LLVM 20.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanHCFGBuilder.h"
62#include "VPlanPatternMatch.h"
63#include "VPlanTransforms.h"
64#include "VPlanUtils.h"
65#include "VPlanVerifier.h"
66#include "llvm/ADT/APInt.h"
67#include "llvm/ADT/ArrayRef.h"
68#include "llvm/ADT/DenseMap.h"
70#include "llvm/ADT/Hashing.h"
71#include "llvm/ADT/MapVector.h"
72#include "llvm/ADT/STLExtras.h"
75#include "llvm/ADT/Statistic.h"
76#include "llvm/ADT/StringRef.h"
77#include "llvm/ADT/Twine.h"
78#include "llvm/ADT/TypeSwitch.h"
83#include "llvm/Analysis/CFG.h"
99#include "llvm/IR/Attributes.h"
100#include "llvm/IR/BasicBlock.h"
101#include "llvm/IR/CFG.h"
102#include "llvm/IR/Constant.h"
103#include "llvm/IR/Constants.h"
104#include "llvm/IR/DataLayout.h"
105#include "llvm/IR/DebugInfo.h"
106#include "llvm/IR/DebugLoc.h"
107#include "llvm/IR/DerivedTypes.h"
109#include "llvm/IR/Dominators.h"
110#include "llvm/IR/Function.h"
111#include "llvm/IR/IRBuilder.h"
112#include "llvm/IR/InstrTypes.h"
113#include "llvm/IR/Instruction.h"
114#include "llvm/IR/Instructions.h"
116#include "llvm/IR/Intrinsics.h"
117#include "llvm/IR/MDBuilder.h"
118#include "llvm/IR/Metadata.h"
119#include "llvm/IR/Module.h"
120#include "llvm/IR/Operator.h"
121#include "llvm/IR/PatternMatch.h"
123#include "llvm/IR/Type.h"
124#include "llvm/IR/Use.h"
125#include "llvm/IR/User.h"
126#include "llvm/IR/Value.h"
127#include "llvm/IR/Verifier.h"
128#include "llvm/Support/Casting.h"
130#include "llvm/Support/Debug.h"
145#include <algorithm>
146#include <cassert>
147#include <cstdint>
148#include <functional>
149#include <iterator>
150#include <limits>
151#include <memory>
152#include <string>
153#include <tuple>
154#include <utility>
155
156using namespace llvm;
157
158#define LV_NAME "loop-vectorize"
159#define DEBUG_TYPE LV_NAME
160
161#ifndef NDEBUG
162const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163#endif
164
165/// @{
166/// Metadata attribute names
167const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 "llvm.loop.vectorize.followup_vectorized";
171 "llvm.loop.vectorize.followup_epilogue";
172/// @}
173
174STATISTIC(LoopsVectorized, "Number of loops vectorized");
175STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177
179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180 cl::desc("Enable vectorization of epilogue loops."));
181
183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184 cl::desc("When epilogue vectorization is enabled, and a value greater than "
185 "1 is specified, forces the given VF for all applicable epilogue "
186 "loops."));
187
189 "epilogue-vectorization-minimum-VF", cl::Hidden,
190 cl::desc("Only loops with vectorization factor equal to or larger than "
191 "the specified value are considered for epilogue vectorization."));
192
193/// Loops with a known constant trip count below this number are vectorized only
194/// if no scalar iteration overheads are incurred.
196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197 cl::desc("Loops with a constant trip count that is smaller than this "
198 "value are vectorized only if no scalar iteration overheads "
199 "are incurred."));
200
202 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203 cl::desc("The maximum allowed number of runtime memory checks"));
204
205// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206// that predication is preferred, and this lists all options. I.e., the
207// vectorizer will try to fold the tail-loop (epilogue) into the vector body
208// and predicate the instructions accordingly. If tail-folding fails, there are
209// different fallback strategies depending on these values:
211 enum Option {
215 };
216} // namespace PreferPredicateTy
217
219 "prefer-predicate-over-epilogue",
222 cl::desc("Tail-folding and predication preferences over creating a scalar "
223 "epilogue loop."),
225 "scalar-epilogue",
226 "Don't tail-predicate loops, create scalar epilogue"),
228 "predicate-else-scalar-epilogue",
229 "prefer tail-folding, create scalar epilogue if tail "
230 "folding fails."),
232 "predicate-dont-vectorize",
233 "prefers tail-folding, don't attempt vectorization if "
234 "tail-folding fails.")));
235
237 "force-tail-folding-style", cl::desc("Force the tail folding style"),
238 cl::init(TailFoldingStyle::None),
240 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
242 TailFoldingStyle::Data, "data",
243 "Create lane mask for data only, using active.lane.mask intrinsic"),
244 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
245 "data-without-lane-mask",
246 "Create lane mask with compare/stepvector"),
247 clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control",
248 "Create lane mask using active.lane.mask intrinsic, and use "
249 "it for both data and control flow"),
250 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
251 "data-and-control-without-rt-check",
252 "Similar to data-and-control, but remove the runtime check"),
253 clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl",
254 "Use predicated EVL instructions for tail folding. If EVL "
255 "is unsupported, fallback to data-without-lane-mask.")));
256
258 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
259 cl::desc("Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
261
263 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
264 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
265
266/// An interleave-group may need masking if it resides in a block that needs
267/// predication, or in order to mask away gaps.
269 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
270 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
271
273 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
274 cl::desc("A flag that overrides the target's number of scalar registers."));
275
277 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
278 cl::desc("A flag that overrides the target's number of vector registers."));
279
281 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
282 cl::desc("A flag that overrides the target's max interleave factor for "
283 "scalar loops."));
284
286 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
287 cl::desc("A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
289
291 "force-target-instruction-cost", cl::init(0), cl::Hidden,
292 cl::desc("A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
295
297 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
298 cl::desc(
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
301
303 "small-loop-cost", cl::init(20), cl::Hidden,
304 cl::desc(
305 "The cost of a loop that is considered 'small' by the interleaver."));
306
308 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
309 cl::desc("Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
312
313// Runtime interleave loops for load/store throughput.
315 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
316 cl::desc(
317 "Enable runtime interleaving until load/store ports are saturated"));
318
319/// The number of stores in a loop that are allowed to need predication.
321 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
322 cl::desc("Max number of stores to be predicated behind an if."));
323
325 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
326 cl::desc("Count the induction variable only once when interleaving"));
327
329 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
330 cl::desc("Enable if predication of stores during vectorization."));
331
333 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
334 cl::desc("The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
336
337static cl::opt<bool>
338 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
340 cl::desc("Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
342
344 "force-ordered-reductions", cl::init(false), cl::Hidden,
345 cl::desc("Enable the vectorisation of loops with in-order (strict) "
346 "FP reductions"));
347
349 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
350 cl::desc(
351 "Prefer predicating a reduction operation over an after loop select."));
352
353namespace llvm {
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358} // namespace llvm
359
360// This flag enables the stress testing of the VPlan H-CFG construction in the
361// VPlan-native vectorization path. It must be used in conjuction with
362// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
363// verification of the H-CFGs built.
365 "vplan-build-stress-test", cl::init(false), cl::Hidden,
366 cl::desc(
367 "Build VPlan for every supported loop nest in the function and bail "
368 "out right after the build (stress test the VPlan H-CFG construction "
369 "in the VPlan-native vectorization path)."));
370
372 "interleave-loops", cl::init(true), cl::Hidden,
373 cl::desc("Enable loop interleaving in Loop vectorization passes"));
375 "vectorize-loops", cl::init(true), cl::Hidden,
376 cl::desc("Run the Loop vectorization passes"));
377
379 "force-widen-divrem-via-safe-divisor", cl::Hidden,
380 cl::desc(
381 "Override cost based safe divisor widening for div/rem instructions"));
382
384 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
386 cl::desc("Try wider VFs if they enable the use of vector variants"));
387
389 "enable-early-exit-vectorization", cl::init(false), cl::Hidden,
390 cl::desc(
391 "Enable vectorization of early exit loops with uncountable exits."));
392
393// Likelyhood of bypassing the vectorized loop because assumptions about SCEV
394// variables not overflowing do not hold. See `emitSCEVChecks`.
395static constexpr uint32_t SCEVCheckBypassWeights[] = {1, 127};
396// Likelyhood of bypassing the vectorized loop because pointers overlap. See
397// `emitMemRuntimeChecks`.
398static constexpr uint32_t MemCheckBypassWeights[] = {1, 127};
399// Likelyhood of bypassing the vectorized loop because there are zero trips left
400// after prolog. See `emitIterationCountCheck`.
401static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
402
403/// A helper function that returns true if the given type is irregular. The
404/// type is irregular if its allocated size doesn't equal the store size of an
405/// element of the corresponding vector type.
406static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
407 // Determine if an array of N elements of type Ty is "bitcast compatible"
408 // with a <N x Ty> vector.
409 // This is only true if there is no padding between the array elements.
410 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
411}
412
413/// Returns "best known" trip count for the specified loop \p L as defined by
414/// the following procedure:
415/// 1) Returns exact trip count if it is known.
416/// 2) Returns expected trip count according to profile data if any.
417/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
418/// 4) Returns std::nullopt if all of the above failed.
419static std::optional<unsigned>
421 bool CanUseConstantMax = true) {
422 // Check if exact trip count is known.
423 if (unsigned ExpectedTC = PSE.getSE()->getSmallConstantTripCount(L))
424 return ExpectedTC;
425
426 // Check if there is an expected trip count available from profile data.
428 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
429 return *EstimatedTC;
430
431 if (!CanUseConstantMax)
432 return std::nullopt;
433
434 // Check if upper bound estimate is known.
435 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
436 return ExpectedTC;
437
438 return std::nullopt;
439}
440
441namespace {
442// Forward declare GeneratedRTChecks.
443class GeneratedRTChecks;
444
445using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
446} // namespace
447
448namespace llvm {
449
451
452/// InnerLoopVectorizer vectorizes loops which contain only one basic
453/// block to a specified vectorization factor (VF).
454/// This class performs the widening of scalars into vectors, or multiple
455/// scalars. This class also implements the following features:
456/// * It inserts an epilogue loop for handling loops that don't have iteration
457/// counts that are known to be a multiple of the vectorization factor.
458/// * It handles the code generation for reduction variables.
459/// * Scalarization (implementation using scalars) of un-vectorizable
460/// instructions.
461/// InnerLoopVectorizer does not perform any vectorization-legality
462/// checks, and relies on the caller to check for the different legality
463/// aspects. The InnerLoopVectorizer relies on the
464/// LoopVectorizationLegality class to provide information about the induction
465/// and reduction variables that were found to a given vectorization factor.
467public:
470 const TargetLibraryInfo *TLI,
474 unsigned UnrollFactor, LoopVectorizationLegality *LVL,
476 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks,
477 VPlan &Plan)
478 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
479 AC(AC), ORE(ORE), VF(VecWidth),
481 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
483 VectorPHVPB(Plan.getEntry()->getSingleSuccessor()) {
484 // Query this against the original loop and save it here because the profile
485 // of the original loop header may change as the transformation happens.
488 }
489
490 virtual ~InnerLoopVectorizer() = default;
491
492 /// Create a new empty loop that will contain vectorized instructions later
493 /// on, while the old loop will be used as the scalar remainder. Control flow
494 /// is generated around the vectorized (and scalar epilogue) loops consisting
495 /// of various checks and bypasses. Return the pre-header block of the new
496 /// loop. In the case of epilogue vectorization, this function is overriden to
497 /// handle the more complex control flow around the loops. \p ExpandedSCEVs is
498 /// used to look up SCEV expansions for expressions needed during skeleton
499 /// creation.
500 virtual BasicBlock *
501 createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs);
502
503 /// Fix the vectorized code, taking care of header phi's, and more.
505
506 // Return true if any runtime check is added.
508
509 /// A helper function to scalarize a single Instruction in the innermost loop.
510 /// Generates a sequence of scalar instances for each lane between \p MinLane
511 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
512 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
513 /// Instr's operands.
514 void scalarizeInstruction(const Instruction *Instr,
515 VPReplicateRecipe *RepRecipe, const VPLane &Lane,
516 VPTransformState &State);
517
518 /// Fix the non-induction PHIs in \p Plan.
520
521 /// Returns the original loop trip count.
522 Value *getTripCount() const { return TripCount; }
523
524 /// Used to set the trip count after ILV's construction and after the
525 /// preheader block has been executed. Note that this always holds the trip
526 /// count of the original loop for both main loop and epilogue vectorization.
527 void setTripCount(Value *TC) { TripCount = TC; }
528
529 // Retrieve the additional bypass value associated with an original
530 /// induction header phi.
532 return Induction2AdditionalBypassValue.at(OrigPhi);
533 }
534
535 /// Return the additional bypass block which targets the scalar loop by
536 /// skipping the epilogue loop after completing the main loop.
539 "Trying to access AdditionalBypassBlock but it has not been set");
541 }
542
543protected:
545
546 /// Set up the values of the IVs correctly when exiting the vector loop.
547 virtual void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
548 Value *VectorTripCount, BasicBlock *MiddleBlock,
549 VPTransformState &State);
550
551 /// Iteratively sink the scalarized operands of a predicated instruction into
552 /// the block that was created for it.
553 void sinkScalarOperands(Instruction *PredInst);
554
555 /// Returns (and creates if needed) the trip count of the widened loop.
557
558 /// Emit a bypass check to see if the vector trip count is zero, including if
559 /// it overflows.
561
562 /// Emit a bypass check to see if all of the SCEV assumptions we've
563 /// had to make are correct. Returns the block containing the checks or
564 /// nullptr if no checks have been added.
566
567 /// Emit bypass checks to check any memory assumptions we may have made.
568 /// Returns the block containing the checks or nullptr if no checks have been
569 /// added.
571
572 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
573 /// vector loop preheader, middle block and scalar preheader.
575
576 /// Create and record the values for induction variables to resume coming from
577 /// the additional bypass block.
578 void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs,
579 Value *MainVectorTripCount);
580
581 /// Allow subclasses to override and print debug traces before/after vplan
582 /// execution, when trace information is requested.
583 virtual void printDebugTracesAtStart() {}
584 virtual void printDebugTracesAtEnd() {}
585
586 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
587 /// vector preheader and its predecessor, also connecting the new block to the
588 /// scalar preheader.
589 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
590
591 /// The original loop.
593
594 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
595 /// dynamic knowledge to simplify SCEV expressions and converts them to a
596 /// more usable form.
598
599 /// Loop Info.
601
602 /// Dominator Tree.
604
605 /// Target Library Info.
607
608 /// Target Transform Info.
610
611 /// Assumption Cache.
613
614 /// Interface to emit optimization remarks.
616
617 /// The vectorization SIMD factor to use. Each vector will have this many
618 /// vector elements.
620
622
623 /// The vectorization unroll factor to use. Each scalar is vectorized to this
624 /// many different vector instructions.
625 unsigned UF;
626
627 /// The builder that we use
629
630 // --- Vectorization state ---
631
632 /// The vector-loop preheader.
634
635 /// The scalar-loop preheader.
637
638 /// Middle Block between the vector and the scalar.
640
641 /// A list of all bypass blocks. The first block is the entry of the loop.
643
644 /// Store instructions that were predicated.
646
647 /// Trip count of the original loop.
648 Value *TripCount = nullptr;
649
650 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
652
653 /// The legality analysis.
655
656 /// The profitablity analysis.
658
659 // Record whether runtime checks are added.
660 bool AddedSafetyChecks = false;
661
662 /// BFI and PSI are used to check for profile guided size optimizations.
665
666 // Whether this loop should be optimized for size based on profile guided size
667 // optimizatios.
669
670 /// Structure to hold information about generated runtime checks, responsible
671 /// for cleaning the checks, if vectorization turns out unprofitable.
672 GeneratedRTChecks &RTChecks;
673
674 /// Mapping of induction phis to their additional bypass values. They
675 /// need to be added as operands to phi nodes in the scalar loop preheader
676 /// after the epilogue skeleton has been created.
678
679 /// The additional bypass block which conditionally skips over the epilogue
680 /// loop after executing the main loop. Needed to resume inductions and
681 /// reductions during epilogue vectorization.
683
685
686 /// The vector preheader block of \p Plan, used as target for check blocks
687 /// introduced during skeleton creation.
689};
690
691/// Encapsulate information regarding vectorization of a loop and its epilogue.
692/// This information is meant to be updated and used across two stages of
693/// epilogue vectorization.
696 unsigned MainLoopUF = 0;
698 unsigned EpilogueUF = 0;
703 Value *TripCount = nullptr;
706
708 ElementCount EVF, unsigned EUF,
710 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
712 assert(EUF == 1 &&
713 "A high UF for the epilogue loop is likely not beneficial.");
714 }
715};
716
717/// An extension of the inner loop vectorizer that creates a skeleton for a
718/// vectorized loop that has its epilogue (residual) also vectorized.
719/// The idea is to run the vplan on a given loop twice, firstly to setup the
720/// skeleton and vectorize the main loop, and secondly to complete the skeleton
721/// from the first step and vectorize the epilogue. This is achieved by
722/// deriving two concrete strategy classes from this base class and invoking
723/// them in succession from the loop vectorizer planner.
725public:
733 GeneratedRTChecks &Checks, VPlan &Plan)
735 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
736 CM, BFI, PSI, Checks, Plan),
737 EPI(EPI) {}
738
739 // Override this function to handle the more complex control flow around the
740 // three loops.
741 BasicBlock *
742 createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final {
743 return createEpilogueVectorizedLoopSkeleton(ExpandedSCEVs);
744 }
745
746 /// The interface for creating a vectorized skeleton using one of two
747 /// different strategies, each corresponding to one execution of the vplan
748 /// as described above.
749 virtual BasicBlock *
750 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) = 0;
751
752 /// Holds and updates state information required to vectorize the main loop
753 /// and its epilogue in two separate passes. This setup helps us avoid
754 /// regenerating and recomputing runtime safety checks. It also helps us to
755 /// shorten the iteration-count-check path length for the cases where the
756 /// iteration count of the loop is so small that the main vector loop is
757 /// completely skipped.
759};
760
761/// A specialized derived class of inner loop vectorizer that performs
762/// vectorization of *main* loops in the process of vectorizing loops and their
763/// epilogues.
765public:
773 GeneratedRTChecks &Check, VPlan &Plan)
775 EPI, LVL, CM, BFI, PSI, Check, Plan) {}
776 /// Implements the interface for creating a vectorized skeleton using the
777 /// *main loop* strategy (ie the first pass of vplan execution).
778 BasicBlock *
779 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final;
780
781protected:
782 /// Emits an iteration count bypass check once for the main loop (when \p
783 /// ForEpilogue is false) and once for the epilogue loop (when \p
784 /// ForEpilogue is true).
785 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
786 void printDebugTracesAtStart() override;
787 void printDebugTracesAtEnd() override;
788
790 Value *VectorTripCount, BasicBlock *MiddleBlock,
791 VPTransformState &State) override {};
792};
793
794// A specialized derived class of inner loop vectorizer that performs
795// vectorization of *epilogue* loops in the process of vectorizing loops and
796// their epilogues.
798public:
806 GeneratedRTChecks &Checks, VPlan &Plan)
808 EPI, LVL, CM, BFI, PSI, Checks, Plan) {
810 }
811 /// Implements the interface for creating a vectorized skeleton using the
812 /// *epilogue loop* strategy (ie the second pass of vplan execution).
813 BasicBlock *
814 createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final;
815
816protected:
817 /// Emits an iteration count bypass check after the main vector loop has
818 /// finished to see if there are any iterations left to execute by either
819 /// the vector epilogue or the scalar epilogue.
821 BasicBlock *Bypass,
822 BasicBlock *Insert);
823 void printDebugTracesAtStart() override;
824 void printDebugTracesAtEnd() override;
825};
826} // end namespace llvm
827
828/// Look for a meaningful debug location on the instruction or its operands.
830 if (!I)
831 return DebugLoc();
832
833 DebugLoc Empty;
834 if (I->getDebugLoc() != Empty)
835 return I->getDebugLoc();
836
837 for (Use &Op : I->operands()) {
838 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
839 if (OpInst->getDebugLoc() != Empty)
840 return OpInst->getDebugLoc();
841 }
842
843 return I->getDebugLoc();
844}
845
846/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
847/// is passed, the message relates to that particular instruction.
848#ifndef NDEBUG
849static void debugVectorizationMessage(const StringRef Prefix,
850 const StringRef DebugMsg,
851 Instruction *I) {
852 dbgs() << "LV: " << Prefix << DebugMsg;
853 if (I != nullptr)
854 dbgs() << " " << *I;
855 else
856 dbgs() << '.';
857 dbgs() << '\n';
858}
859#endif
860
861/// Create an analysis remark that explains why vectorization failed
862///
863/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
864/// RemarkName is the identifier for the remark. If \p I is passed it is an
865/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
866/// the location of the remark. If \p DL is passed, use it as debug location for
867/// the remark. \return the remark object that can be streamed to.
869createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
870 Instruction *I, DebugLoc DL = {}) {
871 Value *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
872 // If debug location is attached to the instruction, use it. Otherwise if DL
873 // was not provided, use the loop's.
874 if (I && I->getDebugLoc())
875 DL = I->getDebugLoc();
876 else if (!DL)
877 DL = TheLoop->getStartLoc();
878
879 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
880}
881
882namespace llvm {
883
884/// Return a value for Step multiplied by VF.
886 int64_t Step) {
887 assert(Ty->isIntegerTy() && "Expected an integer step");
888 return B.CreateElementCount(Ty, VF.multiplyCoefficientBy(Step));
889}
890
891/// Return the runtime value for VF.
893 return B.CreateElementCount(Ty, VF);
894}
895
897 const StringRef OREMsg, const StringRef ORETag,
898 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
899 Instruction *I) {
900 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
901 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
902 ORE->emit(
903 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
904 << "loop not vectorized: " << OREMsg);
905}
906
907/// Reports an informative message: print \p Msg for debugging purposes as well
908/// as an optimization remark. Uses either \p I as location of the remark, or
909/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
910/// remark. If \p DL is passed, use it as debug location for the remark.
911static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
913 Loop *TheLoop, Instruction *I = nullptr,
914 DebugLoc DL = {}) {
916 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
917 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
918 I, DL)
919 << Msg);
920}
921
922/// Report successful vectorization of the loop. In case an outer loop is
923/// vectorized, prepend "outer" to the vectorization remark.
925 VectorizationFactor VF, unsigned IC) {
927 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
928 nullptr));
929 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
930 ORE->emit([&]() {
931 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
932 TheLoop->getHeader())
933 << "vectorized " << LoopType << "loop (vectorization width: "
934 << ore::NV("VectorizationFactor", VF.Width)
935 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
936 });
937}
938
939} // end namespace llvm
940
941namespace llvm {
942
943// Loop vectorization cost-model hints how the scalar epilogue loop should be
944// lowered.
946
947 // The default: allowing scalar epilogues.
949
950 // Vectorization with OptForSize: don't allow epilogues.
952
953 // A special case of vectorisation with OptForSize: loops with a very small
954 // trip count are considered for vectorization under OptForSize, thereby
955 // making sure the cost of their loop body is dominant, free of runtime
956 // guards and scalar iteration overheads.
958
959 // Loop hint predicate indicating an epilogue is undesired.
961
962 // Directive indicating we must either tail fold or not vectorize
965
966using InstructionVFPair = std::pair<Instruction *, ElementCount>;
967
968/// LoopVectorizationCostModel - estimates the expected speedups due to
969/// vectorization.
970/// In many cases vectorization is not profitable. This can happen because of
971/// a number of reasons. In this class we mainly attempt to predict the
972/// expected speedup/slowdowns due to the supported instruction set. We use the
973/// TargetTransformInfo to query the different backends for the cost of
974/// different operations.
977
978public:
988 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
989 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
990 Hints(Hints), InterleaveInfo(IAI) {}
991
992 /// \return An upper bound for the vectorization factors (both fixed and
993 /// scalable). If the factors are 0, vectorization and interleaving should be
994 /// avoided up front.
995 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
996
997 /// \return True if runtime checks are required for vectorization, and false
998 /// otherwise.
1000
1001 /// Setup cost-based decisions for user vectorization factor.
1002 /// \return true if the UserVF is a feasible VF to be chosen.
1006 return expectedCost(UserVF).isValid();
1007 }
1008
1009 /// \return The size (in bits) of the smallest and widest types in the code
1010 /// that needs to be vectorized. We ignore values that remain scalar such as
1011 /// 64 bit loop indices.
1012 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1013
1014 /// \return The desired interleave count.
1015 /// If interleave count has been specified by metadata it will be returned.
1016 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1017 /// are the selected vectorization factor and the cost of the selected VF.
1018 unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost);
1019
1020 /// Memory access instruction may be vectorized in more than one way.
1021 /// Form of instruction after vectorization depends on cost.
1022 /// This function takes cost-based decisions for Load/Store instructions
1023 /// and collects them in a map. This decisions map is used for building
1024 /// the lists of loop-uniform and loop-scalar instructions.
1025 /// The calculated cost is saved with widening decision in order to
1026 /// avoid redundant calculations.
1028
1029 /// A call may be vectorized in different ways depending on whether we have
1030 /// vectorized variants available and whether the target supports masking.
1031 /// This function analyzes all calls in the function at the supplied VF,
1032 /// makes a decision based on the costs of available options, and stores that
1033 /// decision in a map for use in planning and plan execution.
1035
1036 /// A struct that represents some properties of the register usage
1037 /// of a loop.
1039 /// Holds the number of loop invariant values that are used in the loop.
1040 /// The key is ClassID of target-provided register class.
1042 /// Holds the maximum number of concurrent live intervals in the loop.
1043 /// The key is ClassID of target-provided register class.
1045 };
1046
1047 /// \return Returns information about the register usages of the loop for the
1048 /// given vectorization factors.
1051
1052 /// Collect values we want to ignore in the cost model.
1053 void collectValuesToIgnore();
1054
1055 /// Collect all element types in the loop for which widening is needed.
1057
1058 /// Split reductions into those that happen in the loop, and those that happen
1059 /// outside. In loop reductions are collected into InLoopReductions.
1061
1062 /// Returns true if we should use strict in-order reductions for the given
1063 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1064 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1065 /// of FP operations.
1066 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1067 return !Hints->allowReordering() && RdxDesc.isOrdered();
1068 }
1069
1070 /// \returns The smallest bitwidth each instruction can be represented with.
1071 /// The vector equivalents of these instructions should be truncated to this
1072 /// type.
1074 return MinBWs;
1075 }
1076
1077 /// \returns True if it is more profitable to scalarize instruction \p I for
1078 /// vectorization factor \p VF.
1080 assert(VF.isVector() &&
1081 "Profitable to scalarize relevant only for VF > 1.");
1082 assert(
1083 TheLoop->isInnermost() &&
1084 "cost-model should not be used for outer loops (in VPlan-native path)");
1085
1086 auto Scalars = InstsToScalarize.find(VF);
1087 assert(Scalars != InstsToScalarize.end() &&
1088 "VF not yet analyzed for scalarization profitability");
1089 return Scalars->second.contains(I);
1090 }
1091
1092 /// Returns true if \p I is known to be uniform after vectorization.
1094 assert(
1095 TheLoop->isInnermost() &&
1096 "cost-model should not be used for outer loops (in VPlan-native path)");
1097 // Pseudo probe needs to be duplicated for each unrolled iteration and
1098 // vector lane so that profiled loop trip count can be accurately
1099 // accumulated instead of being under counted.
1100 if (isa<PseudoProbeInst>(I))
1101 return false;
1102
1103 if (VF.isScalar())
1104 return true;
1105
1106 auto UniformsPerVF = Uniforms.find(VF);
1107 assert(UniformsPerVF != Uniforms.end() &&
1108 "VF not yet analyzed for uniformity");
1109 return UniformsPerVF->second.count(I);
1110 }
1111
1112 /// Returns true if \p I is known to be scalar after vectorization.
1114 assert(
1115 TheLoop->isInnermost() &&
1116 "cost-model should not be used for outer loops (in VPlan-native path)");
1117 if (VF.isScalar())
1118 return true;
1119
1120 auto ScalarsPerVF = Scalars.find(VF);
1121 assert(ScalarsPerVF != Scalars.end() &&
1122 "Scalar values are not calculated for VF");
1123 return ScalarsPerVF->second.count(I);
1124 }
1125
1126 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1127 /// for vectorization factor \p VF.
1129 return VF.isVector() && MinBWs.contains(I) &&
1130 !isProfitableToScalarize(I, VF) &&
1132 }
1133
1134 /// Decision that was taken during cost calculation for memory instruction.
1137 CM_Widen, // For consecutive accesses with stride +1.
1138 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1145
1146 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1147 /// instruction \p I and vector width \p VF.
1150 assert(VF.isVector() && "Expected VF >=2");
1151 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1152 }
1153
1154 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1155 /// interleaving group \p Grp and vector width \p VF.
1159 assert(VF.isVector() && "Expected VF >=2");
1160 /// Broadcast this decicion to all instructions inside the group.
1161 /// When interleaving, the cost will only be assigned one instruction, the
1162 /// insert position. For other cases, add the appropriate fraction of the
1163 /// total cost to each instruction. This ensures accurate costs are used,
1164 /// even if the insert position instruction is not used.
1165 InstructionCost InsertPosCost = Cost;
1166 InstructionCost OtherMemberCost = 0;
1167 if (W != CM_Interleave)
1168 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1169 ;
1170 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1171 if (auto *I = Grp->getMember(Idx)) {
1172 if (Grp->getInsertPos() == I)
1173 WideningDecisions[std::make_pair(I, VF)] =
1174 std::make_pair(W, InsertPosCost);
1175 else
1176 WideningDecisions[std::make_pair(I, VF)] =
1177 std::make_pair(W, OtherMemberCost);
1178 }
1179 }
1180 }
1181
1182 /// Return the cost model decision for the given instruction \p I and vector
1183 /// width \p VF. Return CM_Unknown if this instruction did not pass
1184 /// through the cost modeling.
1186 assert(VF.isVector() && "Expected VF to be a vector VF");
1187 assert(
1188 TheLoop->isInnermost() &&
1189 "cost-model should not be used for outer loops (in VPlan-native path)");
1190
1191 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1192 auto Itr = WideningDecisions.find(InstOnVF);
1193 if (Itr == WideningDecisions.end())
1194 return CM_Unknown;
1195 return Itr->second.first;
1196 }
1197
1198 /// Return the vectorization cost for the given instruction \p I and vector
1199 /// width \p VF.
1201 assert(VF.isVector() && "Expected VF >=2");
1202 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1203 assert(WideningDecisions.contains(InstOnVF) &&
1204 "The cost is not calculated");
1205 return WideningDecisions[InstOnVF].second;
1206 }
1207
1212 std::optional<unsigned> MaskPos;
1214 };
1215
1217 Function *Variant, Intrinsic::ID IID,
1218 std::optional<unsigned> MaskPos,
1220 assert(!VF.isScalar() && "Expected vector VF");
1221 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
1222 MaskPos, Cost};
1223 }
1224
1226 ElementCount VF) const {
1227 assert(!VF.isScalar() && "Expected vector VF");
1228 return CallWideningDecisions.at(std::make_pair(CI, VF));
1229 }
1230
1231 /// Return True if instruction \p I is an optimizable truncate whose operand
1232 /// is an induction variable. Such a truncate will be removed by adding a new
1233 /// induction variable with the destination type.
1235 // If the instruction is not a truncate, return false.
1236 auto *Trunc = dyn_cast<TruncInst>(I);
1237 if (!Trunc)
1238 return false;
1239
1240 // Get the source and destination types of the truncate.
1241 Type *SrcTy = toVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1242 Type *DestTy = toVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1243
1244 // If the truncate is free for the given types, return false. Replacing a
1245 // free truncate with an induction variable would add an induction variable
1246 // update instruction to each iteration of the loop. We exclude from this
1247 // check the primary induction variable since it will need an update
1248 // instruction regardless.
1249 Value *Op = Trunc->getOperand(0);
1250 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1251 return false;
1252
1253 // If the truncated value is not an induction variable, return false.
1254 return Legal->isInductionPhi(Op);
1255 }
1256
1257 /// Collects the instructions to scalarize for each predicated instruction in
1258 /// the loop.
1260
1261 /// Collect Uniform and Scalar values for the given \p VF.
1262 /// The sets depend on CM decision for Load/Store instructions
1263 /// that may be vectorized as interleave, gather-scatter or scalarized.
1264 /// Also make a decision on what to do about call instructions in the loop
1265 /// at that VF -- scalarize, call a known vector routine, or call a
1266 /// vector intrinsic.
1268 // Do the analysis once.
1269 if (VF.isScalar() || Uniforms.contains(VF))
1270 return;
1272 collectLoopUniforms(VF);
1274 collectLoopScalars(VF);
1275 }
1276
1277 /// Returns true if the target machine supports masked store operation
1278 /// for the given \p DataType and kind of access to \p Ptr.
1279 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1280 return Legal->isConsecutivePtr(DataType, Ptr) &&
1281 TTI.isLegalMaskedStore(DataType, Alignment);
1282 }
1283
1284 /// Returns true if the target machine supports masked load operation
1285 /// for the given \p DataType and kind of access to \p Ptr.
1286 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1287 return Legal->isConsecutivePtr(DataType, Ptr) &&
1288 TTI.isLegalMaskedLoad(DataType, Alignment);
1289 }
1290
1291 /// Returns true if the target machine can represent \p V as a masked gather
1292 /// or scatter operation.
1294 bool LI = isa<LoadInst>(V);
1295 bool SI = isa<StoreInst>(V);
1296 if (!LI && !SI)
1297 return false;
1298 auto *Ty = getLoadStoreType(V);
1300 if (VF.isVector())
1301 Ty = VectorType::get(Ty, VF);
1302 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1303 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1304 }
1305
1306 /// Returns true if the target machine supports all of the reduction
1307 /// variables found for the given VF.
1309 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1310 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1311 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1312 }));
1313 }
1314
1315 /// Given costs for both strategies, return true if the scalar predication
1316 /// lowering should be used for div/rem. This incorporates an override
1317 /// option so it is not simply a cost comparison.
1319 InstructionCost SafeDivisorCost) const {
1320 switch (ForceSafeDivisor) {
1321 case cl::BOU_UNSET:
1322 return ScalarCost < SafeDivisorCost;
1323 case cl::BOU_TRUE:
1324 return false;
1325 case cl::BOU_FALSE:
1326 return true;
1327 }
1328 llvm_unreachable("impossible case value");
1329 }
1330
1331 /// Returns true if \p I is an instruction which requires predication and
1332 /// for which our chosen predication strategy is scalarization (i.e. we
1333 /// don't have an alternate strategy such as masking available).
1334 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1336
1337 /// Returns true if \p I is an instruction that needs to be predicated
1338 /// at runtime. The result is independent of the predication mechanism.
1339 /// Superset of instructions that return true for isScalarWithPredication.
1340 bool isPredicatedInst(Instruction *I) const;
1341
1342 /// Return the costs for our two available strategies for lowering a
1343 /// div/rem operation which requires speculating at least one lane.
1344 /// First result is for scalarization (will be invalid for scalable
1345 /// vectors); second is for the safe-divisor strategy.
1346 std::pair<InstructionCost, InstructionCost>
1348 ElementCount VF) const;
1349
1350 /// Returns true if \p I is a memory instruction with consecutive memory
1351 /// access that can be widened.
1353
1354 /// Returns true if \p I is a memory instruction in an interleaved-group
1355 /// of memory accesses that can be vectorized with wide vector loads/stores
1356 /// and shuffles.
1358
1359 /// Check if \p Instr belongs to any interleaved access group.
1361 return InterleaveInfo.isInterleaved(Instr);
1362 }
1363
1364 /// Get the interleaved access group that \p Instr belongs to.
1367 return InterleaveInfo.getInterleaveGroup(Instr);
1368 }
1369
1370 /// Returns true if we're required to use a scalar epilogue for at least
1371 /// the final iteration of the original loop.
1372 bool requiresScalarEpilogue(bool IsVectorizing) const {
1373 if (!isScalarEpilogueAllowed()) {
1374 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1375 return false;
1376 }
1377 // If we might exit from anywhere but the latch and early exit vectorization
1378 // is disabled, we must run the exiting iteration in scalar form.
1381 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1382 "from latch block\n");
1383 return true;
1384 }
1385 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1386 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1387 "interleaved group requires scalar epilogue\n");
1388 return true;
1389 }
1390 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1391 return false;
1392 }
1393
1394 /// Returns true if we're required to use a scalar epilogue for at least
1395 /// the final iteration of the original loop for all VFs in \p Range.
1396 /// A scalar epilogue must either be required for all VFs in \p Range or for
1397 /// none.
1399 auto RequiresScalarEpilogue = [this](ElementCount VF) {
1400 return requiresScalarEpilogue(VF.isVector());
1401 };
1402 bool IsRequired = all_of(Range, RequiresScalarEpilogue);
1403 assert(
1404 (IsRequired || none_of(Range, RequiresScalarEpilogue)) &&
1405 "all VFs in range must agree on whether a scalar epilogue is required");
1406 return IsRequired;
1407 }
1408
1409 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1410 /// loop hint annotation.
1412 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1413 }
1414
1415 /// Returns the TailFoldingStyle that is best for the current loop.
1416 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1417 if (!ChosenTailFoldingStyle)
1419 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1420 : ChosenTailFoldingStyle->second;
1421 }
1422
1423 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1424 /// overflow or not.
1425 /// \param IsScalableVF true if scalable vector factors enabled.
1426 /// \param UserIC User specific interleave count.
1427 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1428 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1429 if (!Legal->canFoldTailByMasking()) {
1430 ChosenTailFoldingStyle =
1432 return;
1433 }
1434
1435 if (!ForceTailFoldingStyle.getNumOccurrences()) {
1436 ChosenTailFoldingStyle = std::make_pair(
1437 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1438 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false));
1439 return;
1440 }
1441
1442 // Set styles when forced.
1443 ChosenTailFoldingStyle = std::make_pair(ForceTailFoldingStyle.getValue(),
1444 ForceTailFoldingStyle.getValue());
1446 return;
1447 // Override forced styles if needed.
1448 // FIXME: use actual opcode/data type for analysis here.
1449 // FIXME: Investigate opportunity for fixed vector factor.
1450 bool EVLIsLegal = UserIC <= 1 &&
1451 TTI.hasActiveVectorLength(0, nullptr, Align()) &&
1453 if (!EVLIsLegal) {
1454 // If for some reason EVL mode is unsupported, fallback to
1455 // DataWithoutLaneMask to try to vectorize the loop with folded tail
1456 // in a generic way.
1457 ChosenTailFoldingStyle =
1460 LLVM_DEBUG(
1461 dbgs()
1462 << "LV: Preference for VP intrinsics indicated. Will "
1463 "not try to generate VP Intrinsics "
1464 << (UserIC > 1
1465 ? "since interleave count specified is greater than 1.\n"
1466 : "due to non-interleaving reasons.\n"));
1467 }
1468 }
1469
1470 /// Returns true if all loop blocks should be masked to fold tail loop.
1471 bool foldTailByMasking() const {
1472 // TODO: check if it is possible to check for None style independent of
1473 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1475 }
1476
1477 /// Return maximum safe number of elements to be processed per vector
1478 /// iteration, which do not prevent store-load forwarding and are safe with
1479 /// regard to the memory dependencies. Required for EVL-based VPlans to
1480 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1481 /// MaxSafeElements).
1482 /// TODO: need to consider adjusting cost model to use this value as a
1483 /// vectorization factor for EVL-based vectorization.
1484 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1485
1486 /// Returns true if the instructions in this block requires predication
1487 /// for any reason, e.g. because tail folding now requires a predicate
1488 /// or because the block in the original loop was predicated.
1491 }
1492
1493 /// Returns true if VP intrinsics with explicit vector length support should
1494 /// be generated in the tail folded loop.
1495 bool foldTailWithEVL() const {
1497 }
1498
1499 /// Returns true if the Phi is part of an inloop reduction.
1500 bool isInLoopReduction(PHINode *Phi) const {
1501 return InLoopReductions.contains(Phi);
1502 }
1503
1504 /// Returns true if the predicated reduction select should be used to set the
1505 /// incoming value for the reduction phi.
1506 bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const {
1507 // Force to use predicated reduction select since the EVL of the
1508 // second-to-last iteration might not be VF*UF.
1509 if (foldTailWithEVL())
1510 return true;
1513 Opcode, PhiTy, TargetTransformInfo::ReductionFlags());
1514 }
1515
1516 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1517 /// with factor VF. Return the cost of the instruction, including
1518 /// scalarization overhead if it's needed.
1520
1521 /// Estimate cost of a call instruction CI if it were vectorized with factor
1522 /// VF. Return the cost of the instruction, including scalarization overhead
1523 /// if it's needed.
1525
1526 /// Invalidates decisions already taken by the cost model.
1528 WideningDecisions.clear();
1529 CallWideningDecisions.clear();
1530 Uniforms.clear();
1531 Scalars.clear();
1532 }
1533
1534 /// Returns the expected execution cost. The unit of the cost does
1535 /// not matter because we use the 'cost' units to compare different
1536 /// vector widths. The cost that is returned is *not* normalized by
1537 /// the factor width.
1539
1540 bool hasPredStores() const { return NumPredStores > 0; }
1541
1542 /// Returns true if epilogue vectorization is considered profitable, and
1543 /// false otherwise.
1544 /// \p VF is the vectorization factor chosen for the original loop.
1545 /// \p Multiplier is an aditional scaling factor applied to VF before
1546 /// comparing to EpilogueVectorizationMinVF.
1548 const unsigned IC) const;
1549
1550 /// Returns the execution time cost of an instruction for a given vector
1551 /// width. Vector width of one means scalar.
1553
1554 /// Return the cost of instructions in an inloop reduction pattern, if I is
1555 /// part of that pattern.
1556 std::optional<InstructionCost>
1559
1560 /// Returns true if \p Op should be considered invariant and if it is
1561 /// trivially hoistable.
1563
1564private:
1565 unsigned NumPredStores = 0;
1566
1567 /// \return An upper bound for the vectorization factors for both
1568 /// fixed and scalable vectorization, where the minimum-known number of
1569 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1570 /// disabled or unsupported, then the scalable part will be equal to
1571 /// ElementCount::getScalable(0).
1572 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1573 ElementCount UserVF,
1574 bool FoldTailByMasking);
1575
1576 /// \return the maximized element count based on the targets vector
1577 /// registers and the loop trip-count, but limited to a maximum safe VF.
1578 /// This is a helper function of computeFeasibleMaxVF.
1579 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1580 unsigned SmallestType,
1581 unsigned WidestType,
1582 ElementCount MaxSafeVF,
1583 bool FoldTailByMasking);
1584
1585 /// Checks if scalable vectorization is supported and enabled. Caches the
1586 /// result to avoid repeated debug dumps for repeated queries.
1587 bool isScalableVectorizationAllowed();
1588
1589 /// \return the maximum legal scalable VF, based on the safe max number
1590 /// of elements.
1591 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1592
1593 /// Calculate vectorization cost of memory instruction \p I.
1594 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1595
1596 /// The cost computation for scalarized memory instruction.
1597 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1598
1599 /// The cost computation for interleaving group of memory instructions.
1600 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1601
1602 /// The cost computation for Gather/Scatter instruction.
1603 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1604
1605 /// The cost computation for widening instruction \p I with consecutive
1606 /// memory access.
1607 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1608
1609 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1610 /// Load: scalar load + broadcast.
1611 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1612 /// element)
1613 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1614
1615 /// Estimate the overhead of scalarizing an instruction. This is a
1616 /// convenience wrapper for the type-based getScalarizationOverhead API.
1617 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF,
1619
1620 /// Returns true if an artificially high cost for emulated masked memrefs
1621 /// should be used.
1622 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1623
1624 /// Map of scalar integer values to the smallest bitwidth they can be legally
1625 /// represented as. The vector equivalents of these values should be truncated
1626 /// to this type.
1628
1629 /// A type representing the costs for instructions if they were to be
1630 /// scalarized rather than vectorized. The entries are Instruction-Cost
1631 /// pairs.
1632 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1633
1634 /// A set containing all BasicBlocks that are known to present after
1635 /// vectorization as a predicated block.
1637 PredicatedBBsAfterVectorization;
1638
1639 /// Records whether it is allowed to have the original scalar loop execute at
1640 /// least once. This may be needed as a fallback loop in case runtime
1641 /// aliasing/dependence checks fail, or to handle the tail/remainder
1642 /// iterations when the trip count is unknown or doesn't divide by the VF,
1643 /// or as a peel-loop to handle gaps in interleave-groups.
1644 /// Under optsize and when the trip count is very small we don't allow any
1645 /// iterations to execute in the scalar loop.
1646 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1647
1648 /// Control finally chosen tail folding style. The first element is used if
1649 /// the IV update may overflow, the second element - if it does not.
1650 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1651 ChosenTailFoldingStyle;
1652
1653 /// true if scalable vectorization is supported and enabled.
1654 std::optional<bool> IsScalableVectorizationAllowed;
1655
1656 /// Maximum safe number of elements to be processed per vector iteration,
1657 /// which do not prevent store-load forwarding and are safe with regard to the
1658 /// memory dependencies. Required for EVL-based veectorization, where this
1659 /// value is used as the upper bound of the safe AVL.
1660 std::optional<unsigned> MaxSafeElements;
1661
1662 /// A map holding scalar costs for different vectorization factors. The
1663 /// presence of a cost for an instruction in the mapping indicates that the
1664 /// instruction will be scalarized when vectorizing with the associated
1665 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1667
1668 /// Holds the instructions known to be uniform after vectorization.
1669 /// The data is collected per VF.
1671
1672 /// Holds the instructions known to be scalar after vectorization.
1673 /// The data is collected per VF.
1675
1676 /// Holds the instructions (address computations) that are forced to be
1677 /// scalarized.
1679
1680 /// PHINodes of the reductions that should be expanded in-loop.
1681 SmallPtrSet<PHINode *, 4> InLoopReductions;
1682
1683 /// A Map of inloop reduction operations and their immediate chain operand.
1684 /// FIXME: This can be removed once reductions can be costed correctly in
1685 /// VPlan. This was added to allow quick lookup of the inloop operations.
1686 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1687
1688 /// Returns the expected difference in cost from scalarizing the expression
1689 /// feeding a predicated instruction \p PredInst. The instructions to
1690 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1691 /// non-negative return value implies the expression will be scalarized.
1692 /// Currently, only single-use chains are considered for scalarization.
1693 InstructionCost computePredInstDiscount(Instruction *PredInst,
1694 ScalarCostsTy &ScalarCosts,
1695 ElementCount VF);
1696
1697 /// Collect the instructions that are uniform after vectorization. An
1698 /// instruction is uniform if we represent it with a single scalar value in
1699 /// the vectorized loop corresponding to each vector iteration. Examples of
1700 /// uniform instructions include pointer operands of consecutive or
1701 /// interleaved memory accesses. Note that although uniformity implies an
1702 /// instruction will be scalar, the reverse is not true. In general, a
1703 /// scalarized instruction will be represented by VF scalar values in the
1704 /// vectorized loop, each corresponding to an iteration of the original
1705 /// scalar loop.
1706 void collectLoopUniforms(ElementCount VF);
1707
1708 /// Collect the instructions that are scalar after vectorization. An
1709 /// instruction is scalar if it is known to be uniform or will be scalarized
1710 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1711 /// to the list if they are used by a load/store instruction that is marked as
1712 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1713 /// VF values in the vectorized loop, each corresponding to an iteration of
1714 /// the original scalar loop.
1715 void collectLoopScalars(ElementCount VF);
1716
1717 /// Keeps cost model vectorization decision and cost for instructions.
1718 /// Right now it is used for memory instructions only.
1720 std::pair<InstWidening, InstructionCost>>;
1721
1722 DecisionList WideningDecisions;
1723
1724 using CallDecisionList =
1725 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1726
1727 CallDecisionList CallWideningDecisions;
1728
1729 /// Returns true if \p V is expected to be vectorized and it needs to be
1730 /// extracted.
1731 bool needsExtract(Value *V, ElementCount VF) const {
1732 Instruction *I = dyn_cast<Instruction>(V);
1733 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1736 return false;
1737
1738 // Assume we can vectorize V (and hence we need extraction) if the
1739 // scalars are not computed yet. This can happen, because it is called
1740 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1741 // the scalars are collected. That should be a safe assumption in most
1742 // cases, because we check if the operands have vectorizable types
1743 // beforehand in LoopVectorizationLegality.
1744 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1745 };
1746
1747 /// Returns a range containing only operands needing to be extracted.
1748 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1749 ElementCount VF) const {
1751 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1752 }
1753
1754public:
1755 /// The loop that we evaluate.
1757
1758 /// Predicated scalar evolution analysis.
1760
1761 /// Loop Info analysis.
1763
1764 /// Vectorization legality.
1766
1767 /// Vector target information.
1769
1770 /// Target Library Info.
1772
1773 /// Demanded bits analysis.
1775
1776 /// Assumption cache.
1778
1779 /// Interface to emit optimization remarks.
1781
1783
1784 /// Loop Vectorize Hint.
1786
1787 /// The interleave access information contains groups of interleaved accesses
1788 /// with the same stride and close to each other.
1790
1791 /// Values to ignore in the cost model.
1793
1794 /// Values to ignore in the cost model when VF > 1.
1796
1797 /// All element types found in the loop.
1799};
1800} // end namespace llvm
1801
1802namespace {
1803/// Helper struct to manage generating runtime checks for vectorization.
1804///
1805/// The runtime checks are created up-front in temporary blocks to allow better
1806/// estimating the cost and un-linked from the existing IR. After deciding to
1807/// vectorize, the checks are moved back. If deciding not to vectorize, the
1808/// temporary blocks are completely removed.
1809class GeneratedRTChecks {
1810 /// Basic block which contains the generated SCEV checks, if any.
1811 BasicBlock *SCEVCheckBlock = nullptr;
1812
1813 /// The value representing the result of the generated SCEV checks. If it is
1814 /// nullptr, either no SCEV checks have been generated or they have been used.
1815 Value *SCEVCheckCond = nullptr;
1816
1817 /// Basic block which contains the generated memory runtime checks, if any.
1818 BasicBlock *MemCheckBlock = nullptr;
1819
1820 /// The value representing the result of the generated memory runtime checks.
1821 /// If it is nullptr, either no memory runtime checks have been generated or
1822 /// they have been used.
1823 Value *MemRuntimeCheckCond = nullptr;
1824
1825 DominatorTree *DT;
1826 LoopInfo *LI;
1828
1829 SCEVExpander SCEVExp;
1830 SCEVExpander MemCheckExp;
1831
1832 bool CostTooHigh = false;
1833 const bool AddBranchWeights;
1834
1835 Loop *OuterLoop = nullptr;
1836
1838
1839public:
1840 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1842 const DataLayout &DL, bool AddBranchWeights)
1843 : DT(DT), LI(LI), TTI(TTI), SCEVExp(*PSE.getSE(), DL, "scev.check"),
1844 MemCheckExp(*PSE.getSE(), DL, "scev.check"),
1845 AddBranchWeights(AddBranchWeights), PSE(PSE) {}
1846
1847 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1848 /// accurately estimate the cost of the runtime checks. The blocks are
1849 /// un-linked from the IR and are added back during vector code generation. If
1850 /// there is no vector code generation, the check blocks are removed
1851 /// completely.
1852 void create(Loop *L, const LoopAccessInfo &LAI,
1853 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1854
1855 // Hard cutoff to limit compile-time increase in case a very large number of
1856 // runtime checks needs to be generated.
1857 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1858 // profile info.
1859 CostTooHigh =
1861 if (CostTooHigh)
1862 return;
1863
1864 BasicBlock *LoopHeader = L->getHeader();
1865 BasicBlock *Preheader = L->getLoopPreheader();
1866
1867 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1868 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1869 // may be used by SCEVExpander. The blocks will be un-linked from their
1870 // predecessors and removed from LI & DT at the end of the function.
1871 if (!UnionPred.isAlwaysTrue()) {
1872 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1873 nullptr, "vector.scevcheck");
1874
1875 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1876 &UnionPred, SCEVCheckBlock->getTerminator());
1877 }
1878
1879 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1880 if (RtPtrChecking.Need) {
1881 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1882 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1883 "vector.memcheck");
1884
1885 auto DiffChecks = RtPtrChecking.getDiffChecks();
1886 if (DiffChecks) {
1887 Value *RuntimeVF = nullptr;
1888 MemRuntimeCheckCond = addDiffRuntimeChecks(
1889 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1890 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1891 if (!RuntimeVF)
1892 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1893 return RuntimeVF;
1894 },
1895 IC);
1896 } else {
1897 MemRuntimeCheckCond = addRuntimeChecks(
1898 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1900 }
1901 assert(MemRuntimeCheckCond &&
1902 "no RT checks generated although RtPtrChecking "
1903 "claimed checks are required");
1904 }
1905
1906 if (!MemCheckBlock && !SCEVCheckBlock)
1907 return;
1908
1909 // Unhook the temporary block with the checks, update various places
1910 // accordingly.
1911 if (SCEVCheckBlock)
1912 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1913 if (MemCheckBlock)
1914 MemCheckBlock->replaceAllUsesWith(Preheader);
1915
1916 if (SCEVCheckBlock) {
1917 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1918 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1919 Preheader->getTerminator()->eraseFromParent();
1920 }
1921 if (MemCheckBlock) {
1922 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1923 new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1924 Preheader->getTerminator()->eraseFromParent();
1925 }
1926
1927 DT->changeImmediateDominator(LoopHeader, Preheader);
1928 if (MemCheckBlock) {
1929 DT->eraseNode(MemCheckBlock);
1930 LI->removeBlock(MemCheckBlock);
1931 }
1932 if (SCEVCheckBlock) {
1933 DT->eraseNode(SCEVCheckBlock);
1934 LI->removeBlock(SCEVCheckBlock);
1935 }
1936
1937 // Outer loop is used as part of the later cost calculations.
1938 OuterLoop = L->getParentLoop();
1939 }
1940
1941 InstructionCost getCost() {
1942 if (SCEVCheckBlock || MemCheckBlock)
1943 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1944
1945 if (CostTooHigh) {
1947 Cost.setInvalid();
1948 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1949 return Cost;
1950 }
1951
1952 InstructionCost RTCheckCost = 0;
1953 if (SCEVCheckBlock)
1954 for (Instruction &I : *SCEVCheckBlock) {
1955 if (SCEVCheckBlock->getTerminator() == &I)
1956 continue;
1959 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1960 RTCheckCost += C;
1961 }
1962 if (MemCheckBlock) {
1963 InstructionCost MemCheckCost = 0;
1964 for (Instruction &I : *MemCheckBlock) {
1965 if (MemCheckBlock->getTerminator() == &I)
1966 continue;
1969 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1970 MemCheckCost += C;
1971 }
1972
1973 // If the runtime memory checks are being created inside an outer loop
1974 // we should find out if these checks are outer loop invariant. If so,
1975 // the checks will likely be hoisted out and so the effective cost will
1976 // reduce according to the outer loop trip count.
1977 if (OuterLoop) {
1978 ScalarEvolution *SE = MemCheckExp.getSE();
1979 // TODO: If profitable, we could refine this further by analysing every
1980 // individual memory check, since there could be a mixture of loop
1981 // variant and invariant checks that mean the final condition is
1982 // variant.
1983 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1984 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1985 // It seems reasonable to assume that we can reduce the effective
1986 // cost of the checks even when we know nothing about the trip
1987 // count. Assume that the outer loop executes at least twice.
1988 unsigned BestTripCount = 2;
1989
1990 // Get the best known TC estimate.
1991 if (auto EstimatedTC = getSmallBestKnownTC(
1992 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1993 BestTripCount = *EstimatedTC;
1994
1995 BestTripCount = std::max(BestTripCount, 1U);
1996 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1997
1998 // Let's ensure the cost is always at least 1.
1999 NewMemCheckCost = std::max(*NewMemCheckCost.getValue(),
2001
2002 if (BestTripCount > 1)
2004 << "We expect runtime memory checks to be hoisted "
2005 << "out of the outer loop. Cost reduced from "
2006 << MemCheckCost << " to " << NewMemCheckCost << '\n');
2007
2008 MemCheckCost = NewMemCheckCost;
2009 }
2010 }
2011
2012 RTCheckCost += MemCheckCost;
2013 }
2014
2015 if (SCEVCheckBlock || MemCheckBlock)
2016 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2017 << "\n");
2018
2019 return RTCheckCost;
2020 }
2021
2022 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2023 /// unused.
2024 ~GeneratedRTChecks() {
2025 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2026 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2027 if (!SCEVCheckCond)
2028 SCEVCleaner.markResultUsed();
2029
2030 if (!MemRuntimeCheckCond)
2031 MemCheckCleaner.markResultUsed();
2032
2033 if (MemRuntimeCheckCond) {
2034 auto &SE = *MemCheckExp.getSE();
2035 // Memory runtime check generation creates compares that use expanded
2036 // values. Remove them before running the SCEVExpanderCleaners.
2037 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2038 if (MemCheckExp.isInsertedInstruction(&I))
2039 continue;
2040 SE.forgetValue(&I);
2041 I.eraseFromParent();
2042 }
2043 }
2044 MemCheckCleaner.cleanup();
2045 SCEVCleaner.cleanup();
2046
2047 if (SCEVCheckCond)
2048 SCEVCheckBlock->eraseFromParent();
2049 if (MemRuntimeCheckCond)
2050 MemCheckBlock->eraseFromParent();
2051 }
2052
2053 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2054 /// adjusts the branches to branch to the vector preheader or \p Bypass,
2055 /// depending on the generated condition.
2056 BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2057 BasicBlock *LoopVectorPreHeader) {
2058 if (!SCEVCheckCond)
2059 return nullptr;
2060
2061 Value *Cond = SCEVCheckCond;
2062 // Mark the check as used, to prevent it from being removed during cleanup.
2063 SCEVCheckCond = nullptr;
2064 if (auto *C = dyn_cast<ConstantInt>(Cond))
2065 if (C->isZero())
2066 return nullptr;
2067
2068 auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2069
2070 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2071 // Create new preheader for vector loop.
2072 if (OuterLoop)
2073 OuterLoop->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2074
2075 SCEVCheckBlock->getTerminator()->eraseFromParent();
2076 SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2077 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2078 SCEVCheckBlock);
2079
2080 DT->addNewBlock(SCEVCheckBlock, Pred);
2081 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2082
2083 BranchInst &BI = *BranchInst::Create(Bypass, LoopVectorPreHeader, Cond);
2084 if (AddBranchWeights)
2085 setBranchWeights(BI, SCEVCheckBypassWeights, /*IsExpected=*/false);
2086 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), &BI);
2087 return SCEVCheckBlock;
2088 }
2089
2090 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2091 /// the branches to branch to the vector preheader or \p Bypass, depending on
2092 /// the generated condition.
2093 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2094 BasicBlock *LoopVectorPreHeader) {
2095 // Check if we generated code that checks in runtime if arrays overlap.
2096 if (!MemRuntimeCheckCond)
2097 return nullptr;
2098
2099 auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2100 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2101 MemCheckBlock);
2102
2103 DT->addNewBlock(MemCheckBlock, Pred);
2104 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2105 MemCheckBlock->moveBefore(LoopVectorPreHeader);
2106
2107 if (OuterLoop)
2108 OuterLoop->addBasicBlockToLoop(MemCheckBlock, *LI);
2109
2110 BranchInst &BI =
2111 *BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond);
2112 if (AddBranchWeights) {
2113 setBranchWeights(BI, MemCheckBypassWeights, /*IsExpected=*/false);
2114 }
2115 ReplaceInstWithInst(MemCheckBlock->getTerminator(), &BI);
2116 MemCheckBlock->getTerminator()->setDebugLoc(
2117 Pred->getTerminator()->getDebugLoc());
2118
2119 // Mark the check as used, to prevent it from being removed during cleanup.
2120 MemRuntimeCheckCond = nullptr;
2121 return MemCheckBlock;
2122 }
2123};
2124} // namespace
2125
2127 return Style == TailFoldingStyle::Data ||
2128 Style == TailFoldingStyle::DataAndControlFlow ||
2129 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2130}
2131
2133 return Style == TailFoldingStyle::DataAndControlFlow ||
2134 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2135}
2136
2137// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2138// vectorization. The loop needs to be annotated with #pragma omp simd
2139// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2140// vector length information is not provided, vectorization is not considered
2141// explicit. Interleave hints are not allowed either. These limitations will be
2142// relaxed in the future.
2143// Please, note that we are currently forced to abuse the pragma 'clang
2144// vectorize' semantics. This pragma provides *auto-vectorization hints*
2145// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2146// provides *explicit vectorization hints* (LV can bypass legal checks and
2147// assume that vectorization is legal). However, both hints are implemented
2148// using the same metadata (llvm.loop.vectorize, processed by
2149// LoopVectorizeHints). This will be fixed in the future when the native IR
2150// representation for pragma 'omp simd' is introduced.
2151static bool isExplicitVecOuterLoop(Loop *OuterLp,
2153 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2154 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2155
2156 // Only outer loops with an explicit vectorization hint are supported.
2157 // Unannotated outer loops are ignored.
2159 return false;
2160
2161 Function *Fn = OuterLp->getHeader()->getParent();
2162 if (!Hints.allowVectorization(Fn, OuterLp,
2163 true /*VectorizeOnlyWhenForced*/)) {
2164 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2165 return false;
2166 }
2167
2168 if (Hints.getInterleave() > 1) {
2169 // TODO: Interleave support is future work.
2170 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2171 "outer loops.\n");
2172 Hints.emitRemarkWithHints();
2173 return false;
2174 }
2175
2176 return true;
2177}
2178
2182 // Collect inner loops and outer loops without irreducible control flow. For
2183 // now, only collect outer loops that have explicit vectorization hints. If we
2184 // are stress testing the VPlan H-CFG construction, we collect the outermost
2185 // loop of every loop nest.
2186 if (L.isInnermost() || VPlanBuildStressTest ||
2188 LoopBlocksRPO RPOT(&L);
2189 RPOT.perform(LI);
2190 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2191 V.push_back(&L);
2192 // TODO: Collect inner loops inside marked outer loops in case
2193 // vectorization fails for the outer loop. Do not invoke
2194 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2195 // already known to be reducible. We can use an inherited attribute for
2196 // that.
2197 return;
2198 }
2199 }
2200 for (Loop *InnerL : L)
2201 collectSupportedLoops(*InnerL, LI, ORE, V);
2202}
2203
2204//===----------------------------------------------------------------------===//
2205// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2206// LoopVectorizationCostModel and LoopVectorizationPlanner.
2207//===----------------------------------------------------------------------===//
2208
2209/// Compute the transformed value of Index at offset StartValue using step
2210/// StepValue.
2211/// For integer induction, returns StartValue + Index * StepValue.
2212/// For pointer induction, returns StartValue[Index * StepValue].
2213/// FIXME: The newly created binary instructions should contain nsw/nuw
2214/// flags, which can be found from the original scalar operations.
2215static Value *
2217 Value *Step,
2219 const BinaryOperator *InductionBinOp) {
2220 Type *StepTy = Step->getType();
2221 Value *CastedIndex = StepTy->isIntegerTy()
2222 ? B.CreateSExtOrTrunc(Index, StepTy)
2223 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2224 if (CastedIndex != Index) {
2225 CastedIndex->setName(CastedIndex->getName() + ".cast");
2226 Index = CastedIndex;
2227 }
2228
2229 // Note: the IR at this point is broken. We cannot use SE to create any new
2230 // SCEV and then expand it, hoping that SCEV's simplification will give us
2231 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2232 // lead to various SCEV crashes. So all we can do is to use builder and rely
2233 // on InstCombine for future simplifications. Here we handle some trivial
2234 // cases only.
2235 auto CreateAdd = [&B](Value *X, Value *Y) {
2236 assert(X->getType() == Y->getType() && "Types don't match!");
2237 if (auto *CX = dyn_cast<ConstantInt>(X))
2238 if (CX->isZero())
2239 return Y;
2240 if (auto *CY = dyn_cast<ConstantInt>(Y))
2241 if (CY->isZero())
2242 return X;
2243 return B.CreateAdd(X, Y);
2244 };
2245
2246 // We allow X to be a vector type, in which case Y will potentially be
2247 // splatted into a vector with the same element count.
2248 auto CreateMul = [&B](Value *X, Value *Y) {
2249 assert(X->getType()->getScalarType() == Y->getType() &&
2250 "Types don't match!");
2251 if (auto *CX = dyn_cast<ConstantInt>(X))
2252 if (CX->isOne())
2253 return Y;
2254 if (auto *CY = dyn_cast<ConstantInt>(Y))
2255 if (CY->isOne())
2256 return X;
2257 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2258 if (XVTy && !isa<VectorType>(Y->getType()))
2259 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2260 return B.CreateMul(X, Y);
2261 };
2262
2263 switch (InductionKind) {
2265 assert(!isa<VectorType>(Index->getType()) &&
2266 "Vector indices not supported for integer inductions yet");
2267 assert(Index->getType() == StartValue->getType() &&
2268 "Index type does not match StartValue type");
2269 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2270 return B.CreateSub(StartValue, Index);
2271 auto *Offset = CreateMul(Index, Step);
2272 return CreateAdd(StartValue, Offset);
2273 }
2275 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2277 assert(!isa<VectorType>(Index->getType()) &&
2278 "Vector indices not supported for FP inductions yet");
2279 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2280 assert(InductionBinOp &&
2281 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2282 InductionBinOp->getOpcode() == Instruction::FSub) &&
2283 "Original bin op should be defined for FP induction");
2284
2285 Value *MulExp = B.CreateFMul(Step, Index);
2286 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2287 "induction");
2288 }
2290 return nullptr;
2291 }
2292 llvm_unreachable("invalid enum");
2293}
2294
2295std::optional<unsigned> getMaxVScale(const Function &F,
2296 const TargetTransformInfo &TTI) {
2297 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2298 return MaxVScale;
2299
2300 if (F.hasFnAttribute(Attribute::VScaleRange))
2301 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2302
2303 return std::nullopt;
2304}
2305
2306/// For the given VF and UF and maximum trip count computed for the loop, return
2307/// whether the induction variable might overflow in the vectorized loop. If not,
2308/// then we know a runtime overflow check always evaluates to false and can be
2309/// removed.
2312 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2313 // Always be conservative if we don't know the exact unroll factor.
2314 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2315
2316 Type *IdxTy = Cost->Legal->getWidestInductionType();
2317 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
2318
2319 // We know the runtime overflow check is known false iff the (max) trip-count
2320 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2321 // the vector loop induction variable.
2322 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2323 uint64_t MaxVF = VF.getKnownMinValue();
2324 if (VF.isScalable()) {
2325 std::optional<unsigned> MaxVScale =
2326 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2327 if (!MaxVScale)
2328 return false;
2329 MaxVF *= *MaxVScale;
2330 }
2331
2332 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2333 }
2334
2335 return false;
2336}
2337
2338// Return whether we allow using masked interleave-groups (for dealing with
2339// strided loads/stores that reside in predicated blocks, or for dealing
2340// with gaps).
2342 // If an override option has been passed in for interleaved accesses, use it.
2343 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2345
2347}
2348
2350 VPReplicateRecipe *RepRecipe,
2351 const VPLane &Lane,
2352 VPTransformState &State) {
2353 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2354
2355 // Does this instruction return a value ?
2356 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2357
2358 Instruction *Cloned = Instr->clone();
2359 if (!IsVoidRetTy) {
2360 Cloned->setName(Instr->getName() + ".cloned");
2361#if !defined(NDEBUG)
2362 // Verify that VPlan type inference results agree with the type of the
2363 // generated values.
2364 assert(State.TypeAnalysis.inferScalarType(RepRecipe) == Cloned->getType() &&
2365 "inferred type and type from generated instructions do not match");
2366#endif
2367 }
2368
2369 RepRecipe->setFlags(Cloned);
2370
2371 if (auto DL = Instr->getDebugLoc())
2372 State.setDebugLocFrom(DL);
2373
2374 // Replace the operands of the cloned instructions with their scalar
2375 // equivalents in the new loop.
2376 for (const auto &I : enumerate(RepRecipe->operands())) {
2377 auto InputLane = Lane;
2378 VPValue *Operand = I.value();
2380 InputLane = VPLane::getFirstLane();
2381 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
2382 }
2383 State.addNewMetadata(Cloned, Instr);
2384
2385 // Place the cloned scalar in the new loop.
2386 State.Builder.Insert(Cloned);
2387
2388 State.set(RepRecipe, Cloned, Lane);
2389
2390 // If we just cloned a new assumption, add it the assumption cache.
2391 if (auto *II = dyn_cast<AssumeInst>(Cloned))
2393
2394 // End if-block.
2395 VPRegionBlock *Parent = RepRecipe->getParent()->getParent();
2396 bool IfPredicateInstr = Parent ? Parent->isReplicator() : false;
2397 assert(
2398 (Parent || !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
2399 all_of(RepRecipe->operands(),
2400 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
2401 "Expected a recipe is either within a region or all of its operands "
2402 "are defined outside the vectorized region.");
2403 if (IfPredicateInstr)
2404 PredicatedInstructions.push_back(Cloned);
2405}
2406
2407Value *
2409 if (VectorTripCount)
2410 return VectorTripCount;
2411
2412 Value *TC = getTripCount();
2413 IRBuilder<> Builder(InsertBlock->getTerminator());
2414
2415 Type *Ty = TC->getType();
2416 // This is where we can make the step a runtime constant.
2417 Value *Step = createStepForVF(Builder, Ty, VF, UF);
2418
2419 // If the tail is to be folded by masking, round the number of iterations N
2420 // up to a multiple of Step instead of rounding down. This is done by first
2421 // adding Step-1 and then rounding down. Note that it's ok if this addition
2422 // overflows: the vector induction variable will eventually wrap to zero given
2423 // that it starts at zero and its Step is a power of two; the loop will then
2424 // exit, with the last early-exit vector comparison also producing all-true.
2425 // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2426 // is accounted for in emitIterationCountCheck that adds an overflow check.
2427 if (Cost->foldTailByMasking()) {
2429 "VF*UF must be a power of 2 when folding tail by masking");
2430 TC = Builder.CreateAdd(TC, Builder.CreateSub(Step, ConstantInt::get(Ty, 1)),
2431 "n.rnd.up");
2432 }
2433
2434 // Now we need to generate the expression for the part of the loop that the
2435 // vectorized body will execute. This is equal to N - (N % Step) if scalar
2436 // iterations are not required for correctness, or N - Step, otherwise. Step
2437 // is equal to the vectorization factor (number of SIMD elements) times the
2438 // unroll factor (number of SIMD instructions).
2439 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2440
2441 // There are cases where we *must* run at least one iteration in the remainder
2442 // loop. See the cost model for when this can happen. If the step evenly
2443 // divides the trip count, we set the remainder to be equal to the step. If
2444 // the step does not evenly divide the trip count, no adjustment is necessary
2445 // since there will already be scalar iterations. Note that the minimum
2446 // iterations check ensures that N >= Step.
2447 if (Cost->requiresScalarEpilogue(VF.isVector())) {
2448 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2449 R = Builder.CreateSelect(IsZero, Step, R);
2450 }
2451
2452 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2453
2454 return VectorTripCount;
2455}
2456
2458 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2460 if (PreVectorPH->getNumSuccessors() != 1) {
2461 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2462 assert(PreVectorPH->getSuccessors()[0] == ScalarPH &&
2463 "Unexpected successor");
2464 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2465 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPB, CheckVPIRBB);
2466 PreVectorPH = CheckVPIRBB;
2467 }
2468 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2469 PreVectorPH->swapSuccessors();
2470}
2471
2473 Value *Count = getTripCount();
2474 // Reuse existing vector loop preheader for TC checks.
2475 // Note that new preheader block is generated for vector loop.
2476 BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2477 IRBuilder<> Builder(TCCheckBlock->getTerminator());
2478
2479 // Generate code to check if the loop's trip count is less than VF * UF, or
2480 // equal to it in case a scalar epilogue is required; this implies that the
2481 // vector trip count is zero. This check also covers the case where adding one
2482 // to the backedge-taken count overflowed leading to an incorrect trip count
2483 // of zero. In this case we will also jump to the scalar loop.
2484 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2486
2487 // If tail is to be folded, vector loop takes care of all iterations.
2488 Type *CountTy = Count->getType();
2489 Value *CheckMinIters = Builder.getFalse();
2490 auto CreateStep = [&]() -> Value * {
2491 // Create step with max(MinProTripCount, UF * VF).
2493 return createStepForVF(Builder, CountTy, VF, UF);
2494
2495 Value *MinProfTC =
2497 if (!VF.isScalable())
2498 return MinProfTC;
2500 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2501 };
2502
2503 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2504 if (Style == TailFoldingStyle::None) {
2505 Value *Step = CreateStep();
2506 ScalarEvolution &SE = *PSE.getSE();
2507 // TODO: Emit unconditional branch to vector preheader instead of
2508 // conditional branch with known condition.
2509 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2510 // Check if the trip count is < the step.
2511 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2512 // TODO: Ensure step is at most the trip count when determining max VF and
2513 // UF, w/o tail folding.
2514 CheckMinIters = Builder.getTrue();
2516 TripCountSCEV, SE.getSCEV(Step))) {
2517 // Generate the minimum iteration check only if we cannot prove the
2518 // check is known to be true, or known to be false.
2519 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2520 } // else step known to be < trip count, use CheckMinIters preset to false.
2521 } else if (VF.isScalable() &&
2524 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2525 // an overflow to zero when updating induction variables and so an
2526 // additional overflow check is required before entering the vector loop.
2527
2528 // Get the maximum unsigned value for the type.
2529 Value *MaxUIntTripCount =
2530 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2531 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2532
2533 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2534 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2535 }
2536
2537 // Create new preheader for vector loop.
2539 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2540 "vector.ph");
2541
2542 assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2543 DT->getNode(Bypass)->getIDom()) &&
2544 "TC check is expected to dominate Bypass");
2545
2546 BranchInst &BI =
2547 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters);
2549 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
2550 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
2551 LoopBypassBlocks.push_back(TCCheckBlock);
2552
2553 // TODO: Wrap LoopVectorPreHeader in VPIRBasicBlock here.
2554 introduceCheckBlockInVPlan(TCCheckBlock);
2555}
2556
2558 BasicBlock *const SCEVCheckBlock =
2559 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader);
2560 if (!SCEVCheckBlock)
2561 return nullptr;
2562
2563 assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
2565 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
2566 "Cannot SCEV check stride or overflow when optimizing for size");
2567 assert(!LoopBypassBlocks.empty() &&
2568 "Should already be a bypass block due to iteration count check");
2569 LoopBypassBlocks.push_back(SCEVCheckBlock);
2570 AddedSafetyChecks = true;
2571
2572 introduceCheckBlockInVPlan(SCEVCheckBlock);
2573 return SCEVCheckBlock;
2574}
2575
2577 // VPlan-native path does not do any analysis for runtime checks currently.
2579 return nullptr;
2580
2581 BasicBlock *const MemCheckBlock =
2582 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
2583
2584 // Check if we generated code that checks in runtime if arrays overlap. We put
2585 // the checks into a separate block to make the more common case of few
2586 // elements faster.
2587 if (!MemCheckBlock)
2588 return nullptr;
2589
2590 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
2591 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2592 "Cannot emit memory checks when optimizing for size, unless forced "
2593 "to vectorize.");
2594 ORE->emit([&]() {
2595 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2598 << "Code-size may be reduced by not forcing "
2599 "vectorization, or by source-code modifications "
2600 "eliminating the need for runtime checks "
2601 "(e.g., adding 'restrict').";
2602 });
2603 }
2604
2605 LoopBypassBlocks.push_back(MemCheckBlock);
2606
2607 AddedSafetyChecks = true;
2608
2609 introduceCheckBlockInVPlan(MemCheckBlock);
2610 return MemCheckBlock;
2611}
2612
2613/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2614/// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
2615/// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
2616/// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
2618 VPIRBasicBlock *IRVPBB = VPBB->getPlan()->createVPIRBasicBlock(IRBB);
2619 for (auto &R : make_early_inc_range(*VPBB)) {
2620 assert(!R.isPhi() && "Tried to move phi recipe to end of block");
2621 R.moveBefore(*IRVPBB, IRVPBB->end());
2622 }
2623
2624 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2625 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2626}
2627
2630 assert(LoopVectorPreHeader && "Invalid loop structure");
2632 Cost->requiresScalarEpilogue(VF.isVector())) &&
2633 "loops not exiting via the latch without required epilogue?");
2634
2637 LI, nullptr, Twine(Prefix) + "middle.block");
2641 nullptr, Twine(Prefix) + "scalar.ph");
2643}
2644
2645/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2646/// expansion results.
2648 const SCEV2ValueTy &ExpandedSCEVs) {
2649 const SCEV *Step = ID.getStep();
2650 if (auto *C = dyn_cast<SCEVConstant>(Step))
2651 return C->getValue();
2652 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2653 return U->getValue();
2654 auto I = ExpandedSCEVs.find(Step);
2655 assert(I != ExpandedSCEVs.end() && "SCEV must be expanded at this point");
2656 return I->second;
2657}
2658
2659/// Knowing that loop \p L executes a single vector iteration, add instructions
2660/// that will get simplified and thus should not have any cost to \p
2661/// InstsToIgnore.
2664 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2665 auto *Cmp = L->getLatchCmpInst();
2666 if (Cmp)
2667 InstsToIgnore.insert(Cmp);
2668 for (const auto &KV : IL) {
2669 // Extract the key by hand so that it can be used in the lambda below. Note
2670 // that captured structured bindings are a C++20 extension.
2671 const PHINode *IV = KV.first;
2672
2673 // Get next iteration value of the induction variable.
2674 Instruction *IVInst =
2675 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2676 if (all_of(IVInst->users(),
2677 [&](const User *U) { return U == IV || U == Cmp; }))
2678 InstsToIgnore.insert(IVInst);
2679 }
2680}
2681
2683 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount) {
2684 assert(MainVectorTripCount && "Must have bypass information");
2685
2686 Instruction *OldInduction = Legal->getPrimaryInduction();
2687 IRBuilder<> BypassBuilder(getAdditionalBypassBlock(),
2688 getAdditionalBypassBlock()->getFirstInsertionPt());
2689 for (const auto &InductionEntry : Legal->getInductionVars()) {
2690 PHINode *OrigPhi = InductionEntry.first;
2691 const InductionDescriptor &II = InductionEntry.second;
2692 Value *Step = getExpandedStep(II, ExpandedSCEVs);
2693 // For the primary induction the additional bypass end value is known.
2694 // Otherwise it is computed.
2695 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
2696 if (OrigPhi != OldInduction) {
2697 auto *BinOp = II.getInductionBinOp();
2698 // Fast-math-flags propagate from the original induction instruction.
2699 if (isa_and_nonnull<FPMathOperator>(BinOp))
2700 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
2701
2702 // Compute the end value for the additional bypass.
2703 EndValueFromAdditionalBypass =
2704 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
2705 II.getStartValue(), Step, II.getKind(), BinOp);
2706 EndValueFromAdditionalBypass->setName("ind.end");
2707 }
2708
2709 // Store the bypass value here, as it needs to be added as operand to its
2710 // scalar preheader phi node after the epilogue skeleton has been created.
2711 // TODO: Directly add as extra operand to the VPResumePHI recipe.
2712 assert(!Induction2AdditionalBypassValue.contains(OrigPhi) &&
2713 "entry for OrigPhi already exits");
2714 Induction2AdditionalBypassValue[OrigPhi] = EndValueFromAdditionalBypass;
2715 }
2716}
2717
2719 const SCEV2ValueTy &ExpandedSCEVs) {
2720 /*
2721 In this function we generate a new loop. The new loop will contain
2722 the vectorized instructions while the old loop will continue to run the
2723 scalar remainder.
2724
2725 [ ] <-- old preheader - loop iteration number check and SCEVs in Plan's
2726 / | preheader are expanded here. Eventually all required SCEV
2727 / | expansion should happen here.
2728 / v
2729 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2730 | / |
2731 | / v
2732 || [ ] <-- vector pre header.
2733 |/ |
2734 | v
2735 | [ ] \
2736 | [ ]_| <-- vector loop (created during VPlan execution).
2737 | |
2738 | v
2739 \ -[ ] <--- middle-block (wrapped in VPIRBasicBlock with the branch to
2740 | | successors created during VPlan execution)
2741 \/ |
2742 /\ v
2743 | ->[ ] <--- new preheader (wrapped in VPIRBasicBlock).
2744 | |
2745 (opt) v <-- edge from middle to exit iff epilogue is not required.
2746 | [ ] \
2747 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue, header
2748 | | wrapped in VPIRBasicBlock).
2749 \ |
2750 \ v
2751 >[ ] <-- exit block(s). (wrapped in VPIRBasicBlock)
2752 ...
2753 */
2754
2755 // Create an empty vector loop, and prepare basic blocks for the runtime
2756 // checks.
2758
2759 // Now, compare the new count to zero. If it is zero skip the vector loop and
2760 // jump to the scalar loop. This check also covers the case where the
2761 // backedge-taken count is uint##_max: adding one to it will overflow leading
2762 // to an incorrect trip count of zero. In this (rare) case we will also jump
2763 // to the scalar loop.
2765
2766 // Generate the code to check any assumptions that we've made for SCEV
2767 // expressions.
2769
2770 // Generate the code that checks in runtime if arrays overlap. We put the
2771 // checks into a separate block to make the more common case of few elements
2772 // faster.
2774
2775 return LoopVectorPreHeader;
2776}
2777
2778// Fix up external users of the induction variable. At this point, we are
2779// in LCSSA form, with all external PHIs that use the IV having one input value,
2780// coming from the remainder loop. We need those PHIs to also have a correct
2781// value for the IV when arriving directly from the middle block.
2783 const InductionDescriptor &II,
2784 Value *VectorTripCount,
2785 BasicBlock *MiddleBlock,
2786 VPTransformState &State) {
2787 // There are two kinds of external IV usages - those that use the value
2788 // computed in the last iteration (the PHI) and those that use the penultimate
2789 // value (the value that feeds into the phi from the loop latch).
2790 // We allow both, but they, obviously, have different values.
2791
2792 DenseMap<Value *, Value *> MissingVals;
2793
2794 Value *EndValue = cast<PHINode>(OrigPhi->getIncomingValueForBlock(
2796 ->getIncomingValueForBlock(MiddleBlock);
2797
2798 // An external user of the last iteration's value should see the value that
2799 // the remainder loop uses to initialize its own IV.
2801 for (User *U : PostInc->users()) {
2802 Instruction *UI = cast<Instruction>(U);
2803 if (!OrigLoop->contains(UI)) {
2804 assert(isa<PHINode>(UI) && "Expected LCSSA form");
2805 MissingVals[UI] = EndValue;
2806 }
2807 }
2808
2809 // An external user of the penultimate value need to see EndValue - Step.
2810 // The simplest way to get this is to recompute it from the constituent SCEVs,
2811 // that is Start + (Step * (CRD - 1)).
2812 for (User *U : OrigPhi->users()) {
2813 auto *UI = cast<Instruction>(U);
2814 if (!OrigLoop->contains(UI)) {
2815 assert(isa<PHINode>(UI) && "Expected LCSSA form");
2816 IRBuilder<> B(MiddleBlock->getTerminator());
2817
2818 // Fast-math-flags propagate from the original induction instruction.
2819 if (isa_and_nonnull<FPMathOperator>(II.getInductionBinOp()))
2820 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
2821
2822 VPValue *StepVPV = Plan.getSCEVExpansion(II.getStep());
2823 assert(StepVPV && "step must have been expanded during VPlan execution");
2824 Value *Step = StepVPV->isLiveIn() ? StepVPV->getLiveInIRValue()
2825 : State.get(StepVPV, VPLane(0));
2826 Value *Escape = nullptr;
2827 if (EndValue->getType()->isIntegerTy())
2828 Escape = B.CreateSub(EndValue, Step);
2829 else if (EndValue->getType()->isPointerTy())
2830 Escape = B.CreatePtrAdd(EndValue, B.CreateNeg(Step));
2831 else {
2832 assert(EndValue->getType()->isFloatingPointTy() &&
2833 "Unexpected induction type");
2834 Escape = B.CreateBinOp(II.getInductionBinOp()->getOpcode() ==
2835 Instruction::FAdd
2836 ? Instruction::FSub
2837 : Instruction::FAdd,
2838 EndValue, Step);
2839 }
2840 Escape->setName("ind.escape");
2841 MissingVals[UI] = Escape;
2842 }
2843 }
2844
2845 assert((MissingVals.empty() ||
2846 all_of(MissingVals,
2847 [MiddleBlock, this](const std::pair<Value *, Value *> &P) {
2848 return all_of(
2849 predecessors(cast<Instruction>(P.first)->getParent()),
2850 [MiddleBlock, this](BasicBlock *Pred) {
2851 return Pred == MiddleBlock ||
2852 Pred == OrigLoop->getLoopLatch();
2853 });
2854 })) &&
2855 "Expected escaping values from latch/middle.block only");
2856
2857 for (auto &I : MissingVals) {
2858 PHINode *PHI = cast<PHINode>(I.first);
2859 // One corner case we have to handle is two IVs "chasing" each-other,
2860 // that is %IV2 = phi [...], [ %IV1, %latch ]
2861 // In this case, if IV1 has an external use, we need to avoid adding both
2862 // "last value of IV1" and "penultimate value of IV2". So, verify that we
2863 // don't already have an incoming value for the middle block.
2864 if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
2865 PHI->addIncoming(I.second, MiddleBlock);
2866 }
2867}
2868
2869namespace {
2870
2871struct CSEDenseMapInfo {
2872 static bool canHandle(const Instruction *I) {
2873 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2874 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2875 }
2876
2877 static inline Instruction *getEmptyKey() {
2879 }
2880
2881 static inline Instruction *getTombstoneKey() {
2883 }
2884
2885 static unsigned getHashValue(const Instruction *I) {
2886 assert(canHandle(I) && "Unknown instruction!");
2887 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2888 I->value_op_end()));
2889 }
2890
2891 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2892 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2893 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2894 return LHS == RHS;
2895 return LHS->isIdenticalTo(RHS);
2896 }
2897};
2898
2899} // end anonymous namespace
2900
2901///Perform cse of induction variable instructions.
2902static void cse(BasicBlock *BB) {
2903 // Perform simple cse.
2905 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2906 if (!CSEDenseMapInfo::canHandle(&In))
2907 continue;
2908
2909 // Check if we can replace this instruction with any of the
2910 // visited instructions.
2911 if (Instruction *V = CSEMap.lookup(&In)) {
2912 In.replaceAllUsesWith(V);
2913 In.eraseFromParent();
2914 continue;
2915 }
2916
2917 CSEMap[&In] = &In;
2918 }
2919}
2920
2923 ElementCount VF) const {
2924 // We only need to calculate a cost if the VF is scalar; for actual vectors
2925 // we should already have a pre-calculated cost at each VF.
2926 if (!VF.isScalar())
2927 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
2928
2930 Type *RetTy = CI->getType();
2932 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind))
2933 return *RedCost;
2934
2936 for (auto &ArgOp : CI->args())
2937 Tys.push_back(ArgOp->getType());
2938
2939 InstructionCost ScalarCallCost =
2941
2942 // If this is an intrinsic we may have a lower cost for it.
2944 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
2945 return std::min(ScalarCallCost, IntrinsicCost);
2946 }
2947 return ScalarCallCost;
2948}
2949
2951 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
2952 return Elt;
2953 return VectorType::get(Elt, VF);
2954}
2955
2958 ElementCount VF) const {
2960 assert(ID && "Expected intrinsic call!");
2961 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2962 FastMathFlags FMF;
2963 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2964 FMF = FPMO->getFastMathFlags();
2965
2968 SmallVector<Type *> ParamTys;
2969 std::transform(FTy->param_begin(), FTy->param_end(),
2970 std::back_inserter(ParamTys),
2971 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2972
2973 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2974 dyn_cast<IntrinsicInst>(CI));
2975 return TTI.getIntrinsicInstrCost(CostAttrs,
2977}
2978
2980 // Fix widened non-induction PHIs by setting up the PHI operands.
2982 fixNonInductionPHIs(State);
2983
2984 // Forget the original basic block.
2987
2988 // After vectorization, the exit blocks of the original loop will have
2989 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
2990 // looked through single-entry phis.
2991 SmallVector<BasicBlock *> ExitBlocks;
2992 OrigLoop->getExitBlocks(ExitBlocks);
2993 for (BasicBlock *Exit : ExitBlocks)
2994 for (PHINode &PN : Exit->phis())
2996
2997 if (Cost->requiresScalarEpilogue(VF.isVector())) {
2998 // No edge from the middle block to the unique exit block has been inserted
2999 // and there is nothing to fix from vector loop; phis should have incoming
3000 // from scalar loop only.
3001 } else {
3002 // TODO: Check in VPlan to see if IV users need fixing instead of checking
3003 // the cost model.
3004
3005 // If we inserted an edge from the middle block to the unique exit block,
3006 // update uses outside the loop (phis) to account for the newly inserted
3007 // edge.
3008
3009 // Fix-up external users of the induction variables.
3010 for (const auto &Entry : Legal->getInductionVars())
3011 fixupIVUsers(Entry.first, Entry.second,
3013 }
3014
3015 // Don't apply optimizations below when no vector region remains, as they all
3016 // require a vector loop at the moment.
3017 if (!State.Plan->getVectorLoopRegion())
3018 return;
3019
3021 sinkScalarOperands(&*PI);
3022
3023 VPRegionBlock *VectorRegion = State.Plan->getVectorLoopRegion();
3024 VPBasicBlock *HeaderVPBB = VectorRegion->getEntryBasicBlock();
3025 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
3026
3027 // Remove redundant induction instructions.
3028 cse(HeaderBB);
3029
3030 // Set/update profile weights for the vector and remainder loops as original
3031 // loop iterations are now distributed among them. Note that original loop
3032 // becomes the scalar remainder loop after vectorization.
3033 //
3034 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3035 // end up getting slightly roughened result but that should be OK since
3036 // profile is not inherently precise anyway. Note also possible bypass of
3037 // vector code caused by legality checks is ignored, assigning all the weight
3038 // to the vector loop, optimistically.
3039 //
3040 // For scalable vectorization we can't know at compile time how many
3041 // iterations of the loop are handled in one vector iteration, so instead
3042 // assume a pessimistic vscale of '1'.
3043 Loop *VectorLoop = LI->getLoopFor(HeaderBB);
3045 VF.getKnownMinValue() * UF);
3046}
3047
3049 // The basic block and loop containing the predicated instruction.
3050 auto *PredBB = PredInst->getParent();
3051 auto *VectorLoop = LI->getLoopFor(PredBB);
3052
3053 // Initialize a worklist with the operands of the predicated instruction.
3054 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3055
3056 // Holds instructions that we need to analyze again. An instruction may be
3057 // reanalyzed if we don't yet know if we can sink it or not.
3058 SmallVector<Instruction *, 8> InstsToReanalyze;
3059
3060 // Returns true if a given use occurs in the predicated block. Phi nodes use
3061 // their operands in their corresponding predecessor blocks.
3062 auto IsBlockOfUsePredicated = [&](Use &U) -> bool {
3063 auto *I = cast<Instruction>(U.getUser());
3064 BasicBlock *BB = I->getParent();
3065 if (auto *Phi = dyn_cast<PHINode>(I))
3066 BB = Phi->getIncomingBlock(
3067 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3068 return BB == PredBB;
3069 };
3070
3071 // Iteratively sink the scalarized operands of the predicated instruction
3072 // into the block we created for it. When an instruction is sunk, it's
3073 // operands are then added to the worklist. The algorithm ends after one pass
3074 // through the worklist doesn't sink a single instruction.
3075 bool Changed;
3076 do {
3077 // Add the instructions that need to be reanalyzed to the worklist, and
3078 // reset the changed indicator.
3079 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
3080 InstsToReanalyze.clear();
3081 Changed = false;
3082
3083 while (!Worklist.empty()) {
3084 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
3085
3086 // We can't sink an instruction if it is a phi node, is not in the loop,
3087 // may have side effects or may read from memory.
3088 // TODO: Could do more granular checking to allow sinking
3089 // a load past non-store instructions.
3090 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
3091 I->mayHaveSideEffects() || I->mayReadFromMemory())
3092 continue;
3093
3094 // If the instruction is already in PredBB, check if we can sink its
3095 // operands. In that case, VPlan's sinkScalarOperands() succeeded in
3096 // sinking the scalar instruction I, hence it appears in PredBB; but it
3097 // may have failed to sink I's operands (recursively), which we try
3098 // (again) here.
3099 if (I->getParent() == PredBB) {
3100 Worklist.insert(I->op_begin(), I->op_end());
3101 continue;
3102 }
3103
3104 // It's legal to sink the instruction if all its uses occur in the
3105 // predicated block. Otherwise, there's nothing to do yet, and we may
3106 // need to reanalyze the instruction.
3107 if (!llvm::all_of(I->uses(), IsBlockOfUsePredicated)) {
3108 InstsToReanalyze.push_back(I);
3109 continue;
3110 }
3111
3112 // Move the instruction to the beginning of the predicated block, and add
3113 // it's operands to the worklist.
3114 I->moveBefore(&*PredBB->getFirstInsertionPt());
3115 Worklist.insert(I->op_begin(), I->op_end());
3116
3117 // The sinking may have enabled other instructions to be sunk, so we will
3118 // need to iterate.
3119 Changed = true;
3120 }
3121 } while (Changed);
3122}
3123
3125 auto Iter = vp_depth_first_deep(Plan.getEntry());
3126 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3127 for (VPRecipeBase &P : VPBB->phis()) {
3128 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
3129 if (!VPPhi)
3130 continue;
3131 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
3132 // Make sure the builder has a valid insert point.
3133 Builder.SetInsertPoint(NewPhi);
3134 for (unsigned Idx = 0; Idx < VPPhi->getNumOperands(); ++Idx) {
3135 VPValue *Inc = VPPhi->getIncomingValue(Idx);
3136 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(Idx);
3137 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
3138 }
3139 }
3140 }
3141}
3142
3143void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
3144 // We should not collect Scalars more than once per VF. Right now, this
3145 // function is called from collectUniformsAndScalars(), which already does
3146 // this check. Collecting Scalars for VF=1 does not make any sense.
3147 assert(VF.isVector() && !Scalars.contains(VF) &&
3148 "This function should not be visited twice for the same VF");
3149
3150 // This avoids any chances of creating a REPLICATE recipe during planning
3151 // since that would result in generation of scalarized code during execution,
3152 // which is not supported for scalable vectors.
3153 if (VF.isScalable()) {
3154 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
3155 return;
3156 }
3157
3159
3160 // These sets are used to seed the analysis with pointers used by memory
3161 // accesses that will remain scalar.
3163 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
3164 auto *Latch = TheLoop->getLoopLatch();
3165
3166 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
3167 // The pointer operands of loads and stores will be scalar as long as the
3168 // memory access is not a gather or scatter operation. The value operand of a
3169 // store will remain scalar if the store is scalarized.
3170 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
3171 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
3172 assert(WideningDecision != CM_Unknown &&
3173 "Widening decision should be ready at this moment");
3174 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
3175 if (Ptr == Store->getValueOperand())
3176 return WideningDecision == CM_Scalarize;
3177 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
3178 "Ptr is neither a value or pointer operand");
3179 return WideningDecision != CM_GatherScatter;
3180 };
3181
3182 // A helper that returns true if the given value is a getelementptr
3183 // instruction contained in the loop.
3184 auto IsLoopVaryingGEP = [&](Value *V) {
3185 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
3186 };
3187
3188 // A helper that evaluates a memory access's use of a pointer. If the use will
3189 // be a scalar use and the pointer is only used by memory accesses, we place
3190 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
3191 // PossibleNonScalarPtrs.
3192 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
3193 // We only care about bitcast and getelementptr instructions contained in
3194 // the loop.
3195 if (!IsLoopVaryingGEP(Ptr))
3196 return;
3197
3198 // If the pointer has already been identified as scalar (e.g., if it was
3199 // also identified as uniform), there's nothing to do.
3200 auto *I = cast<Instruction>(Ptr);
3201 if (Worklist.count(I))
3202 return;
3203
3204 // If the use of the pointer will be a scalar use, and all users of the
3205 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
3206 // place the pointer in PossibleNonScalarPtrs.
3207 if (IsScalarUse(MemAccess, Ptr) &&
3208 all_of(I->users(), IsaPred<LoadInst, StoreInst>))
3209 ScalarPtrs.insert(I);
3210 else
3211 PossibleNonScalarPtrs.insert(I);
3212 };
3213
3214 // We seed the scalars analysis with three classes of instructions: (1)
3215 // instructions marked uniform-after-vectorization and (2) bitcast,
3216 // getelementptr and (pointer) phi instructions used by memory accesses
3217 // requiring a scalar use.
3218 //
3219 // (1) Add to the worklist all instructions that have been identified as
3220 // uniform-after-vectorization.
3221 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
3222
3223 // (2) Add to the worklist all bitcast and getelementptr instructions used by
3224 // memory accesses requiring a scalar use. The pointer operands of loads and
3225 // stores will be scalar unless the operation is a gather or scatter.
3226 // The value operand of a store will remain scalar if the store is scalarized.
3227 for (auto *BB : TheLoop->blocks())
3228 for (auto &I : *BB) {
3229 if (auto *Load = dyn_cast<LoadInst>(&I)) {
3230 EvaluatePtrUse(Load, Load->getPointerOperand());
3231 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
3232 EvaluatePtrUse(Store, Store->getPointerOperand());
3233 EvaluatePtrUse(Store, Store->getValueOperand());
3234 }
3235 }
3236 for (auto *I : ScalarPtrs)
3237 if (!PossibleNonScalarPtrs.count(I)) {
3238 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
3239 Worklist.insert(I);
3240 }
3241
3242 // Insert the forced scalars.
3243 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
3244 // induction variable when the PHI user is scalarized.
3245 auto ForcedScalar = ForcedScalars.find(VF);
3246 if (ForcedScalar != ForcedScalars.end())
3247 for (auto *I : ForcedScalar->second) {
3248 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
3249 Worklist.insert(I);
3250 }
3251
3252 // Expand the worklist by looking through any bitcasts and getelementptr
3253 // instructions we've already identified as scalar. This is similar to the
3254 // expansion step in collectLoopUniforms(); however, here we're only
3255 // expanding to include additional bitcasts and getelementptr instructions.
3256 unsigned Idx = 0;
3257 while (Idx != Worklist.size()) {
3258 Instruction *Dst = Worklist[Idx++];
3259 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
3260 continue;
3261 auto *Src = cast<Instruction>(Dst->getOperand(0));
3262 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
3263 auto *J = cast<Instruction>(U);
3264 return !TheLoop->contains(J) || Worklist.count(J) ||
3265 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
3266 IsScalarUse(J, Src));
3267 })) {
3268 Worklist.insert(Src);
3269 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
3270 }
3271 }
3272
3273 // An induction variable will remain scalar if all users of the induction
3274 // variable and induction variable update remain scalar.
3275 for (const auto &Induction : Legal->getInductionVars()) {
3276 auto *Ind = Induction.first;
3277 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3278
3279 // If tail-folding is applied, the primary induction variable will be used
3280 // to feed a vector compare.
3281 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
3282 continue;
3283
3284 // Returns true if \p Indvar is a pointer induction that is used directly by
3285 // load/store instruction \p I.
3286 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
3287 Instruction *I) {
3288 return Induction.second.getKind() ==
3290 (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
3291 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
3292 };
3293
3294 // Determine if all users of the induction variable are scalar after
3295 // vectorization.
3296 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
3297 auto *I = cast<Instruction>(U);
3298 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3299 IsDirectLoadStoreFromPtrIndvar(Ind, I);
3300 });
3301 if (!ScalarInd)
3302 continue;
3303
3304 // If the induction variable update is a fixed-order recurrence, neither the
3305 // induction variable or its update should be marked scalar after
3306 // vectorization.
3307 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
3308 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
3309 continue;
3310
3311 // Determine if all users of the induction variable update instruction are
3312 // scalar after vectorization.
3313 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3314 auto *I = cast<Instruction>(U);
3315 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3316 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
3317 });
3318 if (!ScalarIndUpdate)
3319 continue;
3320
3321 // The induction variable and its update instruction will remain scalar.
3322 Worklist.insert(Ind);
3323 Worklist.insert(IndUpdate);
3324 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
3325 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
3326 << "\n");
3327 }
3328
3329 Scalars[VF].insert(Worklist.begin(), Worklist.end());
3330}
3331
3333 Instruction *I, ElementCount VF) const {
3334 if (!isPredicatedInst(I))
3335 return false;
3336
3337 // Do we have a non-scalar lowering for this predicated
3338 // instruction? No - it is scalar with predication.
3339 switch(I->getOpcode()) {
3340 default:
3341 return true;
3342 case Instruction::Call:
3343 if (VF.isScalar())
3344 return true;
3345 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(I), VF))
3346 .Kind == CM_Scalarize;
3347 case Instruction::Load:
3348 case Instruction::Store: {
3350 auto *Ty = getLoadStoreType(I);
3351 Type *VTy = Ty;
3352 if (VF.isVector())
3353 VTy = VectorType::get(Ty, VF);
3354 const Align Alignment = getLoadStoreAlignment(I);
3355 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
3356 TTI.isLegalMaskedGather(VTy, Alignment))
3357 : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
3358 TTI.isLegalMaskedScatter(VTy, Alignment));
3359 }
3360 case Instruction::UDiv:
3361 case Instruction::SDiv:
3362 case Instruction::SRem:
3363 case Instruction::URem: {
3364 // We have the option to use the safe-divisor idiom to avoid predication.
3365 // The cost based decision here will always select safe-divisor for
3366 // scalable vectors as scalarization isn't legal.
3367 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
3368 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
3369 }
3370 }
3371}
3372
3373// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
3375 // If predication is not needed, avoid it.
3376 // TODO: We can use the loop-preheader as context point here and get
3377 // context sensitive reasoning for isSafeToSpeculativelyExecute.
3378 if (!blockNeedsPredicationForAnyReason(I->getParent()) ||
3380 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
3381 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(I))
3382 return false;
3383
3384 // If the instruction was executed conditionally in the original scalar loop,
3385 // predication is needed with a mask whose lanes are all possibly inactive.
3386 if (Legal->blockNeedsPredication(I->getParent()))
3387 return true;
3388
3389 // All that remain are instructions with side-effects originally executed in
3390 // the loop unconditionally, but now execute under a tail-fold mask (only)
3391 // having at least one active lane (the first). If the side-effects of the
3392 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
3393 // - it will cause the same side-effects as when masked.
3394 switch(I->getOpcode()) {
3395 default:
3397 "instruction should have been considered by earlier checks");
3398 case Instruction::Call:
3399 // Side-effects of a Call are assumed to be non-invariant, needing a
3400 // (fold-tail) mask.
3402 "should have returned earlier for calls not needing a mask");
3403 return true;
3404 case Instruction::Load:
3405 // If the address is loop invariant no predication is needed.
3407 case Instruction::Store: {
3408 // For stores, we need to prove both speculation safety (which follows from
3409 // the same argument as loads), but also must prove the value being stored
3410 // is correct. The easiest form of the later is to require that all values
3411 // stored are the same.
3413 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
3414 }
3415 case Instruction::UDiv:
3416 case Instruction::SDiv:
3417 case Instruction::SRem:
3418 case Instruction::URem:
3419 // If the divisor is loop-invariant no predication is needed.
3420 return !TheLoop->isLoopInvariant(I->getOperand(1));
3421 }
3422}
3423
3424std::pair<InstructionCost, InstructionCost>
3426 ElementCount VF) const {
3427 assert(I->getOpcode() == Instruction::UDiv ||
3428 I->getOpcode() == Instruction::SDiv ||
3429 I->getOpcode() == Instruction::SRem ||
3430 I->getOpcode() == Instruction::URem);
3432
3434
3435 // Scalarization isn't legal for scalable vector types
3436 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
3437 if (!VF.isScalable()) {
3438 // Get the scalarization cost and scale this amount by the probability of
3439 // executing the predicated block. If the instruction is not predicated,
3440 // we fall through to the next case.
3441 ScalarizationCost = 0;
3442
3443 // These instructions have a non-void type, so account for the phi nodes
3444 // that we will create. This cost is likely to be zero. The phi node
3445 // cost, if any, should be scaled by the block probability because it
3446 // models a copy at the end of each predicated block.
3447 ScalarizationCost += VF.getKnownMinValue() *
3448 TTI.getCFInstrCost(Instruction::PHI, CostKind);
3449
3450 // The cost of the non-predicated instruction.
3451 ScalarizationCost += VF.getKnownMinValue() *
3452 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
3453
3454 // The cost of insertelement and extractelement instructions needed for
3455 // scalarization.
3456 ScalarizationCost += getScalarizationOverhead(I, VF, CostKind);
3457
3458 // Scale the cost by the probability of executing the predicated blocks.
3459 // This assumes the predicated block for each vector lane is equally
3460 // likely.
3461 ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb();
3462 }
3463 InstructionCost SafeDivisorCost = 0;
3464
3465 auto *VecTy = toVectorTy(I->getType(), VF);
3466
3467 // The cost of the select guard to ensure all lanes are well defined
3468 // after we speculate above any internal control flow.
3469 SafeDivisorCost +=
3470 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
3471 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
3473
3474 // Certain instructions can be cheaper to vectorize if they have a constant
3475 // second vector operand. One example of this are shifts on x86.
3476 Value *Op2 = I->getOperand(1);
3477 auto Op2Info = TTI.getOperandInfo(Op2);
3478 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
3479 Legal->isInvariant(Op2))
3481
3482 SmallVector<const Value *, 4> Operands(I->operand_values());
3483 SafeDivisorCost += TTI.getArithmeticInstrCost(
3484 I->getOpcode(), VecTy, CostKind,
3485 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
3486 Op2Info, Operands, I);
3487 return {ScalarizationCost, SafeDivisorCost};
3488}
3489
3491 Instruction *I, ElementCount VF) const {
3492 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
3494 "Decision should not be set yet.");
3495 auto *Group = getInterleavedAccessGroup(I);
3496 assert(Group && "Must have a group.");
3497 unsigned InterleaveFactor = Group->getFactor();
3498
3499 // If the instruction's allocated size doesn't equal its type size, it
3500 // requires padding and will be scalarized.
3501 auto &DL = I->getDataLayout();
3502 auto *ScalarTy = getLoadStoreType(I);
3503 if (hasIrregularType(ScalarTy, DL))
3504 return false;
3505
3506 // We currently only know how to emit interleave/deinterleave with
3507 // Factor=2 for scalable vectors. This is purely an implementation
3508 // limit.
3509 if (VF.isScalable() && InterleaveFactor != 2)
3510 return false;
3511
3512 // If the group involves a non-integral pointer, we may not be able to
3513 // losslessly cast all values to a common type.
3514 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
3515 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3516 Instruction *Member = Group->getMember(Idx);
3517 if (!Member)
3518 continue;
3519 auto *MemberTy = getLoadStoreType(Member);
3520 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3521 // Don't coerce non-integral pointers to integers or vice versa.
3522 if (MemberNI != ScalarNI)
3523 // TODO: Consider adding special nullptr value case here
3524 return false;
3525 if (MemberNI && ScalarNI &&
3526 ScalarTy->getPointerAddressSpace() !=
3527 MemberTy->getPointerAddressSpace())
3528 return false;
3529 }
3530
3531 // Check if masking is required.
3532 // A Group may need masking for one of two reasons: it resides in a block that
3533 // needs predication, or it was decided to use masking to deal with gaps
3534 // (either a gap at the end of a load-access that may result in a speculative
3535 // load, or any gaps in a store-access).
3536 bool PredicatedAccessRequiresMasking =
3537 blockNeedsPredicationForAnyReason(I->getParent()) &&
3539 bool LoadAccessWithGapsRequiresEpilogMasking =
3540 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3542 bool StoreAccessWithGapsRequiresMasking =
3543 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
3544 if (!PredicatedAccessRequiresMasking &&
3545 !LoadAccessWithGapsRequiresEpilogMasking &&
3546 !StoreAccessWithGapsRequiresMasking)
3547 return true;
3548
3549 // If masked interleaving is required, we expect that the user/target had
3550 // enabled it, because otherwise it either wouldn't have been created or
3551 // it should have been invalidated by the CostModel.
3553 "Masked interleave-groups for predicated accesses are not enabled.");
3554
3555 if (Group->isReverse())
3556 return false;
3557
3558 auto *Ty = getLoadStoreType(I);
3559 const Align Alignment = getLoadStoreAlignment(I);
3560 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
3561 : TTI.isLegalMaskedStore(Ty, Alignment);
3562}
3563
3565 Instruction *I, ElementCount VF) {
3566 // Get and ensure we have a valid memory instruction.
3567 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3568
3570 auto *ScalarTy = getLoadStoreType(I);
3571
3572 // In order to be widened, the pointer should be consecutive, first of all.
3573 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3574 return false;
3575
3576 // If the instruction is a store located in a predicated block, it will be
3577 // scalarized.
3578 if (isScalarWithPredication(I, VF))
3579 return false;
3580
3581 // If the instruction's allocated size doesn't equal it's type size, it
3582 // requires padding and will be scalarized.
3583 auto &DL = I->getDataLayout();
3584 if (hasIrregularType(ScalarTy, DL))
3585 return false;
3586
3587 return true;
3588}
3589
3590void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3591 // We should not collect Uniforms more than once per VF. Right now,
3592 // this function is called from collectUniformsAndScalars(), which
3593 // already does this check. Collecting Uniforms for VF=1 does not make any
3594 // sense.
3595
3596 assert(VF.isVector() && !Uniforms.contains(VF) &&
3597 "This function should not be visited twice for the same VF");
3598
3599 // Visit the list of Uniforms. If we find no uniform value, we won't
3600 // analyze again. Uniforms.count(VF) will return 1.
3601 Uniforms[VF].clear();
3602
3603 // Now we know that the loop is vectorizable!
3604 // Collect instructions inside the loop that will remain uniform after
3605 // vectorization.
3606
3607 // Global values, params and instructions outside of current loop are out of
3608 // scope.
3609 auto IsOutOfScope = [&](Value *V) -> bool {
3610 Instruction *I = dyn_cast<Instruction>(V);
3611 return (!I || !TheLoop->contains(I));
3612 };
3613
3614 // Worklist containing uniform instructions demanding lane 0.
3615 SetVector<Instruction *> Worklist;
3616
3617 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3618 // that require predication must not be considered uniform after
3619 // vectorization, because that would create an erroneous replicating region
3620 // where only a single instance out of VF should be formed.
3621 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3622 if (IsOutOfScope(I)) {
3623 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3624 << *I << "\n");
3625 return;
3626 }
3627 if (isPredicatedInst(I)) {
3628 LLVM_DEBUG(
3629 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3630 << "\n");
3631 return;
3632 }
3633 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3634 Worklist.insert(I);
3635 };
3636
3637 // Start with the conditional branches exiting the loop. If the branch
3638 // condition is an instruction contained in the loop that is only used by the
3639 // branch, it is uniform. Note conditions from uncountable early exits are not
3640 // uniform.
3642 TheLoop->getExitingBlocks(Exiting);
3643 for (BasicBlock *E : Exiting) {
3645 continue;
3646 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3647 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3648 AddToWorklistIfAllowed(Cmp);
3649 }
3650
3651 auto PrevVF = VF.divideCoefficientBy(2);
3652 // Return true if all lanes perform the same memory operation, and we can
3653 // thus choose to execute only one.
3654 auto IsUniformMemOpUse = [&](Instruction *I) {
3655 // If the value was already known to not be uniform for the previous
3656 // (smaller VF), it cannot be uniform for the larger VF.
3657 if (PrevVF.isVector()) {
3658 auto Iter = Uniforms.find(PrevVF);
3659 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3660 return false;
3661 }
3662 if (!Legal->isUniformMemOp(*I, VF))
3663 return false;
3664 if (isa<LoadInst>(I))
3665 // Loading the same address always produces the same result - at least
3666 // assuming aliasing and ordering which have already been checked.
3667 return true;
3668 // Storing the same value on every iteration.
3669 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3670 };
3671
3672 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3673 InstWidening WideningDecision = getWideningDecision(I, VF);
3674 assert(WideningDecision != CM_Unknown &&
3675 "Widening decision should be ready at this moment");
3676
3677 if (IsUniformMemOpUse(I))
3678 return true;
3679
3680 return (WideningDecision == CM_Widen ||
3681 WideningDecision == CM_Widen_Reverse ||
3682 WideningDecision == CM_Interleave);
3683 };
3684
3685 // Returns true if Ptr is the pointer operand of a memory access instruction
3686 // I, I is known to not require scalarization, and the pointer is not also
3687 // stored.
3688 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3689 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3690 return false;
3691 return getLoadStorePointerOperand(I) == Ptr &&
3692 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3693 };
3694
3695 // Holds a list of values which are known to have at least one uniform use.
3696 // Note that there may be other uses which aren't uniform. A "uniform use"
3697 // here is something which only demands lane 0 of the unrolled iterations;
3698 // it does not imply that all lanes produce the same value (e.g. this is not
3699 // the usual meaning of uniform)
3700 SetVector<Value *> HasUniformUse;
3701
3702 // Scan the loop for instructions which are either a) known to have only
3703 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3704 for (auto *BB : TheLoop->blocks())
3705 for (auto &I : *BB) {
3706 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3707 switch (II->getIntrinsicID()) {
3708 case Intrinsic::sideeffect:
3709 case Intrinsic::experimental_noalias_scope_decl:
3710 case Intrinsic::assume:
3711 case Intrinsic::lifetime_start:
3712 case Intrinsic::lifetime_end:
3714 AddToWorklistIfAllowed(&I);
3715 break;
3716 default:
3717 break;
3718 }
3719 }
3720
3721 // ExtractValue instructions must be uniform, because the operands are
3722 // known to be loop-invariant.
3723 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3724 assert(IsOutOfScope(EVI->getAggregateOperand()) &&
3725 "Expected aggregate value to be loop invariant");
3726 AddToWorklistIfAllowed(EVI);
3727 continue;
3728 }
3729
3730 // If there's no pointer operand, there's nothing to do.
3732 if (!Ptr)
3733 continue;
3734
3735 if (IsUniformMemOpUse(&I))
3736 AddToWorklistIfAllowed(&I);
3737
3738 if (IsVectorizedMemAccessUse(&I, Ptr))
3739 HasUniformUse.insert(Ptr);
3740 }
3741
3742 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3743 // demanding) users. Since loops are assumed to be in LCSSA form, this
3744 // disallows uses outside the loop as well.
3745 for (auto *V : HasUniformUse) {
3746 if (IsOutOfScope(V))
3747 continue;
3748 auto *I = cast<Instruction>(V);
3749 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3750 auto *UI = cast<Instruction>(U);
3751 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3752 });
3753 if (UsersAreMemAccesses)
3754 AddToWorklistIfAllowed(I);
3755 }
3756
3757 // Expand Worklist in topological order: whenever a new instruction
3758 // is added , its users should be already inside Worklist. It ensures
3759 // a uniform instruction will only be used by uniform instructions.
3760 unsigned Idx = 0;
3761 while (Idx != Worklist.size()) {
3762 Instruction *I = Worklist[Idx++];
3763
3764 for (auto *OV : I->operand_values()) {
3765 // isOutOfScope operands cannot be uniform instructions.
3766 if (IsOutOfScope(OV))
3767 continue;
3768 // First order recurrence Phi's should typically be considered
3769 // non-uniform.
3770 auto *OP = dyn_cast<PHINode>(OV);
3772 continue;
3773 // If all the users of the operand are uniform, then add the
3774 // operand into the uniform worklist.
3775 auto *OI = cast<Instruction>(OV);
3776 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3777 auto *J = cast<Instruction>(U);
3778 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3779 }))
3780 AddToWorklistIfAllowed(OI);
3781 }
3782 }
3783
3784 // For an instruction to be added into Worklist above, all its users inside
3785 // the loop should also be in Worklist. However, this condition cannot be
3786 // true for phi nodes that form a cyclic dependence. We must process phi
3787 // nodes separately. An induction variable will remain uniform if all users
3788 // of the induction variable and induction variable update remain uniform.
3789 // The code below handles both pointer and non-pointer induction variables.
3790 BasicBlock *Latch = TheLoop->getLoopLatch();
3791 for (const auto &Induction : Legal->getInductionVars()) {
3792 auto *Ind = Induction.first;
3793 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3794
3795 // Determine if all users of the induction variable are uniform after
3796 // vectorization.
3797 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3798 auto *I = cast<Instruction>(U);
3799 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3800 IsVectorizedMemAccessUse(I, Ind);
3801 });
3802 if (!UniformInd)
3803 continue;
3804
3805 // Determine if all users of the induction variable update instruction are
3806 // uniform after vectorization.
3807 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3808 auto *I = cast<Instruction>(U);
3809 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3810 IsVectorizedMemAccessUse(I, IndUpdate);
3811 });
3812 if (!UniformIndUpdate)
3813 continue;
3814
3815 // The induction variable and its update instruction will remain uniform.
3816 AddToWorklistIfAllowed(Ind);
3817 AddToWorklistIfAllowed(IndUpdate);
3818 }
3819
3820 Uniforms[VF].insert(Worklist.begin(), Worklist.end());
3821}
3822
3824 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3825
3827 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3828 "runtime pointer checks needed. Enable vectorization of this "
3829 "loop with '#pragma clang loop vectorize(enable)' when "
3830 "compiling with -Os/-Oz",
3831 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3832 return true;
3833 }
3834
3835 if (!PSE.getPredicate().isAlwaysTrue()) {
3836 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3837 "runtime SCEV checks needed. Enable vectorization of this "
3838 "loop with '#pragma clang loop vectorize(enable)' when "
3839 "compiling with -Os/-Oz",
3840 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3841 return true;
3842 }
3843
3844 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3845 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3846 reportVectorizationFailure("Runtime stride check for small trip count",
3847 "runtime stride == 1 checks needed. Enable vectorization of "
3848 "this loop without such check by compiling with -Os/-Oz",
3849 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3850 return true;
3851 }
3852
3853 return false;
3854}
3855
3856bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3857 if (IsScalableVectorizationAllowed)
3858 return *IsScalableVectorizationAllowed;
3859
3860 IsScalableVectorizationAllowed = false;
3862 return false;
3863
3865 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3866 "ScalableVectorizationDisabled", ORE, TheLoop);
3867 return false;
3868 }
3869
3870 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3871
3872 auto MaxScalableVF = ElementCount::getScalable(
3873 std::numeric_limits<ElementCount::ScalarTy>::max());
3874
3875 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3876 // FIXME: While for scalable vectors this is currently sufficient, this should
3877 // be replaced by a more detailed mechanism that filters out specific VFs,
3878 // instead of invalidating vectorization for a whole set of VFs based on the
3879 // MaxVF.
3880
3881 // Disable scalable vectorization if the loop contains unsupported reductions.
3882 if (!canVectorizeReductions(MaxScalableVF)) {
3884 "Scalable vectorization not supported for the reduction "
3885 "operations found in this loop.",
3886 "ScalableVFUnfeasible", ORE, TheLoop);
3887 return false;
3888 }
3889
3890 // Disable scalable vectorization if the loop contains any instructions
3891 // with element types not supported for scalable vectors.
3892 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3893 return !Ty->isVoidTy() &&
3895 })) {
3896 reportVectorizationInfo("Scalable vectorization is not supported "
3897 "for all element types found in this loop.",
3898 "ScalableVFUnfeasible", ORE, TheLoop);
3899 return false;
3900 }
3901
3903 reportVectorizationInfo("The target does not provide maximum vscale value "
3904 "for safe distance analysis.",
3905 "ScalableVFUnfeasible", ORE, TheLoop);
3906 return false;
3907 }
3908
3909 IsScalableVectorizationAllowed = true;
3910 return true;
3911}
3912
3914LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3915 if (!isScalableVectorizationAllowed())
3916 return ElementCount::getScalable(0);
3917
3918 auto MaxScalableVF = ElementCount::getScalable(
3919 std::numeric_limits<ElementCount::ScalarTy>::max());
3921 return MaxScalableVF;
3922
3923 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3924 // Limit MaxScalableVF by the maximum safe dependence distance.
3925 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3926
3927 if (!MaxScalableVF)
3929 "Max legal vector width too small, scalable vectorization "
3930 "unfeasible.",
3931 "ScalableVFUnfeasible", ORE, TheLoop);
3932
3933 return MaxScalableVF;
3934}
3935
3936FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3937 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3939 unsigned SmallestType, WidestType;
3940 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3941
3942 // Get the maximum safe dependence distance in bits computed by LAA.
3943 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3944 // the memory accesses that is most restrictive (involved in the smallest
3945 // dependence distance).
3946 unsigned MaxSafeElements =
3948
3949 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
3950 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
3952 this->MaxSafeElements = MaxSafeElements;
3953
3954 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3955 << ".\n");
3956 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3957 << ".\n");
3958
3959 // First analyze the UserVF, fall back if the UserVF should be ignored.
3960 if (UserVF) {
3961 auto MaxSafeUserVF =
3962 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3963
3964 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3965 // If `VF=vscale x N` is safe, then so is `VF=N`
3966 if (UserVF.isScalable())
3967 return FixedScalableVFPair(
3968 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3969
3970 return UserVF;
3971 }
3972
3973 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3974
3975 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3976 // is better to ignore the hint and let the compiler choose a suitable VF.
3977 if (!UserVF.isScalable()) {
3978 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3979 << " is unsafe, clamping to max safe VF="
3980 << MaxSafeFixedVF << ".\n");
3981 ORE->emit([&]() {
3982 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3984 TheLoop->getHeader())
3985 << "User-specified vectorization factor "
3986 << ore::NV("UserVectorizationFactor", UserVF)
3987 << " is unsafe, clamping to maximum safe vectorization factor "
3988 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3989 });
3990 return MaxSafeFixedVF;
3991 }
3992
3994 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3995 << " is ignored because scalable vectors are not "
3996 "available.\n");
3997 ORE->emit([&]() {
3998 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4000 TheLoop->getHeader())
4001 << "User-specified vectorization factor "
4002 << ore::NV("UserVectorizationFactor", UserVF)
4003 << " is ignored because the target does not support scalable "
4004 "vectors. The compiler will pick a more suitable value.";
4005 });
4006 } else {
4007 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4008 << " is unsafe. Ignoring scalable UserVF.\n");
4009 ORE->emit([&]() {
4010 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4012 TheLoop->getHeader())
4013 << "User-specified vectorization factor "
4014 << ore::NV("UserVectorizationFactor", UserVF)
4015 << " is unsafe. Ignoring the hint to let the compiler pick a "
4016 "more suitable value.";
4017 });
4018 }
4019 }
4020
4021 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4022 << " / " << WidestType << " bits.\n");
4023
4026 if (auto MaxVF =
4027 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4028 MaxSafeFixedVF, FoldTailByMasking))
4029 Result.FixedVF = MaxVF;
4030
4031 if (auto MaxVF =
4032 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4033 MaxSafeScalableVF, FoldTailByMasking))
4034 if (MaxVF.isScalable()) {
4035 Result.ScalableVF = MaxVF;
4036 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4037 << "\n");
4038 }
4039
4040 return Result;
4041}
4042
4046 // TODO: It may be useful to do since it's still likely to be dynamically
4047 // uniform if the target can skip.
4049 "Not inserting runtime ptr check for divergent target",
4050 "runtime pointer checks needed. Not enabled for divergent target",
4051 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4053 }
4054
4055 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4056 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
4057 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4058 if (TC != MaxTC)
4059 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
4060 if (TC == 1) {
4061 reportVectorizationFailure("Single iteration (non) loop",
4062 "loop trip count is one, irrelevant for vectorization",
4063 "SingleIterationLoop", ORE, TheLoop);
4065 }
4066
4067 switch (ScalarEpilogueStatus) {
4069 return computeFeasibleMaxVF(MaxTC, UserVF, false);
4071 [[fallthrough]];
4073 LLVM_DEBUG(
4074 dbgs() << "LV: vector predicate hint/switch found.\n"
4075 << "LV: Not allowing scalar epilogue, creating predicated "
4076 << "vector loop.\n");
4077 break;
4079 // fallthrough as a special case of OptForSize
4081 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4082 LLVM_DEBUG(
4083 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4084 else
4085 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4086 << "count.\n");
4087
4088 // Bail if runtime checks are required, which are not good when optimising
4089 // for size.
4092
4093 break;
4094 }
4095
4096 // The only loops we can vectorize without a scalar epilogue, are loops with
4097 // a bottom-test and a single exiting block. We'd have to handle the fact
4098 // that not every instruction executes on the last iteration. This will
4099 // require a lane mask which varies through the vector loop body. (TODO)
4101 // If there was a tail-folding hint/switch, but we can't fold the tail by
4102 // masking, fallback to a vectorization with a scalar epilogue.
4103 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
4104 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
4105 "scalar epilogue instead.\n");
4106 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
4107 return computeFeasibleMaxVF(MaxTC, UserVF, false);
4108 }
4110 }
4111
4112 // Now try the tail folding
4113
4114 // Invalidate interleave groups that require an epilogue if we can't mask
4115 // the interleave-group.
4117 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
4118 "No decisions should have been taken at this point");
4119 // Note: There is no need to invalidate any cost modeling decisions here, as
4120 // none were taken so far.
4122 }
4123
4124 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
4125
4126 // Avoid tail folding if the trip count is known to be a multiple of any VF
4127 // we choose.
4128 std::optional<unsigned> MaxPowerOf2RuntimeVF =
4129 MaxFactors.FixedVF.getFixedValue();
4130 if (MaxFactors.ScalableVF) {
4131 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
4132 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
4133 MaxPowerOf2RuntimeVF = std::max<unsigned>(
4134 *MaxPowerOf2RuntimeVF,
4135 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
4136 } else
4137 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
4138 }
4139
4140 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
4141 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
4142 "MaxFixedVF must be a power of 2");
4143 unsigned MaxVFtimesIC =
4144 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
4145 ScalarEvolution *SE = PSE.getSE();
4146 // Currently only loops with countable exits are vectorized, but calling
4147 // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with
4148 // uncountable exits whilst also ensuring the symbolic maximum and known
4149 // back-edge taken count remain identical for loops with countable exits.
4150 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
4151 assert(BackedgeTakenCount == PSE.getBackedgeTakenCount() &&
4152 "Invalid loop count");
4153 const SCEV *ExitCount = SE->getAddExpr(
4154 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
4155 const SCEV *Rem = SE->getURemExpr(
4156 SE->applyLoopGuards(ExitCount, TheLoop),
4157 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
4158 if (Rem->isZero()) {
4159 // Accept MaxFixedVF if we do not have a tail.
4160 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
4161 return MaxFactors;
4162 }
4163 }
4164
4165 // If we don't know the precise trip count, or if the trip count that we
4166 // found modulo the vectorization factor is not zero, try to fold the tail
4167 // by masking.
4168 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
4169 setTailFoldingStyles(MaxFactors.ScalableVF.isScalable(), UserIC);
4170 if (foldTailByMasking()) {
4172 LLVM_DEBUG(
4173 dbgs()
4174 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
4175 "try to generate VP Intrinsics with scalable vector "
4176 "factors only.\n");
4177 // Tail folded loop using VP intrinsics restricts the VF to be scalable
4178 // for now.
4179 // TODO: extend it for fixed vectors, if required.
4180 assert(MaxFactors.ScalableVF.isScalable() &&
4181 "Expected scalable vector factor.");
4182
4183 MaxFactors.FixedVF = ElementCount::getFixed(1);
4184 }
4185 return MaxFactors;
4186 }
4187
4188 // If there was a tail-folding hint/switch, but we can't fold the tail by
4189 // masking, fallback to a vectorization with a scalar epilogue.
4190 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
4191 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
4192 "scalar epilogue instead.\n");
4193 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
4194 return MaxFactors;
4195 }
4196
4197 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
4198 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
4200 }
4201
4202 if (TC == 0) {
4204 "unable to calculate the loop count due to complex control flow",
4205 "UnknownLoopCountComplexCFG", ORE, TheLoop);
4207 }
4208
4210 "Cannot optimize for size and vectorize at the same time.",
4211 "cannot optimize for size and vectorize at the same time. "
4212 "Enable vectorization of this loop with '#pragma clang loop "
4213 "vectorize(enable)' when compiling with -Os/-Oz",
4214 "NoTailLoopWithOptForSize", ORE, TheLoop);
4216}
4217
4218ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
4219 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
4220 ElementCount MaxSafeVF, bool FoldTailByMasking) {
4221 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
4222 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
4223 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
4225
4226 // Convenience function to return the minimum of two ElementCounts.
4227 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
4228 assert((LHS.isScalable() == RHS.isScalable()) &&
4229 "Scalable flags must match");
4230 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
4231 };
4232
4233 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
4234 // Note that both WidestRegister and WidestType may not be a powers of 2.
4235 auto MaxVectorElementCount = ElementCount::get(
4236 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
4237 ComputeScalableMaxVF);
4238 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
4239 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
4240 << (MaxVectorElementCount * WidestType) << " bits.\n");
4241
4242 if (!MaxVectorElementCount) {
4243 LLVM_DEBUG(dbgs() << "LV: The target has no "
4244 << (ComputeScalableMaxVF ? "scalable" : "fixed")
4245 << " vector registers.\n");
4246 return ElementCount::getFixed(1);
4247 }
4248
4249 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
4250 if (MaxVectorElementCount.isScalable() &&
4251 TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
4252 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
4253 auto Min = Attr.getVScaleRangeMin();
4254 WidestRegisterMinEC *= Min;
4255 }
4256
4257 // When a scalar epilogue is required, at least one iteration of the scalar
4258 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
4259 // max VF that results in a dead vector loop.
4260 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
4261 MaxTripCount -= 1;
4262
4263 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC &&
4264 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
4265 // If upper bound loop trip count (TC) is known at compile time there is no
4266 // point in choosing VF greater than TC (as done in the loop below). Select
4267 // maximum power of two which doesn't exceed TC. If MaxVectorElementCount is
4268 // scalable, we only fall back on a fixed VF when the TC is less than or
4269 // equal to the known number of lanes.
4270 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
4271 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
4272 "exceeding the constant trip count: "
4273 << ClampedUpperTripCount << "\n");
4274 return ElementCount::get(
4275 ClampedUpperTripCount,
4276 FoldTailByMasking ? MaxVectorElementCount.isScalable() : false);
4277 }
4278
4280 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
4282 ElementCount MaxVF = MaxVectorElementCount;
4283 if (MaximizeBandwidth ||
4284 (MaximizeBandwidth.getNumOccurrences() == 0 &&
4287 auto MaxVectorElementCountMaxBW = ElementCount::get(
4288 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
4289 ComputeScalableMaxVF);
4290 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
4291
4292 // Collect all viable vectorization factors larger than the default MaxVF
4293 // (i.e. MaxVectorElementCount).
4295 for (ElementCount VS = MaxVectorElementCount * 2;
4296 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
4297 VFs.push_back(VS);
4298
4299 // For each VF calculate its register usage.
4300 auto RUs = calculateRegisterUsage(VFs);
4301
4302 // Select the largest VF which doesn't require more registers than existing
4303 // ones.
4304 for (int I = RUs.size() - 1; I >= 0; --I) {
4305 const auto &MLU = RUs[I].MaxLocalUsers;
4306 if (all_of(MLU, [&](decltype(MLU.front()) &LU) {
4307 return LU.second <= TTI.getNumberOfRegisters(LU.first);
4308 })) {
4309 MaxVF = VFs[I];
4310 break;
4311 }
4312 }
4313 if (ElementCount MinVF =
4314 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
4315 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
4316 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
4317 << ") with target's minimum: " << MinVF << '\n');
4318 MaxVF = MinVF;
4319 }
4320 }
4321
4322 // Invalidate any widening decisions we might have made, in case the loop
4323 // requires prediction (decided later), but we have already made some
4324 // load/store widening decisions.
4326 }
4327 return MaxVF;
4328}
4329
4330/// Convenience function that returns the value of vscale_range iff
4331/// vscale_range.min == vscale_range.max or otherwise returns the value
4332/// returned by the corresponding TTI method.
4333static std::optional<unsigned>
4335 const Function *Fn = L->getHeader()->getParent();
4336 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
4337 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
4338 auto Min = Attr.getVScaleRangeMin();
4339 auto Max = Attr.getVScaleRangeMax();
4340 if (Max && Min == Max)
4341 return Max;
4342 }
4343
4344 return TTI.getVScaleForTuning();
4345}
4346
4347/// This function attempts to return a value that represents the vectorization
4348/// factor at runtime. For fixed-width VFs we know this precisely at compile
4349/// time, but for scalable VFs we calculate it based on an estimate of the
4350/// vscale value.
4351static unsigned getEstimatedRuntimeVF(const Loop *L,
4352 const TargetTransformInfo &TTI,
4353 ElementCount VF) {
4354 unsigned EstimatedVF = VF.getKnownMinValue();
4355 if (VF.isScalable())
4356 if (std::optional<unsigned> VScale = getVScaleForTuning(L, TTI))
4357 EstimatedVF *= *VScale;
4358 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
4359 return EstimatedVF;
4360}
4361
4362bool LoopVectorizationPlanner::isMoreProfitable(
4364 const unsigned MaxTripCount) const {
4365 InstructionCost CostA = A.Cost;
4366 InstructionCost CostB = B.Cost;
4367
4368 // Improve estimate for the vector width if it is scalable.
4369 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
4370 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
4371 if (std::optional<unsigned> VScale = getVScaleForTuning(OrigLoop, TTI)) {
4372 if (A.Width.isScalable())
4373 EstimatedWidthA *= *VScale;
4374 if (B.Width.isScalable())
4375 EstimatedWidthB *= *VScale;
4376 }
4377
4378 // Assume vscale may be larger than 1 (or the value being tuned for),
4379 // so that scalable vectorization is slightly favorable over fixed-width
4380 // vectorization.
4381 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost() &&
4382 A.Width.isScalable() && !B.Width.isScalable();
4383
4384 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
4385 const InstructionCost &RHS) {
4386 return PreferScalable ? LHS <= RHS : LHS < RHS;
4387 };
4388
4389 // To avoid the need for FP division:
4390 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
4391 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
4392 if (!MaxTripCount)
4393 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
4394
4395 auto GetCostForTC = [MaxTripCount, this](unsigned VF,
4396 InstructionCost VectorCost,
4397 InstructionCost ScalarCost) {
4398 // If the trip count is a known (possibly small) constant, the trip count
4399 // will be rounded up to an integer number of iterations under
4400 // FoldTailByMasking. The total cost in that case will be
4401 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
4402 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
4403 // some extra overheads, but for the purpose of comparing the costs of
4404 // different VFs we can use this to compare the total loop-body cost
4405 // expected after vectorization.
4406 if (CM.foldTailByMasking())
4407 return VectorCost * divideCeil(MaxTripCount, VF);
4408 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF);
4409 };
4410
4411 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
4412 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
4413 return CmpFn(RTCostA, RTCostB);
4414}
4415
4416bool LoopVectorizationPlanner::isMoreProfitable(
4417 const VectorizationFactor &A, const VectorizationFactor &B) const {
4418 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
4419 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount);
4420}
4421
4424 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
4425 SmallVector<RecipeVFPair> InvalidCosts;
4426 for (const auto &Plan : VPlans) {
4427 for (ElementCount VF : Plan->vectorFactors()) {
4428 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(),
4429 CM);
4430 precomputeCosts(*Plan, VF, CostCtx);
4431 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
4432 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4433 for (auto &R : *VPBB) {
4434 if (!R.cost(VF, CostCtx).isValid())
4435 InvalidCosts.emplace_back(&R, VF);
4436 }
4437 }
4438 }
4439 }
4440 if (InvalidCosts.empty())
4441 return;
4442
4443 // Emit a report of VFs with invalid costs in the loop.
4444
4445 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
4447 unsigned I = 0;
4448 for (auto &Pair : InvalidCosts)
4449 if (!Numbering.count(Pair.first))
4450 Numbering[Pair.first] = I++;
4451
4452 // Sort the list, first on recipe(number) then on VF.
4453 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
4454 if (Numbering[A.first] != Numbering[B.first])
4455 return Numbering[A.first] < Numbering[B.first];
4456 const auto &LHS = A.second;
4457 const auto &RHS = B.second;
4458 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
4459 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
4460 });
4461
4462 // For a list of ordered recipe-VF pairs:
4463 // [(load, VF1), (load, VF2), (store, VF1)]
4464 // group the recipes together to emit separate remarks for:
4465 // load (VF1, VF2)
4466 // store (VF1)
4467 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4468 auto Subset = ArrayRef<RecipeVFPair>();
4469 do {
4470 if (Subset.empty())
4471 Subset = Tail.take_front(1);
4472
4473 VPRecipeBase *R = Subset.front().first;
4474
4475 unsigned Opcode =
4478 [](const auto *R) { return Instruction::PHI; })
4479 .Case<VPWidenSelectRecipe>(
4480 [](const auto *R) { return Instruction::Select; })
4481 .Case<VPWidenStoreRecipe>(
4482 [](const auto *R) { return Instruction::Store; })
4483 .Case<VPWidenLoadRecipe>(
4484 [](const auto *R) { return Instruction::Load; })
4485 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4486 [](const auto *R) { return Instruction::Call; })
4489 [](const auto *R) { return R->getOpcode(); })
4490 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4491 return R->getStoredValues().empty() ? Instruction::Load
4492 : Instruction::Store;
4493 });
4494
4495 // If the next recipe is different, or if there are no other pairs,
4496 // emit a remark for the collated subset. e.g.
4497 // [(load, VF1), (load, VF2))]
4498 // to emit:
4499 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4500 if (Subset == Tail || Tail[Subset.size()].first != R) {
4501 std::string OutString;
4502 raw_string_ostream OS(OutString);
4503 assert(!Subset.empty() && "Unexpected empty range");
4504 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4505 for (const auto &Pair : Subset)
4506 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4507 OS << "):";
4508 if (Opcode == Instruction::Call) {
4509 StringRef Name = "";
4510 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4511 Name = Int->getIntrinsicName();
4512 } else {
4513 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4514 Function *CalledFn =
4515 WidenCall ? WidenCall->getCalledScalarFunction()
4516 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4517 ->getLiveInIRValue());
4518 Name = CalledFn->getName();
4519 }
4520 OS << " call to " << Name;
4521 } else
4522 OS << " " << Instruction::getOpcodeName(Opcode);
4523 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4524 R->getDebugLoc());
4525 Tail = Tail.drop_front(Subset.size());
4526 Subset = {};
4527 } else
4528 // Grow the subset by one element
4529 Subset = Tail.take_front(Subset.size() + 1);
4530 } while (!Tail.empty());
4531}
4532
4533/// Check if any recipe of \p Plan will generate a vector value, which will be
4534/// assigned a vector register.
4536 const TargetTransformInfo &TTI) {
4537 assert(VF.isVector() && "Checking a scalar VF?");
4538 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType());
4539 DenseSet<VPRecipeBase *> EphemeralRecipes;
4540 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4541 // Set of already visited types.
4542 DenseSet<Type *> Visited;
4543 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4545 for (VPRecipeBase &R : *VPBB) {
4546 if (EphemeralRecipes.contains(&R))
4547 continue;
4548 // Continue early if the recipe is considered to not produce a vector
4549 // result. Note that this includes VPInstruction where some opcodes may
4550 // produce a vector, to preserve existing behavior as VPInstructions model
4551 // aspects not directly mapped to existing IR instructions.
4552 switch (R.getVPDefID()) {
4553 case VPDef::VPDerivedIVSC:
4554 case VPDef::VPScalarIVStepsSC:
4555 case VPDef::VPScalarCastSC:
4556 case VPDef::VPReplicateSC:
4557 case VPDef::VPInstructionSC:
4558 case VPDef::VPCanonicalIVPHISC:
4559 case VPDef::VPVectorPointerSC:
4560 case VPDef::VPReverseVectorPointerSC:
4561 case VPDef::VPExpandSCEVSC:
4562 case VPDef::VPEVLBasedIVPHISC:
4563 case VPDef::VPPredInstPHISC:
4564 case VPDef::VPBranchOnMaskSC:
4565 continue;
4566 case VPDef::VPReductionSC:
4567 case VPDef::VPActiveLaneMaskPHISC:
4568 case VPDef::VPWidenCallSC:
4569 case VPDef::VPWidenCanonicalIVSC:
4570 case VPDef::VPWidenCastSC:
4571 case VPDef::VPWidenGEPSC:
4572 case VPDef::VPWidenIntrinsicSC:
4573 case VPDef::VPWidenSC:
4574 case VPDef::VPWidenSelectSC:
4575 case VPDef::VPBlendSC:
4576 case VPDef::VPFirstOrderRecurrencePHISC:
4577 case VPDef::VPWidenPHISC:
4578 case VPDef::VPWidenIntOrFpInductionSC:
4579 case VPDef::VPWidenPointerInductionSC:
4580 case VPDef::VPReductionPHISC:
4581 case VPDef::VPInterleaveSC:
4582 case VPDef::VPWidenLoadEVLSC:
4583 case VPDef::VPWidenLoadSC:
4584 case VPDef::VPWidenStoreEVLSC:
4585 case VPDef::VPWidenStoreSC:
4586 break;
4587 default:
4588 llvm_unreachable("unhandled recipe");
4589 }
4590
4591 auto WillWiden = [&TTI, VF](Type *ScalarTy) {
4592 Type *VectorTy = toVectorTy(ScalarTy, VF);
4593 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4594 if (!NumLegalParts)
4595 return false;
4596 if (VF.isScalable()) {
4597 // <vscale x 1 x iN> is assumed to be profitable over iN because
4598 // scalable registers are a distinct register class from scalar
4599 // ones. If we ever find a target which wants to lower scalable
4600 // vectors back to scalars, we'll need to update this code to
4601 // explicitly ask TTI about the register class uses for each part.
4602 return NumLegalParts <= VF.getKnownMinValue();
4603 }
4604 // Two or more parts that share a register - are vectorized.
4605 return NumLegalParts < VF.getKnownMinValue();
4606 };
4607
4608 // If no def nor is a store, e.g., branches, continue - no value to check.
4609 if (R.getNumDefinedValues() == 0 &&
4610 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4611 &R))
4612 continue;
4613 // For multi-def recipes, currently only interleaved loads, suffice to
4614 // check first def only.
4615 // For stores check their stored value; for interleaved stores suffice
4616 // the check first stored value only. In all cases this is the second
4617 // operand.
4618 VPValue *ToCheck =
4619 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4620 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4621 if (!Visited.insert({ScalarTy}).second)
4622 continue;
4623 if (WillWiden(ScalarTy))
4624 return true;
4625 }
4626 }
4627
4628 return false;
4629}
4630
4631#ifndef NDEBUG
4632VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4634 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4635 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4636 assert(any_of(VPlans,
4637 [](std::unique_ptr<VPlan> &P) {
4638 return P->hasVF(ElementCount::getFixed(1));
4639 }) &&
4640 "Expected Scalar VF to be a candidate");
4641
4642 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4643 ExpectedCost);
4644 VectorizationFactor ChosenFactor = ScalarCost;
4645
4646 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4647 if (ForceVectorization &&
4648 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4649 // Ignore scalar width, because the user explicitly wants vectorization.
4650 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4651 // evaluation.
4652 ChosenFactor.Cost = InstructionCost::getMax();
4653 }
4654
4655 for (auto &P : VPlans) {
4656 for (ElementCount VF : P->vectorFactors()) {
4657 // The cost for scalar VF=1 is already calculated, so ignore it.
4658 if (VF.isScalar())
4659 continue;
4660
4662 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4663
4664 unsigned Width = getEstimatedRuntimeVF(OrigLoop, TTI, Candidate.Width);
4665 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4666 << " costs: " << (Candidate.Cost / Width));
4667 if (VF.isScalable())
4668 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4669 << getVScaleForTuning(OrigLoop, TTI).value_or(1)
4670 << ")");
4671 LLVM_DEBUG(dbgs() << ".\n");
4672
4673 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4674 LLVM_DEBUG(
4675 dbgs()
4676 << "LV: Not considering vector loop of width " << VF
4677 << " because it will not generate any vector instructions.\n");
4678 continue;
4679 }
4680
4681 if (isMoreProfitable(Candidate, ChosenFactor))
4682 ChosenFactor = Candidate;
4683 }
4684 }
4685
4688 "There are conditional stores.",
4689 "store that is conditionally executed prevents vectorization",
4690 "ConditionalStore", ORE, OrigLoop);
4691 ChosenFactor = ScalarCost;
4692 }
4693
4694 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4695 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
4696 << "LV: Vectorization seems to be not beneficial, "
4697 << "but was forced by a user.\n");
4698 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
4699 return ChosenFactor;
4700}
4701#endif
4702
4703bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4704 ElementCount VF) const {
4705 // Cross iteration phis such as reductions need special handling and are
4706 // currently unsupported.
4707 if (any_of(OrigLoop->getHeader()->phis(),
4708 [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
4709 return false;
4710
4711 // Phis with uses outside of the loop require special handling and are
4712 // currently unsupported.
4713 for (const auto &Entry : Legal->getInductionVars()) {
4714 // Look for uses of the value of the induction at the last iteration.
4715 Value *PostInc =
4716 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4717 for (User *U : PostInc->users())
4718 if (!OrigLoop->contains(cast<Instruction>(U)))
4719 return false;
4720 // Look for uses of penultimate value of the induction.
4721 for (User *U : Entry.first->users())
4722 if (!OrigLoop->contains(cast<Instruction>(U)))
4723 return false;
4724 }
4725
4726 // Epilogue vectorization code has not been auditted to ensure it handles
4727 // non-latch exits properly. It may be fine, but it needs auditted and
4728 // tested.
4729 // TODO: Add support for loops with an early exit.
4730 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4731 return false;
4732
4733 return true;
4734}
4735
4737 const ElementCount VF, const unsigned IC) const {
4738 // FIXME: We need a much better cost-model to take different parameters such
4739 // as register pressure, code size increase and cost of extra branches into
4740 // account. For now we apply a very crude heuristic and only consider loops
4741 // with vectorization factors larger than a certain value.
4742
4743 // Allow the target to opt out entirely.
4745 return false;
4746
4747 // We also consider epilogue vectorization unprofitable for targets that don't
4748 // consider interleaving beneficial (eg. MVE).
4749 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4750 return false;
4751
4752 // TODO: PR #108190 introduced a discrepancy between fixed-width and scalable
4753 // VFs when deciding profitability.
4754 // See related "TODO: extend to support scalable VFs." in
4755 // selectEpilogueVectorizationFactor.
4756 unsigned Multiplier = VF.isFixed() ? IC : 1;
4757 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4760 return getEstimatedRuntimeVF(TheLoop, TTI, VF * Multiplier) >= MinVFThreshold;
4761}
4762
4764 const ElementCount MainLoopVF, unsigned IC) {
4767 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4768 return Result;
4769 }
4770
4771 if (!CM.isScalarEpilogueAllowed()) {
4772 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4773 "epilogue is allowed.\n");
4774 return Result;
4775 }
4776
4777 // Not really a cost consideration, but check for unsupported cases here to
4778 // simplify the logic.
4779 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4780 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4781 "is not a supported candidate.\n");
4782 return Result;
4783 }
4784
4786 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4788 if (hasPlanWithVF(ForcedEC))
4789 return {ForcedEC, 0, 0};
4790
4791 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4792 "viable.\n");
4793 return Result;
4794 }
4795
4796 if (OrigLoop->getHeader()->getParent()->hasOptSize() ||
4797 OrigLoop->getHeader()->getParent()->hasMinSize()) {
4798 LLVM_DEBUG(
4799 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4800 return Result;
4801 }
4802
4803 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4804 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4805 "this loop\n");
4806 return Result;
4807 }
4808
4809 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4810 // the main loop handles 8 lanes per iteration. We could still benefit from
4811 // vectorizing the epilogue loop with VF=4.
4812 ElementCount EstimatedRuntimeVF =
4813 ElementCount::getFixed(getEstimatedRuntimeVF(OrigLoop, TTI, MainLoopVF));
4814
4815 ScalarEvolution &SE = *PSE.getSE();
4816 Type *TCType = Legal->getWidestInductionType();
4817 const SCEV *RemainingIterations = nullptr;
4818 unsigned MaxTripCount = 0;
4819 for (auto &NextVF : ProfitableVFs) {
4820 // Skip candidate VFs without a corresponding VPlan.
4821 if (!hasPlanWithVF(NextVF.Width))
4822 continue;
4823
4824 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4825 // vectors) or > the VF of the main loop (fixed vectors).
4826 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4827 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4828 (NextVF.Width.isScalable() &&
4829 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4830 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4831 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4832 continue;
4833
4834 // If NextVF is greater than the number of remaining iterations, the
4835 // epilogue loop would be dead. Skip such factors.
4836 if (!MainLoopVF.isScalable() && !NextVF.Width.isScalable()) {
4837 // TODO: extend to support scalable VFs.
4838 if (!RemainingIterations) {
4840 getPlanFor(NextVF.Width).getTripCount(), SE);
4841 assert(!isa<SCEVCouldNotCompute>(TC) &&
4842 "Trip count SCEV must be computable");
4843 RemainingIterations = SE.getURemExpr(
4844 TC, SE.getConstant(TCType, MainLoopVF.getKnownMinValue() * IC));
4845 MaxTripCount = MainLoopVF.getKnownMinValue() * IC - 1;
4846 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4847 SE.getConstant(TCType, MaxTripCount))) {
4848 MaxTripCount =
4849 SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4850 }
4851 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4852 << MaxTripCount << "\n");
4853 }
4854 if (SE.isKnownPredicate(
4856 SE.getConstant(TCType, NextVF.Width.getKnownMinValue()),
4857 RemainingIterations))
4858 continue;
4859 }
4860
4861 if (Result.Width.isScalar() ||
4862 isMoreProfitable(NextVF, Result, MaxTripCount))
4863 Result = NextVF;
4864 }
4865
4866 if (Result != VectorizationFactor::Disabled())
4867 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4868 << Result.Width << "\n");
4869 return Result;
4870}
4871
4872std::pair<unsigned, unsigned>
4874 unsigned MinWidth = -1U;
4875 unsigned MaxWidth = 8;
4877 // For in-loop reductions, no element types are added to ElementTypesInLoop
4878 // if there are no loads/stores in the loop. In this case, check through the
4879 // reduction variables to determine the maximum width.
4880 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4881 // Reset MaxWidth so that we can find the smallest type used by recurrences
4882 // in the loop.
4883 MaxWidth = -1U;
4884 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4885 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4886 // When finding the min width used by the recurrence we need to account
4887 // for casts on the input operands of the recurrence.
4888 MaxWidth = std::min<unsigned>(
4889 MaxWidth, std::min<unsigned>(
4892 }
4893 } else {
4894 for (Type *T : ElementTypesInLoop) {
4895 MinWidth = std::min<unsigned>(
4896 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4897 MaxWidth = std::max<unsigned>(
4898 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4899 }
4900 }
4901 return {MinWidth, MaxWidth};
4902}
4903
4905 ElementTypesInLoop.clear();
4906 // For each block.
4907 for (BasicBlock *BB : TheLoop->blocks()) {
4908 // For each instruction in the loop.
4909 for (Instruction &I : BB->instructionsWithoutDebug()) {
4910 Type *T = I.getType();
4911
4912 // Skip ignored values.
4913 if (ValuesToIgnore.count(&I))
4914 continue;
4915
4916 // Only examine Loads, Stores and PHINodes.
4917 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4918 continue;
4919
4920 // Examine PHI nodes that are reduction variables. Update the type to
4921 // account for the recurrence type.
4922 if (auto *PN = dyn_cast<PHINode>(&I)) {
4923 if (!Legal->isReductionVariable(PN))
4924 continue;
4925 const RecurrenceDescriptor &RdxDesc =
4926 Legal->getReductionVars().find(PN)->second;
4929 RdxDesc.getRecurrenceType(),
4931 continue;
4932 T = RdxDesc.getRecurrenceType();
4933 }
4934
4935 // Examine the stored values.
4936 if (auto *ST = dyn_cast<StoreInst>(&I))
4937 T = ST->getValueOperand()->getType();
4938
4939 assert(T->isSized() &&
4940 "Expected the load/store/recurrence type to be sized");
4941
4942 ElementTypesInLoop.insert(T);
4943 }
4944 }
4945}
4946
4947unsigned
4949 InstructionCost LoopCost) {
4950 // -- The interleave heuristics --
4951 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4952 // There are many micro-architectural considerations that we can't predict
4953 // at this level. For example, frontend pressure (on decode or fetch) due to
4954 // code size, or the number and capabilities of the execution ports.
4955 //
4956 // We use the following heuristics to select the interleave count:
4957 // 1. If the code has reductions, then we interleave to break the cross
4958 // iteration dependency.
4959 // 2. If the loop is really small, then we interleave to reduce the loop
4960 // overhead.
4961 // 3. We don't interleave if we think that we will spill registers to memory
4962 // due to the increased register pressure.
4963
4965 return 1;
4966
4967 // Do not interleave if EVL is preferred and no User IC is specified.
4968 if (foldTailWithEVL()) {
4969 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4970 "Unroll factor forced to be 1.\n");
4971 return 1;
4972 }
4973
4974 // We used the distance for the interleave count.
4976 return 1;
4977
4978 // We don't attempt to perform interleaving for loops with uncountable early
4979 // exits because the VPInstruction::AnyOf code cannot currently handle
4980 // multiple parts.
4982 return 1;
4983
4984 auto BestKnownTC = getSmallBestKnownTC(PSE, TheLoop);
4985 const bool HasReductions = !Legal->getReductionVars().empty();
4986
4987 // If we did not calculate the cost for VF (because the user selected the VF)
4988 // then we calculate the cost of VF here.
4989 if (LoopCost == 0) {
4990 LoopCost = expectedCost(VF);
4991 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4992
4993 // Loop body is free and there is no need for interleaving.
4994 if (LoopCost == 0)
4995 return 1;
4996 }
4997
4999 // We divide by these constants so assume that we have at least one
5000 // instruction that uses at least one register.
5001 for (auto &Pair : R.MaxLocalUsers) {
5002 Pair.second = std::max(Pair.second, 1U);
5003 }
5004
5005 // We calculate the interleave count using the following formula.
5006 // Subtract the number of loop invariants from the number of available
5007 // registers. These registers are used by all of the interleaved instances.
5008 // Next, divide the remaining registers by the number of registers that is
5009 // required by the loop, in order to estimate how many parallel instances
5010 // fit without causing spills. All of this is rounded down if necessary to be
5011 // a power of two. We want power of two interleave count to simplify any
5012 // addressing operations or alignment considerations.
5013 // We also want power of two interleave counts to ensure that the induction
5014 // variable of the vector loop wraps to zero, when tail is folded by masking;
5015 // this currently happens when OptForSize, in which case IC is set to 1 above.
5016 unsigned IC = UINT_MAX;
5017
5018 for (const auto &Pair : R.MaxLocalUsers) {
5019 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
5020 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5021 << " registers of "
5022 << TTI.getRegisterClassName(Pair.first)
5023 << " register class\n");
5024 if (VF.isScalar()) {
5025 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5026 TargetNumRegisters = ForceTargetNumScalarRegs;
5027 } else {
5028 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5029 TargetNumRegisters = ForceTargetNumVectorRegs;
5030 }
5031 unsigned MaxLocalUsers = Pair.second;
5032 unsigned LoopInvariantRegs = 0;
5033 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end())
5034 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
5035
5036 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
5037 MaxLocalUsers);
5038 // Don't count the induction variable as interleaved.
5040 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5041 std::max(1U, (MaxLocalUsers - 1)));
5042 }
5043
5044 IC = std::min(IC, TmpIC);
5045 }
5046
5047 // Clamp the interleave ranges to reasonable counts.
5048 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5049
5050 // Check if the user has overridden the max.
5051 if (VF.isScalar()) {
5052 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5053 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5054 } else {
5055 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5056 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5057 }
5058
5059 unsigned EstimatedVF = getEstimatedRuntimeVF(TheLoop, TTI, VF);
5060 unsigned KnownTC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5061 if (KnownTC > 0) {
5062 // At least one iteration must be scalar when this constraint holds. So the
5063 // maximum available iterations for interleaving is one less.
5064 unsigned AvailableTC =
5065 requiresScalarEpilogue(VF.isVector()) ? KnownTC - 1 : KnownTC;
5066
5067 // If trip count is known we select between two prospective ICs, where
5068 // 1) the aggressive IC is capped by the trip count divided by VF
5069 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
5070 // The final IC is selected in a way that the epilogue loop trip count is
5071 // minimized while maximizing the IC itself, so that we either run the
5072 // vector loop at least once if it generates a small epilogue loop, or else
5073 // we run the vector loop at least twice.
5074
5075 unsigned InterleaveCountUB = bit_floor(
5076 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
5077 unsigned InterleaveCountLB = bit_floor(std::max(
5078 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5079 MaxInterleaveCount = InterleaveCountLB;
5080
5081 if (InterleaveCountUB != InterleaveCountLB) {
5082 unsigned TailTripCountUB =
5083 (AvailableTC % (EstimatedVF * InterleaveCountUB));
5084 unsigned TailTripCountLB =
5085 (AvailableTC % (EstimatedVF * InterleaveCountLB));
5086 // If both produce same scalar tail, maximize the IC to do the same work
5087 // in fewer vector loop iterations
5088 if (TailTripCountUB == TailTripCountLB)
5089 MaxInterleaveCount = InterleaveCountUB;
5090 }
5091 } else if (BestKnownTC && *BestKnownTC > 0) {
5092 // At least one iteration must be scalar when this constraint holds. So the
5093 // maximum available iterations for interleaving is one less.
5094 unsigned AvailableTC = requiresScalarEpilogue(VF.isVector())
5095 ? (*BestKnownTC) - 1
5096 : *BestKnownTC;
5097
5098 // If trip count is an estimated compile time constant, limit the
5099 // IC to be capped by the trip count divided by VF * 2, such that the vector
5100 // loop runs at least twice to make interleaving seem profitable when there
5101 // is an epilogue loop present. Since exact Trip count is not known we
5102 // choose to be conservative in our IC estimate.
5103 MaxInterleaveCount = bit_floor(std::max(
5104 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5105 }
5106
5107 assert(MaxInterleaveCount > 0 &&
5108 "Maximum interleave count must be greater than 0");
5109
5110 // Clamp the calculated IC to be between the 1 and the max interleave count
5111 // that the target and trip count allows.
5112 if (IC > MaxInterleaveCount)
5113 IC = MaxInterleaveCount;
5114 else
5115 // Make sure IC is greater than 0.
5116 IC = std::max(1u, IC);
5117
5118 assert(IC > 0 && "Interleave count must be greater than 0.");
5119
5120 // Interleave if we vectorized this loop and there is a reduction that could
5121 // benefit from interleaving.
5122 if (VF.isVector() && HasReductions) {
5123 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5124 return IC;
5125 }
5126
5127 // For any scalar loop that either requires runtime checks or predication we
5128 // are better off leaving this to the unroller. Note that if we've already
5129 // vectorized the loop we will have done the runtime check and so interleaving
5130 // won't require further checks.
5131 bool ScalarInterleavingRequiresPredication =
5132 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5133 return Legal->blockNeedsPredication(BB);
5134 }));
5135 bool ScalarInterleavingRequiresRuntimePointerCheck =
5137
5138 // We want to interleave small loops in order to reduce the loop overhead and
5139 // potentially expose ILP opportunities.
5140 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5141 << "LV: IC is " << IC << '\n'
5142 << "LV: VF is " << VF << '\n');
5143 const bool AggressivelyInterleaveReductions =
5144 TTI.enableAggressiveInterleaving(HasReductions);
5145 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5146 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5147 // We assume that the cost overhead is 1 and we use the cost model
5148 // to estimate the cost of the loop and interleave until the cost of the
5149 // loop overhead is about 5% of the cost of the loop.
5150 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
5151 SmallLoopCost / *LoopCost.getValue()));
5152
5153 // Interleave until store/load ports (estimated by max interleave count) are
5154 // saturated.
5155 unsigned NumStores = Legal->getNumStores();
5156 unsigned NumLoads = Legal->getNumLoads();
5157 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5158 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5159
5160 // There is little point in interleaving for reductions containing selects
5161 // and compares when VF=1 since it may just create more overhead than it's
5162 // worth for loops with small trip counts. This is because we still have to
5163 // do the final reduction after the loop.
5164 bool HasSelectCmpReductions =
5165 HasReductions &&
5166 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5167 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5168 RecurKind RK = RdxDesc.getRecurrenceKind();
5169 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) ||
5170 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK);
5171 });
5172 if (HasSelectCmpReductions) {
5173 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5174 return 1;
5175 }
5176
5177 // If we have a scalar reduction (vector reductions are already dealt with
5178 // by this point), we can increase the critical path length if the loop
5179 // we're interleaving is inside another loop. For tree-wise reductions
5180 // set the limit to 2, and for ordered reductions it's best to disable
5181 // interleaving entirely.
5182 if (HasReductions && TheLoop->getLoopDepth() > 1) {
5183 bool HasOrderedReductions =
5184 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5185 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5186 return RdxDesc.isOrdered();
5187 });
5188 if (HasOrderedReductions) {
5189 LLVM_DEBUG(
5190 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5191 return 1;
5192 }
5193
5194 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5195 SmallIC = std::min(SmallIC, F);
5196 StoresIC = std::min(StoresIC, F);
5197 LoadsIC = std::min(LoadsIC, F);
5198 }
5199
5201 std::max(StoresIC, LoadsIC) > SmallIC) {
5202 LLVM_DEBUG(
5203 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5204 return std::max(StoresIC, LoadsIC);
5205 }
5206
5207 // If there are scalar reductions and TTI has enabled aggressive
5208 // interleaving for reductions, we will interleave to expose ILP.
5209 if (VF.isScalar() && AggressivelyInterleaveReductions) {
5210 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5211 // Interleave no less than SmallIC but not as aggressive as the normal IC
5212 // to satisfy the rare situation when resources are too limited.
5213 return std::max(IC / 2, SmallIC);
5214 }
5215
5216 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5217 return SmallIC;
5218 }
5219
5220 // Interleave if this is a large loop (small loops are already dealt with by
5221 // this point) that could benefit from interleaving.
5222 if (AggressivelyInterleaveReductions) {
5223 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5224 return IC;
5225 }
5226
5227 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5228 return 1;
5229}
5230
5233 // This function calculates the register usage by measuring the highest number
5234 // of values that are alive at a single location. Obviously, this is a very
5235 // rough estimation. We scan the loop in a topological order in order and
5236 // assign a number to each instruction. We use RPO to ensure that defs are
5237 // met before their users. We assume that each instruction that has in-loop
5238 // users starts an interval. We record every time that an in-loop value is
5239 // used, so we have a list of the first and last occurrences of each
5240 // instruction. Next, we transpose this data structure into a multi map that
5241 // holds the list of intervals that *end* at a specific location. This multi
5242 // map allows us to perform a linear search. We scan the instructions linearly
5243 // and record each time that a new interval starts, by placing it in a set.
5244 // If we find this value in the multi-map then we remove it from the set.
5245 // The max register usage is the maximum size of the set.
5246 // We also search for instructions that are defined outside the loop, but are
5247 // used inside the loop. We need this number separately from the max-interval
5248 // usage number because when we unroll, loop-invariant values do not take
5249 // more register.
5251 DFS.perform(LI);
5252
5253 RegisterUsage RU;
5254
5255 // Each 'key' in the map opens a new interval. The values
5256 // of the map are the index of the 'last seen' usage of the
5257 // instruction that is the key.
5259
5260 // Maps instruction to its index.
5262 // Marks the end of each interval.
5263 IntervalMap EndPoint;
5264 // Saves the list of instruction indices that are used in the loop.
5266 // Saves the list of values that are used in the loop but are defined outside
5267 // the loop (not including non-instruction values such as arguments and
5268 // constants).
5269 SmallSetVector<Instruction *, 8> LoopInvariants;
5270
5271 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5272 for (Instruction &I : BB->instructionsWithoutDebug()) {
5273 IdxToInstr.push_back(&I);
5274
5275 // Save the end location of each USE.
5276 for (Value *U : I.operands()) {
5277 auto *Instr = dyn_cast<Instruction>(U);
5278
5279 // Ignore non-instruction values such as arguments, constants, etc.
5280 // FIXME: Might need some motivation why these values are ignored. If
5281 // for example an argument is used inside the loop it will increase the
5282 // register pressure (so shouldn't we add it to LoopInvariants).
5283 if (!Instr)
5284 continue;
5285
5286 // If this instruction is outside the loop then record it and continue.
5287 if (!TheLoop->contains(Instr)) {
5288 LoopInvariants.insert(Instr);
5289 continue;
5290 }
5291
5292 // Overwrite previous end points.
5293 EndPoint[Instr] = IdxToInstr.size();
5294 Ends.insert(Instr);
5295 }
5296 }
5297 }
5298
5299 // Saves the list of intervals that end with the index in 'key'.
5300 using InstrList = SmallVector<Instruction *, 2>;
5302
5303 // Transpose the EndPoints to a list of values that end at each index.
5304 for (auto &Interval : EndPoint)
5305 TransposeEnds[Interval.second].push_back(Interval.first);
5306
5307 SmallPtrSet<Instruction *, 8> OpenIntervals;
5310
5311 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5312
5313 const auto &TTICapture = TTI;
5314 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5315 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty) ||
5316 (VF.isScalable() &&
5317 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
5318 return 0;
5319 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
5320 };
5321
5322 for (unsigned int Idx = 0, Sz = IdxToInstr.size(); Idx < Sz; ++Idx) {
5323 Instruction *I = IdxToInstr[Idx];
5324
5325 // Remove all of the instructions that end at this location.
5326 InstrList &List = TransposeEnds[Idx];
5327 for (Instruction *ToRemove : List)
5328 OpenIntervals.erase(ToRemove);
5329
5330 // Ignore instructions that are never used within the loop.
5331 if (!Ends.count(I))
5332 continue;
5333
5334 // Skip ignored values.
5335 if (ValuesToIgnore.count(I))
5336 continue;
5337
5339
5340 // For each VF find the maximum usage of registers.
5341 for (unsigned J = 0, E = VFs.size(); J < E; ++J) {
5342 // Count the number of registers used, per register class, given all open
5343 // intervals.
5344 // Note that elements in this SmallMapVector will be default constructed
5345 // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if
5346 // there is no previous entry for ClassID.
5348
5349 if (VFs[J].isScalar()) {
5350 for (auto *Inst : OpenIntervals) {
5351 unsigned ClassID =
5352 TTI.getRegisterClassForType(false, Inst->getType());
5353 // FIXME: The target might use more than one register for the type
5354 // even in the scalar case.
5355 RegUsage[ClassID] += 1;
5356 }
5357 } else {
5359 for (auto *Inst : OpenIntervals) {
5360 // Skip ignored values for VF > 1.
5361 if (VecValuesToIgnore.count(Inst))
5362 continue;
5363 if (isScalarAfterVectorization(Inst, VFs[J])) {
5364 unsigned ClassID =
5365 TTI.getRegisterClassForType(false, Inst->getType());
5366 // FIXME: The target might use more than one register for the type
5367 // even in the scalar case.
5368 RegUsage[ClassID] += 1;
5369 } else {
5370 unsigned ClassID =
5371 TTI.getRegisterClassForType(true, Inst->getType());
5372 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]);
5373 }
5374 }
5375 }
5376
5377 for (const auto &Pair : RegUsage) {
5378 auto &Entry = MaxUsages[J][Pair.first];
5379 Entry = std::max(Entry, Pair.second);
5380 }
5381 }
5382
5383 LLVM_DEBUG(dbgs() << "LV(REG): At #" << Idx << " Interval # "
5384 << OpenIntervals.size() << '\n');
5385
5386 // Add the current instruction to the list of open intervals.
5387 OpenIntervals.insert(I);
5388 }
5389
5390 for (unsigned Idx = 0, End = VFs.size(); Idx < End; ++Idx) {
5391 // Note that elements in this SmallMapVector will be default constructed
5392 // as 0. So we can use "Invariant[ClassID] += n" in the code below even if
5393 // there is no previous entry for ClassID.
5395
5396 for (auto *Inst : LoopInvariants) {
5397 // FIXME: The target might use more than one register for the type
5398 // even in the scalar case.
5399 bool IsScalar = all_of(Inst->users(), [&](User *U) {
5400 auto *I = cast<Instruction>(U);
5401 return TheLoop != LI->getLoopFor(I->getParent()) ||
5402 isScalarAfterVectorization(I, VFs[Idx]);
5403 });
5404
5405 ElementCount VF = IsScalar ? ElementCount::getFixed(1) : VFs[Idx];
5406 unsigned ClassID =
5407 TTI.getRegisterClassForType(VF.isVector(), Inst->getType());
5408 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
5409 }
5410
5411 LLVM_DEBUG({
5412 dbgs() << "LV(REG): VF = " << VFs[Idx] << '\n';
5413 dbgs() << "LV(REG): Found max usage: " << MaxUsages[Idx].size()
5414 << " item\n";
5415 for (const auto &pair : MaxUsages[Idx]) {
5416 dbgs() << "LV(REG): RegisterClass: "
5417 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5418 << " registers\n";
5419 }
5420 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5421 << " item\n";
5422 for (const auto &pair : Invariant) {
5423 dbgs() << "LV(REG): RegisterClass: "
5424 << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5425 << " registers\n";
5426 }
5427 });
5428
5429 RU.LoopInvariantRegs = Invariant;
5430 RU.MaxLocalUsers = MaxUsages[Idx];
5431 RUs[Idx] = RU;
5432 }
5433
5434 return RUs;
5435}
5436
5437bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
5438 ElementCount VF) {
5439 // TODO: Cost model for emulated masked load/store is completely
5440 // broken. This hack guides the cost model to use an artificially
5441 // high enough value to practically disable vectorization with such
5442 // operations, except where previously deployed legality hack allowed
5443 // using very low cost values. This is to avoid regressions coming simply
5444 // from moving "masked load/store" check from legality to cost model.
5445 // Masked Load/Gather emulation was previously never allowed.
5446 // Limited number of Masked Store/Scatter emulation was allowed.
5448 "Expecting a scalar emulated instruction");
5449 return isa<LoadInst>(I) ||
5450 (isa<StoreInst>(I) &&
5451 NumPredStores > NumberOfStoresToPredicate);
5452}
5453
5455 // If we aren't vectorizing the loop, or if we've already collected the
5456 // instructions to scalarize, there's nothing to do. Collection may already
5457 // have occurred if we have a user-selected VF and are now computing the
5458 // expected cost for interleaving.
5459 if (VF.isScalar() || VF.isZero() || InstsToScalarize.contains(VF))
5460 return;
5461
5462 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5463 // not profitable to scalarize any instructions, the presence of VF in the
5464 // map will indicate that we've analyzed it already.
5465 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5466
5467 PredicatedBBsAfterVectorization[VF].clear();
5468
5469 // Find all the instructions that are scalar with predication in the loop and
5470 // determine if it would be better to not if-convert the blocks they are in.
5471 // If so, we also record the instructions to scalarize.
5472 for (BasicBlock *BB : TheLoop->blocks()) {
5474 continue;
5475 for (Instruction &I : *BB)
5476 if (isScalarWithPredication(&I, VF)) {
5477 ScalarCostsTy ScalarCosts;
5478 // Do not apply discount logic for:
5479 // 1. Scalars after vectorization, as there will only be a single copy
5480 // of the instruction.
5481 // 2. Scalable VF, as that would lead to invalid scalarization costs.
5482 // 3. Emulated masked memrefs, if a hacked cost is needed.
5483 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
5484 !useEmulatedMaskMemRefHack(&I, VF) &&
5485 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
5486 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5487 // Check if we decided to scalarize a call. If so, update the widening
5488 // decision of the call to CM_Scalarize with the computed scalar cost.
5489 for (const auto &[I, _] : ScalarCosts) {
5490 auto *CI = dyn_cast<CallInst>(I);
5491 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5492 continue;
5493 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
5494 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI];
5495 }
5496 }
5497 // Remember that BB will remain after vectorization.
5498 PredicatedBBsAfterVectorization[VF].insert(BB);
5499 for (auto *Pred : predecessors(BB)) {
5500 if (Pred->getSingleSuccessor() == BB)
5501 PredicatedBBsAfterVectorization[VF].insert(Pred);
5502 }
5503 }
5504 }
5505}
5506
5507InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5508 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5509 assert(!isUniformAfterVectorization(PredInst, VF) &&
5510 "Instruction marked uniform-after-vectorization will be predicated");
5511
5512 // Initialize the discount to zero, meaning that the scalar version and the
5513 // vector version cost the same.
5514 InstructionCost Discount = 0;
5515
5516 // Holds instructions to analyze. The instructions we visit are mapped in
5517 // ScalarCosts. Those instructions are the ones that would be scalarized if
5518 // we find that the scalar version costs less.
5520
5521 // Returns true if the given instruction can be scalarized.
5522 auto CanBeScalarized = [&](Instruction *I) -> bool {
5523 // We only attempt to scalarize instructions forming a single-use chain
5524 // from the original predicated block that would otherwise be vectorized.
5525 // Although not strictly necessary, we give up on instructions we know will
5526 // already be scalar to avoid traversing chains that are unlikely to be
5527 // beneficial.
5528 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5530 return false;
5531
5532 // If the instruction is scalar with predication, it will be analyzed
5533 // separately. We ignore it within the context of PredInst.
5534 if (isScalarWithPredication(I, VF))
5535 return false;
5536
5537 // If any of the instruction's operands are uniform after vectorization,
5538 // the instruction cannot be scalarized. This prevents, for example, a
5539 // masked load from being scalarized.
5540 //
5541 // We assume we will only emit a value for lane zero of an instruction
5542 // marked uniform after vectorization, rather than VF identical values.
5543 // Thus, if we scalarize an instruction that uses a uniform, we would
5544 // create uses of values corresponding to the lanes we aren't emitting code
5545 // for. This behavior can be changed by allowing getScalarValue to clone
5546 // the lane zero values for uniforms rather than asserting.
5547 for (Use &U : I->operands())
5548 if (auto *J = dyn_cast<Instruction>(U.get()))
5549 if (isUniformAfterVectorization(J, VF))
5550 return false;
5551
5552 // Otherwise, we can scalarize the instruction.
5553 return true;
5554 };
5555
5556 // Compute the expected cost discount from scalarizing the entire expression
5557 // feeding the predicated instruction. We currently only consider expressions
5558 // that are single-use instruction chains.
5559 Worklist.push_back(PredInst);
5560 while (!Worklist.empty()) {
5561 Instruction *I = Worklist.pop_back_val();
5562
5563 // If we've already analyzed the instruction, there's nothing to do.
5564 if (ScalarCosts.contains(I))
5565 continue;
5566
5567 // Compute the cost of the vector instruction. Note that this cost already
5568 // includes the scalarization overhead of the predicated instruction.
5569 InstructionCost VectorCost = getInstructionCost(I, VF);
5570
5571 // Compute the cost of the scalarized instruction. This cost is the cost of
5572 // the instruction as if it wasn't if-converted and instead remained in the
5573 // predicated block. We will scale this cost by block probability after
5574 // computing the scalarization overhead.
5575 InstructionCost ScalarCost =
5577
5578 // Compute the scalarization overhead of needed insertelement instructions
5579 // and phi nodes.
5581 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5582 ScalarCost += TTI.getScalarizationOverhead(
5583 cast<VectorType>(toVectorTy(I->getType(), VF)),
5584 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true,
5585 /*Extract*/ false, CostKind);
5586 ScalarCost +=
5587 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5588 }
5589
5590 // Compute the scalarization overhead of needed extractelement
5591 // instructions. For each of the instruction's operands, if the operand can
5592 // be scalarized, add it to the worklist; otherwise, account for the
5593 // overhead.
5594 for (Use &U : I->operands())
5595 if (auto *J = dyn_cast<Instruction>(U.get())) {
5596 assert(VectorType::isValidElementType(J->getType()) &&
5597 "Instruction has non-scalar type");
5598 if (CanBeScalarized(J))
5599 Worklist.push_back(J);
5600 else if (needsExtract(J, VF)) {
5601 ScalarCost += TTI.getScalarizationOverhead(
5602 cast<VectorType>(toVectorTy(J->getType(), VF)),
5603 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5604 /*Extract*/ true, CostKind);
5605 }
5606 }
5607
5608 // Scale the total scalar cost by block probability.
5609 ScalarCost /= getReciprocalPredBlockProb();
5610
5611 // Compute the discount. A non-negative discount means the vector version
5612 // of the instruction costs more, and scalarizing would be beneficial.
5613 Discount += VectorCost - ScalarCost;
5614 ScalarCosts[I] = ScalarCost;
5615 }
5616
5617 return Discount;
5618}
5619
5622
5623 // If the vector loop gets executed exactly once with the given VF, ignore the
5624 // costs of comparison and induction instructions, as they'll get simplified
5625 // away.
5626 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5628 if (VF.isFixed() && TC == VF.getFixedValue() && !foldTailByMasking())
5630 ValuesToIgnoreForVF);
5631
5632 // For each block.
5633 for (BasicBlock *BB : TheLoop->blocks()) {
5634 InstructionCost BlockCost;
5635
5636 // For each instruction in the old loop.
5637 for (Instruction &I : BB->instructionsWithoutDebug()) {
5638 // Skip ignored values.
5639 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5640 (VF.isVector() && VecValuesToIgnore.count(&I)))
5641 continue;
5642
5644
5645 // Check if we should override the cost.
5646 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0)
5648
5649 BlockCost += C;
5650 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5651 << VF << " For instruction: " << I << '\n');
5652 }
5653
5654 // If we are vectorizing a predicated block, it will have been
5655 // if-converted. This means that the block's instructions (aside from
5656 // stores and instructions that may divide by zero) will now be
5657 // unconditionally executed. For the scalar case, we may not always execute
5658 // the predicated block, if it is an if-else block. Thus, scale the block's
5659 // cost by the probability of executing it. blockNeedsPredication from
5660 // Legal is used so as to not include all blocks in tail folded loops.
5661 if (VF.isScalar() && Legal->blockNeedsPredication(BB))
5662 BlockCost /= getReciprocalPredBlockProb();
5663
5664 Cost += BlockCost;
5665 }
5666
5667 return Cost;
5668}
5669
5670/// Gets Address Access SCEV after verifying that the access pattern
5671/// is loop invariant except the induction variable dependence.
5672///
5673/// This SCEV can be sent to the Target in order to estimate the address
5674/// calculation cost.
5676 Value *Ptr,
5679 const Loop *TheLoop) {
5680
5681 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5682 if (!Gep)
5683 return nullptr;
5684
5685 // We are looking for a gep with all loop invariant indices except for one
5686 // which should be an induction variable.
5687 auto *SE = PSE.getSE();
5688 unsigned NumOperands = Gep->getNumOperands();
5689 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5690 Value *Opd = Gep->getOperand(Idx);
5691 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5692 !Legal->isInductionVariable(Opd))
5693 return nullptr;
5694 }
5695
5696 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5697 return PSE.getSCEV(Ptr);
5698}
5699
5701LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5702 ElementCount VF) {
5703 assert(VF.isVector() &&
5704 "Scalarization cost of instruction implies vectorization.");
5705 if (VF.isScalable())
5707
5708 Type *ValTy = getLoadStoreType(I);
5709 auto *SE = PSE.getSE();
5710
5711 unsigned AS = getLoadStoreAddressSpace(I);
5713 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5714 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5715 // that it is being called from this specific place.
5716
5717 // Figure out whether the access is strided and get the stride value
5718 // if it's known in compile time
5719 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5720
5721 // Get the cost of the scalar memory instruction and address computation.
5723 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5724
5725 // Don't pass *I here, since it is scalar but will actually be part of a
5726 // vectorized loop where the user of it is a vectorized instruction.
5728 const Align Alignment = getLoadStoreAlignment(I);
5729 Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(),
5730 ValTy->getScalarType(),
5731 Alignment, AS, CostKind);
5732
5733 // Get the overhead of the extractelement and insertelement instructions
5734 // we might create due to scalarization.
5735 Cost += getScalarizationOverhead(I, VF, CostKind);
5736
5737 // If we have a predicated load/store, it will need extra i1 extracts and
5738 // conditional branches, but may not be executed for each vector lane. Scale
5739 // the cost by the probability of executing the predicated block.
5740 if (isPredicatedInst(I)) {
5742
5743 // Add the cost of an i1 extract and a branch
5744 auto *VecI1Ty =
5747 VecI1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
5748 /*Insert=*/false, /*Extract=*/true, CostKind);
5749 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5750
5751 if (useEmulatedMaskMemRefHack(I, VF))
5752 // Artificially setting to a high enough value to practically disable
5753 // vectorization with such operations.
5754 Cost = 3000000;
5755 }
5756
5757 return Cost;
5758}
5759
5761LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5762 ElementCount VF) {
5763 Type *ValTy = getLoadStoreType(I);
5764 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5766 unsigned AS = getLoadStoreAddressSpace(I);
5767 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5769
5770 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5771 "Stride should be 1 or -1 for consecutive memory access");
5772 const Align Alignment = getLoadStoreAlignment(I);
5774 if (Legal->isMaskRequired(I)) {
5775 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5776 CostKind);
5777 } else {
5778 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5779 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5780 CostKind, OpInfo, I);
5781 }
5782
5783 bool Reverse = ConsecutiveStride < 0;
5784 if (Reverse)
5786 CostKind, 0);
5787 return Cost;
5788}
5789
5791LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5792 ElementCount VF) {
5793 assert(Legal->isUniformMemOp(*I, VF));
5794
5795 Type *ValTy = getLoadStoreType(I);
5796 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5797 const Align Alignment = getLoadStoreAlignment(I);
5798 unsigned AS = getLoadStoreAddressSpace(I);
5800 if (isa<LoadInst>(I)) {
5801 return TTI.getAddressComputationCost(ValTy) +
5802 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5803 CostKind) +
5805 }
5806 StoreInst *SI = cast<StoreInst>(I);
5807
5808 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5809 return TTI.getAddressComputationCost(ValTy) +
5810 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5811 CostKind) +
5812 (IsLoopInvariantStoreValue
5813 ? 0
5814 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5815 CostKind, VF.getKnownMinValue() - 1));
5816}
5817
5819LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5820 ElementCount VF) {
5821 Type *ValTy = getLoadStoreType(I);
5822 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5823 const Align Alignment = getLoadStoreAlignment(I);
5825
5826 return TTI.getAddressComputationCost(VectorTy) +
5828 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
5830}
5831
5833LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5834 ElementCount VF) {
5835 const auto *Group = getInterleavedAccessGroup(I);
5836 assert(Group && "Fail to get an interleaved access group.");
5837
5838 Instruction *InsertPos = Group->getInsertPos();
5839 Type *ValTy = getLoadStoreType(InsertPos);
5840 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5841 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5843
5844 unsigned InterleaveFactor = Group->getFactor();
5845 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5846
5847 // Holds the indices of existing members in the interleaved group.
5849 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5850 if (Group->getMember(IF))
5851 Indices.push_back(IF);
5852
5853 // Calculate the cost of the whole interleaved group.
5854 bool UseMaskForGaps =
5855 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5856 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
5858 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5859 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5860 UseMaskForGaps);
5861
5862 if (Group->isReverse()) {
5863 // TODO: Add support for reversed masked interleaved access.
5865 "Reverse masked interleaved access not supported.");
5866 Cost += Group->getNumMembers() *
5868 CostKind, 0);
5869 }
5870 return Cost;
5871}
5872
5873std::optional<InstructionCost>
5875 Instruction *I, ElementCount VF, Type *Ty,
5877 using namespace llvm::PatternMatch;
5878 // Early exit for no inloop reductions
5879 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5880 return std::nullopt;
5881 auto *VectorTy = cast<VectorType>(Ty);
5882
5883 // We are looking for a pattern of, and finding the minimal acceptable cost:
5884 // reduce(mul(ext(A), ext(B))) or
5885 // reduce(mul(A, B)) or
5886 // reduce(ext(A)) or
5887 // reduce(A).
5888 // The basic idea is that we walk down the tree to do that, finding the root
5889 // reduction instruction in InLoopReductionImmediateChains. From there we find
5890 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5891 // of the components. If the reduction cost is lower then we return it for the
5892 // reduction instruction and 0 for the other instructions in the pattern. If
5893 // it is not we return an invalid cost specifying the orignal cost method
5894 // should be used.
5895 Instruction *RetI = I;
5896 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5897 if (!RetI->hasOneUser())
5898 return std::nullopt;
5899 RetI = RetI->user_back();
5900 }
5901
5902 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5903 RetI->user_back()->getOpcode() == Instruction::Add) {
5904 RetI = RetI->user_back();
5905 }
5906
5907 // Test if the found instruction is a reduction, and if not return an invalid
5908 // cost specifying the parent to use the original cost modelling.
5909 if (!InLoopReductionImmediateChains.count(RetI))
5910 return std::nullopt;
5911
5912 // Find the reduction this chain is a part of and calculate the basic cost of
5913 // the reduction on its own.
5914 Instruction *LastChain = InLoopReductionImmediateChains.at(RetI);
5915 Instruction *ReductionPhi = LastChain;
5916 while (!isa<PHINode>(ReductionPhi))
5917 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5918
5919 const RecurrenceDescriptor &RdxDesc =
5920 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
5921
5922 InstructionCost BaseCost;
5923 RecurKind RK = RdxDesc.getRecurrenceKind();
5926 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5927 RdxDesc.getFastMathFlags(), CostKind);
5928 } else {
5930 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5931 }
5932
5933 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5934 // normal fmul instruction to the cost of the fadd reduction.
5935 if (RK == RecurKind::FMulAdd)
5936 BaseCost +=
5937 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5938
5939 // If we're using ordered reductions then we can just return the base cost
5940 // here, since getArithmeticReductionCost calculates the full ordered
5941 // reduction cost when FP reassociation is not allowed.
5942 if (useOrderedReductions(RdxDesc))
5943 return BaseCost;
5944
5945 // Get the operand that was not the reduction chain and match it to one of the
5946 // patterns, returning the better cost if it is found.
5947 Instruction *RedOp = RetI->getOperand(1) == LastChain
5948 ? dyn_cast<Instruction>(RetI->getOperand(0))
5949 : dyn_cast<Instruction>(RetI->getOperand(1));
5950
5951 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5952
5953 Instruction *Op0, *Op1;
5954 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5955 match(RedOp,
5957 match(Op0, m_ZExtOrSExt(m_Value())) &&
5958 Op0->getOpcode() == Op1->getOpcode() &&
5959 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5961 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5962
5963 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5964 // Note that the extend opcodes need to all match, or if A==B they will have
5965 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5966 // which is equally fine.
5967 bool IsUnsigned = isa<ZExtInst>(Op0);
5968 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5969 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5970
5971 InstructionCost ExtCost =
5972 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5974 InstructionCost MulCost =
5975 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5976 InstructionCost Ext2Cost =
5977 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5979
5981 IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
5982
5983 if (RedCost.isValid() &&
5984 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5985 return I == RetI ? RedCost : 0;
5986 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5987 !TheLoop->isLoopInvariant(RedOp)) {
5988 // Matched reduce(ext(A))
5989 bool IsUnsigned = isa<ZExtInst>(RedOp);
5990 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5992 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5993 RdxDesc.getFastMathFlags(), CostKind);
5994
5995 InstructionCost ExtCost =
5996 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5998 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5999 return I == RetI ? RedCost : 0;
6000 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
6001 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6002 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6003 Op0->getOpcode() == Op1->getOpcode() &&
6005 bool IsUnsigned = isa<ZExtInst>(Op0);
6006 Type *Op0Ty = Op0->getOperand(0)->getType();
6007 Type *Op1Ty = Op1->getOperand(0)->getType();
6008 Type *LargestOpTy =
6009 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6010 : Op0Ty;
6011 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6012
6013 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
6014 // different sizes. We take the largest type as the ext to reduce, and add
6015 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6017 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6020 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6022 InstructionCost MulCost =
6023 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6024
6026 IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind);
6027 InstructionCost ExtraExtCost = 0;
6028 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6029 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6030 ExtraExtCost = TTI.getCastInstrCost(
6031 ExtraExtOp->getOpcode(), ExtType,
6032 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6034 }
6035
6036 if (RedCost.isValid() &&
6037 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6038 return I == RetI ? RedCost : 0;
6039 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6040 // Matched reduce.add(mul())
6041 InstructionCost MulCost =
6042 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6043
6045 true, RdxDesc.getRecurrenceType(), VectorTy, CostKind);
6046
6047 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6048 return I == RetI ? RedCost : 0;
6049 }
6050 }
6051
6052 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
6053}
6054
6056LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6057 ElementCount VF) {
6058 // Calculate scalar cost only. Vectorization cost should be ready at this
6059 // moment.
6060 if (VF.isScalar()) {
6061 Type *ValTy = getLoadStoreType(I);
6062 const Align Alignment = getLoadStoreAlignment(I);
6063 unsigned AS = getLoadStoreAddressSpace(I);
6064
6065 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
6066 return TTI.getAddressComputationCost(ValTy) +
6067 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6068 TTI::TCK_RecipThroughput, OpInfo, I);
6069 }
6070 return getWideningCost(I, VF);
6071}
6072
6073InstructionCost LoopVectorizationCostModel::getScalarizationOverhead(
6075
6076 // There is no mechanism yet to create a scalable scalarization loop,
6077 // so this is currently Invalid.
6078 if (VF.isScalable())
6080
6081 if (VF.isScalar())
6082 return 0;
6083
6085 Type *RetTy = toVectorTy(I->getType(), VF);
6086 if (!RetTy->isVoidTy() &&
6087 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6089 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()),
6090 /*Insert*/ true,
6091 /*Extract*/ false, CostKind);
6092
6093 // Some targets keep addresses scalar.
6094 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6095 return Cost;
6096
6097 // Some targets support efficient element stores.
6098 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6099 return Cost;
6100
6101 // Collect operands to consider.
6102 CallInst *CI = dyn_cast<CallInst>(I);
6103 Instruction::op_range Ops = CI ? CI->args() : I->operands();
6104
6105 // Skip operands that do not require extraction/scalarization and do not incur
6106 // any overhead.
6108 for (auto *V : filterExtractingOperands(Ops, VF))
6109 Tys.push_back(maybeVectorizeType(V->getType(), VF));
6111 filterExtractingOperands(Ops, VF), Tys, CostKind);
6112}
6113
6115 if (VF.isScalar())
6116 return;
6117 NumPredStores = 0;
6118 for (BasicBlock *BB : TheLoop->blocks()) {
6119 // For each instruction in the old loop.
6120 for (Instruction &I : *BB) {
6122 if (!Ptr)
6123 continue;
6124
6125 // TODO: We should generate better code and update the cost model for
6126 // predicated uniform stores. Today they are treated as any other
6127 // predicated store (see added test cases in
6128 // invariant-store-vectorization.ll).
6129 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6130 NumPredStores++;
6131
6132 if (Legal->isUniformMemOp(I, VF)) {
6133 auto IsLegalToScalarize = [&]() {
6134 if (!VF.isScalable())
6135 // Scalarization of fixed length vectors "just works".
6136 return true;
6137
6138 // We have dedicated lowering for unpredicated uniform loads and
6139 // stores. Note that even with tail folding we know that at least
6140 // one lane is active (i.e. generalized predication is not possible
6141 // here), and the logic below depends on this fact.
6142 if (!foldTailByMasking())
6143 return true;
6144
6145 // For scalable vectors, a uniform memop load is always
6146 // uniform-by-parts and we know how to scalarize that.
6147 if (isa<LoadInst>(I))
6148 return true;
6149
6150 // A uniform store isn't neccessarily uniform-by-part
6151 // and we can't assume scalarization.
6152 auto &SI = cast<StoreInst>(I);
6153 return TheLoop->isLoopInvariant(SI.getValueOperand());
6154 };
6155
6156 const InstructionCost GatherScatterCost =
6158 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
6159
6160 // Load: Scalar load + broadcast
6161 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6162 // FIXME: This cost is a significant under-estimate for tail folded
6163 // memory ops.
6164 const InstructionCost ScalarizationCost =
6165 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
6167
6168 // Choose better solution for the current VF, Note that Invalid
6169 // costs compare as maximumal large. If both are invalid, we get
6170 // scalable invalid which signals a failure and a vectorization abort.
6171 if (GatherScatterCost < ScalarizationCost)
6172 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
6173 else
6174 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
6175 continue;
6176 }
6177
6178 // We assume that widening is the best solution when possible.
6179 if (memoryInstructionCanBeWidened(&I, VF)) {
6180 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6181 int ConsecutiveStride = Legal->isConsecutivePtr(
6183 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6184 "Expected consecutive stride.");
6185 InstWidening Decision =
6186 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6187 setWideningDecision(&I, VF, Decision, Cost);
6188 continue;
6189 }
6190
6191 // Choose between Interleaving, Gather/Scatter or Scalarization.
6193 unsigned NumAccesses = 1;
6194 if (isAccessInterleaved(&I)) {
6195 const auto *Group = getInterleavedAccessGroup(&I);
6196 assert(Group && "Fail to get an interleaved access group.");
6197
6198 // Make one decision for the whole group.
6199 if (getWideningDecision(&I, VF) != CM_Unknown)
6200 continue;
6201
6202 NumAccesses = Group->getNumMembers();
6204 InterleaveCost = getInterleaveGroupCost(&I, VF);
6205 }
6206
6207 InstructionCost GatherScatterCost =
6209 ? getGatherScatterCost(&I, VF) * NumAccesses
6211
6212 InstructionCost ScalarizationCost =
6213 getMemInstScalarizationCost(&I, VF) * NumAccesses;
6214
6215 // Choose better solution for the current VF,
6216 // write down this decision and use it during vectorization.
6218 InstWidening Decision;
6219 if (InterleaveCost <= GatherScatterCost &&
6220 InterleaveCost < ScalarizationCost) {
6221 Decision = CM_Interleave;
6222 Cost = InterleaveCost;
6223 } else if (GatherScatterCost < ScalarizationCost) {
6224 Decision = CM_GatherScatter;
6225 Cost = GatherScatterCost;
6226 } else {
6227 Decision = CM_Scalarize;
6228 Cost = ScalarizationCost;
6229 }
6230 // If the instructions belongs to an interleave group, the whole group
6231 // receives the same decision. The whole group receives the cost, but
6232 // the cost will actually be assigned to one instruction.
6233 if (const auto *Group = getInterleavedAccessGroup(&I))
6234 setWideningDecision(Group, VF, Decision, Cost);
6235 else
6236 setWideningDecision(&I, VF, Decision, Cost);
6237 }
6238 }
6239
6240 // Make sure that any load of address and any other address computation
6241 // remains scalar unless there is gather/scatter support. This avoids
6242 // inevitable extracts into address registers, and also has the benefit of
6243 // activating LSR more, since that pass can't optimize vectorized
6244 // addresses.
6246 return;
6247
6248 // Start with all scalar pointer uses.
6250 for (BasicBlock *BB : TheLoop->blocks())
6251 for (Instruction &I : *BB) {
6252 Instruction *PtrDef =
6253 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6254 if (PtrDef && TheLoop->contains(PtrDef) &&
6256 AddrDefs.insert(PtrDef);
6257 }
6258
6259 // Add all instructions used to generate the addresses.
6261 append_range(Worklist, AddrDefs);
6262 while (!Worklist.empty()) {
6263 Instruction *I = Worklist.pop_back_val();
6264 for (auto &Op : I->operands())
6265 if (auto *InstOp = dyn_cast<Instruction>(Op))
6266 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6267 AddrDefs.insert(InstOp).second)
6268 Worklist.push_back(InstOp);
6269 }
6270
6271 for (auto *I : AddrDefs) {
6272 if (isa<LoadInst>(I)) {
6273 // Setting the desired widening decision should ideally be handled in
6274 // by cost functions, but since this involves the task of finding out
6275 // if the loaded register is involved in an address computation, it is
6276 // instead changed here when we know this is the case.
6277 InstWidening Decision = getWideningDecision(I, VF);
6278 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6279 // Scalarize a widened load of address.
6281 I, VF, CM_Scalarize,
6282 (VF.getKnownMinValue() *
6283 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6284 else if (const auto *Group = getInterleavedAccessGroup(I)) {
6285 // Scalarize an interleave group of address loads.
6286 for (unsigned I = 0; I < Group->getFactor(); ++I) {
6287 if (Instruction *Member = Group->getMember(I))
6289 Member, VF, CM_Scalarize,
6290 (VF.getKnownMinValue() *
6291 getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6292 }
6293 }
6294 } else
6295 // Make sure I gets scalarized and a cost estimate without
6296 // scalarization overhead.
6297 ForcedScalars[VF].insert(I);
6298 }
6299}
6300
6302 assert(!VF.isScalar() &&
6303 "Trying to set a vectorization decision for a scalar VF");
6304
6305 auto ForcedScalar = ForcedScalars.find(VF);
6306 for (BasicBlock *BB : TheLoop->blocks()) {
6307 // For each instruction in the old loop.
6308 for (Instruction &I : *BB) {
6309 CallInst *CI = dyn_cast<CallInst>(&I);
6310
6311 if (!CI)
6312 continue;
6313
6318 Function *ScalarFunc = CI->getCalledFunction();
6319 Type *ScalarRetTy = CI->getType();
6320 SmallVector<Type *, 4> Tys, ScalarTys;
6321 for (auto &ArgOp : CI->args())
6322 ScalarTys.push_back(ArgOp->getType());
6323
6324 // Estimate cost of scalarized vector call. The source operands are
6325 // assumed to be vectors, so we need to extract individual elements from
6326 // there, execute VF scalar calls, and then gather the result into the
6327 // vector return value.
6328 InstructionCost ScalarCallCost =
6329 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
6330
6331 // Compute costs of unpacking argument values for the scalar calls and
6332 // packing the return values to a vector.
6333 InstructionCost ScalarizationCost =
6334 getScalarizationOverhead(CI, VF, CostKind);
6335
6336 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
6337 // Honor ForcedScalars and UniformAfterVectorization decisions.
6338 // TODO: For calls, it might still be more profitable to widen. Use
6339 // VPlan-based cost model to compare different options.
6340 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
6341 ForcedScalar->second.contains(CI)) ||
6342 isUniformAfterVectorization(CI, VF))) {
6343 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
6344 Intrinsic::not_intrinsic, std::nullopt,
6345 ScalarCost);
6346 continue;
6347 }
6348
6349 bool MaskRequired = Legal->isMaskRequired(CI);
6350 // Compute corresponding vector type for return value and arguments.
6351 Type *RetTy = toVectorTy(ScalarRetTy, VF);
6352 for (Type *ScalarTy : ScalarTys)
6353 Tys.push_back(toVectorTy(ScalarTy, VF));
6354
6355 // An in-loop reduction using an fmuladd intrinsic is a special case;
6356 // we don't want the normal cost for that intrinsic.
6358 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy, CostKind)) {
6361 std::nullopt, *RedCost);
6362 continue;
6363 }
6364
6365 // Find the cost of vectorizing the call, if we can find a suitable
6366 // vector variant of the function.
6367 bool UsesMask = false;
6368 VFInfo FuncInfo;
6369 Function *VecFunc = nullptr;
6370 // Search through any available variants for one we can use at this VF.
6371 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
6372 // Must match requested VF.
6373 if (Info.Shape.VF != VF)
6374 continue;
6375
6376 // Must take a mask argument if one is required
6377 if (MaskRequired && !Info.isMasked())
6378 continue;
6379
6380 // Check that all parameter kinds are supported
6381 bool ParamsOk = true;
6382 for (VFParameter Param : Info.Shape.Parameters) {
6383 switch (Param.ParamKind) {
6385 break;
6387 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
6388 // Make sure the scalar parameter in the loop is invariant.
6389 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
6390 TheLoop))
6391 ParamsOk = false;
6392 break;
6393 }
6395 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
6396 // Find the stride for the scalar parameter in this loop and see if
6397 // it matches the stride for the variant.
6398 // TODO: do we need to figure out the cost of an extract to get the
6399 // first lane? Or do we hope that it will be folded away?
6400 ScalarEvolution *SE = PSE.getSE();
6401 const auto *SAR =
6402 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(ScalarParam));
6403
6404 if (!SAR || SAR->getLoop() != TheLoop) {
6405 ParamsOk = false;
6406 break;
6407 }
6408
6409 const SCEVConstant *Step =
6410 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE));
6411
6412 if (!Step ||
6413 Step->getAPInt().getSExtValue() != Param.LinearStepOrPos)
6414 ParamsOk = false;
6415
6416 break;
6417 }
6419 UsesMask = true;
6420 break;
6421 default:
6422 ParamsOk = false;
6423 break;
6424 }
6425 }
6426
6427 if (!ParamsOk)
6428 continue;
6429
6430 // Found a suitable candidate, stop here.
6431 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6432 FuncInfo = Info;
6433 break;
6434 }
6435
6436 // Add in the cost of synthesizing a mask if one wasn't required.
6437 InstructionCost MaskCost = 0;
6438 if (VecFunc && UsesMask && !MaskRequired)
6439 MaskCost = TTI.getShuffleCost(
6442 VecFunc->getFunctionType()->getContext()),
6443 VF));
6444
6445 if (TLI && VecFunc && !CI->isNoBuiltin())
6446 VectorCost =
6447 TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind) + MaskCost;
6448
6449 // Find the cost of an intrinsic; some targets may have instructions that
6450 // perform the operation without needing an actual call.
6452 if (IID != Intrinsic::not_intrinsic)
6453 IntrinsicCost = getVectorIntrinsicCost(CI, VF);
6454
6455 InstructionCost Cost = ScalarCost;
6456 InstWidening Decision = CM_Scalarize;
6457
6458 if (VectorCost <= Cost) {
6459 Cost = VectorCost;
6460 Decision = CM_VectorCall;
6461 }
6462
6463 if (IntrinsicCost <= Cost) {
6464 Cost = IntrinsicCost;
6465 Decision = CM_IntrinsicCall;
6466 }
6467
6468 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6470 }
6471 }
6472}
6473
6475 if (!Legal->isInvariant(Op))
6476 return false;
6477 // Consider Op invariant, if it or its operands aren't predicated
6478 // instruction in the loop. In that case, it is not trivially hoistable.
6479 auto *OpI = dyn_cast<Instruction>(Op);
6480 return !OpI || !TheLoop->contains(OpI) ||
6481 (!isPredicatedInst(OpI) &&
6482 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6483 all_of(OpI->operands(),
6484 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6485}
6486
6489 ElementCount VF) {
6490 // If we know that this instruction will remain uniform, check the cost of
6491 // the scalar version.
6493 VF = ElementCount::getFixed(1);
6494
6495 if (VF.isVector() && isProfitableToScalarize(I, VF))
6496 return InstsToScalarize[VF][I];
6497
6498 // Forced scalars do not have any scalarization overhead.
6499 auto ForcedScalar = ForcedScalars.find(VF);
6500 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6501 auto InstSet = ForcedScalar->second;
6502 if (InstSet.count(I))
6504 VF.getKnownMinValue();
6505 }
6506
6507 Type *RetTy = I->getType();
6509 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6510 auto *SE = PSE.getSE();
6512
6513 auto HasSingleCopyAfterVectorization = [this](Instruction *I,
6514 ElementCount VF) -> bool {
6515 if (VF.isScalar())
6516 return true;
6517
6518 auto Scalarized = InstsToScalarize.find(VF);
6519 assert(Scalarized != InstsToScalarize.end() &&
6520 "VF not yet analyzed for scalarization profitability");
6521 return !Scalarized->second.count(I) &&
6522 llvm::all_of(I->users(), [&](User *U) {
6523 auto *UI = cast<Instruction>(U);
6524 return !Scalarized->second.count(UI);
6525 });
6526 };
6527 (void)HasSingleCopyAfterVectorization;
6528
6529 Type *VectorTy;
6530 if (isScalarAfterVectorization(I, VF)) {
6531 // With the exception of GEPs and PHIs, after scalarization there should
6532 // only be one copy of the instruction generated in the loop. This is
6533 // because the VF is either 1, or any instructions that need scalarizing
6534 // have already been dealt with by the time we get here. As a result,
6535 // it means we don't have to multiply the instruction cost by VF.
6536 assert(I->getOpcode() == Instruction::GetElementPtr ||
6537 I->getOpcode() == Instruction::PHI ||
6538 (I->getOpcode() == Instruction::BitCast &&
6539 I->getType()->isPointerTy()) ||
6540 HasSingleCopyAfterVectorization(I, VF));
6541 VectorTy = RetTy;
6542 } else
6543 VectorTy = toVectorTy(RetTy, VF);
6544
6545 if (VF.isVector() && VectorTy->isVectorTy() &&
6546 !TTI.getNumberOfParts(VectorTy))
6548
6549 // TODO: We need to estimate the cost of intrinsic calls.
6550 switch (I->getOpcode()) {
6551 case Instruction::GetElementPtr:
6552 // We mark this instruction as zero-cost because the cost of GEPs in
6553 // vectorized code depends on whether the corresponding memory instruction
6554 // is scalarized or not. Therefore, we handle GEPs with the memory
6555 // instruction cost.
6556 return 0;
6557 case Instruction::Br: {
6558 // In cases of scalarized and predicated instructions, there will be VF
6559 // predicated blocks in the vectorized loop. Each branch around these
6560 // blocks requires also an extract of its vector compare i1 element.
6561 // Note that the conditional branch from the loop latch will be replaced by
6562 // a single branch controlling the loop, so there is no extra overhead from
6563 // scalarization.
6564 bool ScalarPredicatedBB = false;
6565 BranchInst *BI = cast<BranchInst>(I);
6566 if (VF.isVector() && BI->isConditional() &&
6567 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6568 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6569 BI->getParent() != TheLoop->getLoopLatch())
6570 ScalarPredicatedBB = true;
6571
6572 if (ScalarPredicatedBB) {
6573 // Not possible to scalarize scalable vector with predicated instructions.
6574 if (VF.isScalable())
6576 // Return cost for branches around scalarized and predicated blocks.
6577 auto *VecI1Ty =
6578 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6579 return (
6581 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6582 /*Insert*/ false, /*Extract*/ true, CostKind) +
6583 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6584 }
6585
6586 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6587 // The back-edge branch will remain, as will all scalar branches.
6588 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6589
6590 // This branch will be eliminated by if-conversion.
6591 return 0;
6592 // Note: We currently assume zero cost for an unconditional branch inside
6593 // a predicated block since it will become a fall-through, although we
6594 // may decide in the future to call TTI for all branches.
6595 }
6596 case Instruction::Switch: {
6597 if (VF.isScalar())
6598 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6599 auto *Switch = cast<SwitchInst>(I);
6600 return Switch->getNumCases() *
6602 Instruction::ICmp,
6603 toVectorTy(Switch->getCondition()->getType(), VF),
6604 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6606 }
6607 case Instruction::PHI: {
6608 auto *Phi = cast<PHINode>(I);
6609
6610 // First-order recurrences are replaced by vector shuffles inside the loop.
6611 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6612 // For <vscale x 1 x i64>, if vscale = 1 we are unable to extract the
6613 // penultimate value of the recurrence.
6614 // TODO: Consider vscale_range info.
6615 if (VF.isScalable() && VF.getKnownMinValue() == 1)
6618 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6620 cast<VectorType>(VectorTy), Mask, CostKind,
6621 VF.getKnownMinValue() - 1);
6622 }
6623
6624 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6625 // converted into select instructions. We require N - 1 selects per phi
6626 // node, where N is the number of incoming values.
6627 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6628 Type *ResultTy = Phi->getType();
6629
6630 // All instructions in an Any-of reduction chain are narrowed to bool.
6631 // Check if that is the case for this phi node.
6632 auto *HeaderUser = cast_if_present<PHINode>(
6633 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6634 auto *Phi = dyn_cast<PHINode>(U);
6635 if (Phi && Phi->getParent() == TheLoop->getHeader())
6636 return Phi;
6637 return nullptr;
6638 }));
6639 if (HeaderUser) {
6640 auto &ReductionVars = Legal->getReductionVars();
6641 auto Iter = ReductionVars.find(HeaderUser);
6642 if (Iter != ReductionVars.end() &&
6644 Iter->second.getRecurrenceKind()))
6645 ResultTy = Type::getInt1Ty(Phi->getContext());
6646 }
6647 return (Phi->getNumIncomingValues() - 1) *
6649 Instruction::Select, toVectorTy(ResultTy, VF),
6650 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6652 }
6653
6654 // When tail folding with EVL, if the phi is part of an out of loop
6655 // reduction then it will be transformed into a wide vp_merge.
6656 if (VF.isVector() && foldTailWithEVL() &&
6659 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6660 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6661 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6662 }
6663
6664 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6665 }
6666 case Instruction::UDiv:
6667 case Instruction::SDiv:
6668 case Instruction::URem:
6669 case Instruction::SRem:
6670 if (VF.isVector() && isPredicatedInst(I)) {
6671 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6672 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6673 ScalarCost : SafeDivisorCost;
6674 }
6675 // We've proven all lanes safe to speculate, fall through.
6676 [[fallthrough]];
6677 case Instruction::Add:
6678 case Instruction::Sub: {
6679 auto Info = Legal->getHistogramInfo(I);
6680 if (Info && VF.isVector()) {
6681 const HistogramInfo *HGram = Info.value();
6682 // Assume that a non-constant update value (or a constant != 1) requires
6683 // a multiply, and add that into the cost.
6685 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6686 if (!RHS || RHS->getZExtValue() != 1)
6687 MulCost = TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6688
6689 // Find the cost of the histogram operation itself.
6690 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6691 Type *ScalarTy = I->getType();
6692 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6693 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6694 Type::getVoidTy(I->getContext()),
6695 {PtrTy, ScalarTy, MaskTy});
6696
6697 // Add the costs together with the add/sub operation.
6700 MulCost + TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
6701 }
6702 [[fallthrough]];
6703 }
6704 case Instruction::FAdd:
6705 case Instruction::FSub:
6706 case Instruction::Mul:
6707 case Instruction::FMul:
6708 case Instruction::FDiv:
6709 case Instruction::FRem:
6710 case Instruction::Shl:
6711 case Instruction::LShr:
6712 case Instruction::AShr:
6713 case Instruction::And:
6714 case Instruction::Or:
6715 case Instruction::Xor: {
6716 // If we're speculating on the stride being 1, the multiplication may
6717 // fold away. We can generalize this for all operations using the notion
6718 // of neutral elements. (TODO)
6719 if (I->getOpcode() == Instruction::Mul &&
6720 (PSE.getSCEV(I->getOperand(0))->isOne() ||
6721 PSE.getSCEV(I->getOperand(1))->isOne()))
6722 return 0;
6723
6724 // Detect reduction patterns
6725 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
6726 return *RedCost;
6727
6728 // Certain instructions can be cheaper to vectorize if they have a constant
6729 // second vector operand. One example of this are shifts on x86.
6730 Value *Op2 = I->getOperand(1);
6731 if (!isa<Constant>(Op2) && PSE.getSE()->isSCEVable(Op2->getType()) &&
6732 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6733 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6734 }
6735 auto Op2Info = TTI.getOperandInfo(Op2);
6736 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6739
6740 SmallVector<const Value *, 4> Operands(I->operand_values());
6742 I->getOpcode(), VectorTy, CostKind,
6743 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6744 Op2Info, Operands, I, TLI);
6745 }
6746 case Instruction::FNeg: {
6748 I->getOpcode(), VectorTy, CostKind,
6749 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6750 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6751 I->getOperand(0), I);
6752 }
6753 case Instruction::Select: {
6754 SelectInst *SI = cast<SelectInst>(I);
6755 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6756 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6757
6758 const Value *Op0, *Op1;
6759 using namespace llvm::PatternMatch;
6760 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6761 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6762 // select x, y, false --> x & y
6763 // select x, true, y --> x | y
6764 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6765 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6766 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6767 Op1->getType()->getScalarSizeInBits() == 1);
6768
6771 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
6772 CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I);
6773 }
6774
6775 Type *CondTy = SI->getCondition()->getType();
6776 if (!ScalarCond)
6777 CondTy = VectorType::get(CondTy, VF);
6778
6780 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6781 Pred = Cmp->getPredicate();
6782 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6783 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6784 {TTI::OK_AnyValue, TTI::OP_None}, I);
6785 }
6786 case Instruction::ICmp:
6787 case Instruction::FCmp: {
6788 Type *ValTy = I->getOperand(0)->getType();
6789
6791 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6792 (void)Op0AsInstruction;
6793 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6794 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6795 "if both the operand and the compare are marked for "
6796 "truncation, they must have the same bitwidth");
6797 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6798 }
6799
6800 VectorTy = toVectorTy(ValTy, VF);
6801 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
6802 cast<CmpInst>(I)->getPredicate(), CostKind,
6803 {TTI::OK_AnyValue, TTI::OP_None},
6804 {TTI::OK_AnyValue, TTI::OP_None}, I);
6805 }
6806 case Instruction::Store:
6807 case Instruction::Load: {
6808 ElementCount Width = VF;
6809 if (Width.isVector()) {
6810 InstWidening Decision = getWideningDecision(I, Width);
6811 assert(Decision != CM_Unknown &&
6812 "CM decision should be taken at this point");
6815 if (Decision == CM_Scalarize)
6816 Width = ElementCount::getFixed(1);
6817 }
6818 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6819 return getMemoryInstructionCost(I, VF);
6820 }
6821 case Instruction::BitCast:
6822 if (I->getType()->isPointerTy())
6823 return 0;
6824 [[fallthrough]];
6825 case Instruction::ZExt:
6826 case Instruction::SExt:
6827 case Instruction::FPToUI:
6828 case Instruction::FPToSI:
6829 case Instruction::FPExt:
6830 case Instruction::PtrToInt:
6831 case Instruction::IntToPtr:
6832 case Instruction::SIToFP:
6833 case Instruction::UIToFP:
6834 case Instruction::Trunc:
6835 case Instruction::FPTrunc: {
6836 // Computes the CastContextHint from a Load/Store instruction.
6837 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6838 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6839 "Expected a load or a store!");
6840
6841 if (VF.isScalar() || !TheLoop->contains(I))
6843
6844 switch (getWideningDecision(I, VF)) {
6856 llvm_unreachable("Instr did not go through cost modelling?");
6859 llvm_unreachable_internal("Instr has invalid widening decision");
6860 }
6861
6862 llvm_unreachable("Unhandled case!");
6863 };
6864
6865 unsigned Opcode = I->getOpcode();
6867 // For Trunc, the context is the only user, which must be a StoreInst.
6868 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6869 if (I->hasOneUse())
6870 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6871 CCH = ComputeCCH(Store);
6872 }
6873 // For Z/Sext, the context is the operand, which must be a LoadInst.
6874 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6875 Opcode == Instruction::FPExt) {
6876 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6877 CCH = ComputeCCH(Load);
6878 }
6879
6880 // We optimize the truncation of induction variables having constant
6881 // integer steps. The cost of these truncations is the same as the scalar
6882 // operation.
6883 if (isOptimizableIVTruncate(I, VF)) {
6884 auto *Trunc = cast<TruncInst>(I);
6885 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6886 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6887 }
6888
6889 // Detect reduction patterns
6890 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
6891 return *RedCost;
6892
6893 Type *SrcScalarTy = I->getOperand(0)->getType();
6894 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6895 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6896 SrcScalarTy =
6897 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6898 Type *SrcVecTy =
6899 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6900
6902 // If the result type is <= the source type, there will be no extend
6903 // after truncating the users to the minimal required bitwidth.
6904 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6905 (I->getOpcode() == Instruction::ZExt ||
6906 I->getOpcode() == Instruction::SExt))
6907 return 0;
6908 }
6909
6910 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6911 }
6912 case Instruction::Call:
6913 return getVectorCallCost(cast<CallInst>(I), VF);
6914 case Instruction::ExtractValue:
6916 case Instruction::Alloca:
6917 // We cannot easily widen alloca to a scalable alloca, as
6918 // the result would need to be a vector of pointers.
6919 if (VF.isScalable())
6921 [[fallthrough]];
6922 default:
6923 // This opcode is unknown. Assume that it is the same as 'mul'.
6924 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6925 } // end of switch.
6926}
6927
6929 // Ignore ephemeral values.
6931
6932 SmallVector<Value *, 4> DeadInterleavePointerOps;
6934
6935 // If a scalar epilogue is required, users outside the loop won't use
6936 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6937 // that is the case.
6938 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6939 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6940 return RequiresScalarEpilogue &&
6941 !TheLoop->contains(cast<Instruction>(U)->getParent());
6942 };
6943
6945 DFS.perform(LI);
6946 MapVector<Value *, SmallVector<Value *>> DeadInvariantStoreOps;
6947 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6948 for (Instruction &I : reverse(*BB)) {
6949 // Find all stores to invariant variables. Since they are going to sink
6950 // outside the loop we do not need calculate cost for them.
6951 StoreInst *SI;
6952 if ((SI = dyn_cast<StoreInst>(&I)) &&
6953 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
6954 ValuesToIgnore.insert(&I);
6955 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6956 SI->getValueOperand());
6957 }
6958
6959 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6960 continue;
6961
6962 // Add instructions that would be trivially dead and are only used by
6963 // values already ignored to DeadOps to seed worklist.
6965 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6966 return VecValuesToIgnore.contains(U) ||
6967 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6968 }))
6969 DeadOps.push_back(&I);
6970
6971 // For interleave groups, we only create a pointer for the start of the
6972 // interleave group. Queue up addresses of group members except the insert
6973 // position for further processing.
6974 if (isAccessInterleaved(&I)) {
6975 auto *Group = getInterleavedAccessGroup(&I);
6976 if (Group->getInsertPos() == &I)
6977 continue;
6978 Value *PointerOp = getLoadStorePointerOperand(&I);
6979 DeadInterleavePointerOps.push_back(PointerOp);
6980 }
6981
6982 // Queue branches for analysis. They are dead, if their successors only
6983 // contain dead instructions.
6984 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6985 if (Br->isConditional())
6986 DeadOps.push_back(&I);
6987 }
6988 }
6989
6990 // Mark ops feeding interleave group members as free, if they are only used
6991 // by other dead computations.
6992 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6993 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6994 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6995 Instruction *UI = cast<Instruction>(U);
6996 return !VecValuesToIgnore.contains(U) &&
6997 (!isAccessInterleaved(UI) ||
6998 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6999 }))
7000 continue;
7001 VecValuesToIgnore.insert(Op);
7002 DeadInterleavePointerOps.append(Op->op_begin(), Op->op_end());
7003 }
7004
7005 for (const auto &[_, Ops] : DeadInvariantStoreOps) {
7006 for (Value *Op : ArrayRef(Ops).drop_back())
7007 DeadOps.push_back(Op);
7008 }
7009 // Mark ops that would be trivially dead and are only used by ignored
7010 // instructions as free.
7011 BasicBlock *Header = TheLoop->getHeader();
7012
7013 // Returns true if the block contains only dead instructions. Such blocks will
7014 // be removed by VPlan-to-VPlan transforms and won't be considered by the
7015 // VPlan-based cost model, so skip them in the legacy cost-model as well.
7016 auto IsEmptyBlock = [this](BasicBlock *BB) {
7017 return all_of(*BB, [this](Instruction &I) {
7018 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
7019 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
7020 });
7021 };
7022 for (unsigned I = 0; I != DeadOps.size(); ++I) {
7023 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
7024
7025 // Check if the branch should be considered dead.
7026 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
7027 BasicBlock *ThenBB = Br->getSuccessor(0);
7028 BasicBlock *ElseBB = Br->getSuccessor(1);
7029 // Don't considers branches leaving the loop for simplification.
7030 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
7031 continue;
7032 bool ThenEmpty = IsEmptyBlock(ThenBB);
7033 bool ElseEmpty = IsEmptyBlock(ElseBB);
7034 if ((ThenEmpty && ElseEmpty) ||
7035 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
7036 ElseBB->phis().empty()) ||
7037 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
7038 ThenBB->phis().empty())) {
7039 VecValuesToIgnore.insert(Br);
7040 DeadOps.push_back(Br->getCondition());
7041 }
7042 continue;
7043 }
7044
7045 // Skip any op that shouldn't be considered dead.
7046 if (!Op || !TheLoop->contains(Op) ||
7047 (isa<PHINode>(Op) && Op->getParent() == Header) ||
7049 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
7050 return !VecValuesToIgnore.contains(U) &&
7051 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
7052 }))
7053 continue;
7054
7055 if (!TheLoop->contains(Op->getParent()))
7056 continue;
7057
7058 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
7059 // which applies for both scalar and vector versions. Otherwise it is only
7060 // dead in vector versions, so only add it to VecValuesToIgnore.
7061 if (all_of(Op->users(),
7062 [this](User *U) { return ValuesToIgnore.contains(U); }))
7063 ValuesToIgnore.insert(Op);
7064
7065 VecValuesToIgnore.insert(Op);
7066 DeadOps.append(Op->op_begin(), Op->op_end());
7067 }
7068
7069 // Ignore type-promoting instructions we identified during reduction
7070 // detection.
7071 for (const auto &Reduction : Legal->getReductionVars()) {
7072 const RecurrenceDescriptor &RedDes = Reduction.second;
7073 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7074 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7075 }
7076 // Ignore type-casting instructions we identified during induction
7077 // detection.
7078 for (const auto &Induction : Legal->getInductionVars()) {
7079 const InductionDescriptor &IndDes = Induction.second;
7080 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7081 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7082 }
7083}
7084
7086 for (const auto &Reduction : Legal->getReductionVars()) {
7087 PHINode *Phi = Reduction.first;
7088 const RecurrenceDescriptor &RdxDesc = Reduction.second;
7089
7090 // We don't collect reductions that are type promoted (yet).
7091 if (RdxDesc.getRecurrenceType() != Phi->getType())
7092 continue;
7093
7094 // If the target would prefer this reduction to happen "in-loop", then we
7095 // want to record it as such.
7096 unsigned Opcode = RdxDesc.getOpcode();
7097 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7098 !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7100 continue;
7101
7102 // Check that we can correctly put the reductions into the loop, by
7103 // finding the chain of operations that leads from the phi to the loop
7104 // exit value.
7105 SmallVector<Instruction *, 4> ReductionOperations =
7106 RdxDesc.getReductionOpChain(Phi, TheLoop);
7107 bool InLoop = !ReductionOperations.empty();
7108
7109 if (InLoop) {
7110 InLoopReductions.insert(Phi);
7111 // Add the elements to InLoopReductionImmediateChains for cost modelling.
7112 Instruction *LastChain = Phi;
7113 for (auto *I : ReductionOperations) {
7114 InLoopReductionImmediateChains[I] = LastChain;
7115 LastChain = I;
7116 }
7117 }
7118 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7119 << " reduction for phi: " << *Phi << "\n");
7120 }
7121}
7122
7123// This function will select a scalable VF if the target supports scalable
7124// vectors and a fixed one otherwise.
7125// TODO: we could return a pair of values that specify the max VF and
7126// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7127// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7128// doesn't have a cost model that can choose which plan to execute if
7129// more than one is generated.
7132 unsigned WidestType;
7133 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7134
7139
7141 unsigned N = RegSize.getKnownMinValue() / WidestType;
7142 return ElementCount::get(N, RegSize.isScalable());
7143}
7144
7147 ElementCount VF = UserVF;
7148 // Outer loop handling: They may require CFG and instruction level
7149 // transformations before even evaluating whether vectorization is profitable.
7150 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7151 // the vectorization pipeline.
7152 if (!OrigLoop->isInnermost()) {
7153 // If the user doesn't provide a vectorization factor, determine a
7154 // reasonable one.
7155 if (UserVF.isZero()) {
7156 VF = determineVPlanVF(TTI, CM);
7157 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7158
7159 // Make sure we have a VF > 1 for stress testing.
7160 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7161 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7162 << "overriding computed VF.\n");
7163 VF = ElementCount::getFixed(4);
7164 }
7165 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
7167 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
7168 << "not supported by the target.\n");
7170 "Scalable vectorization requested but not supported by the target",
7171 "the scalable user-specified vectorization width for outer-loop "
7172 "vectorization cannot be used because the target does not support "
7173 "scalable vectors.",
7174 "ScalableVFUnfeasible", ORE, OrigLoop);
7176 }
7177 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7179 "VF needs to be a power of two");
7180 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7181 << "VF " << VF << " to build VPlans.\n");
7182 buildVPlans(VF, VF);
7183
7184 // For VPlan build stress testing, we bail out after VPlan construction.
7187
7188 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
7189 }
7190
7191 LLVM_DEBUG(
7192 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7193 "VPlan-native path.\n");
7195}
7196
7197void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7198 assert(OrigLoop->isInnermost() && "Inner loop expected.");
7201
7202 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7203 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7204 return;
7205
7206 // Invalidate interleave groups if all blocks of loop will be predicated.
7207 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7209 LLVM_DEBUG(
7210 dbgs()
7211 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7212 "which requires masked-interleaved support.\n");
7214 // Invalidating interleave groups also requires invalidating all decisions
7215 // based on them, which includes widening decisions and uniform and scalar
7216 // values.
7218 }
7219
7220 if (CM.foldTailByMasking())
7222
7223 ElementCount MaxUserVF =
7224 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7225 if (UserVF) {
7226 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
7228 "UserVF ignored because it may be larger than the maximal safe VF",
7229 "InvalidUserVF", ORE, OrigLoop);
7230 } else {
7232 "VF needs to be a power of two");
7233 // Collect the instructions (and their associated costs) that will be more
7234 // profitable to scalarize.
7236 if (CM.selectUserVectorizationFactor(UserVF)) {
7237 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7238 buildVPlansWithVPRecipes(UserVF, UserVF);
7240 return;
7241 }
7242 reportVectorizationInfo("UserVF ignored because of invalid costs.",
7243 "InvalidCost", ORE, OrigLoop);
7244 }
7245 }
7246
7247 // Collect the Vectorization Factor Candidates.
7248 SmallVector<ElementCount> VFCandidates;
7249 for (auto VF = ElementCount::getFixed(1);
7250 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7251 VFCandidates.push_back(VF);
7252 for (auto VF = ElementCount::getScalable(1);
7253 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7254 VFCandidates.push_back(VF);
7255
7257 for (const auto &VF : VFCandidates) {
7258 // Collect Uniform and Scalar instructions after vectorization with VF.
7260
7261 // Collect the instructions (and their associated costs) that will be more
7262 // profitable to scalarize.
7263 if (VF.isVector())
7265 }
7266
7267 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7268 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7269
7271}
7272
7274 ElementCount VF) const {
7275 if (ForceTargetInstructionCost.getNumOccurrences())
7276 return InstructionCost(ForceTargetInstructionCost.getNumOccurrences());
7277 return CM.getInstructionCost(UI, VF);
7278}
7279
7280bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
7281 return CM.ValuesToIgnore.contains(UI) ||
7282 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
7283 SkipCostComputation.contains(UI);
7284}
7285
7287LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
7288 VPCostContext &CostCtx) const {
7290 // Cost modeling for inductions is inaccurate in the legacy cost model
7291 // compared to the recipes that are generated. To match here initially during
7292 // VPlan cost model bring up directly use the induction costs from the legacy
7293 // cost model. Note that we do this as pre-processing; the VPlan may not have
7294 // any recipes associated with the original induction increment instruction
7295 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
7296 // the cost of induction phis and increments (both that are represented by
7297 // recipes and those that are not), to avoid distinguishing between them here,
7298 // and skip all recipes that represent induction phis and increments (the
7299 // former case) later on, if they exist, to avoid counting them twice.
7300 // Similarly we pre-compute the cost of any optimized truncates.
7301 // TODO: Switch to more accurate costing based on VPlan.
7302 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
7303 Instruction *IVInc = cast<Instruction>(
7304 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
7305 SmallVector<Instruction *> IVInsts = {IVInc};
7306 for (unsigned I = 0; I != IVInsts.size(); I++) {
7307 for (Value *Op : IVInsts[I]->operands()) {
7308 auto *OpI = dyn_cast<Instruction>(Op);
7309 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
7310 continue;
7311 IVInsts.push_back(OpI);
7312 }
7313 }
7314 IVInsts.push_back(IV);
7315 for (User *U : IV->users()) {
7316 auto *CI = cast<Instruction>(U);
7317 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
7318 continue;
7319 IVInsts.push_back(CI);
7320 }
7321
7322 // If the vector loop gets executed exactly once with the given VF, ignore
7323 // the costs of comparison and induction instructions, as they'll get
7324 // simplified away.
7325 // TODO: Remove this code after stepping away from the legacy cost model and
7326 // adding code to simplify VPlans before calculating their costs.
7327 auto TC = PSE.getSE()->getSmallConstantTripCount(OrigLoop);
7328 if (VF.isFixed() && TC == VF.getFixedValue() && !CM.foldTailByMasking())
7330 CostCtx.SkipCostComputation);
7331
7332 for (Instruction *IVInst : IVInsts) {
7333 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
7334 continue;
7335 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
7336 LLVM_DEBUG({
7337 dbgs() << "Cost of " << InductionCost << " for VF " << VF
7338 << ": induction instruction " << *IVInst << "\n";
7339 });
7340 Cost += InductionCost;
7341 CostCtx.SkipCostComputation.insert(IVInst);
7342 }
7343 }
7344
7345 /// Compute the cost of all exiting conditions of the loop using the legacy
7346 /// cost model. This is to match the legacy behavior, which adds the cost of
7347 /// all exit conditions. Note that this over-estimates the cost, as there will
7348 /// be a single condition to control the vector loop.
7350 CM.TheLoop->getExitingBlocks(Exiting);
7351 SetVector<Instruction *> ExitInstrs;
7352 // Collect all exit conditions.
7353 for (BasicBlock *EB : Exiting) {
7354 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
7355 if (!Term)
7356 continue;
7357 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
7358 ExitInstrs.insert(CondI);
7359 }
7360 }
7361 // Compute the cost of all instructions only feeding the exit conditions.
7362 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
7363 Instruction *CondI = ExitInstrs[I];
7364 if (!OrigLoop->contains(CondI) ||
7365 !CostCtx.SkipCostComputation.insert(CondI).second)
7366 continue;
7367 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
7368 LLVM_DEBUG({
7369 dbgs() << "Cost of " << CondICost << " for VF " << VF
7370 << ": exit condition instruction " << *CondI << "\n";
7371 });
7372 Cost += CondICost;
7373 for (Value *Op : CondI->operands()) {
7374 auto *OpI = dyn_cast<Instruction>(Op);
7375 if (!OpI || any_of(OpI->users(), [&ExitInstrs, this](User *U) {
7376 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
7377 !ExitInstrs.contains(cast<Instruction>(U));
7378 }))
7379 continue;
7380 ExitInstrs.insert(OpI);
7381 }
7382 }
7383
7384 // The legacy cost model has special logic to compute the cost of in-loop
7385 // reductions, which may be smaller than the sum of all instructions involved
7386 // in the reduction.
7387 // TODO: Switch to costing based on VPlan once the logic has been ported.
7388 for (const auto &[RedPhi, RdxDesc] : Legal->getReductionVars()) {
7389 if (ForceTargetInstructionCost.getNumOccurrences())
7390 continue;
7391
7392 if (!CM.isInLoopReduction(RedPhi))
7393 continue;
7394
7395 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
7396 SetVector<Instruction *> ChainOpsAndOperands(ChainOps.begin(),
7397 ChainOps.end());
7398 auto IsZExtOrSExt = [](const unsigned Opcode) -> bool {
7399 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt;
7400 };
7401 // Also include the operands of instructions in the chain, as the cost-model
7402 // may mark extends as free.
7403 //
7404 // For ARM, some of the instruction can folded into the reducion
7405 // instruction. So we need to mark all folded instructions free.
7406 // For example: We can fold reduce(mul(ext(A), ext(B))) into one
7407 // instruction.
7408 for (auto *ChainOp : ChainOps) {
7409 for (Value *Op : ChainOp->operands()) {
7410 if (auto *I = dyn_cast<Instruction>(Op)) {
7411 ChainOpsAndOperands.insert(I);
7412 if (I->getOpcode() == Instruction::Mul) {
7413 auto *Ext0 = dyn_cast<Instruction>(I->getOperand(0));
7414 auto *Ext1 = dyn_cast<Instruction>(I->getOperand(1));
7415 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 &&
7416 Ext0->getOpcode() == Ext1->getOpcode()) {
7417 ChainOpsAndOperands.insert(Ext0);
7418 ChainOpsAndOperands.insert(Ext1);
7419 }
7420 }
7421 }
7422 }
7423 }
7424
7425 // Pre-compute the cost for I, if it has a reduction pattern cost.
7426 for (Instruction *I : ChainOpsAndOperands) {
7427 auto ReductionCost = CM.getReductionPatternCost(
7428 I, VF, toVectorTy(I->getType(), VF), TTI::TCK_RecipThroughput);
7429 if (!ReductionCost)
7430 continue;
7431
7432 assert(!CostCtx.SkipCostComputation.contains(I) &&
7433 "reduction op visited multiple times");
7434 CostCtx.SkipCostComputation.insert(I);
7435 LLVM_DEBUG(dbgs() << "Cost of " << ReductionCost << " for VF " << VF
7436 << ":\n in-loop reduction " << *I << "\n");
7437 Cost += *ReductionCost;
7438 }
7439 }
7440
7441 // Pre-compute the costs for branches except for the backedge, as the number
7442 // of replicate regions in a VPlan may not directly match the number of
7443 // branches, which would lead to different decisions.
7444 // TODO: Compute cost of branches for each replicate region in the VPlan,
7445 // which is more accurate than the legacy cost model.
7446 for (BasicBlock *BB : OrigLoop->blocks()) {
7447 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
7448 continue;
7449 CostCtx.SkipCostComputation.insert(BB->getTerminator());
7450 if (BB == OrigLoop->getLoopLatch())
7451 continue;
7452 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
7453 Cost += BranchCost;
7454 }
7455
7456 // Pre-compute costs for instructions that are forced-scalar or profitable to
7457 // scalarize. Their costs will be computed separately in the legacy cost
7458 // model.
7459 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
7460 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
7461 continue;
7462 CostCtx.SkipCostComputation.insert(ForcedScalar);
7463 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
7464 LLVM_DEBUG({
7465 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
7466 << ": forced scalar " << *ForcedScalar << "\n";
7467 });
7468 Cost += ForcedCost;
7469 }
7470 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7471 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
7472 continue;
7473 CostCtx.SkipCostComputation.insert(Scalarized);
7474 LLVM_DEBUG({
7475 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
7476 << ": profitable to scalarize " << *Scalarized << "\n";
7477 });
7478 Cost += ScalarCost;
7479 }
7480
7481 return Cost;
7482}
7483
7484InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
7485 ElementCount VF) const {
7486 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), CM);
7487 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
7488
7489 // Now compute and add the VPlan-based cost.
7490 Cost += Plan.cost(VF, CostCtx);
7491#ifndef NDEBUG
7492 unsigned EstimatedWidth = getEstimatedRuntimeVF(OrigLoop, CM.TTI, VF);
7493 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
7494 << " (Estimated cost per lane: ");
7495 if (Cost.isValid()) {
7496 double CostPerLane = double(*Cost.getValue()) / EstimatedWidth;
7497 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
7498 } else /* No point dividing an invalid cost - it will still be invalid */
7499 LLVM_DEBUG(dbgs() << "Invalid");
7500 LLVM_DEBUG(dbgs() << ")\n");
7501#endif
7502 return Cost;
7503}
7504
7505#ifndef NDEBUG
7506/// Return true if the original loop \ TheLoop contains any instructions that do
7507/// not have corresponding recipes in \p Plan and are not marked to be ignored
7508/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7509/// cost-model did not account for.
7511 VPCostContext &CostCtx,
7512 Loop *TheLoop) {
7513 // First collect all instructions for the recipes in Plan.
7514 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7515 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7516 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7517 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7518 return &WidenMem->getIngredient();
7519 return nullptr;
7520 };
7521
7522 DenseSet<Instruction *> SeenInstrs;
7523 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7524 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
7525 for (VPRecipeBase &R : *VPBB) {
7526 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7527 auto *IG = IR->getInterleaveGroup();
7528 unsigned NumMembers = IG->getNumMembers();
7529 for (unsigned I = 0; I != NumMembers; ++I) {
7530 if (Instruction *M = IG->getMember(I))
7531 SeenInstrs.insert(M);
7532 }
7533 continue;
7534 }
7535 if (Instruction *UI = GetInstructionForCost(&R))
7536 SeenInstrs.insert(UI);
7537 }
7538 }
7539
7540 // Return true if the loop contains any instructions that are not also part of
7541 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7542 // that the VPlan contains extra simplifications.
7543 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7544 TheLoop](BasicBlock *BB) {
7545 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7546 if (isa<PHINode>(&I) && BB == TheLoop->getHeader())
7547 return false;
7548 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7549 });
7550 });
7551}
7552#endif
7553
7555 if (VPlans.empty())
7557 // If there is a single VPlan with a single VF, return it directly.
7558 VPlan &FirstPlan = *VPlans[0];
7559 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7560 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7561
7563 assert(hasPlanWithVF(ScalarVF) &&
7564 "More than a single plan/VF w/o any plan having scalar VF");
7565
7566 // TODO: Compute scalar cost using VPlan-based cost model.
7567 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7568 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7569 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7570 VectorizationFactor BestFactor = ScalarFactor;
7571
7572 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7573 if (ForceVectorization) {
7574 // Ignore scalar width, because the user explicitly wants vectorization.
7575 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7576 // evaluation.
7577 BestFactor.Cost = InstructionCost::getMax();
7578 }
7579
7580 for (auto &P : VPlans) {
7581 for (ElementCount VF : P->vectorFactors()) {
7582 if (VF.isScalar())
7583 continue;
7584 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7585 LLVM_DEBUG(
7586 dbgs()
7587 << "LV: Not considering vector loop of width " << VF
7588 << " because it will not generate any vector instructions.\n");
7589 continue;
7590 }
7591
7592 InstructionCost Cost = cost(*P, VF);
7593 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7594 if (isMoreProfitable(CurrentFactor, BestFactor))
7595 BestFactor = CurrentFactor;
7596
7597 // If profitable add it to ProfitableVF list.
7598 if (isMoreProfitable(CurrentFactor, ScalarFactor))
7599 ProfitableVFs.push_back(CurrentFactor);
7600 }
7601 }
7602
7603#ifndef NDEBUG
7604 // Select the optimal vectorization factor according to the legacy cost-model.
7605 // This is now only used to verify the decisions by the new VPlan-based
7606 // cost-model and will be retired once the VPlan-based cost-model is
7607 // stabilized.
7608 VectorizationFactor LegacyVF = selectVectorizationFactor();
7609 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7610
7611 // Pre-compute the cost and use it to check if BestPlan contains any
7612 // simplifications not accounted for in the legacy cost model. If that's the
7613 // case, don't trigger the assertion, as the extra simplifications may cause a
7614 // different VF to be picked by the VPlan-based cost model.
7615 VPCostContext CostCtx(CM.TTI, *CM.TLI, Legal->getWidestInductionType(), CM);
7616 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7617 assert((BestFactor.Width == LegacyVF.Width ||
7619 CostCtx, OrigLoop) ||
7621 CostCtx, OrigLoop)) &&
7622 " VPlan cost model and legacy cost model disagreed");
7623 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7624 "when vectorizing, the scalar cost must be computed.");
7625#endif
7626
7627 return BestFactor;
7628}
7629
7632 // Reserve first location for self reference to the LoopID metadata node.
7633 MDs.push_back(nullptr);
7634 bool IsUnrollMetadata = false;
7635 MDNode *LoopID = L->getLoopID();
7636 if (LoopID) {
7637 // First find existing loop unrolling disable metadata.
7638 for (unsigned I = 1, IE = LoopID->getNumOperands(); I < IE; ++I) {
7639 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(I));
7640 if (MD) {
7641 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7642 IsUnrollMetadata =
7643 S && S->getString().starts_with("llvm.loop.unroll.disable");
7644 }
7645 MDs.push_back(LoopID->getOperand(I));
7646 }
7647 }
7648
7649 if (!IsUnrollMetadata) {
7650 // Add runtime unroll disable metadata.
7651 LLVMContext &Context = L->getHeader()->getContext();
7652 SmallVector<Metadata *, 1> DisableOperands;
7653 DisableOperands.push_back(
7654 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7655 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7656 MDs.push_back(DisableNode);
7657 MDNode *NewLoopID = MDNode::get(Context, MDs);
7658 // Set operand 0 to refer to the loop id itself.
7659 NewLoopID->replaceOperandWith(0, NewLoopID);
7660 L->setLoopID(NewLoopID);
7661 }
7662}
7663
7664// If \p R is a ComputeReductionResult when vectorizing the epilog loop,
7665// fix the reduction's scalar PHI node by adding the incoming value from the
7666// main vector loop.
7668 VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock,
7669 BasicBlock *BypassBlock) {
7670 auto *EpiRedResult = dyn_cast<VPInstruction>(R);
7671 if (!EpiRedResult ||
7672 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult)
7673 return;
7674
7675 auto *EpiRedHeaderPhi =
7676 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7677 const RecurrenceDescriptor &RdxDesc =
7678 EpiRedHeaderPhi->getRecurrenceDescriptor();
7679 Value *MainResumeValue =
7680 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7682 RdxDesc.getRecurrenceKind())) {
7683 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7684 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7685 "AnyOf expected to start with ICMP_NE");
7686 assert(Cmp->getOperand(1) == RdxDesc.getRecurrenceStartValue() &&
7687 "AnyOf expected to start by comparing main resume value to original "
7688 "start value");
7689 MainResumeValue = Cmp->getOperand(0);
7690 }
7691 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7692
7693 // When fixing reductions in the epilogue loop we should already have
7694 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7695 // over the incoming values correctly.
7696 using namespace VPlanPatternMatch;
7697 auto IsResumePhi = [](VPUser *U) {
7698 return match(
7699 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue()));
7700 };
7701 assert(count_if(EpiRedResult->users(), IsResumePhi) == 1 &&
7702 "ResumePhi must have a single user");
7703 auto *EpiResumePhiVPI =
7704 cast<VPInstruction>(*find_if(EpiRedResult->users(), IsResumePhi));
7705 auto *EpiResumePhi = cast<PHINode>(State.get(EpiResumePhiVPI, true));
7706 EpiResumePhi->setIncomingValueForBlock(
7707 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7708}
7709
7711 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7712 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue,
7713 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs) {
7714 assert(BestVPlan.hasVF(BestVF) &&
7715 "Trying to execute plan with unsupported VF");
7716 assert(BestVPlan.hasUF(BestUF) &&
7717 "Trying to execute plan with unsupported UF");
7718 assert(
7719 ((VectorizingEpilogue && ExpandedSCEVs) ||
7720 (!VectorizingEpilogue && !ExpandedSCEVs)) &&
7721 "expanded SCEVs to reuse can only be used during epilogue vectorization");
7722
7723 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7724 // cost model is complete for better cost estimates.
7725 VPlanTransforms::unrollByUF(BestVPlan, BestUF,
7726 OrigLoop->getHeader()->getContext());
7727 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7729
7730 // Perform the actual loop transformation.
7731 VPTransformState State(&TTI, BestVF, BestUF, LI, DT, ILV.Builder, &ILV,
7732 &BestVPlan, OrigLoop->getParentLoop(),
7733 Legal->getWidestInductionType());
7734
7735#ifdef EXPENSIVE_CHECKS
7736 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7737#endif
7738
7739 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7740 // making any changes to the CFG.
7741 if (!BestVPlan.getEntry()->empty())
7742 BestVPlan.getEntry()->execute(&State);
7743
7744 if (!ILV.getTripCount())
7745 ILV.setTripCount(State.get(BestVPlan.getTripCount(), VPLane(0)));
7746 else
7747 assert(VectorizingEpilogue && "should only re-use the existing trip "
7748 "count during epilogue vectorization");
7749
7750 // 1. Set up the skeleton for vectorization, including vector pre-header and
7751 // middle block. The vector loop is created during VPlan execution.
7752 VPBasicBlock *VectorPH =
7753 cast<VPBasicBlock>(BestVPlan.getEntry()->getSingleSuccessor());
7755 ExpandedSCEVs ? *ExpandedSCEVs : State.ExpandedSCEVs);
7756 if (VectorizingEpilogue)
7758
7759 // Only use noalias metadata when using memory checks guaranteeing no overlap
7760 // across all iterations.
7761 const LoopAccessInfo *LAI = ILV.Legal->getLAI();
7762 std::unique_ptr<LoopVersioning> LVer = nullptr;
7763 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
7765
7766 // We currently don't use LoopVersioning for the actual loop cloning but we
7767 // still use it to add the noalias metadata.
7768 // TODO: Find a better way to re-use LoopVersioning functionality to add
7769 // metadata.
7770 LVer = std::make_unique<LoopVersioning>(
7771 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
7772 PSE.getSE());
7773 State.LVer = &*LVer;
7775 }
7776
7778
7779 //===------------------------------------------------===//
7780 //
7781 // Notice: any optimization or new instruction that go
7782 // into the code below should also be implemented in
7783 // the cost-model.
7784 //
7785 //===------------------------------------------------===//
7786
7787 // 2. Copy and widen instructions from the old loop into the new loop.
7788 BestVPlan.prepareToExecute(
7789 ILV.getTripCount(),
7791 replaceVPBBWithIRVPBB(VectorPH, State.CFG.PrevBB);
7792
7793 BestVPlan.execute(&State);
7794
7795 auto *MiddleVPBB = BestVPlan.getMiddleBlock();
7796 // 2.5 When vectorizing the epilogue, fix reduction and induction resume
7797 // values from the additional bypass block.
7798 if (VectorizingEpilogue) {
7800 "Epilogue vectorisation not yet supported with early exits");
7801 BasicBlock *BypassBlock = ILV.getAdditionalBypassBlock();
7802 for (VPRecipeBase &R : *MiddleVPBB) {
7804 &R, State, State.CFG.VPBB2IRBB[MiddleVPBB], BypassBlock);
7805 }
7806 BasicBlock *PH = OrigLoop->getLoopPreheader();
7807 for (const auto &[IVPhi, _] : Legal->getInductionVars()) {
7808 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
7810 Inc->setIncomingValueForBlock(BypassBlock, V);
7811 }
7812 }
7813
7814 // 2.6. Maintain Loop Hints
7815 // Keep all loop hints from the original loop on the vector loop (we'll
7816 // replace the vectorizer-specific hints below).
7817 if (auto *LoopRegion = BestVPlan.getVectorLoopRegion()) {
7818 MDNode *OrigLoopID = OrigLoop->getLoopID();
7819
7820 std::optional<MDNode *> VectorizedLoopID =
7823
7824 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
7825 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7826 if (VectorizedLoopID) {
7827 L->setLoopID(*VectorizedLoopID);
7828 } else {
7829 // Keep all loop hints from the original loop on the vector loop (we'll
7830 // replace the vectorizer-specific hints below).
7831 if (MDNode *LID = OrigLoop->getLoopID())
7832 L->setLoopID(LID);
7833
7834 LoopVectorizeHints Hints(L, true, *ORE);
7835 Hints.setAlreadyVectorized();
7836 }
7838 TTI.getUnrollingPreferences(L, *PSE.getSE(), UP, ORE);
7839 if (!UP.UnrollVectorizedLoop || VectorizingEpilogue)
7841 }
7842
7843 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7844 // predication, updating analyses.
7845 ILV.fixVectorizedLoop(State);
7846
7848
7849 // 4. Adjust branch weight of the branch in the middle block.
7850 if (BestVPlan.getVectorLoopRegion()) {
7851 auto *MiddleVPBB = BestVPlan.getMiddleBlock();
7852 auto *MiddleTerm =
7853 cast<BranchInst>(State.CFG.VPBB2IRBB[MiddleVPBB]->getTerminator());
7854 if (MiddleTerm->isConditional() &&
7855 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())) {
7856 // Assume that `Count % VectorTripCount` is equally distributed.
7857 unsigned TripCount = BestVPlan.getUF() * State.VF.getKnownMinValue();
7858 assert(TripCount > 0 && "trip count should not be zero");
7859 const uint32_t Weights[] = {1, TripCount - 1};
7860 setBranchWeights(*MiddleTerm, Weights, /*IsExpected=*/false);
7861 }
7862 }
7863
7864 return State.ExpandedSCEVs;
7865}
7866
7867//===--------------------------------------------------------------------===//
7868// EpilogueVectorizerMainLoop
7869//===--------------------------------------------------------------------===//
7870
7871/// This function is partially responsible for generating the control flow
7872/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7874 const SCEV2ValueTy &ExpandedSCEVs) {
7876
7877 // Generate the code to check the minimum iteration count of the vector
7878 // epilogue (see below).
7882
7883 // Generate the code to check any assumptions that we've made for SCEV
7884 // expressions.
7886
7887 // Generate the code that checks at runtime if arrays overlap. We put the
7888 // checks into a separate block to make the more common case of few elements
7889 // faster.
7891
7892 // Generate the iteration count check for the main loop, *after* the check
7893 // for the epilogue loop, so that the path-length is shorter for the case
7894 // that goes directly through the vector epilogue. The longer-path length for
7895 // the main loop is compensated for, by the gain from vectorizing the larger
7896 // trip count. Note: the branch will get updated later on when we vectorize
7897 // the epilogue.
7900
7901 // Generate the induction variable.
7903
7904 return LoopVectorPreHeader;
7905}
7906
7908 LLVM_DEBUG({
7909 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7910 << "Main Loop VF:" << EPI.MainLoopVF
7911 << ", Main Loop UF:" << EPI.MainLoopUF
7912 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7913 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7914 });
7915}
7916
7919 dbgs() << "intermediate fn:\n"
7920 << *OrigLoop->getHeader()->getParent() << "\n";
7921 });
7922}
7923
7924BasicBlock *
7926 bool ForEpilogue) {
7927 assert(Bypass && "Expected valid bypass basic block.");
7928 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7929 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7930 Value *Count = getTripCount();
7931 // Reuse existing vector loop preheader for TC checks.
7932 // Note that new preheader block is generated for vector loop.
7933 BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7934 IRBuilder<> Builder(TCCheckBlock->getTerminator());
7935
7936 // Generate code to check if the loop's trip count is less than VF * UF of the
7937 // main vector loop.
7938 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF.isVector()
7939 : VF.isVector())
7942
7943 Value *CheckMinIters = Builder.CreateICmp(
7944 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7945 "min.iters.check");
7946
7947 if (!ForEpilogue)
7948 TCCheckBlock->setName("vector.main.loop.iter.check");
7949
7950 // Create new preheader for vector loop.
7951 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7952 DT, LI, nullptr, "vector.ph");
7953
7954 if (ForEpilogue) {
7955 assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7956 DT->getNode(Bypass)->getIDom()) &&
7957 "TC check is expected to dominate Bypass");
7958
7959 LoopBypassBlocks.push_back(TCCheckBlock);
7960
7961 // Save the trip count so we don't have to regenerate it in the
7962 // vec.epilog.iter.check. This is safe to do because the trip count
7963 // generated here dominates the vector epilog iter check.
7964 EPI.TripCount = Count;
7965 }
7966
7967 BranchInst &BI =
7968 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters);
7970 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7971 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7972
7973 introduceCheckBlockInVPlan(TCCheckBlock);
7974 return TCCheckBlock;
7975}
7976
7977//===--------------------------------------------------------------------===//
7978// EpilogueVectorizerEpilogueLoop
7979//===--------------------------------------------------------------------===//
7980
7981/// This function is partially responsible for generating the control flow
7982/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7983BasicBlock *
7985 const SCEV2ValueTy &ExpandedSCEVs) {
7986 createVectorLoopSkeleton("vec.epilog.");
7987
7988 // Now, compare the remaining count and if there aren't enough iterations to
7989 // execute the vectorized epilogue skip to the scalar part.
7990 LoopVectorPreHeader->setName("vec.epilog.ph");
7991 BasicBlock *VecEpilogueIterationCountCheck =
7993 nullptr, "vec.epilog.iter.check", true);
7995 VecEpilogueIterationCountCheck);
7996 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7997
7998 // Adjust the control flow taking the state info from the main loop
7999 // vectorization into account.
8001 "expected this to be saved from the previous pass.");
8003 VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8004
8006 VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8007
8008 if (EPI.SCEVSafetyCheck)
8010 VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8011 if (EPI.MemSafetyCheck)
8013 VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8014
8017 // Keep track of bypass blocks, as they feed start values to the induction and
8018 // reduction phis in the scalar loop preheader.
8019 if (EPI.SCEVSafetyCheck)
8021 if (EPI.MemSafetyCheck)
8024
8025 // The vec.epilog.iter.check block may contain Phi nodes from inductions or
8026 // reductions which merge control-flow from the latch block and the middle
8027 // block. Update the incoming values here and move the Phi into the preheader.
8028 SmallVector<PHINode *, 4> PhisInBlock;
8029 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8030 PhisInBlock.push_back(&Phi);
8031
8032 for (PHINode *Phi : PhisInBlock) {
8033 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8034 Phi->replaceIncomingBlockWith(
8035 VecEpilogueIterationCountCheck->getSinglePredecessor(),
8036 VecEpilogueIterationCountCheck);
8037
8038 // If the phi doesn't have an incoming value from the
8039 // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming
8040 // value and also those from other check blocks. This is needed for
8041 // reduction phis only.
8042 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
8043 return EPI.EpilogueIterationCountCheck == IncB;
8044 }))
8045 continue;
8046 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8047 if (EPI.SCEVSafetyCheck)
8048 Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8049 if (EPI.MemSafetyCheck)
8050 Phi->removeIncomingValue(EPI.MemSafetyCheck);
8051 }
8052
8053 // Generate bypass values from the additional bypass block. Note that when the
8054 // vectorized epilogue is skipped due to iteration count check, then the
8055 // resume value for the induction variable comes from the trip count of the
8056 // main vector loop, passed as the second argument.
8058 return LoopVectorPreHeader;
8059}
8060
8061BasicBlock *
8063 BasicBlock *Bypass, BasicBlock *Insert) {
8064
8066 "Expected trip count to have been saved in the first pass.");
8067 assert(
8068 (!isa<Instruction>(EPI.TripCount) ||
8069 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8070 "saved trip count does not dominate insertion point.");
8071 Value *TC = EPI.TripCount;
8072 IRBuilder<> Builder(Insert->getTerminator());
8073 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8074
8075 // Generate code to check if the loop's trip count is less than VF * UF of the
8076 // vector epilogue loop.
8077 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF.isVector())
8080
8081 Value *CheckMinIters =
8082 Builder.CreateICmp(P, Count,
8085 "min.epilog.iters.check");
8086
8087 BranchInst &BI =
8088 *BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters);
8090 unsigned MainLoopStep = UF * VF.getKnownMinValue();
8091 unsigned EpilogueLoopStep =
8093 // We assume the remaining `Count` is equally distributed in
8094 // [0, MainLoopStep)
8095 // So the probability for `Count < EpilogueLoopStep` should be
8096 // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep
8097 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
8098 const uint32_t Weights[] = {EstimatedSkipCount,
8099 MainLoopStep - EstimatedSkipCount};
8100 setBranchWeights(BI, Weights, /*IsExpected=*/false);
8101 }
8102 ReplaceInstWithInst(Insert->getTerminator(), &BI);
8103 LoopBypassBlocks.push_back(Insert);
8104
8105 // A new entry block has been created for the epilogue VPlan. Hook it in, as
8106 // otherwise we would try to modify the entry to the main vector loop.
8107 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(Insert);
8108 VPBasicBlock *OldEntry = Plan.getEntry();
8109 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
8110 Plan.setEntry(NewEntry);
8111 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
8112
8114 return Insert;
8115}
8116
8118 LLVM_DEBUG({
8119 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8120 << "Epilogue Loop VF:" << EPI.EpilogueVF
8121 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8122 });
8123}
8124
8127 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8128 });
8129}
8130
8131iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
8133 std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
8134 return getVPValueOrAddLiveIn(Op);
8135 };
8136 return map_range(Operands, Fn);
8137}
8138
8140 BasicBlock *Src = SI->getParent();
8141 assert(!OrigLoop->isLoopExiting(Src) &&
8142 all_of(successors(Src),
8143 [this](BasicBlock *Succ) {
8144 return OrigLoop->getHeader() != Succ;
8145 }) &&
8146 "unsupported switch either exiting loop or continuing to header");
8147 // Create masks where the terminator in Src is a switch. We create mask for
8148 // all edges at the same time. This is more efficient, as we can create and
8149 // collect compares for all cases once.
8150 VPValue *Cond = getVPValueOrAddLiveIn(SI->getCondition());
8151 BasicBlock *DefaultDst = SI->getDefaultDest();
8153 for (auto &C : SI->cases()) {
8154 BasicBlock *Dst = C.getCaseSuccessor();
8155 assert(!EdgeMaskCache.contains({Src, Dst}) && "Edge masks already created");
8156 // Cases whose destination is the same as default are redundant and can be
8157 // ignored - they will get there anyhow.
8158 if (Dst == DefaultDst)
8159 continue;
8160 auto &Compares = Dst2Compares[Dst];
8161 VPValue *V = getVPValueOrAddLiveIn(C.getCaseValue());
8162 Compares.push_back(Builder.createICmp(CmpInst::ICMP_EQ, Cond, V));
8163 }
8164
8165 // We need to handle 2 separate cases below for all entries in Dst2Compares,
8166 // which excludes destinations matching the default destination.
8167 VPValue *SrcMask = getBlockInMask(Src);
8168 VPValue *DefaultMask = nullptr;
8169 for (const auto &[Dst, Conds] : Dst2Compares) {
8170 // 1. Dst is not the default destination. Dst is reached if any of the cases
8171 // with destination == Dst are taken. Join the conditions for each case
8172 // whose destination == Dst using an OR.
8173 VPValue *Mask = Conds[0];
8174 for (VPValue *V : ArrayRef<VPValue *>(Conds).drop_front())
8175 Mask = Builder.createOr(Mask, V);
8176 if (SrcMask)
8177 Mask = Builder.createLogicalAnd(SrcMask, Mask);
8178 EdgeMaskCache[{Src, Dst}] = Mask;
8179
8180 // 2. Create the mask for the default destination, which is reached if none
8181 // of the cases with destination != default destination are taken. Join the
8182 // conditions for each case where the destination is != Dst using an OR and
8183 // negate it.
8184 DefaultMask = DefaultMask ? Builder.createOr(DefaultMask, Mask) : Mask;
8185 }
8186
8187 if (DefaultMask) {
8188 DefaultMask = Builder.createNot(DefaultMask);
8189 if (SrcMask)
8190 DefaultMask = Builder.createLogicalAnd(SrcMask, DefaultMask);
8191 }
8192 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask;
8193}
8194
8196 assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8197
8198 // Look for cached value.
8199 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8200 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8201 if (ECEntryIt != EdgeMaskCache.end())
8202 return ECEntryIt->second;
8203
8204 if (auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) {
8206 assert(EdgeMaskCache.contains(Edge) && "Mask for Edge not created?");
8207 return EdgeMaskCache[Edge];
8208 }
8209
8210 VPValue *SrcMask = getBlockInMask(Src);
8211
8212 // The terminator has to be a branch inst!
8213 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8214 assert(BI && "Unexpected terminator found");
8215 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8216 return EdgeMaskCache[Edge] = SrcMask;
8217
8218 // If source is an exiting block, we know the exit edge is dynamically dead
8219 // in the vector loop, and thus we don't need to restrict the mask. Avoid
8220 // adding uses of an otherwise potentially dead instruction unless we are
8221 // vectorizing a loop with uncountable exits. In that case, we always
8222 // materialize the mask.
8223 if (OrigLoop->isLoopExiting(Src) &&
8224 Src != Legal->getUncountableEarlyExitingBlock())
8225 return EdgeMaskCache[Edge] = SrcMask;
8226
8227 VPValue *EdgeMask = getVPValueOrAddLiveIn(BI->getCondition());
8228 assert(EdgeMask && "No Edge Mask found for condition");
8229
8230 if (BI->getSuccessor(0) != Dst)
8231 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8232
8233 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8234 // The bitwise 'And' of SrcMask and EdgeMask introduces new UB if SrcMask
8235 // is false and EdgeMask is poison. Avoid that by using 'LogicalAnd'
8236 // instead which generates 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8237 EdgeMask = Builder.createLogicalAnd(SrcMask, EdgeMask, BI->getDebugLoc());
8238 }
8239
8240 return EdgeMaskCache[Edge] = EdgeMask;
8241}
8242
8244 assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8245
8246 // Look for cached value.
8247 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8248 EdgeMaskCacheTy::const_iterator ECEntryIt = EdgeMaskCache.find(Edge);
8249 assert(ECEntryIt != EdgeMaskCache.end() &&
8250 "looking up mask for edge which has not been created");
8251 return ECEntryIt->second;
8252}
8253
8255 BasicBlock *Header = OrigLoop->getHeader();
8256
8257 // When not folding the tail, use nullptr to model all-true mask.
8258 if (!CM.foldTailByMasking()) {
8259 BlockMaskCache[Header] = nullptr;
8260 return;
8261 }
8262
8263 // Introduce the early-exit compare IV <= BTC to form header block mask.
8264 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8265 // constructing the desired canonical IV in the header block as its first
8266 // non-phi instructions.
8267
8268 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
8269 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8270 auto *IV = new VPWidenCanonicalIVRecipe(Plan.getCanonicalIV());
8271 HeaderVPBB->insert(IV, NewInsertionPoint);
8272
8273 VPBuilder::InsertPointGuard Guard(Builder);
8274 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8275 VPValue *BlockMask = nullptr;
8277 BlockMask = Builder.createICmp(CmpInst::ICMP_ULE, IV, BTC);
8278 BlockMaskCache[Header] = BlockMask;
8279}
8280
8282 // Return the cached value.
8283 BlockMaskCacheTy::const_iterator BCEntryIt = BlockMaskCache.find(BB);
8284 assert(BCEntryIt != BlockMaskCache.end() &&
8285 "Trying to access mask for block without one.");
8286 return BCEntryIt->second;
8287}
8288
8290 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8291 assert(BlockMaskCache.count(BB) == 0 && "Mask for block already computed");
8292 assert(OrigLoop->getHeader() != BB &&
8293 "Loop header must have cached block mask");
8294
8295 // All-one mask is modelled as no-mask following the convention for masked
8296 // load/store/gather/scatter. Initialize BlockMask to no-mask.
8297 VPValue *BlockMask = nullptr;
8298 // This is the block mask. We OR all unique incoming edges.
8299 for (auto *Predecessor :
8301 VPValue *EdgeMask = createEdgeMask(Predecessor, BB);
8302 if (!EdgeMask) { // Mask of predecessor is all-one so mask of block is too.
8303 BlockMaskCache[BB] = EdgeMask;
8304 return;
8305 }
8306
8307 if (!BlockMask) { // BlockMask has its initialized nullptr value.
8308 BlockMask = EdgeMask;
8309 continue;
8310 }
8311
8312 BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8313 }
8314
8315 BlockMaskCache[BB] = BlockMask;
8316}
8317
8319VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands,
8320 VFRange &Range) {
8321 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8322 "Must be called with either a load or store");
8323
8324 auto WillWiden = [&](ElementCount VF) -> bool {
8326 CM.getWideningDecision(I, VF);
8328 "CM decision should be taken at this point.");
8330 return true;
8331 if (CM.isScalarAfterVectorization(I, VF) ||
8332 CM.isProfitableToScalarize(I, VF))
8333 return false;
8335 };
8336
8338 return nullptr;
8339
8340 VPValue *Mask = nullptr;
8341 if (Legal->isMaskRequired(I))
8342 Mask = getBlockInMask(I->getParent());
8343
8344 // Determine if the pointer operand of the access is either consecutive or
8345 // reverse consecutive.
8347 CM.getWideningDecision(I, Range.Start);
8349 bool Consecutive =
8351
8352 VPValue *Ptr = isa<LoadInst>(I) ? Operands[0] : Operands[1];
8353 if (Consecutive) {
8354 auto *GEP = dyn_cast<GetElementPtrInst>(
8355 Ptr->getUnderlyingValue()->stripPointerCasts());
8356 VPSingleDefRecipe *VectorPtr;
8357 if (Reverse)
8358 VectorPtr = new VPReverseVectorPointerRecipe(
8359 Ptr, &Plan.getVF(), getLoadStoreType(I),
8360 GEP && GEP->isInBounds() ? GEPNoWrapFlags::inBounds()
8362 I->getDebugLoc());
8363 else
8364 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
8365 GEP ? GEP->getNoWrapFlags()
8367 I->getDebugLoc());
8368 Builder.getInsertBlock()->appendRecipe(VectorPtr);
8369 Ptr = VectorPtr;
8370 }
8371 if (LoadInst *Load = dyn_cast<LoadInst>(I))
8372 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
8373 I->getDebugLoc());
8374
8375 StoreInst *Store = cast<StoreInst>(I);
8376 return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive,
8377 Reverse, I->getDebugLoc());
8378}
8379
8380/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8381/// insert a recipe to expand the step for the induction recipe.
8384 VPValue *Start, const InductionDescriptor &IndDesc,
8385 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) {
8386 assert(IndDesc.getStartValue() ==
8387 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8388 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8389 "step must be loop invariant");
8390
8391 VPValue *Step =
8393 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8394 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
8395 IndDesc, TruncI,
8396 TruncI->getDebugLoc());
8397 }
8398 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8399 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
8400 IndDesc, Phi->getDebugLoc());
8401}
8402
8403VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8405
8406 // Check if this is an integer or fp induction. If so, build the recipe that
8407 // produces its scalar and vector values.
8408 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8409 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan,
8410 *PSE.getSE(), *OrigLoop);
8411
8412 // Check if this is pointer induction. If so, build the recipe for it.
8413 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
8414 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(),
8415 *PSE.getSE());
8417 Phi, Operands[0], Step, *II,
8419 [&](ElementCount VF) {
8420 return CM.isScalarAfterVectorization(Phi, VF);
8421 },
8422 Range),
8423 Phi->getDebugLoc());
8424 }
8425 return nullptr;
8426}
8427
8428VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8430 // Optimize the special case where the source is a constant integer
8431 // induction variable. Notice that we can only optimize the 'trunc' case
8432 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8433 // (c) other casts depend on pointer size.
8434
8435 // Determine whether \p K is a truncation based on an induction variable that
8436 // can be optimized.
8437 auto IsOptimizableIVTruncate =
8438 [&](Instruction *K) -> std::function<bool(ElementCount)> {
8439 return [=](ElementCount VF) -> bool {
8440 return CM.isOptimizableIVTruncate(K, VF);
8441 };
8442 };
8443
8445 IsOptimizableIVTruncate(I), Range)) {
8446
8447 auto *Phi = cast<PHINode>(I->getOperand(0));
8449 VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue());
8450 return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(),
8451 *OrigLoop);
8452 }
8453 return nullptr;
8454}
8455
8456VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi,
8458 unsigned NumIncoming = Phi->getNumIncomingValues();
8459
8460 // We know that all PHIs in non-header blocks are converted into selects, so
8461 // we don't have to worry about the insertion order and we can just use the
8462 // builder. At this point we generate the predication tree. There may be
8463 // duplications since this is a simple recursive scan, but future
8464 // optimizations will clean it up.
8465 SmallVector<VPValue *, 2> OperandsWithMask;
8466
8467 for (unsigned In = 0; In < NumIncoming; In++) {
8468 OperandsWithMask.push_back(Operands[In]);
8469 VPValue *EdgeMask =
8470 getEdgeMask(Phi->getIncomingBlock(In), Phi->getParent());
8471 if (!EdgeMask) {
8472 assert(In == 0 && "Both null and non-null edge masks found");
8474 "Distinct incoming values with one having a full mask");
8475 break;
8476 }
8477 OperandsWithMask.push_back(EdgeMask);
8478 }
8479 return new VPBlendRecipe(Phi, OperandsWithMask);
8480}
8481
8482VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8484 VFRange &Range) {
8486 [this, CI](ElementCount VF) {
8487 return CM.isScalarWithPredication(CI, VF);
8488 },
8489 Range);
8490
8491 if (IsPredicated)
8492 return nullptr;
8493
8495 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8496 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8497 ID == Intrinsic::pseudoprobe ||
8498 ID == Intrinsic::experimental_noalias_scope_decl))
8499 return nullptr;
8500
8501 SmallVector<VPValue *, 4> Ops(Operands.take_front(CI->arg_size()));
8502
8503 // Is it beneficial to perform intrinsic call compared to lib call?
8504 bool ShouldUseVectorIntrinsic =
8506 [&](ElementCount VF) -> bool {
8507 return CM.getCallWideningDecision(CI, VF).Kind ==
8509 },
8510 Range);
8511 if (ShouldUseVectorIntrinsic)
8512 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(),
8513 CI->getDebugLoc());
8514
8515 Function *Variant = nullptr;
8516 std::optional<unsigned> MaskPos;
8517 // Is better to call a vectorized version of the function than to to scalarize
8518 // the call?
8519 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
8520 [&](ElementCount VF) -> bool {
8521 // The following case may be scalarized depending on the VF.
8522 // The flag shows whether we can use a usual Call for vectorized
8523 // version of the instruction.
8524
8525 // If we've found a variant at a previous VF, then stop looking. A
8526 // vectorized variant of a function expects input in a certain shape
8527 // -- basically the number of input registers, the number of lanes
8528 // per register, and whether there's a mask required.
8529 // We store a pointer to the variant in the VPWidenCallRecipe, so
8530 // once we have an appropriate variant it's only valid for that VF.
8531 // This will force a different vplan to be generated for each VF that
8532 // finds a valid variant.
8533 if (Variant)
8534 return false;
8536 CM.getCallWideningDecision(CI, VF);
8538 Variant = Decision.Variant;
8539 MaskPos = Decision.MaskPos;
8540 return true;
8541 }
8542
8543 return false;
8544 },
8545 Range);
8546 if (ShouldUseVectorCall) {
8547 if (MaskPos.has_value()) {
8548 // We have 2 cases that would require a mask:
8549 // 1) The block needs to be predicated, either due to a conditional
8550 // in the scalar loop or use of an active lane mask with
8551 // tail-folding, and we use the appropriate mask for the block.
8552 // 2) No mask is required for the block, but the only available
8553 // vector variant at this VF requires a mask, so we synthesize an
8554 // all-true mask.
8555 VPValue *Mask = nullptr;
8556 if (Legal->isMaskRequired(CI))
8557 Mask = getBlockInMask(CI->getParent());
8558 else
8559 Mask = Plan.getOrAddLiveIn(
8561
8562 Ops.insert(Ops.begin() + *MaskPos, Mask);
8563 }
8564
8565 Ops.push_back(Operands.back());
8566 return new VPWidenCallRecipe(CI, Variant, Ops, CI->getDebugLoc());
8567 }
8568
8569 return nullptr;
8570}
8571
8572bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8573 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8574 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8575 // Instruction should be widened, unless it is scalar after vectorization,
8576 // scalarization is profitable or it is predicated.
8577 auto WillScalarize = [this, I](ElementCount VF) -> bool {
8578 return CM.isScalarAfterVectorization(I, VF) ||
8579 CM.isProfitableToScalarize(I, VF) ||
8580 CM.isScalarWithPredication(I, VF);
8581 };
8583 Range);
8584}
8585
8586VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8588 VPBasicBlock *VPBB) {
8589 switch (I->getOpcode()) {
8590 default:
8591 return nullptr;
8592 case Instruction::SDiv:
8593 case Instruction::UDiv:
8594 case Instruction::SRem:
8595 case Instruction::URem: {
8596 // If not provably safe, use a select to form a safe divisor before widening the
8597 // div/rem operation itself. Otherwise fall through to general handling below.
8598 if (CM.isPredicatedInst(I)) {
8600 VPValue *Mask = getBlockInMask(I->getParent());
8601 VPValue *One =
8602 Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false));
8603 auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc());
8604 Ops[1] = SafeRHS;
8605 return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end()));
8606 }
8607 [[fallthrough]];
8608 }
8609 case Instruction::Add:
8610 case Instruction::And:
8611 case Instruction::AShr:
8612 case Instruction::FAdd:
8613 case Instruction::FCmp:
8614 case Instruction::FDiv:
8615 case Instruction::FMul:
8616 case Instruction::FNeg:
8617 case Instruction::FRem:
8618 case Instruction::FSub:
8619 case Instruction::ICmp:
8620 case Instruction::LShr:
8621 case Instruction::Mul:
8622 case Instruction::Or:
8623 case Instruction::Select:
8624 case Instruction::Shl:
8625 case Instruction::Sub:
8626 case Instruction::Xor:
8627 case Instruction::Freeze:
8629 if (Instruction::isBinaryOp(I->getOpcode())) {
8630 // The legacy cost model uses SCEV to check if some of the operands are
8631 // constants. To match the legacy cost model's behavior, use SCEV to try
8632 // to replace operands with constants.
8633 ScalarEvolution &SE = *PSE.getSE();
8634 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) {
8635 Value *V = Op->getUnderlyingValue();
8636 if (isa<Constant>(V) || !SE.isSCEVable(V->getType()))
8637 return Op;
8638 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V));
8639 if (!C)
8640 return Op;
8641 return Plan.getOrAddLiveIn(C->getValue());
8642 };
8643 // For Mul, the legacy cost model checks both operands.
8644 if (I->getOpcode() == Instruction::Mul)
8645 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
8646 // For other binops, the legacy cost model only checks the second operand.
8647 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
8648 }
8649 return new VPWidenRecipe(*I, make_range(NewOps.begin(), NewOps.end()));
8650 };
8651}
8652
8654VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
8656 // FIXME: Support other operations.
8657 unsigned Opcode = HI->Update->getOpcode();
8658 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
8659 "Histogram update operation must be an Add or Sub");
8660
8662 // Bucket address.
8663 HGramOps.push_back(Operands[1]);
8664 // Increment value.
8665 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
8666
8667 // In case of predicated execution (due to tail-folding, or conditional
8668 // execution, or both), pass the relevant mask.
8669 if (Legal->isMaskRequired(HI->Store))
8670 HGramOps.push_back(getBlockInMask(HI->Store->getParent()));
8671
8672 return new VPHistogramRecipe(Opcode,
8673 make_range(HGramOps.begin(), HGramOps.end()),
8674 HI->Store->getDebugLoc());
8675}
8676
8678 BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8679 for (VPHeaderPHIRecipe *R : PhisToFix) {
8680 auto *PN = cast<PHINode>(R->getUnderlyingValue());
8681 VPRecipeBase *IncR =
8682 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8683 R->addOperand(IncR->getVPSingleValue());
8684 }
8685}
8686
8688 VFRange &Range) {
8690 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8691 Range);
8692
8693 bool IsPredicated = CM.isPredicatedInst(I);
8694
8695 // Even if the instruction is not marked as uniform, there are certain
8696 // intrinsic calls that can be effectively treated as such, so we check for
8697 // them here. Conservatively, we only do this for scalable vectors, since
8698 // for fixed-width VFs we can always fall back on full scalarization.
8699 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8700 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8701 case Intrinsic::assume:
8702 case Intrinsic::lifetime_start:
8703 case Intrinsic::lifetime_end:
8704 // For scalable vectors if one of the operands is variant then we still
8705 // want to mark as uniform, which will generate one instruction for just
8706 // the first lane of the vector. We can't scalarize the call in the same
8707 // way as for fixed-width vectors because we don't know how many lanes
8708 // there are.
8709 //
8710 // The reasons for doing it this way for scalable vectors are:
8711 // 1. For the assume intrinsic generating the instruction for the first
8712 // lane is still be better than not generating any at all. For
8713 // example, the input may be a splat across all lanes.
8714 // 2. For the lifetime start/end intrinsics the pointer operand only
8715 // does anything useful when the input comes from a stack object,
8716 // which suggests it should always be uniform. For non-stack objects
8717 // the effect is to poison the object, which still allows us to
8718 // remove the call.
8719 IsUniform = true;
8720 break;
8721 default:
8722 break;
8723 }
8724 }
8725 VPValue *BlockInMask = nullptr;
8726 if (!IsPredicated) {
8727 // Finalize the recipe for Instr, first if it is not predicated.
8728 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8729 } else {
8730 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8731 // Instructions marked for predication are replicated and a mask operand is
8732 // added initially. Masked replicate recipes will later be placed under an
8733 // if-then construct to prevent side-effects. Generate recipes to compute
8734 // the block mask for this region.
8735 BlockInMask = getBlockInMask(I->getParent());
8736 }
8737
8738 // Note that there is some custom logic to mark some intrinsics as uniform
8739 // manually above for scalable vectors, which this assert needs to account for
8740 // as well.
8741 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8742 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
8743 "Should not predicate a uniform recipe");
8744 auto *Recipe = new VPReplicateRecipe(I, mapToVPValues(I->operands()),
8745 IsUniform, BlockInMask);
8746 return Recipe;
8747}
8748
8752 VFRange &Range, VPBasicBlock *VPBB) {
8753 // First, check for specific widening recipes that deal with inductions, Phi
8754 // nodes, calls and memory operations.
8755 VPRecipeBase *Recipe;
8756 if (auto *Phi = dyn_cast<PHINode>(Instr)) {
8757 if (Phi->getParent() != OrigLoop->getHeader())
8758 return tryToBlend(Phi, Operands);
8759
8760 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8761 return Recipe;
8762
8763 VPHeaderPHIRecipe *PhiRecipe = nullptr;
8764 assert((Legal->isReductionVariable(Phi) ||
8765 Legal->isFixedOrderRecurrence(Phi)) &&
8766 "can only widen reductions and fixed-order recurrences here");
8767 VPValue *StartV = Operands[0];
8768 if (Legal->isReductionVariable(Phi)) {
8769 const RecurrenceDescriptor &RdxDesc =
8770 Legal->getReductionVars().find(Phi)->second;
8771 assert(RdxDesc.getRecurrenceStartValue() ==
8772 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8773 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8774 CM.isInLoopReduction(Phi),
8775 CM.useOrderedReductions(RdxDesc));
8776 } else {
8777 // TODO: Currently fixed-order recurrences are modeled as chains of
8778 // first-order recurrences. If there are no users of the intermediate
8779 // recurrences in the chain, the fixed order recurrence should be modeled
8780 // directly, enabling more efficient codegen.
8781 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8782 }
8783
8784 PhisToFix.push_back(PhiRecipe);
8785 return PhiRecipe;
8786 }
8787
8788 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8789 cast<TruncInst>(Instr), Operands, Range)))
8790 return Recipe;
8791
8792 // All widen recipes below deal only with VF > 1.
8794 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8795 return nullptr;
8796
8797 if (auto *CI = dyn_cast<CallInst>(Instr))
8798 return tryToWidenCall(CI, Operands, Range);
8799
8800 if (StoreInst *SI = dyn_cast<StoreInst>(Instr))
8801 if (auto HistInfo = Legal->getHistogramInfo(SI))
8802 return tryToWidenHistogram(*HistInfo, Operands);
8803
8804 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8805 return tryToWidenMemory(Instr, Operands, Range);
8806
8807 if (!shouldWiden(Instr, Range))
8808 return nullptr;
8809
8810 if (auto *GEP = dyn_cast<GetElementPtrInst>(Instr))
8811 return new VPWidenGEPRecipe(GEP,
8812 make_range(Operands.begin(), Operands.end()));
8813
8814 if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8815 return new VPWidenSelectRecipe(
8816 *SI, make_range(Operands.begin(), Operands.end()));
8817 }
8818
8819 if (auto *CI = dyn_cast<CastInst>(Instr)) {
8820 return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(),
8821 *CI);
8822 }
8823
8824 return tryToWiden(Instr, Operands, VPBB);
8825}
8826
8827void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8828 ElementCount MaxVF) {
8829 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8830
8831 auto MaxVFTimes2 = MaxVF * 2;
8832 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8833 VFRange SubRange = {VF, MaxVFTimes2};
8834 if (auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) {
8835 // Now optimize the initial VPlan.
8836 if (!Plan->hasVF(ElementCount::getFixed(1)))
8838 CM.getMinimalBitwidths());
8840 // TODO: try to put it close to addActiveLaneMask().
8841 // Discard the plan if it is not EVL-compatible
8843 *Plan, CM.getMaxSafeElements()))
8844 break;
8845 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8846 VPlans.push_back(std::move(Plan));
8847 }
8848 VF = SubRange.End;
8849 }
8850}
8851
8852// Add the necessary canonical IV and branch recipes required to control the
8853// loop.
8854static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW,
8855 DebugLoc DL) {
8856 Value *StartIdx = ConstantInt::get(IdxTy, 0);
8857 auto *StartV = Plan.getOrAddLiveIn(StartIdx);
8858
8859 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
8860 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8861 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8862 VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8863 Header->insert(CanonicalIVPHI, Header->begin());
8864
8865 VPBuilder Builder(TopRegion->getExitingBasicBlock());
8866 // Add a VPInstruction to increment the scalar canonical IV by VF * UF.
8867 auto *CanonicalIVIncrement = Builder.createOverflowingOp(
8868 Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {HasNUW, false}, DL,
8869 "index.next");
8870 CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8871
8872 // Add the BranchOnCount VPInstruction to the latch.
8874 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8875}
8876
8877/// Create and return a ResumePhi for \p WideIV, unless it is truncated. If the
8878/// induction recipe is not canonical, creates a VPDerivedIVRecipe to compute
8879/// the end value of the induction.
8881 VPBuilder &VectorPHBuilder,
8882 VPBuilder &ScalarPHBuilder,
8883 VPTypeAnalysis &TypeInfo,
8884 VPValue *VectorTC) {
8885 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8886 // Truncated wide inductions resume from the last lane of their vector value
8887 // in the last vector iteration which is handled elsewhere.
8888 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8889 return nullptr;
8890
8891 VPValue *Start = WideIV->getStartValue();
8892 VPValue *Step = WideIV->getStepValue();
8894 VPValue *EndValue = VectorTC;
8895 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8896 EndValue = VectorPHBuilder.createDerivedIV(
8897 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
8898 Start, VectorTC, Step);
8899 }
8900
8901 // EndValue is derived from the vector trip count (which has the same type as
8902 // the widest induction) and thus may be wider than the induction here.
8903 Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(WideIV);
8904 if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(EndValue)) {
8905 EndValue = VectorPHBuilder.createScalarCast(Instruction::Trunc, EndValue,
8906 ScalarTypeOfWideIV,
8907 WideIV->getDebugLoc());
8908 }
8909
8910 auto *ResumePhiRecipe =
8911 ScalarPHBuilder.createNaryOp(VPInstruction::ResumePhi, {EndValue, Start},
8912 WideIV->getDebugLoc(), "bc.resume.val");
8913 return ResumePhiRecipe;
8914}
8915
8916/// Create resume phis in the scalar preheader for first-order recurrences,
8917/// reductions and inductions, and update the VPIRInstructions wrapping the
8918/// original phis in the scalar header.
8919static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan) {
8920 VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType());
8921 auto *ScalarPH = Plan.getScalarPreheader();
8922 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor());
8923 VPBuilder VectorPHBuilder(
8924 cast<VPBasicBlock>(Plan.getVectorLoopRegion()->getSinglePredecessor()));
8925 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8926 VPBuilder ScalarPHBuilder(ScalarPH);
8927 VPValue *OneVPV = Plan.getOrAddLiveIn(
8928 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 1));
8929 for (VPRecipeBase &ScalarPhiR : *Plan.getScalarHeader()) {
8930 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR);
8931 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction());
8932 if (!ScalarPhiI)
8933 break;
8934
8935 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.getRecipe(ScalarPhiI));
8936 if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8937 if (VPValue *ResumePhi = addResumePhiRecipeForInduction(
8938 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8939 &Plan.getVectorTripCount())) {
8940 ScalarPhiIRI->addOperand(ResumePhi);
8941 continue;
8942 }
8943 // TODO: Also handle truncated inductions here. Computing end-values
8944 // separately should be done as VPlan-to-VPlan optimization, after
8945 // legalizing all resume values to use the last lane from the loop.
8946 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8947 "should only skip truncated wide inductions");
8948 continue;
8949 }
8950
8951 // The backedge value provides the value to resume coming out of a loop,
8952 // which for FORs is a vector whose last element needs to be extracted. The
8953 // start value provides the value if the loop is bypassed.
8954 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8955 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8956 if (IsFOR)
8957 ResumeFromVectorLoop = MiddleBuilder.createNaryOp(
8958 VPInstruction::ExtractFromEnd, {ResumeFromVectorLoop, OneVPV}, {},
8959 "vector.recur.extract");
8960 StringRef Name = IsFOR ? "scalar.recur.init" : "bc.merge.rdx";
8961 auto *ResumePhiR = ScalarPHBuilder.createNaryOp(
8963 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8964 ScalarPhiIRI->addOperand(ResumePhiR);
8965 }
8966}
8967
8968/// Return true if \p VPV is an optimizable IV or IV use. That is, if \p VPV is
8969/// either an untruncated wide induction, or if it increments a wide induction
8970/// by its step.
8972 VPRecipeBase *Def = VPV->getDefiningRecipe();
8973 if (!Def)
8974 return false;
8975 auto *WideIV = dyn_cast<VPWidenInductionRecipe>(Def);
8976 if (WideIV) {
8977 // VPV itself is a wide induction, separately compute the end value for exit
8978 // users if it is not a truncated IV.
8979 return isa<VPWidenPointerInductionRecipe>(WideIV) ||
8980 !cast<VPWidenIntOrFpInductionRecipe>(WideIV)->getTruncInst();
8981 }
8982
8983 // Check if VPV is an optimizable induction increment.
8984 if (Def->getNumOperands() != 2)
8985 return false;
8986 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(0));
8987 if (!WideIV)
8988 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(1));
8989 if (!WideIV)
8990 return false;
8991
8992 using namespace VPlanPatternMatch;
8993 auto &ID = WideIV->getInductionDescriptor();
8994
8995 // Check if VPV increments the induction by the induction step.
8996 VPValue *IVStep = WideIV->getStepValue();
8997 switch (ID.getInductionOpcode()) {
8998 case Instruction::Add:
8999 return match(VPV, m_c_Binary<Instruction::Add>(m_Specific(WideIV),
9000 m_Specific(IVStep)));
9001 case Instruction::FAdd:
9002 return match(VPV, m_c_Binary<Instruction::FAdd>(m_Specific(WideIV),
9003 m_Specific(IVStep)));
9004 case Instruction::FSub:
9005 return match(VPV, m_Binary<Instruction::FSub>(m_Specific(WideIV),
9006 m_Specific(IVStep)));
9007 case Instruction::Sub: {
9008 // IVStep will be the negated step of the subtraction. Check if Step == -1 *
9009 // IVStep.
9010 VPValue *Step;
9011 if (!match(VPV, m_Binary<Instruction::Sub>(m_VPValue(), m_VPValue(Step))) ||
9012 !Step->isLiveIn() || !IVStep->isLiveIn())
9013 return false;
9014 auto *StepCI = dyn_cast<ConstantInt>(Step->getLiveInIRValue());
9015 auto *IVStepCI = dyn_cast<ConstantInt>(IVStep->getLiveInIRValue());
9016 return StepCI && IVStepCI &&
9017 StepCI->getValue() == (-1 * IVStepCI->getValue());
9018 }
9019 default:
9020 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
9021 match(VPV, m_GetElementPtr(m_Specific(WideIV),
9022 m_Specific(WideIV->getStepValue())));
9023 }
9024 llvm_unreachable("should have been covered by switch above");
9025}
9026
9027// Collect VPIRInstructions for phis in the exit blocks that are modeled
9028// in VPlan and add the exiting VPValue as operand. Some exiting values are not
9029// modeled explicitly yet and won't be included. Those are un-truncated
9030// VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe and induction
9031// increments.
9034 VPlan &Plan) {
9035 auto *MiddleVPBB = Plan.getMiddleBlock();
9036 SetVector<VPIRInstruction *> ExitUsersToFix;
9037 for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) {
9038 for (VPRecipeBase &R : *ExitVPBB) {
9039 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R);
9040 if (!ExitIRI)
9041 continue;
9042 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction());
9043 if (!ExitPhi)
9044 break;
9045 for (VPBlockBase *PredVPBB : ExitVPBB->getPredecessors()) {
9046 BasicBlock *ExitingBB = OrigLoop->getLoopLatch();
9047 if (PredVPBB != MiddleVPBB) {
9048 SmallVector<BasicBlock *> ExitingBlocks;
9049 OrigLoop->getExitingBlocks(ExitingBlocks);
9050 assert(ExitingBlocks.size() == 2 && "only support 2 exiting blocks");
9051 ExitingBB = ExitingBB == ExitingBlocks[0] ? ExitingBlocks[1]
9052 : ExitingBlocks[0];
9053 }
9054 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB);
9055 VPValue *V = Builder.getVPValueOrAddLiveIn(IncomingValue);
9056 // Exit values for inductions are computed and updated outside of VPlan
9057 // and independent of induction recipes.
9058 // TODO: Compute induction exit values in VPlan.
9059 if (isOptimizableIVOrUse(V) &&
9060 ExitVPBB->getSinglePredecessor() == MiddleVPBB)
9061 continue;
9062 ExitUsersToFix.insert(ExitIRI);
9063 ExitIRI->addOperand(V);
9064 }
9065 }
9066 }
9067 return ExitUsersToFix;
9068}
9069
9070// Add exit values to \p Plan. Extracts are added for each entry in \p
9071// ExitUsersToFix if needed and their operands are updated. Returns true if all
9072// exit users can be handled, otherwise return false.
9073static bool
9075 const SetVector<VPIRInstruction *> &ExitUsersToFix) {
9076 if (ExitUsersToFix.empty())
9077 return true;
9078
9079 auto *MiddleVPBB = Plan.getMiddleBlock();
9080 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9081
9082 // Introduce extract for exiting values and update the VPIRInstructions
9083 // modeling the corresponding LCSSA phis.
9084 for (VPIRInstruction *ExitIRI : ExitUsersToFix) {
9085 for (const auto &[Idx, Op] : enumerate(ExitIRI->operands())) {
9086 // Pass live-in values used by exit phis directly through to their users
9087 // in the exit block.
9088 if (Op->isLiveIn())
9089 continue;
9090
9091 // Currently only live-ins can be used by exit values from blocks not
9092 // exiting via the vector latch through to the middle block.
9093 if (ExitIRI->getParent()->getSinglePredecessor() != MiddleVPBB)
9094 return false;
9095
9096 LLVMContext &Ctx = ExitIRI->getInstruction().getContext();
9097 VPValue *Ext = B.createNaryOp(VPInstruction::ExtractFromEnd,
9098 {Op, Plan.getOrAddLiveIn(ConstantInt::get(
9099 IntegerType::get(Ctx, 32), 1))});
9100 ExitIRI->setOperand(Idx, Ext);
9101 }
9102 }
9103 return true;
9104}
9105
9106/// Handle users in the exit block for first order reductions in the original
9107/// exit block. The penultimate value of recurrences is fed to their LCSSA phi
9108/// users in the original exit block using the VPIRInstruction wrapping to the
9109/// LCSSA phi.
9111 VPlan &Plan, SetVector<VPIRInstruction *> &ExitUsersToFix) {
9112 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
9113 auto *ScalarPHVPBB = Plan.getScalarPreheader();
9114 auto *MiddleVPBB = Plan.getMiddleBlock();
9115 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
9116 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9117 VPValue *TwoVPV = Plan.getOrAddLiveIn(
9118 ConstantInt::get(Plan.getCanonicalIV()->getScalarType(), 2));
9119
9120 for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) {
9121 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
9122 if (!FOR)
9123 continue;
9124
9125 // This is the second phase of vectorizing first-order recurrences, creating
9126 // extract for users outside the loop. An overview of the transformation is
9127 // described below. Suppose we have the following loop with some use after
9128 // the loop of the last a[i-1],
9129 //
9130 // for (int i = 0; i < n; ++i) {
9131 // t = a[i - 1];
9132 // b[i] = a[i] - t;
9133 // }
9134 // use t;
9135 //
9136 // There is a first-order recurrence on "a". For this loop, the shorthand
9137 // scalar IR looks like:
9138 //
9139 // scalar.ph:
9140 // s.init = a[-1]
9141 // br scalar.body
9142 //
9143 // scalar.body:
9144 // i = phi [0, scalar.ph], [i+1, scalar.body]
9145 // s1 = phi [s.init, scalar.ph], [s2, scalar.body]
9146 // s2 = a[i]
9147 // b[i] = s2 - s1
9148 // br cond, scalar.body, exit.block
9149 //
9150 // exit.block:
9151 // use = lcssa.phi [s1, scalar.body]
9152 //
9153 // In this example, s1 is a recurrence because it's value depends on the
9154 // previous iteration. In the first phase of vectorization, we created a
9155 // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts
9156 // for users in the scalar preheader and exit block.
9157 //
9158 // vector.ph:
9159 // v_init = vector(..., ..., ..., a[-1])
9160 // br vector.body
9161 //
9162 // vector.body
9163 // i = phi [0, vector.ph], [i+4, vector.body]
9164 // v1 = phi [v_init, vector.ph], [v2, vector.body]
9165 // v2 = a[i, i+1, i+2, i+3]
9166 // b[i] = v2 - v1
9167 // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2))
9168 // b[i, i+1, i+2, i+3] = v2 - v1
9169 // br cond, vector.body, middle.block
9170 //
9171 // middle.block:
9172 // vector.recur.extract.for.phi = v2(2)
9173 // vector.recur.extract = v2(3)
9174 // br cond, scalar.ph, exit.block
9175 //
9176 // scalar.ph:
9177 // scalar.recur.init = phi [vector.recur.extract, middle.block],
9178 // [s.init, otherwise]
9179 // br scalar.body
9180 //
9181 // scalar.body:
9182 // i = phi [0, scalar.ph], [i+1, scalar.body]
9183 // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body]
9184 // s2 = a[i]
9185 // b[i] = s2 - s1
9186 // br cond, scalar.body, exit.block
9187 //
9188 // exit.block:
9189 // lo = lcssa.phi [s1, scalar.body],
9190 // [vector.recur.extract.for.phi, middle.block]
9191 //
9192 // Now update VPIRInstructions modeling LCSSA phis in the exit block.
9193 // Extract the penultimate value of the recurrence and use it as operand for
9194 // the VPIRInstruction modeling the phi.
9195 for (VPIRInstruction *ExitIRI : ExitUsersToFix) {
9196 if (ExitIRI->getOperand(0) != FOR)
9197 continue;
9198 VPValue *PenultimateElement = MiddleBuilder.createNaryOp(
9199 VPInstruction::ExtractFromEnd, {FOR->getBackedgeValue(), TwoVPV}, {},
9200 "vector.recur.extract.for.phi");
9201 ExitIRI->setOperand(0, PenultimateElement);
9202 ExitUsersToFix.remove(ExitIRI);
9203 }
9204 }
9205}
9206
9208LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(VFRange &Range) {
9209
9211
9212 // ---------------------------------------------------------------------------
9213 // Build initial VPlan: Scan the body of the loop in a topological order to
9214 // visit each basic block after having visited its predecessor basic blocks.
9215 // ---------------------------------------------------------------------------
9216
9217 // Create initial VPlan skeleton, having a basic block for the pre-header
9218 // which contains SCEV expansions that need to happen before the CFG is
9219 // modified; a basic block for the vector pre-header, followed by a region for
9220 // the vector loop, followed by the middle basic block. The skeleton vector
9221 // loop region contains a header and latch basic blocks.
9222
9223 bool RequiresScalarEpilogueCheck =
9225 [this](ElementCount VF) {
9226 return !CM.requiresScalarEpilogue(VF.isVector());
9227 },
9228 Range);
9230 PSE, RequiresScalarEpilogueCheck,
9231 CM.foldTailByMasking(), OrigLoop);
9232
9233 // Don't use getDecisionAndClampRange here, because we don't know the UF
9234 // so this function is better to be conservative, rather than to split
9235 // it up into different VPlans.
9236 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
9237 bool IVUpdateMayOverflow = false;
9238 for (ElementCount VF : Range)
9239 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
9240
9242 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
9243 // Use NUW for the induction increment if we proved that it won't overflow in
9244 // the vector loop or when not folding the tail. In the later case, we know
9245 // that the canonical induction increment will not overflow as the vector trip
9246 // count is >= increment and a multiple of the increment.
9247 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
9248 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW, DL);
9249
9250 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9251
9252 // ---------------------------------------------------------------------------
9253 // Pre-construction: record ingredients whose recipes we'll need to further
9254 // process after constructing the initial VPlan.
9255 // ---------------------------------------------------------------------------
9256
9257 // For each interleave group which is relevant for this (possibly trimmed)
9258 // Range, add it to the set of groups to be later applied to the VPlan and add
9259 // placeholders for its members' Recipes which we'll be replacing with a
9260 // single VPInterleaveRecipe.
9262 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
9263 bool Result = (VF.isVector() && // Query is illegal for VF == 1
9264 CM.getWideningDecision(IG->getInsertPos(), VF) ==
9266 // For scalable vectors, the only interleave factor currently supported
9267 // is 2 since we require the (de)interleave2 intrinsics instead of
9268 // shufflevectors.
9269 assert((!Result || !VF.isScalable() || IG->getFactor() == 2) &&
9270 "Unsupported interleave factor for scalable vectors");
9271 return Result;
9272 };
9273 if (!getDecisionAndClampRange(ApplyIG, Range))
9274 continue;
9275 InterleaveGroups.insert(IG);
9276 }
9277
9278 // ---------------------------------------------------------------------------
9279 // Construct recipes for the instructions in the loop
9280 // ---------------------------------------------------------------------------
9281
9282 // Scan the body of the loop in a topological order to visit each basic block
9283 // after having visited its predecessor basic blocks.
9284 LoopBlocksDFS DFS(OrigLoop);
9285 DFS.perform(LI);
9286
9287 VPBasicBlock *HeaderVPBB = Plan->getVectorLoopRegion()->getEntryBasicBlock();
9288 VPBasicBlock *VPBB = HeaderVPBB;
9289 BasicBlock *HeaderBB = OrigLoop->getHeader();
9290 bool NeedsMasks =
9291 CM.foldTailByMasking() ||
9292 any_of(OrigLoop->blocks(), [this, HeaderBB](BasicBlock *BB) {
9293 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty();
9294 return Legal->blockNeedsPredication(BB) || NeedsBlends;
9295 });
9296 auto *MiddleVPBB = Plan->getMiddleBlock();
9297 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
9298 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9299 // Relevant instructions from basic block BB will be grouped into VPRecipe
9300 // ingredients and fill a new VPBasicBlock.
9301 if (VPBB != HeaderVPBB)
9302 VPBB->setName(BB->getName());
9303 Builder.setInsertPoint(VPBB);
9304
9305 if (VPBB == HeaderVPBB)
9306 RecipeBuilder.createHeaderMask();
9307 else if (NeedsMasks)
9308 RecipeBuilder.createBlockInMask(BB);
9309
9310 // Introduce each ingredient into VPlan.
9311 // TODO: Model and preserve debug intrinsics in VPlan.
9312 for (Instruction &I : drop_end(BB->instructionsWithoutDebug(false))) {
9313 Instruction *Instr = &I;
9315 auto *Phi = dyn_cast<PHINode>(Instr);
9316 if (Phi && Phi->getParent() == HeaderBB) {
9317 Operands.push_back(Plan->getOrAddLiveIn(
9318 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9319 } else {
9320 auto OpRange = RecipeBuilder.mapToVPValues(Instr->operands());
9321 Operands = {OpRange.begin(), OpRange.end()};
9322 }
9323
9324 // The stores with invariant address inside the loop will be deleted, and
9325 // in the exit block, a uniform store recipe will be created for the final
9326 // invariant store of the reduction.
9327 StoreInst *SI;
9328 if ((SI = dyn_cast<StoreInst>(&I)) &&
9329 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
9330 // Only create recipe for the final invariant store of the reduction.
9331 if (!Legal->isInvariantStoreOfReduction(SI))
9332 continue;
9333 auto *Recipe = new VPReplicateRecipe(
9334 SI, RecipeBuilder.mapToVPValues(Instr->operands()),
9335 true /* IsUniform */);
9336 Recipe->insertBefore(*MiddleVPBB, MBIP);
9337 continue;
9338 }
9339
9340 VPRecipeBase *Recipe =
9341 RecipeBuilder.tryToCreateWidenRecipe(Instr, Operands, Range, VPBB);
9342 if (!Recipe)
9343 Recipe = RecipeBuilder.handleReplication(Instr, Range);
9344
9345 RecipeBuilder.setRecipe(Instr, Recipe);
9346 if (isa<VPHeaderPHIRecipe>(Recipe)) {
9347 // VPHeaderPHIRecipes must be kept in the phi section of HeaderVPBB. In
9348 // the following cases, VPHeaderPHIRecipes may be created after non-phi
9349 // recipes and need to be moved to the phi section of HeaderVPBB:
9350 // * tail-folding (non-phi recipes computing the header mask are
9351 // introduced earlier than regular header phi recipes, and should appear
9352 // after them)
9353 // * Optimizing truncates to VPWidenIntOrFpInductionRecipe.
9354
9355 assert((HeaderVPBB->getFirstNonPhi() == VPBB->end() ||
9356 CM.foldTailByMasking() || isa<TruncInst>(Instr)) &&
9357 "unexpected recipe needs moving");
9358 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9359 } else
9360 VPBB->appendRecipe(Recipe);
9361 }
9362
9363 VPBlockUtils::insertBlockAfter(Plan->createVPBasicBlock(""), VPBB);
9364 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9365 }
9366
9367 // After here, VPBB should not be used.
9368 VPBB = nullptr;
9369
9370 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
9371 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
9372 "entry block must be set to a VPRegionBlock having a non-empty entry "
9373 "VPBasicBlock");
9374 RecipeBuilder.fixHeaderPhis();
9375
9376 // Update wide induction increments to use the same step as the corresponding
9377 // wide induction. This enables detecting induction increments directly in
9378 // VPlan and removes redundant splats.
9379 for (const auto &[Phi, ID] : Legal->getInductionVars()) {
9380 auto *IVInc = cast<Instruction>(
9381 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
9382 if (IVInc->getOperand(0) != Phi || IVInc->getOpcode() != Instruction::Add)
9383 continue;
9384 VPWidenInductionRecipe *WideIV =
9385 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
9386 VPRecipeBase *R = RecipeBuilder.getRecipe(IVInc);
9387 R->setOperand(1, WideIV->getStepValue());
9388 }
9389
9390 if (auto *UncountableExitingBlock =
9393 *Plan, *PSE.getSE(), OrigLoop, UncountableExitingBlock, RecipeBuilder);
9394 }
9395 addScalarResumePhis(RecipeBuilder, *Plan);
9396 SetVector<VPIRInstruction *> ExitUsersToFix =
9397 collectUsersInExitBlocks(OrigLoop, RecipeBuilder, *Plan);
9398 addExitUsersForFirstOrderRecurrences(*Plan, ExitUsersToFix);
9399 if (!addUsersInExitBlocks(*Plan, ExitUsersToFix)) {
9401 "Some exit values in loop with uncountable exit not supported yet",
9402 "UncountableEarlyExitLoopsUnsupportedExitValue", ORE, OrigLoop);
9403 return nullptr;
9404 }
9405
9406 // ---------------------------------------------------------------------------
9407 // Transform initial VPlan: Apply previously taken decisions, in order, to
9408 // bring the VPlan to its final state.
9409 // ---------------------------------------------------------------------------
9410
9411 // Adjust the recipes for any inloop reductions.
9412 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
9413
9414 // Interleave memory: for each Interleave Group we marked earlier as relevant
9415 // for this VPlan, replace the Recipes widening its memory instructions with a
9416 // single VPInterleaveRecipe at its insertion point.
9418 *Plan, InterleaveGroups, RecipeBuilder, CM.isScalarEpilogueAllowed());
9419
9420 for (ElementCount VF : Range)
9421 Plan->addVF(VF);
9422 Plan->setName("Initial VPlan");
9423
9424 // Replace VPValues for known constant strides guaranteed by predicate scalar
9425 // evolution.
9426 auto CanUseVersionedStride = [&Plan](VPUser &U, unsigned) {
9427 auto *R = cast<VPRecipeBase>(&U);
9428 return R->getParent()->getParent() ||
9429 R->getParent() ==
9430 Plan->getVectorLoopRegion()->getSinglePredecessor();
9431 };
9432 for (auto [_, Stride] : Legal->getLAI()->getSymbolicStrides()) {
9433 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
9434 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.getSCEV(StrideV));
9435 // Only handle constant strides for now.
9436 if (!ScevStride)
9437 continue;
9438
9439 auto *CI = Plan->getOrAddLiveIn(
9440 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
9441 if (VPValue *StrideVPV = Plan->getLiveIn(StrideV))
9442 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
9443
9444 // The versioned value may not be used in the loop directly but through a
9445 // sext/zext. Add new live-ins in those cases.
9446 for (Value *U : StrideV->users()) {
9447 if (!isa<SExtInst, ZExtInst>(U))
9448 continue;
9449 VPValue *StrideVPV = Plan->getLiveIn(U);
9450 if (!StrideVPV)
9451 continue;
9452 unsigned BW = U->getType()->getScalarSizeInBits();
9453 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
9454 : ScevStride->getAPInt().zext(BW);
9455 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(U->getType(), C));
9456 StrideVPV->replaceUsesWithIf(CI, CanUseVersionedStride);
9457 }
9458 }
9459
9461 return Legal->blockNeedsPredication(BB);
9462 });
9463
9464 // Sink users of fixed-order recurrence past the recipe defining the previous
9465 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
9467 return nullptr;
9468
9469 if (useActiveLaneMask(Style)) {
9470 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
9471 // TailFoldingStyle is visible there.
9472 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
9473 bool WithoutRuntimeCheck =
9475 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
9476 WithoutRuntimeCheck);
9477 }
9478 return Plan;
9479}
9480
9481VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9482 // Outer loop handling: They may require CFG and instruction level
9483 // transformations before even evaluating whether vectorization is profitable.
9484 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9485 // the vectorization pipeline.
9486 assert(!OrigLoop->isInnermost());
9487 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9488
9489 // Create new empty VPlan
9490 auto Plan = VPlan::createInitialVPlan(Legal->getWidestInductionType(), PSE,
9491 true, false, OrigLoop);
9492
9493 // Build hierarchical CFG
9494 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9495 HCFGBuilder.buildHierarchicalCFG();
9496
9497 for (ElementCount VF : Range)
9498 Plan->addVF(VF);
9499
9501 Plan,
9502 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9503 *PSE.getSE(), *TLI);
9504
9505 // Remove the existing terminator of the exiting block of the top-most region.
9506 // A BranchOnCount will be added instead when adding the canonical IV recipes.
9507 auto *Term =
9508 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9509 Term->eraseFromParent();
9510
9511 // Tail folding is not supported for outer loops, so the induction increment
9512 // is guaranteed to not wrap.
9513 bool HasNUW = true;
9514 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), HasNUW,
9515 DebugLoc());
9516
9517 // Collect mapping of IR header phis to header phi recipes, to be used in
9518 // addScalarResumePhis.
9519 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9520 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9521 if (isa<VPCanonicalIVPHIRecipe>(&R))
9522 continue;
9523 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
9524 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
9525 }
9526 addScalarResumePhis(RecipeBuilder, *Plan);
9527
9528 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
9529 return Plan;
9530}
9531
9532// Adjust the recipes for reductions. For in-loop reductions the chain of
9533// instructions leading from the loop exit instr to the phi need to be converted
9534// to reductions, with one operand being vector and the other being the scalar
9535// reduction chain. For other reductions, a select is introduced between the phi
9536// and users outside the vector region when folding the tail.
9537//
9538// A ComputeReductionResult recipe is added to the middle block, also for
9539// in-loop reductions which compute their result in-loop, because generating
9540// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
9541//
9542// Adjust AnyOf reductions; replace the reduction phi for the selected value
9543// with a boolean reduction phi node to check if the condition is true in any
9544// iteration. The final value is selected by the final ComputeReductionResult.
9545void LoopVectorizationPlanner::adjustRecipesForReductions(
9546 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9547 using namespace VPlanPatternMatch;
9548 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
9549 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
9550 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
9551 for (VPRecipeBase &R : Header->phis()) {
9552 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9553 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
9554 continue;
9555
9556 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
9557 RecurKind Kind = RdxDesc.getRecurrenceKind();
9558 assert(
9561 "AnyOf and FindLast reductions are not allowed for in-loop reductions");
9562
9563 // Collect the chain of "link" recipes for the reduction starting at PhiR.
9565 Worklist.insert(PhiR);
9566 for (unsigned I = 0; I != Worklist.size(); ++I) {
9567 VPSingleDefRecipe *Cur = Worklist[I];
9568 for (VPUser *U : Cur->users()) {
9569 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
9570 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
9571 assert((UserRecipe->getParent() == MiddleVPBB ||
9572 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
9573 "U must be either in the loop region, the middle block or the "
9574 "scalar preheader.");
9575 continue;
9576 }
9577 Worklist.insert(UserRecipe);
9578 }
9579 }
9580
9581 // Visit operation "Links" along the reduction chain top-down starting from
9582 // the phi until LoopExitValue. We keep track of the previous item
9583 // (PreviousLink) to tell which of the two operands of a Link will remain
9584 // scalar and which will be reduced. For minmax by select(cmp), Link will be
9585 // the select instructions. Blend recipes of in-loop reduction phi's will
9586 // get folded to their non-phi operand, as the reduction recipe handles the
9587 // condition directly.
9588 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
9589 for (VPSingleDefRecipe *CurrentLink : Worklist.getArrayRef().drop_front()) {
9590 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
9591
9592 // Index of the first operand which holds a non-mask vector operand.
9593 unsigned IndexOfFirstOperand;
9594 // Recognize a call to the llvm.fmuladd intrinsic.
9595 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9596 VPValue *VecOp;
9597 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
9598 if (IsFMulAdd) {
9599 assert(
9601 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9602 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
9603 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
9604 CurrentLink->getOperand(2) == PreviousLink &&
9605 "expected a call where the previous link is the added operand");
9606
9607 // If the instruction is a call to the llvm.fmuladd intrinsic then we
9608 // need to create an fmul recipe (multiplying the first two operands of
9609 // the fmuladd together) to use as the vector operand for the fadd
9610 // reduction.
9611 VPInstruction *FMulRecipe = new VPInstruction(
9612 Instruction::FMul,
9613 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
9614 CurrentLinkI->getFastMathFlags());
9615 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
9616 VecOp = FMulRecipe;
9617 } else {
9618 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink);
9619 if (PhiR->isInLoop() && Blend) {
9620 assert(Blend->getNumIncomingValues() == 2 &&
9621 "Blend must have 2 incoming values");
9622 if (Blend->getIncomingValue(0) == PhiR)
9623 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
9624 else {
9625 assert(Blend->getIncomingValue(1) == PhiR &&
9626 "PhiR must be an operand of the blend");
9627 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
9628 }
9629 continue;
9630 }
9631
9633 if (isa<VPWidenRecipe>(CurrentLink)) {
9634 assert(isa<CmpInst>(CurrentLinkI) &&
9635 "need to have the compare of the select");
9636 continue;
9637 }
9638 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9639 "must be a select recipe");
9640 IndexOfFirstOperand = 1;
9641 } else {
9642 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
9643 "Expected to replace a VPWidenSC");
9644 IndexOfFirstOperand = 0;
9645 }
9646 // Note that for non-commutable operands (cmp-selects), the semantics of
9647 // the cmp-select are captured in the recurrence kind.
9648 unsigned VecOpId =
9649 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9650 ? IndexOfFirstOperand + 1
9651 : IndexOfFirstOperand;
9652 VecOp = CurrentLink->getOperand(VecOpId);
9653 assert(VecOp != PreviousLink &&
9654 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9655 (VecOpId - IndexOfFirstOperand)) ==
9656 PreviousLink &&
9657 "PreviousLink must be the operand other than VecOp");
9658 }
9659
9660 BasicBlock *BB = CurrentLinkI->getParent();
9661 VPValue *CondOp = nullptr;
9663 CondOp = RecipeBuilder.getBlockInMask(BB);
9664
9665 auto *RedRecipe = new VPReductionRecipe(
9666 RdxDesc, CurrentLinkI, PreviousLink, VecOp, CondOp,
9667 CM.useOrderedReductions(RdxDesc), CurrentLinkI->getDebugLoc());
9668 // Append the recipe to the end of the VPBasicBlock because we need to
9669 // ensure that it comes after all of it's inputs, including CondOp.
9670 // Note that this transformation may leave over dead recipes (including
9671 // CurrentLink), which will be cleaned by a later VPlan transform.
9672 LinkVPBB->appendRecipe(RedRecipe);
9673 CurrentLink->replaceAllUsesWith(RedRecipe);
9674 PreviousLink = RedRecipe;
9675 }
9676 }
9677 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
9678 Builder.setInsertPoint(&*LatchVPBB->begin());
9679 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
9680 for (VPRecipeBase &R :
9681 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9682 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9683 if (!PhiR)
9684 continue;
9685
9686 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
9687 // If tail is folded by masking, introduce selects between the phi
9688 // and the users outside the vector region of each reduction, at the
9689 // beginning of the dedicated latch block.
9690 auto *OrigExitingVPV = PhiR->getBackedgeValue();
9691 auto *NewExitingVPV = PhiR->getBackedgeValue();
9692 if (!PhiR->isInLoop() && CM.foldTailByMasking()) {
9693 VPValue *Cond = RecipeBuilder.getBlockInMask(OrigLoop->getHeader());
9694 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB &&
9695 "reduction recipe must be defined before latch");
9696 Type *PhiTy = PhiR->getOperand(0)->getLiveInIRValue()->getType();
9697 std::optional<FastMathFlags> FMFs =
9698 PhiTy->isFloatingPointTy()
9699 ? std::make_optional(RdxDesc.getFastMathFlags())
9700 : std::nullopt;
9701 NewExitingVPV =
9702 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
9703 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
9704 return isa<VPInstruction>(&U) &&
9705 cast<VPInstruction>(&U)->getOpcode() ==
9707 });
9709 PhiR->getRecurrenceDescriptor().getOpcode(), PhiTy))
9710 PhiR->setOperand(1, NewExitingVPV);
9711 }
9712
9713 // If the vector reduction can be performed in a smaller type, we truncate
9714 // then extend the loop exit value to enable InstCombine to evaluate the
9715 // entire expression in the smaller type.
9716 Type *PhiTy = PhiR->getStartValue()->getLiveInIRValue()->getType();
9717 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
9719 RdxDesc.getRecurrenceKind())) {
9720 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
9721 Type *RdxTy = RdxDesc.getRecurrenceType();
9722 auto *Trunc =
9723 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
9724 auto *Extnd =
9725 RdxDesc.isSigned()
9726 ? new VPWidenCastRecipe(Instruction::SExt, Trunc, PhiTy)
9727 : new VPWidenCastRecipe(Instruction::ZExt, Trunc, PhiTy);
9728
9729 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9730 Extnd->insertAfter(Trunc);
9731 if (PhiR->getOperand(1) == NewExitingVPV)
9732 PhiR->setOperand(1, Extnd->getVPSingleValue());
9733 NewExitingVPV = Extnd;
9734 }
9735
9736 // We want code in the middle block to appear to execute on the location of
9737 // the scalar loop's latch terminator because: (a) it is all compiler
9738 // generated, (b) these instructions are always executed after evaluating
9739 // the latch conditional branch, and (c) other passes may add new
9740 // predecessors which terminate on this line. This is the easiest way to
9741 // ensure we don't accidentally cause an extra step back into the loop while
9742 // debugging.
9743 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
9744
9745 // TODO: At the moment ComputeReductionResult also drives creation of the
9746 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
9747 // even for in-loop reductions, until the reduction resume value handling is
9748 // also modeled in VPlan.
9749 auto *FinalReductionResult = new VPInstruction(
9750 VPInstruction::ComputeReductionResult, {PhiR, NewExitingVPV}, ExitDL);
9751 // Update all users outside the vector region.
9752 OrigExitingVPV->replaceUsesWithIf(
9753 FinalReductionResult, [](VPUser &User, unsigned) {
9754 auto *Parent = cast<VPRecipeBase>(&User)->getParent();
9755 return Parent && !Parent->getParent();
9756 });
9757 FinalReductionResult->insertBefore(*MiddleVPBB, IP);
9758
9759 // Adjust AnyOf reductions; replace the reduction phi for the selected value
9760 // with a boolean reduction phi node to check if the condition is true in
9761 // any iteration. The final value is selected by the final
9762 // ComputeReductionResult.
9764 RdxDesc.getRecurrenceKind())) {
9765 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
9766 return isa<VPWidenSelectRecipe>(U) ||
9767 (isa<VPReplicateRecipe>(U) &&
9768 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9769 Instruction::Select);
9770 }));
9771 VPValue *Cmp = Select->getOperand(0);
9772 // If the compare is checking the reduction PHI node, adjust it to check
9773 // the start value.
9774 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe()) {
9775 for (unsigned I = 0; I != CmpR->getNumOperands(); ++I)
9776 if (CmpR->getOperand(I) == PhiR)
9777 CmpR->setOperand(I, PhiR->getStartValue());
9778 }
9779 VPBuilder::InsertPointGuard Guard(Builder);
9780 Builder.setInsertPoint(Select);
9781
9782 // If the true value of the select is the reduction phi, the new value is
9783 // selected if the negated condition is true in any iteration.
9784 if (Select->getOperand(1) == PhiR)
9785 Cmp = Builder.createNot(Cmp);
9786 VPValue *Or = Builder.createOr(PhiR, Cmp);
9787 Select->getVPSingleValue()->replaceAllUsesWith(Or);
9788
9789 // Convert the reduction phi to operate on bools.
9790 PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse(
9791 OrigLoop->getHeader()->getContext())));
9792 continue;
9793 }
9794
9796 RdxDesc.getRecurrenceKind())) {
9797 // Adjust the start value for FindLastIV recurrences to use the sentinel
9798 // value after generating the ResumePhi recipe, which uses the original
9799 // start value.
9800 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
9801 }
9802 }
9803
9805}
9806
9808 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9809
9810 // Fast-math-flags propagate from the original induction instruction.
9812 if (FPBinOp)
9813 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9814
9815 Value *Step = State.get(getStepValue(), VPLane(0));
9816 Value *Index = State.get(getOperand(1), VPLane(0));
9817 Value *DerivedIV = emitTransformedIndex(
9818 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9819 cast_if_present<BinaryOperator>(FPBinOp));
9820 DerivedIV->setName(Name);
9821 // If index is the vector trip count, the concrete value will only be set in
9822 // prepareToExecute, leading to missed simplifications, e.g. if it is 0.
9823 // TODO: Remove the special case for the vector trip count once it is computed
9824 // in VPlan and can be used during VPlan simplification.
9825 assert((DerivedIV != Index ||
9826 getOperand(1) == &getParent()->getPlan()->getVectorTripCount()) &&
9827 "IV didn't need transforming?");
9828 State.set(this, DerivedIV, VPLane(0));
9829}
9830
9833 if (State.Lane) { // Generate a single instance.
9834 assert((State.VF.isScalar() || !isUniform()) &&
9835 "uniform recipe shouldn't be predicated");
9836 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9837 State.ILV->scalarizeInstruction(UI, this, *State.Lane, State);
9838 // Insert scalar instance packing it into a vector.
9839 if (State.VF.isVector() && shouldPack()) {
9840 // If we're constructing lane 0, initialize to start from poison.
9841 if (State.Lane->isFirstLane()) {
9842 assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9844 VectorType::get(UI->getType(), State.VF));
9845 State.set(this, Poison);
9846 }
9847 State.packScalarIntoVectorValue(this, *State.Lane);
9848 }
9849 return;
9850 }
9851
9852 if (IsUniform) {
9853 // Uniform within VL means we need to generate lane 0.
9854 State.ILV->scalarizeInstruction(UI, this, VPLane(0), State);
9855 return;
9856 }
9857
9858 // A store of a loop varying value to a uniform address only needs the last
9859 // copy of the store.
9860 if (isa<StoreInst>(UI) &&
9862 auto Lane = VPLane::getLastLaneForVF(State.VF);
9863 State.ILV->scalarizeInstruction(UI, this, VPLane(Lane), State);
9864 return;
9865 }
9866
9867 // Generate scalar instances for all VF lanes.
9868 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9869 const unsigned EndLane = State.VF.getKnownMinValue();
9870 for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9871 State.ILV->scalarizeInstruction(UI, this, VPLane(Lane), State);
9872}
9873
9874// Determine how to lower the scalar epilogue, which depends on 1) optimising
9875// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9876// predication, and 4) a TTI hook that analyses whether the loop is suitable
9877// for predication.
9882 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9883 // don't look at hints or options, and don't request a scalar epilogue.
9884 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9885 // LoopAccessInfo (due to code dependency and not being able to reliably get
9886 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9887 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9888 // versioning when the vectorization is forced, unlike hasOptSize. So revert
9889 // back to the old way and vectorize with versioning when forced. See D81345.)
9890 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9894
9895 // 2) If set, obey the directives
9896 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9904 };
9905 }
9906
9907 // 3) If set, obey the hints
9908 switch (Hints.getPredicate()) {
9913 };
9914
9915 // 4) if the TTI hook indicates this is profitable, request predication.
9916 TailFoldingInfo TFI(TLI, &LVL, IAI);
9919
9921}
9922
9923// Process the loop in the VPlan-native vectorization path. This path builds
9924// VPlan upfront in the vectorization pipeline, which allows to apply
9925// VPlan-to-VPlan transformations from the very beginning without modifying the
9926// input LLVM IR.
9933 LoopVectorizationRequirements &Requirements) {
9934
9935 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9936 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9937 return false;
9938 }
9939 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9940 Function *F = L->getHeader()->getParent();
9941 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9942
9944 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI);
9945
9946 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9947 &Hints, IAI);
9948 // Use the planner for outer loop vectorization.
9949 // TODO: CM is not used at this point inside the planner. Turn CM into an
9950 // optional argument if we don't need it in the future.
9951 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9952 ORE);
9953
9954 // Get user vectorization factor.
9955 ElementCount UserVF = Hints.getWidth();
9956
9958
9959 // Plan how to best vectorize, return the best VF and its cost.
9960 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9961
9962 // If we are stress testing VPlan builds, do not attempt to generate vector
9963 // code. Masked vector code generation support will follow soon.
9964 // Also, do not attempt to vectorize if no vector code will be produced.
9966 return false;
9967
9968 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9969
9970 {
9971 bool AddBranchWeights =
9972 hasBranchWeightMD(*L->getLoopLatch()->getTerminator());
9973 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(),
9974 AddBranchWeights);
9975 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
9976 VF.Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan);
9977 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9978 << L->getHeader()->getParent()->getName() << "\"\n");
9979 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
9980 }
9981
9982 reportVectorization(ORE, L, VF, 1);
9983
9984 // Mark the loop as already vectorized to avoid vectorizing again.
9985 Hints.setAlreadyVectorized();
9986 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9987 return true;
9988}
9989
9990// Emit a remark if there are stores to floats that required a floating point
9991// extension. If the vectorized loop was generated with floating point there
9992// will be a performance penalty from the conversion overhead and the change in
9993// the vector width.
9996 for (BasicBlock *BB : L->getBlocks()) {
9997 for (Instruction &Inst : *BB) {
9998 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9999 if (S->getValueOperand()->getType()->isFloatTy())
10000 Worklist.push_back(S);
10001 }
10002 }
10003 }
10004
10005 // Traverse the floating point stores upwards searching, for floating point
10006 // conversions.
10009 while (!Worklist.empty()) {
10010 auto *I = Worklist.pop_back_val();
10011 if (!L->contains(I))
10012 continue;
10013 if (!Visited.insert(I).second)
10014 continue;
10015
10016 // Emit a remark if the floating point store required a floating
10017 // point conversion.
10018 // TODO: More work could be done to identify the root cause such as a
10019 // constant or a function return type and point the user to it.
10020 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10021 ORE->emit([&]() {
10022 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10023 I->getDebugLoc(), L->getHeader())
10024 << "floating point conversion changes vector width. "
10025 << "Mixed floating point precision requires an up/down "
10026 << "cast that will negatively impact performance.";
10027 });
10028
10029 for (Use &Op : I->operands())
10030 if (auto *OpI = dyn_cast<Instruction>(Op))
10031 Worklist.push_back(OpI);
10032 }
10033}
10034
10035static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
10036 VectorizationFactor &VF, Loop *L,
10037 const TargetTransformInfo &TTI,
10040 InstructionCost CheckCost = Checks.getCost();
10041 if (!CheckCost.isValid())
10042 return false;
10043
10044 // When interleaving only scalar and vector cost will be equal, which in turn
10045 // would lead to a divide by 0. Fall back to hard threshold.
10046 if (VF.Width.isScalar()) {
10047 if (CheckCost > VectorizeMemoryCheckThreshold) {
10048 LLVM_DEBUG(
10049 dbgs()
10050 << "LV: Interleaving only is not profitable due to runtime checks\n");
10051 return false;
10052 }
10053 return true;
10054 }
10055
10056 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
10057 uint64_t ScalarC = *VF.ScalarCost.getValue();
10058 if (ScalarC == 0)
10059 return true;
10060
10061 // First, compute the minimum iteration count required so that the vector
10062 // loop outperforms the scalar loop.
10063 // The total cost of the scalar loop is
10064 // ScalarC * TC
10065 // where
10066 // * TC is the actual trip count of the loop.
10067 // * ScalarC is the cost of a single scalar iteration.
10068 //
10069 // The total cost of the vector loop is
10070 // RtC + VecC * (TC / VF) + EpiC
10071 // where
10072 // * RtC is the cost of the generated runtime checks
10073 // * VecC is the cost of a single vector iteration.
10074 // * TC is the actual trip count of the loop
10075 // * VF is the vectorization factor
10076 // * EpiCost is the cost of the generated epilogue, including the cost
10077 // of the remaining scalar operations.
10078 //
10079 // Vectorization is profitable once the total vector cost is less than the
10080 // total scalar cost:
10081 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
10082 //
10083 // Now we can compute the minimum required trip count TC as
10084 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
10085 //
10086 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
10087 // the computations are performed on doubles, not integers and the result
10088 // is rounded up, hence we get an upper estimate of the TC.
10089 unsigned IntVF = getEstimatedRuntimeVF(L, TTI, VF.Width);
10090 uint64_t RtC = *CheckCost.getValue();
10091 uint64_t Div = ScalarC * IntVF - *VF.Cost.getValue();
10092 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
10093
10094 // Second, compute a minimum iteration count so that the cost of the
10095 // runtime checks is only a fraction of the total scalar loop cost. This
10096 // adds a loop-dependent bound on the overhead incurred if the runtime
10097 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
10098 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
10099 // cost, compute
10100 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
10101 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
10102
10103 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
10104 // epilogue is allowed, choose the next closest multiple of VF. This should
10105 // partly compensate for ignoring the epilogue cost.
10106 uint64_t MinTC = std::max(MinTC1, MinTC2);
10107 if (SEL == CM_ScalarEpilogueAllowed)
10108 MinTC = alignTo(MinTC, IntVF);
10110
10111 LLVM_DEBUG(
10112 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
10113 << VF.MinProfitableTripCount << "\n");
10114
10115 // Skip vectorization if the expected trip count is less than the minimum
10116 // required trip count.
10117 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
10120 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
10121 "trip count < minimum profitable VF ("
10122 << *ExpectedTC << " < " << VF.MinProfitableTripCount
10123 << ")\n");
10124
10125 return false;
10126 }
10127 }
10128 return true;
10129}
10130
10132 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10134 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10136
10137/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
10138/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
10139/// don't have a corresponding wide induction in \p EpiPlan.
10140static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
10141 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
10142 // will need their resume-values computed in the main vector loop. Others
10143 // can be removed from the main VPlan.
10144 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
10145 for (VPRecipeBase &R :
10147 if (isa<VPCanonicalIVPHIRecipe>(&R))
10148 continue;
10149 EpiWidenedPhis.insert(
10150 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
10151 }
10153 *cast<VPIRBasicBlock>(MainPlan.getScalarHeader()))) {
10154 auto *VPIRInst = cast<VPIRInstruction>(&R);
10155 auto *IRI = dyn_cast<PHINode>(&VPIRInst->getInstruction());
10156 if (!IRI)
10157 break;
10158 if (EpiWidenedPhis.contains(IRI))
10159 continue;
10160 // There is no corresponding wide induction in the epilogue plan that would
10161 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
10162 // together with the corresponding ResumePhi. The resume values for the
10163 // scalar loop will be created during execution of EpiPlan.
10164 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
10165 VPIRInst->eraseFromParent();
10166 ResumePhi->eraseFromParent();
10167 }
10169
10170 using namespace VPlanPatternMatch;
10171 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
10172 VPValue *VectorTC = &MainPlan.getVectorTripCount();
10173 // If there is a suitable resume value for the canonical induction in the
10174 // scalar (which will become vector) epilogue loop we are done. Otherwise
10175 // create it below.
10176 if (any_of(*MainScalarPH, [VectorTC](VPRecipeBase &R) {
10177 return match(&R, m_VPInstruction<VPInstruction::ResumePhi>(
10178 m_Specific(VectorTC), m_SpecificInt(0)));
10179 }))
10180 return;
10181 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
10182 ScalarPHBuilder.createNaryOp(
10184 {VectorTC, MainPlan.getCanonicalIV()->getStartValue()}, {},
10185 "vec.epilog.resume.val");
10186}
10187
10188/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
10189/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes.
10190static void
10192 const SCEV2ValueTy &ExpandedSCEVs,
10193 const EpilogueLoopVectorizationInfo &EPI) {
10194 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
10195 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10196 Header->setName("vec.epilog.vector.body");
10197
10198 // Re-use the trip count and steps expanded for the main loop, as
10199 // skeleton creation needs it as a value that dominates both the scalar
10200 // and vector epilogue loops
10201 // TODO: This is a workaround needed for epilogue vectorization and it
10202 // should be removed once induction resume value creation is done
10203 // directly in VPlan.
10204 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
10205 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
10206 if (!ExpandR)
10207 continue;
10208 auto *ExpandedVal =
10209 Plan.getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second);
10210 ExpandR->replaceAllUsesWith(ExpandedVal);
10211 if (Plan.getTripCount() == ExpandR)
10212 Plan.resetTripCount(ExpandedVal);
10213 ExpandR->eraseFromParent();
10214 }
10215
10216 // Ensure that the start values for all header phi recipes are updated before
10217 // vectorizing the epilogue loop.
10218 for (VPRecipeBase &R : Header->phis()) {
10219 if (auto *IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
10220 // When vectorizing the epilogue loop, the canonical induction start
10221 // value needs to be changed from zero to the value after the main
10222 // vector loop. Find the resume value created during execution of the main
10223 // VPlan.
10224 // FIXME: Improve modeling for canonical IV start values in the epilogue
10225 // loop.
10226 BasicBlock *MainMiddle = find_singleton<BasicBlock>(
10227 predecessors(L->getLoopPreheader()),
10228 [&EPI](BasicBlock *BB, bool) -> BasicBlock * {
10229 if (BB != EPI.MainLoopIterationCountCheck &&
10230 BB != EPI.EpilogueIterationCountCheck &&
10231 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck)
10232 return BB;
10233 return nullptr;
10234 });
10235 using namespace llvm::PatternMatch;
10236 Type *IdxTy = IV->getScalarType();
10237 PHINode *EPResumeVal = find_singleton<PHINode>(
10238 L->getLoopPreheader()->phis(),
10239 [&EPI, IdxTy, MainMiddle](PHINode &P, bool) -> PHINode * {
10240 if (P.getType() == IdxTy &&
10241 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount &&
10242 match(
10243 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck),
10244 m_SpecificInt(0)))
10245 return &P;
10246 return nullptr;
10247 });
10248 assert(EPResumeVal && "must have a resume value for the canonical IV");
10249 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
10250 assert(all_of(IV->users(),
10251 [](const VPUser *U) {
10252 return isa<VPScalarIVStepsRecipe>(U) ||
10253 isa<VPScalarCastRecipe>(U) ||
10254 isa<VPDerivedIVRecipe>(U) ||
10255 cast<VPInstruction>(U)->getOpcode() ==
10256 Instruction::Add;
10257 }) &&
10258 "the canonical IV should only be used by its increment or "
10259 "ScalarIVSteps when resetting the start value");
10260 IV->setOperand(0, VPV);
10261 continue;
10262 }
10263
10264 Value *ResumeV = nullptr;
10265 // TODO: Move setting of resume values to prepareToExecute.
10266 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10267 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
10268 ->getIncomingValueForBlock(L->getLoopPreheader());
10269 const RecurrenceDescriptor &RdxDesc =
10270 ReductionPhi->getRecurrenceDescriptor();
10271 RecurKind RK = RdxDesc.getRecurrenceKind();
10273 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
10274 // start value; compare the final value from the main vector loop
10275 // to the start value.
10276 IRBuilder<> Builder(
10277 cast<Instruction>(ResumeV)->getParent()->getFirstNonPHI());
10278 ResumeV =
10279 Builder.CreateICmpNE(ResumeV, RdxDesc.getRecurrenceStartValue());
10280 }
10281 } else {
10282 // Retrieve the induction resume values for wide inductions from
10283 // their original phi nodes in the scalar loop.
10284 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
10285 // Hook up to the PHINode generated by a ResumePhi recipe of main
10286 // loop VPlan, which feeds the scalar loop.
10287 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
10288 }
10289 assert(ResumeV && "Must have a resume value");
10290 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
10291 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
10292 }
10293}
10294
10296 assert((EnableVPlanNativePath || L->isInnermost()) &&
10297 "VPlan-native path is not enabled. Only process inner loops.");
10298
10299 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10300 << L->getHeader()->getParent()->getName() << "' from "
10301 << L->getLocStr() << "\n");
10302
10303 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10304
10305 LLVM_DEBUG(
10306 dbgs() << "LV: Loop hints:"
10307 << " force="
10309 ? "disabled"
10311 ? "enabled"
10312 : "?"))
10313 << " width=" << Hints.getWidth()
10314 << " interleave=" << Hints.getInterleave() << "\n");
10315
10316 // Function containing loop
10317 Function *F = L->getHeader()->getParent();
10318
10319 // Looking at the diagnostic output is the only way to determine if a loop
10320 // was vectorized (other than looking at the IR or machine code), so it
10321 // is important to generate an optimization remark for each loop. Most of
10322 // these messages are generated as OptimizationRemarkAnalysis. Remarks
10323 // generated as OptimizationRemark and OptimizationRemarkMissed are
10324 // less verbose reporting vectorized loops and unvectorized loops that may
10325 // benefit from vectorization, respectively.
10326
10327 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10328 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10329 return false;
10330 }
10331
10332 PredicatedScalarEvolution PSE(*SE, *L);
10333
10334 // Check if it is legal to vectorize the loop.
10335 LoopVectorizationRequirements Requirements;
10336 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
10337 &Requirements, &Hints, DB, AC, BFI, PSI);
10339 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10340 Hints.emitRemarkWithHints();
10341 return false;
10342 }
10343
10345 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
10346 "early exit is not enabled",
10347 "UncountableEarlyExitLoopsDisabled", ORE, L);
10348 return false;
10349 }
10350
10351 // Entrance to the VPlan-native vectorization path. Outer loops are processed
10352 // here. They may require CFG and instruction level transformations before
10353 // even evaluating whether vectorization is profitable. Since we cannot modify
10354 // the incoming IR, we need to build VPlan upfront in the vectorization
10355 // pipeline.
10356 if (!L->isInnermost())
10357 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10358 ORE, BFI, PSI, Hints, Requirements);
10359
10360 assert(L->isInnermost() && "Inner loop expected.");
10361
10362 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10363 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10364
10365 // If an override option has been passed in for interleaved accesses, use it.
10366 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10367 UseInterleaved = EnableInterleavedMemAccesses;
10368
10369 // Analyze interleaved memory accesses.
10370 if (UseInterleaved)
10372
10373 if (LVL.hasUncountableEarlyExit()) {
10374 BasicBlock *LoopLatch = L->getLoopLatch();
10375 if (IAI.requiresScalarEpilogue() ||
10377 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
10378 reportVectorizationFailure("Auto-vectorization of early exit loops "
10379 "requiring a scalar epilogue is unsupported",
10380 "UncountableEarlyExitUnsupported", ORE, L);
10381 return false;
10382 }
10383 }
10384
10385 // Check the function attributes and profiles to find out if this function
10386 // should be optimized for size.
10388 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI);
10389
10390 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10391 // count by optimizing for size, to minimize overheads.
10392 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
10393 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10394 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10395 << "This loop is worth vectorizing only if no scalar "
10396 << "iteration overheads are incurred.");
10398 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10399 else {
10400 if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) {
10401 LLVM_DEBUG(dbgs() << "\n");
10402 // Predicate tail-folded loops are efficient even when the loop
10403 // iteration count is low. However, setting the epilogue policy to
10404 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
10405 // with runtime checks. It's more effective to let
10406 // `areRuntimeChecksProfitable` determine if vectorization is beneficial
10407 // for the loop.
10410 } else {
10411 LLVM_DEBUG(dbgs() << " But the target considers the trip count too "
10412 "small to consider vectorizing.\n");
10414 "The trip count is below the minial threshold value.",
10415 "loop trip count is too low, avoiding vectorization",
10416 "LowTripCount", ORE, L);
10417 Hints.emitRemarkWithHints();
10418 return false;
10419 }
10420 }
10421 }
10422
10423 // Check the function attributes to see if implicit floats or vectors are
10424 // allowed.
10425 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10427 "Can't vectorize when the NoImplicitFloat attribute is used",
10428 "loop not vectorized due to NoImplicitFloat attribute",
10429 "NoImplicitFloat", ORE, L);
10430 Hints.emitRemarkWithHints();
10431 return false;
10432 }
10433
10434 // Check if the target supports potentially unsafe FP vectorization.
10435 // FIXME: Add a check for the type of safety issue (denormal, signaling)
10436 // for the target we're vectorizing for, to make sure none of the
10437 // additional fp-math flags can help.
10438 if (Hints.isPotentiallyUnsafe() &&
10441 "Potentially unsafe FP op prevents vectorization",
10442 "loop not vectorized due to unsafe FP support.",
10443 "UnsafeFP", ORE, L);
10444 Hints.emitRemarkWithHints();
10445 return false;
10446 }
10447
10448 bool AllowOrderedReductions;
10449 // If the flag is set, use that instead and override the TTI behaviour.
10450 if (ForceOrderedReductions.getNumOccurrences() > 0)
10451 AllowOrderedReductions = ForceOrderedReductions;
10452 else
10453 AllowOrderedReductions = TTI->enableOrderedReductions();
10454 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10455 ORE->emit([&]() {
10456 auto *ExactFPMathInst = Requirements.getExactFPInst();
10457 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10458 ExactFPMathInst->getDebugLoc(),
10459 ExactFPMathInst->getParent())
10460 << "loop not vectorized: cannot prove it is safe to reorder "
10461 "floating-point operations";
10462 });
10463 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10464 "reorder floating-point operations\n");
10465 Hints.emitRemarkWithHints();
10466 return false;
10467 }
10468
10469 // Use the cost model.
10470 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10471 F, &Hints, IAI);
10472 // Use the planner for vectorization.
10473 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
10474 ORE);
10475
10476 // Get user vectorization factor and interleave count.
10477 ElementCount UserVF = Hints.getWidth();
10478 unsigned UserIC = Hints.getInterleave();
10479
10480 // Plan how to best vectorize.
10481 LVP.plan(UserVF, UserIC);
10483 unsigned IC = 1;
10484
10487
10488 bool AddBranchWeights =
10489 hasBranchWeightMD(*L->getLoopLatch()->getTerminator());
10490 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(),
10491 AddBranchWeights);
10492 if (LVP.hasPlanWithVF(VF.Width)) {
10493 // Select the interleave count.
10494 IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
10495
10496 unsigned SelectedIC = std::max(IC, UserIC);
10497 // Optimistically generate runtime checks if they are needed. Drop them if
10498 // they turn out to not be profitable.
10499 if (VF.Width.isVector() || SelectedIC > 1)
10500 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10501
10502 // Check if it is profitable to vectorize with runtime checks.
10503 bool ForceVectorization =
10505 if (!ForceVectorization &&
10506 !areRuntimeChecksProfitable(Checks, VF, L, *TTI, PSE, SEL)) {
10507 ORE->emit([&]() {
10509 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10510 L->getHeader())
10511 << "loop not vectorized: cannot prove it is safe to reorder "
10512 "memory operations";
10513 });
10514 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10515 Hints.emitRemarkWithHints();
10516 return false;
10517 }
10518 }
10519
10520 // Identify the diagnostic messages that should be produced.
10521 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10522 bool VectorizeLoop = true, InterleaveLoop = true;
10523 if (VF.Width.isScalar()) {
10524 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10525 VecDiagMsg = std::make_pair(
10526 "VectorizationNotBeneficial",
10527 "the cost-model indicates that vectorization is not beneficial");
10528 VectorizeLoop = false;
10529 }
10530
10531 if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10532 // Tell the user interleaving was avoided up-front, despite being explicitly
10533 // requested.
10534 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10535 "interleaving should be avoided up front\n");
10536 IntDiagMsg = std::make_pair(
10537 "InterleavingAvoided",
10538 "Ignoring UserIC, because interleaving was avoided up front");
10539 InterleaveLoop = false;
10540 } else if (IC == 1 && UserIC <= 1) {
10541 // Tell the user interleaving is not beneficial.
10542 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10543 IntDiagMsg = std::make_pair(
10544 "InterleavingNotBeneficial",
10545 "the cost-model indicates that interleaving is not beneficial");
10546 InterleaveLoop = false;
10547 if (UserIC == 1) {
10548 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10549 IntDiagMsg.second +=
10550 " and is explicitly disabled or interleave count is set to 1";
10551 }
10552 } else if (IC > 1 && UserIC == 1) {
10553 // Tell the user interleaving is beneficial, but it explicitly disabled.
10554 LLVM_DEBUG(
10555 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10556 IntDiagMsg = std::make_pair(
10557 "InterleavingBeneficialButDisabled",
10558 "the cost-model indicates that interleaving is beneficial "
10559 "but is explicitly disabled or interleave count is set to 1");
10560 InterleaveLoop = false;
10561 }
10562
10563 // If there is a histogram in the loop, do not just interleave without
10564 // vectorizing. The order of operations will be incorrect without the
10565 // histogram intrinsics, which are only used for recipes with VF > 1.
10566 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10567 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10568 << "to histogram operations.\n");
10569 IntDiagMsg = std::make_pair(
10570 "HistogramPreventsScalarInterleaving",
10571 "Unable to interleave without vectorization due to constraints on "
10572 "the order of histogram operations");
10573 InterleaveLoop = false;
10574 }
10575
10576 // Override IC if user provided an interleave count.
10577 IC = UserIC > 0 ? UserIC : IC;
10578
10579 // Emit diagnostic messages, if any.
10580 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10581 if (!VectorizeLoop && !InterleaveLoop) {
10582 // Do not vectorize or interleaving the loop.
10583 ORE->emit([&]() {
10584 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10585 L->getStartLoc(), L->getHeader())
10586 << VecDiagMsg.second;
10587 });
10588 ORE->emit([&]() {
10589 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10590 L->getStartLoc(), L->getHeader())
10591 << IntDiagMsg.second;
10592 });
10593 return false;
10594 }
10595
10596 if (!VectorizeLoop && InterleaveLoop) {
10597 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10598 ORE->emit([&]() {
10599 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10600 L->getStartLoc(), L->getHeader())
10601 << VecDiagMsg.second;
10602 });
10603 } else if (VectorizeLoop && !InterleaveLoop) {
10604 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10605 << ") in " << L->getLocStr() << '\n');
10606 ORE->emit([&]() {
10607 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10608 L->getStartLoc(), L->getHeader())
10609 << IntDiagMsg.second;
10610 });
10611 } else if (VectorizeLoop && InterleaveLoop) {
10612 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10613 << ") in " << L->getLocStr() << '\n');
10614 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10615 }
10616
10617 bool DisableRuntimeUnroll = false;
10618 MDNode *OrigLoopID = L->getLoopID();
10619 {
10620 using namespace ore;
10621 if (!VectorizeLoop) {
10622 assert(IC > 1 && "interleave count should not be 1 or 0");
10623 // If we decided that it is not legal to vectorize the loop, then
10624 // interleave it.
10625 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10626 InnerLoopVectorizer Unroller(
10627 L, PSE, LI, DT, TLI, TTI, AC, ORE, ElementCount::getFixed(1),
10628 ElementCount::getFixed(1), IC, &LVL, &CM, BFI, PSI, Checks, BestPlan);
10629
10630 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);
10631
10632 ORE->emit([&]() {
10633 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10634 L->getHeader())
10635 << "interleaved loop (interleaved count: "
10636 << NV("InterleaveCount", IC) << ")";
10637 });
10638 } else {
10639 // If we decided that it is *legal* to vectorize the loop, then do it.
10640
10641 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10642 // Consider vectorizing the epilogue too if it's profitable.
10643 VectorizationFactor EpilogueVF =
10645 if (EpilogueVF.Width.isVector()) {
10646 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10647
10648 // The first pass vectorizes the main loop and creates a scalar epilogue
10649 // to be vectorized by executing the plan (potentially with a different
10650 // factor) again shortly afterwards.
10651 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10652 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10653 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10654 BestEpiPlan);
10655 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10656 EPI, &LVL, &CM, BFI, PSI, Checks,
10657 *BestMainPlan);
10658 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10659 *BestMainPlan, MainILV, DT, false);
10660 ++LoopsVectorized;
10661
10662 // Second pass vectorizes the epilogue and adjusts the control flow
10663 // edges from the first pass.
10664 EPI.MainLoopVF = EPI.EpilogueVF;
10665 EPI.MainLoopUF = EPI.EpilogueUF;
10666 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10667 ORE, EPI, &LVL, &CM, BFI, PSI,
10668 Checks, BestEpiPlan);
10669 EpilogILV.setTripCount(MainILV.getTripCount());
10670 preparePlanForEpilogueVectorLoop(BestEpiPlan, L, ExpandedSCEVs, EPI);
10671
10672 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10673 DT, true, &ExpandedSCEVs);
10674 ++LoopsEpilogueVectorized;
10675
10676 if (!MainILV.areSafetyChecksAdded())
10677 DisableRuntimeUnroll = true;
10678 } else {
10679 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
10680 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
10681 PSI, Checks, BestPlan);
10682 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10683 ++LoopsVectorized;
10684
10685 // Add metadata to disable runtime unrolling a scalar loop when there
10686 // are no runtime checks about strides and memory. A scalar loop that is
10687 // rarely used is not worth unrolling.
10688 if (!LB.areSafetyChecksAdded())
10689 DisableRuntimeUnroll = true;
10690 }
10691 // Report the vectorization decision.
10692 reportVectorization(ORE, L, VF, IC);
10693 }
10694
10697 }
10698
10699 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10700 "DT not preserved correctly");
10701
10702 std::optional<MDNode *> RemainderLoopID =
10705 if (RemainderLoopID) {
10706 L->setLoopID(*RemainderLoopID);
10707 } else {
10708 if (DisableRuntimeUnroll)
10710
10711 // Mark the loop as already vectorized to avoid vectorizing again.
10712 Hints.setAlreadyVectorized();
10713 }
10714
10715 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10716 return true;
10717}
10718
10720
10721 // Don't attempt if
10722 // 1. the target claims to have no vector registers, and
10723 // 2. interleaving won't help ILP.
10724 //
10725 // The second condition is necessary because, even if the target has no
10726 // vector registers, loop vectorization may still enable scalar
10727 // interleaving.
10730 return LoopVectorizeResult(false, false);
10731
10732 bool Changed = false, CFGChanged = false;
10733
10734 // The vectorizer requires loops to be in simplified form.
10735 // Since simplification may add new inner loops, it has to run before the
10736 // legality and profitability checks. This means running the loop vectorizer
10737 // will simplify all loops, regardless of whether anything end up being
10738 // vectorized.
10739 for (const auto &L : *LI)
10740 Changed |= CFGChanged |=
10741 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10742
10743 // Build up a worklist of inner-loops to vectorize. This is necessary as
10744 // the act of vectorizing or partially unrolling a loop creates new loops
10745 // and can invalidate iterators across the loops.
10746 SmallVector<Loop *, 8> Worklist;
10747
10748 for (Loop *L : *LI)
10749 collectSupportedLoops(*L, LI, ORE, Worklist);
10750
10751 LoopsAnalyzed += Worklist.size();
10752
10753 // Now walk the identified inner loops.
10754 while (!Worklist.empty()) {
10755 Loop *L = Worklist.pop_back_val();
10756
10757 // For the inner loops we actually process, form LCSSA to simplify the
10758 // transform.
10759 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10760
10761 Changed |= CFGChanged |= processLoop(L);
10762
10763 if (Changed) {
10764 LAIs->clear();
10765
10766#ifndef NDEBUG
10767 if (VerifySCEV)
10768 SE->verify();
10769#endif
10770 }
10771 }
10772
10773 // Process each loop nest in the function.
10774 return LoopVectorizeResult(Changed, CFGChanged);
10775}
10776
10779 LI = &AM.getResult<LoopAnalysis>(F);
10780 // There are no loops in the function. Return before computing other
10781 // expensive analyses.
10782 if (LI->empty())
10783 return PreservedAnalyses::all();
10792
10793 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10794 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10795 BFI = nullptr;
10796 if (PSI && PSI->hasProfileSummary())
10798 LoopVectorizeResult Result = runImpl(F);
10799 if (!Result.MadeAnyChange)
10800 return PreservedAnalyses::all();
10802
10803 if (isAssignmentTrackingEnabled(*F.getParent())) {
10804 for (auto &BB : F)
10806 }
10807
10808 PA.preserve<LoopAnalysis>();
10812
10813 if (Result.MadeCFGChange) {
10814 // Making CFG changes likely means a loop got vectorized. Indicate that
10815 // extra simplification passes should be run.
10816 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10817 // be run if runtime checks have been added.
10820 } else {
10822 }
10823 return PA;
10824}
10825
10827 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10828 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10829 OS, MapClassName2PassName);
10830
10831 OS << '<';
10832 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10833 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10834 OS << '>';
10835}
@ Poison
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:64
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
std::string Name
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
#define Check(C,...)
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
Legalize the Machine IR a function s Machine IR
Definition: Legalizer.cpp:80
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addRuntimeUnrollDisableMetaData(Loop *L)
static bool isOptimizableIVOrUse(VPValue *VPV)
Return true if VPV is an optimizable IV or IV use.
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, const TargetTransformInfo &TTI, PredicatedScalarEvolution &PSE, ScalarEpilogueLowering SEL)
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
const char LLVMLoopVectorizeFollowupAll[]
static SetVector< VPIRInstruction * > collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan)
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, SetVector< VPIRInstruction * > &ExitUsersToFix)
Handle users in the exit block for first order reductions in the original exit block.
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, DebugLoc DL)
static std::optional< unsigned > getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI)
Convenience function that returns the value of vscale_range iff vscale_range.min == vscale_range....
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static constexpr uint32_t MemCheckBypassWeights[]
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static VPValue * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static Type * maybeVectorizeType(Type *Elt, ElementCount VF)
static std::optional< unsigned > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count for the specified loop L as defined by the following procedure: 1) Re...
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
const char VerboseDebug[]
static void fixReductionScalarResumeWhenVectorizingEpilog(VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, BasicBlock *BypassBlock)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static constexpr uint32_t SCEVCheckBypassWeights[]
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, const EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static bool useActiveLaneMask(TailFoldingStyle Style)
static unsigned getEstimatedRuntimeVF(const Loop *L, const TargetTransformInfo &TTI, ElementCount VF)
This function attempts to return a value that represents the vectorization factor at runtime.
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static bool addUsersInExitBlocks(VPlan &Plan, const SetVector< VPIRInstruction * > &ExitUsersToFix)
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
#define DEBUG_TYPE
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(false), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
std::pair< uint64_t, uint64_t > Interval
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
if(PassOpts->AAPipeline)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
#define OP(OPC)
Definition: Instruction.h:45
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
This pass exposes codegen information to IR-level passes.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1542
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
Definition: Attributes.cpp:460
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:517
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:367
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:459
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:489
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
BinaryOps getOpcode() const
Definition: InstrTypes.h:370
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:72
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: InstrTypes.h:1873
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1349
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1294
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1285
unsigned arg_size() const
Definition: InstrTypes.h:1292
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:696
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:698
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
@ ICMP_NE
not equal
Definition: InstrTypes.h:695
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:699
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:787
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:873
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
A debug info location.
Definition: DebugLoc.h:33
An analysis that produces DemandedBits for a function.
Definition: DemandedBits.h:103
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
bool empty() const
Definition: DenseMap.h:98
iterator begin()
Definition: DenseMap.h:75
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
iterator end()
Definition: DenseMap.h:84
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
Definition: DenseMap.h:202
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
constexpr bool isVector() const
One or more elements.
Definition: TypeSize.h:326
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition: TypeSize.h:314
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition: TypeSize.h:317
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (ie the ...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the main loop strategy (ie the firs...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State) override
Set up the values of the IVs correctly when exiting the vector loop.
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:338
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
Class to represent function types.
Definition: DerivedTypes.h:105
param_iterator param_begin() const
Definition: DerivedTypes.h:130
param_iterator param_end() const
Definition: DerivedTypes.h:131
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:707
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:216
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition: Function.cpp:373
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:766
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:704
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:108
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:480
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1043
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:325
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2268
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Definition: IRBuilder.cpp:879
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2264
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:159
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1381
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1364
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition: IRBuilder.h:485
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:194
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2374
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1441
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2699
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
virtual BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)=0
The interface for creating a vectorized skeleton using one of two different strategies,...
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
void sinkScalarOperands(Instruction *PredInst)
Iteratively sink the scalarized operands of a predicated instruction into the block that was created ...
const TargetLibraryInfo * TLI
Target Library Info.
virtual void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State)
Set up the values of the IVs correctly when exiting the vector loop.
ElementCount MinProfitableTripCount
const TargetTransformInfo * TTI
Target Transform Info.
Value * VectorTripCount
Trip count of the widened loop (TripCount - TripCount % (VF*UF))
BasicBlock * emitSCEVChecks(BasicBlock *Bypass)
Emit a bypass check to see if all of the SCEV assumptions we've had to make are correct.
virtual BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
LoopVectorizationCostModel * Cost
The profitablity analysis.
BasicBlock * AdditionalBypassBlock
The additional bypass block which conditionally skips over the epilogue loop after executing the main...
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
BasicBlock * LoopMiddleBlock
Middle Block between the vector and the scalar.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
SmallVector< Instruction *, 4 > PredicatedInstructions
Store instructions that were predicated.
DenseMap< PHINode *, Value * > Induction2AdditionalBypassValue
Mapping of induction phis to their additional bypass values.
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
void createVectorLoopSkeleton(StringRef Prefix)
Emit basic blocks (prefixed with Prefix) for the iteration check, vector loop preheader,...
BasicBlock * emitMemRuntimeChecks(BasicBlock *Bypass)
Emit bypass checks to check any memory assumptions we may have made.
BasicBlock * LoopScalarPreHeader
The scalar-loop preheader.
void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
Create and record the values for induction variables to resume coming from the additional bypass bloc...
VPBlockBase * VectorPHVPB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
LoopVectorizationLegality * Legal
The legality analysis.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
void emitIterationCountCheck(BasicBlock *Bypass)
Emit a bypass check to see if the vector trip count is zero, including if it overflows.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
ProfileSummaryInfo * PSI
Value * getInductionAdditionalBypassValue(PHINode *OrigPhi) const
induction header phi.
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
Value * getOrCreateVectorTripCount(BasicBlock *InsertBlock)
Returns (and creates if needed) the trip count of the widened loop.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
unsigned UF
The vectorization unroll factor to use.
SmallVector< BasicBlock *, 4 > LoopBypassBlocks
A list of all bypass blocks. The first block is the entry of the loop.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:475
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:68
bool isBinaryOp() const
Definition: Instruction.h:279
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:169
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
Definition: Instruction.h:276
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:274
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:480
uint32_t getFactor() const
Definition: VectorUtils.h:496
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
Definition: VectorUtils.h:550
InstTy * getInsertPos() const
Definition: VectorUtils.h:566
uint32_t getNumMembers() const
Definition: VectorUtils.h:498
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:622
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VectorUtils.h:667
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
Definition: VectorUtils.h:678
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
Definition: VectorUtils.h:659
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
Definition: VectorUtils.h:642
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
Definition: VectorUtils.h:672
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
Type * getPointerOperandType() const
Definition: Instructions.h:258
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:566
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
Store the result of a depth first search within basic blocks contained by a single loop.
Definition: LoopIterator.h:97
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
Definition: LoopIterator.h:136
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopInfo.cpp:1254
RPOIterator endRPO() const
Definition: LoopIterator.h:140
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
Definition: LoopIterator.h:172
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopIterator.h:180
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool requiresScalarEpilogue(VFRange Range) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, TTI::TargetCostKind CostKind) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI)
LoopVectorizationLegality * Legal
Vectorization legality.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallVector< RegisterUsage, 8 > calculateRegisterUsage(ArrayRef< ElementCount > VFs)
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
void collectUniformsAndScalars(ElementCount VF)
Collect Uniform and Scalar values for the given VF.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost)
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
std::optional< const HistogramInfo * > getHistogramInfo(Instruction *I) const
Returns a HistogramInfo* for the given instruction if it was determined to be part of a load -> updat...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
Type * getWidestInductionType()
Returns the widest induction type.
bool hasUncountableEarlyExit() const
Returns true if the loop has an uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block.
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1637
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1625
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1606
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1651
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
void prepareNoAliasMetadata()
Set up the aliasing scopes based on the memchecks.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition: LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition: LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition: LoopInfo.cpp:61
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition: LoopInfo.cpp:502
Metadata node.
Definition: Metadata.h:1069
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
Definition: Metadata.cpp:1077
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1430
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1545
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1436
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:606
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
iterator find(const KeyT &Key)
Definition: MapVector.h:167
bool contains(const KeyT &Key) const
Definition: MapVector.h:163
bool empty() const
Definition: MapVector.h:79
size_type size() const
Definition: MapVector.h:60
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition: Module.cpp:228
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
bool allowExtraAnalysis(StringRef PassName) const
Whether we allow for extra compile-time budget to perform more analysis to produce fewer false positi...
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
Definition: PassManager.h:692
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static unsigned getIncomingValueNumForOperand(unsigned i)
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:146
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Definition: IVDescriptors.h:77
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
Value * getSentinelValue() const
Returns the sentinel value for FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class represents a constant integer value.
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition: SetVector.h:57
ArrayRef< value_type > getArrayRef() const
Definition: SetVector.h:84
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:113
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:264
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:93
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:103
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
value_type pop_back_val()
Definition: SetVector.h:285
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:401
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
iterator end() const
Definition: SmallPtrSet.h:477
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
iterator begin() const
Definition: SmallPtrSet.h:472
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:458
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Multiway switch.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
std::optional< unsigned > getVScaleForTuning() const
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const
bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE=nullptr, const SCEV *Ptr=nullptr) const
void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
InstructionCost getOperandsScalarizationOverhead(ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing an instructions unique non-constant operands.
TypeSize getRegisterBitWidth(RegisterKind K) const
bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
std::optional< unsigned > getMaxVScale() const
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add ...
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
bool isElementTypeLegalForScalableVector(Type *Ty) const
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
const char * getRegisterClassName(unsigned ClassID) const
bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const
unsigned getEpilogueVectorizationMinVF() const
unsigned getNumberOfRegisters(unsigned ClassID) const
bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
bool isLegalMaskedStore(Type *DataType, Align Alignment) const
Return true if the target supports masked store.
@ TCC_Free
Expected to fold away in lowering.
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
unsigned getMinTripCountTailFoldingThreshold() const
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
unsigned getMaxInterleaveFactor(ElementCount VF) const
unsigned getNumberOfParts(Type *Tp) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, Value *Op0=nullptr, Value *Op1=nullptr) const
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked load.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition: TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition: TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:264
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:184
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
Definition: Type.h:252
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
bool isTokenTy() const
Return true if this is 'token'.
Definition: Type.h:234
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:139
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
op_range operands()
Definition: User.h:288
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
op_iterator op_begin()
Definition: User.h:280
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
op_iterator op_end()
Definition: User.h:282
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition: VectorUtils.h:72
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3475
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3547
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3499
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:480
iterator end()
Definition: VPlan.h:3509
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3507
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition: VPlan.h:3560
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:208
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:3538
bool empty() const
Definition: VPlan.h:3518
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition: VPlan.h:2433
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:397
VPRegionBlock * getParent()
Definition: VPlan.h:489
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:178
void setName(const Twine &newName)
Definition: VPlan.h:482
size_t getNumSuccessors() const
Definition: VPlan.h:535
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition: VPlan.h:628
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:520
VPlan * getPlan()
Definition: VPlan.cpp:153
VPBlockBase * getSinglePredecessor() const
Definition: VPlan.h:531
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:158
VPBlockBase * getSingleSuccessor() const
Definition: VPlan.h:525
const VPBlocksTy & getSuccessors() const
Definition: VPlan.h:514
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlan.h:4149
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition: VPlan.h:4265
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:4203
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition: VPlan.h:4230
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Definition: VPlan.h:3172
Type * getScalarType() const
Returns the scalar type of the induction.
Definition: VPlan.h:3203
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition: VPlanValue.h:387
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition: VPlan.h:3405
VPValue * getStartValue() const
Definition: VPlan.h:3404
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition: VPlan.h:2022
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition: VPlan.h:2070
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition: VPlan.h:2059
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition: VPlan.h:1771
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3614
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
Definition: VPlan.h:1376
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1191
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
Definition: VPlan.h:1209
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition: VPlan.h:2500
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlan.h:153
static VPLane getLastLaneForVF(const ElementCount &VF)
Definition: VPlan.h:194
static VPLane getFirstLane()
Definition: VPlan.h:178
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:714
VPBasicBlock * getParent()
Definition: VPlan.h:739
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition: VPlan.h:808
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * createEdgeMask(BasicBlock *Src, BasicBlock *Dst)
A helper function that computes the predicate of the edge between SRC and DST.
VPReplicateRecipe * handleReplication(Instruction *I, VFRange &Range)
Build a VPReplicationRecipe for I.
void createSwitchEdgeMasks(SwitchInst *SI)
Create an edge mask for every destination of cases and/or default.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPValue * getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const
A helper that returns the previously computed predicate of the edge between SRC and DST.
iterator_range< mapped_iterator< Use *, std::function< VPValue *(Value *)> > > mapToVPValues(User::op_range Operands)
Returns a range mapping the values of the range Operands to their corresponding VPValues.
void fixHeaderPhis()
Add the incoming values from the backedge to reduction & first-order recurrence cross-iteration phis.
VPRecipeBase * tryToCreateWidenRecipe(Instruction *Instr, ArrayRef< VPValue * > Operands, VFRange &Range, VPBasicBlock *VPBB)
Create and return a widened recipe for I if one can be created within the given VF Range.
VPValue * getVPValueOrAddLiveIn(Value *V)
void createHeaderMask()
Create the mask for the vector loop header block.
void createBlockInMask(BasicBlock *BB)
A helper function that computes the predicate of the block BB, assuming that the header block of the ...
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
void setFlags(Instruction *I) const
Set the IR flags for I.
Definition: VPlan.h:1105
A recipe for handling reduction phis.
Definition: VPlan.h:2374
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
Definition: VPlan.h:2428
const RecurrenceDescriptor & getRecurrenceDescriptor() const
Definition: VPlan.h:2420
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
Definition: VPlan.h:2595
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3646
const VPBlockBase * getEntry() const
Definition: VPlan.h:3679
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:3711
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition: VPlan.h:2716
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isUniform() const
Definition: VPlan.h:2760
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
A recipe to compute the pointers for widened memory accesses of IndexTy in reverse order.
Definition: VPlan.h:1899
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition: VPlan.h:841
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition: VPlan.h:910
An analysis for type-inference for VPValues.
Definition: VPlanAnalysis.h:40
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:200
operand_range operands()
Definition: VPlanValue.h:257
void setOperand(unsigned I, VPValue *New)
Definition: VPlanValue.h:242
unsigned getNumOperands() const
Definition: VPlanValue.h:236
VPValue * getOperand(unsigned N) const
Definition: VPlanValue.h:237
void addOperand(VPValue *Operand)
Definition: VPlanValue.h:231
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:123
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1420
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition: VPlanValue.h:172
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition: VPlanValue.h:167
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1424
user_range users()
Definition: VPlanValue.h:132
A recipe to compute the pointers for widened memory accesses of IndexTy.
Definition: VPlan.h:1952
A recipe for widening Call instructions using library calls.
Definition: VPlan.h:1715
A Recipe for widening the canonical induction variable of the vector loop.
Definition: VPlan.h:3313
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition: VPlan.h:1523
A recipe for handling GEP instructions.
Definition: VPlan.h:1850
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition: VPlan.h:2084
VPValue * getStepValue()
Returns the step value of the induction.
Definition: VPlan.h:2112
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition: VPlan.h:2118
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2137
A recipe for widening vector intrinsics.
Definition: VPlan.h:1623
A common base class for widening memory operations.
Definition: VPlan.h:2889
A recipe for handling phis that are widened in the vector loop.
Definition: VPlan.h:2297
VPValue * getIncomingValue(unsigned I)
Returns the I th incoming VPValue.
Definition: VPlan.h:2336
VPBasicBlock * getIncomingBlock(unsigned I)
Returns the I th incoming VPBasicBlock.
Definition: VPlan.h:2333
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition: VPlan.h:1425
Main class to build the VPlan H-CFG for an incoming IR.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3742
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
Definition: VPlan.cpp:924
VPBasicBlock * getEntry()
Definition: VPlan.h:3855
VPValue & getVectorTripCount()
The vector trip count.
Definition: VPlan.h:3917
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition: VPlan.h:3923
VPValue & getVF()
Returns the VF of the vector loop region.
Definition: VPlan.h:3920
VPValue * getTripCount() const
The trip count of the original loop.
Definition: VPlan.h:3896
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
Definition: VPlan.h:3910
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition: VPlan.h:3940
unsigned getUF() const
Definition: VPlan.h:3948
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
Definition: VPlan.cpp:845
bool hasVF(ElementCount VF)
Definition: VPlan.h:3933
bool hasUF(unsigned UF) const
Definition: VPlan.h:3946
auto getExitBlocks()
Return an iterator range over the VPIRBasicBlock wrapping the exit blocks of the VPlan,...
Definition: VPlanCFG.h:309
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1052
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1046
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition: VPlan.h:3874
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition: VPlan.h:3903
void setEntry(VPBasicBlock *VPBB)
Definition: VPlan.h:3825
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:1252
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition: VPlan.h:3966
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition: VPlan.h:3882
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:956
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition: VPlan.h:4000
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:3887
VPValue * getSCEVExpansion(const SCEV *S) const
Definition: VPlan.h:4009
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1192
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition: Value.cpp:157
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition: Value.cpp:542
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition: DenseSet.h:193
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:202
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:232
constexpr bool isNonZero() const
Definition: TypeSize.h:158
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:218
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition: TypeSize.h:258
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition: TypeSize.h:174
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
constexpr bool isZero() const
Definition: TypeSize.h:156
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:225
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition: TypeSize.h:254
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:239
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition: ilist_node.h:32
A range adaptor for a pair of iterators.
IteratorT end() const
IteratorT begin() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ Entry
Definition: COFF.h:844
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
ID ArrayRef< Type * > Tys
Definition: Intrinsics.h:102
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition: DwarfDebug.h:190
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:982
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:826
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:885
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:226
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:235
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
Definition: VPlanUtils.h:39
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
Definition: VPlanUtils.cpp:26
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
Definition: VPlanUtils.cpp:65
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
@ Offset
Definition: DWP.cpp:480
Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
Definition: LoopUtils.cpp:1954
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
Definition: LoopUtils.cpp:850
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
Definition: LoopUtils.cpp:989
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
auto pred_end(const MachineBasicBlock *BB)
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:7297
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
std::pair< Instruction *, ElementCount > InstructionVFPair
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition: LCSSA.cpp:465
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
Definition: LoopUtils.cpp:263
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:214
bool VerifySCEV
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition: VPlanCFG.h:226
auto map_range(ContainerTy &&C, FuncTy F)
Definition: STLExtras.h:377
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
Definition: VPlan.cpp:53
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
cl::opt< bool > EnableLoopVectorization
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition: Local.cpp:425
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition: STLExtras.h:573
void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition: STLExtras.h:336
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:403
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
Definition: DebugInfo.cpp:2298
RecurKind
These are the kinds of recurrences that we support.
Definition: IVDescriptors.h:33
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
Definition: LoopUtils.cpp:1761
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
auto pred_begin(const MachineBasicBlock *BB)
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
Definition: LoopUtils.cpp:2012
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition: STLExtras.h:2087
InstructionCost Cost
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
Definition: VPlan.h:92
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition: Hashing.h:590
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition: bit.h:327
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
bool verifyVPlanIsValid(const VPlan &Plan)
Verify invariants for general VPlans.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:468
cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:28
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
Definition: CodeMetrics.cpp:71
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
TargetLibraryInfo * TLI
LoopVectorizeResult runImpl(Function &F)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LoopVectorizePass(LoopVectorizeOptions Opts={})
BlockFrequencyInfo * BFI
ScalarEvolution * SE
AssumptionCache * AC
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:69
A marker analysis to determine if extra passes should be run after loop vectorization.
A MapVector that performs no allocations if smaller than a certain size.
Definition: MapVector.h:254
Flags describing the kind of vector reduction.
Parameters that control the generic loop unrolling transformation.
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:97
ElementCount End
Definition: VPlan.h:102
Struct to hold various analysis needed for cost computations.
Definition: VPlan.h:682
LoopVectorizationCostModel & CM
Definition: VPlan.h:687
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
Definition: VPlan.h:688
A recipe for handling first-order recurrence phis.
Definition: VPlan.h:2342
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlan.h:344
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlan.h:352
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlan.h:236
DenseMap< const SCEV *, Value * > ExpandedSCEVs
Map SCEVs to their expanded values.
Definition: VPlan.h:389
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Definition: VPlan.h:392
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane)
Construct the vector value of a scalarized value V one lane at a time.
Definition: VPlan.cpp:394
Value * get(VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:249
struct llvm::VPTransformState::CFGState CFG
LoopVersioning * LVer
LoopVersioning.
Definition: VPlan.h:385
void addNewMetadata(Instruction *To, const Instruction *Orig)
Add additional metadata to To that was not present on Orig.
Definition: VPlan.cpp:353
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlan.h:250
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlan.h:369
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlan.h:375
InnerLoopVectorizer * ILV
Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
Definition: VPlan.h:372
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlan.h:245
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:372
void set(VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlan.h:279
A recipe for widening load operations, using the address to load from and an optional mask.
Definition: VPlan.h:2969
A recipe for widening select instructions.
Definition: VPlan.h:1812
A recipe for widening store operations, using the stored value, the address to store to and an option...
Definition: VPlan.h:3047
static void handleUncountableEarlyExit(VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder)
Update Plan to account for the uncountable early exit block in UncountableExitingBlock by.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void unrollByUF(VPlan &Plan, unsigned UF, LLVMContext &Ctx)
Explicitly unroll Plan by UF.
static void dropPoisonGeneratingRecipes(VPlan &Plan, function_ref< bool(BasicBlock *)> BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed)
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static bool tryAddExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void VPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, ScalarEvolution &SE, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.