158#define LV_NAME "loop-vectorize"
159#define DEBUG_TYPE LV_NAME
169 "llvm.loop.vectorize.followup_vectorized";
171 "llvm.loop.vectorize.followup_epilogue";
174STATISTIC(LoopsVectorized,
"Number of loops vectorized");
175STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
176STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
180 cl::desc(
"Enable vectorization of epilogue loops."));
184 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
185 "1 is specified, forces the given VF for all applicable epilogue "
189 "epilogue-vectorization-minimum-VF",
cl::Hidden,
190 cl::desc(
"Only loops with vectorization factor equal to or larger than "
191 "the specified value are considered for epilogue vectorization."));
197 cl::desc(
"Loops with a constant trip count that is smaller than this "
198 "value are vectorized only if no scalar iteration overheads "
203 cl::desc(
"The maximum allowed number of runtime memory checks"));
219 "prefer-predicate-over-epilogue",
222 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
226 "Don't tail-predicate loops, create scalar epilogue"),
228 "predicate-else-scalar-epilogue",
229 "prefer tail-folding, create scalar epilogue if tail "
232 "predicate-dont-vectorize",
233 "prefers tail-folding, don't attempt vectorization if "
234 "tail-folding fails.")));
237 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
240 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
242 TailFoldingStyle::Data,
"data",
243 "Create lane mask for data only, using active.lane.mask intrinsic"),
244 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
245 "data-without-lane-mask",
246 "Create lane mask with compare/stepvector"),
247 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
248 "Create lane mask using active.lane.mask intrinsic, and use "
249 "it for both data and control flow"),
250 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
251 "data-and-control-without-rt-check",
252 "Similar to data-and-control, but remove the runtime check"),
253 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
254 "Use predicated EVL instructions for tail folding. If EVL "
255 "is unsupported, fallback to data-without-lane-mask.")));
259 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
264 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
270 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
274 cl::desc(
"A flag that overrides the target's number of scalar registers."));
278 cl::desc(
"A flag that overrides the target's number of vector registers."));
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
287 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
292 cl::desc(
"A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
305 "The cost of a loop that is considered 'small' by the interleaver."));
309 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
317 "Enable runtime interleaving until load/store ports are saturated"));
322 cl::desc(
"Max number of stores to be predicated behind an if."));
326 cl::desc(
"Count the induction variable only once when interleaving"));
330 cl::desc(
"Enable if predication of stores during vectorization."));
334 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
340 cl::desc(
"Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
345 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
351 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
367 "Build VPlan for every supported loop nest in the function and bail "
368 "out right after the build (stress test the VPlan H-CFG construction "
369 "in the VPlan-native vectorization path)."));
373 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
376 cl::desc(
"Run the Loop vectorization passes"));
379 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
381 "Override cost based safe divisor widening for div/rem instructions"));
384 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
386 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
391 "Enable vectorization of early exit loops with uncountable exits."));
410 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
419static std::optional<unsigned>
421 bool CanUseConstantMax =
true) {
431 if (!CanUseConstantMax)
443class GeneratedRTChecks;
534 Value *MainVectorTripCount =
nullptr);
554 "Trying to access AdditionalBypassBlock but it has not been set");
600 Value *MainVectorTripCount =
nullptr,
726 "A high UF for the epilogue loop is likely not beneficial.");
748 EPI.MainLoopVF,
EPI.MainLoopVF,
EPI.MainLoopUF, LVL,
847 if (
I->getDebugLoc() != Empty)
848 return I->getDebugLoc();
850 for (
Use &
Op :
I->operands()) {
852 if (OpInst->getDebugLoc() != Empty)
853 return OpInst->getDebugLoc();
856 return I->getDebugLoc();
865 dbgs() <<
"LV: " << Prefix << DebugMsg;
887 if (
I &&
I->getDebugLoc())
888 DL =
I->getDebugLoc();
906 return B.CreateElementCount(Ty, VF);
917 <<
"loop not vectorized: " << OREMsg);
940 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
946 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
948 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
1094 "Profitable to scalarize relevant only for VF > 1.");
1097 "cost-model should not be used for outer loops (in VPlan-native path)");
1099 auto Scalars = InstsToScalarize.find(VF);
1100 assert(Scalars != InstsToScalarize.end() &&
1101 "VF not yet analyzed for scalarization profitability");
1102 return Scalars->second.contains(
I);
1109 "cost-model should not be used for outer loops (in VPlan-native path)");
1113 if (isa<PseudoProbeInst>(
I))
1119 auto UniformsPerVF = Uniforms.find(VF);
1120 assert(UniformsPerVF != Uniforms.end() &&
1121 "VF not yet analyzed for uniformity");
1122 return UniformsPerVF->second.count(
I);
1129 "cost-model should not be used for outer loops (in VPlan-native path)");
1133 auto ScalarsPerVF = Scalars.find(VF);
1134 assert(ScalarsPerVF != Scalars.end() &&
1135 "Scalar values are not calculated for VF");
1136 return ScalarsPerVF->second.count(
I);
1142 return VF.
isVector() && MinBWs.contains(
I) &&
1164 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W,
Cost);
1186 WideningDecisions[std::make_pair(
I, VF)] =
1187 std::make_pair(W, InsertPosCost);
1189 WideningDecisions[std::make_pair(
I, VF)] =
1190 std::make_pair(W, OtherMemberCost);
1202 "cost-model should not be used for outer loops (in VPlan-native path)");
1204 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1205 auto Itr = WideningDecisions.
find(InstOnVF);
1206 if (Itr == WideningDecisions.
end())
1208 return Itr->second.first;
1215 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1217 "The cost is not calculated");
1218 return WideningDecisions[InstOnVF].second;
1231 std::optional<unsigned> MaskPos,
1234 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
1241 return CallWideningDecisions.
at(std::make_pair(CI, VF));
1249 auto *Trunc = dyn_cast<TruncInst>(
I);
1262 Value *
Op = Trunc->getOperand(0);
1282 if (VF.
isScalar() || Uniforms.contains(VF))
1285 collectLoopUniforms(VF);
1287 collectLoopScalars(VF);
1307 bool LI = isa<LoadInst>(V);
1308 bool SI = isa<StoreInst>(V);
1323 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1324 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1335 return ScalarCost < SafeDivisorCost;
1359 std::pair<InstructionCost, InstructionCost>
1387 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1394 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1395 "from latch block\n");
1400 "interleaved group requires scalar epilogue\n");
1403 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1412 auto RequiresScalarEpilogue = [
this](
ElementCount VF) {
1415 bool IsRequired =
all_of(
Range, RequiresScalarEpilogue);
1417 (IsRequired ||
none_of(
Range, RequiresScalarEpilogue)) &&
1418 "all VFs in range must agree on whether a scalar epilogue is required");
1430 if (!ChosenTailFoldingStyle)
1432 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1433 : ChosenTailFoldingStyle->second;
1441 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1443 ChosenTailFoldingStyle =
1449 ChosenTailFoldingStyle = std::make_pair(
1463 bool EVLIsLegal = UserIC <= 1 &&
1470 ChosenTailFoldingStyle =
1475 <<
"LV: Preference for VP intrinsics indicated. Will "
1476 "not try to generate VP Intrinsics "
1478 ?
"since interleave count specified is greater than 1.\n"
1479 :
"due to non-interleaving reasons.\n"));
1514 return InLoopReductions.contains(Phi);
1541 WideningDecisions.
clear();
1542 CallWideningDecisions.
clear();
1561 const unsigned IC)
const;
1569 std::optional<InstructionCost>
1578 unsigned NumPredStores = 0;
1587 bool FoldTailByMasking);
1592 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1593 unsigned SmallestType,
1594 unsigned WidestType,
1596 bool FoldTailByMasking);
1600 bool isScalableVectorizationAllowed();
1604 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1650 PredicatedBBsAfterVectorization;
1663 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1664 ChosenTailFoldingStyle;
1667 std::optional<bool> IsScalableVectorizationAllowed;
1673 std::optional<unsigned> MaxSafeElements;
1707 ScalarCostsTy &ScalarCosts,
1733 std::pair<InstWidening, InstructionCost>>;
1735 DecisionList WideningDecisions;
1737 using CallDecisionList =
1740 CallDecisionList CallWideningDecisions;
1763 Ops, [
this, VF](
Value *V) {
return this->needsExtract(V, VF); }));
1821class GeneratedRTChecks {
1827 Value *SCEVCheckCond =
nullptr;
1835 Value *MemRuntimeCheckCond =
nullptr;
1844 bool CostTooHigh =
false;
1845 const bool AddBranchWeights;
1847 Loop *OuterLoop =
nullptr;
1855 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1856 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"),
1857 AddBranchWeights(AddBranchWeights), PSE(PSE) {}
1885 nullptr,
"vector.scevcheck");
1892 if (RtPtrChecking.Need) {
1893 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1894 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1897 auto DiffChecks = RtPtrChecking.getDiffChecks();
1899 Value *RuntimeVF =
nullptr;
1904 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1910 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1913 assert(MemRuntimeCheckCond &&
1914 "no RT checks generated although RtPtrChecking "
1915 "claimed checks are required");
1918 if (!MemCheckBlock && !SCEVCheckBlock)
1928 if (SCEVCheckBlock) {
1933 if (MemCheckBlock) {
1940 if (MemCheckBlock) {
1944 if (SCEVCheckBlock) {
1950 OuterLoop =
L->getParentLoop();
1954 if (SCEVCheckBlock || MemCheckBlock)
1967 if (SCEVCheckBlock->getTerminator() == &
I)
1974 if (MemCheckBlock) {
1977 if (MemCheckBlock->getTerminator() == &
I)
2000 unsigned BestTripCount = 2;
2004 PSE, OuterLoop,
false))
2005 BestTripCount = *EstimatedTC;
2007 BestTripCount = std::max(BestTripCount, 1U);
2011 NewMemCheckCost = std::max(*NewMemCheckCost.
getValue(),
2014 if (BestTripCount > 1)
2016 <<
"We expect runtime memory checks to be hoisted "
2017 <<
"out of the outer loop. Cost reduced from "
2018 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2020 MemCheckCost = NewMemCheckCost;
2024 RTCheckCost += MemCheckCost;
2027 if (SCEVCheckBlock || MemCheckBlock)
2028 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2036 ~GeneratedRTChecks() {
2040 SCEVCleaner.markResultUsed();
2042 if (!MemRuntimeCheckCond)
2043 MemCheckCleaner.markResultUsed();
2045 if (MemRuntimeCheckCond) {
2046 auto &SE = *MemCheckExp.
getSE();
2053 I.eraseFromParent();
2056 MemCheckCleaner.cleanup();
2057 SCEVCleaner.cleanup();
2060 SCEVCheckBlock->eraseFromParent();
2061 if (MemRuntimeCheckCond)
2062 MemCheckBlock->eraseFromParent();
2075 SCEVCheckCond =
nullptr;
2076 if (
auto *
C = dyn_cast<ConstantInt>(
Cond))
2087 SCEVCheckBlock->getTerminator()->eraseFromParent();
2088 SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2089 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2096 if (AddBranchWeights)
2099 return SCEVCheckBlock;
2108 if (!MemRuntimeCheckCond)
2117 MemCheckBlock->moveBefore(LoopVectorPreHeader);
2124 if (AddBranchWeights) {
2128 MemCheckBlock->getTerminator()->setDebugLoc(
2129 Pred->getTerminator()->getDebugLoc());
2132 MemRuntimeCheckCond =
nullptr;
2133 return MemCheckBlock;
2139 return Style == TailFoldingStyle::Data ||
2140 Style == TailFoldingStyle::DataAndControlFlow ||
2141 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2145 return Style == TailFoldingStyle::DataAndControlFlow ||
2146 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2176 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2182 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2202 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2212 for (
Loop *InnerL : L)
2234 ?
B.CreateSExtOrTrunc(Index, StepTy)
2235 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2236 if (CastedIndex != Index) {
2238 Index = CastedIndex;
2248 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2249 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2252 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2255 return B.CreateAdd(
X,
Y);
2261 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2262 "Types don't match!");
2263 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2266 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2269 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2270 if (XVTy && !isa<VectorType>(
Y->getType()))
2271 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2272 return B.CreateMul(
X,
Y);
2275 switch (InductionKind) {
2277 assert(!isa<VectorType>(Index->getType()) &&
2278 "Vector indices not supported for integer inductions yet");
2280 "Index type does not match StartValue type");
2281 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2282 return B.CreateSub(StartValue, Index);
2287 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2289 assert(!isa<VectorType>(Index->getType()) &&
2290 "Vector indices not supported for FP inductions yet");
2293 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2294 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2295 "Original bin op should be defined for FP induction");
2297 Value *MulExp =
B.CreateFMul(Step, Index);
2298 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2312 if (
F.hasFnAttribute(Attribute::VScaleRange))
2313 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2315 return std::nullopt;
2324 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2326 unsigned MaxUF = UF ? *UF :
Cost->TTI.getMaxInterleaveFactor(VF);
2328 Type *IdxTy =
Cost->Legal->getWidestInductionType();
2329 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
2334 if (
unsigned TC =
Cost->PSE.getSmallConstantMaxTripCount()) {
2337 std::optional<unsigned> MaxVScale =
2341 MaxVF *= *MaxVScale;
2344 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2365 assert(!Instr->getType()->isAggregateType() &&
"Can't handle vectors");
2368 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2372 Cloned->
setName(Instr->getName() +
".cloned");
2377 "inferred type and type from generated instructions do not match");
2383 if (
auto DL = Instr->getDebugLoc())
2389 auto InputLane = Lane;
2400 State.
set(RepRecipe, Cloned, Lane);
2403 if (
auto *
II = dyn_cast<AssumeInst>(Cloned))
2408 bool IfPredicateInstr = Parent ? Parent->
isReplicator() :
false;
2411 return Op->isDefinedOutsideLoopRegions();
2413 "Expected a recipe is either within a region or all of its operands "
2414 "are defined outside the vectorized region.");
2415 if (IfPredicateInstr)
2439 if (
Cost->foldTailByMasking()) {
2441 "VF*UF must be a power of 2 when folding tail by masking");
2479 "Unexpected successor");
2482 PreVectorPH = CheckVPIRBB;
2506 auto CreateStep = [&]() ->
Value * {
2521 Value *Step = CreateStep();
2532 TripCountSCEV, SE.
getSCEV(Step))) {
2545 Value *MaxUIntTripCount =
2546 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2560 "TC check is expected to dominate Bypass");
2576 if (!SCEVCheckBlock)
2582 "Cannot SCEV check stride or overflow when optimizing for size");
2584 "Should already be a bypass block due to iteration count check");
2589 return SCEVCheckBlock;
2608 "Cannot emit memory checks when optimizing for size, unless forced "
2614 <<
"Code-size may be reduced by not forcing "
2615 "vectorization, or by source-code modifications "
2616 "eliminating the need for runtime checks "
2617 "(e.g., adding 'restrict').";
2626 return MemCheckBlock;
2634 "loops not exiting via the latch without required epilogue?");
2638 LI,
nullptr,
Twine(Prefix) +
"middle.block");
2641 nullptr,
Twine(Prefix) +
"scalar.ph");
2647 Value *MainVectorTripCount) {
2650 auto *OrigPhi = cast<PHINode>(&InductionPhiRI->
getInstruction());
2657 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
2659 if (OrigPhi != OldInduction) {
2663 if (isa_and_nonnull<FPMathOperator>(
II.getInductionBinOp()))
2664 B.setFastMathFlags(
II.getInductionBinOp()->getFastMathFlags());
2667 Step,
II.getKind(),
II.getInductionBinOp());
2671 if (MainVectorTripCount) {
2674 EndValueFromAdditionalBypass =
2676 II.getKind(),
II.getInductionBinOp());
2677 EndValueFromAdditionalBypass->
setName(
"ind.end");
2684 OrigPhi->getDebugLoc(),
"bc.resume.val");
2686 "InductionPhiRI should not have any operands");
2689 if (EndValueFromAdditionalBypass) {
2694 "entry for OrigPhi already exits");
2702 const SCEV2ValueTy &ExpandedSCEVs) {
2703 const SCEV *Step =
ID.getStep();
2704 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2705 return C->getValue();
2706 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2707 return U->getValue();
2708 auto I = ExpandedSCEVs.find(Step);
2709 assert(
I != ExpandedSCEVs.end() &&
"SCEV must be expanded at this point");
2719 auto *Cmp = L->getLatchCmpInst();
2721 InstsToIgnore.
insert(Cmp);
2722 for (
const auto &KV : IL) {
2729 cast<Instruction>(
IV->getIncomingValueForBlock(L->getLoopLatch()));
2731 [&](
const User *U) { return U == IV || U == Cmp; }))
2732 InstsToIgnore.
insert(IVInst);
2737 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
2747 bool HasCanonical =
false;
2749 auto *PhiR = cast<VPIRInstruction>(&R);
2750 auto *Phi = dyn_cast<PHINode>(&PhiR->getInstruction());
2754 (IVSubset && !IVSubset->
contains(Phi)))
2759 MainVectorTripCount);
2760 auto *ConstStart = dyn_cast<ConstantInt>(
II.getStartValue());
2761 auto *ConstStep =
II.getConstIntStepValue();
2763 ConstStart->isZero() && ConstStep && ConstStep->isOne())
2764 HasCanonical =
true;
2767 if (!IVSubset || HasCanonical)
2775 {},
"vec.epilog.resume.val");
2779 const SCEV2ValueTy &ExpandedSCEVs) {
2847 Value *VectorTripCount,
2859 ->getIncomingValueForBlock(MiddleBlock);
2867 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2868 MissingVals[UI] = EndValue;
2876 auto *UI = cast<Instruction>(U);
2878 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2882 if (isa_and_nonnull<FPMathOperator>(
II.getInductionBinOp()))
2883 B.setFastMathFlags(
II.getInductionBinOp()->getFastMathFlags());
2886 assert(StepVPV &&
"step must have been expanded during VPlan execution");
2889 Value *Escape =
nullptr;
2891 Escape =
B.CreateSub(EndValue, Step);
2893 Escape =
B.CreatePtrAdd(EndValue,
B.CreateNeg(Step));
2896 "Unexpected induction type");
2897 Escape =
B.CreateBinOp(
II.getInductionBinOp()->getOpcode() ==
2900 : Instruction::FAdd,
2903 Escape->
setName(
"ind.escape");
2904 MissingVals[UI] = Escape;
2910 [MiddleBlock,
this](
const std::pair<Value *, Value *> &
P) {
2914 return Pred == MiddleBlock ||
2915 Pred == OrigLoop->getLoopLatch();
2918 "Expected escaping values from latch/middle.block only");
2920 for (
auto &
I : MissingVals) {
2927 if (
PHI->getBasicBlockIndex(MiddleBlock) == -1)
2928 PHI->addIncoming(
I.second, MiddleBlock);
2934struct CSEDenseMapInfo {
2936 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2937 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2949 assert(canHandle(
I) &&
"Unknown instruction!");
2951 I->value_op_end()));
2955 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2956 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2958 return LHS->isIdenticalTo(
RHS);
2969 if (!CSEDenseMapInfo::canHandle(&In))
2975 In.replaceAllUsesWith(V);
2976 In.eraseFromParent();
2990 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
2999 for (
auto &ArgOp : CI->
args())
3000 Tys.push_back(ArgOp->getType());
3008 return std::min(ScalarCallCost, IntrinsicCost);
3010 return ScalarCallCost;
3023 assert(
ID &&
"Expected intrinsic call!");
3026 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
3027 FMF = FPMO->getFastMathFlags();
3033 std::back_inserter(ParamTys),
3034 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
3037 dyn_cast<IntrinsicInst>(CI));
3059 while (PredVPBB && PredVPBB != VectorRegion) {
3073 for (
PHINode &PN : Exit->phis())
3135 auto IsBlockOfUsePredicated = [&](
Use &U) ->
bool {
3136 auto *
I = cast<Instruction>(U.getUser());
3138 if (
auto *Phi = dyn_cast<PHINode>(
I))
3139 BB = Phi->getIncomingBlock(
3141 return BB == PredBB;
3152 Worklist.
insert(InstsToReanalyze.
begin(), InstsToReanalyze.
end());
3153 InstsToReanalyze.
clear();
3156 while (!Worklist.
empty()) {
3163 if (!
I || isa<PHINode>(
I) || !VectorLoop->contains(
I) ||
3164 I->mayHaveSideEffects() ||
I->mayReadFromMemory())
3172 if (
I->getParent() == PredBB) {
3173 Worklist.
insert(
I->op_begin(),
I->op_end());
3187 I->moveBefore(&*PredBB->getFirstInsertionPt());
3188 Worklist.
insert(
I->op_begin(),
I->op_end());
3199 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3204 PHINode *NewPhi = cast<PHINode>(State.
get(VPPhi));
3216void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
3221 "This function should not be visited twice for the same VF");
3227 Scalars[VF].
insert(Uniforms[VF].begin(), Uniforms[VF].end());
3246 "Widening decision should be ready at this moment");
3247 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
3248 if (
Ptr == Store->getValueOperand())
3251 "Ptr is neither a value or pointer operand");
3257 auto IsLoopVaryingGEP = [&](
Value *
V) {
3268 if (!IsLoopVaryingGEP(
Ptr))
3273 auto *
I = cast<Instruction>(
Ptr);
3280 if (IsScalarUse(MemAccess,
Ptr) &&
3281 all_of(
I->users(), IsaPred<LoadInst, StoreInst>))
3284 PossibleNonScalarPtrs.
insert(
I);
3301 for (
auto &
I : *BB) {
3302 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
3303 EvaluatePtrUse(Load,
Load->getPointerOperand());
3304 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
3305 EvaluatePtrUse(Store,
Store->getPointerOperand());
3306 EvaluatePtrUse(Store,
Store->getValueOperand());
3309 for (
auto *
I : ScalarPtrs)
3310 if (!PossibleNonScalarPtrs.
count(
I)) {
3318 auto ForcedScalar = ForcedScalars.
find(VF);
3319 if (ForcedScalar != ForcedScalars.
end())
3320 for (
auto *
I : ForcedScalar->second) {
3321 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
3330 while (
Idx != Worklist.
size()) {
3332 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
3334 auto *Src = cast<Instruction>(Dst->getOperand(0));
3336 auto *J = cast<Instruction>(U);
3337 return !TheLoop->contains(J) || Worklist.count(J) ||
3338 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
3339 IsScalarUse(J, Src));
3342 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
3349 auto *Ind = Induction.first;
3350 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3359 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
3361 return Induction.second.getKind() ==
3363 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
3369 bool ScalarInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3370 auto *I = cast<Instruction>(U);
3371 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3372 IsDirectLoadStoreFromPtrIndvar(Ind, I);
3380 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
3386 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3387 auto *I = cast<Instruction>(U);
3388 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3389 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
3391 if (!ScalarIndUpdate)
3396 Worklist.
insert(IndUpdate);
3397 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
3398 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
3412 switch(
I->getOpcode()) {
3415 case Instruction::Call:
3418 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(
I), VF))
3420 case Instruction::Load:
3421 case Instruction::Store: {
3433 case Instruction::UDiv:
3434 case Instruction::SDiv:
3435 case Instruction::SRem:
3436 case Instruction::URem: {
3454 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
3467 switch(
I->getOpcode()) {
3470 "instruction should have been considered by earlier checks");
3471 case Instruction::Call:
3475 "should have returned earlier for calls not needing a mask");
3477 case Instruction::Load:
3480 case Instruction::Store: {
3488 case Instruction::UDiv:
3489 case Instruction::SDiv:
3490 case Instruction::SRem:
3491 case Instruction::URem:
3497std::pair<InstructionCost, InstructionCost>
3500 assert(
I->getOpcode() == Instruction::UDiv ||
3501 I->getOpcode() == Instruction::SDiv ||
3502 I->getOpcode() == Instruction::SRem ||
3503 I->getOpcode() == Instruction::URem);
3514 ScalarizationCost = 0;
3529 ScalarizationCost += getScalarizationOverhead(
I, VF,
CostKind);
3543 Instruction::Select, VecTy,
3549 Value *Op2 =
I->getOperand(1);
3558 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
3560 return {ScalarizationCost, SafeDivisorCost};
3567 "Decision should not be set yet.");
3569 assert(Group &&
"Must have a group.");
3570 unsigned InterleaveFactor = Group->getFactor();
3574 auto &
DL =
I->getDataLayout();
3582 if (VF.
isScalable() && InterleaveFactor != 2)
3587 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3588 for (
unsigned Idx = 0;
Idx < InterleaveFactor;
Idx++) {
3593 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
3595 if (MemberNI != ScalarNI)
3598 if (MemberNI && ScalarNI &&
3599 ScalarTy->getPointerAddressSpace() !=
3600 MemberTy->getPointerAddressSpace())
3609 bool PredicatedAccessRequiresMasking =
3612 bool LoadAccessWithGapsRequiresEpilogMasking =
3613 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3615 bool StoreAccessWithGapsRequiresMasking =
3616 isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor());
3617 if (!PredicatedAccessRequiresMasking &&
3618 !LoadAccessWithGapsRequiresEpilogMasking &&
3619 !StoreAccessWithGapsRequiresMasking)
3626 "Masked interleave-groups for predicated accesses are not enabled.");
3628 if (Group->isReverse())
3640 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3656 auto &
DL =
I->getDataLayout();
3663void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3670 "This function should not be visited twice for the same VF");
3674 Uniforms[VF].
clear();
3682 auto IsOutOfScope = [&](
Value *V) ->
bool {
3694 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3695 if (IsOutOfScope(
I)) {
3702 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3706 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3719 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3721 AddToWorklistIfAllowed(Cmp);
3730 if (PrevVF.isVector()) {
3731 auto Iter = Uniforms.
find(PrevVF);
3732 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3737 if (isa<LoadInst>(
I))
3748 "Widening decision should be ready at this moment");
3750 if (IsUniformMemOpUse(
I))
3753 return (WideningDecision ==
CM_Widen ||
3762 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3778 for (
auto &
I : *BB) {
3780 switch (
II->getIntrinsicID()) {
3781 case Intrinsic::sideeffect:
3782 case Intrinsic::experimental_noalias_scope_decl:
3783 case Intrinsic::assume:
3784 case Intrinsic::lifetime_start:
3785 case Intrinsic::lifetime_end:
3787 AddToWorklistIfAllowed(&
I);
3796 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3797 assert(IsOutOfScope(EVI->getAggregateOperand()) &&
3798 "Expected aggregate value to be loop invariant");
3799 AddToWorklistIfAllowed(EVI);
3808 if (IsUniformMemOpUse(&
I))
3809 AddToWorklistIfAllowed(&
I);
3811 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3818 for (
auto *V : HasUniformUse) {
3819 if (IsOutOfScope(V))
3821 auto *
I = cast<Instruction>(V);
3822 bool UsersAreMemAccesses =
all_of(
I->users(), [&](
User *U) ->
bool {
3823 auto *UI = cast<Instruction>(U);
3824 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3826 if (UsersAreMemAccesses)
3827 AddToWorklistIfAllowed(
I);
3834 while (
Idx != Worklist.
size()) {
3837 for (
auto *OV :
I->operand_values()) {
3839 if (IsOutOfScope(OV))
3843 auto *
OP = dyn_cast<PHINode>(OV);
3848 auto *OI = cast<Instruction>(OV);
3850 auto *J = cast<Instruction>(U);
3851 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3853 AddToWorklistIfAllowed(OI);
3865 auto *Ind = Induction.first;
3866 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3870 bool UniformInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3871 auto *I = cast<Instruction>(U);
3872 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3873 IsVectorizedMemAccessUse(I, Ind);
3880 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3881 auto *I = cast<Instruction>(U);
3882 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3883 IsVectorizedMemAccessUse(I, IndUpdate);
3885 if (!UniformIndUpdate)
3889 AddToWorklistIfAllowed(Ind);
3890 AddToWorklistIfAllowed(IndUpdate);
3901 "runtime pointer checks needed. Enable vectorization of this "
3902 "loop with '#pragma clang loop vectorize(enable)' when "
3903 "compiling with -Os/-Oz",
3904 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3910 "runtime SCEV checks needed. Enable vectorization of this "
3911 "loop with '#pragma clang loop vectorize(enable)' when "
3912 "compiling with -Os/-Oz",
3913 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3920 "runtime stride == 1 checks needed. Enable vectorization of "
3921 "this loop without such check by compiling with -Os/-Oz",
3922 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3929bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3930 if (IsScalableVectorizationAllowed)
3931 return *IsScalableVectorizationAllowed;
3933 IsScalableVectorizationAllowed =
false;
3939 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3943 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3946 std::numeric_limits<ElementCount::ScalarTy>::max());
3957 "Scalable vectorization not supported for the reduction "
3958 "operations found in this loop.",
3970 "for all element types found in this loop.",
3977 "for safe distance analysis.",
3982 IsScalableVectorizationAllowed =
true;
3987LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3988 if (!isScalableVectorizationAllowed())
3992 std::numeric_limits<ElementCount::ScalarTy>::max());
3994 return MaxScalableVF;
4002 "Max legal vector width too small, scalable vectorization "
4006 return MaxScalableVF;
4010 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
4012 unsigned SmallestType, WidestType;
4019 unsigned MaxSafeElements =
4023 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4025 this->MaxSafeElements = MaxSafeElements;
4027 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
4029 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
4034 auto MaxSafeUserVF =
4035 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4052 <<
" is unsafe, clamping to max safe VF="
4053 << MaxSafeFixedVF <<
".\n");
4058 <<
"User-specified vectorization factor "
4059 <<
ore::NV(
"UserVectorizationFactor", UserVF)
4060 <<
" is unsafe, clamping to maximum safe vectorization factor "
4061 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
4063 return MaxSafeFixedVF;
4068 <<
" is ignored because scalable vectors are not "
4074 <<
"User-specified vectorization factor "
4075 <<
ore::NV(
"UserVectorizationFactor", UserVF)
4076 <<
" is ignored because the target does not support scalable "
4077 "vectors. The compiler will pick a more suitable value.";
4081 <<
" is unsafe. Ignoring scalable UserVF.\n");
4086 <<
"User-specified vectorization factor "
4087 <<
ore::NV(
"UserVectorizationFactor", UserVF)
4088 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
4089 "more suitable value.";
4094 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
4095 <<
" / " << WidestType <<
" bits.\n");
4100 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4101 MaxSafeFixedVF, FoldTailByMasking))
4105 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4106 MaxSafeScalableVF, FoldTailByMasking))
4107 if (MaxVF.isScalable()) {
4108 Result.ScalableVF = MaxVF;
4109 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
4122 "Not inserting runtime ptr check for divergent target",
4123 "runtime pointer checks needed. Not enabled for divergent target",
4124 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
4132 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
4135 "loop trip count is one, irrelevant for vectorization",
4140 switch (ScalarEpilogueStatus) {
4142 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4147 dbgs() <<
"LV: vector predicate hint/switch found.\n"
4148 <<
"LV: Not allowing scalar epilogue, creating predicated "
4149 <<
"vector loop.\n");
4156 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4158 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
4177 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4178 "scalar epilogue instead.\n");
4180 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4191 "No decisions should have been taken at this point");
4201 std::optional<unsigned> MaxPowerOf2RuntimeVF =
4206 MaxPowerOf2RuntimeVF = std::max<unsigned>(
4207 *MaxPowerOf2RuntimeVF,
4210 MaxPowerOf2RuntimeVF = std::nullopt;
4213 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
4215 "MaxFixedVF must be a power of 2");
4216 unsigned MaxVFtimesIC =
4217 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
4225 "Invalid loop count");
4227 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
4233 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
4247 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
4248 "try to generate VP Intrinsics with scalable vector "
4254 "Expected scalable vector factor.");
4264 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4265 "scalar epilogue instead.\n");
4271 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
4277 "unable to calculate the loop count due to complex control flow",
4283 "Cannot optimize for size and vectorize at the same time.",
4284 "cannot optimize for size and vectorize at the same time. "
4285 "Enable vectorization of this loop with '#pragma clang loop "
4286 "vectorize(enable)' when compiling with -Os/-Oz",
4291ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
4292 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
4294 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
4302 "Scalable flags must match");
4310 ComputeScalableMaxVF);
4311 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
4313 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
4315 if (!MaxVectorElementCount) {
4317 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
4318 <<
" vector registers.\n");
4322 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
4323 if (MaxVectorElementCount.isScalable() &&
4327 WidestRegisterMinEC *= Min;
4336 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC &&
4344 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
4345 "exceeding the constant trip count: "
4346 << ClampedUpperTripCount <<
"\n");
4348 ClampedUpperTripCount,
4349 FoldTailByMasking ? MaxVectorElementCount.isScalable() :
false);
4362 ComputeScalableMaxVF);
4363 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
4377 for (
int I = RUs.size() - 1;
I >= 0; --
I) {
4378 const auto &MLU = RUs[
I].MaxLocalUsers;
4379 if (
all_of(MLU, [&](
decltype(MLU.front()) &LU) {
4380 return LU.second <= TTI.getNumberOfRegisters(LU.first);
4390 <<
") with target's minimum: " << MinVF <<
'\n');
4406static std::optional<unsigned>
4408 const Function *Fn = L->getHeader()->getParent();
4412 auto Max = Attr.getVScaleRangeMax();
4413 if (Max && Min == Max)
4430 EstimatedVF *= *VScale;
4431 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
4435bool LoopVectorizationPlanner::isMoreProfitable(
4437 const unsigned MaxTripCount)
const {
4442 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
4443 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
4445 if (
A.Width.isScalable())
4446 EstimatedWidthA *= *VScale;
4447 if (
B.Width.isScalable())
4448 EstimatedWidthB *= *VScale;
4455 A.Width.isScalable() && !
B.Width.isScalable();
4466 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
4468 auto GetCostForTC = [MaxTripCount,
this](
unsigned VF,
4480 return VectorCost *
divideCeil(MaxTripCount, VF);
4481 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF);
4484 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
4485 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
4486 return CmpFn(RTCostA, RTCostB);
4489bool LoopVectorizationPlanner::isMoreProfitable(
4492 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount);
4497 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
4499 for (
const auto &Plan : VPlans) {
4503 precomputeCosts(*Plan, VF, CostCtx);
4505 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4506 for (
auto &R : *VPBB) {
4507 if (!R.cost(VF, CostCtx).isValid())
4513 if (InvalidCosts.
empty())
4521 for (
auto &Pair : InvalidCosts)
4522 if (!Numbering.
count(Pair.first))
4523 Numbering[Pair.first] =
I++;
4526 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4527 if (Numbering[
A.first] != Numbering[
B.first])
4528 return Numbering[
A.first] < Numbering[
B.first];
4529 const auto &
LHS =
A.second;
4530 const auto &
RHS =
B.second;
4531 return std::make_tuple(
LHS.isScalable(),
LHS.getKnownMinValue()) <
4532 std::make_tuple(
RHS.isScalable(),
RHS.getKnownMinValue());
4544 Subset =
Tail.take_front(1);
4551 [](
const auto *R) {
return Instruction::PHI; })
4552 .Case<VPWidenSelectRecipe>(
4553 [](
const auto *R) {
return Instruction::Select; })
4554 .Case<VPWidenStoreRecipe>(
4555 [](
const auto *R) {
return Instruction::Store; })
4556 .Case<VPWidenLoadRecipe>(
4557 [](
const auto *R) {
return Instruction::Load; })
4558 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4559 [](
const auto *R) {
return Instruction::Call; })
4562 [](
const auto *R) {
return R->getOpcode(); })
4564 return R->getStoredValues().empty() ? Instruction::Load
4565 : Instruction::Store;
4573 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4574 std::string OutString;
4576 assert(!Subset.empty() &&
"Unexpected empty range");
4577 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4578 for (
const auto &Pair : Subset)
4579 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4581 if (Opcode == Instruction::Call) {
4583 if (
auto *
Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4584 Name =
Int->getIntrinsicName();
4586 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4588 WidenCall ? WidenCall->getCalledScalarFunction()
4589 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4590 ->getLiveInIRValue());
4593 OS <<
" call to " <<
Name;
4598 Tail =
Tail.drop_front(Subset.size());
4602 Subset =
Tail.take_front(Subset.size() + 1);
4603 }
while (!
Tail.empty());
4616 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4625 switch (R.getVPDefID()) {
4626 case VPDef::VPDerivedIVSC:
4627 case VPDef::VPScalarIVStepsSC:
4628 case VPDef::VPScalarCastSC:
4629 case VPDef::VPReplicateSC:
4630 case VPDef::VPInstructionSC:
4631 case VPDef::VPCanonicalIVPHISC:
4632 case VPDef::VPVectorPointerSC:
4633 case VPDef::VPReverseVectorPointerSC:
4634 case VPDef::VPExpandSCEVSC:
4635 case VPDef::VPEVLBasedIVPHISC:
4636 case VPDef::VPPredInstPHISC:
4637 case VPDef::VPBranchOnMaskSC:
4639 case VPDef::VPReductionSC:
4640 case VPDef::VPActiveLaneMaskPHISC:
4641 case VPDef::VPWidenCallSC:
4642 case VPDef::VPWidenCanonicalIVSC:
4643 case VPDef::VPWidenCastSC:
4644 case VPDef::VPWidenGEPSC:
4645 case VPDef::VPWidenIntrinsicSC:
4646 case VPDef::VPWidenSC:
4647 case VPDef::VPWidenSelectSC:
4648 case VPDef::VPBlendSC:
4649 case VPDef::VPFirstOrderRecurrencePHISC:
4650 case VPDef::VPWidenPHISC:
4651 case VPDef::VPWidenIntOrFpInductionSC:
4652 case VPDef::VPWidenPointerInductionSC:
4653 case VPDef::VPReductionPHISC:
4654 case VPDef::VPInterleaveSC:
4655 case VPDef::VPWidenLoadEVLSC:
4656 case VPDef::VPWidenLoadSC:
4657 case VPDef::VPWidenStoreEVLSC:
4658 case VPDef::VPWidenStoreSC:
4664 auto WillWiden = [&
TTI, VF](
Type *ScalarTy) {
4682 if (R.getNumDefinedValues() == 0 &&
4683 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4692 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4694 if (!Visited.
insert({ScalarTy}).second)
4696 if (WillWiden(ScalarTy))
4707 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4708 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4710 [](std::unique_ptr<VPlan> &
P) {
4713 "Expected Scalar VF to be a candidate");
4720 if (ForceVectorization &&
4721 (VPlans.
size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4728 for (
auto &
P : VPlans) {
4739 <<
" costs: " << (Candidate.Cost / Width));
4740 if (VF.isScalable())
4749 <<
"LV: Not considering vector loop of width " << VF
4750 <<
" because it will not generate any vector instructions.\n");
4754 if (isMoreProfitable(Candidate, ChosenFactor))
4755 ChosenFactor = Candidate;
4761 "There are conditional stores.",
4762 "store that is conditionally executed prevents vectorization",
4763 "ConditionalStore", ORE, OrigLoop);
4764 ChosenFactor = ScalarCost;
4768 !isMoreProfitable(ChosenFactor, ScalarCost))
dbgs()
4769 <<
"LV: Vectorization seems to be not beneficial, "
4770 <<
"but was forced by a user.\n");
4772 return ChosenFactor;
4776bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4781 [&](
PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
4791 if (!OrigLoop->
contains(cast<Instruction>(U)))
4795 if (!OrigLoop->
contains(cast<Instruction>(U)))
4829 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4840 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4845 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4846 "epilogue is allowed.\n");
4852 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4853 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4854 "is not a supported candidate.\n");
4859 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4862 return {ForcedEC, 0, 0};
4864 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4872 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4877 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4890 const SCEV *RemainingIterations =
nullptr;
4891 unsigned MaxTripCount = 0;
4892 for (
auto &NextVF : ProfitableVFs) {
4899 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4901 (NextVF.Width.isScalable() &&
4903 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4909 if (!MainLoopVF.
isScalable() && !NextVF.Width.isScalable()) {
4911 if (!RemainingIterations) {
4914 assert(!isa<SCEVCouldNotCompute>(TC) &&
4915 "Trip count SCEV must be computable");
4925 << MaxTripCount <<
"\n");
4929 SE.
getConstant(TCType, NextVF.Width.getKnownMinValue()),
4930 RemainingIterations))
4934 if (Result.Width.isScalar() ||
4935 isMoreProfitable(NextVF, Result, MaxTripCount))
4941 << Result.Width <<
"\n");
4945std::pair<unsigned, unsigned>
4947 unsigned MinWidth = -1U;
4948 unsigned MaxWidth = 8;
4961 MaxWidth = std::min<unsigned>(
4962 MaxWidth, std::min<unsigned>(
4968 MinWidth = std::min<unsigned>(
4969 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4970 MaxWidth = std::max<unsigned>(
4971 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4974 return {MinWidth, MaxWidth};
4982 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4990 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4995 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
5009 if (
auto *ST = dyn_cast<StoreInst>(&
I))
5010 T = ST->getValueOperand()->getType();
5013 "Expected the load/store/recurrence type to be sized");
5042 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
5043 "Unroll factor forced to be 1.\n");
5062 if (LoopCost == 0) {
5064 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
5074 for (
auto &Pair : R.MaxLocalUsers) {
5075 Pair.second = std::max(Pair.second, 1U);
5089 unsigned IC = UINT_MAX;
5091 for (
const auto &Pair : R.MaxLocalUsers) {
5096 <<
" register class\n");
5104 unsigned MaxLocalUsers = Pair.second;
5105 unsigned LoopInvariantRegs = 0;
5106 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end())
5107 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
5109 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
5113 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5114 std::max(1U, (MaxLocalUsers - 1)));
5117 IC = std::min(IC, TmpIC);
5137 unsigned AvailableTC =
5149 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
5150 unsigned InterleaveCountLB =
bit_floor(std::max(
5151 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5152 MaxInterleaveCount = InterleaveCountLB;
5154 if (InterleaveCountUB != InterleaveCountLB) {
5155 unsigned TailTripCountUB =
5156 (AvailableTC % (EstimatedVF * InterleaveCountUB));
5157 unsigned TailTripCountLB =
5158 (AvailableTC % (EstimatedVF * InterleaveCountLB));
5161 if (TailTripCountUB == TailTripCountLB)
5162 MaxInterleaveCount = InterleaveCountUB;
5164 }
else if (BestKnownTC && *BestKnownTC > 0) {
5168 ? (*BestKnownTC) - 1
5176 MaxInterleaveCount =
bit_floor(std::max(
5177 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5180 assert(MaxInterleaveCount > 0 &&
5181 "Maximum interleave count must be greater than 0");
5185 if (IC > MaxInterleaveCount)
5186 IC = MaxInterleaveCount;
5189 IC = std::max(1u, IC);
5191 assert(IC > 0 &&
"Interleave count must be greater than 0.");
5195 if (VF.
isVector() && HasReductions) {
5196 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
5204 bool ScalarInterleavingRequiresPredication =
5206 return Legal->blockNeedsPredication(BB);
5208 bool ScalarInterleavingRequiresRuntimePointerCheck =
5214 <<
"LV: IC is " << IC <<
'\n'
5215 <<
"LV: VF is " << VF <<
'\n');
5216 const bool AggressivelyInterleaveReductions =
5218 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5219 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
5223 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
5230 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5231 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5237 bool HasSelectCmpReductions =
5240 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5241 RecurKind RK = RdxDesc.getRecurrenceKind();
5242 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) ||
5243 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK);
5245 if (HasSelectCmpReductions) {
5246 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
5256 bool HasOrderedReductions =
5258 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5259 return RdxDesc.isOrdered();
5261 if (HasOrderedReductions) {
5263 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
5268 SmallIC = std::min(SmallIC,
F);
5269 StoresIC = std::min(StoresIC,
F);
5270 LoadsIC = std::min(LoadsIC,
F);
5274 std::max(StoresIC, LoadsIC) > SmallIC) {
5276 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
5277 return std::max(StoresIC, LoadsIC);
5282 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
5286 return std::max(IC / 2, SmallIC);
5289 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
5295 if (AggressivelyInterleaveReductions) {
5345 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5349 for (
Value *U :
I.operands()) {
5350 auto *Instr = dyn_cast<Instruction>(U);
5361 LoopInvariants.
insert(Instr);
5366 EndPoint[Instr] = IdxToInstr.
size();
5384 LLVM_DEBUG(
dbgs() <<
"LV(REG): Calculating max register usage:\n");
5386 const auto &TTICapture =
TTI;
5390 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
5395 for (
unsigned int Idx = 0, Sz = IdxToInstr.
size();
Idx < Sz; ++
Idx) {
5399 InstrList &
List = TransposeEnds[
Idx];
5414 for (
unsigned J = 0, E = VFs.
size(); J < E; ++J) {
5422 if (VFs[J].isScalar()) {
5423 for (
auto *Inst : OpenIntervals) {
5432 for (
auto *Inst : OpenIntervals) {
5445 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]);
5450 for (
const auto &Pair :
RegUsage) {
5451 auto &Entry = MaxUsages[J][Pair.first];
5452 Entry = std::max(Entry, Pair.second);
5457 << OpenIntervals.
size() <<
'\n');
5469 for (
auto *Inst : LoopInvariants) {
5472 bool IsScalar =
all_of(Inst->users(), [&](
User *U) {
5473 auto *I = cast<Instruction>(U);
5474 return TheLoop != LI->getLoopFor(I->getParent()) ||
5475 isScalarAfterVectorization(I, VFs[Idx]);
5481 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
5485 dbgs() <<
"LV(REG): VF = " << VFs[
Idx] <<
'\n';
5486 dbgs() <<
"LV(REG): Found max usage: " << MaxUsages[
Idx].
size()
5488 for (
const auto &pair : MaxUsages[
Idx]) {
5489 dbgs() <<
"LV(REG): RegisterClass: "
5493 dbgs() <<
"LV(REG): Found invariant usage: " << Invariant.
size()
5495 for (
const auto &pair : Invariant) {
5496 dbgs() <<
"LV(REG): RegisterClass: "
5510bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
5521 "Expecting a scalar emulated instruction");
5522 return isa<LoadInst>(
I) ||
5523 (isa<StoreInst>(
I) &&
5540 PredicatedBBsAfterVectorization[VF].
clear();
5557 !useEmulatedMaskMemRefHack(&
I, VF) &&
5558 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5562 for (
const auto &[
I,
_] : ScalarCosts) {
5563 auto *CI = dyn_cast<CallInst>(
I);
5564 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5567 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI];
5571 PredicatedBBsAfterVectorization[VF].
insert(BB);
5573 if (Pred->getSingleSuccessor() == BB)
5574 PredicatedBBsAfterVectorization[VF].
insert(Pred);
5583 "Instruction marked uniform-after-vectorization will be predicated");
5601 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5620 for (
Use &U :
I->operands())
5621 if (
auto *J = dyn_cast<Instruction>(U.get()))
5633 while (!Worklist.
empty()) {
5637 if (ScalarCosts.contains(
I))
5667 for (
Use &U :
I->operands())
5668 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5670 "Instruction has non-scalar type");
5671 if (CanBeScalarized(J))
5673 else if (needsExtract(J, VF)) {
5675 cast<VectorType>(
ToVectorTy(J->getType(), VF)),
5686 Discount += VectorCost - ScalarCost;
5687 ScalarCosts[
I] = ScalarCost;
5703 ValuesToIgnoreForVF);
5710 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5723 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5724 << VF <<
" For instruction: " <<
I <<
'\n');
5752 const Loop *TheLoop) {
5754 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5760 auto *SE = PSE.
getSE();
5761 unsigned NumOperands = Gep->getNumOperands();
5762 for (
unsigned Idx = 1;
Idx < NumOperands; ++
Idx) {
5765 !
Legal->isInductionVariable(Opd))
5774LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5777 "Scalarization cost of instruction implies vectorization.");
5824 if (useEmulatedMaskMemRefHack(
I, VF))
5834LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5837 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5843 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5844 "Stride should be 1 or -1 for consecutive memory access");
5856 bool Reverse = ConsecutiveStride < 0;
5864LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5869 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5873 if (isa<LoadInst>(
I)) {
5885 (IsLoopInvariantStoreValue
5892LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5895 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5906LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5909 assert(Group &&
"Fail to get an interleaved access group.");
5913 auto *VectorTy = cast<VectorType>(
ToVectorTy(ValTy, VF));
5917 unsigned InterleaveFactor = Group->getFactor();
5922 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5923 if (Group->getMember(IF))
5927 bool UseMaskForGaps =
5929 (isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor()));
5931 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5935 if (Group->isReverse()) {
5938 "Reverse masked interleaved access not supported.");
5939 Cost += Group->getNumMembers() *
5946std::optional<InstructionCost>
5952 if (InLoopReductions.
empty() || VF.
isScalar() || !isa<VectorType>(Ty))
5953 return std::nullopt;
5954 auto *VectorTy = cast<VectorType>(Ty);
5971 return std::nullopt;
5982 if (!InLoopReductionImmediateChains.
count(RetI))
5983 return std::nullopt;
5987 Instruction *LastChain = InLoopReductionImmediateChains.
at(RetI);
5989 while (!isa<PHINode>(ReductionPhi))
5990 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
6022 : dyn_cast<Instruction>(RetI->
getOperand(1));
6027 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
6040 bool IsUnsigned = isa<ZExtInst>(Op0);
6057 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6058 return I == RetI ? RedCost : 0;
6062 bool IsUnsigned = isa<ZExtInst>(RedOp);
6071 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
6072 return I == RetI ? RedCost : 0;
6073 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
6078 bool IsUnsigned = isa<ZExtInst>(Op0);
6101 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6102 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6110 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6111 return I == RetI ? RedCost : 0;
6120 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
6121 return I == RetI ? RedCost : 0;
6125 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
6129LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
6159 if (!
RetTy->isVoidTy() &&
6181 for (
auto *V : filterExtractingOperands(Ops, VF))
6184 filterExtractingOperands(Ops, VF), Tys,
CostKind);
6206 auto IsLegalToScalarize = [&]() {
6220 if (isa<LoadInst>(
I))
6225 auto &SI = cast<StoreInst>(
I);
6238 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
6244 if (GatherScatterCost < ScalarizationCost)
6256 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6257 "Expected consecutive stride.");
6266 unsigned NumAccesses = 1;
6269 assert(Group &&
"Fail to get an interleaved access group.");
6275 NumAccesses = Group->getNumMembers();
6277 InterleaveCost = getInterleaveGroupCost(&
I, VF);
6282 ? getGatherScatterCost(&
I, VF) * NumAccesses
6286 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
6292 if (InterleaveCost <= GatherScatterCost &&
6293 InterleaveCost < ScalarizationCost) {
6295 Cost = InterleaveCost;
6296 }
else if (GatherScatterCost < ScalarizationCost) {
6298 Cost = GatherScatterCost;
6301 Cost = ScalarizationCost;
6335 while (!Worklist.
empty()) {
6337 for (
auto &
Op :
I->operands())
6338 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
6339 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
6340 AddrDefs.
insert(InstOp).second)
6344 for (
auto *
I : AddrDefs) {
6345 if (isa<LoadInst>(
I)) {
6359 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
6376 "Trying to set a vectorization decision for a scalar VF");
6378 auto ForcedScalar = ForcedScalars.
find(VF);
6394 for (
auto &ArgOp : CI->
args())
6407 getScalarizationOverhead(CI, VF,
CostKind);
6413 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.
end() &&
6414 ForcedScalar->second.contains(CI)) ||
6425 for (
Type *ScalarTy : ScalarTys)
6434 std::nullopt, *RedCost);
6440 bool UsesMask =
false;
6446 if (
Info.Shape.VF != VF)
6450 if (MaskRequired && !
Info.isMasked())
6454 bool ParamsOk =
true;
6456 switch (Param.ParamKind) {
6475 dyn_cast<SCEVAddRecExpr>(SE->
getSCEV(ScalarParam));
6477 if (!SAR || SAR->getLoop() !=
TheLoop) {
6483 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE));
6511 if (VecFunc && UsesMask && !MaskRequired)
6531 if (VectorCost <=
Cost) {
6536 if (IntrinsicCost <=
Cost) {
6537 Cost = IntrinsicCost;
6552 auto *OpI = dyn_cast<Instruction>(
Op);
6569 return InstsToScalarize[VF][
I];
6572 auto ForcedScalar = ForcedScalars.
find(VF);
6573 if (VF.
isVector() && ForcedScalar != ForcedScalars.
end()) {
6574 auto InstSet = ForcedScalar->second;
6575 if (InstSet.count(
I))
6586 auto HasSingleCopyAfterVectorization = [
this](
Instruction *
I,
6591 auto Scalarized = InstsToScalarize.
find(VF);
6592 assert(Scalarized != InstsToScalarize.
end() &&
6593 "VF not yet analyzed for scalarization profitability");
6594 return !Scalarized->second.count(
I) &&
6596 auto *UI = cast<Instruction>(U);
6597 return !Scalarized->second.count(UI);
6600 (void)HasSingleCopyAfterVectorization;
6609 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6610 I->getOpcode() == Instruction::PHI ||
6611 (
I->getOpcode() == Instruction::BitCast &&
6612 I->getType()->isPointerTy()) ||
6613 HasSingleCopyAfterVectorization(
I, VF));
6623 switch (
I->getOpcode()) {
6624 case Instruction::GetElementPtr:
6630 case Instruction::Br: {
6637 bool ScalarPredicatedBB =
false;
6643 ScalarPredicatedBB =
true;
6645 if (ScalarPredicatedBB) {
6669 case Instruction::Switch: {
6672 auto *Switch = cast<SwitchInst>(
I);
6673 return Switch->getNumCases() *
6676 ToVectorTy(Switch->getCondition()->getType(), VF),
6680 case Instruction::PHI: {
6681 auto *Phi = cast<PHINode>(
I);
6693 cast<VectorType>(VectorTy), Mask,
CostKind,
6701 Type *ResultTy = Phi->getType();
6705 auto *HeaderUser = cast_if_present<PHINode>(
6706 find_singleton<User>(Phi->users(), [
this](
User *U,
bool) ->
User * {
6707 auto *Phi = dyn_cast<PHINode>(U);
6708 if (Phi && Phi->getParent() == TheLoop->getHeader())
6714 auto Iter = ReductionVars.
find(HeaderUser);
6715 if (Iter != ReductionVars.end() &&
6717 Iter->second.getRecurrenceKind()))
6720 return (Phi->getNumIncomingValues() - 1) *
6722 Instruction::Select,
ToVectorTy(ResultTy, VF),
6732 Intrinsic::vp_merge,
ToVectorTy(Phi->getType(), VF),
6733 {ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6739 case Instruction::UDiv:
6740 case Instruction::SDiv:
6741 case Instruction::URem:
6742 case Instruction::SRem:
6746 ScalarCost : SafeDivisorCost;
6750 case Instruction::Add:
6751 case Instruction::Sub: {
6759 if (!
RHS ||
RHS->getZExtValue() != 1)
6764 Type *ScalarTy =
I->getType();
6768 {PtrTy, ScalarTy, MaskTy});
6777 case Instruction::FAdd:
6778 case Instruction::FSub:
6779 case Instruction::Mul:
6780 case Instruction::FMul:
6781 case Instruction::FDiv:
6782 case Instruction::FRem:
6783 case Instruction::Shl:
6784 case Instruction::LShr:
6785 case Instruction::AShr:
6786 case Instruction::And:
6787 case Instruction::Or:
6788 case Instruction::Xor: {
6792 if (
I->getOpcode() == Instruction::Mul &&
6803 Value *Op2 =
I->getOperand(1);
6806 Op2 = cast<SCEVConstant>(
PSE.
getSCEV(Op2))->getValue();
6816 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6819 case Instruction::FNeg: {
6822 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6823 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6824 I->getOperand(0),
I);
6826 case Instruction::Select: {
6828 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6831 const Value *Op0, *Op1;
6848 Type *CondTy = SI->getCondition()->getType();
6853 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6854 Pred = Cmp->getPredicate();
6856 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6857 {TTI::OK_AnyValue, TTI::OP_None},
I);
6859 case Instruction::ICmp:
6860 case Instruction::FCmp: {
6861 Type *ValTy =
I->getOperand(0)->getType();
6864 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6865 (void)Op0AsInstruction;
6867 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6868 "if both the operand and the compare are marked for "
6869 "truncation, they must have the same bitwidth");
6875 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6876 {TTI::OK_AnyValue, TTI::OP_None},
6877 {TTI::OK_AnyValue, TTI::OP_None},
I);
6879 case Instruction::Store:
6880 case Instruction::Load: {
6885 "CM decision should be taken at this point");
6892 return getMemoryInstructionCost(
I, VF);
6894 case Instruction::BitCast:
6895 if (
I->getType()->isPointerTy())
6898 case Instruction::ZExt:
6899 case Instruction::SExt:
6900 case Instruction::FPToUI:
6901 case Instruction::FPToSI:
6902 case Instruction::FPExt:
6903 case Instruction::PtrToInt:
6904 case Instruction::IntToPtr:
6905 case Instruction::SIToFP:
6906 case Instruction::UIToFP:
6907 case Instruction::Trunc:
6908 case Instruction::FPTrunc: {
6911 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6912 "Expected a load or a store!");
6938 unsigned Opcode =
I->getOpcode();
6941 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6943 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6944 CCH = ComputeCCH(Store);
6947 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6948 Opcode == Instruction::FPExt) {
6949 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6950 CCH = ComputeCCH(Load);
6957 auto *Trunc = cast<TruncInst>(
I);
6959 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6966 Type *SrcScalarTy =
I->getOperand(0)->getType();
6967 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6978 (
I->getOpcode() == Instruction::ZExt ||
6979 I->getOpcode() == Instruction::SExt))
6985 case Instruction::Call:
6987 case Instruction::ExtractValue:
6989 case Instruction::Alloca:
7012 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
7013 return RequiresScalarEpilogue &&
7025 if ((SI = dyn_cast<StoreInst>(&
I)) &&
7028 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
7029 SI->getValueOperand());
7038 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
7039 return VecValuesToIgnore.contains(U) ||
7040 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
7049 if (Group->getInsertPos() == &
I)
7052 DeadInterleavePointerOps.
push_back(PointerOp);
7057 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
7058 if (Br->isConditional())
7065 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
7066 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
7068 Instruction *UI = cast<Instruction>(U);
7069 return !VecValuesToIgnore.contains(U) &&
7070 (!isAccessInterleaved(UI) ||
7071 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
7075 DeadInterleavePointerOps.
append(
Op->op_begin(),
Op->op_end());
7078 for (
const auto &[
_, Ops] : DeadInvariantStoreOps) {
7092 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
7095 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
7096 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
7099 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
7107 if ((ThenEmpty && ElseEmpty) ||
7109 ElseBB->
phis().empty()) ||
7111 ThenBB->
phis().empty())) {
7120 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
7123 return !VecValuesToIgnore.contains(U) &&
7124 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
7135 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
7139 DeadOps.
append(
Op->op_begin(),
Op->op_end());
7180 bool InLoop = !ReductionOperations.
empty();
7183 InLoopReductions.
insert(Phi);
7186 for (
auto *
I : ReductionOperations) {
7187 InLoopReductionImmediateChains[
I] = LastChain;
7191 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
7192 <<
" reduction for phi: " << *Phi <<
"\n");
7205 unsigned WidestType;
7214 unsigned N =
RegSize.getKnownMinValue() / WidestType;
7235 <<
"overriding computed VF.\n");
7240 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
7241 <<
"not supported by the target.\n");
7243 "Scalable vectorization requested but not supported by the target",
7244 "the scalable user-specified vectorization width for outer-loop "
7245 "vectorization cannot be used because the target does not support "
7246 "scalable vectors.",
7247 "ScalableVFUnfeasible", ORE, OrigLoop);
7252 "VF needs to be a power of two");
7254 <<
"VF " << VF <<
" to build VPlans.\n");
7261 return {VF, 0 , 0 };
7265 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
7266 "VPlan-native path.\n");
7284 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
7285 "which requires masked-interleaved support.\n");
7301 "UserVF ignored because it may be larger than the maximal safe VF",
7302 "InvalidUserVF", ORE, OrigLoop);
7305 "VF needs to be a power of two");
7311 buildVPlansWithVPRecipes(UserVF, UserVF);
7316 "InvalidCost", ORE, OrigLoop);
7330 for (
const auto &VF : VFCandidates) {
7379 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
7380 for (
Value *
Op : IVInsts[
I]->operands()) {
7381 auto *OpI = dyn_cast<Instruction>(
Op);
7382 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
7388 for (
User *U :
IV->users()) {
7389 auto *CI = cast<Instruction>(U);
7410 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
7411 <<
": induction instruction " << *IVInst <<
"\n";
7413 Cost += InductionCost;
7427 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
7430 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
7431 ExitInstrs.
insert(CondI);
7435 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
7442 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
7443 <<
": exit condition instruction " << *CondI <<
"\n";
7447 auto *OpI = dyn_cast<Instruction>(
Op);
7448 if (!OpI ||
any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
7449 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
7450 !ExitInstrs.contains(cast<Instruction>(U));
7468 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
7471 auto IsZExtOrSExt = [](
const unsigned Opcode) ->
bool {
7472 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt;
7481 for (
auto *ChainOp : ChainOps) {
7482 for (
Value *
Op : ChainOp->operands()) {
7483 if (
auto *
I = dyn_cast<Instruction>(
Op)) {
7484 ChainOpsAndOperands.insert(
I);
7485 if (
I->getOpcode() == Instruction::Mul) {
7486 auto *Ext0 = dyn_cast<Instruction>(
I->getOperand(0));
7487 auto *Ext1 = dyn_cast<Instruction>(
I->getOperand(1));
7488 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 &&
7489 Ext0->getOpcode() == Ext1->getOpcode()) {
7490 ChainOpsAndOperands.insert(Ext0);
7491 ChainOpsAndOperands.insert(Ext1);
7506 "reduction op visited multiple times");
7508 LLVM_DEBUG(
dbgs() <<
"Cost of " << ReductionCost <<
" for VF " << VF
7509 <<
":\n in-loop reduction " << *
I <<
"\n");
7510 Cost += *ReductionCost;
7525 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
7532 for (
Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
7538 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
7539 <<
": forced scalar " << *ForcedScalar <<
"\n";
7543 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7548 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
7549 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7567 <<
" (Estimated cost per lane: ");
7569 double CostPerLane = double(*
Cost.
getValue()) / EstimatedWidth;
7588 if (
auto *S = dyn_cast<VPSingleDefRecipe>(R))
7589 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7590 if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7591 return &WidenMem->getIngredient();
7597 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
7599 if (
auto *
IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7600 auto *IG =
IR->getInterleaveGroup();
7601 unsigned NumMembers = IG->getNumMembers();
7602 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7616 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7618 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7619 if (isa<PHINode>(&I) && BB == TheLoop->getHeader())
7621 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7631 VPlan &FirstPlan = *VPlans[0];
7637 "More than a single plan/VF w/o any plan having scalar VF");
7641 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7646 if (ForceVectorization) {
7653 for (
auto &
P : VPlans) {
7660 <<
"LV: Not considering vector loop of width " << VF
7661 <<
" because it will not generate any vector instructions.\n");
7667 if (isMoreProfitable(CurrentFactor, BestFactor))
7668 BestFactor = CurrentFactor;
7671 if (isMoreProfitable(CurrentFactor, ScalarFactor))
7672 ProfitableVFs.push_back(CurrentFactor);
7689 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7692 CostCtx, OrigLoop) ||
7694 CostCtx, OrigLoop)) &&
7695 " VPlan cost model and legacy cost model disagreed");
7697 "when vectorizing, the scalar cost must be computed.");
7707 bool IsUnrollMetadata =
false;
7708 MDNode *LoopID = L->getLoopID();
7712 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(
I));
7714 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7716 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7722 if (!IsUnrollMetadata) {
7724 LLVMContext &Context = L->getHeader()->getContext();
7727 MDString::get(Context,
"llvm.loop.unroll.runtime.disable"));
7733 L->setLoopID(NewLoopID);
7743 auto *EpiRedResult = dyn_cast<VPInstruction>(R);
7744 if (!EpiRedResult ||
7748 auto *EpiRedHeaderPhi =
7749 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7751 EpiRedHeaderPhi->getRecurrenceDescriptor();
7752 Value *MainResumeValue =
7753 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7756 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7758 "AnyOf expected to start with ICMP_NE");
7760 "AnyOf expected to start by comparing main resume value to original "
7762 MainResumeValue = Cmp->getOperand(0);
7764 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7769 using namespace VPlanPatternMatch;
7770 auto IsResumePhi = [](
VPUser *U) {
7772 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue()));
7775 "ResumePhi must have a single user");
7776 auto *EpiResumePhiVPI =
7777 cast<VPInstruction>(*
find_if(EpiRedResult->users(), IsResumePhi));
7778 auto *EpiResumePhi = cast<PHINode>(State.
get(EpiResumePhiVPI,
true));
7779 EpiResumePhi->setIncomingValueForBlock(
7788 "Trying to execute plan with unsupported VF");
7790 "Trying to execute plan with unsupported UF");
7792 ((VectorizingEpilogue && ExpandedSCEVs) ||
7793 (!VectorizingEpilogue && !ExpandedSCEVs)) &&
7794 "expanded SCEVs to reuse can only be used during epilogue vectorization");
7807#ifdef EXPENSIVE_CHECKS
7808 assert(DT->
verify(DominatorTree::VerificationLevel::Fast));
7821 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7822 "count during epilogue vectorization");
7828 if (VectorizingEpilogue)
7834 std::unique_ptr<LoopVersioning> LVer =
nullptr;
7842 LVer = std::make_unique<LoopVersioning>(
7845 State.
LVer = &*LVer;
7869 if (VectorizingEpilogue) {
7871 "Epilogue vectorisation not yet supported with early exits");
7875 &R, State, State.
CFG.
VPBB2IRBB[ExitVPBB], BypassBlock);
7879 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
7881 Inc->setIncomingValueForBlock(BypassBlock, V);
7890 std::optional<MDNode *> VectorizedLoopID =
7897 if (VectorizedLoopID)
7898 L->setLoopID(*VectorizedLoopID);
7921 cast<BranchInst>(State.
CFG.
VPBB2IRBB[ExitVPBB]->getTerminator());
7922 if (MiddleTerm->isConditional() &&
7926 assert(TripCount > 0 &&
"trip count should not be zero");
7927 const uint32_t Weights[] = {1, TripCount - 1};
7941 const SCEV2ValueTy &ExpandedSCEVs) {
7977 if (
auto *WideIV = dyn_cast<VPWidenInductionRecipe>(&
H))
7978 WideIVs.
insert(WideIV->getPHINode());
7987 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7997 dbgs() <<
"intermediate fn:\n"
8005 assert(Bypass &&
"Expected valid bypass basic block.");
8026 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
8030 DT,
LI,
nullptr,
"vector.ph");
8035 "TC check is expected to dominate Bypass");
8052 return TCCheckBlock;
8063 const SCEV2ValueTy &ExpandedSCEVs) {
8071 nullptr,
"vec.epilog.iter.check",
true);
8073 VecEpilogueIterationCountCheck);
8079 "expected this to be saved from the previous pass.");
8107 for (
PHINode &Phi : VecEpilogueIterationCountCheck->
phis())
8110 for (
PHINode *Phi : PhisInBlock) {
8112 Phi->replaceIncomingBlockWith(
8114 VecEpilogueIterationCountCheck);
8121 return EPI.EpilogueIterationCountCheck == IncB;
8147 "Expected trip count to have been saved in the first pass.");
8151 "saved trip count does not dominate insertion point.");
8162 Value *CheckMinIters =
8166 "min.epilog.iters.check");
8172 unsigned EpilogueLoopStep =
8178 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
8179 const uint32_t Weights[] = {EstimatedSkipCount,
8180 MainLoopStep - EstimatedSkipCount};
8200 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
8215 return getVPValueOrAddLiveIn(
Op);
8227 "unsupported switch either exiting loop or continuing to header");
8232 BasicBlock *DefaultDst = SI->getDefaultDest();
8234 for (
auto &
C : SI->cases()) {
8236 assert(!EdgeMaskCache.
contains({Src, Dst}) &&
"Edge masks already created");
8239 if (Dst == DefaultDst)
8241 auto &Compares = Dst2Compares[Dst];
8249 VPValue *DefaultMask =
nullptr;
8250 for (
const auto &[Dst, Conds] : Dst2Compares) {
8259 EdgeMaskCache[{Src, Dst}] = Mask;
8265 DefaultMask = DefaultMask ? Builder.
createOr(DefaultMask, Mask) : Mask;
8269 DefaultMask = Builder.
createNot(DefaultMask);
8273 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask;
8280 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8282 if (ECEntryIt != EdgeMaskCache.
end())
8283 return ECEntryIt->second;
8285 if (
auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) {
8287 assert(EdgeMaskCache.
contains(Edge) &&
"Mask for Edge not created?");
8288 return EdgeMaskCache[Edge];
8294 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8295 assert(BI &&
"Unexpected terminator found");
8297 return EdgeMaskCache[Edge] = SrcMask;
8306 return EdgeMaskCache[Edge] = SrcMask;
8309 assert(EdgeMask &&
"No Edge Mask found for condition");
8321 return EdgeMaskCache[Edge] = EdgeMask;
8328 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8330 assert(ECEntryIt != EdgeMaskCache.
end() &&
8331 "looking up mask for edge which has not been created");
8332 return ECEntryIt->second;
8340 BlockMaskCache[Header] =
nullptr;
8352 HeaderVPBB->
insert(
IV, NewInsertionPoint);
8359 BlockMaskCache[Header] = BlockMask;
8365 assert(BCEntryIt != BlockMaskCache.
end() &&
8366 "Trying to access mask for block without one.");
8367 return BCEntryIt->second;
8371 assert(OrigLoop->
contains(BB) &&
"Block is not a part of a loop");
8372 assert(BlockMaskCache.
count(BB) == 0 &&
"Mask for block already computed");
8374 "Loop header must have cached block mask");
8380 for (
auto *Predecessor :
8384 BlockMaskCache[BB] = EdgeMask;
8389 BlockMask = EdgeMask;
8393 BlockMask = Builder.
createOr(BlockMask, EdgeMask, {});
8396 BlockMaskCache[BB] = BlockMask;
8402 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
8403 "Must be called with either a load or store");
8409 "CM decision should be taken at this point.");
8435 auto *
GEP = dyn_cast<GetElementPtrInst>(
8436 Ptr->getUnderlyingValue()->stripPointerCasts());
8446 GEP ?
GEP->getNoWrapFlags()
8452 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
8470 "step must be loop invariant");
8474 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8477 TruncI->getDebugLoc());
8479 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
8481 IndDesc, Phi->getDebugLoc());
8491 *PSE.
getSE(), *OrigLoop);
8504 Phi->getDebugLoc());
8518 auto IsOptimizableIVTruncate =
8526 IsOptimizableIVTruncate(
I),
Range)) {
8528 auto *
Phi = cast<PHINode>(
I->getOperand(0));
8539 unsigned NumIncoming =
Phi->getNumIncomingValues();
8548 for (
unsigned In = 0;
In < NumIncoming;
In++) {
8553 assert(In == 0 &&
"Both null and non-null edge masks found");
8555 "Distinct incoming values with one having a full mask");
8576 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
8577 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
8578 ID == Intrinsic::pseudoprobe ||
8579 ID == Intrinsic::experimental_noalias_scope_decl))
8585 bool ShouldUseVectorIntrinsic =
8592 if (ShouldUseVectorIntrinsic)
8597 std::optional<unsigned> MaskPos;
8619 Variant = Decision.Variant;
8620 MaskPos = Decision.MaskPos;
8627 if (ShouldUseVectorCall) {
8628 if (MaskPos.has_value()) {
8643 Ops.insert(Ops.
begin() + *MaskPos, Mask);
8654 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
8655 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
8670 switch (
I->getOpcode()) {
8673 case Instruction::SDiv:
8674 case Instruction::UDiv:
8675 case Instruction::SRem:
8676 case Instruction::URem: {
8684 auto *SafeRHS = Builder.
createSelect(Mask, Ops[1], One,
I->getDebugLoc());
8690 case Instruction::Add:
8691 case Instruction::And:
8692 case Instruction::AShr:
8693 case Instruction::FAdd:
8694 case Instruction::FCmp:
8695 case Instruction::FDiv:
8696 case Instruction::FMul:
8697 case Instruction::FNeg:
8698 case Instruction::FRem:
8699 case Instruction::FSub:
8700 case Instruction::ICmp:
8701 case Instruction::LShr:
8702 case Instruction::Mul:
8703 case Instruction::Or:
8704 case Instruction::Select:
8705 case Instruction::Shl:
8706 case Instruction::Sub:
8707 case Instruction::Xor:
8708 case Instruction::Freeze:
8715 auto GetConstantViaSCEV = [
this, &SE](
VPValue *
Op) {
8716 Value *
V =
Op->getUnderlyingValue();
8717 if (isa<Constant>(V) || !SE.
isSCEVable(
V->getType()))
8719 auto *
C = dyn_cast<SCEVConstant>(SE.
getSCEV(V));
8725 if (
I->getOpcode() == Instruction::Mul)
8726 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
8728 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
8735VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
8738 unsigned Opcode =
HI->Update->getOpcode();
8739 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
8740 "Histogram update operation must be an Add or Sub");
8755 HI->Store->getDebugLoc());
8761 auto *PN = cast<PHINode>(R->getUnderlyingValue());
8763 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8780 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
8782 case Intrinsic::assume:
8783 case Intrinsic::lifetime_start:
8784 case Intrinsic::lifetime_end:
8806 VPValue *BlockInMask =
nullptr;
8807 if (!IsPredicated) {
8811 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8822 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8823 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
8824 "Should not predicate a uniform recipe");
8826 IsUniform, BlockInMask);
8837 if (
auto *Phi = dyn_cast<PHINode>(Instr)) {
8838 if (Phi->getParent() != OrigLoop->
getHeader())
8841 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8847 "can only widen reductions and fixed-order recurrences here");
8865 PhisToFix.push_back(PhiRecipe);
8869 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8878 if (
auto *CI = dyn_cast<CallInst>(Instr))
8881 if (
StoreInst *SI = dyn_cast<StoreInst>(Instr))
8883 return tryToWidenHistogram(*HistInfo,
Operands);
8885 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8888 if (!shouldWiden(Instr,
Range))
8891 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Instr))
8895 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8900 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8905 return tryToWiden(Instr,
Operands, VPBB);
8908void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8912 auto MaxVFTimes2 = MaxVF * 2;
8914 VFRange SubRange = {VF, MaxVFTimes2};
8915 if (
auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) {
8927 VPlans.push_back(std::move(Plan));
8937 Value *StartIdx = ConstantInt::get(IdxTy, 0);
8944 Header->insert(CanonicalIVPHI, Header->begin());
8949 Instruction::Add, {CanonicalIVPHI, &Plan.
getVFxUF()}, {HasNUW,
false},
DL,
8951 CanonicalIVPHI->
addOperand(CanonicalIVIncrement);
8963 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor());
8965 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8969 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR);
8970 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction());
8973 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.
getRecipe(ScalarPhiI));
8974 if (!isa<VPFirstOrderRecurrencePHIRecipe, VPReductionPHIRecipe>(VectorPhiR))
8979 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8980 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8984 "vector.recur.extract");
8985 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8988 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {},
Name);
9005 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R);
9008 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction());
9013 if (PredVPBB != MiddleVPBB) {
9016 assert(ExitingBlocks.
size() == 2 &&
"only support 2 exiting blocks");
9017 ExitingBB = ExitingBB == ExitingBlocks[0] ? ExitingBlocks[1]
9020 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB);
9025 if ((isa<VPWidenIntOrFpInductionRecipe>(V) &&
9026 !cast<VPWidenIntOrFpInductionRecipe>(V)->getTruncInst()) ||
9027 isa<VPWidenPointerInductionRecipe>(V) ||
9028 (isa<Instruction>(IncomingValue) &&
9029 OrigLoop->
contains(cast<Instruction>(IncomingValue)) &&
9031 auto *P = dyn_cast<PHINode>(U);
9032 return P && Inductions.contains(P);
9034 if (ExitVPBB->getSinglePredecessor() == MiddleVPBB)
9037 ExitUsersToFix.
insert(ExitIRI);
9038 ExitIRI->addOperand(V);
9042 return ExitUsersToFix;
9051 if (ExitUsersToFix.
empty())
9055 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9068 if (ExitIRI->getParent()->getSinglePredecessor() != MiddleVPBB)
9071 LLVMContext &Ctx = ExitIRI->getInstruction().getContext();
9075 ExitIRI->setOperand(
Idx, Ext);
9090 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
9091 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9096 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
9171 if (ExitIRI->getOperand(0) != FOR)
9175 "vector.recur.extract.for.phi");
9177 ExitUsersToFix.remove(ExitIRI);
9183LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
VFRange &
Range) {
9198 bool RequiresScalarEpilogueCheck =
9205 PSE, RequiresScalarEpilogueCheck,
9212 bool IVUpdateMayOverflow =
false;
9225 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9245 "Unsupported interleave factor for scalable vectors");
9250 InterleaveGroups.
insert(IG);
9268 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty();
9269 return Legal->blockNeedsPredication(BB) || NeedsBlends;
9271 auto *MiddleVPBB = Plan->getMiddleBlock();
9276 if (VPBB != HeaderVPBB)
9280 if (VPBB == HeaderVPBB)
9281 RecipeBuilder.createHeaderMask();
9282 else if (NeedsMasks)
9283 RecipeBuilder.createBlockInMask(BB);
9290 auto *
Phi = dyn_cast<PHINode>(Instr);
9291 if (Phi &&
Phi->getParent() == HeaderBB) {
9292 Operands.push_back(Plan->getOrAddLiveIn(
9295 auto OpRange = RecipeBuilder.mapToVPValues(
Instr->operands());
9296 Operands = {OpRange.begin(), OpRange.end()};
9303 if ((SI = dyn_cast<StoreInst>(&
I)) &&
9309 SI, RecipeBuilder.mapToVPValues(
Instr->operands()),
9311 Recipe->insertBefore(*MiddleVPBB, MBIP);
9316 RecipeBuilder.tryToCreateWidenRecipe(Instr,
Operands,
Range, VPBB);
9318 Recipe = RecipeBuilder.handleReplication(Instr,
Range);
9320 RecipeBuilder.setRecipe(Instr, Recipe);
9321 if (isa<VPHeaderPHIRecipe>(Recipe)) {
9332 "unexpected recipe needs moving");
9345 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
9346 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
9347 "entry block must be set to a VPRegionBlock having a non-empty entry "
9349 RecipeBuilder.fixHeaderPhis();
9351 if (
auto *UncountableExitingBlock =
9354 *Plan, *PSE.
getSE(), OrigLoop, UncountableExitingBlock, RecipeBuilder);
9362 "Some exit values in loop with uncountable exit not supported yet",
9363 "UncountableEarlyExitLoopsUnsupportedExitValue", ORE, OrigLoop);
9373 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
9383 Plan->setName(
"Initial VPlan");
9388 auto *
R = cast<VPRecipeBase>(&U);
9389 return R->getParent()->getParent() ||
9391 Plan->getVectorLoopRegion()->getSinglePredecessor();
9394 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
9395 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.
getSCEV(StrideV));
9400 auto *CI = Plan->getOrAddLiveIn(
9401 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
9402 if (
VPValue *StrideVPV = Plan->getLiveIn(StrideV))
9408 if (!isa<SExtInst, ZExtInst>(U))
9410 VPValue *StrideVPV = Plan->getLiveIn(U);
9413 unsigned BW =
U->getType()->getScalarSizeInBits();
9414 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
9415 : ScevStride->getAPInt().zext(BW);
9416 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(
U->getType(),
C));
9434 bool WithoutRuntimeCheck =
9437 WithoutRuntimeCheck);
9452 true,
false, OrigLoop);
9456 HCFGBuilder.buildHierarchicalCFG();
9464 *PSE.
getSE(), *TLI);
9469 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9470 Term->eraseFromParent();
9494void LoopVectorizationPlanner::adjustRecipesForReductions(
9496 using namespace VPlanPatternMatch;
9497 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
9501 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9502 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
9510 "AnyOf and FindLast reductions are not allowed for in-loop reductions");
9515 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
9518 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
9519 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
9520 assert((UserRecipe->getParent() == MiddleVPBB ||
9521 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
9522 "U must be either in the loop region, the middle block or the "
9523 "scalar preheader.");
9526 Worklist.
insert(UserRecipe);
9539 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
9542 unsigned IndexOfFirstOperand;
9550 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9551 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
9552 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
9553 CurrentLink->getOperand(2) == PreviousLink &&
9554 "expected a call where the previous link is the added operand");
9562 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
9564 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
9567 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink);
9568 if (PhiR->isInLoop() && Blend) {
9569 assert(Blend->getNumIncomingValues() == 2 &&
9570 "Blend must have 2 incoming values");
9571 if (Blend->getIncomingValue(0) == PhiR)
9572 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
9574 assert(Blend->getIncomingValue(1) == PhiR &&
9575 "PhiR must be an operand of the blend");
9576 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
9582 if (isa<VPWidenRecipe>(CurrentLink)) {
9583 assert(isa<CmpInst>(CurrentLinkI) &&
9584 "need to have the compare of the select");
9587 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9588 "must be a select recipe");
9589 IndexOfFirstOperand = 1;
9592 "Expected to replace a VPWidenSC");
9593 IndexOfFirstOperand = 0;
9598 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9599 ? IndexOfFirstOperand + 1
9600 : IndexOfFirstOperand;
9601 VecOp = CurrentLink->getOperand(VecOpId);
9602 assert(VecOp != PreviousLink &&
9603 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9604 (VecOpId - IndexOfFirstOperand)) ==
9606 "PreviousLink must be the operand other than VecOp");
9622 CurrentLink->replaceAllUsesWith(RedRecipe);
9623 PreviousLink = RedRecipe;
9630 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9643 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB &&
9644 "reduction recipe must be defined before latch");
9646 std::optional<FastMathFlags> FMFs =
9653 return isa<VPInstruction>(&U) &&
9654 cast<VPInstruction>(&U)->getOpcode() ==
9669 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9678 Trunc->
insertAfter(NewExitingVPV->getDefiningRecipe());
9679 Extnd->insertAfter(Trunc);
9681 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9682 NewExitingVPV = Extnd;
9702 FinalReductionResult, [](
VPUser &
User,
unsigned) {
9703 auto *Parent = cast<VPRecipeBase>(&
User)->getParent();
9704 return Parent && !Parent->getParent();
9706 FinalReductionResult->insertBefore(*MiddleVPBB, IP);
9715 return isa<VPWidenSelectRecipe>(U) ||
9716 (isa<VPReplicateRecipe>(U) &&
9717 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9718 Instruction::Select);
9724 for (
unsigned I = 0;
I != CmpR->getNumOperands(); ++
I)
9725 if (CmpR->getOperand(
I) == PhiR)
9733 if (
Select->getOperand(1) == PhiR)
9736 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9757 assert(!State.
Lane &&
"VPDerivedIVRecipe being replicated.");
9768 Kind, cast_if_present<BinaryOperator>(FPBinOp));
9770 assert(DerivedIV != CanonicalIV &&
"IV didn't need transforming?");
9779 "uniform recipe shouldn't be predicated");
9785 if (State.
Lane->isFirstLane()) {
9804 if (isa<StoreInst>(UI) &&
9814 for (
unsigned Lane = 0; Lane < EndLane; ++Lane)
9880 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9884 Function *
F = L->getHeader()->getParent();
9890 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9895 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9915 bool AddBranchWeights =
9917 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(),
9920 VF.
Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan);
9922 << L->getHeader()->getParent()->getName() <<
"\"\n");
9942 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
9943 if (S->getValueOperand()->getType()->isFloatTy())
9953 while (!Worklist.
empty()) {
9955 if (!L->contains(
I))
9957 if (!Visited.
insert(
I).second)
9964 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
9967 I->getDebugLoc(), L->getHeader())
9968 <<
"floating point conversion changes vector width. "
9969 <<
"Mixed floating point precision requires an up/down "
9970 <<
"cast that will negatively impact performance.";
9973 for (
Use &
Op :
I->operands())
9974 if (
auto *OpI = dyn_cast<Instruction>(
Op))
9994 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
10050 uint64_t MinTC = std::max(MinTC1, MinTC2);
10052 MinTC =
alignTo(MinTC, IntVF);
10056 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
10064 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
10065 "trip count < minimum profitable VF ("
10076 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10078 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10085 const SCEV2ValueTy &ExpandedSCEVs,
10089 Header->setName(
"vec.epilog.vector.body");
10098 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
10101 auto *ExpandedVal =
10102 Plan.
getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second);
10106 ExpandR->eraseFromParent();
10112 if (
auto *
IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
10119 BasicBlock *MainMiddle = find_singleton<BasicBlock>(
10122 if (BB != EPI.MainLoopIterationCountCheck &&
10123 BB != EPI.EpilogueIterationCountCheck &&
10124 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck)
10129 Type *IdxTy =
IV->getScalarType();
10130 PHINode *EPResumeVal = find_singleton<PHINode>(
10131 L->getLoopPreheader()->phis(),
10133 if (P.getType() == IdxTy &&
10134 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount &&
10136 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck),
10141 assert(EPResumeVal &&
"must have a resume value for the canonical IV");
10145 return isa<VPScalarIVStepsRecipe>(U) ||
10146 isa<VPScalarCastRecipe>(U) ||
10147 isa<VPDerivedIVRecipe>(U) ||
10148 cast<VPInstruction>(U)->getOpcode() ==
10151 "the canonical IV should only be used by its increment or "
10152 "ScalarIVSteps when resetting the start value");
10153 IV->setOperand(0, VPV);
10157 Value *ResumeV =
nullptr;
10159 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10160 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
10161 ->getIncomingValueForBlock(L->getLoopPreheader());
10163 ReductionPhi->getRecurrenceDescriptor();
10170 cast<Instruction>(ResumeV)->
getParent()->getFirstNonPHI());
10177 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
10182 assert(ResumeV &&
"Must have a resume value");
10184 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
10190 "VPlan-native path is not enabled. Only process inner loops.");
10193 << L->getHeader()->getParent()->getName() <<
"' from "
10194 << L->getLocStr() <<
"\n");
10199 dbgs() <<
"LV: Loop hints:"
10210 Function *
F = L->getHeader()->getParent();
10221 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent vectorization.\n");
10232 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
10239 "early exit is not enabled",
10240 "UncountableEarlyExitLoopsDisabled",
ORE, L);
10249 if (!L->isInnermost())
10253 assert(L->isInnermost() &&
"Inner loop expected.");
10263 if (UseInterleaved)
10270 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
10272 "requiring a scalar epilogue is unsupported",
10273 "UncountableEarlyExitUnsupported",
ORE, L);
10287 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
10288 <<
"This loop is worth vectorizing only if no scalar "
10289 <<
"iteration overheads are incurred.");
10291 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10304 LLVM_DEBUG(
dbgs() <<
" But the target considers the trip count too "
10305 "small to consider vectorizing.\n");
10307 "The trip count is below the minial threshold value.",
10308 "loop trip count is too low, avoiding vectorization",
10309 "LowTripCount",
ORE, L);
10318 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10320 "Can't vectorize when the NoImplicitFloat attribute is used",
10321 "loop not vectorized due to NoImplicitFloat attribute",
10322 "NoImplicitFloat",
ORE, L);
10334 "Potentially unsafe FP op prevents vectorization",
10335 "loop not vectorized due to unsafe FP support.",
10336 "UnsafeFP",
ORE, L);
10341 bool AllowOrderedReductions;
10351 ExactFPMathInst->getDebugLoc(),
10352 ExactFPMathInst->getParent())
10353 <<
"loop not vectorized: cannot prove it is safe to reorder "
10354 "floating-point operations";
10356 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10357 "reorder floating-point operations\n");
10363 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10366 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10374 LVP.
plan(UserVF, UserIC);
10381 bool AddBranchWeights =
10383 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(),
10389 unsigned SelectedIC = std::max(IC, UserIC);
10396 bool ForceVectorization =
10398 if (!ForceVectorization &&
10402 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10404 <<
"loop not vectorized: cannot prove it is safe to reorder "
10405 "memory operations";
10414 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10415 bool VectorizeLoop =
true, InterleaveLoop =
true;
10417 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10418 VecDiagMsg = std::make_pair(
10419 "VectorizationNotBeneficial",
10420 "the cost-model indicates that vectorization is not beneficial");
10421 VectorizeLoop =
false;
10427 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10428 "interleaving should be avoided up front\n");
10429 IntDiagMsg = std::make_pair(
10430 "InterleavingAvoided",
10431 "Ignoring UserIC, because interleaving was avoided up front");
10432 InterleaveLoop =
false;
10433 }
else if (IC == 1 && UserIC <= 1) {
10436 IntDiagMsg = std::make_pair(
10437 "InterleavingNotBeneficial",
10438 "the cost-model indicates that interleaving is not beneficial");
10439 InterleaveLoop =
false;
10441 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10442 IntDiagMsg.second +=
10443 " and is explicitly disabled or interleave count is set to 1";
10445 }
else if (IC > 1 && UserIC == 1) {
10448 dbgs() <<
"LV: Interleaving is beneficial but is explicitly disabled.");
10449 IntDiagMsg = std::make_pair(
10450 "InterleavingBeneficialButDisabled",
10451 "the cost-model indicates that interleaving is beneficial "
10452 "but is explicitly disabled or interleave count is set to 1");
10453 InterleaveLoop =
false;
10459 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10460 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10461 <<
"to histogram operations.\n");
10462 IntDiagMsg = std::make_pair(
10463 "HistogramPreventsScalarInterleaving",
10464 "Unable to interleave without vectorization due to constraints on "
10465 "the order of histogram operations");
10466 InterleaveLoop =
false;
10470 IC = UserIC > 0 ? UserIC : IC;
10474 if (!VectorizeLoop && !InterleaveLoop) {
10478 L->getStartLoc(), L->getHeader())
10479 << VecDiagMsg.second;
10483 L->getStartLoc(), L->getHeader())
10484 << IntDiagMsg.second;
10489 if (!VectorizeLoop && InterleaveLoop) {
10493 L->getStartLoc(), L->getHeader())
10494 << VecDiagMsg.second;
10496 }
else if (VectorizeLoop && !InterleaveLoop) {
10498 <<
") in " << L->getLocStr() <<
'\n');
10501 L->getStartLoc(), L->getHeader())
10502 << IntDiagMsg.second;
10504 }
else if (VectorizeLoop && InterleaveLoop) {
10506 <<
") in " << L->getLocStr() <<
'\n');
10510 bool DisableRuntimeUnroll =
false;
10511 MDNode *OrigLoopID = L->getLoopID();
10513 using namespace ore;
10514 if (!VectorizeLoop) {
10515 assert(IC > 1 &&
"interleave count should not be 1 or 0");
10528 <<
"interleaved loop (interleaved count: "
10529 << NV(
"InterleaveCount", IC) <<
")";
10539 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10548 EPI, &LVL, &CM,
BFI,
PSI, Checks,
10552 *BestMainPlan, MainILV,
DT,
false);
10561 Checks, BestEpiPlan);
10566 DT,
true, &ExpandedSCEVs);
10567 ++LoopsEpilogueVectorized;
10570 DisableRuntimeUnroll =
true;
10574 PSI, Checks, BestPlan);
10582 DisableRuntimeUnroll =
true;
10593 "DT not preserved correctly");
10595 std::optional<MDNode *> RemainderLoopID =
10598 if (RemainderLoopID) {
10599 L->setLoopID(*RemainderLoopID);
10601 if (DisableRuntimeUnroll)
10625 bool Changed =
false, CFGChanged =
false;
10632 for (
const auto &L : *
LI)
10633 Changed |= CFGChanged |=
10644 LoopsAnalyzed += Worklist.
size();
10647 while (!Worklist.
empty()) {
10692 if (!Result.MadeAnyChange)
10706 if (Result.MadeCFGChange) {
10722 OS, MapClassName2PassName);
10725 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10726 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
Legalize the Machine IR a function s Machine IR
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addRuntimeUnrollDisableMetaData(Loop *L)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static SetVector< VPIRInstruction * > collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan, const MapVector< PHINode *, InductionDescriptor > &Inductions)
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, const TargetTransformInfo &TTI, PredicatedScalarEvolution &PSE, ScalarEpilogueLowering SEL)
const char LLVMLoopVectorizeFollowupAll[]
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, SetVector< VPIRInstruction * > &ExitUsersToFix)
Handle users in the exit block for first order reductions in the original exit block.
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, DebugLoc DL)
static std::optional< unsigned > getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI)
Convenience function that returns the value of vscale_range iff vscale_range.min == vscale_range....
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static constexpr uint32_t MemCheckBypassWeights[]
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static Type * maybeVectorizeType(Type *Elt, ElementCount VF)
static std::optional< unsigned > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count for the specified loop L as defined by the following procedure: 1) Re...
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
const char VerboseDebug[]
static void fixReductionScalarResumeWhenVectorizingEpilog(VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, BasicBlock *BypassBlock)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static constexpr uint32_t SCEVCheckBypassWeights[]
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static void introduceCheckBlockInVPlan(VPlan &Plan, BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
const char LLVMLoopVectorizeFollowupEpilogue[]
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, const EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static bool useActiveLaneMask(TailFoldingStyle Style)
static unsigned getEstimatedRuntimeVF(const Loop *L, const TargetTransformInfo &TTI, ElementCount VF)
This function attempts to return a value that represents the vectorization factor at runtime.
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static bool addUsersInExitBlocks(VPlan &Plan, const SetVector< VPIRInstruction * > &ExitUsersToFix)
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan)
Create resume phis in the scalar preheader for first-order recurrences and reductions and update the ...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(false), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
std::pair< uint64_t, uint64_t > Interval
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
int64_t getSExtValue() const
Get sign extended value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (ie the ...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void printDebugTracesAtEnd() override
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the main loop strategy (ie the firs...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State) override
Set up the values of the IVs correctly when exiting the vector loop.
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
ConstantInt * getTrue()
Get the constant value for i1 true.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
virtual BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)=0
The interface for creating a vectorized skeleton using one of two different strategies,...
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
void sinkScalarOperands(Instruction *PredInst)
Iteratively sink the scalarized operands of a predicated instruction into the block that was created ...
const TargetLibraryInfo * TLI
Target Library Info.
virtual void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State)
Set up the values of the IVs correctly when exiting the vector loop.
ElementCount MinProfitableTripCount
const TargetTransformInfo * TTI
Target Transform Info.
Value * VectorTripCount
Trip count of the widened loop (TripCount - TripCount % (VF*UF))
bool areSafetyChecksAdded()
BasicBlock * emitSCEVChecks(BasicBlock *Bypass)
Emit a bypass check to see if all of the SCEV assumptions we've had to make are correct.
virtual BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
LoopVectorizationCostModel * Cost
The profitablity analysis.
BasicBlock * AdditionalBypassBlock
The additional bypass block which conditionally skips over the epilogue loop after executing the main...
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
BasicBlock * LoopMiddleBlock
Middle Block between the vector and the scalar.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
SmallVector< Instruction *, 4 > PredicatedInstructions
Store instructions that were predicated.
DenseMap< PHINode *, Value * > Induction2AdditionalBypassValue
Mapping of induction phis to their additional bypass values.
void createInductionResumeVPValues(const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount=nullptr, SmallPtrSetImpl< PHINode * > *IVSubset=nullptr)
Create new phi nodes for the induction variables to resume iteration count in the scalar epilogue,...
void createVectorLoopSkeleton(StringRef Prefix)
Emit basic blocks (prefixed with Prefix) for the iteration check, vector loop preheader,...
BasicBlock * emitMemRuntimeChecks(BasicBlock *Bypass)
Emit bypass checks to check any memory assumptions we may have made.
BasicBlock * LoopScalarPreHeader
The scalar-loop preheader.
LoopVectorizationLegality * Legal
The legality analysis.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
void emitIterationCountCheck(BasicBlock *Bypass)
Emit a bypass check to see if the vector trip count is zero, including if it overflows.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
Value * getInductionAdditionalBypassValue(PHINode *OrigPhi) const
induction header phi.
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
bool OptForSizeBasedOnProfile
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
Value * getOrCreateVectorTripCount(BasicBlock *InsertBlock)
Returns (and creates if needed) the trip count of the widened loop.
void createInductionResumeVPValue(VPIRInstruction *InductionPhiIRI, const InductionDescriptor &ID, Value *Step, ArrayRef< BasicBlock * > BypassBlocks, VPBuilder &ScalarPHBuilder, Value *MainVectorTripCount=nullptr)
Create a ResumePHI VPInstruction for the induction InductionPhiIRI to resume iteration count in the s...
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
unsigned UF
The vectorization unroll factor to use.
SmallVector< BasicBlock *, 4 > LoopBypassBlocks
A list of all bypass blocks. The first block is the entry of the loop.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool requiresScalarEpilogue(VFRange Range) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, TTI::TargetCostKind CostKind) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI)
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallVector< RegisterUsage, 8 > calculateRegisterUsage(ArrayRef< ElementCount > VFs)
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
void collectUniformsAndScalars(ElementCount VF)
Collect Uniform and Scalar values for the given VF.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost)
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
unsigned getNumStores() const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
uint64_t getMaxSafeVectorWidthInBits() const
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
std::optional< const HistogramInfo * > getHistogramInfo(Instruction *I) const
Returns a HistogramInfo* for the given instruction if it was determined to be part of a load -> updat...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
unsigned getNumLoads() const
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
Type * getWidestInductionType()
Returns the widest induction type.
bool hasUncountableEarlyExit() const
Returns true if the loop has an uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block.
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
void prepareNoAliasMetadata()
Set up the aliasing scopes based on the memchecks.
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
bool contains(const KeyT &Key) const
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static unsigned getIncomingValueNumForOperand(unsigned i)
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
Value * getSentinelValue() const
Returns the sentinel value for FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class represents a constant integer value.
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
ArrayRef< value_type > getArrayRef() const
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
value_type pop_back_val()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
static VPIRBasicBlock * fromBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
Instruction & getInstruction() const
This is a concrete Recipe that models a single VPlan-level instruction.
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getFirstLane()
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
Helper class to create VPRecipies from IR instructions.
VPValue * createEdgeMask(BasicBlock *Src, BasicBlock *Dst)
A helper function that computes the predicate of the edge between SRC and DST.
VPReplicateRecipe * handleReplication(Instruction *I, VFRange &Range)
Build a VPReplicationRecipe for I.
void createSwitchEdgeMasks(SwitchInst *SI)
Create an edge mask for every destination of cases and/or default.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPValue * getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const
A helper that returns the previously computed predicate of the edge between SRC and DST.
iterator_range< mapped_iterator< Use *, std::function< VPValue *(Value *)> > > mapToVPValues(User::op_range Operands)
Returns a range mapping the values of the range Operands to their corresponding VPValues.
void fixHeaderPhis()
Add the incoming values from the backedge to reduction & first-order recurrence cross-iteration phis.
VPRecipeBase * tryToCreateWidenRecipe(Instruction *Instr, ArrayRef< VPValue * > Operands, VFRange &Range, VPBasicBlock *VPBB)
Create and return a widened recipe for I if one can be created within the given VF Range.
VPValue * getVPValueOrAddLiveIn(Value *V)
void createHeaderMask()
Create the mask for the vector loop header block.
void createBlockInMask(BasicBlock *BB)
A helper function that computes the predicate of the block BB, assuming that the header block of the ...
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
void setFlags(Instruction *I) const
Set the IR flags for I.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
const RecurrenceDescriptor & getRecurrenceDescriptor() const
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
A recipe to compute the pointers for widened memory accesses of IndexTy in reverse order.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
void replaceAllUsesWith(VPValue *New)
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for handling phis that are widened in the vector loop.
VPValue * getIncomingValue(unsigned I)
Returns the I th incoming VPValue.
VPBasicBlock * getIncomingBlock(unsigned I)
Returns the I th incoming VPBasicBlock.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Main class to build the VPlan H-CFG for an incoming IR.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
bool hasVF(ElementCount VF)
bool hasUF(unsigned UF) const
auto getExitBlocks()
Return an iterator range over the VPIRBasicBlock wrapping the exit blocks of the VPlan,...
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
void setEntry(VPBasicBlock *VPBB)
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getSCEVExpansion(const SCEV *S) const
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUser() const
Return true if there is exactly one user of this value.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
ID ArrayRef< Type * > Tys
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
const_iterator end(StringRef path)
Get end iterator over path.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
auto pred_end(const MachineBasicBlock *BB)
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
std::pair< Instruction *, ElementCount > InstructionVFPair
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
auto map_range(ContainerTy &&C, FuncTy F)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
cl::opt< bool > EnableLoopVectorization
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Type * ToVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
auto pred_begin(const MachineBasicBlock *BB)
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
bool verifyVPlanIsValid(const VPlan &Plan)
Verify invariants for general VPlans.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
BasicBlock * SCEVSafetyCheck
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MemSafetyCheck
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
std::optional< unsigned > MaskPos
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
LoopVectorizeResult runImpl(Function &F)
bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LoopVectorizePass(LoopVectorizeOptions Opts={})
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
A MapVector that performs no allocations if smaller than a certain size.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static bool HoistRuntimeChecks