161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
885 initializeVScaleForTuning();
900 bool runtimeChecksRequired();
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
938 void collectValuesToIgnore();
941 void collectElementTypesForWidening();
945 void collectInLoopReductions();
966 "Profitable to scalarize relevant only for VF > 1.");
969 "cost-model should not be used for outer loops (in VPlan-native path)");
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(
I);
981 "cost-model should not be used for outer loops (in VPlan-native path)");
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(
I);
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(
I);
1016 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1018 return VF.
isVector() && MinBWs.contains(
I) &&
1040 WideningDecisions[{
I, VF}] = {W,
Cost};
1059 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1062 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1064 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1076 "cost-model should not be used for outer loops (in VPlan-native path)");
1078 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1079 auto Itr = WideningDecisions.find(InstOnVF);
1080 if (Itr == WideningDecisions.end())
1082 return Itr->second.first;
1089 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1090 assert(WideningDecisions.contains(InstOnVF) &&
1091 "The cost is not calculated");
1092 return WideningDecisions[InstOnVF].second;
1105 std::optional<unsigned> MaskPos,
1108 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1114 auto I = CallWideningDecisions.find({CI, VF});
1115 if (
I == CallWideningDecisions.end())
1138 Value *
Op = Trunc->getOperand(0);
1139 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1143 return Legal->isInductionPhi(
Op);
1159 if (VF.
isScalar() || Uniforms.contains(VF))
1162 collectLoopUniforms(VF);
1164 collectLoopScalars(VF);
1172 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1180 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1195 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1202 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1203 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1204 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1215 return ScalarCost < SafeDivisorCost;
1254 if (!
Legal->blockNeedsPredication(BB))
1263 std::pair<InstructionCost, InstructionCost>
1291 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1298 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1299 "from latch block\n");
1304 "interleaved group requires scalar epilogue\n");
1307 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1319 if (!ChosenTailFoldingStyle)
1321 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1322 : ChosenTailFoldingStyle->second;
1330 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1331 if (!
Legal->canFoldTailByMasking()) {
1337 ChosenTailFoldingStyle = {
1338 TTI.getPreferredTailFoldingStyle(
true),
1339 TTI.getPreferredTailFoldingStyle(
false)};
1349 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1363 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1364 "not try to generate VP Intrinsics "
1366 ?
"since interleave count specified is greater than 1.\n"
1367 :
"due to non-interleaving reasons.\n"));
1401 return InLoopReductions.contains(Phi);
1412 TTI.preferPredicatedReductionSelect();
1427 WideningDecisions.clear();
1428 CallWideningDecisions.clear();
1446 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1447 const unsigned IC)
const;
1455 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1457 Type *VectorTy)
const;
1461 bool shouldConsiderInvariant(
Value *
Op);
1467 unsigned NumPredStores = 0;
1471 std::optional<unsigned> VScaleForTuning;
1476 void initializeVScaleForTuning() {
1481 auto Max = Attr.getVScaleRangeMax();
1482 if (Max && Min == Max) {
1483 VScaleForTuning = Max;
1496 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1497 ElementCount UserVF,
1498 bool FoldTailByMasking);
1502 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1503 bool FoldTailByMasking)
const;
1508 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1509 unsigned SmallestType,
1510 unsigned WidestType,
1511 ElementCount MaxSafeVF,
1512 bool FoldTailByMasking);
1516 bool isScalableVectorizationAllowed();
1520 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1526 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1547 ElementCount VF)
const;
1551 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1556 MapVector<Instruction *, uint64_t> MinBWs;
1561 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1565 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1566 PredicatedBBsAfterVectorization;
1579 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1580 ChosenTailFoldingStyle;
1583 std::optional<bool> IsScalableVectorizationAllowed;
1589 std::optional<unsigned> MaxSafeElements;
1595 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1599 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1603 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1607 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1610 SmallPtrSet<PHINode *, 4> InLoopReductions;
1615 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1623 ScalarCostsTy &ScalarCosts,
1635 void collectLoopUniforms(ElementCount VF);
1644 void collectLoopScalars(ElementCount VF);
1648 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1649 std::pair<InstWidening, InstructionCost>>;
1651 DecisionList WideningDecisions;
1653 using CallDecisionList =
1654 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1656 CallDecisionList CallWideningDecisions;
1660 bool needsExtract(
Value *V, ElementCount VF)
const {
1664 getWideningDecision(
I, VF) == CM_Scalarize ||
1675 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1680 ElementCount VF)
const {
1682 SmallPtrSet<const Value *, 4> UniqueOperands;
1686 !needsExtract(
Op, VF))
1758class GeneratedRTChecks {
1764 Value *SCEVCheckCond =
nullptr;
1771 Value *MemRuntimeCheckCond =
nullptr;
1780 bool CostTooHigh =
false;
1782 Loop *OuterLoop =
nullptr;
1793 : DT(DT), LI(LI),
TTI(
TTI),
1794 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1795 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1803 void create(Loop *L,
const LoopAccessInfo &LAI,
1804 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1824 nullptr,
"vector.scevcheck");
1831 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1832 SCEVCleaner.cleanup();
1837 if (RtPtrChecking.Need) {
1838 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1839 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1842 auto DiffChecks = RtPtrChecking.getDiffChecks();
1844 Value *RuntimeVF =
nullptr;
1847 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1849 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1855 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1858 assert(MemRuntimeCheckCond &&
1859 "no RT checks generated although RtPtrChecking "
1860 "claimed checks are required");
1865 if (!MemCheckBlock && !SCEVCheckBlock)
1875 if (SCEVCheckBlock) {
1878 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1882 if (MemCheckBlock) {
1885 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1891 if (MemCheckBlock) {
1895 if (SCEVCheckBlock) {
1901 OuterLoop =
L->getParentLoop();
1905 if (SCEVCheckBlock || MemCheckBlock)
1917 for (Instruction &
I : *SCEVCheckBlock) {
1918 if (SCEVCheckBlock->getTerminator() == &
I)
1924 if (MemCheckBlock) {
1926 for (Instruction &
I : *MemCheckBlock) {
1927 if (MemCheckBlock->getTerminator() == &
I)
1939 ScalarEvolution *SE = MemCheckExp.
getSE();
1944 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1949 unsigned BestTripCount = 2;
1953 PSE, OuterLoop,
false))
1954 if (EstimatedTC->isFixed())
1955 BestTripCount = EstimatedTC->getFixedValue();
1960 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1961 (InstructionCost::CostType)1);
1963 if (BestTripCount > 1)
1965 <<
"We expect runtime memory checks to be hoisted "
1966 <<
"out of the outer loop. Cost reduced from "
1967 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1969 MemCheckCost = NewMemCheckCost;
1973 RTCheckCost += MemCheckCost;
1976 if (SCEVCheckBlock || MemCheckBlock)
1977 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1985 ~GeneratedRTChecks() {
1986 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1987 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1988 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1989 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1991 SCEVCleaner.markResultUsed();
1993 if (MemChecksUsed) {
1994 MemCheckCleaner.markResultUsed();
1996 auto &SE = *MemCheckExp.
getSE();
2003 I.eraseFromParent();
2006 MemCheckCleaner.cleanup();
2007 SCEVCleaner.cleanup();
2009 if (!SCEVChecksUsed)
2010 SCEVCheckBlock->eraseFromParent();
2012 MemCheckBlock->eraseFromParent();
2017 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2018 using namespace llvm::PatternMatch;
2020 return {
nullptr,
nullptr};
2022 return {SCEVCheckCond, SCEVCheckBlock};
2027 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2028 using namespace llvm::PatternMatch;
2029 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2030 return {
nullptr,
nullptr};
2031 return {MemRuntimeCheckCond, MemCheckBlock};
2035 bool hasChecks()
const {
2036 return getSCEVChecks().first || getMemRuntimeChecks().first;
2079 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2085 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2115 for (
Loop *InnerL : L)
2138 ?
B.CreateSExtOrTrunc(Index, StepTy)
2139 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2140 if (CastedIndex != Index) {
2142 Index = CastedIndex;
2152 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2157 return B.CreateAdd(
X,
Y);
2163 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2164 "Types don't match!");
2171 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2172 return B.CreateMul(
X,
Y);
2175 switch (InductionKind) {
2178 "Vector indices not supported for integer inductions yet");
2180 "Index type does not match StartValue type");
2182 return B.CreateSub(StartValue, Index);
2187 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2190 "Vector indices not supported for FP inductions yet");
2193 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2194 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2195 "Original bin op should be defined for FP induction");
2197 Value *MulExp =
B.CreateFMul(Step, Index);
2198 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2209 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2212 if (
F.hasFnAttribute(Attribute::VScaleRange))
2213 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2215 return std::nullopt;
2224 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2226 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2228 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2234 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2237 std::optional<unsigned> MaxVScale =
2241 MaxVF *= *MaxVScale;
2244 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2258 return TTI.enableMaskedInterleavedAccessVectorization();
2271 PreVectorPH = CheckVPIRBB;
2281 "must have incoming values for all operands");
2282 R.addOperand(R.getOperand(NumPredecessors - 2));
2308 auto CreateStep = [&]() ->
Value * {
2315 if (!
VF.isScalable())
2317 return Builder.CreateBinaryIntrinsic(
2323 Value *Step = CreateStep();
2332 CheckMinIters =
Builder.getTrue();
2334 TripCountSCEV, SE.
getSCEV(Step))) {
2337 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2339 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2347 Value *MaxUIntTripCount =
2354 return CheckMinIters;
2363 VPlan *Plan =
nullptr) {
2367 auto IP = IRVPBB->
begin();
2369 R.moveBefore(*IRVPBB, IP);
2373 R.moveBefore(*IRVPBB, IRVPBB->
end());
2382 assert(VectorPH &&
"Invalid loop structure");
2384 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2385 "loops not exiting via the latch without required epilogue?");
2392 Twine(Prefix) +
"scalar.ph");
2398 const SCEV2ValueTy &ExpandedSCEVs) {
2399 const SCEV *Step =
ID.getStep();
2401 return C->getValue();
2403 return U->getValue();
2404 Value *V = ExpandedSCEVs.lookup(Step);
2405 assert(V &&
"SCEV must be expanded at this point");
2415 auto *Cmp = L->getLatchCmpInst();
2417 InstsToIgnore.
insert(Cmp);
2418 for (
const auto &KV : IL) {
2427 [&](
const User *U) { return U == IV || U == Cmp; }))
2428 InstsToIgnore.
insert(IVInst);
2440struct CSEDenseMapInfo {
2451 return DenseMapInfo<Instruction *>::getTombstoneKey();
2454 static unsigned getHashValue(
const Instruction *
I) {
2455 assert(canHandle(
I) &&
"Unknown instruction!");
2460 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2461 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2462 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2464 return LHS->isIdenticalTo(
RHS);
2476 if (!CSEDenseMapInfo::canHandle(&In))
2482 In.replaceAllUsesWith(V);
2483 In.eraseFromParent();
2496 std::optional<unsigned> VScale) {
2500 EstimatedVF *= *VScale;
2501 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2519 for (
auto &ArgOp : CI->
args())
2530 return ScalarCallCost;
2543 assert(
ID &&
"Expected intrinsic call!");
2547 FMF = FPMO->getFastMathFlags();
2553 std::back_inserter(ParamTys),
2554 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2559 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2573 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2588 Builder.SetInsertPoint(NewPhi);
2590 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2595void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2600 "This function should not be visited twice for the same VF");
2623 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2624 assert(WideningDecision != CM_Unknown &&
2625 "Widening decision should be ready at this moment");
2627 if (
Ptr == Store->getValueOperand())
2628 return WideningDecision == CM_Scalarize;
2630 "Ptr is neither a value or pointer operand");
2631 return WideningDecision != CM_GatherScatter;
2636 auto IsLoopVaryingGEP = [&](
Value *
V) {
2647 if (!IsLoopVaryingGEP(
Ptr))
2659 if (IsScalarUse(MemAccess,
Ptr) &&
2663 PossibleNonScalarPtrs.
insert(
I);
2679 for (
auto *BB : TheLoop->
blocks())
2680 for (
auto &
I : *BB) {
2682 EvaluatePtrUse(Load,
Load->getPointerOperand());
2684 EvaluatePtrUse(Store,
Store->getPointerOperand());
2685 EvaluatePtrUse(Store,
Store->getValueOperand());
2688 for (
auto *
I : ScalarPtrs)
2689 if (!PossibleNonScalarPtrs.
count(
I)) {
2697 auto ForcedScalar = ForcedScalars.
find(VF);
2698 if (ForcedScalar != ForcedScalars.
end())
2699 for (
auto *
I : ForcedScalar->second) {
2700 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2709 while (Idx != Worklist.
size()) {
2711 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2715 auto *J = cast<Instruction>(U);
2716 return !TheLoop->contains(J) || Worklist.count(J) ||
2717 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2718 IsScalarUse(J, Src));
2721 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2727 for (
const auto &Induction :
Legal->getInductionVars()) {
2728 auto *Ind = Induction.first;
2733 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2738 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2740 return Induction.second.getKind() ==
2748 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2749 auto *I = cast<Instruction>(U);
2750 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2751 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2760 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2765 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2766 auto *I = cast<Instruction>(U);
2767 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2768 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2770 if (!ScalarIndUpdate)
2775 Worklist.
insert(IndUpdate);
2776 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2777 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2791 switch(
I->getOpcode()) {
2794 case Instruction::Call:
2798 case Instruction::Load:
2799 case Instruction::Store: {
2808 TTI.isLegalMaskedGather(VTy, Alignment))
2810 TTI.isLegalMaskedScatter(VTy, Alignment));
2812 case Instruction::UDiv:
2813 case Instruction::SDiv:
2814 case Instruction::SRem:
2815 case Instruction::URem: {
2836 if (
Legal->blockNeedsPredication(
I->getParent()))
2848 switch(
I->getOpcode()) {
2851 "instruction should have been considered by earlier checks");
2852 case Instruction::Call:
2856 "should have returned earlier for calls not needing a mask");
2858 case Instruction::Load:
2861 case Instruction::Store: {
2869 case Instruction::UDiv:
2870 case Instruction::SDiv:
2871 case Instruction::SRem:
2872 case Instruction::URem:
2874 return !
Legal->isInvariant(
I->getOperand(1));
2878std::pair<InstructionCost, InstructionCost>
2881 assert(
I->getOpcode() == Instruction::UDiv ||
2882 I->getOpcode() == Instruction::SDiv ||
2883 I->getOpcode() == Instruction::SRem ||
2884 I->getOpcode() == Instruction::URem);
2893 ScalarizationCost = 0;
2899 ScalarizationCost +=
2903 ScalarizationCost +=
2905 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2923 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2928 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2930 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2931 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2933 return {ScalarizationCost, SafeDivisorCost};
2940 "Decision should not be set yet.");
2942 assert(Group &&
"Must have a group.");
2943 unsigned InterleaveFactor = Group->getFactor();
2947 auto &
DL =
I->getDataLayout();
2959 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2960 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2965 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2967 if (MemberNI != ScalarNI)
2970 if (MemberNI && ScalarNI &&
2971 ScalarTy->getPointerAddressSpace() !=
2972 MemberTy->getPointerAddressSpace())
2981 bool PredicatedAccessRequiresMasking =
2983 Legal->isMaskRequired(
I);
2984 bool LoadAccessWithGapsRequiresEpilogMasking =
2987 bool StoreAccessWithGapsRequiresMasking =
2989 if (!PredicatedAccessRequiresMasking &&
2990 !LoadAccessWithGapsRequiresEpilogMasking &&
2991 !StoreAccessWithGapsRequiresMasking)
2998 "Masked interleave-groups for predicated accesses are not enabled.");
3000 if (Group->isReverse())
3004 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3005 StoreAccessWithGapsRequiresMasking;
3013 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3025 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3035 auto &
DL =
I->getDataLayout();
3042void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3049 "This function should not be visited twice for the same VF");
3053 Uniforms[VF].
clear();
3061 auto IsOutOfScope = [&](
Value *V) ->
bool {
3073 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3074 if (IsOutOfScope(
I)) {
3079 if (isPredicatedInst(
I)) {
3081 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3085 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3095 for (BasicBlock *
E : Exiting) {
3099 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3100 AddToWorklistIfAllowed(Cmp);
3109 if (PrevVF.isVector()) {
3110 auto Iter = Uniforms.
find(PrevVF);
3111 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3114 if (!
Legal->isUniformMemOp(*
I, VF))
3124 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3125 InstWidening WideningDecision = getWideningDecision(
I, VF);
3126 assert(WideningDecision != CM_Unknown &&
3127 "Widening decision should be ready at this moment");
3129 if (IsUniformMemOpUse(
I))
3132 return (WideningDecision == CM_Widen ||
3133 WideningDecision == CM_Widen_Reverse ||
3134 WideningDecision == CM_Interleave);
3144 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3152 SetVector<Value *> HasUniformUse;
3156 for (
auto *BB : TheLoop->
blocks())
3157 for (
auto &
I : *BB) {
3159 switch (
II->getIntrinsicID()) {
3160 case Intrinsic::sideeffect:
3161 case Intrinsic::experimental_noalias_scope_decl:
3162 case Intrinsic::assume:
3163 case Intrinsic::lifetime_start:
3164 case Intrinsic::lifetime_end:
3166 AddToWorklistIfAllowed(&
I);
3174 if (IsOutOfScope(EVI->getAggregateOperand())) {
3175 AddToWorklistIfAllowed(EVI);
3181 "Expected aggregate value to be call return value");
3194 if (IsUniformMemOpUse(&
I))
3195 AddToWorklistIfAllowed(&
I);
3197 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3204 for (
auto *V : HasUniformUse) {
3205 if (IsOutOfScope(V))
3208 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3209 auto *UI = cast<Instruction>(U);
3210 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3212 if (UsersAreMemAccesses)
3213 AddToWorklistIfAllowed(
I);
3220 while (Idx != Worklist.
size()) {
3223 for (
auto *OV :
I->operand_values()) {
3225 if (IsOutOfScope(OV))
3230 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3236 auto *J = cast<Instruction>(U);
3237 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3239 AddToWorklistIfAllowed(OI);
3250 for (
const auto &Induction :
Legal->getInductionVars()) {
3251 auto *Ind = Induction.first;
3256 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3257 auto *I = cast<Instruction>(U);
3258 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3259 IsVectorizedMemAccessUse(I, Ind);
3266 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3267 auto *I = cast<Instruction>(U);
3268 return I == Ind || Worklist.count(I) ||
3269 IsVectorizedMemAccessUse(I, IndUpdate);
3271 if (!UniformIndUpdate)
3275 AddToWorklistIfAllowed(Ind);
3276 AddToWorklistIfAllowed(IndUpdate);
3285 if (
Legal->getRuntimePointerChecking()->Need) {
3287 "runtime pointer checks needed. Enable vectorization of this "
3288 "loop with '#pragma clang loop vectorize(enable)' when "
3289 "compiling with -Os/-Oz",
3290 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3294 if (!
PSE.getPredicate().isAlwaysTrue()) {
3296 "runtime SCEV checks needed. Enable vectorization of this "
3297 "loop with '#pragma clang loop vectorize(enable)' when "
3298 "compiling with -Os/-Oz",
3299 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3304 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3306 "runtime stride == 1 checks needed. Enable vectorization of "
3307 "this loop without such check by compiling with -Os/-Oz",
3308 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3315bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3316 if (IsScalableVectorizationAllowed)
3317 return *IsScalableVectorizationAllowed;
3319 IsScalableVectorizationAllowed =
false;
3323 if (Hints->isScalableVectorizationDisabled()) {
3325 "ScalableVectorizationDisabled", ORE, TheLoop);
3329 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3332 std::numeric_limits<ElementCount::ScalarTy>::max());
3341 if (!canVectorizeReductions(MaxScalableVF)) {
3343 "Scalable vectorization not supported for the reduction "
3344 "operations found in this loop.",
3345 "ScalableVFUnfeasible", ORE, TheLoop);
3351 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3356 "for all element types found in this loop.",
3357 "ScalableVFUnfeasible", ORE, TheLoop);
3363 "for safe distance analysis.",
3364 "ScalableVFUnfeasible", ORE, TheLoop);
3368 IsScalableVectorizationAllowed =
true;
3373LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3374 if (!isScalableVectorizationAllowed())
3378 std::numeric_limits<ElementCount::ScalarTy>::max());
3379 if (
Legal->isSafeForAnyVectorWidth())
3380 return MaxScalableVF;
3388 "Max legal vector width too small, scalable vectorization "
3390 "ScalableVFUnfeasible", ORE, TheLoop);
3392 return MaxScalableVF;
3395FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3396 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3398 unsigned SmallestType, WidestType;
3399 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3405 unsigned MaxSafeElementsPowerOf2 =
3407 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3408 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3409 MaxSafeElementsPowerOf2 =
3410 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3413 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3415 if (!
Legal->isSafeForAnyVectorWidth())
3416 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3418 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3420 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3425 auto MaxSafeUserVF =
3426 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3428 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3431 return FixedScalableVFPair(
3437 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3443 <<
" is unsafe, clamping to max safe VF="
3444 << MaxSafeFixedVF <<
".\n");
3446 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3449 <<
"User-specified vectorization factor "
3450 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3451 <<
" is unsafe, clamping to maximum safe vectorization factor "
3452 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3454 return MaxSafeFixedVF;
3459 <<
" is ignored because scalable vectors are not "
3462 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3465 <<
"User-specified vectorization factor "
3466 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3467 <<
" is ignored because the target does not support scalable "
3468 "vectors. The compiler will pick a more suitable value.";
3472 <<
" is unsafe. Ignoring scalable UserVF.\n");
3474 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3477 <<
"User-specified vectorization factor "
3478 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3479 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3480 "more suitable value.";
3485 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3486 <<
" / " << WidestType <<
" bits.\n");
3491 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3492 MaxSafeFixedVF, FoldTailByMasking))
3496 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3497 MaxSafeScalableVF, FoldTailByMasking))
3498 if (MaxVF.isScalable()) {
3499 Result.ScalableVF = MaxVF;
3500 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3509 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3513 "Not inserting runtime ptr check for divergent target",
3514 "runtime pointer checks needed. Not enabled for divergent target",
3515 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3521 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3524 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3527 "loop trip count is one, irrelevant for vectorization",
3538 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3542 "Trip count computation wrapped",
3543 "backedge-taken count is -1, loop trip count wrapped to 0",
3548 switch (ScalarEpilogueStatus) {
3550 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3555 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3556 <<
"LV: Not allowing scalar epilogue, creating predicated "
3557 <<
"vector loop.\n");
3564 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3566 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3582 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3583 "No decisions should have been taken at this point");
3593 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3597 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3598 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3599 *MaxPowerOf2RuntimeVF,
3602 MaxPowerOf2RuntimeVF = std::nullopt;
3605 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3609 !
Legal->hasUncountableEarlyExit())
3611 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3616 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3618 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3619 "Invalid loop count");
3621 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3628 if (MaxPowerOf2RuntimeVF > 0u) {
3630 "MaxFixedVF must be a power of 2");
3631 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3633 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3639 if (ExpectedTC && ExpectedTC->isFixed() &&
3640 ExpectedTC->getFixedValue() <=
3641 TTI.getMinTripCountTailFoldingThreshold()) {
3642 if (MaxPowerOf2RuntimeVF > 0u) {
3648 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3649 "remain for any chosen VF.\n");
3656 "The trip count is below the minial threshold value.",
3657 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3672 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3673 "try to generate VP Intrinsics with scalable vector "
3678 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3688 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3689 "scalar epilogue instead.\n");
3695 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3701 "unable to calculate the loop count due to complex control flow",
3707 "Cannot optimize for size and vectorize at the same time.",
3708 "cannot optimize for size and vectorize at the same time. "
3709 "Enable vectorization of this loop with '#pragma clang loop "
3710 "vectorize(enable)' when compiling with -Os/-Oz",
3722 if (
TTI.shouldConsiderVectorizationRegPressure())
3738 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3740 Legal->hasVectorCallVariants())));
3743ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3744 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3746 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3747 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3748 auto Min = Attr.getVScaleRangeMin();
3755 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3758 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3766 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3767 "exceeding the constant trip count: "
3768 << ClampedUpperTripCount <<
"\n");
3770 FoldTailByMasking ? VF.
isScalable() :
false);
3775ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3776 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3777 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3778 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3784 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3786 "Scalable flags must match");
3794 ComputeScalableMaxVF);
3795 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3797 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3799 if (!MaxVectorElementCount) {
3801 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3802 <<
" vector registers.\n");
3806 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3807 MaxTripCount, FoldTailByMasking);
3810 if (MaxVF != MaxVectorElementCount)
3818 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3820 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3822 if (useMaxBandwidth(RegKind)) {
3825 ComputeScalableMaxVF);
3826 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3828 if (ElementCount MinVF =
3830 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3832 <<
") with target's minimum: " << MinVF <<
'\n');
3837 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3839 if (MaxVectorElementCount != MaxVF) {
3843 invalidateCostModelingDecisions();
3851 const unsigned MaxTripCount,
3853 bool IsEpilogue)
const {
3859 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3860 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3861 if (
A.Width.isScalable())
3862 EstimatedWidthA *= *VScale;
3863 if (
B.Width.isScalable())
3864 EstimatedWidthB *= *VScale;
3871 return CostA < CostB ||
3872 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3878 A.Width.isScalable() && !
B.Width.isScalable();
3889 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3891 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3903 return VectorCost * (MaxTripCount / VF) +
3904 ScalarCost * (MaxTripCount % VF);
3905 return VectorCost *
divideCeil(MaxTripCount, VF);
3908 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3909 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3910 return CmpFn(RTCostA, RTCostB);
3916 bool IsEpilogue)
const {
3918 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3924 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3926 for (
const auto &Plan : VPlans) {
3935 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3936 *CM.PSE.getSE(), OrigLoop);
3937 precomputeCosts(*Plan, VF, CostCtx);
3940 for (
auto &R : *VPBB) {
3941 if (!R.cost(VF, CostCtx).isValid())
3947 if (InvalidCosts.
empty())
3955 for (
auto &Pair : InvalidCosts)
3960 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3961 unsigned NA = Numbering[
A.first];
3962 unsigned NB = Numbering[
B.first];
3977 Subset =
Tail.take_front(1);
3984 [](
const auto *R) {
return Instruction::PHI; })
3985 .Case<VPWidenSelectRecipe>(
3986 [](
const auto *R) {
return Instruction::Select; })
3987 .Case<VPWidenStoreRecipe>(
3988 [](
const auto *R) {
return Instruction::Store; })
3989 .Case<VPWidenLoadRecipe>(
3990 [](
const auto *R) {
return Instruction::Load; })
3991 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3992 [](
const auto *R) {
return Instruction::Call; })
3995 [](
const auto *R) {
return R->getOpcode(); })
3997 return R->getStoredValues().empty() ? Instruction::Load
3998 : Instruction::Store;
4006 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4007 std::string OutString;
4009 assert(!Subset.empty() &&
"Unexpected empty range");
4010 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4011 for (
const auto &Pair : Subset)
4012 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4014 if (Opcode == Instruction::Call) {
4017 Name =
Int->getIntrinsicName();
4021 WidenCall ? WidenCall->getCalledScalarFunction()
4023 ->getLiveInIRValue());
4026 OS <<
" call to " << Name;
4031 Tail =
Tail.drop_front(Subset.size());
4035 Subset =
Tail.take_front(Subset.size() + 1);
4036 }
while (!
Tail.empty());
4058 switch (R.getVPDefID()) {
4059 case VPDef::VPDerivedIVSC:
4060 case VPDef::VPScalarIVStepsSC:
4061 case VPDef::VPReplicateSC:
4062 case VPDef::VPInstructionSC:
4063 case VPDef::VPCanonicalIVPHISC:
4064 case VPDef::VPVectorPointerSC:
4065 case VPDef::VPVectorEndPointerSC:
4066 case VPDef::VPExpandSCEVSC:
4067 case VPDef::VPEVLBasedIVPHISC:
4068 case VPDef::VPPredInstPHISC:
4069 case VPDef::VPBranchOnMaskSC:
4071 case VPDef::VPReductionSC:
4072 case VPDef::VPActiveLaneMaskPHISC:
4073 case VPDef::VPWidenCallSC:
4074 case VPDef::VPWidenCanonicalIVSC:
4075 case VPDef::VPWidenCastSC:
4076 case VPDef::VPWidenGEPSC:
4077 case VPDef::VPWidenIntrinsicSC:
4078 case VPDef::VPWidenSC:
4079 case VPDef::VPWidenSelectSC:
4080 case VPDef::VPBlendSC:
4081 case VPDef::VPFirstOrderRecurrencePHISC:
4082 case VPDef::VPHistogramSC:
4083 case VPDef::VPWidenPHISC:
4084 case VPDef::VPWidenIntOrFpInductionSC:
4085 case VPDef::VPWidenPointerInductionSC:
4086 case VPDef::VPReductionPHISC:
4087 case VPDef::VPInterleaveEVLSC:
4088 case VPDef::VPInterleaveSC:
4089 case VPDef::VPWidenLoadEVLSC:
4090 case VPDef::VPWidenLoadSC:
4091 case VPDef::VPWidenStoreEVLSC:
4092 case VPDef::VPWidenStoreSC:
4098 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4099 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4115 if (R.getNumDefinedValues() == 0 &&
4124 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4126 if (!Visited.
insert({ScalarTy}).second)
4140 [](
auto *VPRB) { return VPRB->isReplicator(); });
4146 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4147 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4150 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4151 "Expected Scalar VF to be a candidate");
4158 if (ForceVectorization &&
4159 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4163 ChosenFactor.
Cost = InstructionCost::getMax();
4166 for (
auto &
P : VPlans) {
4168 P->vectorFactors().end());
4171 if (
any_of(VFs, [
this](ElementCount VF) {
4172 return CM.shouldConsiderRegPressureForVF(VF);
4176 for (
unsigned I = 0;
I < VFs.size();
I++) {
4177 ElementCount VF = VFs[
I];
4185 if (CM.shouldConsiderRegPressureForVF(VF) &&
4193 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4194 *CM.PSE.getSE(), OrigLoop);
4195 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4196 assert(VectorRegion &&
"Expected to have a vector region!");
4199 for (VPRecipeBase &R : *VPBB) {
4203 switch (VPI->getOpcode()) {
4206 case Instruction::Select: {
4207 VPValue *VPV = VPI->getVPSingleValue();
4210 switch (WR->getOpcode()) {
4211 case Instruction::UDiv:
4212 case Instruction::SDiv:
4213 case Instruction::URem:
4214 case Instruction::SRem:
4221 C += VPI->cost(VF, CostCtx);
4225 unsigned Multiplier =
4228 C += VPI->cost(VF * Multiplier, CostCtx);
4232 C += VPI->cost(VF, CostCtx);
4244 <<
" costs: " << (Candidate.Cost / Width));
4247 << CM.getVScaleForTuning().value_or(1) <<
")");
4253 <<
"LV: Not considering vector loop of width " << VF
4254 <<
" because it will not generate any vector instructions.\n");
4261 <<
"LV: Not considering vector loop of width " << VF
4262 <<
" because it would cause replicated blocks to be generated,"
4263 <<
" which isn't allowed when optimizing for size.\n");
4267 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4268 ChosenFactor = Candidate;
4274 "There are conditional stores.",
4275 "store that is conditionally executed prevents vectorization",
4276 "ConditionalStore", ORE, OrigLoop);
4277 ChosenFactor = ScalarCost;
4281 !isMoreProfitable(ChosenFactor, ScalarCost,
4282 !CM.foldTailByMasking()))
dbgs()
4283 <<
"LV: Vectorization seems to be not beneficial, "
4284 <<
"but was forced by a user.\n");
4285 return ChosenFactor;
4289bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4290 ElementCount VF)
const {
4293 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4294 if (!Legal->isReductionVariable(&Phi))
4295 return Legal->isFixedOrderRecurrence(&Phi);
4296 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4297 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4303 for (
const auto &Entry :
Legal->getInductionVars()) {
4306 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4307 for (User *U :
PostInc->users())
4311 for (User *U :
Entry.first->users())
4320 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4334 if (!
TTI.preferEpilogueVectorization())
4339 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4344 :
TTI.getEpilogueVectorizationMinVF();
4352 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4356 if (!CM.isScalarEpilogueAllowed()) {
4357 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4358 "epilogue is allowed.\n");
4364 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4365 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4366 "is not a supported candidate.\n");
4371 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4374 return {ForcedEC, 0, 0};
4376 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4381 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4383 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4387 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4388 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4400 Type *TCType = Legal->getWidestInductionType();
4401 const SCEV *RemainingIterations =
nullptr;
4402 unsigned MaxTripCount = 0;
4406 const SCEV *KnownMinTC;
4410 RemainingIterations =
4412 else if (ScalableTC) {
4415 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4419 RemainingIterations =
4423 if (RemainingIterations->
isZero())
4433 << MaxTripCount <<
"\n");
4436 for (
auto &NextVF : ProfitableVFs) {
4443 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4445 (NextVF.Width.isScalable() &&
4447 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4453 if (RemainingIterations && !NextVF.Width.isScalable()) {
4456 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4457 RemainingIterations))
4461 if (Result.Width.isScalar() ||
4462 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4469 << Result.Width <<
"\n");
4473std::pair<unsigned, unsigned>
4475 unsigned MinWidth = -1U;
4476 unsigned MaxWidth = 8;
4482 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4486 MinWidth = std::min(
4490 MaxWidth = std::max(MaxWidth,
4495 MinWidth = std::min<unsigned>(
4496 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4497 MaxWidth = std::max<unsigned>(
4498 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4501 return {MinWidth, MaxWidth};
4509 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4523 if (!
Legal->isReductionVariable(PN))
4526 Legal->getRecurrenceDescriptor(PN);
4536 T = ST->getValueOperand()->getType();
4539 "Expected the load/store/recurrence type to be sized");
4563 if (!CM.isScalarEpilogueAllowed())
4568 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4569 "Unroll factor forced to be 1.\n");
4574 if (!Legal->isSafeForAnyVectorWidth())
4583 const bool HasReductions =
4589 if (LoopCost == 0) {
4591 LoopCost = CM.expectedCost(VF);
4593 LoopCost = cost(Plan, VF);
4594 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4605 for (
auto &Pair : R.MaxLocalUsers) {
4606 Pair.second = std::max(Pair.second, 1U);
4620 unsigned IC = UINT_MAX;
4622 for (
const auto &Pair : R.MaxLocalUsers) {
4623 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4626 << TTI.getRegisterClassName(Pair.first)
4627 <<
" register class\n");
4635 unsigned MaxLocalUsers = Pair.second;
4636 unsigned LoopInvariantRegs = 0;
4637 if (R.LoopInvariantRegs.contains(Pair.first))
4638 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4640 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4644 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4645 std::max(1U, (MaxLocalUsers - 1)));
4648 IC = std::min(IC, TmpIC);
4652 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4668 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4670 unsigned AvailableTC =
4676 if (CM.requiresScalarEpilogue(VF.
isVector()))
4679 unsigned InterleaveCountLB =
bit_floor(std::max(
4680 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4694 unsigned InterleaveCountUB =
bit_floor(std::max(
4695 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4696 MaxInterleaveCount = InterleaveCountLB;
4698 if (InterleaveCountUB != InterleaveCountLB) {
4699 unsigned TailTripCountUB =
4700 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4701 unsigned TailTripCountLB =
4702 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4705 if (TailTripCountUB == TailTripCountLB)
4706 MaxInterleaveCount = InterleaveCountUB;
4714 MaxInterleaveCount = InterleaveCountLB;
4718 assert(MaxInterleaveCount > 0 &&
4719 "Maximum interleave count must be greater than 0");
4723 if (IC > MaxInterleaveCount)
4724 IC = MaxInterleaveCount;
4727 IC = std::max(1u, IC);
4729 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4733 if (VF.
isVector() && HasReductions) {
4734 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4742 bool ScalarInterleavingRequiresPredication =
4744 return Legal->blockNeedsPredication(BB);
4746 bool ScalarInterleavingRequiresRuntimePointerCheck =
4747 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4752 <<
"LV: IC is " << IC <<
'\n'
4753 <<
"LV: VF is " << VF <<
'\n');
4754 const bool AggressivelyInterleaveReductions =
4755 TTI.enableAggressiveInterleaving(HasReductions);
4756 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4757 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4766 unsigned NumStores = 0;
4767 unsigned NumLoads = 0;
4781 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4782 NumStores += StoreOps;
4784 NumLoads += InterleaveR->getNumDefinedValues();
4799 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4800 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4806 bool HasSelectCmpReductions =
4810 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4811 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4812 RedR->getRecurrenceKind()) ||
4813 RecurrenceDescriptor::isFindIVRecurrenceKind(
4814 RedR->getRecurrenceKind()));
4816 if (HasSelectCmpReductions) {
4817 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4826 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4827 bool HasOrderedReductions =
4830 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4832 return RedR && RedR->isOrdered();
4834 if (HasOrderedReductions) {
4836 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4841 SmallIC = std::min(SmallIC,
F);
4842 StoresIC = std::min(StoresIC,
F);
4843 LoadsIC = std::min(LoadsIC,
F);
4847 std::max(StoresIC, LoadsIC) > SmallIC) {
4849 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4850 return std::max(StoresIC, LoadsIC);
4855 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4859 return std::max(IC / 2, SmallIC);
4862 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4868 if (AggressivelyInterleaveReductions) {
4877bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4887 assert((isPredicatedInst(
I)) &&
4888 "Expecting a scalar emulated instruction");
4901 if (InstsToScalarize.contains(VF) ||
4902 PredicatedBBsAfterVectorization.contains(VF))
4908 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4918 ScalarCostsTy ScalarCosts;
4925 !useEmulatedMaskMemRefHack(&
I, VF) &&
4926 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4927 for (
const auto &[
I, IC] : ScalarCosts)
4928 ScalarCostsVF.
insert({
I, IC});
4931 for (
const auto &[
I,
Cost] : ScalarCosts) {
4933 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4936 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4940 PredicatedBBsAfterVectorization[VF].insert(BB);
4942 if (Pred->getSingleSuccessor() == BB)
4943 PredicatedBBsAfterVectorization[VF].insert(Pred);
4951 assert(!isUniformAfterVectorization(PredInst, VF) &&
4952 "Instruction marked uniform-after-vectorization will be predicated");
4970 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4971 isScalarAfterVectorization(
I, VF))
4976 if (isScalarWithPredication(
I, VF))
4989 for (
Use &U :
I->operands())
4991 if (isUniformAfterVectorization(J, VF))
5002 while (!Worklist.
empty()) {
5006 if (ScalarCosts.contains(
I))
5026 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5029 ScalarCost +=
TTI.getScalarizationOverhead(
5042 for (Use &U :
I->operands())
5045 "Instruction has non-scalar type");
5046 if (CanBeScalarized(J))
5048 else if (needsExtract(J, VF)) {
5060 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5064 Discount += VectorCost - ScalarCost;
5065 ScalarCosts[
I] = ScalarCost;
5081 ValuesToIgnoreForVF);
5088 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5101 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5102 << VF <<
" For instruction: " <<
I <<
'\n');
5131 const Loop *TheLoop) {
5139 auto *SE = PSE.
getSE();
5140 unsigned NumOperands = Gep->getNumOperands();
5141 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5142 Value *Opd = Gep->getOperand(Idx);
5144 !
Legal->isInductionVariable(Opd))
5153LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5156 "Scalarization cost of instruction implies vectorization.");
5158 return InstructionCost::getInvalid();
5161 auto *SE = PSE.
getSE();
5192 if (isPredicatedInst(
I)) {
5197 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5203 if (useEmulatedMaskMemRefHack(
I, VF))
5213LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5219 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5221 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5222 "Stride should be 1 or -1 for consecutive memory access");
5225 if (
Legal->isMaskRequired(
I)) {
5234 bool Reverse = ConsecutiveStride < 0;
5242LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5260 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5268 if (!IsLoopInvariantStoreValue)
5275LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5288 Legal->isMaskRequired(
I), Alignment,
5293LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5295 const auto *Group = getInterleavedAccessGroup(
I);
5296 assert(Group &&
"Fail to get an interleaved access group.");
5303 unsigned InterleaveFactor = Group->getFactor();
5304 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5307 SmallVector<unsigned, 4> Indices;
5308 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5309 if (Group->getMember(IF))
5313 bool UseMaskForGaps =
5314 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5317 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5321 if (Group->isReverse()) {
5324 "Reverse masked interleaved access not supported.");
5325 Cost += Group->getNumMembers() *
5332std::optional<InstructionCost>
5339 return std::nullopt;
5357 return std::nullopt;
5368 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5370 return std::nullopt;
5376 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5385 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5388 BaseCost =
TTI.getArithmeticReductionCost(
5396 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5413 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5419 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5431 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5434 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5436 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5444 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5445 return I == RetI ? RedCost : 0;
5447 !
TheLoop->isLoopInvariant(RedOp)) {
5456 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5458 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5459 return I == RetI ? RedCost : 0;
5460 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5464 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5483 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5489 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5490 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5491 ExtraExtCost =
TTI.getCastInstrCost(
5498 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5499 return I == RetI ? RedCost : 0;
5503 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5509 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5510 return I == RetI ? RedCost : 0;
5514 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5518LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5529 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5530 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5533 return getWideningCost(
I, VF);
5537LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5538 ElementCount VF)
const {
5543 return InstructionCost::getInvalid();
5571 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5576 for (
auto *V : filterExtractingOperands(
Ops, VF))
5599 if (
Legal->isUniformMemOp(
I, VF)) {
5600 auto IsLegalToScalarize = [&]() {
5620 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5632 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5638 if (GatherScatterCost < ScalarizationCost)
5648 int ConsecutiveStride =
Legal->isConsecutivePtr(
5650 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5651 "Expected consecutive stride.");
5660 unsigned NumAccesses = 1;
5663 assert(Group &&
"Fail to get an interleaved access group.");
5669 NumAccesses = Group->getNumMembers();
5671 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5676 ? getGatherScatterCost(&
I, VF) * NumAccesses
5680 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5686 if (InterleaveCost <= GatherScatterCost &&
5687 InterleaveCost < ScalarizationCost) {
5689 Cost = InterleaveCost;
5690 }
else if (GatherScatterCost < ScalarizationCost) {
5692 Cost = GatherScatterCost;
5695 Cost = ScalarizationCost;
5702 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5703 if (
auto *
I = Group->getMember(Idx)) {
5705 getMemInstScalarizationCost(
I, VF));
5721 if (
TTI.prefersVectorizedAddressing())
5730 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5738 while (!Worklist.
empty()) {
5740 for (
auto &
Op :
I->operands())
5743 AddrDefs.
insert(InstOp).second)
5747 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5751 for (
User *U :
LI->users()) {
5761 for (
auto *
I : AddrDefs) {
5782 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5783 if (
Instruction *Member = Group->getMember(Idx)) {
5787 getMemoryInstructionCost(Member,
5789 : getMemInstScalarizationCost(Member, VF);
5802 ForcedScalars[VF].insert(
I);
5809 "Trying to set a vectorization decision for a scalar VF");
5811 auto ForcedScalar = ForcedScalars.find(VF);
5826 for (
auto &ArgOp : CI->
args())
5835 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5845 "Unexpected valid cost for scalarizing scalable vectors");
5852 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5853 ForcedScalar->second.contains(CI)) ||
5861 bool MaskRequired =
Legal->isMaskRequired(CI);
5864 for (
Type *ScalarTy : ScalarTys)
5873 std::nullopt, *RedCost);
5884 if (Info.Shape.VF != VF)
5888 if (MaskRequired && !Info.isMasked())
5892 bool ParamsOk =
true;
5894 switch (Param.ParamKind) {
5900 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5937 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5948 if (VectorCost <=
Cost) {
5970 return !OpI || !
TheLoop->contains(OpI) ||
5974 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5986 return InstsToScalarize[VF][
I];
5989 auto ForcedScalar = ForcedScalars.find(VF);
5990 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5991 auto InstSet = ForcedScalar->second;
5992 if (InstSet.count(
I))
5997 Type *RetTy =
I->getType();
6000 auto *SE =
PSE.getSE();
6004 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6009 auto Scalarized = InstsToScalarize.find(VF);
6010 assert(Scalarized != InstsToScalarize.end() &&
6011 "VF not yet analyzed for scalarization profitability");
6012 return !Scalarized->second.count(
I) &&
6014 auto *UI = cast<Instruction>(U);
6015 return !Scalarized->second.count(UI);
6024 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6025 I->getOpcode() == Instruction::PHI ||
6026 (
I->getOpcode() == Instruction::BitCast &&
6027 I->getType()->isPointerTy()) ||
6028 HasSingleCopyAfterVectorization(
I, VF));
6034 !
TTI.getNumberOfParts(VectorTy))
6038 switch (
I->getOpcode()) {
6039 case Instruction::GetElementPtr:
6045 case Instruction::Br: {
6052 bool ScalarPredicatedBB =
false;
6055 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6056 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6058 ScalarPredicatedBB =
true;
6060 if (ScalarPredicatedBB) {
6068 TTI.getScalarizationOverhead(
6076 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6084 case Instruction::Switch: {
6086 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6088 return Switch->getNumCases() *
6089 TTI.getCmpSelInstrCost(
6091 toVectorTy(Switch->getCondition()->getType(), VF),
6095 case Instruction::PHI: {
6112 Type *ResultTy = Phi->getType();
6118 auto *Phi = dyn_cast<PHINode>(U);
6119 if (Phi && Phi->getParent() == TheLoop->getHeader())
6124 auto &ReductionVars =
Legal->getReductionVars();
6125 auto Iter = ReductionVars.find(HeaderUser);
6126 if (Iter != ReductionVars.end() &&
6128 Iter->second.getRecurrenceKind()))
6131 return (Phi->getNumIncomingValues() - 1) *
6132 TTI.getCmpSelInstrCost(
6133 Instruction::Select,
toVectorTy(ResultTy, VF),
6143 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6144 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6148 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6150 case Instruction::UDiv:
6151 case Instruction::SDiv:
6152 case Instruction::URem:
6153 case Instruction::SRem:
6157 ScalarCost : SafeDivisorCost;
6161 case Instruction::Add:
6162 case Instruction::Sub: {
6163 auto Info =
Legal->getHistogramInfo(
I);
6170 if (!RHS || RHS->getZExtValue() != 1)
6172 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6176 Type *ScalarTy =
I->getType();
6180 {PtrTy, ScalarTy, MaskTy});
6183 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6184 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6188 case Instruction::FAdd:
6189 case Instruction::FSub:
6190 case Instruction::Mul:
6191 case Instruction::FMul:
6192 case Instruction::FDiv:
6193 case Instruction::FRem:
6194 case Instruction::Shl:
6195 case Instruction::LShr:
6196 case Instruction::AShr:
6197 case Instruction::And:
6198 case Instruction::Or:
6199 case Instruction::Xor: {
6203 if (
I->getOpcode() == Instruction::Mul &&
6204 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6205 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6206 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6207 PSE.getSCEV(
I->getOperand(1))->isOne())))
6216 Value *Op2 =
I->getOperand(1);
6222 auto Op2Info =
TTI.getOperandInfo(Op2);
6228 return TTI.getArithmeticInstrCost(
6230 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6231 Op2Info, Operands,
I,
TLI);
6233 case Instruction::FNeg: {
6234 return TTI.getArithmeticInstrCost(
6236 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6237 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6238 I->getOperand(0),
I);
6240 case Instruction::Select: {
6245 const Value *Op0, *Op1;
6256 return TTI.getArithmeticInstrCost(
6258 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6261 Type *CondTy =
SI->getCondition()->getType();
6267 Pred = Cmp->getPredicate();
6268 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6269 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6270 {TTI::OK_AnyValue, TTI::OP_None},
I);
6272 case Instruction::ICmp:
6273 case Instruction::FCmp: {
6274 Type *ValTy =
I->getOperand(0)->getType();
6280 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6281 "if both the operand and the compare are marked for "
6282 "truncation, they must have the same bitwidth");
6287 return TTI.getCmpSelInstrCost(
6290 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6292 case Instruction::Store:
6293 case Instruction::Load: {
6298 "CM decision should be taken at this point");
6305 return getMemoryInstructionCost(
I, VF);
6307 case Instruction::BitCast:
6308 if (
I->getType()->isPointerTy())
6311 case Instruction::ZExt:
6312 case Instruction::SExt:
6313 case Instruction::FPToUI:
6314 case Instruction::FPToSI:
6315 case Instruction::FPExt:
6316 case Instruction::PtrToInt:
6317 case Instruction::IntToPtr:
6318 case Instruction::SIToFP:
6319 case Instruction::UIToFP:
6320 case Instruction::Trunc:
6321 case Instruction::FPTrunc: {
6325 "Expected a load or a store!");
6351 unsigned Opcode =
I->getOpcode();
6354 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6357 CCH = ComputeCCH(Store);
6360 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6361 Opcode == Instruction::FPExt) {
6363 CCH = ComputeCCH(Load);
6371 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6372 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6379 Type *SrcScalarTy =
I->getOperand(0)->getType();
6391 (
I->getOpcode() == Instruction::ZExt ||
6392 I->getOpcode() == Instruction::SExt))
6396 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6398 case Instruction::Call:
6400 case Instruction::ExtractValue:
6402 case Instruction::Alloca:
6410 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6425 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6426 return RequiresScalarEpilogue &&
6440 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6441 return VecValuesToIgnore.contains(U) ||
6442 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6451 if (Group->getInsertPos() == &
I)
6454 DeadInterleavePointerOps.
push_back(PointerOp);
6460 if (Br->isConditional())
6467 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6470 Instruction *UI = cast<Instruction>(U);
6471 return !VecValuesToIgnore.contains(U) &&
6472 (!isAccessInterleaved(UI) ||
6473 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6493 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6505 if ((ThenEmpty && ElseEmpty) ||
6507 ElseBB->
phis().empty()) ||
6509 ThenBB->
phis().empty())) {
6521 return !VecValuesToIgnore.contains(U) &&
6522 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6530 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6539 for (
const auto &Reduction :
Legal->getReductionVars()) {
6546 for (
const auto &Induction :
Legal->getInductionVars()) {
6555 if (!InLoopReductions.empty())
6558 for (
const auto &Reduction :
Legal->getReductionVars()) {
6559 PHINode *Phi = Reduction.first;
6570 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6578 bool InLoop = !ReductionOperations.
empty();
6581 InLoopReductions.insert(Phi);
6584 for (
auto *
I : ReductionOperations) {
6585 InLoopReductionImmediateChains[
I] = LastChain;
6589 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6590 <<
" reduction for phi: " << *Phi <<
"\n");
6603 unsigned WidestType;
6607 TTI.enableScalableVectorization()
6612 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6623 if (!OrigLoop->isInnermost()) {
6633 <<
"overriding computed VF.\n");
6636 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6638 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6639 <<
"not supported by the target.\n");
6641 "Scalable vectorization requested but not supported by the target",
6642 "the scalable user-specified vectorization width for outer-loop "
6643 "vectorization cannot be used because the target does not support "
6644 "scalable vectors.",
6645 "ScalableVFUnfeasible", ORE, OrigLoop);
6650 "VF needs to be a power of two");
6652 <<
"VF " << VF <<
" to build VPlans.\n");
6662 return {VF, 0 , 0 };
6666 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6667 "VPlan-native path.\n");
6672 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6673 CM.collectValuesToIgnore();
6674 CM.collectElementTypesForWidening();
6681 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6685 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6686 "which requires masked-interleaved support.\n");
6687 if (CM.InterleaveInfo.invalidateGroups())
6691 CM.invalidateCostModelingDecisions();
6694 if (CM.foldTailByMasking())
6695 Legal->prepareToFoldTailByMasking();
6702 "UserVF ignored because it may be larger than the maximal safe VF",
6703 "InvalidUserVF", ORE, OrigLoop);
6706 "VF needs to be a power of two");
6709 CM.collectInLoopReductions();
6710 if (CM.selectUserVectorizationFactor(UserVF)) {
6712 buildVPlansWithVPRecipes(UserVF, UserVF);
6717 "InvalidCost", ORE, OrigLoop);
6730 CM.collectInLoopReductions();
6731 for (
const auto &VF : VFCandidates) {
6733 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6752 return CM.isUniformAfterVectorization(
I, VF);
6756 return CM.ValuesToIgnore.contains(UI) ||
6757 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6762 return CM.getPredBlockCostDivisor(
CostKind, BB);
6781 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6783 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6785 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6786 for (
Value *
Op : IVInsts[
I]->operands()) {
6788 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6794 for (User *U :
IV->users()) {
6807 if (TC == VF && !CM.foldTailByMasking())
6811 for (Instruction *IVInst : IVInsts) {
6816 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6817 <<
": induction instruction " << *IVInst <<
"\n";
6819 Cost += InductionCost;
6829 CM.TheLoop->getExitingBlocks(Exiting);
6830 SetVector<Instruction *> ExitInstrs;
6832 for (BasicBlock *EB : Exiting) {
6837 ExitInstrs.
insert(CondI);
6841 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6843 if (!OrigLoop->contains(CondI) ||
6848 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6849 <<
": exit condition instruction " << *CondI <<
"\n";
6855 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6856 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6857 !ExitInstrs.contains(cast<Instruction>(U));
6869 for (BasicBlock *BB : OrigLoop->blocks()) {
6873 if (BB == OrigLoop->getLoopLatch())
6875 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6882 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6888 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6889 <<
": forced scalar " << *ForcedScalar <<
"\n";
6893 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6898 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6899 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6908 ElementCount VF)
const {
6909 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE(),
6918 <<
" (Estimated cost per lane: ");
6920 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6943 return &WidenMem->getIngredient();
6952 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6953 VPI->getNumUsers() != 1)
6957 switch (WR->getOpcode()) {
6958 case Instruction::UDiv:
6959 case Instruction::SDiv:
6960 case Instruction::URem:
6961 case Instruction::SRem:
6974 auto *IG =
IR->getInterleaveGroup();
6975 unsigned NumMembers = IG->getNumMembers();
6976 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7010 if (RepR->isSingleScalar() &&
7012 RepR->getUnderlyingInstr(), VF))
7015 if (
Instruction *UI = GetInstructionForCost(&R)) {
7020 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7032 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7034 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7037 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7038 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7040 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7050 VPlan &FirstPlan = *VPlans[0];
7056 ?
"Reciprocal Throughput\n"
7058 ?
"Instruction Latency\n"
7061 ?
"Code Size and Latency\n"
7066 "More than a single plan/VF w/o any plan having scalar VF");
7070 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7075 if (ForceVectorization) {
7082 for (
auto &
P : VPlans) {
7084 P->vectorFactors().end());
7088 return CM.shouldConsiderRegPressureForVF(VF);
7092 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7099 <<
"LV: Not considering vector loop of width " << VF
7100 <<
" because it will not generate any vector instructions.\n");
7106 <<
"LV: Not considering vector loop of width " << VF
7107 <<
" because it would cause replicated blocks to be generated,"
7108 <<
" which isn't allowed when optimizing for size.\n");
7115 if (CM.shouldConsiderRegPressureForVF(VF) &&
7117 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7118 << VF <<
" because it uses too many registers\n");
7122 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7123 BestFactor = CurrentFactor;
7126 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7127 ProfitableVFs.push_back(CurrentFactor);
7143 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7144 *CM.PSE.getSE(), OrigLoop);
7145 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7150 !Legal->getLAI()->getSymbolicStrides().empty() ||
7153 BestFactor.
Width) ||
7156 " VPlan cost model and legacy cost model disagreed");
7158 "when vectorizing, the scalar cost must be computed.");
7168 "RdxResult must be ComputeFindIVResult");
7186 if (!EpiRedResult ||
7192 auto *EpiRedHeaderPhi =
7194 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7195 Value *MainResumeValue;
7199 "unexpected start recipe");
7200 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7202 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7204 [[maybe_unused]]
Value *StartV =
7205 EpiRedResult->getOperand(1)->getLiveInIRValue();
7208 "AnyOf expected to start with ICMP_NE");
7209 assert(Cmp->getOperand(1) == StartV &&
7210 "AnyOf expected to start by comparing main resume value to original "
7212 MainResumeValue = Cmp->getOperand(0);
7215 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7217 Value *Cmp, *OrigResumeV, *CmpOp;
7218 [[maybe_unused]]
bool IsExpectedPattern =
7219 match(MainResumeValue,
7225 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7226 MainResumeValue = OrigResumeV;
7241 "Trying to execute plan with unsupported VF");
7243 "Trying to execute plan with unsupported UF");
7245 ++LoopsEarlyExitVectorized;
7253 bool HasBranchWeights =
7255 if (HasBranchWeights) {
7256 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7258 BestVPlan, BestVF, VScale);
7263 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7276 OrigLoop->getStartLoc(),
7277 OrigLoop->getHeader())
7278 <<
"Created vector loop never executes due to insufficient trip "
7297 BestVPlan, VectorPH, CM.foldTailByMasking(),
7298 CM.requiresScalarEpilogue(BestVF.
isVector()));
7310 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7311 "count during epilogue vectorization");
7315 OrigLoop->getParentLoop(),
7316 Legal->getWidestInductionType());
7318#ifdef EXPENSIVE_CHECKS
7319 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7330 "final VPlan is invalid");
7337 if (!Exit->hasPredecessors())
7359 MDNode *LID = OrigLoop->getLoopID();
7360 unsigned OrigLoopInvocationWeight = 0;
7361 std::optional<unsigned> OrigAverageTripCount =
7373 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7375 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7377 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7378 OrigLoopInvocationWeight,
7380 DisableRuntimeUnroll);
7388 return ExpandedSCEVs;
7403 EPI.EpilogueIterationCountCheck =
7405 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7415 EPI.MainLoopIterationCountCheck =
7424 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7425 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7426 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7427 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7428 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7434 dbgs() <<
"intermediate fn:\n"
7435 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7441 assert(Bypass &&
"Expected valid bypass basic block.");
7445 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7446 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7450 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7476 return TCCheckBlock;
7489 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7497 R.moveBefore(*NewEntry, NewEntry->
end());
7501 Plan.setEntry(NewEntry);
7504 return OriginalScalarPH;
7509 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7510 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7511 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7517 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7524 VPI->
getOpcode() == Instruction::Store) &&
7525 "Must be called with either a load or store");
7530 CM.getWideningDecision(
I, VF);
7532 "CM decision should be taken at this point.");
7535 if (CM.isScalarAfterVectorization(
I, VF) ||
7536 CM.isProfitableToScalarize(
I, VF))
7545 if (
Legal->isMaskRequired(
I))
7546 Mask = getBlockInMask(Builder.getInsertBlock());
7551 CM.getWideningDecision(
I,
Range.Start);
7560 Ptr->getUnderlyingValue()->stripPointerCasts());
7568 CM.foldTailByMasking() || !
GEP
7570 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7576 GEP ?
GEP->getNoWrapFlags()
7580 Builder.insert(VectorPtr);
7583 if (VPI->
getOpcode() == Instruction::Load) {
7585 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7586 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7590 return new VPWidenStoreRecipe(*Store,
Ptr, VPI->
getOperand(0), Mask,
7597static VPWidenIntOrFpInductionRecipe *
7602 "step must be loop invariant");
7606 "Start VPValue must match IndDesc's start value");
7616VPRecipeBuilder::tryToOptimizeInductionPHI(VPInstruction *VPI, VFRange &
Range) {
7621 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7625 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7627 return new VPWidenPointerInductionRecipe(
7630 [&](ElementCount VF) {
7631 return CM.isScalarAfterVectorization(Phi, VF);
7639VPWidenIntOrFpInductionRecipe *
7640VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7650 auto IsOptimizableIVTruncate =
7651 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7652 return [=](ElementCount VF) ->
bool {
7653 return CM.isOptimizableIVTruncate(K, VF);
7658 IsOptimizableIVTruncate(
I),
Range))
7665 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7668 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.
getVF(),
7672VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7676 [
this, CI](ElementCount VF) {
7677 return CM.isScalarWithPredication(CI, VF);
7685 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7686 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7687 ID == Intrinsic::pseudoprobe ||
7688 ID == Intrinsic::experimental_noalias_scope_decl))
7695 bool ShouldUseVectorIntrinsic =
7697 [&](ElementCount VF) ->
bool {
7698 return CM.getCallWideningDecision(CI, VF).Kind ==
7702 if (ShouldUseVectorIntrinsic)
7703 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7707 std::optional<unsigned> MaskPos;
7711 [&](ElementCount VF) ->
bool {
7726 LoopVectorizationCostModel::CallWideningDecision Decision =
7727 CM.getCallWideningDecision(CI, VF);
7737 if (ShouldUseVectorCall) {
7738 if (MaskPos.has_value()) {
7746 VPValue *
Mask =
nullptr;
7747 if (
Legal->isMaskRequired(CI))
7748 Mask = getBlockInMask(Builder.getInsertBlock());
7753 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7757 return new VPWidenCallRecipe(CI, Variant,
Ops, VPI->
getDebugLoc());
7763bool VPRecipeBuilder::shouldWiden(Instruction *
I, VFRange &
Range)
const {
7765 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7768 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7769 return CM.isScalarAfterVectorization(
I, VF) ||
7770 CM.isProfitableToScalarize(
I, VF) ||
7771 CM.isScalarWithPredication(
I, VF);
7777VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7782 case Instruction::SDiv:
7783 case Instruction::UDiv:
7784 case Instruction::SRem:
7785 case Instruction::URem: {
7788 if (CM.isPredicatedInst(
I)) {
7790 VPValue *
Mask = getBlockInMask(Builder.getInsertBlock());
7795 return new VPWidenRecipe(*
I,
Ops);
7799 case Instruction::Add:
7800 case Instruction::And:
7801 case Instruction::AShr:
7802 case Instruction::FAdd:
7803 case Instruction::FCmp:
7804 case Instruction::FDiv:
7805 case Instruction::FMul:
7806 case Instruction::FNeg:
7807 case Instruction::FRem:
7808 case Instruction::FSub:
7809 case Instruction::ICmp:
7810 case Instruction::LShr:
7811 case Instruction::Mul:
7812 case Instruction::Or:
7813 case Instruction::Select:
7814 case Instruction::Shl:
7815 case Instruction::Sub:
7816 case Instruction::Xor:
7817 case Instruction::Freeze: {
7823 ScalarEvolution &SE = *PSE.
getSE();
7824 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7825 if (!
Op->isLiveIn())
7827 Value *
V =
Op->getUnderlyingValue();
7836 if (VPI->
getOpcode() == Instruction::Mul)
7837 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7839 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7841 return new VPWidenRecipe(*
I, NewOps);
7843 case Instruction::ExtractValue: {
7846 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7847 unsigned Idx = EVI->getIndices()[0];
7849 return new VPWidenRecipe(*
I, NewOps);
7854VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7855 VPInstruction *VPI) {
7857 unsigned Opcode =
HI->Update->getOpcode();
7858 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7859 "Histogram update operation must be an Add or Sub");
7865 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7869 if (
Legal->isMaskRequired(
HI->Store))
7870 HGramOps.
push_back(getBlockInMask(Builder.getInsertBlock()));
7872 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7879 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7882 bool IsPredicated = CM.isPredicatedInst(
I);
7890 case Intrinsic::assume:
7891 case Intrinsic::lifetime_start:
7892 case Intrinsic::lifetime_end:
7914 VPValue *BlockInMask =
nullptr;
7915 if (!IsPredicated) {
7919 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7930 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7932 "Should not predicate a uniform recipe");
7943 PartialReductionChains;
7944 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7945 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7946 PartialReductionChains);
7955 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7956 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7958 auto ExtendIsOnlyUsedByPartialReductions =
7960 return all_of(Extend->users(), [&](
const User *U) {
7961 return PartialReductionOps.contains(U);
7967 for (
auto Pair : PartialReductionChains) {
7969 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7970 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7971 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7978 for (
const auto &[Chain, Scale] : PartialReductionChains) {
7979 auto AllUsersPartialRdx = [ScaleVal = Scale,
this](
const User *U) {
7981 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader()) {
7982 return all_of(UI->users(), [ScaleVal,
this](
const User *U) {
7983 auto *UI = cast<Instruction>(U);
7984 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal;
7987 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
7988 !OrigLoop->contains(UI->getParent());
7990 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx))
7991 ScaledReductionMap.erase(Chain.Reduction);
7995bool VPRecipeBuilder::getScaledReductions(
7997 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7998 if (!CM.TheLoop->contains(RdxExitInstr))
8005 Value *
Op = Update->getOperand(0);
8006 Value *PhiOp = Update->getOperand(1);
8014 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8015 PHI = Chains.rbegin()->first.Reduction;
8017 Op = Update->getOperand(0);
8018 PhiOp = Update->getOperand(1);
8026 using namespace llvm::PatternMatch;
8033 std::optional<unsigned> BinOpc;
8034 Type *ExtOpTypes[2] = {
nullptr};
8037 auto CollectExtInfo = [
this, &Exts, &ExtOpTypes,
8038 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8043 ExtOpTypes[
I] = ExtOpTypes[0];
8044 ExtKinds[
I] = ExtKinds[0];
8053 if (!CM.TheLoop->contains(Exts[
I]))
8071 if (!CollectExtInfo(
Ops))
8074 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8078 if (!CollectExtInfo(
Ops))
8081 ExtendUser = Update;
8082 BinOpc = std::nullopt;
8086 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8088 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8095 [&](ElementCount VF) {
8097 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8098 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8103 Chains.emplace_back(Chain, TargetScaleFactor);
8120 "Non-header phis should have been handled during predication");
8122 assert(R->getNumOperands() == 2 &&
"Must have 2 operands for header phis");
8123 if ((Recipe = tryToOptimizeInductionPHI(PhiR,
Range)))
8127 assert((Legal->isReductionVariable(Phi) ||
8128 Legal->isFixedOrderRecurrence(Phi)) &&
8129 "can only widen reductions and fixed-order recurrences here");
8130 VPValue *StartV = R->getOperand(0);
8131 if (Legal->isReductionVariable(Phi)) {
8134 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8137 unsigned ScaleFactor =
8141 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8153 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8157 if (VPI->
getOpcode() == Instruction::Trunc &&
8158 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8166 if (VPI->
getOpcode() == Instruction::Call)
8167 return tryToWidenCall(VPI,
Range);
8169 if (VPI->
getOpcode() == Instruction::Store)
8171 return tryToWidenHistogram(*HistInfo, VPI);
8173 if (VPI->
getOpcode() == Instruction::Load ||
8175 return tryToWidenMemory(VPI,
Range);
8180 if (!shouldWiden(Instr,
Range))
8183 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8186 if (VPI->
getOpcode() == Instruction::Select)
8193 CastR->getResultType(), *CI);
8196 return tryToWiden(VPI);
8201 unsigned ScaleFactor) {
8202 assert(Reduction->getNumOperands() == 2 &&
8203 "Unexpected number of operands for partial reduction");
8205 VPValue *BinOp = Reduction->getOperand(0);
8214 "all accumulators in chain must have same scale factor");
8216 unsigned ReductionOpcode = Reduction->getOpcode();
8217 auto *ReductionI = Reduction->getUnderlyingInstr();
8218 if (ReductionOpcode == Instruction::Sub) {
8219 auto *
const Zero = ConstantInt::get(ReductionI->getType(), 0);
8221 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8222 Ops.push_back(BinOp);
8225 ReductionOpcode = Instruction::Add;
8229 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent())) {
8230 assert((ReductionOpcode == Instruction::Add ||
8231 ReductionOpcode == Instruction::Sub) &&
8232 "Expected an ADD or SUB operation for predicated partial "
8233 "reductions (because the neutral element in the mask is zero)!");
8235 VPValue *Zero = Plan.getConstantInt(ReductionI->getType(), 0);
8236 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8239 ScaleFactor, ReductionI);
8242void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8247 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
8251 OrigLoop, LI, DT, PSE.
getSE());
8256 LVer.prepareNoAliasMetadata();
8262 OrigLoop, *LI,
Legal->getWidestInductionType(),
8265 auto MaxVFTimes2 = MaxVF * 2;
8267 VFRange SubRange = {VF, MaxVFTimes2};
8268 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8269 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8272 *Plan, CM.getMinimalBitwidths());
8275 if (CM.foldTailWithEVL())
8277 *Plan, CM.getMaxSafeElements());
8279 VPlans.push_back(std::move(Plan));
8285VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8288 using namespace llvm::VPlanPatternMatch;
8289 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8296 bool RequiresScalarEpilogueCheck =
8298 [
this](ElementCount VF) {
8299 return !CM.requiresScalarEpilogue(VF.
isVector());
8304 CM.foldTailByMasking());
8312 bool IVUpdateMayOverflow =
false;
8313 for (ElementCount VF :
Range)
8321 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8322 bool HasNUW = !IVUpdateMayOverflow ||
Style == TailFoldingStyle::None;
8327 m_VPInstruction<Instruction::Add>(
8329 "Did not find the canonical IV increment");
8342 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8343 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8345 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8350 "Unsupported interleave factor for scalable vectors");
8353 if (!getDecisionAndClampRange(ApplyIG,
Range))
8355 InterleaveGroups.
insert(IG);
8362 *Plan, CM.foldTailByMasking());
8368 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8369 Builder, BlockMaskCache, LVer);
8370 RecipeBuilder.collectScaledReductions(
Range);
8375 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8378 auto *MiddleVPBB = Plan->getMiddleBlock();
8382 DenseMap<VPValue *, VPValue *> Old2New;
8387 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8402 Builder.setInsertPoint(SingleDef);
8409 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8411 if (
Legal->isInvariantStoreOfReduction(SI)) {
8413 new VPReplicateRecipe(SI,
R.operands(),
true ,
8414 nullptr , VPIRMetadata(*SI, LVer));
8415 Recipe->insertBefore(*MiddleVPBB, MBIP);
8417 R.eraseFromParent();
8421 VPRecipeBase *Recipe =
8422 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8427 RecipeBuilder.setRecipe(Instr, Recipe);
8433 Builder.insert(Recipe);
8440 "Unexpected multidef recipe");
8441 R.eraseFromParent();
8450 RecipeBuilder.updateBlockMaskCache(Old2New);
8451 for (VPValue *Old : Old2New.
keys())
8452 Old->getDefiningRecipe()->eraseFromParent();
8456 "entry block must be set to a VPRegionBlock having a non-empty entry "
8462 for (
const auto &[Phi,
ID] :
Legal->getInductionVars()) {
8464 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8467 VPWidenInductionRecipe *WideIV =
8469 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8476 DenseMap<VPValue *, VPValue *> IVEndValues;
8485 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8497 if (!CM.foldTailWithEVL()) {
8498 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8499 *CM.PSE.getSE(), OrigLoop);
8504 for (ElementCount VF :
Range)
8506 Plan->setName(
"Initial VPlan");
8512 InterleaveGroups, RecipeBuilder,
8513 CM.isScalarEpilogueAllowed());
8517 Legal->getLAI()->getSymbolicStrides());
8519 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8520 return Legal->blockNeedsPredication(BB);
8523 BlockNeedsPredication);
8535 bool WithoutRuntimeCheck =
8536 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8538 WithoutRuntimeCheck);
8546VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &
Range) {
8551 assert(!OrigLoop->isInnermost());
8555 OrigLoop, *LI,
Legal->getWidestInductionType(),
8564 for (ElementCount VF :
Range)
8569 [
this](PHINode *
P) {
8570 return Legal->getIntOrFpInductionDescriptor(
P);
8577 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8578 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8579 Builder, BlockMaskCache,
nullptr );
8580 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8584 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8586 DenseMap<VPValue *, VPValue *> IVEndValues;
8610void LoopVectorizationPlanner::adjustRecipesForReductions(
8611 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8612 using namespace VPlanPatternMatch;
8613 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8615 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8618 for (VPRecipeBase &R : Header->phis()) {
8620 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8627 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8630 SetVector<VPSingleDefRecipe *> Worklist;
8632 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8633 VPSingleDefRecipe *Cur = Worklist[
I];
8634 for (VPUser *U : Cur->
users()) {
8636 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8637 assert((UserRecipe->getParent() == MiddleVPBB ||
8638 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8639 "U must be either in the loop region, the middle block or the "
8640 "scalar preheader.");
8643 Worklist.
insert(UserRecipe);
8654 VPSingleDefRecipe *PreviousLink = PhiR;
8655 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8657 assert(Blend->getNumIncomingValues() == 2 &&
8658 "Blend must have 2 incoming values");
8659 if (Blend->getIncomingValue(0) == PhiR) {
8660 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8662 assert(Blend->getIncomingValue(1) == PhiR &&
8663 "PhiR must be an operand of the blend");
8664 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8669 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8672 unsigned IndexOfFirstOperand;
8674 bool IsFMulAdd = (
Kind == RecurKind::FMulAdd);
8676 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8680 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8683 CurrentLink->getOperand(2) == PreviousLink &&
8684 "expected a call where the previous link is the added operand");
8690 VPInstruction *FMulRecipe =
new VPInstruction(
8692 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8694 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8696 }
else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8697 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8698 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8699 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8700 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8701 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8703 Sub->setUnderlyingValue(CurrentLinkI);
8704 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8710 "need to have the compare of the select");
8714 "must be a select recipe");
8715 IndexOfFirstOperand = 1;
8718 "Expected to replace a VPWidenSC");
8719 IndexOfFirstOperand = 0;
8724 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8725 ? IndexOfFirstOperand + 1
8726 : IndexOfFirstOperand;
8727 VecOp = CurrentLink->getOperand(VecOpId);
8728 assert(VecOp != PreviousLink &&
8729 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8730 (VecOpId - IndexOfFirstOperand)) ==
8732 "PreviousLink must be the operand other than VecOp");
8735 VPValue *CondOp =
nullptr;
8736 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8740 RecurrenceDescriptor RdxDesc =
Legal->getRecurrenceDescriptor(
8746 auto *RedRecipe =
new VPReductionRecipe(
8747 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8754 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8758 CurrentLink->replaceAllUsesWith(RedRecipe);
8760 PreviousLink = RedRecipe;
8764 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8766 for (VPRecipeBase &R :
8767 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8772 const RecurrenceDescriptor &RdxDesc =
Legal->getRecurrenceDescriptor(
8783 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8786 std::optional<FastMathFlags> FMFs =
8791 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8792 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8801 if (CM.usePredicatedReductionSelect())
8812 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8818 VPInstruction *FinalReductionResult;
8819 VPBuilder::InsertPointGuard Guard(Builder);
8820 Builder.setInsertPoint(MiddleVPBB, IP);
8825 FinalReductionResult =
8830 FinalReductionResult =
8832 {PhiR,
Start, NewExitingVPV}, ExitDL);
8838 FinalReductionResult =
8840 {PhiR, NewExitingVPV},
Flags, ExitDL);
8847 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8849 "Unexpected truncated min-max recurrence!");
8851 VPWidenCastRecipe *Trunc;
8853 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8854 VPWidenCastRecipe *Extnd;
8856 VPBuilder::InsertPointGuard Guard(Builder);
8857 Builder.setInsertPoint(
8858 NewExitingVPV->getDefiningRecipe()->getParent(),
8859 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8861 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8862 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8870 FinalReductionResult =
8871 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8876 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8878 if (FinalReductionResult == U || Parent->getParent())
8880 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8891 return isa<VPWidenSelectRecipe>(U) ||
8892 (isa<VPReplicateRecipe>(U) &&
8893 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8894 Instruction::Select);
8899 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8901 Builder.setInsertPoint(
Select);
8905 if (
Select->getOperand(1) == PhiR)
8906 Cmp = Builder.createNot(Cmp);
8907 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8908 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8928 VPBuilder PHBuilder(Plan->getVectorPreheader());
8929 VPValue *Iden = Plan->getOrAddLiveIn(
8932 unsigned ScaleFactor =
8935 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8936 VPValue *StartV = PHBuilder.createNaryOp(
8944 for (VPRecipeBase *R : ToDelete)
8945 R->eraseFromParent();
8950void LoopVectorizationPlanner::attachRuntimeChecks(
8951 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8952 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8953 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8954 assert((!CM.OptForSize ||
8956 "Cannot SCEV check stride or overflow when optimizing for size");
8960 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8961 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8965 "Runtime checks are not supported for outer loops yet");
8967 if (CM.OptForSize) {
8970 "Cannot emit memory checks when optimizing for size, unless forced "
8973 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
8974 OrigLoop->getStartLoc(),
8975 OrigLoop->getHeader())
8976 <<
"Code-size may be reduced by not forcing "
8977 "vectorization, or by source-code modifications "
8978 "eliminating the need for runtime checks "
8979 "(e.g., adding 'restrict').";
8993 bool IsIndvarOverflowCheckNeededForVF =
8994 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8996 CM.getTailFoldingStyle() !=
9003 Plan, VF, UF, MinProfitableTripCount,
9004 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9005 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9006 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9011 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9016 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9024 State.set(
this, DerivedIV,
VPLane(0));
9070 if (
TTI->preferPredicateOverEpilogue(&TFI))
9089 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9093 Function *
F = L->getHeader()->getParent();
9099 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9100 &Hints, IAI, PSI, BFI);
9104 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9124 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9126 BFI, PSI, Checks, BestPlan);
9128 << L->getHeader()->getParent()->getName() <<
"\"\n");
9150 if (S->getValueOperand()->getType()->isFloatTy())
9160 while (!Worklist.
empty()) {
9162 if (!L->contains(
I))
9164 if (!Visited.
insert(
I).second)
9174 I->getDebugLoc(), L->getHeader())
9175 <<
"floating point conversion changes vector width. "
9176 <<
"Mixed floating point precision requires an up/down "
9177 <<
"cast that will negatively impact performance.";
9180 for (
Use &
Op :
I->operands())
9196 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9202 << PredVPBB->getName() <<
":\n");
9203 Cost += PredVPBB->cost(VF, CostCtx);
9222 std::optional<unsigned> VScale) {
9238 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9297 uint64_t MinTC = std::max(MinTC1, MinTC2);
9299 MinTC =
alignTo(MinTC, IntVF);
9303 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9310 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9311 "trip count < minimum profitable VF ("
9322 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9324 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9345 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9364 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9365 bool UpdateResumePhis) {
9375 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9377 if (UpdateResumePhis)
9383 AddFreezeForFindLastIVReductions(MainPlan,
true);
9384 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9391 auto ResumePhiIter =
9393 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9396 VPPhi *ResumePhi =
nullptr;
9397 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9402 {},
"vec.epilog.resume.val");
9405 if (MainScalarPH->
begin() == MainScalarPH->
end())
9407 else if (&*MainScalarPH->
begin() != ResumePhi)
9422 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9427 Header->
setName(
"vec.epilog.vector.body");
9438 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9443 "Must only have a single non-zero incoming value");
9454 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9455 "all incoming values must be 0");
9461 return isa<VPScalarIVStepsRecipe>(U) ||
9462 isa<VPDerivedIVRecipe>(U) ||
9463 cast<VPRecipeBase>(U)->isScalarCast() ||
9464 cast<VPInstruction>(U)->getOpcode() ==
9467 "the canonical IV should only be used by its increment or "
9468 "ScalarIVSteps when resetting the start value");
9469 VPBuilder Builder(Header, Header->getFirstNonPhi());
9471 IV->replaceAllUsesWith(
Add);
9472 Add->setOperand(0,
IV);
9480 Value *ResumeV =
nullptr;
9485 auto *VPI = dyn_cast<VPInstruction>(U);
9487 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9488 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9489 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9492 ->getIncomingValueForBlock(L->getLoopPreheader());
9493 RecurKind RK = ReductionPhi->getRecurrenceKind();
9501 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9506 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9517 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9520 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9521 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9529 "unexpected start value");
9542 assert(ResumeV &&
"Must have a resume value");
9556 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9573 ExpandR->eraseFromParent();
9577 unsigned MainLoopStep =
9579 unsigned EpilogueLoopStep =
9584 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9595 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9600 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9601 if (OrigPhi != OldInduction) {
9602 auto *BinOp =
II.getInductionBinOp();
9608 EndValueFromAdditionalBypass =
9610 II.getStartValue(), Step,
II.getKind(), BinOp);
9611 EndValueFromAdditionalBypass->
setName(
"ind.end");
9613 return EndValueFromAdditionalBypass;
9619 const SCEV2ValueTy &ExpandedSCEVs,
9620 Value *MainVectorTripCount) {
9625 if (Phi.getBasicBlockIndex(Pred) != -1)
9627 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9631 if (ScalarPH->hasPredecessors()) {
9634 for (
const auto &[R, IRPhi] :
9635 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9644 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9646 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9649 Inc->setIncomingValueForBlock(BypassBlock, V);
9672 "expected this to be saved from the previous pass.");
9675 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9678 VecEpilogueIterationCountCheck},
9680 VecEpiloguePreHeader}});
9685 VecEpilogueIterationCountCheck, ScalarPH);
9688 VecEpilogueIterationCountCheck},
9692 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9693 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9694 if (SCEVCheckBlock) {
9696 VecEpilogueIterationCountCheck, ScalarPH);
9698 VecEpilogueIterationCountCheck},
9701 if (MemCheckBlock) {
9703 VecEpilogueIterationCountCheck, ScalarPH);
9716 for (
PHINode *Phi : PhisInBlock) {
9718 Phi->replaceIncomingBlockWith(
9720 VecEpilogueIterationCountCheck);
9727 return EPI.EpilogueIterationCountCheck == IncB;
9732 Phi->removeIncomingValue(SCEVCheckBlock);
9734 Phi->removeIncomingValue(MemCheckBlock);
9738 for (
auto *
I : InstsToMove)
9750 "VPlan-native path is not enabled. Only process inner loops.");
9753 << L->getHeader()->getParent()->getName() <<
"' from "
9754 << L->getLocStr() <<
"\n");
9759 dbgs() <<
"LV: Loop hints:"
9770 Function *
F = L->getHeader()->getParent();
9792 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9799 "early exit is not enabled",
9800 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9806 "faulting load is not supported",
9807 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9816 if (!L->isInnermost())
9820 assert(L->isInnermost() &&
"Inner loop expected.");
9823 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9837 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9839 "requiring a scalar epilogue is unsupported",
9840 "UncountableEarlyExitUnsupported",
ORE, L);
9853 if (ExpectedTC && ExpectedTC->isFixed() &&
9855 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9856 <<
"This loop is worth vectorizing only if no scalar "
9857 <<
"iteration overheads are incurred.");
9859 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9875 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9877 "Can't vectorize when the NoImplicitFloat attribute is used",
9878 "loop not vectorized due to NoImplicitFloat attribute",
9879 "NoImplicitFloat",
ORE, L);
9889 TTI->isFPVectorizationPotentiallyUnsafe()) {
9891 "Potentially unsafe FP op prevents vectorization",
9892 "loop not vectorized due to unsafe FP support.",
9893 "UnsafeFP",
ORE, L);
9898 bool AllowOrderedReductions;
9903 AllowOrderedReductions =
TTI->enableOrderedReductions();
9908 ExactFPMathInst->getDebugLoc(),
9909 ExactFPMathInst->getParent())
9910 <<
"loop not vectorized: cannot prove it is safe to reorder "
9911 "floating-point operations";
9913 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9914 "reorder floating-point operations\n");
9920 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9923 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9933 LVP.
plan(UserVF, UserIC);
9940 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9945 unsigned SelectedIC = std::max(IC, UserIC);
9954 if (Checks.getSCEVChecks().first &&
9955 match(Checks.getSCEVChecks().first,
m_One()))
9957 if (Checks.getMemRuntimeChecks().first &&
9958 match(Checks.getMemRuntimeChecks().first,
m_One()))
9963 bool ForceVectorization =
9967 if (!ForceVectorization &&
9973 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9975 <<
"loop not vectorized: cannot prove it is safe to reorder "
9976 "memory operations";
9985 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9986 bool VectorizeLoop =
true, InterleaveLoop =
true;
9988 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9990 "VectorizationNotBeneficial",
9991 "the cost-model indicates that vectorization is not beneficial"};
9992 VectorizeLoop =
false;
9997 "UserIC should only be ignored due to unsafe dependencies");
9998 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
9999 IntDiagMsg = {
"InterleavingUnsafe",
10000 "Ignoring user-specified interleave count due to possibly "
10001 "unsafe dependencies in the loop."};
10002 InterleaveLoop =
false;
10006 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10007 "interleaving should be avoided up front\n");
10008 IntDiagMsg = {
"InterleavingAvoided",
10009 "Ignoring UserIC, because interleaving was avoided up front"};
10010 InterleaveLoop =
false;
10011 }
else if (IC == 1 && UserIC <= 1) {
10015 "InterleavingNotBeneficial",
10016 "the cost-model indicates that interleaving is not beneficial"};
10017 InterleaveLoop =
false;
10019 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10020 IntDiagMsg.second +=
10021 " and is explicitly disabled or interleave count is set to 1";
10023 }
else if (IC > 1 && UserIC == 1) {
10025 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10027 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10028 "the cost-model indicates that interleaving is beneficial "
10029 "but is explicitly disabled or interleave count is set to 1"};
10030 InterleaveLoop =
false;
10036 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10037 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10038 <<
"to histogram operations.\n");
10040 "HistogramPreventsScalarInterleaving",
10041 "Unable to interleave without vectorization due to constraints on "
10042 "the order of histogram operations"};
10043 InterleaveLoop =
false;
10047 IC = UserIC > 0 ? UserIC : IC;
10051 if (!VectorizeLoop && !InterleaveLoop) {
10055 L->getStartLoc(), L->getHeader())
10056 << VecDiagMsg.second;
10060 L->getStartLoc(), L->getHeader())
10061 << IntDiagMsg.second;
10066 if (!VectorizeLoop && InterleaveLoop) {
10070 L->getStartLoc(), L->getHeader())
10071 << VecDiagMsg.second;
10073 }
else if (VectorizeLoop && !InterleaveLoop) {
10075 <<
") in " << L->getLocStr() <<
'\n');
10078 L->getStartLoc(), L->getHeader())
10079 << IntDiagMsg.second;
10081 }
else if (VectorizeLoop && InterleaveLoop) {
10083 <<
") in " << L->getLocStr() <<
'\n');
10089 using namespace ore;
10094 <<
"interleaved loop (interleaved count: "
10095 << NV(
"InterleaveCount", IC) <<
")";
10112 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10124 PSI, Checks, *BestMainPlan);
10126 *BestMainPlan, MainILV,
DT,
false);
10132 BFI,
PSI, Checks, BestEpiPlan);
10134 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10138 Checks, InstsToMove);
10139 ++LoopsEpilogueVectorized;
10141 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10155 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10156 "DT not preserved correctly");
10171 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10175 bool Changed =
false, CFGChanged =
false;
10182 for (
const auto &L : *
LI)
10194 LoopsAnalyzed += Worklist.
size();
10197 while (!Worklist.
empty()) {
10240 if (
PSI &&
PSI->hasProfileSummary())
10243 if (!Result.MadeAnyChange)
10257 if (Result.MadeCFGChange) {
10273 OS, MapClassName2PassName);
10276 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10277 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, BasicBlock *BB) const
A helper function that returns how much we should divide the cost of a predicated block by.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
VPValue * getStepValue()
Returns the step value of the induction.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPValue * getConstantInt(Type *Ty, uint64_t Val, bool IsSigned=false)
Return a VPValue wrapping a ConstantInt with the given type and value.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks