6167 return 0;
6168 // Note: We currently assume zero cost for an unconditional branch inside
6169 // a predicated block since it will become a fall-through, although we
6170 // may decide in the future to call TTI for all branches.
6171 }
6172 case Instruction::Switch: {
6173 if (VF.isScalar())
6174 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6175 auto *Switch = cast<SwitchInst>(I);
6176 return Switch->getNumCases() *
6177 TTI.getCmpSelInstrCost(
6178 Instruction::ICmp,
6179 toVectorTy(Switch->getCondition()->getType(), VF),
6180 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6182 }
6183 case Instruction::PHI: {
6184 auto *Phi = cast<PHINode>(I);
6185
6186 // First-order recurrences are replaced by vector shuffles inside the loop.
6187 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6189 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6190 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6191 cast<VectorType>(VectorTy),
6192 cast<VectorType>(VectorTy), Mask, CostKind,
6193 VF.getKnownMinValue() - 1);
6194 }
6195
6196 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6197 // converted into select instructions. We require N - 1 selects per phi
6198 // node, where N is the number of incoming values.
6199 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6200 Type *ResultTy = Phi->getType();
6201
6202 // All instructions in an Any-of reduction chain are narrowed to bool.
6203 // Check if that is the case for this phi node.
6204 auto *HeaderUser = cast_if_present<PHINode>(
6205 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6206 auto *Phi = dyn_cast<PHINode>(U);
6207 if (Phi && Phi->getParent() == TheLoop->getHeader())
6208 return Phi;
6209 return nullptr;
6210 }));
6211 if (HeaderUser) {
6212 auto &ReductionVars = Legal->getReductionVars();
6213 auto Iter = ReductionVars.find(HeaderUser);
6214 if (Iter != ReductionVars.end() &&
6216 Iter->second.getRecurrenceKind()))
6217 ResultTy = Type::getInt1Ty(Phi->getContext());
6218 }
6219 return (Phi->getNumIncomingValues() - 1) *
6220 TTI.getCmpSelInstrCost(
6221 Instruction::Select, toVectorTy(ResultTy, VF),
6222 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6224 }
6225
6226 // When tail folding with EVL, if the phi is part of an out of loop
6227 // reduction then it will be transformed into a wide vp_merge.
6228 if (VF.isVector() && foldTailWithEVL() &&
6229 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6231 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6232 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6233 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6234 }
6235
6236 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6237 }
6238 case Instruction::UDiv:
6239 case Instruction::SDiv:
6240 case Instruction::URem:
6241 case Instruction::SRem:
6242 if (VF.isVector() && isPredicatedInst(I)) {
6243 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6244 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6245 ScalarCost : SafeDivisorCost;
6246 }
6247 // We've proven all lanes safe to speculate, fall through.
6248 [[fallthrough]];
6249 case Instruction::Add:
6250 case Instruction::Sub: {
6251 auto Info = Legal->getHistogramInfo(I);
6252 if (Info && VF.isVector()) {
6253 const HistogramInfo *HGram = Info.value();
6254 // Assume that a non-constant update value (or a constant != 1) requires
6255 // a multiply, and add that into the cost.
6257 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6258 if (!RHS || RHS->getZExtValue() != 1)
6259 MulCost =
6260 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6261
6262 // Find the cost of the histogram operation itself.
6263 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6264 Type *ScalarTy = I->getType();
6265 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6266 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6267 Type::getVoidTy(I->getContext()),
6268 {PtrTy, ScalarTy, MaskTy});
6269
6270 // Add the costs together with the add/sub operation.
6271 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6272 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6273 }
6274 [[fallthrough]];
6275 }
6276 case Instruction::FAdd:
6277 case Instruction::FSub:
6278 case Instruction::Mul:
6279 case Instruction::FMul:
6280 case Instruction::FDiv:
6281 case Instruction::FRem:
6282 case Instruction::Shl:
6283 case Instruction::LShr:
6284 case Instruction::AShr:
6285 case Instruction::And:
6286 case Instruction::Or:
6287 case Instruction::Xor: {
6288 // If we're speculating on the stride being 1, the multiplication may
6289 // fold away. We can generalize this for all operations using the notion
6290 // of neutral elements. (TODO)
6291 if (I->getOpcode() == Instruction::Mul &&
6292 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6293 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6294 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6295 PSE.getSCEV(I->getOperand(1))->isOne())))
6296 return 0;
6297
6298 // Detect reduction patterns
6299 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6300 return *RedCost;
6301
6302 // Certain instructions can be cheaper to vectorize if they have a constant
6303 // second vector operand. One example of this are shifts on x86.
6304 Value *Op2 = I->getOperand(1);
6305 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6306 PSE.getSE()->isSCEVable(Op2->getType()) &&
6307 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6308 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6309 }
6310 auto Op2Info = TTI.getOperandInfo(Op2);
6311 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6314
6315 SmallVector<const Value *, 4> Operands(I->operand_values());
6316 return TTI.getArithmeticInstrCost(
6317 I->getOpcode(), VectorTy, CostKind,
6318 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6319 Op2Info, Operands, I, TLI);
6320 }
6321 case Instruction::FNeg: {
6322 return TTI.getArithmeticInstrCost(
6323 I->getOpcode(), VectorTy, CostKind,
6324 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6325 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6326 I->getOperand(0), I);
6327 }
6328 case Instruction::Select: {
6330 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6331 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6332
6333 const Value *Op0, *Op1;
6334 using namespace llvm::PatternMatch;
6335 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6336 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6337 // select x, y, false --> x & y
6338 // select x, true, y --> x | y
6339 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6340 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6341 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6342 Op1->getType()->getScalarSizeInBits() == 1);
6343
6344 return TTI.getArithmeticInstrCost(
6345 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6346 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6347 }
6348
6349 Type *CondTy = SI->getCondition()->getType();
6350 if (!ScalarCond)
6351 CondTy = VectorType::get(CondTy, VF);
6352
6354 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6355 Pred = Cmp->getPredicate();
6356 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6357 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6358 {TTI::OK_AnyValue, TTI::OP_None}, I);
6359 }
6360 case Instruction::ICmp:
6361 case Instruction::FCmp: {
6362 Type *ValTy = I->getOperand(0)->getType();
6363
6365 [[maybe_unused]] Instruction *Op0AsInstruction =
6366 dyn_cast<Instruction>(I->getOperand(0));
6367 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6368 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6369 "if both the operand and the compare are marked for "
6370 "truncation, they must have the same bitwidth");
6371 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6372 }
6373
6374 VectorTy = toVectorTy(ValTy, VF);
6375 return TTI.getCmpSelInstrCost(
6376 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6377 cast<CmpInst>(I)->getPredicate(), CostKind,
6378 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6379 }
6380 case Instruction::Store:
6381 case Instruction::Load: {
6382 ElementCount Width = VF;
6383 if (Width.isVector()) {
6384 InstWidening Decision = getWideningDecision(I, Width);
6385 assert(Decision != CM_Unknown &&
6386 "CM decision should be taken at this point");
6389 if (Decision == CM_Scalarize)
6390 Width = ElementCount::getFixed(1);
6391 }
6392 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6393 return getMemoryInstructionCost(I, VF);
6394 }
6395 case Instruction::BitCast:
6396 if (I->getType()->isPointerTy())
6397 return 0;
6398 [[fallthrough]];
6399 case Instruction::ZExt:
6400 case Instruction::SExt:
6401 case Instruction::FPToUI:
6402 case Instruction::FPToSI:
6403 case Instruction::FPExt:
6404 case Instruction::PtrToInt:
6405 case Instruction::IntToPtr:
6406 case Instruction::SIToFP:
6407 case Instruction::UIToFP:
6408 case Instruction::Trunc:
6409 case Instruction::FPTrunc: {
6410 // Computes the CastContextHint from a Load/Store instruction.
6411 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6413 "Expected a load or a store!");
6414
6415 if (VF.isScalar() || !TheLoop->contains(I))
6417
6418 switch (getWideningDecision(I, VF)) {
6430 llvm_unreachable("Instr did not go through cost modelling?");
6433 llvm_unreachable_internal("Instr has invalid widening decision");
6434 }
6435
6436 llvm_unreachable("Unhandled case!");
6437 };
6438
6439 unsigned Opcode = I->getOpcode();
6441 // For Trunc, the context is the only user, which must be a StoreInst.
6442 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6443 if (I->hasOneUse())
6444 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6445 CCH = ComputeCCH(Store);
6446 }
6447 // For Z/Sext, the context is the operand, which must be a LoadInst.
6448 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6449 Opcode == Instruction::FPExt) {
6450 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6451 CCH = ComputeCCH(Load);
6452 }
6453
6454 // We optimize the truncation of induction variables having constant
6455 // integer steps. The cost of these truncations is the same as the scalar
6456 // operation.
6457 if (isOptimizableIVTruncate(I, VF)) {
6458 auto *Trunc = cast<TruncInst>(I);
6459 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6460 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6461 }
6462
6463 // Detect reduction patterns
6464 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6465 return *RedCost;
6466
6467 Type *SrcScalarTy = I->getOperand(0)->getType();
6468 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6469 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6470 SrcScalarTy =
6471 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6472 Type *SrcVecTy =
6473 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6474
6476 // If the result type is <= the source type, there will be no extend
6477 // after truncating the users to the minimal required bitwidth.
6478 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6479 (I->getOpcode() == Instruction::ZExt ||
6480 I->getOpcode() == Instruction::SExt))
6481 return 0;
6482 }
6483
6484 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6485 }
6486 case Instruction::Call:
6487 return getVectorCallCost(cast<CallInst>(I), VF);
6488 case Instruction::ExtractValue:
6489 return TTI.getInstructionCost(I, CostKind);
6490 case Instruction::Alloca:
6491 // We cannot easily widen alloca to a scalable alloca, as
6492 // the result would need to be a vector of pointers.
6493 if (VF.isScalable())
6495 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy, CostKind);
6496 default:
6497 // This opcode is unknown. Assume that it is the same as 'mul'.
6498 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6499 } // end of switch.
6500}
6501
6503 // Ignore ephemeral values.
6505
6506 SmallVector<Value *, 4> DeadInterleavePointerOps;
6508
6509 // If a scalar epilogue is required, users outside the loop won't use
6510 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6511 // that is the case.
6512 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6513 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6514 return RequiresScalarEpilogue &&
6515 !TheLoop->contains(cast<Instruction>(U)->getParent());
6516 };
6517
6519 DFS.perform(LI);
6520 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6521 for (Instruction &I : reverse(*BB)) {
6522 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6523 continue;
6524
6525 // Add instructions that would be trivially dead and are only used by
6526 // values already ignored to DeadOps to seed worklist.
6528 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6529 return VecValuesToIgnore.contains(U) ||
6530 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6531 }))
6532 DeadOps.push_back(&I);
6533
6534 // For interleave groups, we only create a pointer for the start of the
6535 // interleave group. Queue up addresses of group members except the insert
6536 // position for further processing.
6537 if (isAccessInterleaved(&I)) {
6538 auto *Group = getInterleavedAccessGroup(&I);
6539 if (Group->getInsertPos() == &I)
6540 continue;
6541 Value *PointerOp = getLoadStorePointerOperand(&I);
6542 DeadInterleavePointerOps.push_back(PointerOp);
6543 }
6544
6545 // Queue branches for analysis. They are dead, if their successors only
6546 // contain dead instructions.
6547 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6548 if (Br->isConditional())
6549 DeadOps.push_back(&I);
6550 }
6551 }
6552
6553 // Mark ops feeding interleave group members as free, if they are only used
6554 // by other dead computations.
6555 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6556 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6557 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6558 Instruction *UI = cast<Instruction>(U);
6559 return !VecValuesToIgnore.contains(U) &&
6560 (!isAccessInterleaved(UI) ||
6561 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6562 }))
6563 continue;
6564 VecValuesToIgnore.insert(Op);
6565 append_range(DeadInterleavePointerOps, Op->operands());
6566 }
6567
6568 // Mark ops that would be trivially dead and are only used by ignored
6569 // instructions as free.
6570 BasicBlock *Header = TheLoop->getHeader();
6571
6572 // Returns true if the block contains only dead instructions. Such blocks will
6573 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6574 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6575 auto IsEmptyBlock = [this](BasicBlock *BB) {
6576 return all_of(*BB, [this](Instruction &I) {
6577 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6578 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6579 });
6580 };
6581 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6582 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6583
6584 // Check if the branch should be considered dead.
6585 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6586 BasicBlock *ThenBB = Br->getSuccessor(0);
6587 BasicBlock *ElseBB = Br->getSuccessor(1);
6588 // Don't considers branches leaving the loop for simplification.
6589 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6590 continue;
6591 bool ThenEmpty = IsEmptyBlock(ThenBB);
6592 bool ElseEmpty = IsEmptyBlock(ElseBB);
6593 if ((ThenEmpty && ElseEmpty) ||
6594 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6595 ElseBB->phis().empty()) ||
6596 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6597 ThenBB->phis().empty())) {
6598 VecValuesToIgnore.insert(Br);
6599 DeadOps.push_back(Br->getCondition());
6600 }
6601 continue;
6602 }
6603
6604 // Skip any op that shouldn't be considered dead.
6605 if (!Op || !TheLoop->contains(Op) ||
6606 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6608 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6609 return !VecValuesToIgnore.contains(U) &&
6610 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6611 }))
6612 continue;
6613
6614 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6615 // which applies for both scalar and vector versions. Otherwise it is only
6616 // dead in vector versions, so only add it to VecValuesToIgnore.
6617 if (all_of(Op->users(),
6618 [this](User *U) { return ValuesToIgnore.contains(U); }))
6619 ValuesToIgnore.insert(Op);
6620
6621 VecValuesToIgnore.insert(Op);
6622 append_range(DeadOps, Op->operands());
6623 }
6624
6625 // Ignore type-promoting instructions we identified during reduction
6626 // detection.
6627 for (const auto &Reduction : Legal->getReductionVars()) {
6628 const RecurrenceDescriptor &RedDes = Reduction.second;
6629 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6630 VecValuesToIgnore.insert_range(Casts);
6631 }
6632 // Ignore type-casting instructions we identified during induction
6633 // detection.
6634 for (const auto &Induction : Legal->getInductionVars()) {
6635 const InductionDescriptor &IndDes = Induction.second;
6636 VecValuesToIgnore.insert_range(IndDes.getCastInsts());
6637 }
6638}
6639
6641 // Avoid duplicating work finding in-loop reductions.
6642 if (!InLoopReductions.empty())
6643 return;
6644
6645 for (const auto &Reduction : Legal->getReductionVars()) {
6646 PHINode *Phi = Reduction.first;
6647 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6648
6649 // Multi-use reductions (e.g., used in FindLastIV patterns) are handled
6650 // separately and should not be considered for in-loop reductions.
6651 if (RdxDesc.hasUsesOutsideReductionChain())
6652 continue;
6653
6654 // We don't collect reductions that are type promoted (yet).
6655 if (RdxDesc.getRecurrenceType() != Phi->getType())
6656 continue;
6657
6658 // In-loop AnyOf and FindIV reductions are not yet supported.
6659 RecurKind Kind = RdxDesc.getRecurrenceKind();
6662 continue;
6663
6664 // If the target would prefer this reduction to happen "in-loop", then we
6665 // want to record it as such.
6666 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6667 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6668 continue;
6669
6670 // Check that we can correctly put the reductions into the loop, by
6671 // finding the chain of operations that leads from the phi to the loop
6672 // exit value.
6673 SmallVector<Instruction *, 4> ReductionOperations =
6674 RdxDesc.getReductionOpChain(Phi, TheLoop);
6675 bool InLoop = !ReductionOperations.empty();
6676
6677 if (InLoop) {
6678 InLoopReductions.insert(Phi);
6679 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6680 Instruction *LastChain = Phi;
6681 for (auto *I : ReductionOperations) {
6682 InLoopReductionImmediateChains[I] = LastChain;
6683 LastChain = I;
6684 }
6685 }
6686 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6687 << " reduction for phi: " << *Phi << "\n");
6688 }
6689}
6690
6691// This function will select a scalable VF if the target supports scalable
6692// vectors and a fixed one otherwise.
6693// TODO: we could return a pair of values that specify the max VF and
6694// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6695// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6696// doesn't have a cost model that can choose which plan to execute if
6697// more than one is generated.
6700 unsigned WidestType;
6701 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6702
6704 TTI.enableScalableVectorization()
6707
6708 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6709 unsigned N = RegSize.getKnownMinValue() / WidestType;
6710 return ElementCount::get(N, RegSize.isScalable());
6711}
6712
6715 ElementCount VF = UserVF;
6716 // Outer loop handling: They may require CFG and instruction level
6717 // transformations before even evaluating whether vectorization is profitable.
6718 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6719 // the vectorization pipeline.
6720 if (!OrigLoop->isInnermost()) {
6721 // If the user doesn't provide a vectorization factor, determine a
6722 // reasonable one.
6723 if (UserVF.isZero()) {
6724 VF = determineVPlanVF(TTI, CM);
6725 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6726
6727 // Make sure we have a VF > 1 for stress testing.
6728 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6729 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6730 << "overriding computed VF.\n");
6731 VF = ElementCount::getFixed(4);
6732 }
6733 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6735 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6736 << "not supported by the target.\n");
6738 "Scalable vectorization requested but not supported by the target",
6739 "the scalable user-specified vectorization width for outer-loop "
6740 "vectorization cannot be used because the target does not support "
6741 "scalable vectors.",
6742 "ScalableVFUnfeasible", ORE, OrigLoop);
6744 }
6745 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6747 "VF needs to be a power of two");
6748 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6749 << "VF " << VF << " to build VPlans.\n");
6750 buildVPlans(VF, VF);
6751
6752 if (VPlans.empty())
6754
6755 // For VPlan build stress testing, we bail out after VPlan construction.
6758
6759 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6760 }
6761
6762 LLVM_DEBUG(
6763 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6764 "VPlan-native path.\n");
6766}
6767
6768void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6769 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6770 CM.collectValuesToIgnore();
6771 CM.collectElementTypesForWidening();
6772
6773 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6774 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6775 return;
6776
6777 // Invalidate interleave groups if all blocks of loop will be predicated.
6778 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6780 LLVM_DEBUG(
6781 dbgs()
6782 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6783 "which requires masked-interleaved support.\n");
6784 if (CM.InterleaveInfo.invalidateGroups())
6785 // Invalidating interleave groups also requires invalidating all decisions
6786 // based on them, which includes widening decisions and uniform and scalar
6787 // values.
6788 CM.invalidateCostModelingDecisions();
6789 }
6790
6791 if (CM.foldTailByMasking())
6792 Legal->prepareToFoldTailByMasking();
6793
6794 ElementCount MaxUserVF =
6795 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6796 if (UserVF) {
6797 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6799 "UserVF ignored because it may be larger than the maximal safe VF",
6800 "InvalidUserVF", ORE, OrigLoop);
6801 } else {
6803 "VF needs to be a power of two");
6804 // Collect the instructions (and their associated costs) that will be more
6805 // profitable to scalarize.
6806 CM.collectInLoopReductions();
6807 if (CM.selectUserVectorizationFactor(UserVF)) {
6808 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6809 buildVPlansWithVPRecipes(UserVF, UserVF);
6811 return;
6812 }
6813 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6814 "InvalidCost", ORE, OrigLoop);
6815 }
6816 }
6817
6818 // Collect the Vectorization Factor Candidates.
6819 SmallVector<ElementCount> VFCandidates;
6820 for (auto VF = ElementCount::getFixed(1);
6821 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6822 VFCandidates.push_back(VF);
6823 for (auto VF = ElementCount::getScalable(1);
6824 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6825 VFCandidates.push_back(VF);
6826
6827 CM.collectInLoopReductions();
6828 for (const auto &VF : VFCandidates) {
6829 // Collect Uniform and Scalar instructions after vectorization with VF.
6830 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6831 }
6832
6833 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6834 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6835
6837}
6838
6840 ElementCount VF) const {
6841 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6842 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6844 return Cost;
6845}
6846
6848 ElementCount VF) const {
6849 return CM.isUniformAfterVectorization(I, VF);
6850}
6851
6852bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6853 return CM.ValuesToIgnore.contains(UI) ||
6854 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6855 SkipCostComputation.contains(UI);
6856}
6857
6859 return CM.getPredBlockCostDivisor(CostKind, BB);
6860}
6861
6863LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6864 VPCostContext &CostCtx) const {
6866 // Cost modeling for inductions is inaccurate in the legacy cost model
6867 // compared to the recipes that are generated. To match here initially during
6868 // VPlan cost model bring up directly use the induction costs from the legacy
6869 // cost model. Note that we do this as pre-processing; the VPlan may not have
6870 // any recipes associated with the original induction increment instruction
6871 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6872 // the cost of induction phis and increments (both that are represented by
6873 // recipes and those that are not), to avoid distinguishing between them here,
6874 // and skip all recipes that represent induction phis and increments (the
6875 // former case) later on, if they exist, to avoid counting them twice.
6876 // Similarly we pre-compute the cost of any optimized truncates.
6877 // TODO: Switch to more accurate costing based on VPlan.
6878 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6880 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6881 SmallVector<Instruction *> IVInsts = {IVInc};
6882 for (unsigned I = 0; I != IVInsts.size(); I++) {
6883 for (Value *Op : IVInsts[I]->operands()) {
6884 auto *OpI = dyn_cast<Instruction>(Op);
6885 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6886 continue;
6887 IVInsts.push_back(OpI);
6888 }
6889 }
6890 IVInsts.push_back(IV);
6891 for (User *U : IV->users()) {
6892 auto *CI = cast<Instruction>(U);
6893 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6894 continue;
6895 IVInsts.push_back(CI);
6896 }
6897
6898 // If the vector loop gets executed exactly once with the given VF, ignore
6899 // the costs of comparison and induction instructions, as they'll get
6900 // simplified away.
6901 // TODO: Remove this code after stepping away from the legacy cost model and
6902 // adding code to simplify VPlans before calculating their costs.
6903 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6904 if (TC == VF && !CM.foldTailByMasking())
6905 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6906 CostCtx.SkipCostComputation);
6907
6908 for (Instruction *IVInst : IVInsts) {
6909 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6910 continue;
6911 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6912 LLVM_DEBUG({
6913 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6914 << ": induction instruction " << *IVInst << "\n";
6915 });
6916 Cost += InductionCost;
6917 CostCtx.SkipCostComputation.insert(IVInst);
6918 }
6919 }
6920
6921 /// Compute the cost of all exiting conditions of the loop using the legacy
6922 /// cost model. This is to match the legacy behavior, which adds the cost of
6923 /// all exit conditions. Note that this over-estimates the cost, as there will
6924 /// be a single condition to control the vector loop.
6926 CM.TheLoop->getExitingBlocks(Exiting);
6927 SetVector<Instruction *> ExitInstrs;
6928 // Collect all exit conditions.
6929 for (BasicBlock *EB : Exiting) {
6930 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6931 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6932 continue;
6933 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6934 ExitInstrs.insert(CondI);
6935 }
6936 }
6937 // Compute the cost of all instructions only feeding the exit conditions.
6938 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6939 Instruction *CondI = ExitInstrs[I];
6940 if (!OrigLoop->contains(CondI) ||
6941 !CostCtx.SkipCostComputation.insert(CondI).second)
6942 continue;
6943 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6944 LLVM_DEBUG({
6945 dbgs() << "Cost of " << CondICost << " for VF " << VF
6946 << ": exit condition instruction " << *CondI << "\n";
6947 });
6948 Cost += CondICost;
6949 for (Value *Op : CondI->operands()) {
6950 auto *OpI = dyn_cast<Instruction>(Op);
6951 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6952 any_of(OpI->users(), [&ExitInstrs](User *U) {
6953 return !ExitInstrs.contains(cast<Instruction>(U));
6954 }))
6955 continue;
6956 ExitInstrs.insert(OpI);
6957 }
6958 }
6959
6960 // Pre-compute the costs for branches except for the backedge, as the number
6961 // of replicate regions in a VPlan may not directly match the number of
6962 // branches, which would lead to different decisions.
6963 // TODO: Compute cost of branches for each replicate region in the VPlan,
6964 // which is more accurate than the legacy cost model.
6965 for (BasicBlock *BB : OrigLoop->blocks()) {
6966 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6967 continue;
6968 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6969 if (BB == OrigLoop->getLoopLatch())
6970 continue;
6971 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6972 Cost += BranchCost;
6973 }
6974
6975 // Pre-compute costs for instructions that are forced-scalar or profitable to
6976 // scalarize. Their costs will be computed separately in the legacy cost
6977 // model.
6978 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6979 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6980 continue;
6981 CostCtx.SkipCostComputation.insert(ForcedScalar);
6982 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6983 LLVM_DEBUG({
6984 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6985 << ": forced scalar " << *ForcedScalar << "\n";
6986 });
6987 Cost += ForcedCost;
6988 }
6989 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6990 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6991 continue;
6992 CostCtx.SkipCostComputation.insert(Scalarized);
6993 LLVM_DEBUG({
6994 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6995 << ": profitable to scalarize " << *Scalarized << "\n";
6996 });
6997 Cost += ScalarCost;
6998 }
6999
7000 return Cost;
7001}
7002
7003InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
7004 ElementCount VF) const {
7005 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
7006 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
7007
7008 // Now compute and add the VPlan-based cost.
7009 Cost += Plan.cost(VF, CostCtx);
7010#ifndef NDEBUG
7011 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
7012 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
7013 << " (Estimated cost per lane: ");
7014 if (Cost.isValid()) {
7015 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
7016 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
7017 } else /* No point dividing an invalid cost - it will still be invalid */
7018 LLVM_DEBUG(dbgs() << "Invalid");
7019 LLVM_DEBUG(dbgs() << ")\n");
7020#endif
7021 return Cost;
7022}
7023
7024#ifndef NDEBUG
7025/// Return true if the original loop \ TheLoop contains any instructions that do
7026/// not have corresponding recipes in \p Plan and are not marked to be ignored
7027/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7028/// cost-model did not account for.
7030 VPCostContext &CostCtx,
7031 Loop *TheLoop,
7032 ElementCount VF) {
7033 // First collect all instructions for the recipes in Plan.
7034 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7035 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7036 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7037 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7038 return &WidenMem->getIngredient();
7039 return nullptr;
7040 };
7041
7042 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
7043 // the select doesn't need to be considered for the vector loop cost; go with
7044 // the more accurate VPlan-based cost model.
7045 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
7046 auto *VPI = dyn_cast<VPInstruction>(&R);
7047 if (!VPI || VPI->getOpcode() != Instruction::Select)
7048 continue;
7049
7050 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
7051 switch (WR->getOpcode()) {
7052 case Instruction::UDiv:
7053 case Instruction::SDiv:
7054 case Instruction::URem:
7055 case Instruction::SRem:
7056 return true;
7057 default:
7058 break;
7059 }
7060 }
7061 }
7062
7063 DenseSet<Instruction *> SeenInstrs;
7064 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7066 for (VPRecipeBase &R : *VPBB) {
7067 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7068 auto *IG = IR->getInterleaveGroup();
7069 unsigned NumMembers = IG->getNumMembers();
7070 for (unsigned I = 0; I != NumMembers; ++I) {
7071 if (Instruction *M = IG->getMember(I))
7072 SeenInstrs.insert(M);
7073 }
7074 continue;
7075 }
7076 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7077 // cost model won't cost it whilst the legacy will.
7078 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7079 using namespace VPlanPatternMatch;
7080 if (none_of(FOR->users(),
7081 match_fn(m_VPInstruction<
7083 return true;
7084 }
7085 // The VPlan-based cost model is more accurate for partial reductions and
7086 // comparing against the legacy cost isn't desirable.
7087 if (auto *VPR = dyn_cast<VPReductionRecipe>(&R))
7088 if (VPR->isPartialReduction())
7089 return true;
7090
7091 // The VPlan-based cost model can analyze if recipes are scalar
7092 // recursively, but the legacy cost model cannot.
7093 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7094 auto *AddrI = dyn_cast<Instruction>(
7095 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7096 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7097 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7098 return true;
7099
7100 if (WidenMemR->isReverse()) {
7101 // If the stored value of a reverse store is invariant, LICM will
7102 // hoist the reverse operation to the preheader. In this case, the
7103 // result of the VPlan-based cost model will diverge from that of
7104 // the legacy model.
7105 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(WidenMemR))
7106 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7107 return true;
7108
7109 if (auto *StoreR = dyn_cast<VPWidenStoreEVLRecipe>(WidenMemR))
7110 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7111 return true;
7112 }
7113 }
7114
7115 // The legacy cost model costs non-header phis with a scalar VF as a phi,
7116 // but scalar unrolled VPlans will have VPBlendRecipes which emit selects.
7117 if (isa<VPBlendRecipe>(&R) &&
7118 vputils::onlyFirstLaneUsed(R.getVPSingleValue()))
7119 return true;
7120
7121 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7122 /// but the original instruction wasn't uniform-after-vectorization in the
7123 /// legacy cost model, the legacy cost overestimates the actual cost.
7124 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7125 if (RepR->isSingleScalar() &&
7127 RepR->getUnderlyingInstr(), VF))
7128 return true;
7129 }
7130 if (Instruction *UI = GetInstructionForCost(&R)) {
7131 // If we adjusted the predicate of the recipe, the cost in the legacy
7132 // cost model may be different.
7133 using namespace VPlanPatternMatch;
7134 CmpPredicate Pred;
7135 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7136 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7137 cast<CmpInst>(UI)->getPredicate())
7138 return true;
7139 SeenInstrs.insert(UI);
7140 }
7141 }
7142 }
7143
7144 // Return true if the loop contains any instructions that are not also part of
7145 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7146 // that the VPlan contains extra simplifications.
7147 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7148 TheLoop](BasicBlock *BB) {
7149 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7150 // Skip induction phis when checking for simplifications, as they may not
7151 // be lowered directly be lowered to a corresponding PHI recipe.
7152 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7153 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7154 return false;
7155 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7156 });
7157 });
7158}
7159#endif
7160
7162 if (VPlans.empty())
7164 // If there is a single VPlan with a single VF, return it directly.
7165 VPlan &FirstPlan = *VPlans[0];
7166 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7167 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7168
7169 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7170 << (CM.CostKind == TTI::TCK_RecipThroughput
7171 ? "Reciprocal Throughput\n"
7172 : CM.CostKind == TTI::TCK_Latency
7173 ? "Instruction Latency\n"
7174 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7175 : CM.CostKind == TTI::TCK_SizeAndLatency
7176 ? "Code Size and Latency\n"
7177 : "Unknown\n"));
7178
7180 assert(hasPlanWithVF(ScalarVF) &&
7181 "More than a single plan/VF w/o any plan having scalar VF");
7182
7183 // TODO: Compute scalar cost using VPlan-based cost model.
7184 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7185 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7186 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7187 VectorizationFactor BestFactor = ScalarFactor;
7188
7189 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7190 if (ForceVectorization) {
7191 // Ignore scalar width, because the user explicitly wants vectorization.
7192 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7193 // evaluation.
7194 BestFactor.Cost = InstructionCost::getMax();
7195 }
7196
7197 for (auto &P : VPlans) {
7198 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7199 P->vectorFactors().end());
7200
7202 if (any_of(VFs, [this](ElementCount VF) {
7203 return CM.shouldConsiderRegPressureForVF(VF);
7204 }))
7205 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7206
7207 for (unsigned I = 0; I < VFs.size(); I++) {
7208 ElementCount VF = VFs[I];
7209 if (VF.isScalar())
7210 continue;
7211 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7212 LLVM_DEBUG(
7213 dbgs()
7214 << "LV: Not considering vector loop of width " << VF
7215 << " because it will not generate any vector instructions.\n");
7216 continue;
7217 }
7218 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7219 LLVM_DEBUG(
7220 dbgs()
7221 << "LV: Not considering vector loop of width " << VF
7222 << " because it would cause replicated blocks to be generated,"
7223 << " which isn't allowed when optimizing for size.\n");
7224 continue;
7225 }
7226
7227 InstructionCost Cost = cost(*P, VF);
7228 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7229
7230 if (CM.shouldConsiderRegPressureForVF(VF) &&
7231 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7232 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7233 << VF << " because it uses too many registers\n");
7234 continue;
7235 }
7236
7237 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7238 BestFactor = CurrentFactor;
7239
7240 // If profitable add it to ProfitableVF list.
7241 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7242 ProfitableVFs.push_back(CurrentFactor);
7243 }
7244 }
7245
7246#ifndef NDEBUG
7247 // Select the optimal vectorization factor according to the legacy cost-model.
7248 // This is now only used to verify the decisions by the new VPlan-based
7249 // cost-model and will be retired once the VPlan-based cost-model is
7250 // stabilized.
7251 VectorizationFactor LegacyVF = selectVectorizationFactor();
7252 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7253
7254 // Pre-compute the cost and use it to check if BestPlan contains any
7255 // simplifications not accounted for in the legacy cost model. If that's the
7256 // case, don't trigger the assertion, as the extra simplifications may cause a
7257 // different VF to be picked by the VPlan-based cost model.
7258 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7259 OrigLoop);
7260 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7261 // Verify that the VPlan-based and legacy cost models agree, except for
7262 // * VPlans with early exits,
7263 // * VPlans with additional VPlan simplifications,
7264 // * EVL-based VPlans with gather/scatters (the VPlan-based cost model uses
7265 // vp_scatter/vp_gather).
7266 // The legacy cost model doesn't properly model costs for such loops.
7267 bool UsesEVLGatherScatter =
7269 BestPlan.getVectorLoopRegion()->getEntry())),
7270 [](VPBasicBlock *VPBB) {
7271 return any_of(*VPBB, [](VPRecipeBase &R) {
7272 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7273 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7274 });
7275 });
7276 assert(
7277 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7278 !Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7280 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7282 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7283 " VPlan cost model and legacy cost model disagreed");
7284 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7285 "when vectorizing, the scalar cost must be computed.");
7286#endif
7287
7288 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7289 return BestFactor;
7290}
7291
7292/// Search \p Start's users for a recipe satisfying \p Pred, looking through
7293/// recipes with definitions.
7294template <typename PredT>
7295static VPRecipeBase *findRecipe(VPValue *Start, PredT Pred) {
7296 SetVector<VPValue *> Worklist;
7297 Worklist.insert(Start);
7298 for (unsigned I = 0; I != Worklist.size(); ++I) {
7299 VPValue *Cur = Worklist[I];
7300 auto *R = Cur->getDefiningRecipe();
7301 // TODO: Skip live-ins once no degenerate reductions (ones with constant
7302 // backedge values) are generated.
7303 if (R && Pred(R))
7304 return R;
7305 for (VPUser *U : Cur->users()) {
7306 for (VPValue *V : cast<VPRecipeBase>(U)->definedValues())
7307 Worklist.insert(V);
7308 }
7309 }
7310 return nullptr;
7311}
7312
7314 using namespace VPlanPatternMatch;
7316 "RdxResult must be ComputeFindIVResult");
7317 VPValue *StartVPV = RdxResult->getOperand(1);
7318 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7319 return StartVPV->getLiveInIRValue();
7320}
7321
7322// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7323// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7324// from the main vector loop.
7326 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7327 // Get the VPInstruction computing the reduction result in the middle block.
7328 // The first operand may not be from the middle block if it is not connected
7329 // to the scalar preheader. In that case, there's nothing to fix.
7330 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7333 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7334 if (!EpiRedResult ||
7335 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7336 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7337 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7338 return;
7339
7340 // Find the reduction phi by searching users of the backedge value.
7341 VPValue *BackedgeVal =
7342 EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7343 auto *EpiRedHeaderPhi = cast_if_present<VPReductionPHIRecipe>(
7345 if (!EpiRedHeaderPhi) {
7346 match(BackedgeVal,
7348 VPlanPatternMatch::m_VPValue(BackedgeVal),
7350 EpiRedHeaderPhi = cast<VPReductionPHIRecipe>(
7352 }
7353
7354 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7355 Value *MainResumeValue;
7356 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7357 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7358 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7359 "unexpected start recipe");
7360 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7361 } else
7362 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7364 [[maybe_unused]] Value *StartV =
7365 EpiRedResult->getOperand(1)->getLiveInIRValue();
7366 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7367 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7368 "AnyOf expected to start with ICMP_NE");
7369 assert(Cmp->getOperand(1) == StartV &&
7370 "AnyOf expected to start by comparing main resume value to original "
7371 "start value");
7372 MainResumeValue = Cmp->getOperand(0);
7374 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7375 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7376 using namespace llvm::PatternMatch;
7377 Value *Cmp, *OrigResumeV, *CmpOp;
7378 [[maybe_unused]] bool IsExpectedPattern =
7379 match(MainResumeValue,
7380 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7381 m_Value(OrigResumeV))) &&
7383 m_Value(CmpOp))) &&
7384 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7385 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7386 MainResumeValue = OrigResumeV;
7387 }
7388 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7389
7390 // When fixing reductions in the epilogue loop we should already have
7391 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7392 // over the incoming values correctly.
7393 EpiResumePhi.setIncomingValueForBlock(
7394 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7395}
7396
7398 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7399 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7400 assert(BestVPlan.hasVF(BestVF) &&
7401 "Trying to execute plan with unsupported VF");
7402 assert(BestVPlan.hasUF(BestUF) &&
7403 "Trying to execute plan with unsupported UF");
7404 if (BestVPlan.hasEarlyExit())
7405 ++LoopsEarlyExitVectorized;
7406 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7407 // cost model is complete for better cost estimates.
7410 BestVPlan);
7413 bool HasBranchWeights =
7414 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7415 if (HasBranchWeights) {
7416 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7418 BestVPlan, BestVF, VScale);
7419 }
7420
7421 // Checks are the same for all VPlans, added to BestVPlan only for
7422 // compactness.
7423 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7424
7425 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7426 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7427
7428 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7431 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7432 BestVPlan.getScalarPreheader()) {
7433 // TODO: The vector loop would be dead, should not even try to vectorize.
7434 ORE->emit([&]() {
7435 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7436 OrigLoop->getStartLoc(),
7437 OrigLoop->getHeader())
7438 << "Created vector loop never executes due to insufficient trip "
7439 "count.";
7440 });
7442 }
7443
7445 BestVPlan, BestVF,
7446 TTI.getRegisterBitWidth(BestVF.isScalable()
7450
7452 // Regions are dissolved after optimizing for VF and UF, which completely
7453 // removes unneeded loop regions first.
7455 // Expand BranchOnTwoConds after dissolution, when latch has direct access to
7456 // its successors.
7458 // Canonicalize EVL loops after regions are dissolved.
7462 BestVPlan, VectorPH, CM.foldTailByMasking(),
7463 CM.requiresScalarEpilogue(BestVF.isVector()));
7464 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7465 VPlanTransforms::cse(BestVPlan);
7467
7468 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7469 // making any changes to the CFG.
7470 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7471 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7472 if (!ILV.getTripCount()) {
7473 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7474 } else {
7475 assert(VectorizingEpilogue && "should only re-use the existing trip "
7476 "count during epilogue vectorization");
7477 }
7478
7479 // Perform the actual loop transformation.
7480 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7481 OrigLoop->getParentLoop(),
7482 Legal->getWidestInductionType());
7483
7484#ifdef EXPENSIVE_CHECKS
7485 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7486#endif
7487
7488 // 1. Set up the skeleton for vectorization, including vector pre-header and
7489 // middle block. The vector loop is created during VPlan execution.
7490 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7492 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7494
7495 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7496 "final VPlan is invalid");
7497
7498 // After vectorization, the exit blocks of the original loop will have
7499 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7500 // looked through single-entry phis.
7501 ScalarEvolution &SE = *PSE.getSE();
7502 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7503 if (!Exit->hasPredecessors())
7504 continue;
7505 for (VPRecipeBase &PhiR : Exit->phis())
7507 &cast<VPIRPhi>(PhiR).getIRPhi());
7508 }
7509 // Forget the original loop and block dispositions.
7510 SE.forgetLoop(OrigLoop);
7512
7514
7515 //===------------------------------------------------===//
7516 //
7517 // Notice: any optimization or new instruction that go
7518 // into the code below should also be implemented in
7519 // the cost-model.
7520 //
7521 //===------------------------------------------------===//
7522
7523 // Retrieve loop information before executing the plan, which may remove the
7524 // original loop, if it becomes unreachable.
7525 MDNode *LID = OrigLoop->getLoopID();
7526 unsigned OrigLoopInvocationWeight = 0;
7527 std::optional<unsigned> OrigAverageTripCount =
7528 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7529
7530 BestVPlan.execute(&State);
7531
7532 // 2.6. Maintain Loop Hints
7533 // Keep all loop hints from the original loop on the vector loop (we'll
7534 // replace the vectorizer-specific hints below).
7535 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7536 // Add metadata to disable runtime unrolling a scalar loop when there
7537 // are no runtime checks about strides and memory. A scalar loop that is
7538 // rarely used is not worth unrolling.
7539 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7541 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7542 : nullptr,
7543 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7544 OrigLoopInvocationWeight,
7545 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7546 DisableRuntimeUnroll);
7547
7548 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7549 // predication, updating analyses.
7550 ILV.fixVectorizedLoop(State);
7551
7553
7554 return ExpandedSCEVs;
7555}
7556
7557//===--------------------------------------------------------------------===//
7558// EpilogueVectorizerMainLoop
7559//===--------------------------------------------------------------------===//
7560
7561/// This function is partially responsible for generating the control flow
7562/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7564 BasicBlock *ScalarPH = createScalarPreheader("");
7565 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7566
7567 // Generate the code to check the minimum iteration count of the vector
7568 // epilogue (see below).
7569 EPI.EpilogueIterationCountCheck =
7570 emitIterationCountCheck(VectorPH, ScalarPH, true);
7571 EPI.EpilogueIterationCountCheck->setName("iter.check");
7572
7573 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7574 ->getSuccessor(1);
7575 // Generate the iteration count check for the main loop, *after* the check
7576 // for the epilogue loop, so that the path-length is shorter for the case
7577 // that goes directly through the vector epilogue. The longer-path length for
7578 // the main loop is compensated for, by the gain from vectorizing the larger
7579 // trip count. Note: the branch will get updated later on when we vectorize
7580 // the epilogue.
7581 EPI.MainLoopIterationCountCheck =
7582 emitIterationCountCheck(VectorPH, ScalarPH, false);
7583
7584 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7585 ->getSuccessor(1);
7586}
7587
7589 LLVM_DEBUG({
7590 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7591 << "Main Loop VF:" << EPI.MainLoopVF
7592 << ", Main Loop UF:" << EPI.MainLoopUF
7593 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7594 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7595 });
7596}
7597
7600 dbgs() << "intermediate fn:\n"
7601 << *OrigLoop->getHeader()->getParent() << "\n";
7602 });
7603}
7604
7606 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7607 assert(Bypass && "Expected valid bypass basic block.");
7610 Value *CheckMinIters = createIterationCountCheck(
7611 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7612 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7613
7614 BasicBlock *const TCCheckBlock = VectorPH;
7615 if (!ForEpilogue)
7616 TCCheckBlock->setName("vector.main.loop.iter.check");
7617
7618 // Create new preheader for vector loop.
7619 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7620 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7621 "vector.ph");
7622 if (ForEpilogue) {
7623 // Save the trip count so we don't have to regenerate it in the
7624 // vec.epilog.iter.check. This is safe to do because the trip count
7625 // generated here dominates the vector epilog iter check.
7626 EPI.TripCount = Count;
7627 } else {
7629 }
7630
7631 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7632 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7633 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7634 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7635
7636 // When vectorizing the main loop, its trip-count check is placed in a new
7637 // block, whereas the overall trip-count check is placed in the VPlan entry
7638 // block. When vectorizing the epilogue loop, its trip-count check is placed
7639 // in the VPlan entry block.
7640 if (!ForEpilogue)
7641 introduceCheckBlockInVPlan(TCCheckBlock);
7642 return TCCheckBlock;
7643}
7644
7645//===--------------------------------------------------------------------===//
7646// EpilogueVectorizerEpilogueLoop
7647//===--------------------------------------------------------------------===//
7648
7649/// This function creates a new scalar preheader, using the previous one as
7650/// entry block to the epilogue VPlan. The minimum iteration check is being
7651/// represented in VPlan.
7653 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7654 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7655 OriginalScalarPH->setName("vec.epilog.iter.check");
7656 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7657 VPBasicBlock *OldEntry = Plan.getEntry();
7658 for (auto &R : make_early_inc_range(*OldEntry)) {
7659 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7660 // defining.
7661 if (isa<VPIRInstruction>(&R))
7662 continue;
7663 R.moveBefore(*NewEntry, NewEntry->end());
7664 }
7665
7666 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7667 Plan.setEntry(NewEntry);
7668 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7669
7670 return OriginalScalarPH;
7671}
7672
7674 LLVM_DEBUG({
7675 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7676 << "Epilogue Loop VF:" << EPI.EpilogueVF
7677 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7678 });
7679}
7680
7683 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7684 });
7685}
7686
7687VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7688 VFRange &Range) {
7689 assert((VPI->getOpcode() == Instruction::Load ||
7690 VPI->getOpcode() == Instruction::Store) &&
7691 "Must be called with either a load or store");
7693
7694 auto WillWiden = [&](ElementCount VF) -> bool {
7696 CM.getWideningDecision(I, VF);
7698 "CM decision should be taken at this point.");
7700 return true;
7701 if (CM.isScalarAfterVectorization(I, VF) ||
7702 CM.isProfitableToScalarize(I, VF))
7703 return false;
7705 };
7706
7708 return nullptr;
7709
7710 VPValue *Mask = nullptr;
7711 if (Legal->isMaskRequired(I))
7712 Mask = getBlockInMask(Builder.getInsertBlock());
7713
7714 // Determine if the pointer operand of the access is either consecutive or
7715 // reverse consecutive.
7717 CM.getWideningDecision(I, Range.Start);
7719 bool Consecutive =
7721
7722 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7723 : VPI->getOperand(1);
7724 if (Consecutive) {
7727 VPSingleDefRecipe *VectorPtr;
7728 if (Reverse) {
7729 // When folding the tail, we may compute an address that we don't in the
7730 // original scalar loop: drop the GEP no-wrap flags in this case.
7731 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7732 // emit negative indices.
7733 GEPNoWrapFlags Flags =
7734 CM.foldTailByMasking() || !GEP
7736 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7737 VectorPtr = new VPVectorEndPointerRecipe(
7738 Ptr, &Plan.getVF(), getLoadStoreType(I),
7739 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7740 } else {
7741 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7742 GEP ? GEP->getNoWrapFlags()
7744 VPI->getDebugLoc());
7745 }
7746 Builder.insert(VectorPtr);
7747 Ptr = VectorPtr;
7748 }
7749
7750 if (VPI->getOpcode() == Instruction::Load) {
7751 auto *Load = cast<LoadInst>(I);
7752 auto *LoadR = new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7753 *VPI, Load->getDebugLoc());
7754 if (Reverse) {
7755 Builder.insert(LoadR);
7756 return new VPInstruction(VPInstruction::Reverse, LoadR, {}, {},
7757 LoadR->getDebugLoc());
7758 }
7759 return LoadR;
7760 }
7761
7762 StoreInst *Store = cast<StoreInst>(I);
7763 VPValue *StoredVal = VPI->getOperand(0);
7764 if (Reverse)
7765 StoredVal = Builder.createNaryOp(VPInstruction::Reverse, StoredVal,
7766 Store->getDebugLoc());
7767 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7768 Reverse, *VPI, Store->getDebugLoc());
7769}
7770
7772VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7773 VFRange &Range) {
7774 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7775 // Optimize the special case where the source is a constant integer
7776 // induction variable. Notice that we can only optimize the 'trunc' case
7777 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7778 // (c) other casts depend on pointer size.
7779
7780 // Determine whether \p K is a truncation based on an induction variable that
7781 // can be optimized.
7782 auto IsOptimizableIVTruncate =
7783 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7784 return [=](ElementCount VF) -> bool {
7785 return CM.isOptimizableIVTruncate(K, VF);
7786 };
7787 };
7788
7790 IsOptimizableIVTruncate(I), Range))
7791 return nullptr;
7792
7794 VPI->getOperand(0)->getDefiningRecipe());
7795 PHINode *Phi = WidenIV->getPHINode();
7796 VPIRValue *Start = WidenIV->getStartValue();
7797 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7798
7799 // It is always safe to copy over the NoWrap and FastMath flags. In
7800 // particular, when folding tail by masking, the masked-off lanes are never
7801 // used, so it is safe.
7802 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7803 VPValue *Step =
7805 return new VPWidenIntOrFpInductionRecipe(
7806 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7807}
7808
7809VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7810 VFRange &Range) {
7811 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7813 [this, CI](ElementCount VF) {
7814 return CM.isScalarWithPredication(CI, VF);
7815 },
7816 Range);
7817
7818 if (IsPredicated)
7819 return nullptr;
7820
7822 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7823 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7824 ID == Intrinsic::pseudoprobe ||
7825 ID == Intrinsic::experimental_noalias_scope_decl))
7826 return nullptr;
7827
7829 VPI->op_begin() + CI->arg_size());
7830
7831 // Is it beneficial to perform intrinsic call compared to lib call?
7832 bool ShouldUseVectorIntrinsic =
7834 [&](ElementCount VF) -> bool {
7835 return CM.getCallWideningDecision(CI, VF).Kind ==
7837 },
7838 Range);
7839 if (ShouldUseVectorIntrinsic)
7840 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7841 VPI->getDebugLoc());
7842
7843 Function *Variant = nullptr;
7844 std::optional<unsigned> MaskPos;
7845 // Is better to call a vectorized version of the function than to to scalarize
7846 // the call?
7847 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7848 [&](ElementCount VF) -> bool {
7849 // The following case may be scalarized depending on the VF.
7850 // The flag shows whether we can use a usual Call for vectorized
7851 // version of the instruction.
7852
7853 // If we've found a variant at a previous VF, then stop looking. A
7854 // vectorized variant of a function expects input in a certain shape
7855 // -- basically the number of input registers, the number of lanes
7856 // per register, and whether there's a mask required.
7857 // We store a pointer to the variant in the VPWidenCallRecipe, so
7858 // once we have an appropriate variant it's only valid for that VF.
7859 // This will force a different vplan to be generated for each VF that
7860 // finds a valid variant.
7861 if (Variant)
7862 return false;
7863 LoopVectorizationCostModel::CallWideningDecision Decision =
7864 CM.getCallWideningDecision(CI, VF);
7866 Variant = Decision.Variant;
7867 MaskPos = Decision.MaskPos;
7868 return true;
7869 }
7870
7871 return false;
7872 },
7873 Range);
7874 if (ShouldUseVectorCall) {
7875 if (MaskPos.has_value()) {
7876 // We have 2 cases that would require a mask:
7877 // 1) The block needs to be predicated, either due to a conditional
7878 // in the scalar loop or use of an active lane mask with
7879 // tail-folding, and we use the appropriate mask for the block.
7880 // 2) No mask is required for the block, but the only available
7881 // vector variant at this VF requires a mask, so we synthesize an
7882 // all-true mask.
7883 VPValue *Mask = Legal->isMaskRequired(CI)
7884 ? getBlockInMask(Builder.getInsertBlock())
7885 : Plan.getTrue();
7886
7887 Ops.insert(Ops.begin() + *MaskPos, Mask);
7888 }
7889
7890 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7891 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7892 VPI->getDebugLoc());
7893 }
7894
7895 return nullptr;
7896}
7897
7898bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7900 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7901 // Instruction should be widened, unless it is scalar after vectorization,
7902 // scalarization is profitable or it is predicated.
7903 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7904 return CM.isScalarAfterVectorization(I, VF) ||
7905 CM.isProfitableToScalarize(I, VF) ||
7906 CM.isScalarWithPredication(I, VF);
7907 };
7909 Range);
7910}
7911
7912VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7913 auto *I = VPI->getUnderlyingInstr();
7914 switch (VPI->getOpcode()) {
7915 default:
7916 return nullptr;
7917 case Instruction::SDiv:
7918 case Instruction::UDiv:
7919 case Instruction::SRem:
7920 case Instruction::URem: {
7921 // If not provably safe, use a select to form a safe divisor before widening the
7922 // div/rem operation itself. Otherwise fall through to general handling below.
7923 if (CM.isPredicatedInst(I)) {
7925 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7926 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7927 auto *SafeRHS =
7928 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7929 Ops[1] = SafeRHS;
7930 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7931 }
7932 [[fallthrough]];
7933 }
7934 case Instruction::Add:
7935 case Instruction::And:
7936 case Instruction::AShr:
7937 case Instruction::FAdd:
7938 case Instruction::FCmp:
7939 case Instruction::FDiv:
7940 case Instruction::FMul:
7941 case Instruction::FNeg:
7942 case Instruction::FRem:
7943 case Instruction::FSub:
7944 case Instruction::ICmp:
7945 case Instruction::LShr:
7946 case Instruction::Mul:
7947 case Instruction::Or:
7948 case Instruction::Select:
7949 case Instruction::Shl:
7950 case Instruction::Sub:
7951 case Instruction::Xor:
7952 case Instruction::Freeze:
7953 return new VPWidenRecipe(*I, VPI->operands(), *VPI, *VPI,
7954 VPI->getDebugLoc());
7955 case Instruction::ExtractValue: {
7956 SmallVector<VPValue *> NewOps(VPI->operands());
7957 auto *EVI = cast<ExtractValueInst>(I);
7958 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7959 unsigned Idx = EVI->getIndices()[0];
7960 NewOps.push_back(Plan.getConstantInt(32, Idx));
7961 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7962 }
7963 };
7964}
7965
7966VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7967 VPInstruction *VPI) {
7968 // FIXME: Support other operations.
7969 unsigned Opcode = HI->Update->getOpcode();
7970 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7971 "Histogram update operation must be an Add or Sub");
7972
7974 // Bucket address.
7975 HGramOps.push_back(VPI->getOperand(1));
7976 // Increment value.
7977 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7978
7979 // In case of predicated execution (due to tail-folding, or conditional
7980 // execution, or both), pass the relevant mask.
7981 if (Legal->isMaskRequired(HI->Store))
7982 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7983
7984 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7985}
7986
7988 VFRange &Range) {
7989 auto *I = VPI->getUnderlyingInstr();
7991 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7992 Range);
7993
7994 bool IsPredicated = CM.isPredicatedInst(I);
7995
7996 // Even if the instruction is not marked as uniform, there are certain
7997 // intrinsic calls that can be effectively treated as such, so we check for
7998 // them here. Conservatively, we only do this for scalable vectors, since
7999 // for fixed-width VFs we can always fall back on full scalarization.
8000 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8001 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8002 case Intrinsic::assume:
8003 case Intrinsic::lifetime_start:
8004 case Intrinsic::lifetime_end:
8005 // For scalable vectors if one of the operands is variant then we still
8006 // want to mark as uniform, which will generate one instruction for just
8007 // the first lane of the vector. We can't scalarize the call in the same
8008 // way as for fixed-width vectors because we don't know how many lanes
8009 // there are.
8010 //
8011 // The reasons for doing it this way for scalable vectors are:
8012 // 1. For the assume intrinsic generating the instruction for the first
8013 // lane is still be better than not generating any at all. For
8014 // example, the input may be a splat across all lanes.
8015 // 2. For the lifetime start/end intrinsics the pointer operand only
8016 // does anything useful when the input comes from a stack object,
8017 // which suggests it should always be uniform. For non-stack objects
8018 // the effect is to poison the object, which still allows us to
8019 // remove the call.
8020 IsUniform = true;
8021 break;
8022 default:
8023 break;
8024 }
8025 }
8026 VPValue *BlockInMask = nullptr;
8027 if (!IsPredicated) {
8028 // Finalize the recipe for Instr, first if it is not predicated.
8029 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8030 } else {
8031 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8032 // Instructions marked for predication are replicated and a mask operand is
8033 // added initially. Masked replicate recipes will later be placed under an
8034 // if-then construct to prevent side-effects. Generate recipes to compute
8035 // the block mask for this region.
8036 BlockInMask = getBlockInMask(Builder.getInsertBlock());
8037 }
8038
8039 // Note that there is some custom logic to mark some intrinsics as uniform
8040 // manually above for scalable vectors, which this assert needs to account for
8041 // as well.
8042 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8043 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
8044 "Should not predicate a uniform recipe");
8045 auto *Recipe =
8046 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
8047 *VPI, VPI->getDebugLoc());
8048 return Recipe;
8049}
8050
8051/// Find all possible partial reductions in the loop and track all of those that
8052/// are valid so recipes can be formed later.
8054 // Find all possible partial reductions, grouping chains by their PHI. This
8055 // grouping allows invalidating the whole chain, if any link is not a valid
8056 // partial reduction.
8059 ChainsByPhi;
8060 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8061 if (Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8062 getScaledReductions(Phi, RdxExitInstr, Range, ChainsByPhi[Phi]);
8063 }
8064
8065 // A partial reduction is invalid if any of its extends are used by
8066 // something that isn't another partial reduction. This is because the
8067 // extends are intended to be lowered along with the reduction itself.
8068
8069 // Build up a set of partial reduction ops for efficient use checking.
8070 SmallPtrSet<User *, 4> PartialReductionOps;
8071 for (const auto &[_, Chains] : ChainsByPhi)
8072 for (const auto &[PartialRdx, _] : Chains)
8073 PartialReductionOps.insert(PartialRdx.ExtendUser);
8074
8075 auto ExtendIsOnlyUsedByPartialReductions =
8076 [&PartialReductionOps](Instruction *Extend) {
8077 return all_of(Extend->users(), [&](const User *U) {
8078 return PartialReductionOps.contains(U);
8079 });
8080 };
8081
8082 // Check if each use of a chain's two extends is a partial reduction
8083 // and only add those that don't have non-partial reduction users.
8084 for (const auto &[_, Chains] : ChainsByPhi) {
8085 for (const auto &[Chain, Scale] : Chains) {
8086 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8087 (!Chain.ExtendB ||
8088 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8089 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8090 }
8091 }
8092
8093 // Check that all partial reductions in a chain are only used by other
8094 // partial reductions with the same scale factor. Otherwise we end up creating
8095 // users of scaled reductions where the types of the other operands don't
8096 // match.
8097 for (const auto &[Phi, Chains] : ChainsByPhi) {
8098 for (const auto &[Chain, Scale] : Chains) {
8099 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8100 this](const User *U) {
8101 auto *UI = cast<Instruction>(U);
8102 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8103 return UI == RdxPhi;
8104 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8105 !OrigLoop->contains(UI->getParent());
8106 };
8107
8108 // If any partial reduction entry for the phi is invalid, invalidate the
8109 // whole chain.
8110 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8111 for (const auto &[Chain, _] : Chains)
8112 ScaledReductionMap.erase(Chain.Reduction);
8113 break;
8114 }
8115 }
8116 }
8117}
8118
8119bool VPRecipeBuilder::getScaledReductions(
8120 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8121 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8122 if (!CM.TheLoop->contains(RdxExitInstr))
8123 return false;
8124
8125 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8126 if (!Update)
8127 return false;
8128
8129 Value *Op = Update->getOperand(0);
8130 Value *PhiOp = Update->getOperand(1);
8131 if (Op == PHI)
8132 std::swap(Op, PhiOp);
8133
8134 using namespace llvm::PatternMatch;
8135 // If Op is an extend, then it's still a valid partial reduction if the
8136 // extended mul fulfills the other requirements.
8137 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8138 // reduction since the inner extends will be widened. We already have oneUse
8139 // checks on the inner extends so widening them is safe.
8140 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8141 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8142 auto *Cast = cast<CastInst>(Op);
8143 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8144 Op = Cast->getOperand(0);
8145 }
8146
8147 // Try and get a scaled reduction from the first non-phi operand.
8148 // If one is found, we use the discovered reduction instruction in
8149 // place of the accumulator for costing.
8150 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8151 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8152 PHI = Chains.rbegin()->first.Reduction;
8153
8154 Op = Update->getOperand(0);
8155 PhiOp = Update->getOperand(1);
8156 if (Op == PHI)
8157 std::swap(Op, PhiOp);
8158 }
8159 }
8160 if (PhiOp != PHI)
8161 return false;
8162
8163 // If the update is a binary operator, check both of its operands to see if
8164 // they are extends. Otherwise, see if the update comes directly from an
8165 // extend.
8166 Instruction *Exts[2] = {nullptr};
8167 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8168 std::optional<unsigned> BinOpc;
8169 Type *ExtOpTypes[2] = {nullptr};
8171
8172 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8173 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8174 for (const auto &[I, OpI] : enumerate(Ops)) {
8175 const APInt *C;
8176 if (I > 0 && match(OpI, m_APInt(C)) &&
8177 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8178 ExtOpTypes[I] = ExtOpTypes[0];
8179 ExtKinds[I] = ExtKinds[0];
8180 continue;
8181 }
8182 Value *ExtOp;
8183 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8184 return false;
8185 Exts[I] = cast<Instruction>(OpI);
8186
8187 // TODO: We should be able to support live-ins.
8188 if (!CM.TheLoop->contains(Exts[I]))
8189 return false;
8190
8191 ExtOpTypes[I] = ExtOp->getType();
8192 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8193 // The outer extend kind must be the same as the inner extends, so that
8194 // they can be folded together.
8195 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8196 return false;
8197 }
8198 return true;
8199 };
8200
8201 if (ExtendUser) {
8202 if (!ExtendUser->hasOneUse())
8203 return false;
8204
8205 // Use the side-effect of match to replace BinOp only if the pattern is
8206 // matched, we don't care at this point whether it actually matched.
8207 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8208
8209 SmallVector<Value *> Ops(ExtendUser->operands());
8210 if (!CollectExtInfo(Ops))
8211 return false;
8212
8213 BinOpc = std::make_optional(ExtendUser->getOpcode());
8214 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8215 // We already know the operands for Update are Op and PhiOp.
8217 if (!CollectExtInfo(Ops))
8218 return false;
8219
8220 ExtendUser = Update;
8221 BinOpc = std::nullopt;
8222 } else
8223 return false;
8224
8225 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8226
8227 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8228 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8229 if (!PHISize.hasKnownScalarFactor(ASize))
8230 return false;
8231 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8232
8234 [&](ElementCount VF) {
8235 InstructionCost Cost = TTI->getPartialReductionCost(
8236 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8237 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8238 CM.CostKind);
8239 return Cost.isValid();
8240 },
8241 Range)) {
8242 Chains.emplace_back(Chain, TargetScaleFactor);
8243 return true;
8244 }
8245
8246 return false;
8247}
8248
8251 VFRange &Range) {
8252 assert(!R->isPhi() && "phis must be handled earlier");
8253 // First, check for specific widening recipes that deal with optimizing
8254 // truncates, calls and memory operations.
8255
8256 VPRecipeBase *Recipe;
8257 auto *VPI = cast<VPInstruction>(R);
8258 if (VPI->getOpcode() == Instruction::Trunc &&
8259 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8260 return Recipe;
8261
8262 // All widen recipes below deal only with VF > 1.
8264 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8265 return nullptr;
8266
8267 if (VPI->getOpcode() == Instruction::Call)
8268 return tryToWidenCall(VPI, Range);
8269
8270 Instruction *Instr = R->getUnderlyingInstr();
8271 if (VPI->getOpcode() == Instruction::Store)
8272 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8273 return tryToWidenHistogram(*HistInfo, VPI);
8274
8275 if (VPI->getOpcode() == Instruction::Load ||
8276 VPI->getOpcode() == Instruction::Store)
8277 return tryToWidenMemory(VPI, Range);
8278
8279 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8280 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8281
8282 if (!shouldWiden(Instr, Range))
8283 return nullptr;
8284
8285 if (VPI->getOpcode() == Instruction::GetElementPtr)
8286 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8287 *VPI, VPI->getDebugLoc());
8288
8289 if (Instruction::isCast(VPI->getOpcode())) {
8290 auto *CI = cast<CastInst>(Instr);
8291 auto *CastR = cast<VPInstructionWithType>(VPI);
8292 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8293 CastR->getResultType(), CI, *VPI, *VPI,
8294 VPI->getDebugLoc());
8295 }
8296
8297 return tryToWiden(VPI);
8298}
8299
8302 unsigned ScaleFactor) {
8303 assert(Reduction->getNumOperands() == 2 &&
8304 "Unexpected number of operands for partial reduction");
8305
8306 VPValue *BinOp = Reduction->getOperand(0);
8307 VPValue *Accumulator = Reduction->getOperand(1);
8308 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8309 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8310 (isa<VPReductionRecipe>(BinOpRecipe) &&
8311 cast<VPReductionRecipe>(BinOpRecipe)->isPartialReduction()))
8312 std::swap(BinOp, Accumulator);
8313
8314 if (auto *RedPhiR = dyn_cast<VPReductionPHIRecipe>(Accumulator))
8315 RedPhiR->setVFScaleFactor(ScaleFactor);
8316
8317 assert(ScaleFactor ==
8318 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8319 "all accumulators in chain must have same scale factor");
8320
8321 auto *ReductionI = Reduction->getUnderlyingInstr();
8322 if (Reduction->getOpcode() == Instruction::Sub) {
8324 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8325 Ops.push_back(BinOp);
8326 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8327 VPIRMetadata(), ReductionI->getDebugLoc());
8328 Builder.insert(BinOp->getDefiningRecipe());
8329 }
8330
8331 VPValue *Cond = nullptr;
8332 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8333 Cond = getBlockInMask(Builder.getInsertBlock());
8334
8335 return new VPReductionRecipe(
8336 RecurKind::Add, FastMathFlags(), ReductionI, Accumulator, BinOp, Cond,
8337 RdxUnordered{/*VFScaleFactor=*/ScaleFactor}, ReductionI->getDebugLoc());
8338}
8339
8340void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8341 ElementCount MaxVF) {
8342 if (ElementCount::isKnownGT(MinVF, MaxVF))
8343 return;
8344
8345 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8346
8347 const LoopAccessInfo *LAI = Legal->getLAI();
8349 OrigLoop, LI, DT, PSE.getSE());
8350 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8352 // Only use noalias metadata when using memory checks guaranteeing no
8353 // overlap across all iterations.
8354 LVer.prepareNoAliasMetadata();
8355 }
8356
8357 // Create initial base VPlan0, to serve as common starting point for all
8358 // candidates built later for specific VF ranges.
8359 auto VPlan0 = VPlanTransforms::buildVPlan0(
8360 OrigLoop, *LI, Legal->getWidestInductionType(),
8361 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8362
8363 // Create recipes for header phis.
8365 *VPlan0, PSE, *OrigLoop, Legal->getInductionVars(),
8366 Legal->getReductionVars(), Legal->getFixedOrderRecurrences(),
8367 CM.getInLoopReductions(), Hints.allowReordering());
8368
8369 auto MaxVFTimes2 = MaxVF * 2;
8370 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8371 VFRange SubRange = {VF, MaxVFTimes2};
8372 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8373 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8374 // Now optimize the initial VPlan.
8375 VPlanTransforms::hoistPredicatedLoads(*Plan, PSE, OrigLoop);
8376 VPlanTransforms::sinkPredicatedStores(*Plan, PSE, OrigLoop);
8378 *Plan, CM.getMinimalBitwidths());
8380 // TODO: try to put addExplicitVectorLength close to addActiveLaneMask
8381 if (CM.foldTailWithEVL()) {
8383 *Plan, CM.getMaxSafeElements());
8385 }
8386 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8387 VPlans.push_back(std::move(Plan));
8388 }
8389 VF = SubRange.End;
8390 }
8391}
8392
8393VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8394 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8395
8396 using namespace llvm::VPlanPatternMatch;
8397 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8398
8399 // ---------------------------------------------------------------------------
8400 // Build initial VPlan: Scan the body of the loop in a topological order to
8401 // visit each basic block after having visited its predecessor basic blocks.
8402 // ---------------------------------------------------------------------------
8403
8404 bool RequiresScalarEpilogueCheck =
8406 [this](ElementCount VF) {
8407 return !CM.requiresScalarEpilogue(VF.isVector());
8408 },
8409 Range);
8410 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8411 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8412 CM.foldTailByMasking());
8413
8415
8416 // Don't use getDecisionAndClampRange here, because we don't know the UF
8417 // so this function is better to be conservative, rather than to split
8418 // it up into different VPlans.
8419 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8420 bool IVUpdateMayOverflow = false;
8421 for (ElementCount VF : Range)
8422 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8423
8424 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8425 // Use NUW for the induction increment if we proved that it won't overflow in
8426 // the vector loop or when not folding the tail. In the later case, we know
8427 // that the canonical induction increment will not overflow as the vector trip
8428 // count is >= increment and a multiple of the increment.
8429 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8430 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8431 if (!HasNUW) {
8432 auto *IVInc =
8433 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8434 assert(match(IVInc,
8435 m_VPInstruction<Instruction::Add>(
8436 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8437 "Did not find the canonical IV increment");
8438 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8439 }
8440
8441 // ---------------------------------------------------------------------------
8442 // Pre-construction: record ingredients whose recipes we'll need to further
8443 // process after constructing the initial VPlan.
8444 // ---------------------------------------------------------------------------
8445
8446 // For each interleave group which is relevant for this (possibly trimmed)
8447 // Range, add it to the set of groups to be later applied to the VPlan and add
8448 // placeholders for its members' Recipes which we'll be replacing with a
8449 // single VPInterleaveRecipe.
8450 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8451 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8452 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8453 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8455 // For scalable vectors, the interleave factors must be <= 8 since we
8456 // require the (de)interleaveN intrinsics instead of shufflevectors.
8457 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8458 "Unsupported interleave factor for scalable vectors");
8459 return Result;
8460 };
8461 if (!getDecisionAndClampRange(ApplyIG, Range))
8462 continue;
8463 InterleaveGroups.insert(IG);
8464 }
8465
8466 // ---------------------------------------------------------------------------
8467 // Predicate and linearize the top-level loop region.
8468 // ---------------------------------------------------------------------------
8469 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8470 *Plan, CM.foldTailByMasking());
8471
8472 // ---------------------------------------------------------------------------
8473 // Construct wide recipes and apply predication for original scalar
8474 // VPInstructions in the loop.
8475 // ---------------------------------------------------------------------------
8476 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8477 BlockMaskCache);
8478 // TODO: Handle partial reductions with EVL tail folding.
8479 if (!CM.foldTailWithEVL())
8480 RecipeBuilder.collectScaledReductions(Range);
8481
8482 // Scan the body of the loop in a topological order to visit each basic block
8483 // after having visited its predecessor basic blocks.
8484 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8485 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8486 HeaderVPBB);
8487
8488 auto *MiddleVPBB = Plan->getMiddleBlock();
8489 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8490 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8491 // temporarily to update created block masks.
8492 DenseMap<VPValue *, VPValue *> Old2New;
8493
8494 // Collect blocks that need predication for in-loop reduction recipes.
8495 DenseSet<BasicBlock *> BlocksNeedingPredication;
8496 for (BasicBlock *BB : OrigLoop->blocks())
8497 if (CM.blockNeedsPredicationForAnyReason(BB))
8498 BlocksNeedingPredication.insert(BB);
8499
8501 *Plan, BlockMaskCache, BlocksNeedingPredication, Range.Start);
8502
8503 // Now process all other blocks and instructions.
8504 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8505 // Convert input VPInstructions to widened recipes.
8506 for (VPRecipeBase &R : make_early_inc_range(
8507 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8508 // Skip recipes that do not need transforming.
8510 continue;
8511 auto *VPI = cast<VPInstruction>(&R);
8512 if (!VPI->getUnderlyingValue())
8513 continue;
8514
8515 // TODO: Gradually replace uses of underlying instruction by analyses on
8516 // VPlan. Migrate code relying on the underlying instruction from VPlan0
8517 // to construct recipes below to not use the underlying instruction.
8519 Builder.setInsertPoint(VPI);
8520
8521 // The stores with invariant address inside the loop will be deleted, and
8522 // in the exit block, a uniform store recipe will be created for the final
8523 // invariant store of the reduction.
8524 StoreInst *SI;
8525 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8526 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8527 // Only create recipe for the final invariant store of the reduction.
8528 if (Legal->isInvariantStoreOfReduction(SI)) {
8529 auto *Recipe = new VPReplicateRecipe(
8530 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8531 *VPI, VPI->getDebugLoc());
8532 Recipe->insertBefore(*MiddleVPBB, MBIP);
8533 }
8534 R.eraseFromParent();
8535 continue;
8536 }
8537
8538 VPRecipeBase *Recipe =
8539 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI, Range);
8540 if (!Recipe)
8541 Recipe =
8542 RecipeBuilder.handleReplication(cast<VPInstruction>(VPI), Range);
8543
8544 RecipeBuilder.setRecipe(Instr, Recipe);
8545 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8546 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8547 // moved to the phi section in the header.
8548 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8549 } else {
8550 Builder.insert(Recipe);
8551 }
8552 if (Recipe->getNumDefinedValues() == 1) {
8553 VPI->replaceAllUsesWith(Recipe->getVPSingleValue());
8554 Old2New[VPI] = Recipe->getVPSingleValue();
8555 } else {
8556 assert(Recipe->getNumDefinedValues() == 0 &&
8557 "Unexpected multidef recipe");
8558 R.eraseFromParent();
8559 }
8560 }
8561 }
8562
8563 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8564 // TODO: Include the masks as operands in the predicated VPlan directly
8565 // to remove the need to keep a map of masks beyond the predication
8566 // transform.
8567 RecipeBuilder.updateBlockMaskCache(Old2New);
8568 for (VPValue *Old : Old2New.keys())
8569 Old->getDefiningRecipe()->eraseFromParent();
8570
8571 assert(isa<VPRegionBlock>(LoopRegion) &&
8572 !LoopRegion->getEntryBasicBlock()->empty() &&
8573 "entry block must be set to a VPRegionBlock having a non-empty entry "
8574 "VPBasicBlock");
8575
8576 // TODO: We can't call runPass on these transforms yet, due to verifier
8577 // failures.
8579 DenseMap<VPValue *, VPValue *> IVEndValues;
8580 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8581
8582 // ---------------------------------------------------------------------------
8583 // Transform initial VPlan: Apply previously taken decisions, in order, to
8584 // bring the VPlan to its final state.
8585 // ---------------------------------------------------------------------------
8586
8587 addReductionResultComputation(Plan, RecipeBuilder, Range.Start);
8588
8589 // Apply mandatory transformation to handle reductions with multiple in-loop
8590 // uses if possible, bail out otherwise.
8592 *Plan))
8593 return nullptr;
8594 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8595 // NaNs if possible, bail out otherwise.
8597 *Plan))
8598 return nullptr;
8599
8600 // Create whole-vector selects for find-last recurrences.
8602 *Plan))
8603 return nullptr;
8604
8605 // Transform recipes to abstract recipes if it is legal and beneficial and
8606 // clamp the range for better cost estimation.
8607 // TODO: Enable following transform when the EVL-version of extended-reduction
8608 // and mulacc-reduction are implemented.
8609 if (!CM.foldTailWithEVL()) {
8610 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8611 OrigLoop);
8613 CostCtx, Range);
8614 }
8615
8616 for (ElementCount VF : Range)
8617 Plan->addVF(VF);
8618 Plan->setName("Initial VPlan");
8619
8620 // Interleave memory: for each Interleave Group we marked earlier as relevant
8621 // for this VPlan, replace the Recipes widening its memory instructions with a
8622 // single VPInterleaveRecipe at its insertion point.
8624 InterleaveGroups, RecipeBuilder,
8625 CM.isScalarEpilogueAllowed());
8626
8627 // Replace VPValues for known constant strides.
8629 Legal->getLAI()->getSymbolicStrides());
8630
8631 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8632 return Legal->blockNeedsPredication(BB);
8633 };
8635 BlockNeedsPredication);
8636
8637 // Sink users of fixed-order recurrence past the recipe defining the previous
8638 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8640 *Plan, Builder))
8641 return nullptr;
8642
8643 if (useActiveLaneMask(Style)) {
8644 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8645 // TailFoldingStyle is visible there.
8646 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8647 bool WithoutRuntimeCheck =
8649 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8650 WithoutRuntimeCheck);
8651 }
8652 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, PSE);
8653
8654 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8655 return Plan;
8656}
8657
8658VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8659 // Outer loop handling: They may require CFG and instruction level
8660 // transformations before even evaluating whether vectorization is profitable.
8661 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8662 // the vectorization pipeline.
8663 assert(!OrigLoop->isInnermost());
8664 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8665
8666 auto Plan = VPlanTransforms::buildVPlan0(
8667 OrigLoop, *LI, Legal->getWidestInductionType(),
8668 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8669
8671 *Plan, PSE, *OrigLoop, Legal->getInductionVars(),
8672 MapVector<PHINode *, RecurrenceDescriptor>(),
8673 SmallPtrSet<const PHINode *, 1>(), SmallPtrSet<PHINode *, 1>(),
8674 /*AllowReordering=*/false);
8676 /*HasUncountableExit*/ false);
8677 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8678 /*TailFolded*/ false);
8679
8681
8682 for (ElementCount VF : Range)
8683 Plan->addVF(VF);
8684
8686 return nullptr;
8687
8688 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8689 // values.
8690 // TODO: We can't call runPass on the transform yet, due to verifier
8691 // failures.
8692 DenseMap<VPValue *, VPValue *> IVEndValues;
8693 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8694
8695 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8696 return Plan;
8697}
8698
8699void LoopVectorizationPlanner::addReductionResultComputation(
8700 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8701 using namespace VPlanPatternMatch;
8702 VPTypeAnalysis TypeInfo(*Plan);
8703 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8704 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8706 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8707 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8708 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8709 for (VPRecipeBase &R :
8710 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8711 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8712 if (!PhiR)
8713 continue;
8714
8715 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8717 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8718 // If tail is folded by masking, introduce selects between the phi
8719 // and the users outside the vector region of each reduction, at the
8720 // beginning of the dedicated latch block.
8721 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8722 auto *NewExitingVPV = PhiR->getBackedgeValue();
8723 // Don't output selects for partial reductions because they have an output
8724 // with fewer lanes than the VF. So the operands of the select would have
8725 // different numbers of lanes. Partial reductions mask the input instead.
8726 auto *RR = dyn_cast<VPReductionRecipe>(OrigExitingVPV->getDefiningRecipe());
8727 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8728 (!RR || !RR->isPartialReduction())) {
8729 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8730 std::optional<FastMathFlags> FMFs =
8731 PhiTy->isFloatingPointTy()
8732 ? std::make_optional(RdxDesc.getFastMathFlags())
8733 : std::nullopt;
8734 NewExitingVPV =
8735 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8736 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8737 return isa<VPInstruction>(&U) &&
8738 (cast<VPInstruction>(&U)->getOpcode() ==
8740 cast<VPInstruction>(&U)->getOpcode() ==
8742 cast<VPInstruction>(&U)->getOpcode() ==
8744 });
8745 if (CM.usePredicatedReductionSelect())
8746 PhiR->setOperand(1, NewExitingVPV);
8747 }
8748
8749 // We want code in the middle block to appear to execute on the location of
8750 // the scalar loop's latch terminator because: (a) it is all compiler
8751 // generated, (b) these instructions are always executed after evaluating
8752 // the latch conditional branch, and (c) other passes may add new
8753 // predecessors which terminate on this line. This is the easiest way to
8754 // ensure we don't accidentally cause an extra step back into the loop while
8755 // debugging.
8756 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8757
8758 // TODO: At the moment ComputeReductionResult also drives creation of the
8759 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8760 // even for in-loop reductions, until the reduction resume value handling is
8761 // also modeled in VPlan.
8762 VPInstruction *FinalReductionResult;
8763 VPBuilder::InsertPointGuard Guard(Builder);
8764 Builder.setInsertPoint(MiddleVPBB, IP);
8765 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8767 VPValue *Start = PhiR->getStartValue();
8768 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8769 FinalReductionResult =
8770 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8771 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8772 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8773 VPValue *Start = PhiR->getStartValue();
8774 FinalReductionResult =
8775 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8776 {PhiR, Start, NewExitingVPV}, ExitDL);
8777 } else {
8778 FastMathFlags FMFs =
8780 ? RdxDesc.getFastMathFlags()
8781 : FastMathFlags();
8782 VPIRFlags Flags(RecurrenceKind, PhiR->isOrdered(), PhiR->isInLoop(),
8783 FMFs);
8784 FinalReductionResult =
8785 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8786 {NewExitingVPV}, Flags, ExitDL);
8787 }
8788 // If the vector reduction can be performed in a smaller type, we truncate
8789 // then extend the loop exit value to enable InstCombine to evaluate the
8790 // entire expression in the smaller type.
8791 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8793 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8795 "Unexpected truncated min-max recurrence!");
8796 Type *RdxTy = RdxDesc.getRecurrenceType();
8797 VPWidenCastRecipe *Trunc;
8798 Instruction::CastOps ExtendOpc =
8799 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8800 VPWidenCastRecipe *Extnd;
8801 {
8802 VPBuilder::InsertPointGuard Guard(Builder);
8803 Builder.setInsertPoint(
8804 NewExitingVPV->getDefiningRecipe()->getParent(),
8805 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8806 Trunc =
8807 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8808 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8809 }
8810 if (PhiR->getOperand(1) == NewExitingVPV)
8811 PhiR->setOperand(1, Extnd->getVPSingleValue());
8812
8813 // Update ComputeReductionResult with the truncated exiting value and
8814 // extend its result. Operand 0 provides the values to be reduced.
8815 FinalReductionResult->setOperand(0, Trunc);
8816 FinalReductionResult =
8817 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8818 }
8819
8820 // Update all users outside the vector region. Also replace redundant
8821 // extracts.
8822 for (auto *U : to_vector(OrigExitingVPV->users())) {
8823 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8824 if (FinalReductionResult == U || Parent->getParent())
8825 continue;
8826 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8827
8828 // Look through ExtractLastPart.
8830 U = cast<VPInstruction>(U)->getSingleUser();
8831
8834 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8835 }
8836
8837 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8838 // with a boolean reduction phi node to check if the condition is true in
8839 // any iteration. The final value is selected by the final
8840 // ComputeReductionResult.
8841 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8842 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8843 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8844 }));
8845 VPValue *Cmp = Select->getOperand(0);
8846 // If the compare is checking the reduction PHI node, adjust it to check
8847 // the start value.
8848 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8849 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8850 Builder.setInsertPoint(Select);
8851
8852 // If the true value of the select is the reduction phi, the new value is
8853 // selected if the negated condition is true in any iteration.
8854 if (Select->getOperand(1) == PhiR)
8855 Cmp = Builder.createNot(Cmp);
8856 VPValue *Or = Builder.createOr(PhiR, Cmp);
8857 Select->getVPSingleValue()->replaceAllUsesWith(Or);
8858 // Delete Select now that it has invalid types.
8859 ToDelete.push_back(Select);
8860
8861 // Convert the reduction phi to operate on bools.
8862 PhiR->setOperand(0, Plan->getFalse());
8863 continue;
8864 }
8865
8867 RdxDesc.getRecurrenceKind())) {
8868 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
8869 // the sentinel value after generating the ResumePhi recipe, which uses
8870 // the original start value.
8871 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
8872 }
8873 RecurKind RK = RdxDesc.getRecurrenceKind();
8878 VPBuilder PHBuilder(Plan->getVectorPreheader());
8879 VPValue *Iden = Plan->getOrAddLiveIn(
8880 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
8881 // If the PHI is used by a partial reduction, set the scale factor.
8882 unsigned ScaleFactor =
8883 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
8884 .value_or(1);
8885 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8886 VPValue *StartV = PHBuilder.createNaryOp(
8888 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
8889 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
8890 : FastMathFlags());
8891 PhiR->setOperand(0, StartV);
8892 }
8893 }
8894 for (VPRecipeBase *R : ToDelete)
8895 R->eraseFromParent();
8896
8898}
8899
8900void LoopVectorizationPlanner::attachRuntimeChecks(
8901 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
8902 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8903 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8904 assert((!CM.OptForSize ||
8905 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
8906 "Cannot SCEV check stride or overflow when optimizing for size");
8907 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
8908 HasBranchWeights);
8909 }
8910 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8911 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8912 // VPlan-native path does not do any analysis for runtime checks
8913 // currently.
8914 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
8915 "Runtime checks are not supported for outer loops yet");
8916
8917 if (CM.OptForSize) {
8918 assert(
8919 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
8920 "Cannot emit memory checks when optimizing for size, unless forced "
8921 "to vectorize.");
8922 ORE->emit([&]() {
8923 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
8924 OrigLoop->getStartLoc(),
8925 OrigLoop->getHeader())
8926 << "Code-size may be reduced by not forcing "
8927 "vectorization, or by source-code modifications "
8928 "eliminating the need for runtime checks "
8929 "(e.g., adding 'restrict').";
8930 });
8931 }
8932 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
8933 HasBranchWeights);
8934 }
8935}
8936
8938 VPlan &Plan, ElementCount VF, unsigned UF,
8939 ElementCount MinProfitableTripCount) const {
8940 // vscale is not necessarily a power-of-2, which means we cannot guarantee
8941 // an overflow to zero when updating induction variables and so an
8942 // additional overflow check is required before entering the vector loop.
8943 bool IsIndvarOverflowCheckNeededForVF =
8944 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8945 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
8946 CM.getTailFoldingStyle() !=
8948 const uint32_t *BranchWeigths =
8949 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
8951 : nullptr;
8953 Plan, VF, UF, MinProfitableTripCount,
8954 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
8955 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8956 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8957}
8958
8960 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
8961
8962 // Fast-math-flags propagate from the original induction instruction.
8963 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
8964 if (FPBinOp)
8965 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
8966
8967 Value *Step = State.get(getStepValue(), VPLane(0));
8968 Value *Index = State.get(getOperand(1), VPLane(0));
8969 Value *DerivedIV = emitTransformedIndex(
8970 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
8972 DerivedIV->setName(Name);
8973 State.set(this, DerivedIV, VPLane(0));
8974}
8975
8976// Determine how to lower the scalar epilogue, which depends on 1) optimising
8977// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
8978// predication, and 4) a TTI hook that analyses whether the loop is suitable
8979// for predication.
8981 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
8984 // 1) OptSize takes precedence over all other options, i.e. if this is set,
8985 // don't look at hints or options, and don't request a scalar epilogue.
8986 if (F->hasOptSize() ||
8987 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
8989
8990 // 2) If set, obey the directives
8991 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
8999 };
9000 }
9001
9002 // 3) If set, obey the hints
9003 switch (Hints.getPredicate()) {
9008 };
9009
9010 // 4) if the TTI hook indicates this is profitable, request predication.
9011 TailFoldingInfo TFI(TLI, &LVL, IAI);
9012 if (TTI->preferPredicateOverEpilogue(&TFI))
9014
9016}
9017
9018// Process the loop in the VPlan-native vectorization path. This path builds
9019// VPlan upfront in the vectorization pipeline, which allows to apply
9020// VPlan-to-VPlan transformations from the very beginning without modifying the
9021// input LLVM IR.
9027 std::function<BlockFrequencyInfo &()> GetBFI, bool OptForSize,
9028 LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements) {
9029
9031 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9032 return false;
9033 }
9034 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9035 Function *F = L->getHeader()->getParent();
9036 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9037
9039 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9040
9041 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE,
9042 GetBFI, F, &Hints, IAI, OptForSize);
9043 // Use the planner for outer loop vectorization.
9044 // TODO: CM is not used at this point inside the planner. Turn CM into an
9045 // optional argument if we don't need it in the future.
9046 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9047 ORE);
9048
9049 // Get user vectorization factor.
9050 ElementCount UserVF = Hints.getWidth();
9051
9053
9054 // Plan how to best vectorize, return the best VF and its cost.
9055 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9056
9057 // If we are stress testing VPlan builds, do not attempt to generate vector
9058 // code. Masked vector code generation support will follow soon.
9059 // Also, do not attempt to vectorize if no vector code will be produced.
9061 return false;
9062
9063 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9064
9065 {
9066 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9067 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9068 Checks, BestPlan);
9069 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9070 << L->getHeader()->getParent()->getName() << "\"\n");
9071 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9073
9074 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9075 }
9076
9077 reportVectorization(ORE, L, VF, 1);
9078
9079 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9080 return true;
9081}
9082
9083// Emit a remark if there are stores to floats that required a floating point
9084// extension. If the vectorized loop was generated with floating point there
9085// will be a performance penalty from the conversion overhead and the change in
9086// the vector width.
9089 for (BasicBlock *BB : L->getBlocks()) {
9090 for (Instruction &Inst : *BB) {
9091 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9092 if (S->getValueOperand()->getType()->isFloatTy())
9093 Worklist.push_back(S);
9094 }
9095 }
9096 }
9097
9098 // Traverse the floating point stores upwards searching, for floating point
9099 // conversions.
9102 while (!Worklist.empty()) {
9103 auto *I = Worklist.pop_back_val();
9104 if (!L->contains(I))
9105 continue;
9106 if (!Visited.insert(I).second)
9107 continue;
9108
9109 // Emit a remark if the floating point store required a floating
9110 // point conversion.
9111 // TODO: More work could be done to identify the root cause such as a
9112 // constant or a function return type and point the user to it.
9113 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9114 ORE->emit([&]() {
9115 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9116 I->getDebugLoc(), L->getHeader())
9117 << "floating point conversion changes vector width. "
9118 << "Mixed floating point precision requires an up/down "
9119 << "cast that will negatively impact performance.";
9120 });
9121
9122 for (Use &Op : I->operands())
9123 if (auto *OpI = dyn_cast<Instruction>(Op))
9124 Worklist.push_back(OpI);
9125 }
9126}
9127
9128/// For loops with uncountable early exits, find the cost of doing work when
9129/// exiting the loop early, such as calculating the final exit values of
9130/// variables used outside the loop.
9131/// TODO: This is currently overly pessimistic because the loop may not take
9132/// the early exit, but better to keep this conservative for now. In future,
9133/// it might be possible to relax this by using branch probabilities.
9135 VPlan &Plan, ElementCount VF) {
9136 InstructionCost Cost = 0;
9137 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9138 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9139 // If the predecessor is not the middle.block, then it must be the
9140 // vector.early.exit block, which may contain work to calculate the exit
9141 // values of variables used outside the loop.
9142 if (PredVPBB != Plan.getMiddleBlock()) {
9143 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9144 << PredVPBB->getName() << ":\n");
9145 Cost += PredVPBB->cost(VF, CostCtx);
9146 }
9147 }
9148 }
9149 return Cost;
9150}
9151
9152/// This function determines whether or not it's still profitable to vectorize
9153/// the loop given the extra work we have to do outside of the loop:
9154/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9155/// to vectorize.
9156/// 2. In the case of loops with uncountable early exits, we may have to do
9157/// extra work when exiting the loop early, such as calculating the final
9158/// exit values of variables used outside the loop.
9159/// 3. The middle block.
9160static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9161 VectorizationFactor &VF, Loop *L,
9163 VPCostContext &CostCtx, VPlan &Plan,
9165 std::optional<unsigned> VScale) {
9166 InstructionCost TotalCost = Checks.getCost();
9167 if (!TotalCost.isValid())
9168 return false;
9169
9170 // Add on the cost of any work required in the vector early exit block, if
9171 // one exists.
9172 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9173
9174 TotalCost += Plan.getMiddleBlock()->cost(VF.Width, CostCtx);
9175
9176 // When interleaving only scalar and vector cost will be equal, which in turn
9177 // would lead to a divide by 0. Fall back to hard threshold.
9178 if (VF.Width.isScalar()) {
9179 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9180 if (TotalCost > VectorizeMemoryCheckThreshold) {
9181 LLVM_DEBUG(
9182 dbgs()
9183 << "LV: Interleaving only is not profitable due to runtime checks\n");
9184 return false;
9185 }
9186 return true;
9187 }
9188
9189 // The scalar cost should only be 0 when vectorizing with a user specified
9190 // VF/IC. In those cases, runtime checks should always be generated.
9191 uint64_t ScalarC = VF.ScalarCost.getValue();
9192 if (ScalarC == 0)
9193 return true;
9194
9195 // First, compute the minimum iteration count required so that the vector
9196 // loop outperforms the scalar loop.
9197 // The total cost of the scalar loop is
9198 // ScalarC * TC
9199 // where
9200 // * TC is the actual trip count of the loop.
9201 // * ScalarC is the cost of a single scalar iteration.
9202 //
9203 // The total cost of the vector loop is
9204 // RtC + VecC * (TC / VF) + EpiC
9205 // where
9206 // * RtC is the sum of the costs cost of
9207 // - the generated runtime checks
9208 // - performing any additional work in the vector.early.exit block for
9209 // loops with uncountable early exits.
9210 // - the middle block, if ExpectedTC <= VF.Width.
9211 // * VecC is the cost of a single vector iteration.
9212 // * TC is the actual trip count of the loop
9213 // * VF is the vectorization factor
9214 // * EpiCost is the cost of the generated epilogue, including the cost
9215 // of the remaining scalar operations.
9216 //
9217 // Vectorization is profitable once the total vector cost is less than the
9218 // total scalar cost:
9219 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9220 //
9221 // Now we can compute the minimum required trip count TC as
9222 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9223 //
9224 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9225 // the computations are performed on doubles, not integers and the result
9226 // is rounded up, hence we get an upper estimate of the TC.
9227 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9228 uint64_t RtC = TotalCost.getValue();
9229 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9230 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9231
9232 // Second, compute a minimum iteration count so that the cost of the
9233 // runtime checks is only a fraction of the total scalar loop cost. This
9234 // adds a loop-dependent bound on the overhead incurred if the runtime
9235 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9236 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9237 // cost, compute
9238 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9239 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9240
9241 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9242 // epilogue is allowed, choose the next closest multiple of VF. This should
9243 // partly compensate for ignoring the epilogue cost.
9244 uint64_t MinTC = std::max(MinTC1, MinTC2);
9245 if (SEL == CM_ScalarEpilogueAllowed)
9246 MinTC = alignTo(MinTC, IntVF);
9248
9249 LLVM_DEBUG(
9250 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9251 << VF.MinProfitableTripCount << "\n");
9252
9253 // Skip vectorization if the expected trip count is less than the minimum
9254 // required trip count.
9255 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9256 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9257 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9258 "trip count < minimum profitable VF ("
9259 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9260 << ")\n");
9261
9262 return false;
9263 }
9264 }
9265 return true;
9266}
9267
9269 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9271 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9273
9274/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9275/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9276/// don't have a corresponding wide induction in \p EpiPlan.
9277static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9278 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9279 // will need their resume-values computed in the main vector loop. Others
9280 // can be removed from the main VPlan.
9281 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9282 for (VPRecipeBase &R :
9285 continue;
9286 EpiWidenedPhis.insert(
9287 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9288 }
9289 for (VPRecipeBase &R :
9290 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9291 auto *VPIRInst = cast<VPIRPhi>(&R);
9292 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9293 continue;
9294 // There is no corresponding wide induction in the epilogue plan that would
9295 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9296 // together with the corresponding ResumePhi. The resume values for the
9297 // scalar loop will be created during execution of EpiPlan.
9298 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9299 VPIRInst->eraseFromParent();
9300 ResumePhi->eraseFromParent();
9301 }
9303
9304 using namespace VPlanPatternMatch;
9305 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9306 // introduce multiple uses of undef/poison. If the reduction start value may
9307 // be undef or poison it needs to be frozen and the frozen start has to be
9308 // used when computing the reduction result. We also need to use the frozen
9309 // value in the resume phi generated by the main vector loop, as this is also
9310 // used to compute the reduction result after the epilogue vector loop.
9311 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9312 bool UpdateResumePhis) {
9313 VPBuilder Builder(Plan.getEntry());
9314 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9315 auto *VPI = dyn_cast<VPInstruction>(&R);
9316 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9317 continue;
9318 VPValue *OrigStart = VPI->getOperand(1);
9320 continue;
9321 VPInstruction *Freeze =
9322 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9323 VPI->setOperand(1, Freeze);
9324 if (UpdateResumePhis)
9325 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9326 return Freeze != &U && isa<VPPhi>(&U);
9327 });
9328 }
9329 };
9330 AddFreezeForFindLastIVReductions(MainPlan, true);
9331 AddFreezeForFindLastIVReductions(EpiPlan, false);
9332
9333 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9334 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9335 // If there is a suitable resume value for the canonical induction in the
9336 // scalar (which will become vector) epilogue loop, use it and move it to the
9337 // beginning of the scalar preheader. Otherwise create it below.
9338 auto ResumePhiIter =
9339 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9340 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9341 m_ZeroInt()));
9342 });
9343 VPPhi *ResumePhi = nullptr;
9344 if (ResumePhiIter == MainScalarPH->phis().end()) {
9345 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9346 ResumePhi = ScalarPHBuilder.createScalarPhi(
9347 {VectorTC,
9349 {}, "vec.epilog.resume.val");
9350 } else {
9351 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9352 if (MainScalarPH->begin() == MainScalarPH->end())
9353 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9354 else if (&*MainScalarPH->begin() != ResumePhi)
9355 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9356 }
9357 // Add a user to to make sure the resume phi won't get removed.
9358 VPBuilder(MainScalarPH)
9360}
9361
9362/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9363/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9364/// reductions require creating new instructions to compute the resume values.
9365/// They are collected in a vector and returned. They must be moved to the
9366/// preheader of the vector epilogue loop, after created by the execution of \p
9367/// Plan.
9369 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9371 ScalarEvolution &SE) {
9372 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9373 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9374 Header->setName("vec.epilog.vector.body");
9375
9376 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9377 // When vectorizing the epilogue loop, the canonical induction needs to be
9378 // adjusted by the value after the main vector loop. Find the resume value
9379 // created during execution of the main VPlan. It must be the first phi in the
9380 // loop preheader. Use the value to increment the canonical IV, and update all
9381 // users in the loop region to use the adjusted value.
9382 // FIXME: Improve modeling for canonical IV start values in the epilogue
9383 // loop.
9384 using namespace llvm::PatternMatch;
9385 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9386 for (Value *Inc : EPResumeVal->incoming_values()) {
9387 if (match(Inc, m_SpecificInt(0)))
9388 continue;
9389 assert(!EPI.VectorTripCount &&
9390 "Must only have a single non-zero incoming value");
9391 EPI.VectorTripCount = Inc;
9392 }
9393 // If we didn't find a non-zero vector trip count, all incoming values
9394 // must be zero, which also means the vector trip count is zero. Pick the
9395 // first zero as vector trip count.
9396 // TODO: We should not choose VF * UF so the main vector loop is known to
9397 // be dead.
9398 if (!EPI.VectorTripCount) {
9399 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9400 all_of(EPResumeVal->incoming_values(),
9401 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9402 "all incoming values must be 0");
9403 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9404 }
9405 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9406 assert(all_of(IV->users(),
9407 [](const VPUser *U) {
9408 return isa<VPScalarIVStepsRecipe>(U) ||
9409 isa<VPDerivedIVRecipe>(U) ||
9410 cast<VPRecipeBase>(U)->isScalarCast() ||
9411 cast<VPInstruction>(U)->getOpcode() ==
9412 Instruction::Add;
9413 }) &&
9414 "the canonical IV should only be used by its increment or "
9415 "ScalarIVSteps when resetting the start value");
9416 VPBuilder Builder(Header, Header->getFirstNonPhi());
9417 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9418 IV->replaceAllUsesWith(Add);
9419 Add->setOperand(0, IV);
9420
9422 SmallVector<Instruction *> InstsToMove;
9423 // Ensure that the start values for all header phi recipes are updated before
9424 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9425 // handled above.
9426 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9427 Value *ResumeV = nullptr;
9428 // TODO: Move setting of resume values to prepareToExecute.
9429 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9430 // Find the reduction result by searching users of the phi or its backedge
9431 // value.
9432 auto IsReductionResult = [](VPRecipeBase *R) {
9433 auto *VPI = dyn_cast<VPInstruction>(R);
9434 return VPI &&
9438 };
9439 auto *RdxResult = cast<VPInstruction>(
9440 findRecipe(ReductionPhi->getBackedgeValue(), IsReductionResult));
9441 assert(
9442 (is_contained(RdxResult->operands(),
9443 ReductionPhi->getBackedgeValue()) ||
9444 (isa<VPWidenCastRecipe>(ReductionPhi->getBackedgeValue()) &&
9445 is_contained(RdxResult->operands(), ReductionPhi->getBackedgeValue()
9446 ->getDefiningRecipe()
9447 ->getOperand(0))) ||
9448 RdxResult->getOpcode() == VPInstruction::ComputeFindIVResult) &&
9449 "expected to find reduction result via backedge");
9450
9451 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9452 ->getIncomingValueForBlock(L->getLoopPreheader());
9453 RecurKind RK = ReductionPhi->getRecurrenceKind();
9455 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9456 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9457 // start value; compare the final value from the main vector loop
9458 // to the start value.
9459 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9460 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9461 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9462 if (auto *I = dyn_cast<Instruction>(ResumeV))
9463 InstsToMove.push_back(I);
9465 Value *StartV = getStartValueFromReductionResult(RdxResult);
9466 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9468
9469 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9470 // an adjustment to the resume value. The resume value is adjusted to
9471 // the sentinel value when the final value from the main vector loop
9472 // equals the start value. This ensures correctness when the start value
9473 // might not be less than the minimum value of a monotonically
9474 // increasing induction variable.
9475 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9476 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9477 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9478 if (auto *I = dyn_cast<Instruction>(Cmp))
9479 InstsToMove.push_back(I);
9480 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9481 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9482 if (auto *I = dyn_cast<Instruction>(ResumeV))
9483 InstsToMove.push_back(I);
9484 } else {
9485 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9486 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9487 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9489 "unexpected start value");
9490 VPI->setOperand(0, StartVal);
9491 continue;
9492 }
9493 }
9494 } else {
9495 // Retrieve the induction resume values for wide inductions from
9496 // their original phi nodes in the scalar loop.
9497 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9498 // Hook up to the PHINode generated by a ResumePhi recipe of main
9499 // loop VPlan, which feeds the scalar loop.
9500 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9501 }
9502 assert(ResumeV && "Must have a resume value");
9503 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9504 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9505 }
9506
9507 // For some VPValues in the epilogue plan we must re-use the generated IR
9508 // values from the main plan. Replace them with live-in VPValues.
9509 // TODO: This is a workaround needed for epilogue vectorization and it
9510 // should be removed once induction resume value creation is done
9511 // directly in VPlan.
9512 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9513 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9514 // epilogue plan. This ensures all users use the same frozen value.
9515 auto *VPI = dyn_cast<VPInstruction>(&R);
9516 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9518 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9519 continue;
9520 }
9521
9522 // Re-use the trip count and steps expanded for the main loop, as
9523 // skeleton creation needs it as a value that dominates both the scalar
9524 // and vector epilogue loops
9525 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9526 if (!ExpandR)
9527 continue;
9528 VPValue *ExpandedVal =
9529 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9530 ExpandR->replaceAllUsesWith(ExpandedVal);
9531 if (Plan.getTripCount() == ExpandR)
9532 Plan.resetTripCount(ExpandedVal);
9533 ExpandR->eraseFromParent();
9534 }
9535
9536 auto VScale = CM.getVScaleForTuning();
9537 unsigned MainLoopStep =
9538 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9539 unsigned EpilogueLoopStep =
9540 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9542 Plan, EPI.TripCount, EPI.VectorTripCount,
9544 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9545
9546 return InstsToMove;
9547}
9548
9549// Generate bypass values from the additional bypass block. Note that when the
9550// vectorized epilogue is skipped due to iteration count check, then the
9551// resume value for the induction variable comes from the trip count of the
9552// main vector loop, passed as the second argument.
9554 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9555 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9556 Instruction *OldInduction) {
9557 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9558 // For the primary induction the additional bypass end value is known.
9559 // Otherwise it is computed.
9560 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9561 if (OrigPhi != OldInduction) {
9562 auto *BinOp = II.getInductionBinOp();
9563 // Fast-math-flags propagate from the original induction instruction.
9565 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9566
9567 // Compute the end value for the additional bypass.
9568 EndValueFromAdditionalBypass =
9569 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9570 II.getStartValue(), Step, II.getKind(), BinOp);
9571 EndValueFromAdditionalBypass->setName("ind.end");
9572 }
9573 return EndValueFromAdditionalBypass;
9574}
9575
9577 VPlan &BestEpiPlan,
9579 const SCEV2ValueTy &ExpandedSCEVs,
9580 Value *MainVectorTripCount) {
9581 // Fix reduction resume values from the additional bypass block.
9582 BasicBlock *PH = L->getLoopPreheader();
9583 for (auto *Pred : predecessors(PH)) {
9584 for (PHINode &Phi : PH->phis()) {
9585 if (Phi.getBasicBlockIndex(Pred) != -1)
9586 continue;
9587 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9588 }
9589 }
9590 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9591 if (ScalarPH->hasPredecessors()) {
9592 // If ScalarPH has predecessors, we may need to update its reduction
9593 // resume values.
9594 for (const auto &[R, IRPhi] :
9595 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9597 BypassBlock);
9598 }
9599 }
9600
9601 // Fix induction resume values from the additional bypass block.
9602 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9603 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9604 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9606 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9607 LVL.getPrimaryInduction());
9608 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9609 Inc->setIncomingValueForBlock(BypassBlock, V);
9610 }
9611}
9612
9613/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9614// loop, after both plans have executed, updating branches from the iteration
9615// and runtime checks of the main loop, as well as updating various phis. \p
9616// InstsToMove contains instructions that need to be moved to the preheader of
9617// the epilogue vector loop.
9619 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9621 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9622 ArrayRef<Instruction *> InstsToMove) {
9623 BasicBlock *VecEpilogueIterationCountCheck =
9624 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9625
9626 BasicBlock *VecEpiloguePreHeader =
9627 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9628 ->getSuccessor(1);
9629 // Adjust the control flow taking the state info from the main loop
9630 // vectorization into account.
9632 "expected this to be saved from the previous pass.");
9633 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9635 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9636
9638 VecEpilogueIterationCountCheck},
9640 VecEpiloguePreHeader}});
9641
9642 BasicBlock *ScalarPH =
9643 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9645 VecEpilogueIterationCountCheck, ScalarPH);
9646 DTU.applyUpdates(
9648 VecEpilogueIterationCountCheck},
9650
9651 // Adjust the terminators of runtime check blocks and phis using them.
9652 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9653 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9654 if (SCEVCheckBlock) {
9655 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9656 VecEpilogueIterationCountCheck, ScalarPH);
9657 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9658 VecEpilogueIterationCountCheck},
9659 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9660 }
9661 if (MemCheckBlock) {
9662 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9663 VecEpilogueIterationCountCheck, ScalarPH);
9664 DTU.applyUpdates(
9665 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9666 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9667 }
9668
9669 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9670 // or reductions which merge control-flow from the latch block and the
9671 // middle block. Update the incoming values here and move the Phi into the
9672 // preheader.
9673 SmallVector<PHINode *, 4> PhisInBlock(
9674 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9675
9676 for (PHINode *Phi : PhisInBlock) {
9677 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9678 Phi->replaceIncomingBlockWith(
9679 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9680 VecEpilogueIterationCountCheck);
9681
9682 // If the phi doesn't have an incoming value from the
9683 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9684 // incoming value and also those from other check blocks. This is needed
9685 // for reduction phis only.
9686 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9687 return EPI.EpilogueIterationCountCheck == IncB;
9688 }))
9689 continue;
9690 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9691 if (SCEVCheckBlock)
9692 Phi->removeIncomingValue(SCEVCheckBlock);
9693 if (MemCheckBlock)
9694 Phi->removeIncomingValue(MemCheckBlock);
9695 }
9696
9697 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9698 for (auto *I : InstsToMove)
9699 I->moveBefore(IP);
9700
9701 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9702 // after executing the main loop. We need to update the resume values of
9703 // inductions and reductions during epilogue vectorization.
9704 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9705 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9706}
9707
9709 assert((EnableVPlanNativePath || L->isInnermost()) &&
9710 "VPlan-native path is not enabled. Only process inner loops.");
9711
9712 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9713 << L->getHeader()->getParent()->getName() << "' from "
9714 << L->getLocStr() << "\n");
9715
9716 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9717
9718 LLVM_DEBUG(
9719 dbgs() << "LV: Loop hints:"
9720 << " force="
9722 ? "disabled"
9724 ? "enabled"
9725 : "?"))
9726 << " width=" << Hints.getWidth()
9727 << " interleave=" << Hints.getInterleave() << "\n");
9728
9729 // Function containing loop
9730 Function *F = L->getHeader()->getParent();
9731
9732 // Looking at the diagnostic output is the only way to determine if a loop
9733 // was vectorized (other than looking at the IR or machine code), so it
9734 // is important to generate an optimization remark for each loop. Most of
9735 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9736 // generated as OptimizationRemark and OptimizationRemarkMissed are
9737 // less verbose reporting vectorized loops and unvectorized loops that may
9738 // benefit from vectorization, respectively.
9739
9740 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9741 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9742 return false;
9743 }
9744
9745 PredicatedScalarEvolution PSE(*SE, *L);
9746
9747 // Query this against the original loop and save it here because the profile
9748 // of the original loop header may change as the transformation happens.
9749 bool OptForSize = llvm::shouldOptimizeForSize(
9750 L->getHeader(), PSI,
9751 PSI && PSI->hasProfileSummary() ? &GetBFI() : nullptr,
9753
9754 // Check if it is legal to vectorize the loop.
9755 LoopVectorizationRequirements Requirements;
9756 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9757 &Requirements, &Hints, DB, AC,
9758 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9760 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9761 Hints.emitRemarkWithHints();
9762 return false;
9763 }
9764
9766 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9767 "early exit is not enabled",
9768 "UncountableEarlyExitLoopsDisabled", ORE, L);
9769 return false;
9770 }
9771
9772 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9773 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9774 "faulting load is not supported",
9775 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9776 return false;
9777 }
9778
9779 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9780 // here. They may require CFG and instruction level transformations before
9781 // even evaluating whether vectorization is profitable. Since we cannot modify
9782 // the incoming IR, we need to build VPlan upfront in the vectorization
9783 // pipeline.
9784 if (!L->isInnermost())
9785 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9786 ORE, GetBFI, OptForSize, Hints,
9787 Requirements);
9788
9789 assert(L->isInnermost() && "Inner loop expected.");
9790
9791 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9792 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9793
9794 // If an override option has been passed in for interleaved accesses, use it.
9795 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9796 UseInterleaved = EnableInterleavedMemAccesses;
9797
9798 // Analyze interleaved memory accesses.
9799 if (UseInterleaved)
9801
9802 if (LVL.hasUncountableEarlyExit()) {
9803 BasicBlock *LoopLatch = L->getLoopLatch();
9804 if (IAI.requiresScalarEpilogue() ||
9806 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9807 reportVectorizationFailure("Auto-vectorization of early exit loops "
9808 "requiring a scalar epilogue is unsupported",
9809 "UncountableEarlyExitUnsupported", ORE, L);
9810 return false;
9811 }
9812 }
9813
9814 // Check the function attributes and profiles to find out if this function
9815 // should be optimized for size.
9817 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9818
9819 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9820 // count by optimizing for size, to minimize overheads.
9821 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9822 if (ExpectedTC && ExpectedTC->isFixed() &&
9823 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9824 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9825 << "This loop is worth vectorizing only if no scalar "
9826 << "iteration overheads are incurred.");
9828 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9829 else {
9830 LLVM_DEBUG(dbgs() << "\n");
9831 // Predicate tail-folded loops are efficient even when the loop
9832 // iteration count is low. However, setting the epilogue policy to
9833 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9834 // with runtime checks. It's more effective to let
9835 // `isOutsideLoopWorkProfitable` determine if vectorization is
9836 // beneficial for the loop.
9839 }
9840 }
9841
9842 // Check the function attributes to see if implicit floats or vectors are
9843 // allowed.
9844 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9846 "Can't vectorize when the NoImplicitFloat attribute is used",
9847 "loop not vectorized due to NoImplicitFloat attribute",
9848 "NoImplicitFloat", ORE, L);
9849 Hints.emitRemarkWithHints();
9850 return false;
9851 }
9852
9853 // Check if the target supports potentially unsafe FP vectorization.
9854 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9855 // for the target we're vectorizing for, to make sure none of the
9856 // additional fp-math flags can help.
9857 if (Hints.isPotentiallyUnsafe() &&
9858 TTI->isFPVectorizationPotentiallyUnsafe()) {
9860 "Potentially unsafe FP op prevents vectorization",
9861 "loop not vectorized due to unsafe FP support.",
9862 "UnsafeFP", ORE, L);
9863 Hints.emitRemarkWithHints();
9864 return false;
9865 }
9866
9867 bool AllowOrderedReductions;
9868 // If the flag is set, use that instead and override the TTI behaviour.
9869 if (ForceOrderedReductions.getNumOccurrences() > 0)
9870 AllowOrderedReductions = ForceOrderedReductions;
9871 else
9872 AllowOrderedReductions = TTI->enableOrderedReductions();
9873 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9874 ORE->emit([&]() {
9875 auto *ExactFPMathInst = Requirements.getExactFPInst();
9876 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9877 ExactFPMathInst->getDebugLoc(),
9878 ExactFPMathInst->getParent())
9879 << "loop not vectorized: cannot prove it is safe to reorder "
9880 "floating-point operations";
9881 });
9882 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9883 "reorder floating-point operations\n");
9884 Hints.emitRemarkWithHints();
9885 return false;
9886 }
9887
9888 // Use the cost model.
9889 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9890 GetBFI, F, &Hints, IAI, OptForSize);
9891 // Use the planner for vectorization.
9892 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9893 ORE);
9894
9895 // Get user vectorization factor and interleave count.
9896 ElementCount UserVF = Hints.getWidth();
9897 unsigned UserIC = Hints.getInterleave();
9898 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
9899 UserIC = 1;
9900
9901 // Plan how to best vectorize.
9902 LVP.plan(UserVF, UserIC);
9904 unsigned IC = 1;
9905
9906 if (ORE->allowExtraAnalysis(LV_NAME))
9908
9909 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9910 if (LVP.hasPlanWithVF(VF.Width)) {
9911 // Select the interleave count.
9912 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
9913
9914 unsigned SelectedIC = std::max(IC, UserIC);
9915 // Optimistically generate runtime checks if they are needed. Drop them if
9916 // they turn out to not be profitable.
9917 if (VF.Width.isVector() || SelectedIC > 1) {
9918 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC,
9919 *ORE);
9920
9921 // Bail out early if either the SCEV or memory runtime checks are known to
9922 // fail. In that case, the vector loop would never execute.
9923 using namespace llvm::PatternMatch;
9924 if (Checks.getSCEVChecks().first &&
9925 match(Checks.getSCEVChecks().first, m_One()))
9926 return false;
9927 if (Checks.getMemRuntimeChecks().first &&
9928 match(Checks.getMemRuntimeChecks().first, m_One()))
9929 return false;
9930 }
9931
9932 // Check if it is profitable to vectorize with runtime checks.
9933 bool ForceVectorization =
9935 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
9936 CM.CostKind, CM.PSE, L);
9937 if (!ForceVectorization &&
9938 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
9939 LVP.getPlanFor(VF.Width), SEL,
9940 CM.getVScaleForTuning())) {
9941 ORE->emit([&]() {
9943 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
9944 L->getHeader())
9945 << "loop not vectorized: cannot prove it is safe to reorder "
9946 "memory operations";
9947 });
9948 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
9949 Hints.emitRemarkWithHints();
9950 return false;
9951 }
9952 }
9953
9954 // Identify the diagnostic messages that should be produced.
9955 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9956 bool VectorizeLoop = true, InterleaveLoop = true;
9957 if (VF.Width.isScalar()) {
9958 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9959 VecDiagMsg = {
9960 "VectorizationNotBeneficial",
9961 "the cost-model indicates that vectorization is not beneficial"};
9962 VectorizeLoop = false;
9963 }
9964
9965 if (UserIC == 1 && Hints.getInterleave() > 1) {
9967 "UserIC should only be ignored due to unsafe dependencies");
9968 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
9969 IntDiagMsg = {"InterleavingUnsafe",
9970 "Ignoring user-specified interleave count due to possibly "
9971 "unsafe dependencies in the loop."};
9972 InterleaveLoop = false;
9973 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
9974 // Tell the user interleaving was avoided up-front, despite being explicitly
9975 // requested.
9976 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9977 "interleaving should be avoided up front\n");
9978 IntDiagMsg = {"InterleavingAvoided",
9979 "Ignoring UserIC, because interleaving was avoided up front"};
9980 InterleaveLoop = false;
9981 } else if (IC == 1 && UserIC <= 1) {
9982 // Tell the user interleaving is not beneficial.
9983 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9984 IntDiagMsg = {
9985 "InterleavingNotBeneficial",
9986 "the cost-model indicates that interleaving is not beneficial"};
9987 InterleaveLoop = false;
9988 if (UserIC == 1) {
9989 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9990 IntDiagMsg.second +=
9991 " and is explicitly disabled or interleave count is set to 1";
9992 }
9993 } else if (IC > 1 && UserIC == 1) {
9994 // Tell the user interleaving is beneficial, but it explicitly disabled.
9995 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
9996 "disabled.\n");
9997 IntDiagMsg = {"InterleavingBeneficialButDisabled",
9998 "the cost-model indicates that interleaving is beneficial "
9999 "but is explicitly disabled or interleave count is set to 1"};
10000 InterleaveLoop = false;
10001 }
10002
10003 // If there is a histogram in the loop, do not just interleave without
10004 // vectorizing. The order of operations will be incorrect without the
10005 // histogram intrinsics, which are only used for recipes with VF > 1.
10006 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10007 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10008 << "to histogram operations.\n");
10009 IntDiagMsg = {
10010 "HistogramPreventsScalarInterleaving",
10011 "Unable to interleave without vectorization due to constraints on "
10012 "the order of histogram operations"};
10013 InterleaveLoop = false;
10014 }
10015
10016 // Override IC if user provided an interleave count.
10017 IC = UserIC > 0 ? UserIC : IC;
10018
10019 // FIXME: Enable interleaving for FindLast reductions.
10020 if (any_of(LVL.getReductionVars().values(), [](auto &RdxDesc) {
10021 return RecurrenceDescriptor::isFindLastRecurrenceKind(
10022 RdxDesc.getRecurrenceKind());
10023 })) {
10024 LLVM_DEBUG(dbgs() << "LV: Not interleaving due to FindLast reduction.\n");
10025 IntDiagMsg = {"FindLastPreventsScalarInterleaving",
10026 "Unable to interleave due to FindLast reduction."};
10027 InterleaveLoop = false;
10028 IC = 1;
10029 }
10030
10031 // Emit diagnostic messages, if any.
10032 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10033 if (!VectorizeLoop && !InterleaveLoop) {
10034 // Do not vectorize or interleaving the loop.
10035 ORE->emit([&]() {
10036 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10037 L->getStartLoc(), L->getHeader())
10038 << VecDiagMsg.second;
10039 });
10040 ORE->emit([&]() {
10041 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10042 L->getStartLoc(), L->getHeader())
10043 << IntDiagMsg.second;
10044 });
10045 return false;
10046 }
10047
10048 if (!VectorizeLoop && InterleaveLoop) {
10049 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10050 ORE->emit([&]() {
10051 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10052 L->getStartLoc(), L->getHeader())
10053 << VecDiagMsg.second;
10054 });
10055 } else if (VectorizeLoop && !InterleaveLoop) {
10056 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10057 << ") in " << L->getLocStr() << '\n');
10058 ORE->emit([&]() {
10059 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10060 L->getStartLoc(), L->getHeader())
10061 << IntDiagMsg.second;
10062 });
10063 } else if (VectorizeLoop && InterleaveLoop) {
10064 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10065 << ") in " << L->getLocStr() << '\n');
10066 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10067 }
10068
10069 // Report the vectorization decision.
10070 if (VF.Width.isScalar()) {
10071 using namespace ore;
10072 assert(IC > 1);
10073 ORE->emit([&]() {
10074 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10075 L->getHeader())
10076 << "interleaved loop (interleaved count: "
10077 << NV("InterleaveCount", IC) << ")";
10078 });
10079 } else {
10080 // Report the vectorization decision.
10081 reportVectorization(ORE, L, VF, IC);
10082 }
10083 if (ORE->allowExtraAnalysis(LV_NAME))
10085
10086 // If we decided that it is *legal* to interleave or vectorize the loop, then
10087 // do it.
10088
10089 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10090 // Consider vectorizing the epilogue too if it's profitable.
10091 VectorizationFactor EpilogueVF =
10093 if (EpilogueVF.Width.isVector()) {
10094 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10095
10096 // The first pass vectorizes the main loop and creates a scalar epilogue
10097 // to be vectorized by executing the plan (potentially with a different
10098 // factor) again shortly afterwards.
10099 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10100 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10101 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10102 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10103 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10104 BestEpiPlan);
10105 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10106 Checks, *BestMainPlan);
10107 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10108 *BestMainPlan, MainILV, DT, false);
10109 ++LoopsVectorized;
10110
10111 // Second pass vectorizes the epilogue and adjusts the control flow
10112 // edges from the first pass.
10113 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10114 Checks, BestEpiPlan);
10116 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10117 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10118 true);
10119 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10120 Checks, InstsToMove);
10121 ++LoopsEpilogueVectorized;
10122 } else {
10123 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10124 BestPlan);
10125 // TODO: Move to general VPlan pipeline once epilogue loops are also
10126 // supported.
10129 IC, PSE);
10130 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10132
10133 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10134 ++LoopsVectorized;
10135 }
10136
10137 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10138 "DT not preserved correctly");
10139 assert(!verifyFunction(*F, &dbgs()));
10140
10141 return true;
10142}
10143
10145
10146 // Don't attempt if
10147 // 1. the target claims to have no vector registers, and
10148 // 2. interleaving won't help ILP.
10149 //
10150 // The second condition is necessary because, even if the target has no
10151 // vector registers, loop vectorization may still enable scalar
10152 // interleaving.
10153 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10154 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10155 return LoopVectorizeResult(false, false);
10156
10157 bool Changed = false, CFGChanged = false;
10158
10159 // The vectorizer requires loops to be in simplified form.
10160 // Since simplification may add new inner loops, it has to run before the
10161 // legality and profitability checks. This means running the loop vectorizer
10162 // will simplify all loops, regardless of whether anything end up being
10163 // vectorized.
10164 for (const auto &L : *LI)
10165 Changed |= CFGChanged |=
10166 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10167
10168 // Build up a worklist of inner-loops to vectorize. This is necessary as
10169 // the act of vectorizing or partially unrolling a loop creates new loops
10170 // and can invalidate iterators across the loops.
10171 SmallVector<Loop *, 8> Worklist;
10172
10173 for (Loop *L : *LI)
10174 collectSupportedLoops(*L, LI, ORE, Worklist);
10175
10176 LoopsAnalyzed += Worklist.size();
10177
10178 // Now walk the identified inner loops.
10179 while (!Worklist.empty()) {
10180 Loop *L = Worklist.pop_back_val();
10181
10182 // For the inner loops we actually process, form LCSSA to simplify the
10183 // transform.
10184 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10185
10186 Changed |= CFGChanged |= processLoop(L);
10187
10188 if (Changed) {
10189 LAIs->clear();
10190
10191#ifndef NDEBUG
10192 if (VerifySCEV)
10193 SE->verify();
10194#endif
10195 }
10196 }
10197
10198 // Process each loop nest in the function.
10199 return LoopVectorizeResult(Changed, CFGChanged);
10200}
10201
10204 LI = &AM.getResult<LoopAnalysis>(F);
10205 // There are no loops in the function. Return before computing other
10206 // expensive analyses.
10207 if (LI->empty())
10208 return PreservedAnalyses::all();
10217 AA = &AM.getResult<AAManager>(F);
10218
10219 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10220 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10221 GetBFI = [&AM, &F]() -> BlockFrequencyInfo & {
10223 };
10224 LoopVectorizeResult Result = runImpl(F);
10225 if (!Result.MadeAnyChange)
10226 return PreservedAnalyses::all();
10228
10229 if (isAssignmentTrackingEnabled(*F.getParent())) {
10230 for (auto &BB : F)
10232 }
10233
10234 PA.preserve<LoopAnalysis>();
10238
10239 if (Result.MadeCFGChange) {
10240 // Making CFG changes likely means a loop got vectorized. Indicate that
10241 // extra simplification passes should be run.
10242 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10243 // be run if runtime checks have been added.
10246 } else {
10248 }
10249 return PA;
10250}
10251
10253 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10254 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10255 OS, MapClassName2PassName);
10256
10257 OS << '<';
10258 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10259 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10260 OS << '>';
10261}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1549
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1521
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:539
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getUnknown()
Definition DebugLoc.h:161
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:294
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2762
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1584
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1635
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1568
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1549
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1713
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:235
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
static bool isFindLastRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
void insert_range(Range &&R)
Definition SetVector.h:176
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:262
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:89
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:98
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:293
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:25
Value * getOperand(unsigned i) const
Definition User.h:233
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:4009
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:4036
iterator end()
Definition VPlan.h:4046
iterator begin()
Recipe iterator methods.
Definition VPlan.h:4044
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4097
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:775
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:228
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:635
bool empty() const
Definition VPlan.h:4055
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:198
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:173
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:178
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:221
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:242
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:173
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:199
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3595
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
Definition VPlan.h:3616
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:453
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:426
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPIRValue * getStartValue() const
Definition VPlan.h:3810
VPValue * getStepValue() const
Definition VPlan.h:3811
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2075
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2118
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2107
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1830
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4162
Class to record and manage LLVM IR flags.
Definition VPlan.h:608
Helper to manage IR metadata for recipes.
Definition VPlan.h:1032
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1086
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1133
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1191
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1182
unsigned getOpcode() const
Definition VPlan.h:1246
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2733
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1427
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isOrdered() const
Returns true, if the phi is part of an ordered reduction.
Definition VPlan.h:2525
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2528
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2522
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2826
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4197
const VPBlockBase * getEntry() const
Definition VPlan.h:4233
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4295
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2982
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:594
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:229
operand_range operands()
Definition VPlanValue.h:297
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:273
unsigned getNumOperands() const
Definition VPlanValue.h:267
operand_iterator op_begin()
Definition VPlanValue.h:293
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:268
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:45
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
Definition VPlan.cpp:133
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:119
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:72
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1385
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1389
user_range users()
Definition VPlanValue.h:126
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1934
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1625
A recipe for handling GEP instructions.
Definition VPlan.h:1871
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2221
A recipe for widened phis.
Definition VPlan.h:2357
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1577
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4327
bool hasVF(ElementCount VF) const
Definition VPlan.h:4524
VPBasicBlock * getEntry()
Definition VPlan.h:4416
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4506
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4474
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4531
bool hasUF(unsigned UF) const
Definition VPlan.h:4542
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4464
VPSymbolicValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4503
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4566
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1022
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4676
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1004
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4488
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4441
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4455
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:916
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4460
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4421
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1164
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:397
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:553
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:93
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2544
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1726
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1835
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Add
Sum of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
auto make_second_range(ContainerTy &&c)
Given a container of pairs, return a range over the second elements.
Definition STLExtras.h:1407
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:368
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
This reduction is unordered with the partial result scaled down by some factor.
Definition VPlan.h:2446
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static bool handleMultiUseReductions(VPlan &Plan)
Try to legalize reductions with multiple in-loop uses.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, PredicatedScalarEvolution &PSE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void createInLoopReductionRecipes(VPlan &Plan, const DenseMap< VPBasicBlock *, VPValue * > &BlockMaskCache, const DenseSet< BasicBlock * > &BlocksNeedingPredication, ElementCount MinVF)
Create VPReductionRecipes for in-loop reductions.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, PredicatedScalarEvolution &PSE)
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static bool handleFindLastReductions(VPlan &Plan)
Check if Plan contains any FindLast reductions.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void expandBranchOnTwoConds(VPlan &Plan)
Expand BranchOnTwoConds instructions into explicit CFG with BranchOnCond instructions.
static void hoistPredicatedLoads(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Hoist predicated loads from the same address to the loop entry block, if they are guaranteed to execu...
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void createHeaderPhiRecipes(VPlan &Plan, PredicatedScalarEvolution &PSE, Loop &OrigLoop, const MapVector< PHINode *, InductionDescriptor > &Inductions, const MapVector< PHINode *, RecurrenceDescriptor > &Reductions, const SmallPtrSetImpl< const PHINode * > &FixedOrderRecurrences, const SmallPtrSetImpl< PHINode * > &InLoopReductions, bool AllowReordering)
Replace VPPhi recipes in Plan's header with corresponding VPHeaderPHIRecipe subclasses for inductions...
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void optimizeEVLMasks(VPlan &Plan)
Optimize recipes which use an EVL-based header mask to VP intrinsics, for example:
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void sinkPredicatedStores(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Sink predicated stores to the same address with complementary predicates (P and NOT P) to an uncondit...
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static void updateScalarResumePhis(VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Update the resume phis in the scalar preheader after creating wide recipes for first-order recurrence...
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks