158#define LV_NAME "loop-vectorize"
159#define DEBUG_TYPE LV_NAME
169 "llvm.loop.vectorize.followup_vectorized";
171 "llvm.loop.vectorize.followup_epilogue";
174STATISTIC(LoopsVectorized,
"Number of loops vectorized");
175STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
176STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
180 cl::desc(
"Enable vectorization of epilogue loops."));
184 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
185 "1 is specified, forces the given VF for all applicable epilogue "
189 "epilogue-vectorization-minimum-VF",
cl::Hidden,
190 cl::desc(
"Only loops with vectorization factor equal to or larger than "
191 "the specified value are considered for epilogue vectorization."));
197 cl::desc(
"Loops with a constant trip count that is smaller than this "
198 "value are vectorized only if no scalar iteration overheads "
203 cl::desc(
"The maximum allowed number of runtime memory checks"));
219 "prefer-predicate-over-epilogue",
222 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
226 "Don't tail-predicate loops, create scalar epilogue"),
228 "predicate-else-scalar-epilogue",
229 "prefer tail-folding, create scalar epilogue if tail "
232 "predicate-dont-vectorize",
233 "prefers tail-folding, don't attempt vectorization if "
234 "tail-folding fails.")));
237 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
240 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
242 TailFoldingStyle::Data,
"data",
243 "Create lane mask for data only, using active.lane.mask intrinsic"),
244 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
245 "data-without-lane-mask",
246 "Create lane mask with compare/stepvector"),
247 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
248 "Create lane mask using active.lane.mask intrinsic, and use "
249 "it for both data and control flow"),
250 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
251 "data-and-control-without-rt-check",
252 "Similar to data-and-control, but remove the runtime check"),
253 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
254 "Use predicated EVL instructions for tail folding. If EVL "
255 "is unsupported, fallback to data-without-lane-mask.")));
259 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
264 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
270 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
274 cl::desc(
"A flag that overrides the target's number of scalar registers."));
278 cl::desc(
"A flag that overrides the target's number of vector registers."));
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
287 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
292 cl::desc(
"A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
305 "The cost of a loop that is considered 'small' by the interleaver."));
309 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
317 "Enable runtime interleaving until load/store ports are saturated"));
322 cl::desc(
"Max number of stores to be predicated behind an if."));
326 cl::desc(
"Count the induction variable only once when interleaving"));
330 cl::desc(
"Enable if predication of stores during vectorization."));
334 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
340 cl::desc(
"Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
345 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
351 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
367 "Build VPlan for every supported loop nest in the function and bail "
368 "out right after the build (stress test the VPlan H-CFG construction "
369 "in the VPlan-native vectorization path)."));
373 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
376 cl::desc(
"Run the Loop vectorization passes"));
379 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
381 "Override cost based safe divisor widening for div/rem instructions"));
384 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
386 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
391 "Enable vectorization of early exit loops with uncountable exits."));
410 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
419static std::optional<unsigned>
421 bool CanUseConstantMax =
true) {
431 if (!CanUseConstantMax)
443class GeneratedRTChecks;
539 "Trying to access AdditionalBypassBlock but it has not been set");
579 Value *MainVectorTripCount);
713 "A high UF for the epilogue loop is likely not beneficial.");
735 EPI.MainLoopVF,
EPI.MainLoopVF,
EPI.MainLoopUF, LVL,
834 if (
I->getDebugLoc() != Empty)
835 return I->getDebugLoc();
837 for (
Use &
Op :
I->operands()) {
839 if (OpInst->getDebugLoc() != Empty)
840 return OpInst->getDebugLoc();
843 return I->getDebugLoc();
852 dbgs() <<
"LV: " << Prefix << DebugMsg;
874 if (
I &&
I->getDebugLoc())
875 DL =
I->getDebugLoc();
893 return B.CreateElementCount(Ty, VF);
904 <<
"loop not vectorized: " << OREMsg);
927 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
933 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
935 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
1081 "Profitable to scalarize relevant only for VF > 1.");
1084 "cost-model should not be used for outer loops (in VPlan-native path)");
1086 auto Scalars = InstsToScalarize.find(VF);
1087 assert(Scalars != InstsToScalarize.end() &&
1088 "VF not yet analyzed for scalarization profitability");
1089 return Scalars->second.contains(
I);
1096 "cost-model should not be used for outer loops (in VPlan-native path)");
1100 if (isa<PseudoProbeInst>(
I))
1106 auto UniformsPerVF = Uniforms.find(VF);
1107 assert(UniformsPerVF != Uniforms.end() &&
1108 "VF not yet analyzed for uniformity");
1109 return UniformsPerVF->second.count(
I);
1116 "cost-model should not be used for outer loops (in VPlan-native path)");
1120 auto ScalarsPerVF = Scalars.find(VF);
1121 assert(ScalarsPerVF != Scalars.end() &&
1122 "Scalar values are not calculated for VF");
1123 return ScalarsPerVF->second.count(
I);
1129 return VF.
isVector() && MinBWs.contains(
I) &&
1151 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W,
Cost);
1173 WideningDecisions[std::make_pair(
I, VF)] =
1174 std::make_pair(W, InsertPosCost);
1176 WideningDecisions[std::make_pair(
I, VF)] =
1177 std::make_pair(W, OtherMemberCost);
1189 "cost-model should not be used for outer loops (in VPlan-native path)");
1191 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1192 auto Itr = WideningDecisions.
find(InstOnVF);
1193 if (Itr == WideningDecisions.
end())
1195 return Itr->second.first;
1202 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1204 "The cost is not calculated");
1205 return WideningDecisions[InstOnVF].second;
1218 std::optional<unsigned> MaskPos,
1221 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
1228 return CallWideningDecisions.
at(std::make_pair(CI, VF));
1236 auto *Trunc = dyn_cast<TruncInst>(
I);
1249 Value *
Op = Trunc->getOperand(0);
1269 if (VF.
isScalar() || Uniforms.contains(VF))
1272 collectLoopUniforms(VF);
1274 collectLoopScalars(VF);
1294 bool LI = isa<LoadInst>(V);
1295 bool SI = isa<StoreInst>(V);
1310 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1311 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1322 return ScalarCost < SafeDivisorCost;
1346 std::pair<InstructionCost, InstructionCost>
1374 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1381 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1382 "from latch block\n");
1387 "interleaved group requires scalar epilogue\n");
1390 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1399 auto RequiresScalarEpilogue = [
this](
ElementCount VF) {
1402 bool IsRequired =
all_of(
Range, RequiresScalarEpilogue);
1404 (IsRequired ||
none_of(
Range, RequiresScalarEpilogue)) &&
1405 "all VFs in range must agree on whether a scalar epilogue is required");
1417 if (!ChosenTailFoldingStyle)
1419 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1420 : ChosenTailFoldingStyle->second;
1428 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1430 ChosenTailFoldingStyle =
1436 ChosenTailFoldingStyle = std::make_pair(
1450 bool EVLIsLegal = UserIC <= 1 &&
1457 ChosenTailFoldingStyle =
1462 <<
"LV: Preference for VP intrinsics indicated. Will "
1463 "not try to generate VP Intrinsics "
1465 ?
"since interleave count specified is greater than 1.\n"
1466 :
"due to non-interleaving reasons.\n"));
1501 return InLoopReductions.contains(Phi);
1528 WideningDecisions.
clear();
1529 CallWideningDecisions.
clear();
1548 const unsigned IC)
const;
1556 std::optional<InstructionCost>
1565 unsigned NumPredStores = 0;
1574 bool FoldTailByMasking);
1579 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1580 unsigned SmallestType,
1581 unsigned WidestType,
1583 bool FoldTailByMasking);
1587 bool isScalableVectorizationAllowed();
1591 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1637 PredicatedBBsAfterVectorization;
1650 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1651 ChosenTailFoldingStyle;
1654 std::optional<bool> IsScalableVectorizationAllowed;
1660 std::optional<unsigned> MaxSafeElements;
1694 ScalarCostsTy &ScalarCosts,
1720 std::pair<InstWidening, InstructionCost>>;
1722 DecisionList WideningDecisions;
1724 using CallDecisionList =
1727 CallDecisionList CallWideningDecisions;
1751 Ops, [
this, VF](
Value *V) {
return this->needsExtract(V, VF); }));
1809class GeneratedRTChecks {
1815 Value *SCEVCheckCond =
nullptr;
1823 Value *MemRuntimeCheckCond =
nullptr;
1832 bool CostTooHigh =
false;
1833 const bool AddBranchWeights;
1835 Loop *OuterLoop =
nullptr;
1843 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1844 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"),
1845 AddBranchWeights(AddBranchWeights), PSE(PSE) {}
1873 nullptr,
"vector.scevcheck");
1880 if (RtPtrChecking.Need) {
1881 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1882 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1885 auto DiffChecks = RtPtrChecking.getDiffChecks();
1887 Value *RuntimeVF =
nullptr;
1892 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1898 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1901 assert(MemRuntimeCheckCond &&
1902 "no RT checks generated although RtPtrChecking "
1903 "claimed checks are required");
1906 if (!MemCheckBlock && !SCEVCheckBlock)
1916 if (SCEVCheckBlock) {
1921 if (MemCheckBlock) {
1928 if (MemCheckBlock) {
1932 if (SCEVCheckBlock) {
1938 OuterLoop =
L->getParentLoop();
1942 if (SCEVCheckBlock || MemCheckBlock)
1955 if (SCEVCheckBlock->getTerminator() == &
I)
1962 if (MemCheckBlock) {
1965 if (MemCheckBlock->getTerminator() == &
I)
1988 unsigned BestTripCount = 2;
1992 PSE, OuterLoop,
false))
1993 BestTripCount = *EstimatedTC;
1995 BestTripCount = std::max(BestTripCount, 1U);
1999 NewMemCheckCost = std::max(*NewMemCheckCost.
getValue(),
2002 if (BestTripCount > 1)
2004 <<
"We expect runtime memory checks to be hoisted "
2005 <<
"out of the outer loop. Cost reduced from "
2006 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2008 MemCheckCost = NewMemCheckCost;
2012 RTCheckCost += MemCheckCost;
2015 if (SCEVCheckBlock || MemCheckBlock)
2016 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2024 ~GeneratedRTChecks() {
2028 SCEVCleaner.markResultUsed();
2030 if (!MemRuntimeCheckCond)
2031 MemCheckCleaner.markResultUsed();
2033 if (MemRuntimeCheckCond) {
2034 auto &SE = *MemCheckExp.
getSE();
2041 I.eraseFromParent();
2044 MemCheckCleaner.cleanup();
2045 SCEVCleaner.cleanup();
2048 SCEVCheckBlock->eraseFromParent();
2049 if (MemRuntimeCheckCond)
2050 MemCheckBlock->eraseFromParent();
2063 SCEVCheckCond =
nullptr;
2064 if (
auto *
C = dyn_cast<ConstantInt>(
Cond))
2075 SCEVCheckBlock->getTerminator()->eraseFromParent();
2076 SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2077 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2084 if (AddBranchWeights)
2087 return SCEVCheckBlock;
2096 if (!MemRuntimeCheckCond)
2105 MemCheckBlock->moveBefore(LoopVectorPreHeader);
2112 if (AddBranchWeights) {
2116 MemCheckBlock->getTerminator()->setDebugLoc(
2117 Pred->getTerminator()->getDebugLoc());
2120 MemRuntimeCheckCond =
nullptr;
2121 return MemCheckBlock;
2127 return Style == TailFoldingStyle::Data ||
2128 Style == TailFoldingStyle::DataAndControlFlow ||
2129 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2133 return Style == TailFoldingStyle::DataAndControlFlow ||
2134 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2164 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2170 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2190 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2200 for (
Loop *InnerL : L)
2222 ?
B.CreateSExtOrTrunc(Index, StepTy)
2223 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2224 if (CastedIndex != Index) {
2226 Index = CastedIndex;
2236 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2237 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2240 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2243 return B.CreateAdd(
X,
Y);
2249 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2250 "Types don't match!");
2251 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2254 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2257 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2258 if (XVTy && !isa<VectorType>(
Y->getType()))
2259 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2260 return B.CreateMul(
X,
Y);
2263 switch (InductionKind) {
2265 assert(!isa<VectorType>(Index->getType()) &&
2266 "Vector indices not supported for integer inductions yet");
2268 "Index type does not match StartValue type");
2269 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2270 return B.CreateSub(StartValue, Index);
2275 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2277 assert(!isa<VectorType>(Index->getType()) &&
2278 "Vector indices not supported for FP inductions yet");
2281 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2282 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2283 "Original bin op should be defined for FP induction");
2285 Value *MulExp =
B.CreateFMul(Step, Index);
2286 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2300 if (
F.hasFnAttribute(Attribute::VScaleRange))
2301 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2303 return std::nullopt;
2312 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2314 unsigned MaxUF = UF ? *UF :
Cost->TTI.getMaxInterleaveFactor(VF);
2316 Type *IdxTy =
Cost->Legal->getWidestInductionType();
2317 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
2322 if (
unsigned TC =
Cost->PSE.getSmallConstantMaxTripCount()) {
2325 std::optional<unsigned> MaxVScale =
2329 MaxVF *= *MaxVScale;
2332 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2353 assert(!Instr->getType()->isAggregateType() &&
"Can't handle vectors");
2356 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2360 Cloned->
setName(Instr->getName() +
".cloned");
2365 "inferred type and type from generated instructions do not match");
2371 if (
auto DL = Instr->getDebugLoc())
2377 auto InputLane = Lane;
2388 State.
set(RepRecipe, Cloned, Lane);
2391 if (
auto *
II = dyn_cast<AssumeInst>(Cloned))
2396 bool IfPredicateInstr = Parent ? Parent->
isReplicator() :
false;
2400 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
2401 "Expected a recipe is either within a region or all of its operands "
2402 "are defined outside the vectorized region.");
2403 if (IfPredicateInstr)
2427 if (
Cost->foldTailByMasking()) {
2429 "VF*UF must be a power of 2 when folding tail by masking");
2463 "Unexpected successor");
2466 PreVectorPH = CheckVPIRBB;
2490 auto CreateStep = [&]() ->
Value * {
2505 Value *Step = CreateStep();
2516 TripCountSCEV, SE.
getSCEV(Step))) {
2529 Value *MaxUIntTripCount =
2530 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2544 "TC check is expected to dominate Bypass");
2560 if (!SCEVCheckBlock)
2566 "Cannot SCEV check stride or overflow when optimizing for size");
2568 "Should already be a bypass block due to iteration count check");
2573 return SCEVCheckBlock;
2592 "Cannot emit memory checks when optimizing for size, unless forced "
2598 <<
"Code-size may be reduced by not forcing "
2599 "vectorization, or by source-code modifications "
2600 "eliminating the need for runtime checks "
2601 "(e.g., adding 'restrict').";
2610 return MemCheckBlock;
2620 assert(!R.isPhi() &&
"Tried to move phi recipe to end of block");
2621 R.moveBefore(*IRVPBB, IRVPBB->
end());
2633 "loops not exiting via the latch without required epilogue?");
2637 LI,
nullptr,
Twine(Prefix) +
"middle.block");
2641 nullptr,
Twine(Prefix) +
"scalar.ph");
2648 const SCEV2ValueTy &ExpandedSCEVs) {
2649 const SCEV *Step =
ID.getStep();
2650 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2651 return C->getValue();
2652 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2653 return U->getValue();
2654 auto I = ExpandedSCEVs.find(Step);
2655 assert(
I != ExpandedSCEVs.end() &&
"SCEV must be expanded at this point");
2665 auto *Cmp = L->getLatchCmpInst();
2667 InstsToIgnore.
insert(Cmp);
2668 for (
const auto &KV : IL) {
2675 cast<Instruction>(
IV->getIncomingValueForBlock(L->getLoopLatch()));
2677 [&](
const User *U) { return U == IV || U == Cmp; }))
2678 InstsToIgnore.
insert(IVInst);
2683 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount) {
2684 assert(MainVectorTripCount &&
"Must have bypass information");
2690 PHINode *OrigPhi = InductionEntry.first;
2695 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
2696 if (OrigPhi != OldInduction) {
2697 auto *BinOp =
II.getInductionBinOp();
2699 if (isa_and_nonnull<FPMathOperator>(BinOp))
2703 EndValueFromAdditionalBypass =
2705 II.getStartValue(), Step,
II.getKind(), BinOp);
2706 EndValueFromAdditionalBypass->
setName(
"ind.end");
2713 "entry for OrigPhi already exits");
2719 const SCEV2ValueTy &ExpandedSCEVs) {
2784 Value *VectorTripCount,
2796 ->getIncomingValueForBlock(MiddleBlock);
2804 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2805 MissingVals[UI] = EndValue;
2813 auto *UI = cast<Instruction>(U);
2815 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2819 if (isa_and_nonnull<FPMathOperator>(
II.getInductionBinOp()))
2820 B.setFastMathFlags(
II.getInductionBinOp()->getFastMathFlags());
2823 assert(StepVPV &&
"step must have been expanded during VPlan execution");
2826 Value *Escape =
nullptr;
2828 Escape =
B.CreateSub(EndValue, Step);
2830 Escape =
B.CreatePtrAdd(EndValue,
B.CreateNeg(Step));
2833 "Unexpected induction type");
2834 Escape =
B.CreateBinOp(
II.getInductionBinOp()->getOpcode() ==
2837 : Instruction::FAdd,
2840 Escape->
setName(
"ind.escape");
2841 MissingVals[UI] = Escape;
2847 [MiddleBlock,
this](
const std::pair<Value *, Value *> &
P) {
2851 return Pred == MiddleBlock ||
2852 Pred == OrigLoop->getLoopLatch();
2855 "Expected escaping values from latch/middle.block only");
2857 for (
auto &
I : MissingVals) {
2864 if (
PHI->getBasicBlockIndex(MiddleBlock) == -1)
2865 PHI->addIncoming(
I.second, MiddleBlock);
2871struct CSEDenseMapInfo {
2873 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2874 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2886 assert(canHandle(
I) &&
"Unknown instruction!");
2888 I->value_op_end()));
2892 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2893 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2895 return LHS->isIdenticalTo(
RHS);
2906 if (!CSEDenseMapInfo::canHandle(&In))
2912 In.replaceAllUsesWith(V);
2913 In.eraseFromParent();
2927 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
2936 for (
auto &ArgOp : CI->
args())
2937 Tys.push_back(ArgOp->getType());
2945 return std::min(ScalarCallCost, IntrinsicCost);
2947 return ScalarCallCost;
2960 assert(
ID &&
"Expected intrinsic call!");
2963 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
2964 FMF = FPMO->getFastMathFlags();
2970 std::back_inserter(ParamTys),
2971 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2974 dyn_cast<IntrinsicInst>(CI));
2994 for (
PHINode &PN : Exit->phis())
3062 auto IsBlockOfUsePredicated = [&](
Use &U) ->
bool {
3063 auto *
I = cast<Instruction>(U.getUser());
3065 if (
auto *Phi = dyn_cast<PHINode>(
I))
3066 BB = Phi->getIncomingBlock(
3068 return BB == PredBB;
3079 Worklist.
insert(InstsToReanalyze.
begin(), InstsToReanalyze.
end());
3080 InstsToReanalyze.
clear();
3083 while (!Worklist.
empty()) {
3090 if (!
I || isa<PHINode>(
I) || !VectorLoop->contains(
I) ||
3091 I->mayHaveSideEffects() ||
I->mayReadFromMemory())
3099 if (
I->getParent() == PredBB) {
3100 Worklist.
insert(
I->op_begin(),
I->op_end());
3114 I->moveBefore(&*PredBB->getFirstInsertionPt());
3115 Worklist.
insert(
I->op_begin(),
I->op_end());
3126 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3131 PHINode *NewPhi = cast<PHINode>(State.
get(VPPhi));
3143void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
3148 "This function should not be visited twice for the same VF");
3154 Scalars[VF].
insert(Uniforms[VF].begin(), Uniforms[VF].end());
3173 "Widening decision should be ready at this moment");
3174 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
3175 if (
Ptr == Store->getValueOperand())
3178 "Ptr is neither a value or pointer operand");
3184 auto IsLoopVaryingGEP = [&](
Value *
V) {
3195 if (!IsLoopVaryingGEP(
Ptr))
3200 auto *
I = cast<Instruction>(
Ptr);
3207 if (IsScalarUse(MemAccess,
Ptr) &&
3208 all_of(
I->users(), IsaPred<LoadInst, StoreInst>))
3211 PossibleNonScalarPtrs.
insert(
I);
3228 for (
auto &
I : *BB) {
3229 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
3230 EvaluatePtrUse(Load,
Load->getPointerOperand());
3231 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
3232 EvaluatePtrUse(Store,
Store->getPointerOperand());
3233 EvaluatePtrUse(Store,
Store->getValueOperand());
3236 for (
auto *
I : ScalarPtrs)
3237 if (!PossibleNonScalarPtrs.
count(
I)) {
3245 auto ForcedScalar = ForcedScalars.
find(VF);
3246 if (ForcedScalar != ForcedScalars.
end())
3247 for (
auto *
I : ForcedScalar->second) {
3248 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
3257 while (
Idx != Worklist.
size()) {
3259 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
3261 auto *Src = cast<Instruction>(Dst->getOperand(0));
3263 auto *J = cast<Instruction>(U);
3264 return !TheLoop->contains(J) || Worklist.count(J) ||
3265 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
3266 IsScalarUse(J, Src));
3269 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
3276 auto *Ind = Induction.first;
3277 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3286 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
3288 return Induction.second.getKind() ==
3290 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
3296 bool ScalarInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3297 auto *I = cast<Instruction>(U);
3298 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3299 IsDirectLoadStoreFromPtrIndvar(Ind, I);
3307 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
3313 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3314 auto *I = cast<Instruction>(U);
3315 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3316 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
3318 if (!ScalarIndUpdate)
3323 Worklist.
insert(IndUpdate);
3324 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
3325 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
3339 switch(
I->getOpcode()) {
3342 case Instruction::Call:
3345 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(
I), VF))
3347 case Instruction::Load:
3348 case Instruction::Store: {
3360 case Instruction::UDiv:
3361 case Instruction::SDiv:
3362 case Instruction::SRem:
3363 case Instruction::URem: {
3381 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
3394 switch(
I->getOpcode()) {
3397 "instruction should have been considered by earlier checks");
3398 case Instruction::Call:
3402 "should have returned earlier for calls not needing a mask");
3404 case Instruction::Load:
3407 case Instruction::Store: {
3415 case Instruction::UDiv:
3416 case Instruction::SDiv:
3417 case Instruction::SRem:
3418 case Instruction::URem:
3424std::pair<InstructionCost, InstructionCost>
3427 assert(
I->getOpcode() == Instruction::UDiv ||
3428 I->getOpcode() == Instruction::SDiv ||
3429 I->getOpcode() == Instruction::SRem ||
3430 I->getOpcode() == Instruction::URem);
3441 ScalarizationCost = 0;
3456 ScalarizationCost += getScalarizationOverhead(
I, VF,
CostKind);
3476 Value *Op2 =
I->getOperand(1);
3485 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
3487 return {ScalarizationCost, SafeDivisorCost};
3494 "Decision should not be set yet.");
3496 assert(Group &&
"Must have a group.");
3497 unsigned InterleaveFactor = Group->getFactor();
3501 auto &
DL =
I->getDataLayout();
3509 if (VF.
isScalable() && InterleaveFactor != 2)
3514 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3515 for (
unsigned Idx = 0;
Idx < InterleaveFactor;
Idx++) {
3520 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
3522 if (MemberNI != ScalarNI)
3525 if (MemberNI && ScalarNI &&
3526 ScalarTy->getPointerAddressSpace() !=
3527 MemberTy->getPointerAddressSpace())
3536 bool PredicatedAccessRequiresMasking =
3539 bool LoadAccessWithGapsRequiresEpilogMasking =
3540 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3542 bool StoreAccessWithGapsRequiresMasking =
3543 isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor());
3544 if (!PredicatedAccessRequiresMasking &&
3545 !LoadAccessWithGapsRequiresEpilogMasking &&
3546 !StoreAccessWithGapsRequiresMasking)
3553 "Masked interleave-groups for predicated accesses are not enabled.");
3555 if (Group->isReverse())
3567 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3583 auto &
DL =
I->getDataLayout();
3590void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3597 "This function should not be visited twice for the same VF");
3601 Uniforms[VF].
clear();
3609 auto IsOutOfScope = [&](
Value *V) ->
bool {
3621 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3622 if (IsOutOfScope(
I)) {
3629 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3633 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3646 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3648 AddToWorklistIfAllowed(Cmp);
3657 if (PrevVF.isVector()) {
3658 auto Iter = Uniforms.
find(PrevVF);
3659 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3664 if (isa<LoadInst>(
I))
3675 "Widening decision should be ready at this moment");
3677 if (IsUniformMemOpUse(
I))
3680 return (WideningDecision ==
CM_Widen ||
3689 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3705 for (
auto &
I : *BB) {
3707 switch (
II->getIntrinsicID()) {
3708 case Intrinsic::sideeffect:
3709 case Intrinsic::experimental_noalias_scope_decl:
3710 case Intrinsic::assume:
3711 case Intrinsic::lifetime_start:
3712 case Intrinsic::lifetime_end:
3714 AddToWorklistIfAllowed(&
I);
3723 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3724 assert(IsOutOfScope(EVI->getAggregateOperand()) &&
3725 "Expected aggregate value to be loop invariant");
3726 AddToWorklistIfAllowed(EVI);
3735 if (IsUniformMemOpUse(&
I))
3736 AddToWorklistIfAllowed(&
I);
3738 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3745 for (
auto *V : HasUniformUse) {
3746 if (IsOutOfScope(V))
3748 auto *
I = cast<Instruction>(V);
3749 bool UsersAreMemAccesses =
all_of(
I->users(), [&](
User *U) ->
bool {
3750 auto *UI = cast<Instruction>(U);
3751 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3753 if (UsersAreMemAccesses)
3754 AddToWorklistIfAllowed(
I);
3761 while (
Idx != Worklist.
size()) {
3764 for (
auto *OV :
I->operand_values()) {
3766 if (IsOutOfScope(OV))
3770 auto *
OP = dyn_cast<PHINode>(OV);
3775 auto *OI = cast<Instruction>(OV);
3777 auto *J = cast<Instruction>(U);
3778 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3780 AddToWorklistIfAllowed(OI);
3792 auto *Ind = Induction.first;
3793 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3797 bool UniformInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3798 auto *I = cast<Instruction>(U);
3799 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3800 IsVectorizedMemAccessUse(I, Ind);
3807 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3808 auto *I = cast<Instruction>(U);
3809 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3810 IsVectorizedMemAccessUse(I, IndUpdate);
3812 if (!UniformIndUpdate)
3816 AddToWorklistIfAllowed(Ind);
3817 AddToWorklistIfAllowed(IndUpdate);
3828 "runtime pointer checks needed. Enable vectorization of this "
3829 "loop with '#pragma clang loop vectorize(enable)' when "
3830 "compiling with -Os/-Oz",
3831 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3837 "runtime SCEV checks needed. Enable vectorization of this "
3838 "loop with '#pragma clang loop vectorize(enable)' when "
3839 "compiling with -Os/-Oz",
3840 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3847 "runtime stride == 1 checks needed. Enable vectorization of "
3848 "this loop without such check by compiling with -Os/-Oz",
3849 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3856bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3857 if (IsScalableVectorizationAllowed)
3858 return *IsScalableVectorizationAllowed;
3860 IsScalableVectorizationAllowed =
false;
3866 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3870 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3873 std::numeric_limits<ElementCount::ScalarTy>::max());
3884 "Scalable vectorization not supported for the reduction "
3885 "operations found in this loop.",
3897 "for all element types found in this loop.",
3904 "for safe distance analysis.",
3909 IsScalableVectorizationAllowed =
true;
3914LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3915 if (!isScalableVectorizationAllowed())
3919 std::numeric_limits<ElementCount::ScalarTy>::max());
3921 return MaxScalableVF;
3929 "Max legal vector width too small, scalable vectorization "
3933 return MaxScalableVF;
3937 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3939 unsigned SmallestType, WidestType;
3946 unsigned MaxSafeElements =
3950 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
3952 this->MaxSafeElements = MaxSafeElements;
3954 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3956 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3961 auto MaxSafeUserVF =
3962 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3979 <<
" is unsafe, clamping to max safe VF="
3980 << MaxSafeFixedVF <<
".\n");
3985 <<
"User-specified vectorization factor "
3986 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3987 <<
" is unsafe, clamping to maximum safe vectorization factor "
3988 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3990 return MaxSafeFixedVF;
3995 <<
" is ignored because scalable vectors are not "
4001 <<
"User-specified vectorization factor "
4002 <<
ore::NV(
"UserVectorizationFactor", UserVF)
4003 <<
" is ignored because the target does not support scalable "
4004 "vectors. The compiler will pick a more suitable value.";
4008 <<
" is unsafe. Ignoring scalable UserVF.\n");
4013 <<
"User-specified vectorization factor "
4014 <<
ore::NV(
"UserVectorizationFactor", UserVF)
4015 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
4016 "more suitable value.";
4021 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
4022 <<
" / " << WidestType <<
" bits.\n");
4027 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4028 MaxSafeFixedVF, FoldTailByMasking))
4032 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4033 MaxSafeScalableVF, FoldTailByMasking))
4034 if (MaxVF.isScalable()) {
4035 Result.ScalableVF = MaxVF;
4036 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
4049 "Not inserting runtime ptr check for divergent target",
4050 "runtime pointer checks needed. Not enabled for divergent target",
4051 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
4059 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
4062 "loop trip count is one, irrelevant for vectorization",
4067 switch (ScalarEpilogueStatus) {
4069 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4074 dbgs() <<
"LV: vector predicate hint/switch found.\n"
4075 <<
"LV: Not allowing scalar epilogue, creating predicated "
4076 <<
"vector loop.\n");
4083 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4085 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
4104 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4105 "scalar epilogue instead.\n");
4107 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4118 "No decisions should have been taken at this point");
4128 std::optional<unsigned> MaxPowerOf2RuntimeVF =
4133 MaxPowerOf2RuntimeVF = std::max<unsigned>(
4134 *MaxPowerOf2RuntimeVF,
4137 MaxPowerOf2RuntimeVF = std::nullopt;
4140 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
4142 "MaxFixedVF must be a power of 2");
4143 unsigned MaxVFtimesIC =
4144 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
4152 "Invalid loop count");
4154 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
4160 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
4174 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
4175 "try to generate VP Intrinsics with scalable vector "
4181 "Expected scalable vector factor.");
4191 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4192 "scalar epilogue instead.\n");
4198 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
4204 "unable to calculate the loop count due to complex control flow",
4210 "Cannot optimize for size and vectorize at the same time.",
4211 "cannot optimize for size and vectorize at the same time. "
4212 "Enable vectorization of this loop with '#pragma clang loop "
4213 "vectorize(enable)' when compiling with -Os/-Oz",
4218ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
4219 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
4221 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
4229 "Scalable flags must match");
4237 ComputeScalableMaxVF);
4238 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
4240 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
4242 if (!MaxVectorElementCount) {
4244 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
4245 <<
" vector registers.\n");
4249 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
4250 if (MaxVectorElementCount.isScalable() &&
4254 WidestRegisterMinEC *= Min;
4263 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC &&
4271 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
4272 "exceeding the constant trip count: "
4273 << ClampedUpperTripCount <<
"\n");
4275 ClampedUpperTripCount,
4276 FoldTailByMasking ? MaxVectorElementCount.isScalable() :
false);
4289 ComputeScalableMaxVF);
4290 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
4304 for (
int I = RUs.size() - 1;
I >= 0; --
I) {
4305 const auto &MLU = RUs[
I].MaxLocalUsers;
4306 if (
all_of(MLU, [&](
decltype(MLU.front()) &LU) {
4307 return LU.second <= TTI.getNumberOfRegisters(LU.first);
4317 <<
") with target's minimum: " << MinVF <<
'\n');
4333static std::optional<unsigned>
4335 const Function *Fn = L->getHeader()->getParent();
4339 auto Max = Attr.getVScaleRangeMax();
4340 if (Max && Min == Max)
4357 EstimatedVF *= *VScale;
4358 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
4362bool LoopVectorizationPlanner::isMoreProfitable(
4364 const unsigned MaxTripCount)
const {
4369 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
4370 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
4372 if (
A.Width.isScalable())
4373 EstimatedWidthA *= *VScale;
4374 if (
B.Width.isScalable())
4375 EstimatedWidthB *= *VScale;
4382 A.Width.isScalable() && !
B.Width.isScalable();
4393 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
4395 auto GetCostForTC = [MaxTripCount,
this](
unsigned VF,
4407 return VectorCost *
divideCeil(MaxTripCount, VF);
4408 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF);
4411 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
4412 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
4413 return CmpFn(RTCostA, RTCostB);
4416bool LoopVectorizationPlanner::isMoreProfitable(
4419 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount);
4424 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
4426 for (
const auto &Plan : VPlans) {
4430 precomputeCosts(*Plan, VF, CostCtx);
4432 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4433 for (
auto &R : *VPBB) {
4434 if (!R.cost(VF, CostCtx).isValid())
4440 if (InvalidCosts.
empty())
4448 for (
auto &Pair : InvalidCosts)
4449 if (!Numbering.
count(Pair.first))
4450 Numbering[Pair.first] =
I++;
4453 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4454 if (Numbering[
A.first] != Numbering[
B.first])
4455 return Numbering[
A.first] < Numbering[
B.first];
4456 const auto &
LHS =
A.second;
4457 const auto &
RHS =
B.second;
4458 return std::make_tuple(
LHS.isScalable(),
LHS.getKnownMinValue()) <
4459 std::make_tuple(
RHS.isScalable(),
RHS.getKnownMinValue());
4471 Subset =
Tail.take_front(1);
4478 [](
const auto *R) {
return Instruction::PHI; })
4479 .Case<VPWidenSelectRecipe>(
4480 [](
const auto *R) {
return Instruction::Select; })
4481 .Case<VPWidenStoreRecipe>(
4482 [](
const auto *R) {
return Instruction::Store; })
4483 .Case<VPWidenLoadRecipe>(
4484 [](
const auto *R) {
return Instruction::Load; })
4485 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4486 [](
const auto *R) {
return Instruction::Call; })
4489 [](
const auto *R) {
return R->getOpcode(); })
4491 return R->getStoredValues().empty() ? Instruction::Load
4492 : Instruction::Store;
4500 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4501 std::string OutString;
4503 assert(!Subset.empty() &&
"Unexpected empty range");
4504 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4505 for (
const auto &Pair : Subset)
4506 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4508 if (Opcode == Instruction::Call) {
4510 if (
auto *
Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4511 Name =
Int->getIntrinsicName();
4513 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4515 WidenCall ? WidenCall->getCalledScalarFunction()
4516 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4517 ->getLiveInIRValue());
4520 OS <<
" call to " <<
Name;
4525 Tail =
Tail.drop_front(Subset.size());
4529 Subset =
Tail.take_front(Subset.size() + 1);
4530 }
while (!
Tail.empty());
4543 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4552 switch (R.getVPDefID()) {
4553 case VPDef::VPDerivedIVSC:
4554 case VPDef::VPScalarIVStepsSC:
4555 case VPDef::VPScalarCastSC:
4556 case VPDef::VPReplicateSC:
4557 case VPDef::VPInstructionSC:
4558 case VPDef::VPCanonicalIVPHISC:
4559 case VPDef::VPVectorPointerSC:
4560 case VPDef::VPReverseVectorPointerSC:
4561 case VPDef::VPExpandSCEVSC:
4562 case VPDef::VPEVLBasedIVPHISC:
4563 case VPDef::VPPredInstPHISC:
4564 case VPDef::VPBranchOnMaskSC:
4566 case VPDef::VPReductionSC:
4567 case VPDef::VPActiveLaneMaskPHISC:
4568 case VPDef::VPWidenCallSC:
4569 case VPDef::VPWidenCanonicalIVSC:
4570 case VPDef::VPWidenCastSC:
4571 case VPDef::VPWidenGEPSC:
4572 case VPDef::VPWidenIntrinsicSC:
4573 case VPDef::VPWidenSC:
4574 case VPDef::VPWidenSelectSC:
4575 case VPDef::VPBlendSC:
4576 case VPDef::VPFirstOrderRecurrencePHISC:
4577 case VPDef::VPWidenPHISC:
4578 case VPDef::VPWidenIntOrFpInductionSC:
4579 case VPDef::VPWidenPointerInductionSC:
4580 case VPDef::VPReductionPHISC:
4581 case VPDef::VPInterleaveSC:
4582 case VPDef::VPWidenLoadEVLSC:
4583 case VPDef::VPWidenLoadSC:
4584 case VPDef::VPWidenStoreEVLSC:
4585 case VPDef::VPWidenStoreSC:
4591 auto WillWiden = [&
TTI, VF](
Type *ScalarTy) {
4609 if (R.getNumDefinedValues() == 0 &&
4610 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4619 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4621 if (!Visited.
insert({ScalarTy}).second)
4623 if (WillWiden(ScalarTy))
4634 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4635 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4637 [](std::unique_ptr<VPlan> &
P) {
4640 "Expected Scalar VF to be a candidate");
4647 if (ForceVectorization &&
4648 (VPlans.
size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4655 for (
auto &
P : VPlans) {
4666 <<
" costs: " << (Candidate.Cost / Width));
4667 if (VF.isScalable())
4676 <<
"LV: Not considering vector loop of width " << VF
4677 <<
" because it will not generate any vector instructions.\n");
4681 if (isMoreProfitable(Candidate, ChosenFactor))
4682 ChosenFactor = Candidate;
4688 "There are conditional stores.",
4689 "store that is conditionally executed prevents vectorization",
4690 "ConditionalStore", ORE, OrigLoop);
4691 ChosenFactor = ScalarCost;
4695 !isMoreProfitable(ChosenFactor, ScalarCost))
dbgs()
4696 <<
"LV: Vectorization seems to be not beneficial, "
4697 <<
"but was forced by a user.\n");
4699 return ChosenFactor;
4703bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4708 [&](
PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
4718 if (!OrigLoop->
contains(cast<Instruction>(U)))
4722 if (!OrigLoop->
contains(cast<Instruction>(U)))
4756 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4767 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4772 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4773 "epilogue is allowed.\n");
4779 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4780 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4781 "is not a supported candidate.\n");
4786 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4789 return {ForcedEC, 0, 0};
4791 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4799 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4804 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4817 const SCEV *RemainingIterations =
nullptr;
4818 unsigned MaxTripCount = 0;
4819 for (
auto &NextVF : ProfitableVFs) {
4826 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4828 (NextVF.Width.isScalable() &&
4830 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4836 if (!MainLoopVF.
isScalable() && !NextVF.Width.isScalable()) {
4838 if (!RemainingIterations) {
4841 assert(!isa<SCEVCouldNotCompute>(TC) &&
4842 "Trip count SCEV must be computable");
4852 << MaxTripCount <<
"\n");
4856 SE.
getConstant(TCType, NextVF.Width.getKnownMinValue()),
4857 RemainingIterations))
4861 if (Result.Width.isScalar() ||
4862 isMoreProfitable(NextVF, Result, MaxTripCount))
4868 << Result.Width <<
"\n");
4872std::pair<unsigned, unsigned>
4874 unsigned MinWidth = -1U;
4875 unsigned MaxWidth = 8;
4888 MaxWidth = std::min<unsigned>(
4889 MaxWidth, std::min<unsigned>(
4895 MinWidth = std::min<unsigned>(
4896 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4897 MaxWidth = std::max<unsigned>(
4898 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4901 return {MinWidth, MaxWidth};
4909 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4917 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4922 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
4936 if (
auto *ST = dyn_cast<StoreInst>(&
I))
4937 T = ST->getValueOperand()->getType();
4940 "Expected the load/store/recurrence type to be sized");
4969 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4970 "Unroll factor forced to be 1.\n");
4989 if (LoopCost == 0) {
4991 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
5001 for (
auto &Pair : R.MaxLocalUsers) {
5002 Pair.second = std::max(Pair.second, 1U);
5016 unsigned IC = UINT_MAX;
5018 for (
const auto &Pair : R.MaxLocalUsers) {
5023 <<
" register class\n");
5031 unsigned MaxLocalUsers = Pair.second;
5032 unsigned LoopInvariantRegs = 0;
5033 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end())
5034 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
5036 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
5040 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5041 std::max(1U, (MaxLocalUsers - 1)));
5044 IC = std::min(IC, TmpIC);
5064 unsigned AvailableTC =
5076 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
5077 unsigned InterleaveCountLB =
bit_floor(std::max(
5078 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5079 MaxInterleaveCount = InterleaveCountLB;
5081 if (InterleaveCountUB != InterleaveCountLB) {
5082 unsigned TailTripCountUB =
5083 (AvailableTC % (EstimatedVF * InterleaveCountUB));
5084 unsigned TailTripCountLB =
5085 (AvailableTC % (EstimatedVF * InterleaveCountLB));
5088 if (TailTripCountUB == TailTripCountLB)
5089 MaxInterleaveCount = InterleaveCountUB;
5091 }
else if (BestKnownTC && *BestKnownTC > 0) {
5095 ? (*BestKnownTC) - 1
5103 MaxInterleaveCount =
bit_floor(std::max(
5104 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5107 assert(MaxInterleaveCount > 0 &&
5108 "Maximum interleave count must be greater than 0");
5112 if (IC > MaxInterleaveCount)
5113 IC = MaxInterleaveCount;
5116 IC = std::max(1u, IC);
5118 assert(IC > 0 &&
"Interleave count must be greater than 0.");
5122 if (VF.
isVector() && HasReductions) {
5123 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
5131 bool ScalarInterleavingRequiresPredication =
5133 return Legal->blockNeedsPredication(BB);
5135 bool ScalarInterleavingRequiresRuntimePointerCheck =
5141 <<
"LV: IC is " << IC <<
'\n'
5142 <<
"LV: VF is " << VF <<
'\n');
5143 const bool AggressivelyInterleaveReductions =
5145 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5146 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
5150 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
5157 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5158 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5164 bool HasSelectCmpReductions =
5167 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5168 RecurKind RK = RdxDesc.getRecurrenceKind();
5169 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) ||
5170 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK);
5172 if (HasSelectCmpReductions) {
5173 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
5183 bool HasOrderedReductions =
5185 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5186 return RdxDesc.isOrdered();
5188 if (HasOrderedReductions) {
5190 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
5195 SmallIC = std::min(SmallIC,
F);
5196 StoresIC = std::min(StoresIC,
F);
5197 LoadsIC = std::min(LoadsIC,
F);
5201 std::max(StoresIC, LoadsIC) > SmallIC) {
5203 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
5204 return std::max(StoresIC, LoadsIC);
5209 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
5213 return std::max(IC / 2, SmallIC);
5216 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
5222 if (AggressivelyInterleaveReductions) {
5272 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5276 for (
Value *U :
I.operands()) {
5277 auto *Instr = dyn_cast<Instruction>(U);
5288 LoopInvariants.
insert(Instr);
5293 EndPoint[Instr] = IdxToInstr.
size();
5311 LLVM_DEBUG(
dbgs() <<
"LV(REG): Calculating max register usage:\n");
5313 const auto &TTICapture =
TTI;
5317 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
5322 for (
unsigned int Idx = 0, Sz = IdxToInstr.
size();
Idx < Sz; ++
Idx) {
5326 InstrList &
List = TransposeEnds[
Idx];
5341 for (
unsigned J = 0, E = VFs.
size(); J < E; ++J) {
5349 if (VFs[J].isScalar()) {
5350 for (
auto *Inst : OpenIntervals) {
5359 for (
auto *Inst : OpenIntervals) {
5372 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]);
5377 for (
const auto &Pair :
RegUsage) {
5378 auto &Entry = MaxUsages[J][Pair.first];
5379 Entry = std::max(Entry, Pair.second);
5384 << OpenIntervals.
size() <<
'\n');
5396 for (
auto *Inst : LoopInvariants) {
5399 bool IsScalar =
all_of(Inst->users(), [&](
User *U) {
5400 auto *I = cast<Instruction>(U);
5401 return TheLoop != LI->getLoopFor(I->getParent()) ||
5402 isScalarAfterVectorization(I, VFs[Idx]);
5408 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
5412 dbgs() <<
"LV(REG): VF = " << VFs[
Idx] <<
'\n';
5413 dbgs() <<
"LV(REG): Found max usage: " << MaxUsages[
Idx].
size()
5415 for (
const auto &pair : MaxUsages[
Idx]) {
5416 dbgs() <<
"LV(REG): RegisterClass: "
5420 dbgs() <<
"LV(REG): Found invariant usage: " << Invariant.
size()
5422 for (
const auto &pair : Invariant) {
5423 dbgs() <<
"LV(REG): RegisterClass: "
5437bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
5448 "Expecting a scalar emulated instruction");
5449 return isa<LoadInst>(
I) ||
5450 (isa<StoreInst>(
I) &&
5467 PredicatedBBsAfterVectorization[VF].
clear();
5484 !useEmulatedMaskMemRefHack(&
I, VF) &&
5485 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5489 for (
const auto &[
I,
_] : ScalarCosts) {
5490 auto *CI = dyn_cast<CallInst>(
I);
5491 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5494 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI];
5498 PredicatedBBsAfterVectorization[VF].
insert(BB);
5500 if (Pred->getSingleSuccessor() == BB)
5501 PredicatedBBsAfterVectorization[VF].
insert(Pred);
5510 "Instruction marked uniform-after-vectorization will be predicated");
5528 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5547 for (
Use &U :
I->operands())
5548 if (
auto *J = dyn_cast<Instruction>(U.get()))
5560 while (!Worklist.
empty()) {
5564 if (ScalarCosts.contains(
I))
5594 for (
Use &U :
I->operands())
5595 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5597 "Instruction has non-scalar type");
5598 if (CanBeScalarized(J))
5600 else if (needsExtract(J, VF)) {
5602 cast<VectorType>(
toVectorTy(J->getType(), VF)),
5613 Discount += VectorCost - ScalarCost;
5614 ScalarCosts[
I] = ScalarCost;
5630 ValuesToIgnoreForVF);
5637 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5650 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5651 << VF <<
" For instruction: " <<
I <<
'\n');
5679 const Loop *TheLoop) {
5681 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5687 auto *SE = PSE.
getSE();
5688 unsigned NumOperands = Gep->getNumOperands();
5689 for (
unsigned Idx = 1;
Idx < NumOperands; ++
Idx) {
5692 !
Legal->isInductionVariable(Opd))
5701LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5704 "Scalarization cost of instruction implies vectorization.");
5751 if (useEmulatedMaskMemRefHack(
I, VF))
5761LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5764 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5770 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5771 "Stride should be 1 or -1 for consecutive memory access");
5783 bool Reverse = ConsecutiveStride < 0;
5791LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5796 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5800 if (isa<LoadInst>(
I)) {
5812 (IsLoopInvariantStoreValue
5819LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5822 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5833LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5836 assert(Group &&
"Fail to get an interleaved access group.");
5840 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5844 unsigned InterleaveFactor = Group->getFactor();
5849 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5850 if (Group->getMember(IF))
5854 bool UseMaskForGaps =
5856 (isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor()));
5858 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5862 if (Group->isReverse()) {
5865 "Reverse masked interleaved access not supported.");
5866 Cost += Group->getNumMembers() *
5873std::optional<InstructionCost>
5879 if (InLoopReductions.
empty() || VF.
isScalar() || !isa<VectorType>(Ty))
5880 return std::nullopt;
5881 auto *VectorTy = cast<VectorType>(Ty);
5898 return std::nullopt;
5909 if (!InLoopReductionImmediateChains.
count(RetI))
5910 return std::nullopt;
5914 Instruction *LastChain = InLoopReductionImmediateChains.
at(RetI);
5916 while (!isa<PHINode>(ReductionPhi))
5917 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
5949 : dyn_cast<Instruction>(RetI->
getOperand(1));
5954 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5967 bool IsUnsigned = isa<ZExtInst>(Op0);
5984 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5985 return I == RetI ? RedCost : 0;
5989 bool IsUnsigned = isa<ZExtInst>(RedOp);
5998 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5999 return I == RetI ? RedCost : 0;
6000 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
6005 bool IsUnsigned = isa<ZExtInst>(Op0);
6028 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6029 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6037 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6038 return I == RetI ? RedCost : 0;
6047 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
6048 return I == RetI ? RedCost : 0;
6052 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
6056LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
6086 if (!
RetTy->isVoidTy() &&
6108 for (
auto *V : filterExtractingOperands(Ops, VF))
6111 filterExtractingOperands(Ops, VF), Tys,
CostKind);
6133 auto IsLegalToScalarize = [&]() {
6147 if (isa<LoadInst>(
I))
6152 auto &SI = cast<StoreInst>(
I);
6165 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
6171 if (GatherScatterCost < ScalarizationCost)
6183 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6184 "Expected consecutive stride.");
6193 unsigned NumAccesses = 1;
6196 assert(Group &&
"Fail to get an interleaved access group.");
6202 NumAccesses = Group->getNumMembers();
6204 InterleaveCost = getInterleaveGroupCost(&
I, VF);
6209 ? getGatherScatterCost(&
I, VF) * NumAccesses
6213 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
6219 if (InterleaveCost <= GatherScatterCost &&
6220 InterleaveCost < ScalarizationCost) {
6222 Cost = InterleaveCost;
6223 }
else if (GatherScatterCost < ScalarizationCost) {
6225 Cost = GatherScatterCost;
6228 Cost = ScalarizationCost;
6262 while (!Worklist.
empty()) {
6264 for (
auto &
Op :
I->operands())
6265 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
6266 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
6267 AddrDefs.
insert(InstOp).second)
6271 for (
auto *
I : AddrDefs) {
6272 if (isa<LoadInst>(
I)) {
6286 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
6303 "Trying to set a vectorization decision for a scalar VF");
6305 auto ForcedScalar = ForcedScalars.
find(VF);
6321 for (
auto &ArgOp : CI->
args())
6334 getScalarizationOverhead(CI, VF,
CostKind);
6340 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.
end() &&
6341 ForcedScalar->second.contains(CI)) ||
6352 for (
Type *ScalarTy : ScalarTys)
6361 std::nullopt, *RedCost);
6367 bool UsesMask =
false;
6373 if (
Info.Shape.VF != VF)
6377 if (MaskRequired && !
Info.isMasked())
6381 bool ParamsOk =
true;
6383 switch (Param.ParamKind) {
6402 dyn_cast<SCEVAddRecExpr>(SE->
getSCEV(ScalarParam));
6404 if (!SAR || SAR->getLoop() !=
TheLoop) {
6410 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE));
6438 if (VecFunc && UsesMask && !MaskRequired)
6458 if (VectorCost <=
Cost) {
6463 if (IntrinsicCost <=
Cost) {
6464 Cost = IntrinsicCost;
6479 auto *OpI = dyn_cast<Instruction>(
Op);
6496 return InstsToScalarize[VF][
I];
6499 auto ForcedScalar = ForcedScalars.
find(VF);
6500 if (VF.
isVector() && ForcedScalar != ForcedScalars.
end()) {
6501 auto InstSet = ForcedScalar->second;
6502 if (InstSet.count(
I))
6513 auto HasSingleCopyAfterVectorization = [
this](
Instruction *
I,
6518 auto Scalarized = InstsToScalarize.
find(VF);
6519 assert(Scalarized != InstsToScalarize.
end() &&
6520 "VF not yet analyzed for scalarization profitability");
6521 return !Scalarized->second.count(
I) &&
6523 auto *UI = cast<Instruction>(U);
6524 return !Scalarized->second.count(UI);
6527 (void)HasSingleCopyAfterVectorization;
6536 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6537 I->getOpcode() == Instruction::PHI ||
6538 (
I->getOpcode() == Instruction::BitCast &&
6539 I->getType()->isPointerTy()) ||
6540 HasSingleCopyAfterVectorization(
I, VF));
6550 switch (
I->getOpcode()) {
6551 case Instruction::GetElementPtr:
6557 case Instruction::Br: {
6564 bool ScalarPredicatedBB =
false;
6570 ScalarPredicatedBB =
true;
6572 if (ScalarPredicatedBB) {
6596 case Instruction::Switch: {
6599 auto *Switch = cast<SwitchInst>(
I);
6600 return Switch->getNumCases() *
6603 toVectorTy(Switch->getCondition()->getType(), VF),
6607 case Instruction::PHI: {
6608 auto *Phi = cast<PHINode>(
I);
6620 cast<VectorType>(VectorTy), Mask,
CostKind,
6628 Type *ResultTy = Phi->getType();
6632 auto *HeaderUser = cast_if_present<PHINode>(
6633 find_singleton<User>(Phi->users(), [
this](
User *U,
bool) ->
User * {
6634 auto *Phi = dyn_cast<PHINode>(U);
6635 if (Phi && Phi->getParent() == TheLoop->getHeader())
6641 auto Iter = ReductionVars.
find(HeaderUser);
6642 if (Iter != ReductionVars.end() &&
6644 Iter->second.getRecurrenceKind()))
6647 return (Phi->getNumIncomingValues() - 1) *
6649 Instruction::Select,
toVectorTy(ResultTy, VF),
6659 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6660 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6666 case Instruction::UDiv:
6667 case Instruction::SDiv:
6668 case Instruction::URem:
6669 case Instruction::SRem:
6673 ScalarCost : SafeDivisorCost;
6677 case Instruction::Add:
6678 case Instruction::Sub: {
6686 if (!
RHS ||
RHS->getZExtValue() != 1)
6691 Type *ScalarTy =
I->getType();
6695 {PtrTy, ScalarTy, MaskTy});
6704 case Instruction::FAdd:
6705 case Instruction::FSub:
6706 case Instruction::Mul:
6707 case Instruction::FMul:
6708 case Instruction::FDiv:
6709 case Instruction::FRem:
6710 case Instruction::Shl:
6711 case Instruction::LShr:
6712 case Instruction::AShr:
6713 case Instruction::And:
6714 case Instruction::Or:
6715 case Instruction::Xor: {
6719 if (
I->getOpcode() == Instruction::Mul &&
6730 Value *Op2 =
I->getOperand(1);
6733 Op2 = cast<SCEVConstant>(
PSE.
getSCEV(Op2))->getValue();
6743 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6746 case Instruction::FNeg: {
6749 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6750 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6751 I->getOperand(0),
I);
6753 case Instruction::Select: {
6755 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6758 const Value *Op0, *Op1;
6775 Type *CondTy = SI->getCondition()->getType();
6780 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6781 Pred = Cmp->getPredicate();
6783 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6784 {TTI::OK_AnyValue, TTI::OP_None},
I);
6786 case Instruction::ICmp:
6787 case Instruction::FCmp: {
6788 Type *ValTy =
I->getOperand(0)->getType();
6791 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6792 (void)Op0AsInstruction;
6794 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6795 "if both the operand and the compare are marked for "
6796 "truncation, they must have the same bitwidth");
6802 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6803 {TTI::OK_AnyValue, TTI::OP_None},
6804 {TTI::OK_AnyValue, TTI::OP_None},
I);
6806 case Instruction::Store:
6807 case Instruction::Load: {
6812 "CM decision should be taken at this point");
6819 return getMemoryInstructionCost(
I, VF);
6821 case Instruction::BitCast:
6822 if (
I->getType()->isPointerTy())
6825 case Instruction::ZExt:
6826 case Instruction::SExt:
6827 case Instruction::FPToUI:
6828 case Instruction::FPToSI:
6829 case Instruction::FPExt:
6830 case Instruction::PtrToInt:
6831 case Instruction::IntToPtr:
6832 case Instruction::SIToFP:
6833 case Instruction::UIToFP:
6834 case Instruction::Trunc:
6835 case Instruction::FPTrunc: {
6838 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6839 "Expected a load or a store!");
6865 unsigned Opcode =
I->getOpcode();
6868 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6870 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6871 CCH = ComputeCCH(Store);
6874 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6875 Opcode == Instruction::FPExt) {
6876 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6877 CCH = ComputeCCH(Load);
6884 auto *Trunc = cast<TruncInst>(
I);
6886 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6893 Type *SrcScalarTy =
I->getOperand(0)->getType();
6894 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6905 (
I->getOpcode() == Instruction::ZExt ||
6906 I->getOpcode() == Instruction::SExt))
6912 case Instruction::Call:
6914 case Instruction::ExtractValue:
6916 case Instruction::Alloca:
6939 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6940 return RequiresScalarEpilogue &&
6952 if ((SI = dyn_cast<StoreInst>(&
I)) &&
6955 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6956 SI->getValueOperand());
6965 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6966 return VecValuesToIgnore.contains(U) ||
6967 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6976 if (Group->getInsertPos() == &
I)
6979 DeadInterleavePointerOps.
push_back(PointerOp);
6984 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
6985 if (Br->isConditional())
6992 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6993 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
6995 Instruction *UI = cast<Instruction>(U);
6996 return !VecValuesToIgnore.contains(U) &&
6997 (!isAccessInterleaved(UI) ||
6998 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
7002 DeadInterleavePointerOps.
append(
Op->op_begin(),
Op->op_end());
7005 for (
const auto &[
_, Ops] : DeadInvariantStoreOps) {
7019 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
7022 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
7023 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
7026 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
7034 if ((ThenEmpty && ElseEmpty) ||
7036 ElseBB->
phis().empty()) ||
7038 ThenBB->
phis().empty())) {
7047 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
7050 return !VecValuesToIgnore.contains(U) &&
7051 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
7062 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
7066 DeadOps.
append(
Op->op_begin(),
Op->op_end());
7107 bool InLoop = !ReductionOperations.
empty();
7110 InLoopReductions.
insert(Phi);
7113 for (
auto *
I : ReductionOperations) {
7114 InLoopReductionImmediateChains[
I] = LastChain;
7118 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
7119 <<
" reduction for phi: " << *Phi <<
"\n");
7132 unsigned WidestType;
7141 unsigned N =
RegSize.getKnownMinValue() / WidestType;
7162 <<
"overriding computed VF.\n");
7167 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
7168 <<
"not supported by the target.\n");
7170 "Scalable vectorization requested but not supported by the target",
7171 "the scalable user-specified vectorization width for outer-loop "
7172 "vectorization cannot be used because the target does not support "
7173 "scalable vectors.",
7174 "ScalableVFUnfeasible", ORE, OrigLoop);
7179 "VF needs to be a power of two");
7181 <<
"VF " << VF <<
" to build VPlans.\n");
7188 return {VF, 0 , 0 };
7192 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
7193 "VPlan-native path.\n");
7211 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
7212 "which requires masked-interleaved support.\n");
7228 "UserVF ignored because it may be larger than the maximal safe VF",
7229 "InvalidUserVF", ORE, OrigLoop);
7232 "VF needs to be a power of two");
7238 buildVPlansWithVPRecipes(UserVF, UserVF);
7243 "InvalidCost", ORE, OrigLoop);
7257 for (
const auto &VF : VFCandidates) {
7306 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
7307 for (
Value *
Op : IVInsts[
I]->operands()) {
7308 auto *OpI = dyn_cast<Instruction>(
Op);
7309 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
7315 for (
User *U :
IV->users()) {
7316 auto *CI = cast<Instruction>(U);
7337 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
7338 <<
": induction instruction " << *IVInst <<
"\n";
7340 Cost += InductionCost;
7354 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
7357 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
7358 ExitInstrs.
insert(CondI);
7362 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
7369 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
7370 <<
": exit condition instruction " << *CondI <<
"\n";
7374 auto *OpI = dyn_cast<Instruction>(
Op);
7375 if (!OpI ||
any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
7376 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
7377 !ExitInstrs.contains(cast<Instruction>(U));
7395 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
7398 auto IsZExtOrSExt = [](
const unsigned Opcode) ->
bool {
7399 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt;
7408 for (
auto *ChainOp : ChainOps) {
7409 for (
Value *
Op : ChainOp->operands()) {
7410 if (
auto *
I = dyn_cast<Instruction>(
Op)) {
7411 ChainOpsAndOperands.insert(
I);
7412 if (
I->getOpcode() == Instruction::Mul) {
7413 auto *Ext0 = dyn_cast<Instruction>(
I->getOperand(0));
7414 auto *Ext1 = dyn_cast<Instruction>(
I->getOperand(1));
7415 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 &&
7416 Ext0->getOpcode() == Ext1->getOpcode()) {
7417 ChainOpsAndOperands.insert(Ext0);
7418 ChainOpsAndOperands.insert(Ext1);
7433 "reduction op visited multiple times");
7435 LLVM_DEBUG(
dbgs() <<
"Cost of " << ReductionCost <<
" for VF " << VF
7436 <<
":\n in-loop reduction " << *
I <<
"\n");
7437 Cost += *ReductionCost;
7452 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
7459 for (
Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
7465 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
7466 <<
": forced scalar " << *ForcedScalar <<
"\n";
7470 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7475 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
7476 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7494 <<
" (Estimated cost per lane: ");
7496 double CostPerLane = double(*
Cost.
getValue()) / EstimatedWidth;
7515 if (
auto *S = dyn_cast<VPSingleDefRecipe>(R))
7516 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7517 if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7518 return &WidenMem->getIngredient();
7524 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
7526 if (
auto *
IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7527 auto *IG =
IR->getInterleaveGroup();
7528 unsigned NumMembers = IG->getNumMembers();
7529 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7543 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7545 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7546 if (isa<PHINode>(&I) && BB == TheLoop->getHeader())
7548 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7558 VPlan &FirstPlan = *VPlans[0];
7564 "More than a single plan/VF w/o any plan having scalar VF");
7568 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7573 if (ForceVectorization) {
7580 for (
auto &
P : VPlans) {
7587 <<
"LV: Not considering vector loop of width " << VF
7588 <<
" because it will not generate any vector instructions.\n");
7594 if (isMoreProfitable(CurrentFactor, BestFactor))
7595 BestFactor = CurrentFactor;
7598 if (isMoreProfitable(CurrentFactor, ScalarFactor))
7599 ProfitableVFs.push_back(CurrentFactor);
7616 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7619 CostCtx, OrigLoop) ||
7621 CostCtx, OrigLoop)) &&
7622 " VPlan cost model and legacy cost model disagreed");
7624 "when vectorizing, the scalar cost must be computed.");
7634 bool IsUnrollMetadata =
false;
7635 MDNode *LoopID = L->getLoopID();
7639 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(
I));
7641 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7643 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7649 if (!IsUnrollMetadata) {
7651 LLVMContext &Context = L->getHeader()->getContext();
7654 MDString::get(Context,
"llvm.loop.unroll.runtime.disable"));
7660 L->setLoopID(NewLoopID);
7670 auto *EpiRedResult = dyn_cast<VPInstruction>(R);
7671 if (!EpiRedResult ||
7675 auto *EpiRedHeaderPhi =
7676 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7678 EpiRedHeaderPhi->getRecurrenceDescriptor();
7679 Value *MainResumeValue =
7680 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7683 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7685 "AnyOf expected to start with ICMP_NE");
7687 "AnyOf expected to start by comparing main resume value to original "
7689 MainResumeValue = Cmp->getOperand(0);
7691 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7696 using namespace VPlanPatternMatch;
7697 auto IsResumePhi = [](
VPUser *U) {
7699 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue()));
7702 "ResumePhi must have a single user");
7703 auto *EpiResumePhiVPI =
7704 cast<VPInstruction>(*
find_if(EpiRedResult->users(), IsResumePhi));
7705 auto *EpiResumePhi = cast<PHINode>(State.
get(EpiResumePhiVPI,
true));
7706 EpiResumePhi->setIncomingValueForBlock(
7715 "Trying to execute plan with unsupported VF");
7717 "Trying to execute plan with unsupported UF");
7719 ((VectorizingEpilogue && ExpandedSCEVs) ||
7720 (!VectorizingEpilogue && !ExpandedSCEVs)) &&
7721 "expanded SCEVs to reuse can only be used during epilogue vectorization");
7735#ifdef EXPENSIVE_CHECKS
7736 assert(DT->
verify(DominatorTree::VerificationLevel::Fast));
7747 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7748 "count during epilogue vectorization");
7756 if (VectorizingEpilogue)
7762 std::unique_ptr<LoopVersioning> LVer =
nullptr;
7770 LVer = std::make_unique<LoopVersioning>(
7773 State.
LVer = &*LVer;
7798 if (VectorizingEpilogue) {
7800 "Epilogue vectorisation not yet supported with early exits");
7804 &R, State, State.
CFG.
VPBB2IRBB[MiddleVPBB], BypassBlock);
7808 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
7810 Inc->setIncomingValueForBlock(BypassBlock, V);
7820 std::optional<MDNode *> VectorizedLoopID =
7826 if (VectorizedLoopID) {
7827 L->setLoopID(*VectorizedLoopID);
7853 cast<BranchInst>(State.
CFG.
VPBB2IRBB[MiddleVPBB]->getTerminator());
7854 if (MiddleTerm->isConditional() &&
7858 assert(TripCount > 0 &&
"trip count should not be zero");
7859 const uint32_t Weights[] = {1, TripCount - 1};
7874 const SCEV2ValueTy &ExpandedSCEVs) {
7909 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7919 dbgs() <<
"intermediate fn:\n"
7927 assert(Bypass &&
"Expected valid bypass basic block.");
7948 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7952 DT,
LI,
nullptr,
"vector.ph");
7957 "TC check is expected to dominate Bypass");
7974 return TCCheckBlock;
7985 const SCEV2ValueTy &ExpandedSCEVs) {
7993 nullptr,
"vec.epilog.iter.check",
true);
7995 VecEpilogueIterationCountCheck);
8001 "expected this to be saved from the previous pass.");
8029 for (
PHINode &Phi : VecEpilogueIterationCountCheck->
phis())
8032 for (
PHINode *Phi : PhisInBlock) {
8034 Phi->replaceIncomingBlockWith(
8036 VecEpilogueIterationCountCheck);
8043 return EPI.EpilogueIterationCountCheck == IncB;
8066 "Expected trip count to have been saved in the first pass.");
8070 "saved trip count does not dominate insertion point.");
8081 Value *CheckMinIters =
8085 "min.epilog.iters.check");
8091 unsigned EpilogueLoopStep =
8097 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
8098 const uint32_t Weights[] = {EstimatedSkipCount,
8099 MainLoopStep - EstimatedSkipCount};
8119 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
8134 return getVPValueOrAddLiveIn(
Op);
8146 "unsupported switch either exiting loop or continuing to header");
8151 BasicBlock *DefaultDst = SI->getDefaultDest();
8153 for (
auto &
C : SI->cases()) {
8155 assert(!EdgeMaskCache.
contains({Src, Dst}) &&
"Edge masks already created");
8158 if (Dst == DefaultDst)
8160 auto &Compares = Dst2Compares[Dst];
8168 VPValue *DefaultMask =
nullptr;
8169 for (
const auto &[Dst, Conds] : Dst2Compares) {
8178 EdgeMaskCache[{Src, Dst}] = Mask;
8184 DefaultMask = DefaultMask ? Builder.
createOr(DefaultMask, Mask) : Mask;
8188 DefaultMask = Builder.
createNot(DefaultMask);
8192 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask;
8199 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8201 if (ECEntryIt != EdgeMaskCache.
end())
8202 return ECEntryIt->second;
8204 if (
auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) {
8206 assert(EdgeMaskCache.
contains(Edge) &&
"Mask for Edge not created?");
8207 return EdgeMaskCache[Edge];
8213 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8214 assert(BI &&
"Unexpected terminator found");
8216 return EdgeMaskCache[Edge] = SrcMask;
8225 return EdgeMaskCache[Edge] = SrcMask;
8228 assert(EdgeMask &&
"No Edge Mask found for condition");
8240 return EdgeMaskCache[Edge] = EdgeMask;
8247 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8249 assert(ECEntryIt != EdgeMaskCache.
end() &&
8250 "looking up mask for edge which has not been created");
8251 return ECEntryIt->second;
8259 BlockMaskCache[Header] =
nullptr;
8271 HeaderVPBB->
insert(
IV, NewInsertionPoint);
8278 BlockMaskCache[Header] = BlockMask;
8284 assert(BCEntryIt != BlockMaskCache.
end() &&
8285 "Trying to access mask for block without one.");
8286 return BCEntryIt->second;
8290 assert(OrigLoop->
contains(BB) &&
"Block is not a part of a loop");
8291 assert(BlockMaskCache.
count(BB) == 0 &&
"Mask for block already computed");
8293 "Loop header must have cached block mask");
8299 for (
auto *Predecessor :
8303 BlockMaskCache[BB] = EdgeMask;
8308 BlockMask = EdgeMask;
8312 BlockMask = Builder.
createOr(BlockMask, EdgeMask, {});
8315 BlockMaskCache[BB] = BlockMask;
8321 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
8322 "Must be called with either a load or store");
8328 "CM decision should be taken at this point.");
8354 auto *
GEP = dyn_cast<GetElementPtrInst>(
8355 Ptr->getUnderlyingValue()->stripPointerCasts());
8365 GEP ?
GEP->getNoWrapFlags()
8371 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
8389 "step must be loop invariant");
8393 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8396 TruncI->getDebugLoc());
8398 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
8400 IndDesc, Phi->getDebugLoc());
8410 *PSE.
getSE(), *OrigLoop);
8423 Phi->getDebugLoc());
8437 auto IsOptimizableIVTruncate =
8445 IsOptimizableIVTruncate(
I),
Range)) {
8447 auto *
Phi = cast<PHINode>(
I->getOperand(0));
8458 unsigned NumIncoming =
Phi->getNumIncomingValues();
8467 for (
unsigned In = 0;
In < NumIncoming;
In++) {
8472 assert(In == 0 &&
"Both null and non-null edge masks found");
8474 "Distinct incoming values with one having a full mask");
8495 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
8496 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
8497 ID == Intrinsic::pseudoprobe ||
8498 ID == Intrinsic::experimental_noalias_scope_decl))
8504 bool ShouldUseVectorIntrinsic =
8511 if (ShouldUseVectorIntrinsic)
8516 std::optional<unsigned> MaskPos;
8538 Variant = Decision.Variant;
8539 MaskPos = Decision.MaskPos;
8546 if (ShouldUseVectorCall) {
8547 if (MaskPos.has_value()) {
8562 Ops.insert(Ops.
begin() + *MaskPos, Mask);
8573 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
8574 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
8589 switch (
I->getOpcode()) {
8592 case Instruction::SDiv:
8593 case Instruction::UDiv:
8594 case Instruction::SRem:
8595 case Instruction::URem: {
8603 auto *SafeRHS = Builder.
createSelect(Mask, Ops[1], One,
I->getDebugLoc());
8609 case Instruction::Add:
8610 case Instruction::And:
8611 case Instruction::AShr:
8612 case Instruction::FAdd:
8613 case Instruction::FCmp:
8614 case Instruction::FDiv:
8615 case Instruction::FMul:
8616 case Instruction::FNeg:
8617 case Instruction::FRem:
8618 case Instruction::FSub:
8619 case Instruction::ICmp:
8620 case Instruction::LShr:
8621 case Instruction::Mul:
8622 case Instruction::Or:
8623 case Instruction::Select:
8624 case Instruction::Shl:
8625 case Instruction::Sub:
8626 case Instruction::Xor:
8627 case Instruction::Freeze:
8634 auto GetConstantViaSCEV = [
this, &SE](
VPValue *
Op) {
8635 Value *
V =
Op->getUnderlyingValue();
8636 if (isa<Constant>(V) || !SE.
isSCEVable(
V->getType()))
8638 auto *
C = dyn_cast<SCEVConstant>(SE.
getSCEV(V));
8644 if (
I->getOpcode() == Instruction::Mul)
8645 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
8647 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
8654VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
8657 unsigned Opcode =
HI->Update->getOpcode();
8658 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
8659 "Histogram update operation must be an Add or Sub");
8674 HI->Store->getDebugLoc());
8680 auto *PN = cast<PHINode>(R->getUnderlyingValue());
8682 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8699 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
8701 case Intrinsic::assume:
8702 case Intrinsic::lifetime_start:
8703 case Intrinsic::lifetime_end:
8725 VPValue *BlockInMask =
nullptr;
8726 if (!IsPredicated) {
8730 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8741 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8742 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
8743 "Should not predicate a uniform recipe");
8745 IsUniform, BlockInMask);
8756 if (
auto *Phi = dyn_cast<PHINode>(Instr)) {
8757 if (Phi->getParent() != OrigLoop->
getHeader())
8760 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8766 "can only widen reductions and fixed-order recurrences here");
8784 PhisToFix.push_back(PhiRecipe);
8788 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8797 if (
auto *CI = dyn_cast<CallInst>(Instr))
8800 if (
StoreInst *SI = dyn_cast<StoreInst>(Instr))
8802 return tryToWidenHistogram(*HistInfo,
Operands);
8804 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8807 if (!shouldWiden(Instr,
Range))
8810 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Instr))
8814 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8819 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8824 return tryToWiden(Instr,
Operands, VPBB);
8827void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8831 auto MaxVFTimes2 = MaxVF * 2;
8833 VFRange SubRange = {VF, MaxVFTimes2};
8834 if (
auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) {
8846 VPlans.push_back(std::move(Plan));
8856 Value *StartIdx = ConstantInt::get(IdxTy, 0);
8863 Header->insert(CanonicalIVPHI, Header->begin());
8868 Instruction::Add, {CanonicalIVPHI, &Plan.
getVFxUF()}, {HasNUW,
false},
DL,
8870 CanonicalIVPHI->
addOperand(CanonicalIVIncrement);
8885 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8888 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8895 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8897 ID.getKind(), dyn_cast_or_null<FPMathOperator>(
ID.getInductionBinOp()),
8898 Start, VectorTC, Step);
8910 auto *ResumePhiRecipe =
8913 return ResumePhiRecipe;
8922 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor());
8925 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8930 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR);
8931 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction());
8935 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.
getRecipe(ScalarPhiI));
8936 if (
auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8938 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8940 ScalarPhiIRI->addOperand(ResumePhi);
8946 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8947 "should only skip truncated wide inductions");
8954 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8955 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8959 "vector.recur.extract");
8960 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8963 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {},
Name);
8975 auto *WideIV = dyn_cast<VPWidenInductionRecipe>(Def);
8979 return isa<VPWidenPointerInductionRecipe>(WideIV) ||
8980 !cast<VPWidenIntOrFpInductionRecipe>(WideIV)->getTruncInst();
8984 if (Def->getNumOperands() != 2)
8986 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(0));
8988 WideIV = dyn_cast<VPWidenInductionRecipe>(Def->getOperand(1));
8992 using namespace VPlanPatternMatch;
8993 auto &
ID = WideIV->getInductionDescriptor();
8996 VPValue *IVStep = WideIV->getStepValue();
8997 switch (
ID.getInductionOpcode()) {
8998 case Instruction::Add:
9001 case Instruction::FAdd:
9004 case Instruction::FSub:
9007 case Instruction::Sub: {
9011 if (!
match(VPV, m_Binary<Instruction::Sub>(m_VPValue(), m_VPValue(Step))) ||
9016 return StepCI && IVStepCI &&
9017 StepCI->getValue() == (-1 * IVStepCI->getValue());
9039 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R);
9042 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction());
9047 if (PredVPBB != MiddleVPBB) {
9050 assert(ExitingBlocks.
size() == 2 &&
"only support 2 exiting blocks");
9051 ExitingBB = ExitingBB == ExitingBlocks[0] ? ExitingBlocks[1]
9054 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB);
9060 ExitVPBB->getSinglePredecessor() == MiddleVPBB)
9062 ExitUsersToFix.
insert(ExitIRI);
9063 ExitIRI->addOperand(V);
9067 return ExitUsersToFix;
9076 if (ExitUsersToFix.
empty())
9080 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9093 if (ExitIRI->getParent()->getSinglePredecessor() != MiddleVPBB)
9096 LLVMContext &Ctx = ExitIRI->getInstruction().getContext();
9100 ExitIRI->setOperand(
Idx, Ext);
9115 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
9116 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9121 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
9196 if (ExitIRI->getOperand(0) != FOR)
9200 "vector.recur.extract.for.phi");
9202 ExitUsersToFix.remove(ExitIRI);
9208LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
VFRange &
Range) {
9223 bool RequiresScalarEpilogueCheck =
9230 PSE, RequiresScalarEpilogueCheck,
9237 bool IVUpdateMayOverflow =
false;
9250 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9270 "Unsupported interleave factor for scalable vectors");
9275 InterleaveGroups.
insert(IG);
9293 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty();
9294 return Legal->blockNeedsPredication(BB) || NeedsBlends;
9296 auto *MiddleVPBB = Plan->getMiddleBlock();
9301 if (VPBB != HeaderVPBB)
9305 if (VPBB == HeaderVPBB)
9306 RecipeBuilder.createHeaderMask();
9307 else if (NeedsMasks)
9308 RecipeBuilder.createBlockInMask(BB);
9315 auto *
Phi = dyn_cast<PHINode>(Instr);
9316 if (Phi &&
Phi->getParent() == HeaderBB) {
9317 Operands.push_back(Plan->getOrAddLiveIn(
9320 auto OpRange = RecipeBuilder.mapToVPValues(
Instr->operands());
9321 Operands = {OpRange.begin(), OpRange.end()};
9328 if ((SI = dyn_cast<StoreInst>(&
I)) &&
9334 SI, RecipeBuilder.mapToVPValues(
Instr->operands()),
9336 Recipe->insertBefore(*MiddleVPBB, MBIP);
9341 RecipeBuilder.tryToCreateWidenRecipe(Instr,
Operands,
Range, VPBB);
9343 Recipe = RecipeBuilder.handleReplication(Instr,
Range);
9345 RecipeBuilder.setRecipe(Instr, Recipe);
9346 if (isa<VPHeaderPHIRecipe>(Recipe)) {
9357 "unexpected recipe needs moving");
9370 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
9371 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
9372 "entry block must be set to a VPRegionBlock having a non-empty entry "
9374 RecipeBuilder.fixHeaderPhis();
9380 auto *IVInc = cast<Instruction>(
9385 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
9390 if (
auto *UncountableExitingBlock =
9393 *Plan, *PSE.
getSE(), OrigLoop, UncountableExitingBlock, RecipeBuilder);
9401 "Some exit values in loop with uncountable exit not supported yet",
9402 "UncountableEarlyExitLoopsUnsupportedExitValue", ORE, OrigLoop);
9412 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
9422 Plan->setName(
"Initial VPlan");
9427 auto *
R = cast<VPRecipeBase>(&U);
9428 return R->getParent()->getParent() ||
9430 Plan->getVectorLoopRegion()->getSinglePredecessor();
9433 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
9434 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.
getSCEV(StrideV));
9439 auto *CI = Plan->getOrAddLiveIn(
9440 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
9441 if (
VPValue *StrideVPV = Plan->getLiveIn(StrideV))
9447 if (!isa<SExtInst, ZExtInst>(U))
9449 VPValue *StrideVPV = Plan->getLiveIn(U);
9452 unsigned BW =
U->getType()->getScalarSizeInBits();
9453 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
9454 : ScevStride->getAPInt().zext(BW);
9455 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(
U->getType(),
C));
9473 bool WithoutRuntimeCheck =
9476 WithoutRuntimeCheck);
9491 true,
false, OrigLoop);
9495 HCFGBuilder.buildHierarchicalCFG();
9503 *PSE.
getSE(), *TLI);
9508 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9509 Term->eraseFromParent();
9519 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9520 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9521 if (isa<VPCanonicalIVPHIRecipe>(&R))
9523 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
9524 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
9545void LoopVectorizationPlanner::adjustRecipesForReductions(
9547 using namespace VPlanPatternMatch;
9548 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
9552 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9553 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
9561 "AnyOf and FindLast reductions are not allowed for in-loop reductions");
9566 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
9569 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
9570 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
9571 assert((UserRecipe->getParent() == MiddleVPBB ||
9572 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
9573 "U must be either in the loop region, the middle block or the "
9574 "scalar preheader.");
9577 Worklist.
insert(UserRecipe);
9590 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
9593 unsigned IndexOfFirstOperand;
9601 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9602 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
9603 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
9604 CurrentLink->getOperand(2) == PreviousLink &&
9605 "expected a call where the previous link is the added operand");
9613 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
9615 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
9618 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink);
9619 if (PhiR->isInLoop() && Blend) {
9620 assert(Blend->getNumIncomingValues() == 2 &&
9621 "Blend must have 2 incoming values");
9622 if (Blend->getIncomingValue(0) == PhiR)
9623 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
9625 assert(Blend->getIncomingValue(1) == PhiR &&
9626 "PhiR must be an operand of the blend");
9627 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
9633 if (isa<VPWidenRecipe>(CurrentLink)) {
9634 assert(isa<CmpInst>(CurrentLinkI) &&
9635 "need to have the compare of the select");
9638 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9639 "must be a select recipe");
9640 IndexOfFirstOperand = 1;
9643 "Expected to replace a VPWidenSC");
9644 IndexOfFirstOperand = 0;
9649 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9650 ? IndexOfFirstOperand + 1
9651 : IndexOfFirstOperand;
9652 VecOp = CurrentLink->getOperand(VecOpId);
9653 assert(VecOp != PreviousLink &&
9654 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9655 (VecOpId - IndexOfFirstOperand)) ==
9657 "PreviousLink must be the operand other than VecOp");
9666 RdxDesc, CurrentLinkI, PreviousLink, VecOp, CondOp,
9673 CurrentLink->replaceAllUsesWith(RedRecipe);
9674 PreviousLink = RedRecipe;
9681 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9694 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB &&
9695 "reduction recipe must be defined before latch");
9697 std::optional<FastMathFlags> FMFs =
9704 return isa<VPInstruction>(&U) &&
9705 cast<VPInstruction>(&U)->getOpcode() ==
9720 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9729 Trunc->
insertAfter(NewExitingVPV->getDefiningRecipe());
9730 Extnd->insertAfter(Trunc);
9732 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9733 NewExitingVPV = Extnd;
9753 FinalReductionResult, [](
VPUser &
User,
unsigned) {
9754 auto *Parent = cast<VPRecipeBase>(&
User)->getParent();
9755 return Parent && !Parent->getParent();
9757 FinalReductionResult->insertBefore(*MiddleVPBB, IP);
9766 return isa<VPWidenSelectRecipe>(U) ||
9767 (isa<VPReplicateRecipe>(U) &&
9768 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9769 Instruction::Select);
9775 for (
unsigned I = 0;
I != CmpR->getNumOperands(); ++
I)
9776 if (CmpR->getOperand(
I) == PhiR)
9784 if (
Select->getOperand(1) == PhiR)
9787 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9808 assert(!State.
Lane &&
"VPDerivedIVRecipe being replicated.");
9819 cast_if_present<BinaryOperator>(FPBinOp));
9825 assert((DerivedIV != Index ||
9827 "IV didn't need transforming?");
9835 "uniform recipe shouldn't be predicated");
9841 if (State.
Lane->isFirstLane()) {
9860 if (isa<StoreInst>(UI) &&
9870 for (
unsigned Lane = 0; Lane < EndLane; ++Lane)
9936 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9940 Function *
F = L->getHeader()->getParent();
9946 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9951 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9971 bool AddBranchWeights =
9973 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(),
9976 VF.
Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan);
9978 << L->getHeader()->getParent()->getName() <<
"\"\n");
9998 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
9999 if (S->getValueOperand()->getType()->isFloatTy())
10009 while (!Worklist.
empty()) {
10011 if (!L->contains(
I))
10013 if (!Visited.
insert(
I).second)
10020 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
10023 I->getDebugLoc(), L->getHeader())
10024 <<
"floating point conversion changes vector width. "
10025 <<
"Mixed floating point precision requires an up/down "
10026 <<
"cast that will negatively impact performance.";
10029 for (
Use &
Op :
I->operands())
10030 if (
auto *OpI = dyn_cast<Instruction>(
Op))
10050 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
10106 uint64_t MinTC = std::max(MinTC1, MinTC2);
10108 MinTC =
alignTo(MinTC, IntVF);
10112 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
10120 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
10121 "trip count < minimum profitable VF ("
10132 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10134 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10147 if (isa<VPCanonicalIVPHIRecipe>(&R))
10150 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
10154 auto *VPIRInst = cast<VPIRInstruction>(&R);
10155 auto *IRI = dyn_cast<PHINode>(&VPIRInst->getInstruction());
10170 using namespace VPlanPatternMatch;
10177 return match(&R, m_VPInstruction<VPInstruction::ResumePhi>(
10185 "vec.epilog.resume.val");
10192 const SCEV2ValueTy &ExpandedSCEVs,
10196 Header->setName(
"vec.epilog.vector.body");
10205 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
10208 auto *ExpandedVal =
10209 Plan.
getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second);
10213 ExpandR->eraseFromParent();
10219 if (
auto *
IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
10226 BasicBlock *MainMiddle = find_singleton<BasicBlock>(
10229 if (BB != EPI.MainLoopIterationCountCheck &&
10230 BB != EPI.EpilogueIterationCountCheck &&
10231 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck)
10236 Type *IdxTy =
IV->getScalarType();
10237 PHINode *EPResumeVal = find_singleton<PHINode>(
10238 L->getLoopPreheader()->phis(),
10240 if (P.getType() == IdxTy &&
10241 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount &&
10243 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck),
10248 assert(EPResumeVal &&
"must have a resume value for the canonical IV");
10252 return isa<VPScalarIVStepsRecipe>(U) ||
10253 isa<VPScalarCastRecipe>(U) ||
10254 isa<VPDerivedIVRecipe>(U) ||
10255 cast<VPInstruction>(U)->getOpcode() ==
10258 "the canonical IV should only be used by its increment or "
10259 "ScalarIVSteps when resetting the start value");
10260 IV->setOperand(0, VPV);
10264 Value *ResumeV =
nullptr;
10266 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10267 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
10268 ->getIncomingValueForBlock(L->getLoopPreheader());
10270 ReductionPhi->getRecurrenceDescriptor();
10277 cast<Instruction>(ResumeV)->
getParent()->getFirstNonPHI());
10284 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
10289 assert(ResumeV &&
"Must have a resume value");
10291 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
10297 "VPlan-native path is not enabled. Only process inner loops.");
10300 << L->getHeader()->getParent()->getName() <<
"' from "
10301 << L->getLocStr() <<
"\n");
10306 dbgs() <<
"LV: Loop hints:"
10317 Function *
F = L->getHeader()->getParent();
10328 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent vectorization.\n");
10339 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
10346 "early exit is not enabled",
10347 "UncountableEarlyExitLoopsDisabled",
ORE, L);
10356 if (!L->isInnermost())
10360 assert(L->isInnermost() &&
"Inner loop expected.");
10370 if (UseInterleaved)
10377 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
10379 "requiring a scalar epilogue is unsupported",
10380 "UncountableEarlyExitUnsupported",
ORE, L);
10394 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
10395 <<
"This loop is worth vectorizing only if no scalar "
10396 <<
"iteration overheads are incurred.");
10398 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10411 LLVM_DEBUG(
dbgs() <<
" But the target considers the trip count too "
10412 "small to consider vectorizing.\n");
10414 "The trip count is below the minial threshold value.",
10415 "loop trip count is too low, avoiding vectorization",
10416 "LowTripCount",
ORE, L);
10425 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10427 "Can't vectorize when the NoImplicitFloat attribute is used",
10428 "loop not vectorized due to NoImplicitFloat attribute",
10429 "NoImplicitFloat",
ORE, L);
10441 "Potentially unsafe FP op prevents vectorization",
10442 "loop not vectorized due to unsafe FP support.",
10443 "UnsafeFP",
ORE, L);
10448 bool AllowOrderedReductions;
10458 ExactFPMathInst->getDebugLoc(),
10459 ExactFPMathInst->getParent())
10460 <<
"loop not vectorized: cannot prove it is safe to reorder "
10461 "floating-point operations";
10463 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10464 "reorder floating-point operations\n");
10470 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10473 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10481 LVP.
plan(UserVF, UserIC);
10488 bool AddBranchWeights =
10490 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(),
10496 unsigned SelectedIC = std::max(IC, UserIC);
10503 bool ForceVectorization =
10505 if (!ForceVectorization &&
10509 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10511 <<
"loop not vectorized: cannot prove it is safe to reorder "
10512 "memory operations";
10521 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10522 bool VectorizeLoop =
true, InterleaveLoop =
true;
10524 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10525 VecDiagMsg = std::make_pair(
10526 "VectorizationNotBeneficial",
10527 "the cost-model indicates that vectorization is not beneficial");
10528 VectorizeLoop =
false;
10534 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10535 "interleaving should be avoided up front\n");
10536 IntDiagMsg = std::make_pair(
10537 "InterleavingAvoided",
10538 "Ignoring UserIC, because interleaving was avoided up front");
10539 InterleaveLoop =
false;
10540 }
else if (IC == 1 && UserIC <= 1) {
10543 IntDiagMsg = std::make_pair(
10544 "InterleavingNotBeneficial",
10545 "the cost-model indicates that interleaving is not beneficial");
10546 InterleaveLoop =
false;
10548 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10549 IntDiagMsg.second +=
10550 " and is explicitly disabled or interleave count is set to 1";
10552 }
else if (IC > 1 && UserIC == 1) {
10555 dbgs() <<
"LV: Interleaving is beneficial but is explicitly disabled.");
10556 IntDiagMsg = std::make_pair(
10557 "InterleavingBeneficialButDisabled",
10558 "the cost-model indicates that interleaving is beneficial "
10559 "but is explicitly disabled or interleave count is set to 1");
10560 InterleaveLoop =
false;
10566 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10567 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10568 <<
"to histogram operations.\n");
10569 IntDiagMsg = std::make_pair(
10570 "HistogramPreventsScalarInterleaving",
10571 "Unable to interleave without vectorization due to constraints on "
10572 "the order of histogram operations");
10573 InterleaveLoop =
false;
10577 IC = UserIC > 0 ? UserIC : IC;
10581 if (!VectorizeLoop && !InterleaveLoop) {
10585 L->getStartLoc(), L->getHeader())
10586 << VecDiagMsg.second;
10590 L->getStartLoc(), L->getHeader())
10591 << IntDiagMsg.second;
10596 if (!VectorizeLoop && InterleaveLoop) {
10600 L->getStartLoc(), L->getHeader())
10601 << VecDiagMsg.second;
10603 }
else if (VectorizeLoop && !InterleaveLoop) {
10605 <<
") in " << L->getLocStr() <<
'\n');
10608 L->getStartLoc(), L->getHeader())
10609 << IntDiagMsg.second;
10611 }
else if (VectorizeLoop && InterleaveLoop) {
10613 <<
") in " << L->getLocStr() <<
'\n');
10617 bool DisableRuntimeUnroll =
false;
10618 MDNode *OrigLoopID = L->getLoopID();
10620 using namespace ore;
10621 if (!VectorizeLoop) {
10622 assert(IC > 1 &&
"interleave count should not be 1 or 0");
10635 <<
"interleaved loop (interleaved count: "
10636 << NV(
"InterleaveCount", IC) <<
")";
10646 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10656 EPI, &LVL, &CM,
BFI,
PSI, Checks,
10659 *BestMainPlan, MainILV,
DT,
false);
10668 Checks, BestEpiPlan);
10673 DT,
true, &ExpandedSCEVs);
10674 ++LoopsEpilogueVectorized;
10677 DisableRuntimeUnroll =
true;
10681 PSI, Checks, BestPlan);
10689 DisableRuntimeUnroll =
true;
10700 "DT not preserved correctly");
10702 std::optional<MDNode *> RemainderLoopID =
10705 if (RemainderLoopID) {
10706 L->setLoopID(*RemainderLoopID);
10708 if (DisableRuntimeUnroll)
10732 bool Changed =
false, CFGChanged =
false;
10739 for (
const auto &L : *
LI)
10740 Changed |= CFGChanged |=
10751 LoopsAnalyzed += Worklist.
size();
10754 while (!Worklist.
empty()) {
10799 if (!Result.MadeAnyChange)
10813 if (Result.MadeCFGChange) {
10829 OS, MapClassName2PassName);
10832 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10833 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
Legalize the Machine IR a function s Machine IR
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addRuntimeUnrollDisableMetaData(Loop *L)
static bool isOptimizableIVOrUse(VPValue *VPV)
Return true if VPV is an optimizable IV or IV use.
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, const TargetTransformInfo &TTI, PredicatedScalarEvolution &PSE, ScalarEpilogueLowering SEL)
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
const char LLVMLoopVectorizeFollowupAll[]
static SetVector< VPIRInstruction * > collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan)
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, SetVector< VPIRInstruction * > &ExitUsersToFix)
Handle users in the exit block for first order reductions in the original exit block.
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, DebugLoc DL)
static std::optional< unsigned > getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI)
Convenience function that returns the value of vscale_range iff vscale_range.min == vscale_range....
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static constexpr uint32_t MemCheckBypassWeights[]
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static VPValue * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static Type * maybeVectorizeType(Type *Elt, ElementCount VF)
static std::optional< unsigned > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count for the specified loop L as defined by the following procedure: 1) Re...
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
const char VerboseDebug[]
static void fixReductionScalarResumeWhenVectorizingEpilog(VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, BasicBlock *BypassBlock)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static constexpr uint32_t SCEVCheckBypassWeights[]
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, const EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static bool useActiveLaneMask(TailFoldingStyle Style)
static unsigned getEstimatedRuntimeVF(const Loop *L, const TargetTransformInfo &TTI, ElementCount VF)
This function attempts to return a value that represents the vectorization factor at runtime.
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static bool addUsersInExitBlocks(VPlan &Plan, const SetVector< VPIRInstruction * > &ExitUsersToFix)
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(false), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
std::pair< uint64_t, uint64_t > Interval
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
int64_t getSExtValue() const
Get sign extended value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (ie the ...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void printDebugTracesAtEnd() override
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the main loop strategy (ie the firs...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State) override
Set up the values of the IVs correctly when exiting the vector loop.
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
ConstantInt * getTrue()
Get the constant value for i1 true.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
virtual BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)=0
The interface for creating a vectorized skeleton using one of two different strategies,...
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
void sinkScalarOperands(Instruction *PredInst)
Iteratively sink the scalarized operands of a predicated instruction into the block that was created ...
const TargetLibraryInfo * TLI
Target Library Info.
virtual void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State)
Set up the values of the IVs correctly when exiting the vector loop.
ElementCount MinProfitableTripCount
const TargetTransformInfo * TTI
Target Transform Info.
Value * VectorTripCount
Trip count of the widened loop (TripCount - TripCount % (VF*UF))
bool areSafetyChecksAdded()
BasicBlock * emitSCEVChecks(BasicBlock *Bypass)
Emit a bypass check to see if all of the SCEV assumptions we've had to make are correct.
virtual BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
LoopVectorizationCostModel * Cost
The profitablity analysis.
BasicBlock * AdditionalBypassBlock
The additional bypass block which conditionally skips over the epilogue loop after executing the main...
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
BasicBlock * LoopMiddleBlock
Middle Block between the vector and the scalar.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
SmallVector< Instruction *, 4 > PredicatedInstructions
Store instructions that were predicated.
DenseMap< PHINode *, Value * > Induction2AdditionalBypassValue
Mapping of induction phis to their additional bypass values.
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
void createVectorLoopSkeleton(StringRef Prefix)
Emit basic blocks (prefixed with Prefix) for the iteration check, vector loop preheader,...
BasicBlock * emitMemRuntimeChecks(BasicBlock *Bypass)
Emit bypass checks to check any memory assumptions we may have made.
BasicBlock * LoopScalarPreHeader
The scalar-loop preheader.
void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
Create and record the values for induction variables to resume coming from the additional bypass bloc...
VPBlockBase * VectorPHVPB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
LoopVectorizationLegality * Legal
The legality analysis.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
void emitIterationCountCheck(BasicBlock *Bypass)
Emit a bypass check to see if the vector trip count is zero, including if it overflows.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
Value * getInductionAdditionalBypassValue(PHINode *OrigPhi) const
induction header phi.
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
bool OptForSizeBasedOnProfile
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
Value * getOrCreateVectorTripCount(BasicBlock *InsertBlock)
Returns (and creates if needed) the trip count of the widened loop.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
unsigned UF
The vectorization unroll factor to use.
SmallVector< BasicBlock *, 4 > LoopBypassBlocks
A list of all bypass blocks. The first block is the entry of the loop.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool requiresScalarEpilogue(VFRange Range) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, TTI::TargetCostKind CostKind) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI)
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallVector< RegisterUsage, 8 > calculateRegisterUsage(ArrayRef< ElementCount > VFs)
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
void collectUniformsAndScalars(ElementCount VF)
Collect Uniform and Scalar values for the given VF.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost)
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
unsigned getNumStores() const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
uint64_t getMaxSafeVectorWidthInBits() const
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
std::optional< const HistogramInfo * > getHistogramInfo(Instruction *I) const
Returns a HistogramInfo* for the given instruction if it was determined to be part of a load -> updat...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
unsigned getNumLoads() const
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
Type * getWidestInductionType()
Returns the widest induction type.
bool hasUncountableEarlyExit() const
Returns true if the loop has an uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block.
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
void prepareNoAliasMetadata()
Set up the aliasing scopes based on the memchecks.
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
bool contains(const KeyT &Key) const
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static unsigned getIncomingValueNumForOperand(unsigned i)
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
Value * getSentinelValue() const
Returns the sentinel value for FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class represents a constant integer value.
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
ArrayRef< value_type > getArrayRef() const
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
value_type pop_back_val()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getFirstLane()
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * createEdgeMask(BasicBlock *Src, BasicBlock *Dst)
A helper function that computes the predicate of the edge between SRC and DST.
VPReplicateRecipe * handleReplication(Instruction *I, VFRange &Range)
Build a VPReplicationRecipe for I.
void createSwitchEdgeMasks(SwitchInst *SI)
Create an edge mask for every destination of cases and/or default.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPValue * getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const
A helper that returns the previously computed predicate of the edge between SRC and DST.
iterator_range< mapped_iterator< Use *, std::function< VPValue *(Value *)> > > mapToVPValues(User::op_range Operands)
Returns a range mapping the values of the range Operands to their corresponding VPValues.
void fixHeaderPhis()
Add the incoming values from the backedge to reduction & first-order recurrence cross-iteration phis.
VPRecipeBase * tryToCreateWidenRecipe(Instruction *Instr, ArrayRef< VPValue * > Operands, VFRange &Range, VPBasicBlock *VPBB)
Create and return a widened recipe for I if one can be created within the given VF Range.
VPValue * getVPValueOrAddLiveIn(Value *V)
void createHeaderMask()
Create the mask for the vector loop header block.
void createBlockInMask(BasicBlock *BB)
A helper function that computes the predicate of the block BB, assuming that the header block of the ...
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
void setFlags(Instruction *I) const
Set the IR flags for I.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
const RecurrenceDescriptor & getRecurrenceDescriptor() const
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
A recipe to compute the pointers for widened memory accesses of IndexTy in reverse order.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void replaceAllUsesWith(VPValue *New)
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for handling phis that are widened in the vector loop.
VPValue * getIncomingValue(unsigned I)
Returns the I th incoming VPValue.
VPBasicBlock * getIncomingBlock(unsigned I)
Returns the I th incoming VPBasicBlock.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Main class to build the VPlan H-CFG for an incoming IR.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
bool hasVF(ElementCount VF)
bool hasUF(unsigned UF) const
auto getExitBlocks()
Return an iterator range over the VPIRBasicBlock wrapping the exit blocks of the VPlan,...
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
void setEntry(VPBasicBlock *VPBB)
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getSCEVExpansion(const SCEV *S) const
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUser() const
Return true if there is exactly one user of this value.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
ID ArrayRef< Type * > Tys
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
const_iterator end(StringRef path)
Get end iterator over path.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
auto pred_end(const MachineBasicBlock *BB)
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
std::pair< Instruction *, ElementCount > InstructionVFPair
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
auto map_range(ContainerTy &&C, FuncTy F)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
cl::opt< bool > EnableLoopVectorization
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
auto pred_begin(const MachineBasicBlock *BB)
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
bool verifyVPlanIsValid(const VPlan &Plan)
Verify invariants for general VPlans.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
BasicBlock * SCEVSafetyCheck
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MemSafetyCheck
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
std::optional< unsigned > MaskPos
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
LoopVectorizeResult runImpl(Function &F)
bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LoopVectorizePass(LoopVectorizeOptions Opts={})
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
A MapVector that performs no allocations if smaller than a certain size.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static bool HoistRuntimeChecks