161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
407 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
442static std::optional<ElementCount>
444 bool CanUseConstantMax =
true) {
454 if (!CanUseConstantMax)
466class GeneratedRTChecks;
499 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
502 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
612 "A high UF for the epilogue loop is likely not beneficial.");
663 EPI.MainLoopVF,
EPI.MainLoopUF) {}
705 EPI.EpilogueVF,
EPI.EpilogueUF) {
715 assert(AdditionalBypassBlock &&
716 "Trying to access AdditionalBypassBlock but it has not been set");
717 return AdditionalBypassBlock;
738 if (
I->getDebugLoc() !=
Empty)
739 return I->getDebugLoc();
741 for (
Use &
Op :
I->operands()) {
743 if (OpInst->getDebugLoc() !=
Empty)
744 return OpInst->getDebugLoc();
747 return I->getDebugLoc();
756 dbgs() <<
"LV: " << Prefix << DebugMsg;
778 if (
I &&
I->getDebugLoc())
779 DL =
I->getDebugLoc();
791 assert(Ty->isIntegerTy() &&
"Expected an integer step");
799 return B.CreateElementCount(Ty, VFxStep);
804 return B.CreateElementCount(Ty, VF);
815 <<
"loop not vectorized: " << OREMsg);
838 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
844 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
846 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
902 initializeVScaleForTuning();
983 "Profitable to scalarize relevant only for VF > 1.");
986 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto Scalars = InstsToScalarize.find(VF);
989 assert(Scalars != InstsToScalarize.end() &&
990 "VF not yet analyzed for scalarization profitability");
991 return Scalars->second.contains(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1008 auto UniformsPerVF = Uniforms.find(VF);
1009 assert(UniformsPerVF != Uniforms.end() &&
1010 "VF not yet analyzed for uniformity");
1011 return UniformsPerVF->second.count(
I);
1018 "cost-model should not be used for outer loops (in VPlan-native path)");
1022 auto ScalarsPerVF = Scalars.find(VF);
1023 assert(ScalarsPerVF != Scalars.end() &&
1024 "Scalar values are not calculated for VF");
1025 return ScalarsPerVF->second.count(
I);
1031 return VF.
isVector() && MinBWs.contains(
I) &&
1053 WideningDecisions[{
I, VF}] = {W,
Cost};
1072 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1075 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1077 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1089 "cost-model should not be used for outer loops (in VPlan-native path)");
1091 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1092 auto Itr = WideningDecisions.find(InstOnVF);
1093 if (Itr == WideningDecisions.end())
1095 return Itr->second.first;
1102 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1103 assert(WideningDecisions.contains(InstOnVF) &&
1104 "The cost is not calculated");
1105 return WideningDecisions[InstOnVF].second;
1118 std::optional<unsigned> MaskPos,
1121 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1127 auto I = CallWideningDecisions.find({CI, VF});
1128 if (
I == CallWideningDecisions.end())
1151 Value *
Op = Trunc->getOperand(0);
1152 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1156 return Legal->isInductionPhi(
Op);
1172 if (VF.
isScalar() || Uniforms.contains(VF))
1175 collectLoopUniforms(VF);
1177 collectLoopScalars(VF);
1185 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1193 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1208 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1215 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1216 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1217 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1228 return ScalarCost < SafeDivisorCost;
1252 std::pair<InstructionCost, InstructionCost>
1280 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1287 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1288 "from latch block\n");
1293 "interleaved group requires scalar epilogue\n");
1296 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1308 if (!ChosenTailFoldingStyle)
1310 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1311 : ChosenTailFoldingStyle->second;
1319 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1320 if (!
Legal->canFoldTailByMasking()) {
1326 ChosenTailFoldingStyle = {
1327 TTI.getPreferredTailFoldingStyle(
true),
1328 TTI.getPreferredTailFoldingStyle(
false)};
1338 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1352 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1353 "not try to generate VP Intrinsics "
1355 ?
"since interleave count specified is greater than 1.\n"
1356 :
"due to non-interleaving reasons.\n"));
1390 return InLoopReductions.contains(Phi);
1401 TTI.preferPredicatedReductionSelect();
1416 WideningDecisions.clear();
1417 CallWideningDecisions.clear();
1436 const unsigned IC)
const;
1446 Type *VectorTy)
const;
1456 unsigned NumPredStores = 0;
1460 std::optional<unsigned> VScaleForTuning;
1465 void initializeVScaleForTuning() {
1470 auto Max = Attr.getVScaleRangeMax();
1471 if (Max && Min == Max) {
1472 VScaleForTuning = Max;
1477 VScaleForTuning =
TTI.getVScaleForTuning();
1485 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1486 ElementCount UserVF,
1487 bool FoldTailByMasking);
1491 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1492 bool FoldTailByMasking)
const;
1497 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1498 unsigned SmallestType,
1499 unsigned WidestType,
1500 ElementCount MaxSafeVF,
1501 bool FoldTailByMasking);
1505 bool isScalableVectorizationAllowed();
1509 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1515 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1536 ElementCount VF)
const;
1540 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1545 MapVector<Instruction *, uint64_t> MinBWs;
1550 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1554 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1555 PredicatedBBsAfterVectorization;
1568 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1569 ChosenTailFoldingStyle;
1572 std::optional<bool> IsScalableVectorizationAllowed;
1578 std::optional<unsigned> MaxSafeElements;
1584 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1588 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1592 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1596 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1599 SmallPtrSet<PHINode *, 4> InLoopReductions;
1604 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1612 ScalarCostsTy &ScalarCosts,
1624 void collectLoopUniforms(ElementCount VF);
1633 void collectLoopScalars(ElementCount VF);
1637 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1638 std::pair<InstWidening, InstructionCost>>;
1640 DecisionList WideningDecisions;
1642 using CallDecisionList =
1645 CallDecisionList CallWideningDecisions;
1649 bool needsExtract(
Value *V, ElementCount VF)
const {
1669 ElementCount VF)
const {
1671 SmallPtrSet<const Value *, 4> UniqueOperands;
1675 !needsExtract(
Op, VF))
1747class GeneratedRTChecks {
1753 Value *SCEVCheckCond =
nullptr;
1760 Value *MemRuntimeCheckCond =
nullptr;
1769 bool CostTooHigh =
false;
1771 Loop *OuterLoop =
nullptr;
1782 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1783 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"), PSE(PSE),
1791 void create(Loop *L,
const LoopAccessInfo &LAI,
1792 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1812 nullptr,
"vector.scevcheck");
1819 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1820 SCEVCleaner.cleanup();
1825 if (RtPtrChecking.Need) {
1826 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1827 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1830 auto DiffChecks = RtPtrChecking.getDiffChecks();
1832 Value *RuntimeVF =
nullptr;
1835 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1837 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1843 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1846 assert(MemRuntimeCheckCond &&
1847 "no RT checks generated although RtPtrChecking "
1848 "claimed checks are required");
1853 if (!MemCheckBlock && !SCEVCheckBlock)
1863 if (SCEVCheckBlock) {
1866 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1870 if (MemCheckBlock) {
1873 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1879 if (MemCheckBlock) {
1883 if (SCEVCheckBlock) {
1889 OuterLoop =
L->getParentLoop();
1893 if (SCEVCheckBlock || MemCheckBlock)
1905 for (Instruction &
I : *SCEVCheckBlock) {
1906 if (SCEVCheckBlock->getTerminator() == &
I)
1912 if (MemCheckBlock) {
1914 for (Instruction &
I : *MemCheckBlock) {
1915 if (MemCheckBlock->getTerminator() == &
I)
1927 ScalarEvolution *SE = MemCheckExp.
getSE();
1932 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1937 unsigned BestTripCount = 2;
1941 PSE, OuterLoop,
false))
1942 if (EstimatedTC->isFixed())
1943 BestTripCount = EstimatedTC->getFixedValue();
1948 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1949 (InstructionCost::CostType)1);
1951 if (BestTripCount > 1)
1953 <<
"We expect runtime memory checks to be hoisted "
1954 <<
"out of the outer loop. Cost reduced from "
1955 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1957 MemCheckCost = NewMemCheckCost;
1961 RTCheckCost += MemCheckCost;
1964 if (SCEVCheckBlock || MemCheckBlock)
1965 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1973 ~GeneratedRTChecks() {
1974 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1975 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1976 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1977 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1979 SCEVCleaner.markResultUsed();
1981 if (MemChecksUsed) {
1982 MemCheckCleaner.markResultUsed();
1984 auto &SE = *MemCheckExp.
getSE();
1991 I.eraseFromParent();
1994 MemCheckCleaner.cleanup();
1995 SCEVCleaner.cleanup();
1997 if (!SCEVChecksUsed)
1998 SCEVCheckBlock->eraseFromParent();
2000 MemCheckBlock->eraseFromParent();
2005 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2006 using namespace llvm::PatternMatch;
2008 return {
nullptr,
nullptr};
2010 return {SCEVCheckCond, SCEVCheckBlock};
2015 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2016 using namespace llvm::PatternMatch;
2017 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2018 return {
nullptr,
nullptr};
2019 return {MemRuntimeCheckCond, MemCheckBlock};
2023 bool hasChecks()
const {
2024 return getSCEVChecks().first || getMemRuntimeChecks().first;
2067 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2073 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2103 for (
Loop *InnerL : L)
2126 ?
B.CreateSExtOrTrunc(Index, StepTy)
2127 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2128 if (CastedIndex != Index) {
2130 Index = CastedIndex;
2140 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2145 return B.CreateAdd(
X,
Y);
2151 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2152 "Types don't match!");
2159 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2160 return B.CreateMul(
X,
Y);
2163 switch (InductionKind) {
2166 "Vector indices not supported for integer inductions yet");
2168 "Index type does not match StartValue type");
2170 return B.CreateSub(StartValue, Index);
2175 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2178 "Vector indices not supported for FP inductions yet");
2181 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2182 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2183 "Original bin op should be defined for FP induction");
2185 Value *MulExp =
B.CreateFMul(Step, Index);
2186 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2197 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2200 if (
F.hasFnAttribute(Attribute::VScaleRange))
2201 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2203 return std::nullopt;
2212 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2214 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2216 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2222 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2225 std::optional<unsigned> MaxVScale =
2229 MaxVF *= *MaxVScale;
2232 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2246 return TTI.enableMaskedInterleavedAccessVectorization();
2259 PreVectorPH = CheckVPIRBB;
2269 "must have incoming values for all operands");
2270 R.addOperand(R.getOperand(NumPredecessors - 2));
2296 auto CreateStep = [&]() ->
Value * {
2303 if (!
VF.isScalable())
2305 return Builder.CreateBinaryIntrinsic(
2311 Value *Step = CreateStep();
2320 CheckMinIters =
Builder.getTrue();
2322 TripCountSCEV, SE.
getSCEV(Step))) {
2325 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2327 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2335 Value *MaxUIntTripCount =
2342 return CheckMinIters;
2352 auto IP = IRVPBB->
begin();
2354 R.moveBefore(*IRVPBB, IP);
2358 R.moveBefore(*IRVPBB, IRVPBB->
end());
2367 assert(VectorPH &&
"Invalid loop structure");
2369 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2370 "loops not exiting via the latch without required epilogue?");
2377 Twine(Prefix) +
"scalar.ph");
2383 const SCEV2ValueTy &ExpandedSCEVs) {
2384 const SCEV *Step =
ID.getStep();
2386 return C->getValue();
2388 return U->getValue();
2389 Value *V = ExpandedSCEVs.lookup(Step);
2390 assert(V &&
"SCEV must be expanded at this point");
2400 auto *Cmp = L->getLatchCmpInst();
2402 InstsToIgnore.
insert(Cmp);
2403 for (
const auto &KV : IL) {
2412 [&](
const User *U) { return U == IV || U == Cmp; }))
2413 InstsToIgnore.
insert(IVInst);
2425struct CSEDenseMapInfo {
2436 return DenseMapInfo<Instruction *>::getTombstoneKey();
2439 static unsigned getHashValue(
const Instruction *
I) {
2440 assert(canHandle(
I) &&
"Unknown instruction!");
2445 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2446 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2447 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2449 return LHS->isIdenticalTo(
RHS);
2460 if (!CSEDenseMapInfo::canHandle(&In))
2466 In.replaceAllUsesWith(V);
2467 In.eraseFromParent();
2480 std::optional<unsigned> VScale) {
2484 EstimatedVF *= *VScale;
2485 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2503 for (
auto &ArgOp : CI->
args())
2514 return ScalarCallCost;
2527 assert(
ID &&
"Expected intrinsic call!");
2531 FMF = FPMO->getFastMathFlags();
2537 std::back_inserter(ParamTys),
2538 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2543 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2557 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2572 Builder.SetInsertPoint(NewPhi);
2574 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2579void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2584 "This function should not be visited twice for the same VF");
2609 "Widening decision should be ready at this moment");
2611 if (
Ptr == Store->getValueOperand())
2614 "Ptr is neither a value or pointer operand");
2620 auto IsLoopVaryingGEP = [&](
Value *
V) {
2631 if (!IsLoopVaryingGEP(
Ptr))
2643 if (IsScalarUse(MemAccess,
Ptr) &&
2647 PossibleNonScalarPtrs.
insert(
I);
2663 for (
auto *BB :
TheLoop->blocks())
2664 for (
auto &
I : *BB) {
2666 EvaluatePtrUse(Load,
Load->getPointerOperand());
2668 EvaluatePtrUse(Store,
Store->getPointerOperand());
2669 EvaluatePtrUse(Store,
Store->getValueOperand());
2672 for (
auto *
I : ScalarPtrs)
2673 if (!PossibleNonScalarPtrs.
count(
I)) {
2681 auto ForcedScalar = ForcedScalars.find(VF);
2682 if (ForcedScalar != ForcedScalars.end())
2683 for (
auto *
I : ForcedScalar->second) {
2684 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2693 while (Idx != Worklist.
size()) {
2695 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2699 auto *J = cast<Instruction>(U);
2700 return !TheLoop->contains(J) || Worklist.count(J) ||
2701 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2702 IsScalarUse(J, Src));
2705 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2711 for (
const auto &Induction :
Legal->getInductionVars()) {
2712 auto *Ind = Induction.first;
2722 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2724 return Induction.second.getKind() ==
2732 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2733 auto *I = cast<Instruction>(U);
2734 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2735 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2744 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2749 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2750 auto *I = cast<Instruction>(U);
2751 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2752 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2754 if (!ScalarIndUpdate)
2759 Worklist.
insert(IndUpdate);
2760 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2761 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2765 Scalars[VF].insert_range(Worklist);
2775 switch(
I->getOpcode()) {
2778 case Instruction::Call:
2782 case Instruction::Load:
2783 case Instruction::Store: {
2792 TTI.isLegalMaskedGather(VTy, Alignment))
2794 TTI.isLegalMaskedScatter(VTy, Alignment));
2796 case Instruction::UDiv:
2797 case Instruction::SDiv:
2798 case Instruction::SRem:
2799 case Instruction::URem: {
2820 if (
Legal->blockNeedsPredication(
I->getParent()))
2832 switch(
I->getOpcode()) {
2835 "instruction should have been considered by earlier checks");
2836 case Instruction::Call:
2840 "should have returned earlier for calls not needing a mask");
2842 case Instruction::Load:
2845 case Instruction::Store: {
2853 case Instruction::UDiv:
2854 case Instruction::SDiv:
2855 case Instruction::SRem:
2856 case Instruction::URem:
2858 return !
Legal->isInvariant(
I->getOperand(1));
2862std::pair<InstructionCost, InstructionCost>
2865 assert(
I->getOpcode() == Instruction::UDiv ||
2866 I->getOpcode() == Instruction::SDiv ||
2867 I->getOpcode() == Instruction::SRem ||
2868 I->getOpcode() == Instruction::URem);
2877 ScalarizationCost = 0;
2883 ScalarizationCost +=
2887 ScalarizationCost +=
2889 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2893 ScalarizationCost += getScalarizationOverhead(
I, VF);
2907 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2912 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2914 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2915 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2917 return {ScalarizationCost, SafeDivisorCost};
2924 "Decision should not be set yet.");
2926 assert(Group &&
"Must have a group.");
2927 unsigned InterleaveFactor = Group->getFactor();
2931 auto &
DL =
I->getDataLayout();
2943 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2944 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2949 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2951 if (MemberNI != ScalarNI)
2954 if (MemberNI && ScalarNI &&
2955 ScalarTy->getPointerAddressSpace() !=
2956 MemberTy->getPointerAddressSpace())
2965 bool PredicatedAccessRequiresMasking =
2967 Legal->isMaskRequired(
I);
2968 bool LoadAccessWithGapsRequiresEpilogMasking =
2971 bool StoreAccessWithGapsRequiresMasking =
2973 if (!PredicatedAccessRequiresMasking &&
2974 !LoadAccessWithGapsRequiresEpilogMasking &&
2975 !StoreAccessWithGapsRequiresMasking)
2982 "Masked interleave-groups for predicated accesses are not enabled.");
2984 if (Group->isReverse())
2988 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2989 StoreAccessWithGapsRequiresMasking;
2997 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3009 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3019 auto &
DL =
I->getDataLayout();
3026void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3033 "This function should not be visited twice for the same VF");
3037 Uniforms[VF].
clear();
3045 auto IsOutOfScope = [&](
Value *V) ->
bool {
3057 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3058 if (IsOutOfScope(
I)) {
3065 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3069 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3078 TheLoop->getExitingBlocks(Exiting);
3079 for (BasicBlock *
E : Exiting) {
3080 if (
Legal->hasUncountableEarlyExit() &&
TheLoop->getLoopLatch() !=
E)
3083 if (Cmp &&
TheLoop->contains(Cmp) &&
Cmp->hasOneUse())
3084 AddToWorklistIfAllowed(Cmp);
3093 if (PrevVF.isVector()) {
3094 auto Iter = Uniforms.find(PrevVF);
3095 if (Iter != Uniforms.end() && !Iter->second.contains(
I))
3098 if (!
Legal->isUniformMemOp(*
I, VF))
3108 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3111 "Widening decision should be ready at this moment");
3113 if (IsUniformMemOpUse(
I))
3116 return (WideningDecision ==
CM_Widen ||
3128 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3136 SetVector<Value *> HasUniformUse;
3140 for (
auto *BB :
TheLoop->blocks())
3141 for (
auto &
I : *BB) {
3143 switch (
II->getIntrinsicID()) {
3144 case Intrinsic::sideeffect:
3145 case Intrinsic::experimental_noalias_scope_decl:
3146 case Intrinsic::assume:
3147 case Intrinsic::lifetime_start:
3148 case Intrinsic::lifetime_end:
3149 if (
TheLoop->hasLoopInvariantOperands(&
I))
3150 AddToWorklistIfAllowed(&
I);
3158 if (IsOutOfScope(EVI->getAggregateOperand())) {
3159 AddToWorklistIfAllowed(EVI);
3165 "Expected aggregate value to be call return value");
3173 if (IsUniformMemOpUse(&
I))
3174 AddToWorklistIfAllowed(&
I);
3176 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3183 for (
auto *V : HasUniformUse) {
3184 if (IsOutOfScope(V))
3187 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3188 auto *UI = cast<Instruction>(U);
3189 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3191 if (UsersAreMemAccesses)
3192 AddToWorklistIfAllowed(
I);
3199 while (Idx != Worklist.
size()) {
3202 for (
auto *OV :
I->operand_values()) {
3204 if (IsOutOfScope(OV))
3209 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3215 auto *J = cast<Instruction>(U);
3216 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3218 AddToWorklistIfAllowed(OI);
3229 for (
const auto &Induction :
Legal->getInductionVars()) {
3230 auto *Ind = Induction.first;
3235 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3236 auto *I = cast<Instruction>(U);
3237 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3238 IsVectorizedMemAccessUse(I, Ind);
3245 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3246 auto *I = cast<Instruction>(U);
3247 return I == Ind || Worklist.count(I) ||
3248 IsVectorizedMemAccessUse(I, IndUpdate);
3250 if (!UniformIndUpdate)
3254 AddToWorklistIfAllowed(Ind);
3255 AddToWorklistIfAllowed(IndUpdate);
3258 Uniforms[VF].insert_range(Worklist);
3264 if (
Legal->getRuntimePointerChecking()->Need) {
3266 "runtime pointer checks needed. Enable vectorization of this "
3267 "loop with '#pragma clang loop vectorize(enable)' when "
3268 "compiling with -Os/-Oz",
3269 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3273 if (!
PSE.getPredicate().isAlwaysTrue()) {
3275 "runtime SCEV checks needed. Enable vectorization of this "
3276 "loop with '#pragma clang loop vectorize(enable)' when "
3277 "compiling with -Os/-Oz",
3278 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3283 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3285 "runtime stride == 1 checks needed. Enable vectorization of "
3286 "this loop without such check by compiling with -Os/-Oz",
3287 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3294bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3295 if (IsScalableVectorizationAllowed)
3296 return *IsScalableVectorizationAllowed;
3298 IsScalableVectorizationAllowed =
false;
3304 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3308 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3311 std::numeric_limits<ElementCount::ScalarTy>::max());
3322 "Scalable vectorization not supported for the reduction "
3323 "operations found in this loop.",
3332 !this->
TTI.isElementTypeLegalForScalableVector(Ty);
3335 "for all element types found in this loop.",
3342 "for safe distance analysis.",
3347 IsScalableVectorizationAllowed =
true;
3352LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3353 if (!isScalableVectorizationAllowed())
3357 std::numeric_limits<ElementCount::ScalarTy>::max());
3358 if (
Legal->isSafeForAnyVectorWidth())
3359 return MaxScalableVF;
3367 "Max legal vector width too small, scalable vectorization "
3371 return MaxScalableVF;
3375 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3377 unsigned SmallestType, WidestType;
3384 unsigned MaxSafeElementsPowerOf2 =
3386 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3387 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3388 MaxSafeElementsPowerOf2 =
3389 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3392 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3394 if (!
Legal->isSafeForAnyVectorWidth())
3395 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3397 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3399 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3404 auto MaxSafeUserVF =
3405 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3410 return FixedScalableVFPair(
3422 <<
" is unsafe, clamping to max safe VF="
3423 << MaxSafeFixedVF <<
".\n");
3425 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3428 <<
"User-specified vectorization factor "
3429 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3430 <<
" is unsafe, clamping to maximum safe vectorization factor "
3431 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3433 return MaxSafeFixedVF;
3438 <<
" is ignored because scalable vectors are not "
3441 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3444 <<
"User-specified vectorization factor "
3445 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3446 <<
" is ignored because the target does not support scalable "
3447 "vectors. The compiler will pick a more suitable value.";
3451 <<
" is unsafe. Ignoring scalable UserVF.\n");
3453 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3456 <<
"User-specified vectorization factor "
3457 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3458 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3459 "more suitable value.";
3464 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3465 <<
" / " << WidestType <<
" bits.\n");
3470 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3471 MaxSafeFixedVF, FoldTailByMasking))
3475 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3476 MaxSafeScalableVF, FoldTailByMasking))
3477 if (MaxVF.isScalable()) {
3478 Result.ScalableVF = MaxVF;
3479 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3488 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3492 "Not inserting runtime ptr check for divergent target",
3493 "runtime pointer checks needed. Not enabled for divergent target",
3494 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3500 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3503 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3506 "loop trip count is one, irrelevant for vectorization",
3517 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3521 "Trip count computation wrapped",
3522 "backedge-taken count is -1, loop trip count wrapped to 0",
3527 switch (ScalarEpilogueStatus) {
3529 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3534 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3535 <<
"LV: Not allowing scalar epilogue, creating predicated "
3536 <<
"vector loop.\n");
3543 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3545 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3561 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3562 "No decisions should have been taken at this point");
3572 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3576 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3577 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3578 *MaxPowerOf2RuntimeVF,
3581 MaxPowerOf2RuntimeVF = std::nullopt;
3584 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3588 !
Legal->hasUncountableEarlyExit())
3590 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3595 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3597 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3598 "Invalid loop count");
3600 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3607 if (MaxPowerOf2RuntimeVF > 0u) {
3609 "MaxFixedVF must be a power of 2");
3610 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3612 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3618 if (ExpectedTC && ExpectedTC->isFixed() &&
3619 ExpectedTC->getFixedValue() <=
3620 TTI.getMinTripCountTailFoldingThreshold()) {
3621 if (MaxPowerOf2RuntimeVF > 0u) {
3627 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3628 "remain for any chosen VF.\n");
3635 "The trip count is below the minial threshold value.",
3636 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3651 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3652 "try to generate VP Intrinsics with scalable vector "
3657 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3667 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3668 "scalar epilogue instead.\n");
3674 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3680 "unable to calculate the loop count due to complex control flow",
3686 "Cannot optimize for size and vectorize at the same time.",
3687 "cannot optimize for size and vectorize at the same time. "
3688 "Enable vectorization of this loop with '#pragma clang loop "
3689 "vectorize(enable)' when compiling with -Os/-Oz",
3709 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3711 Legal->hasVectorCallVariants())));
3714ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3715 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3729 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3737 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3738 "exceeding the constant trip count: "
3739 << ClampedUpperTripCount <<
"\n");
3741 FoldTailByMasking ? VF.
isScalable() :
false);
3746ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3747 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3749 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3750 const TypeSize WidestRegister =
TTI.getRegisterBitWidth(
3755 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3757 "Scalable flags must match");
3765 ComputeScalableMaxVF);
3766 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3768 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3770 if (!MaxVectorElementCount) {
3772 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3773 <<
" vector registers.\n");
3777 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3778 MaxTripCount, FoldTailByMasking);
3781 if (MaxVF != MaxVectorElementCount)
3796 ComputeScalableMaxVF);
3797 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3799 if (ElementCount MinVF =
3800 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3803 <<
") with target's minimum: " << MinVF <<
'\n');
3808 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3810 if (MaxVectorElementCount != MaxVF) {
3822 const unsigned MaxTripCount,
3824 bool IsEpilogue)
const {
3830 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3831 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3832 if (
A.Width.isScalable())
3833 EstimatedWidthA *= *VScale;
3834 if (
B.Width.isScalable())
3835 EstimatedWidthB *= *VScale;
3842 return CostA < CostB ||
3843 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3848 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3849 A.Width.isScalable() && !
B.Width.isScalable();
3860 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3862 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3874 return VectorCost * (MaxTripCount / VF) +
3875 ScalarCost * (MaxTripCount % VF);
3876 return VectorCost *
divideCeil(MaxTripCount, VF);
3879 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3880 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3881 return CmpFn(RTCostA, RTCostB);
3887 bool IsEpilogue)
const {
3888 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3889 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3895 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3897 for (
const auto &Plan : VPlans) {
3906 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3907 precomputeCosts(*Plan, VF, CostCtx);
3910 for (
auto &R : *VPBB) {
3911 if (!R.cost(VF, CostCtx).isValid())
3917 if (InvalidCosts.
empty())
3925 for (
auto &Pair : InvalidCosts)
3930 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3931 unsigned NA = Numbering[
A.first];
3932 unsigned NB = Numbering[
B.first];
3947 Subset =
Tail.take_front(1);
3954 [](
const auto *R) {
return Instruction::PHI; })
3955 .Case<VPWidenSelectRecipe>(
3956 [](
const auto *R) {
return Instruction::Select; })
3957 .Case<VPWidenStoreRecipe>(
3958 [](
const auto *R) {
return Instruction::Store; })
3959 .Case<VPWidenLoadRecipe>(
3960 [](
const auto *R) {
return Instruction::Load; })
3961 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3962 [](
const auto *R) {
return Instruction::Call; })
3965 [](
const auto *R) {
return R->getOpcode(); })
3967 return R->getStoredValues().empty() ? Instruction::Load
3968 : Instruction::Store;
3976 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3977 std::string OutString;
3979 assert(!Subset.empty() &&
"Unexpected empty range");
3980 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3981 for (
const auto &Pair : Subset)
3982 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3984 if (Opcode == Instruction::Call) {
3987 Name =
Int->getIntrinsicName();
3991 WidenCall ? WidenCall->getCalledScalarFunction()
3993 ->getLiveInIRValue());
3996 OS <<
" call to " << Name;
4001 Tail =
Tail.drop_front(Subset.size());
4005 Subset =
Tail.take_front(Subset.size() + 1);
4006 }
while (!
Tail.empty());
4028 switch (R.getVPDefID()) {
4029 case VPDef::VPDerivedIVSC:
4030 case VPDef::VPScalarIVStepsSC:
4031 case VPDef::VPReplicateSC:
4032 case VPDef::VPInstructionSC:
4033 case VPDef::VPCanonicalIVPHISC:
4034 case VPDef::VPVectorPointerSC:
4035 case VPDef::VPVectorEndPointerSC:
4036 case VPDef::VPExpandSCEVSC:
4037 case VPDef::VPEVLBasedIVPHISC:
4038 case VPDef::VPPredInstPHISC:
4039 case VPDef::VPBranchOnMaskSC:
4041 case VPDef::VPReductionSC:
4042 case VPDef::VPActiveLaneMaskPHISC:
4043 case VPDef::VPWidenCallSC:
4044 case VPDef::VPWidenCanonicalIVSC:
4045 case VPDef::VPWidenCastSC:
4046 case VPDef::VPWidenGEPSC:
4047 case VPDef::VPWidenIntrinsicSC:
4048 case VPDef::VPWidenSC:
4049 case VPDef::VPWidenSelectSC:
4050 case VPDef::VPBlendSC:
4051 case VPDef::VPFirstOrderRecurrencePHISC:
4052 case VPDef::VPHistogramSC:
4053 case VPDef::VPWidenPHISC:
4054 case VPDef::VPWidenIntOrFpInductionSC:
4055 case VPDef::VPWidenPointerInductionSC:
4056 case VPDef::VPReductionPHISC:
4057 case VPDef::VPInterleaveEVLSC:
4058 case VPDef::VPInterleaveSC:
4059 case VPDef::VPWidenLoadEVLSC:
4060 case VPDef::VPWidenLoadSC:
4061 case VPDef::VPWidenStoreEVLSC:
4062 case VPDef::VPWidenStoreSC:
4068 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4069 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4085 if (R.getNumDefinedValues() == 0 &&
4094 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4096 if (!Visited.
insert({ScalarTy}).second)
4110 [](
auto *VPRB) { return VPRB->isReplicator(); });
4116 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4117 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4120 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4121 "Expected Scalar VF to be a candidate");
4128 if (ForceVectorization &&
4129 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4136 for (
auto &
P : VPlans) {
4138 P->vectorFactors().end());
4141 if (
any_of(VFs, [
this](ElementCount VF) {
4142 return CM.shouldConsiderRegPressureForVF(VF);
4146 for (
unsigned I = 0;
I < VFs.size();
I++) {
4147 ElementCount VF = VFs[
I];
4155 if (CM.shouldConsiderRegPressureForVF(VF) &&
4163 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind);
4164 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4165 assert(VectorRegion &&
"Expected to have a vector region!");
4168 for (VPRecipeBase &R : *VPBB) {
4172 switch (VPI->getOpcode()) {
4175 case Instruction::Select: {
4176 VPValue *VPV = VPI->getVPSingleValue();
4179 switch (WR->getOpcode()) {
4180 case Instruction::UDiv:
4181 case Instruction::SDiv:
4182 case Instruction::URem:
4183 case Instruction::SRem:
4190 C += VPI->cost(VF, CostCtx);
4194 unsigned Multiplier =
4197 C += VPI->cost(VF * Multiplier, CostCtx);
4201 C += VPI->cost(VF, CostCtx);
4213 <<
" costs: " << (Candidate.Cost / Width));
4216 << CM.getVScaleForTuning().value_or(1) <<
")");
4222 <<
"LV: Not considering vector loop of width " << VF
4223 <<
" because it will not generate any vector instructions.\n");
4230 <<
"LV: Not considering vector loop of width " << VF
4231 <<
" because it would cause replicated blocks to be generated,"
4232 <<
" which isn't allowed when optimizing for size.\n");
4236 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4237 ChosenFactor = Candidate;
4243 "There are conditional stores.",
4244 "store that is conditionally executed prevents vectorization",
4245 "ConditionalStore", ORE, OrigLoop);
4246 ChosenFactor = ScalarCost;
4250 !isMoreProfitable(ChosenFactor, ScalarCost,
4251 !CM.foldTailByMasking()))
dbgs()
4252 <<
"LV: Vectorization seems to be not beneficial, "
4253 <<
"but was forced by a user.\n");
4254 return ChosenFactor;
4258bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4262 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4263 if (!Legal->isReductionVariable(&Phi))
4264 return Legal->isFixedOrderRecurrence(&Phi);
4265 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4266 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4272 for (
const auto &Entry : Legal->getInductionVars()) {
4275 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4276 for (User *U :
PostInc->users())
4280 for (User *U :
Entry.first->users())
4289 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4303 if (!
TTI.preferEpilogueVectorization())
4308 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4315 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4318 :
TTI.getEpilogueVectorizationMinVF();
4327 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4331 if (!CM.isScalarEpilogueAllowed()) {
4332 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4333 "epilogue is allowed.\n");
4339 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4340 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4341 "is not a supported candidate.\n");
4346 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4349 return {ForcedEC, 0, 0};
4351 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4356 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4358 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4362 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4363 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4375 Type *TCType = Legal->getWidestInductionType();
4376 const SCEV *RemainingIterations =
nullptr;
4377 unsigned MaxTripCount = 0;
4381 RemainingIterations =
4385 if (RemainingIterations->
isZero())
4395 << MaxTripCount <<
"\n");
4398 for (
auto &NextVF : ProfitableVFs) {
4405 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4407 (NextVF.Width.isScalable() &&
4409 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4415 if (RemainingIterations && !NextVF.Width.isScalable()) {
4418 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4419 RemainingIterations))
4423 if (Result.Width.isScalar() ||
4424 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4431 << Result.Width <<
"\n");
4435std::pair<unsigned, unsigned>
4437 unsigned MinWidth = -1U;
4438 unsigned MaxWidth = 8;
4444 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4448 MinWidth = std::min(
4452 MaxWidth = std::max(MaxWidth,
4457 MinWidth = std::min<unsigned>(
4458 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4459 MaxWidth = std::max<unsigned>(
4460 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4463 return {MinWidth, MaxWidth};
4471 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4485 if (!
Legal->isReductionVariable(PN))
4488 Legal->getRecurrenceDescriptor(PN);
4498 T = ST->getValueOperand()->getType();
4501 "Expected the load/store/recurrence type to be sized");
4525 if (!CM.isScalarEpilogueAllowed())
4530 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4531 "Unroll factor forced to be 1.\n");
4536 if (!Legal->isSafeForAnyVectorWidth())
4545 const bool HasReductions =
4551 if (LoopCost == 0) {
4553 LoopCost = CM.expectedCost(VF);
4555 LoopCost = cost(Plan, VF);
4556 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4567 for (
auto &Pair : R.MaxLocalUsers) {
4568 Pair.second = std::max(Pair.second, 1U);
4582 unsigned IC = UINT_MAX;
4584 for (
const auto &Pair : R.MaxLocalUsers) {
4585 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4588 << TTI.getRegisterClassName(Pair.first)
4589 <<
" register class\n");
4597 unsigned MaxLocalUsers = Pair.second;
4598 unsigned LoopInvariantRegs = 0;
4599 if (R.LoopInvariantRegs.contains(Pair.first))
4600 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4602 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4606 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4607 std::max(1U, (MaxLocalUsers - 1)));
4610 IC = std::min(IC, TmpIC);
4614 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4630 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4632 unsigned AvailableTC =
4638 if (CM.requiresScalarEpilogue(VF.
isVector()))
4641 unsigned InterleaveCountLB =
bit_floor(std::max(
4642 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4656 unsigned InterleaveCountUB =
bit_floor(std::max(
4657 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4658 MaxInterleaveCount = InterleaveCountLB;
4660 if (InterleaveCountUB != InterleaveCountLB) {
4661 unsigned TailTripCountUB =
4662 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4663 unsigned TailTripCountLB =
4664 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4667 if (TailTripCountUB == TailTripCountLB)
4668 MaxInterleaveCount = InterleaveCountUB;
4676 MaxInterleaveCount = InterleaveCountLB;
4680 assert(MaxInterleaveCount > 0 &&
4681 "Maximum interleave count must be greater than 0");
4685 if (IC > MaxInterleaveCount)
4686 IC = MaxInterleaveCount;
4689 IC = std::max(1u, IC);
4691 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4695 if (VF.
isVector() && HasReductions) {
4696 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4704 bool ScalarInterleavingRequiresPredication =
4706 return Legal->blockNeedsPredication(BB);
4708 bool ScalarInterleavingRequiresRuntimePointerCheck =
4709 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4714 <<
"LV: IC is " << IC <<
'\n'
4715 <<
"LV: VF is " << VF <<
'\n');
4716 const bool AggressivelyInterleaveReductions =
4717 TTI.enableAggressiveInterleaving(HasReductions);
4718 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4719 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4728 unsigned NumStores = 0;
4729 unsigned NumLoads = 0;
4743 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4744 NumStores += StoreOps;
4746 NumLoads += InterleaveR->getNumDefinedValues();
4761 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4762 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4768 bool HasSelectCmpReductions =
4772 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4773 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4774 RedR->getRecurrenceKind()) ||
4775 RecurrenceDescriptor::isFindIVRecurrenceKind(
4776 RedR->getRecurrenceKind()));
4778 if (HasSelectCmpReductions) {
4779 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4788 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4789 bool HasOrderedReductions =
4792 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4794 return RedR && RedR->isOrdered();
4796 if (HasOrderedReductions) {
4798 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4803 SmallIC = std::min(SmallIC,
F);
4804 StoresIC = std::min(StoresIC,
F);
4805 LoadsIC = std::min(LoadsIC,
F);
4809 std::max(StoresIC, LoadsIC) > SmallIC) {
4811 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4812 return std::max(StoresIC, LoadsIC);
4817 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4821 return std::max(IC / 2, SmallIC);
4824 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4830 if (AggressivelyInterleaveReductions) {
4839bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4850 "Expecting a scalar emulated instruction");
4863 if (InstsToScalarize.contains(VF) ||
4864 PredicatedBBsAfterVectorization.contains(VF))
4870 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4880 ScalarCostsTy ScalarCosts;
4887 !useEmulatedMaskMemRefHack(&
I, VF) &&
4888 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4889 for (
const auto &[
I, IC] : ScalarCosts)
4890 ScalarCostsVF.
insert({
I, IC});
4893 for (
const auto &[
I,
Cost] : ScalarCosts) {
4895 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4898 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4902 PredicatedBBsAfterVectorization[VF].insert(BB);
4904 if (Pred->getSingleSuccessor() == BB)
4905 PredicatedBBsAfterVectorization[VF].insert(Pred);
4914 "Instruction marked uniform-after-vectorization will be predicated");
4932 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4951 for (
Use &U :
I->operands())
4964 while (!Worklist.
empty()) {
4968 if (ScalarCosts.contains(
I))
4991 ScalarCost +=
TTI.getScalarizationOverhead(
5004 for (Use &U :
I->operands())
5007 "Instruction has non-scalar type");
5008 if (CanBeScalarized(J))
5010 else if (needsExtract(J, VF)) {
5013 ScalarCost +=
TTI.getScalarizationOverhead(
5026 Discount += VectorCost - ScalarCost;
5027 ScalarCosts[
I] = ScalarCost;
5043 ValuesToIgnoreForVF);
5050 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5063 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5064 << VF <<
" For instruction: " <<
I <<
'\n');
5092 const Loop *TheLoop) {
5100 auto *SE = PSE.
getSE();
5101 unsigned NumOperands = Gep->getNumOperands();
5102 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5103 Value *Opd = Gep->getOperand(Idx);
5105 !
Legal->isInductionVariable(Opd))
5114LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5117 "Scalarization cost of instruction implies vectorization.");
5122 auto *SE =
PSE.getSE();
5147 Cost += getScalarizationOverhead(
I, VF);
5158 Cost +=
TTI.getScalarizationOverhead(
5163 if (useEmulatedMaskMemRefHack(
I, VF))
5173LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5179 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5181 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5182 "Stride should be 1 or -1 for consecutive memory access");
5185 if (
Legal->isMaskRequired(
I)) {
5186 Cost +=
TTI.getMaskedMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5190 Cost +=
TTI.getMemoryOpCost(
I->getOpcode(), VectorTy, Alignment, AS,
5194 bool Reverse = ConsecutiveStride < 0;
5202LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5212 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5213 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5220 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5226 TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5227 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
CostKind);
5228 if (!IsLoopInvariantStoreValue)
5229 Cost +=
TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5235LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5246 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5247 TTI.getGatherScatterOpCost(
I->getOpcode(), VectorTy,
Ptr,
5248 Legal->isMaskRequired(
I), Alignment,
5253LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5256 assert(Group &&
"Fail to get an interleaved access group.");
5263 unsigned InterleaveFactor = Group->getFactor();
5267 SmallVector<unsigned, 4> Indices;
5268 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5269 if (Group->getMember(IF))
5273 bool UseMaskForGaps =
5277 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5281 if (Group->isReverse()) {
5284 "Reverse masked interleaved access not supported.");
5285 Cost += Group->getNumMembers() *
5292std::optional<InstructionCost>
5299 return std::nullopt;
5317 return std::nullopt;
5328 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5330 return std::nullopt;
5336 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5345 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5348 BaseCost =
TTI.getArithmeticReductionCost(
5356 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5373 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5379 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5391 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5394 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5396 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5404 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5405 return I == RetI ? RedCost : 0;
5407 !
TheLoop->isLoopInvariant(RedOp)) {
5416 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5418 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5419 return I == RetI ? RedCost : 0;
5420 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5424 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5443 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5449 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5450 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5451 ExtraExtCost =
TTI.getCastInstrCost(
5458 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5459 return I == RetI ? RedCost : 0;
5463 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5469 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5470 return I == RetI ? RedCost : 0;
5474 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5478LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5489 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5490 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5497LoopVectorizationCostModel::getScalarizationOverhead(
Instruction *
I,
5514 Cost +=
TTI.getScalarizationOverhead(
5536 for (
auto *V : filterExtractingOperands(
Ops, VF))
5559 if (
Legal->isUniformMemOp(
I, VF)) {
5560 auto IsLegalToScalarize = [&]() {
5580 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5592 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5598 if (GatherScatterCost < ScalarizationCost)
5608 int ConsecutiveStride =
Legal->isConsecutivePtr(
5610 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5611 "Expected consecutive stride.");
5620 unsigned NumAccesses = 1;
5623 assert(Group &&
"Fail to get an interleaved access group.");
5629 NumAccesses = Group->getNumMembers();
5631 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5636 ? getGatherScatterCost(&
I, VF) * NumAccesses
5640 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5646 if (InterleaveCost <= GatherScatterCost &&
5647 InterleaveCost < ScalarizationCost) {
5649 Cost = InterleaveCost;
5650 }
else if (GatherScatterCost < ScalarizationCost) {
5652 Cost = GatherScatterCost;
5655 Cost = ScalarizationCost;
5672 if (
TTI.prefersVectorizedAddressing())
5681 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5689 while (!Worklist.
empty()) {
5691 for (
auto &
Op :
I->operands())
5693 if ((InstOp->getParent() ==
I->getParent()) && !
isa<PHINode>(InstOp) &&
5694 AddrDefs.
insert(InstOp).second)
5698 for (
auto *
I : AddrDefs) {
5713 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5728 ForcedScalars[VF].insert(
I);
5735 "Trying to set a vectorization decision for a scalar VF");
5737 auto ForcedScalar = ForcedScalars.find(VF);
5752 for (
auto &ArgOp : CI->
args())
5761 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5771 "Unexpected valid cost for scalarizing scalable vectors");
5778 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5779 ForcedScalar->second.contains(CI)) ||
5787 bool MaskRequired =
Legal->isMaskRequired(CI);
5790 for (
Type *ScalarTy : ScalarTys)
5799 std::nullopt, *RedCost);
5810 if (Info.Shape.VF != VF)
5814 if (MaskRequired && !Info.isMasked())
5818 bool ParamsOk =
true;
5820 switch (Param.ParamKind) {
5826 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5863 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5874 if (VectorCost <=
Cost) {
5896 return !OpI || !
TheLoop->contains(OpI) ||
5900 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5912 return InstsToScalarize[VF][
I];
5915 auto ForcedScalar = ForcedScalars.find(VF);
5916 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5917 auto InstSet = ForcedScalar->second;
5918 if (InstSet.count(
I))
5923 Type *RetTy =
I->getType();
5926 auto *SE =
PSE.getSE();
5930 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5935 auto Scalarized = InstsToScalarize.find(VF);
5936 assert(Scalarized != InstsToScalarize.end() &&
5937 "VF not yet analyzed for scalarization profitability");
5938 return !Scalarized->second.count(
I) &&
5940 auto *UI = cast<Instruction>(U);
5941 return !Scalarized->second.count(UI);
5950 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5951 I->getOpcode() == Instruction::PHI ||
5952 (
I->getOpcode() == Instruction::BitCast &&
5953 I->getType()->isPointerTy()) ||
5954 HasSingleCopyAfterVectorization(
I, VF));
5960 !
TTI.getNumberOfParts(VectorTy))
5964 switch (
I->getOpcode()) {
5965 case Instruction::GetElementPtr:
5971 case Instruction::Br: {
5978 bool ScalarPredicatedBB =
false;
5981 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
5982 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
5984 ScalarPredicatedBB =
true;
5986 if (ScalarPredicatedBB) {
5994 TTI.getScalarizationOverhead(
6002 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6010 case Instruction::Switch: {
6012 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6014 return Switch->getNumCases() *
6015 TTI.getCmpSelInstrCost(
6017 toVectorTy(Switch->getCondition()->getType(), VF),
6021 case Instruction::PHI: {
6038 Type *ResultTy = Phi->getType();
6044 auto *Phi = dyn_cast<PHINode>(U);
6045 if (Phi && Phi->getParent() == TheLoop->getHeader())
6050 auto &ReductionVars =
Legal->getReductionVars();
6051 auto Iter = ReductionVars.find(HeaderUser);
6052 if (Iter != ReductionVars.end() &&
6054 Iter->second.getRecurrenceKind()))
6057 return (Phi->getNumIncomingValues() - 1) *
6058 TTI.getCmpSelInstrCost(
6059 Instruction::Select,
toVectorTy(ResultTy, VF),
6069 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6070 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6074 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6076 case Instruction::UDiv:
6077 case Instruction::SDiv:
6078 case Instruction::URem:
6079 case Instruction::SRem:
6083 ScalarCost : SafeDivisorCost;
6087 case Instruction::Add:
6088 case Instruction::Sub: {
6089 auto Info =
Legal->getHistogramInfo(
I);
6096 if (!RHS || RHS->getZExtValue() != 1)
6098 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6102 Type *ScalarTy =
I->getType();
6106 {PtrTy, ScalarTy, MaskTy});
6109 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6110 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6114 case Instruction::FAdd:
6115 case Instruction::FSub:
6116 case Instruction::Mul:
6117 case Instruction::FMul:
6118 case Instruction::FDiv:
6119 case Instruction::FRem:
6120 case Instruction::Shl:
6121 case Instruction::LShr:
6122 case Instruction::AShr:
6123 case Instruction::And:
6124 case Instruction::Or:
6125 case Instruction::Xor: {
6129 if (
I->getOpcode() == Instruction::Mul &&
6130 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6131 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6132 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6133 PSE.getSCEV(
I->getOperand(1))->isOne())))
6142 Value *Op2 =
I->getOperand(1);
6148 auto Op2Info =
TTI.getOperandInfo(Op2);
6154 return TTI.getArithmeticInstrCost(
6156 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6159 case Instruction::FNeg: {
6160 return TTI.getArithmeticInstrCost(
6162 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6163 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6164 I->getOperand(0),
I);
6166 case Instruction::Select: {
6171 const Value *Op0, *Op1;
6182 return TTI.getArithmeticInstrCost(
6184 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6187 Type *CondTy =
SI->getCondition()->getType();
6193 Pred = Cmp->getPredicate();
6194 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6195 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6196 {TTI::OK_AnyValue, TTI::OP_None},
I);
6198 case Instruction::ICmp:
6199 case Instruction::FCmp: {
6200 Type *ValTy =
I->getOperand(0)->getType();
6206 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6207 "if both the operand and the compare are marked for "
6208 "truncation, they must have the same bitwidth");
6213 return TTI.getCmpSelInstrCost(
6216 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6218 case Instruction::Store:
6219 case Instruction::Load: {
6224 "CM decision should be taken at this point");
6231 return getMemoryInstructionCost(
I, VF);
6233 case Instruction::BitCast:
6234 if (
I->getType()->isPointerTy())
6237 case Instruction::ZExt:
6238 case Instruction::SExt:
6239 case Instruction::FPToUI:
6240 case Instruction::FPToSI:
6241 case Instruction::FPExt:
6242 case Instruction::PtrToInt:
6243 case Instruction::IntToPtr:
6244 case Instruction::SIToFP:
6245 case Instruction::UIToFP:
6246 case Instruction::Trunc:
6247 case Instruction::FPTrunc: {
6251 "Expected a load or a store!");
6277 unsigned Opcode =
I->getOpcode();
6280 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6283 CCH = ComputeCCH(Store);
6286 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6287 Opcode == Instruction::FPExt) {
6289 CCH = ComputeCCH(Load);
6297 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6298 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6305 Type *SrcScalarTy =
I->getOperand(0)->getType();
6317 (
I->getOpcode() == Instruction::ZExt ||
6318 I->getOpcode() == Instruction::SExt))
6322 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6324 case Instruction::Call:
6326 case Instruction::ExtractValue:
6328 case Instruction::Alloca:
6336 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6351 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6352 return RequiresScalarEpilogue &&
6365 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
6367 DeadInvariantStoreOps[
SI->getPointerOperand()].push_back(
6368 SI->getValueOperand());
6377 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6378 return VecValuesToIgnore.contains(U) ||
6379 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6388 if (Group->getInsertPos() == &
I)
6391 DeadInterleavePointerOps.
push_back(PointerOp);
6397 if (Br->isConditional())
6404 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6407 Instruction *UI = cast<Instruction>(U);
6408 return !VecValuesToIgnore.contains(U) &&
6409 (!isAccessInterleaved(UI) ||
6410 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6417 for (
const auto &[
_,
Ops] : DeadInvariantStoreOps)
6433 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6445 if ((ThenEmpty && ElseEmpty) ||
6447 ElseBB->
phis().empty()) ||
6449 ThenBB->
phis().empty())) {
6461 return !VecValuesToIgnore.contains(U) &&
6462 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6470 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6479 for (
const auto &Reduction :
Legal->getReductionVars()) {
6486 for (
const auto &Induction :
Legal->getInductionVars()) {
6495 if (!InLoopReductions.empty())
6498 for (
const auto &Reduction :
Legal->getReductionVars()) {
6499 PHINode *Phi = Reduction.first;
6510 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6518 bool InLoop = !ReductionOperations.
empty();
6521 InLoopReductions.insert(Phi);
6524 for (
auto *
I : ReductionOperations) {
6525 InLoopReductionImmediateChains[
I] = LastChain;
6529 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6530 <<
" reduction for phi: " << *Phi <<
"\n");
6543 unsigned WidestType;
6547 TTI.enableScalableVectorization()
6552 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6563 if (!OrigLoop->isInnermost()) {
6573 <<
"overriding computed VF.\n");
6576 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6578 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6579 <<
"not supported by the target.\n");
6581 "Scalable vectorization requested but not supported by the target",
6582 "the scalable user-specified vectorization width for outer-loop "
6583 "vectorization cannot be used because the target does not support "
6584 "scalable vectors.",
6585 "ScalableVFUnfeasible", ORE, OrigLoop);
6590 "VF needs to be a power of two");
6592 <<
"VF " << VF <<
" to build VPlans.\n");
6602 return {VF, 0 , 0 };
6606 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6607 "VPlan-native path.\n");
6612 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6613 CM.collectValuesToIgnore();
6614 CM.collectElementTypesForWidening();
6621 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6625 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6626 "which requires masked-interleaved support.\n");
6627 if (CM.InterleaveInfo.invalidateGroups())
6631 CM.invalidateCostModelingDecisions();
6634 if (CM.foldTailByMasking())
6635 Legal->prepareToFoldTailByMasking();
6642 "UserVF ignored because it may be larger than the maximal safe VF",
6643 "InvalidUserVF", ORE, OrigLoop);
6646 "VF needs to be a power of two");
6649 CM.collectInLoopReductions();
6650 if (CM.selectUserVectorizationFactor(UserVF)) {
6652 buildVPlansWithVPRecipes(UserVF, UserVF);
6657 "InvalidCost", ORE, OrigLoop);
6670 CM.collectInLoopReductions();
6671 for (
const auto &VF : VFCandidates) {
6673 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6692 return CM.isUniformAfterVectorization(
I, VF);
6696 return CM.ValuesToIgnore.contains(UI) ||
6697 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6717 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6721 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6722 for (
Value *
Op : IVInsts[
I]->operands()) {
6724 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
6730 for (User *U :
IV->users()) {
6743 if (TC == VF && !CM.foldTailByMasking())
6747 for (Instruction *IVInst : IVInsts) {
6752 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6753 <<
": induction instruction " << *IVInst <<
"\n";
6755 Cost += InductionCost;
6765 CM.TheLoop->getExitingBlocks(Exiting);
6766 SetVector<Instruction *> ExitInstrs;
6768 for (BasicBlock *EB : Exiting) {
6773 ExitInstrs.
insert(CondI);
6777 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6779 if (!OrigLoop->contains(CondI) ||
6784 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6785 <<
": exit condition instruction " << *CondI <<
"\n";
6791 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6792 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6793 !ExitInstrs.contains(cast<Instruction>(U));
6805 for (BasicBlock *BB : OrigLoop->blocks()) {
6809 if (BB == OrigLoop->getLoopLatch())
6811 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6818 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6824 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6825 <<
": forced scalar " << *ForcedScalar <<
"\n";
6829 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6834 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6835 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6845 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6853 <<
" (Estimated cost per lane: ");
6855 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6878 return &WidenMem->getIngredient();
6887 auto *IG =
IR->getInterleaveGroup();
6888 unsigned NumMembers = IG->getNumMembers();
6889 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6899 auto *VPI = dyn_cast<VPInstruction>(U);
6900 return VPI && VPI->getOpcode() ==
6901 VPInstruction::FirstOrderRecurrenceSplice;
6914 if (RepR->isSingleScalar() &&
6916 RepR->getUnderlyingInstr(), VF))
6919 if (
Instruction *UI = GetInstructionForCost(&R)) {
6924 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6936 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6938 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6941 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6942 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6944 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6954 VPlan &FirstPlan = *VPlans[0];
6960 ?
"Reciprocal Throughput\n"
6962 ?
"Instruction Latency\n"
6965 ?
"Code Size and Latency\n"
6970 "More than a single plan/VF w/o any plan having scalar VF");
6974 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
6979 if (ForceVectorization) {
6986 for (
auto &
P : VPlans) {
6988 P->vectorFactors().end());
6992 return CM.shouldConsiderRegPressureForVF(VF);
6996 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7003 <<
"LV: Not considering vector loop of width " << VF
7004 <<
" because it will not generate any vector instructions.\n");
7010 <<
"LV: Not considering vector loop of width " << VF
7011 <<
" because it would cause replicated blocks to be generated,"
7012 <<
" which isn't allowed when optimizing for size.\n");
7019 if (CM.shouldConsiderRegPressureForVF(VF) &&
7021 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7022 << VF <<
" because it uses too many registers\n");
7026 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7027 BestFactor = CurrentFactor;
7030 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7031 ProfitableVFs.push_back(CurrentFactor);
7047 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7048 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7055 BestFactor.
Width) ||
7058 " VPlan cost model and legacy cost model disagreed");
7060 "when vectorizing, the scalar cost must be computed.");
7070 "RdxResult must be ComputeFindIVResult");
7088 if (!EpiRedResult ||
7094 auto *EpiRedHeaderPhi =
7096 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7097 Value *MainResumeValue;
7101 "unexpected start recipe");
7102 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7104 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7106 [[maybe_unused]]
Value *StartV =
7107 EpiRedResult->getOperand(1)->getLiveInIRValue();
7110 "AnyOf expected to start with ICMP_NE");
7111 assert(Cmp->getOperand(1) == StartV &&
7112 "AnyOf expected to start by comparing main resume value to original "
7114 MainResumeValue = Cmp->getOperand(0);
7117 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7119 Value *Cmp, *OrigResumeV, *CmpOp;
7120 [[maybe_unused]]
bool IsExpectedPattern =
7121 match(MainResumeValue,
7127 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7128 MainResumeValue = OrigResumeV;
7143 "Trying to execute plan with unsupported VF");
7145 "Trying to execute plan with unsupported UF");
7147 ++LoopsEarlyExitVectorized;
7154 bool HasBranchWeights =
7156 if (HasBranchWeights) {
7157 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7159 BestVPlan, BestVF, VScale);
7164 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7186 BestVPlan, VectorPH, CM.foldTailByMasking(),
7187 CM.requiresScalarEpilogue(BestVF.
isVector()));
7198 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7199 "count during epilogue vectorization");
7203 OrigLoop->getParentLoop(),
7204 Legal->getWidestInductionType());
7206#ifdef EXPENSIVE_CHECKS
7207 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7218 "final VPlan is invalid");
7225 if (!Exit->hasPredecessors())
7254 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7256 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7258 HeaderVPBB, VectorizingEpilogue,
7260 DisableRuntimeUnroll);
7268 return ExpandedSCEVs;
7283 EPI.EpilogueIterationCountCheck =
7285 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7295 EPI.MainLoopIterationCountCheck =
7304 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7305 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7306 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7307 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7308 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7314 dbgs() <<
"intermediate fn:\n"
7315 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7321 assert(Bypass &&
"Expected valid bypass basic block.");
7325 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7326 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7330 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7356 return TCCheckBlock;
7370 VectorPH->
setName(
"vec.epilog.ph");
7373 "vec.epilog.iter.check",
true);
7377 VecEpilogueIterationCountCheck);
7378 AdditionalBypassBlock = VecEpilogueIterationCountCheck;
7382 assert(
EPI.MainLoopIterationCountCheck &&
EPI.EpilogueIterationCountCheck &&
7383 "expected this to be saved from the previous pass.");
7384 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7385 VecEpilogueIterationCountCheck, VectorPH);
7387 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7388 VecEpilogueIterationCountCheck, ScalarPH);
7395 VecEpilogueIterationCountCheck, ScalarPH);
7398 VecEpilogueIterationCountCheck, ScalarPH);
7400 DT->changeImmediateDominator(ScalarPH,
EPI.EpilogueIterationCountCheck);
7408 for (
PHINode *Phi : PhisInBlock) {
7410 Phi->replaceIncomingBlockWith(
7412 VecEpilogueIterationCountCheck);
7419 return EPI.EpilogueIterationCountCheck == IncB;
7422 Phi->removeIncomingValue(
EPI.EpilogueIterationCountCheck);
7424 Phi->removeIncomingValue(SCEVCheckBlock);
7426 Phi->removeIncomingValue(MemCheckBlock);
7437 "Expected trip count to have been saved in the first pass.");
7444 auto P =
Cost->requiresScalarEpilogue(
EPI.EpilogueVF.isVector())
7448 Value *CheckMinIters =
7451 EPI.EpilogueVF,
EPI.EpilogueUF),
7452 "min.epilog.iters.check");
7455 auto VScale =
Cost->getVScaleForTuning();
7456 unsigned MainLoopStep =
7458 unsigned EpilogueLoopStep =
7466 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
7467 const uint32_t Weights[] = {EstimatedSkipCount,
7468 MainLoopStep - EstimatedSkipCount};
7477 Plan.setEntry(NewEntry);
7485 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7486 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7487 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7493 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7501 "Must be called with either a load or store");
7507 "CM decision should be taken at this point.");
7520 if (
Legal->isMaskRequired(
I))
7534 Ptr->getUnderlyingValue()->stripPointerCasts());
7546 -1, Flags,
I->getDebugLoc());
7549 GEP ?
GEP->getNoWrapFlags()
7553 Builder.insert(VectorPtr);
7557 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7558 VPIRMetadata(*Load, LVer),
I->getDebugLoc());
7561 return new VPWidenStoreRecipe(*Store,
Ptr,
Operands[0], Mask, Consecutive,
7562 Reverse, VPIRMetadata(*Store, LVer),
7575 "step must be loop invariant");
7582 TruncI->getDebugLoc());
7586 IndDesc, Phi->getDebugLoc());
7594 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7596 *PSE.getSE(), *OrigLoop);
7599 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7601 return new VPWidenPointerInductionRecipe(
7602 Phi,
Operands[0], Step, &Plan.getVFxUF(), *
II,
7604 [&](ElementCount VF) {
7605 return CM.isScalarAfterVectorization(Phi, VF);
7608 Phi->getDebugLoc());
7622 auto IsOptimizableIVTruncate =
7623 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7624 return [=](ElementCount VF) ->
bool {
7625 return CM.isOptimizableIVTruncate(K, VF);
7630 IsOptimizableIVTruncate(
I),
Range)) {
7633 const InductionDescriptor &
II = *Legal->getIntOrFpInductionDescriptor(Phi);
7634 VPValue *
Start = Plan.getOrAddLiveIn(
II.getStartValue());
7645 [
this, CI](ElementCount VF) {
7646 return CM.isScalarWithPredication(CI, VF);
7654 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7655 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7656 ID == Intrinsic::pseudoprobe ||
7657 ID == Intrinsic::experimental_noalias_scope_decl))
7663 bool ShouldUseVectorIntrinsic =
7665 [&](ElementCount VF) ->
bool {
7666 return CM.getCallWideningDecision(CI, VF).Kind ==
7670 if (ShouldUseVectorIntrinsic)
7671 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7675 std::optional<unsigned> MaskPos;
7679 [&](ElementCount VF) ->
bool {
7694 LoopVectorizationCostModel::CallWideningDecision Decision =
7695 CM.getCallWideningDecision(CI, VF);
7705 if (ShouldUseVectorCall) {
7706 if (MaskPos.has_value()) {
7714 VPValue *
Mask =
nullptr;
7715 if (Legal->isMaskRequired(CI))
7718 Mask = Plan.getOrAddLiveIn(
7721 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7725 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7733 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7736 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7737 return CM.isScalarAfterVectorization(
I, VF) ||
7738 CM.isProfitableToScalarize(
I, VF) ||
7739 CM.isScalarWithPredication(
I, VF);
7747 switch (
I->getOpcode()) {
7750 case Instruction::SDiv:
7751 case Instruction::UDiv:
7752 case Instruction::SRem:
7753 case Instruction::URem: {
7756 if (CM.isPredicatedInst(
I)) {
7760 Plan.getOrAddLiveIn(ConstantInt::get(
I->getType(), 1u,
false));
7761 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7763 return new VPWidenRecipe(*
I,
Ops);
7767 case Instruction::Add:
7768 case Instruction::And:
7769 case Instruction::AShr:
7770 case Instruction::FAdd:
7771 case Instruction::FCmp:
7772 case Instruction::FDiv:
7773 case Instruction::FMul:
7774 case Instruction::FNeg:
7775 case Instruction::FRem:
7776 case Instruction::FSub:
7777 case Instruction::ICmp:
7778 case Instruction::LShr:
7779 case Instruction::Mul:
7780 case Instruction::Or:
7781 case Instruction::Select:
7782 case Instruction::Shl:
7783 case Instruction::Sub:
7784 case Instruction::Xor:
7785 case Instruction::Freeze: {
7791 ScalarEvolution &SE = *PSE.getSE();
7792 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7793 if (!
Op->isLiveIn())
7795 Value *
V =
Op->getUnderlyingValue();
7801 return Plan.getOrAddLiveIn(
C->getValue());
7804 if (
I->getOpcode() == Instruction::Mul)
7805 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7807 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7809 return new VPWidenRecipe(*
I, NewOps);
7811 case Instruction::ExtractValue: {
7815 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7816 unsigned Idx = EVI->getIndices()[0];
7817 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7818 return new VPWidenRecipe(*
I, NewOps);
7824VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7827 unsigned Opcode =
HI->Update->getOpcode();
7828 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7829 "Histogram update operation must be an Add or Sub");
7839 if (Legal->isMaskRequired(
HI->Store))
7842 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7849 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7852 bool IsPredicated = CM.isPredicatedInst(
I);
7860 case Intrinsic::assume:
7861 case Intrinsic::lifetime_start:
7862 case Intrinsic::lifetime_end:
7884 VPValue *BlockInMask =
nullptr;
7885 if (!IsPredicated) {
7889 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7900 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7902 "Should not predicate a uniform recipe");
7913 PartialReductionChains;
7914 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7915 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7916 PartialReductionChains);
7925 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7926 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7928 auto ExtendIsOnlyUsedByPartialReductions =
7930 return all_of(Extend->users(), [&](
const User *U) {
7931 return PartialReductionOps.contains(U);
7937 for (
auto Pair : PartialReductionChains) {
7939 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7940 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7941 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7945bool VPRecipeBuilder::getScaledReductions(
7947 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7955 Value *
Op = Update->getOperand(0);
7956 Value *PhiOp = Update->getOperand(1);
7964 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7965 PHI = Chains.rbegin()->first.Reduction;
7967 Op = Update->getOperand(0);
7968 PhiOp = Update->getOperand(1);
7976 using namespace llvm::PatternMatch;
7983 std::optional<unsigned> BinOpc;
7984 Type *ExtOpTypes[2] = {
nullptr};
7986 auto CollectExtInfo = [
this, &Exts,
7987 &ExtOpTypes](SmallVectorImpl<Value *> &
Ops) ->
bool {
7996 if (!CM.TheLoop->contains(Exts[
I]))
8014 if (!CollectExtInfo(
Ops))
8017 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8021 if (!CollectExtInfo(
Ops))
8024 ExtendUser = Update;
8025 BinOpc = std::nullopt;
8033 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8035 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8042 [&](ElementCount VF) {
8044 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8045 PHI->getType(), VF, OpAExtend, OpBExtend, BinOpc, CM.CostKind);
8049 Chains.emplace_back(Chain, TargetScaleFactor);
8068 "Non-header phis should have been handled during predication");
8070 assert(
Operands.size() == 2 &&
"Must have 2 operands for header phis");
8071 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8075 assert((Legal->isReductionVariable(Phi) ||
8076 Legal->isFixedOrderRecurrence(Phi)) &&
8077 "can only widen reductions and fixed-order recurrences here");
8079 if (Legal->isReductionVariable(Phi)) {
8082 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8085 unsigned ScaleFactor =
8089 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8101 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8103 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8116 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8117 return tryToWidenHistogram(*HistInfo,
Operands);
8125 if (!shouldWiden(Instr,
Range))
8140 return tryToWiden(Instr,
Operands);
8146 unsigned ScaleFactor) {
8148 "Unexpected number of operands for partial reduction");
8157 unsigned ReductionOpcode = Reduction->getOpcode();
8158 if (ReductionOpcode == Instruction::Sub) {
8159 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8161 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8162 Ops.push_back(BinOp);
8165 ReductionOpcode = Instruction::Add;
8169 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8170 assert((ReductionOpcode == Instruction::Add ||
8171 ReductionOpcode == Instruction::Sub) &&
8172 "Expected an ADD or SUB operation for predicated partial "
8173 "reductions (because the neutral element in the mask is zero)!");
8176 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8177 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8180 ScaleFactor, Reduction);
8183void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8192 OrigLoop, LI, DT, PSE.
getSE());
8197 LVer.prepareNoAliasMetadata();
8203 OrigLoop, *LI,
Legal->getWidestInductionType(),
8206 auto MaxVFTimes2 = MaxVF * 2;
8208 VFRange SubRange = {VF, MaxVFTimes2};
8209 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8210 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8215 *Plan, CM.getMinimalBitwidths());
8218 if (CM.foldTailWithEVL() && !HasScalarVF)
8220 *Plan, CM.getMaxSafeElements());
8222 VPlans.push_back(std::move(Plan));
8237 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8244 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8247 Start, VectorTC, Step);
8260 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
8261 return ResumePhiRecipe;
8276 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8287 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8290 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8291 ScalarPhiIRI->addOperand(ResumePhi);
8298 "should only skip truncated wide inductions");
8306 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8308 "Cannot handle loops with uncountable early exits");
8312 "vector.recur.extract");
8313 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8315 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8328 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8329 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8341 "Cannot handle loops with uncountable early exits");
8413 for (
VPUser *U : FOR->users()) {
8427 {},
"vector.recur.extract.for.phi");
8433VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8436 using namespace llvm::VPlanPatternMatch;
8437 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8444 bool RequiresScalarEpilogueCheck =
8446 [
this](ElementCount VF) {
8447 return !CM.requiresScalarEpilogue(VF.
isVector());
8452 CM.foldTailByMasking());
8460 bool IVUpdateMayOverflow =
false;
8461 for (ElementCount VF :
Range)
8471 auto *IVInc = Plan->getVectorLoopRegion()
8472 ->getExitingBasicBlock()
8475 assert(
match(IVInc, m_VPInstruction<Instruction::Add>(
8477 "Did not find the canonical IV increment");
8490 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8491 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8493 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8498 "Unsupported interleave factor for scalable vectors");
8503 InterleaveGroups.
insert(IG);
8510 *Plan, CM.foldTailByMasking());
8516 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8517 Builder, BlockMaskCache, LVer);
8518 RecipeBuilder.collectScaledReductions(
Range);
8522 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8524 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8527 auto *MiddleVPBB = Plan->getMiddleBlock();
8531 DenseMap<VPValue *, VPValue *> Old2New;
8536 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8550 UnderlyingValue &&
"unsupported recipe");
8555 Builder.setInsertPoint(SingleDef);
8562 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8564 if (Legal->isInvariantStoreOfReduction(SI)) {
8566 new VPReplicateRecipe(SI,
R.operands(),
true ,
8567 nullptr , VPIRMetadata(*SI, LVer));
8568 Recipe->insertBefore(*MiddleVPBB, MBIP);
8570 R.eraseFromParent();
8574 VPRecipeBase *Recipe =
8575 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8577 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8579 RecipeBuilder.setRecipe(Instr, Recipe);
8585 Builder.insert(Recipe);
8592 "Unexpected multidef recipe");
8593 R.eraseFromParent();
8602 RecipeBuilder.updateBlockMaskCache(Old2New);
8603 for (VPValue *Old : Old2New.
keys())
8604 Old->getDefiningRecipe()->eraseFromParent();
8607 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8608 "entry block must be set to a VPRegionBlock having a non-empty entry "
8614 for (
const auto &[Phi,
ID] : Legal->getInductionVars()) {
8616 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8619 VPWidenInductionRecipe *WideIV =
8621 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8626 DenseMap<VPValue *, VPValue *> IVEndValues;
8635 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8647 if (!CM.foldTailWithEVL()) {
8648 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8653 for (ElementCount VF :
Range)
8655 Plan->setName(
"Initial VPlan");
8661 InterleaveGroups, RecipeBuilder,
8662 CM.isScalarEpilogueAllowed());
8666 Legal->getLAI()->getSymbolicStrides());
8668 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8669 return Legal->blockNeedsPredication(BB);
8672 BlockNeedsPredication);
8684 bool WithoutRuntimeCheck =
8687 WithoutRuntimeCheck);
8700 assert(!OrigLoop->isInnermost());
8704 OrigLoop, *LI, Legal->getWidestInductionType(),
8713 for (ElementCount VF :
Range)
8718 [
this](PHINode *
P) {
8719 return Legal->getIntOrFpInductionDescriptor(
P);
8726 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8727 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8728 Builder, BlockMaskCache,
nullptr );
8729 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8733 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8735 DenseMap<VPValue *, VPValue *> IVEndValues;
8757void LoopVectorizationPlanner::adjustRecipesForReductions(
8759 using namespace VPlanPatternMatch;
8760 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8762 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8765 for (VPRecipeBase &R : Header->phis()) {
8767 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8774 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8777 SetVector<VPSingleDefRecipe *> Worklist;
8779 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8780 VPSingleDefRecipe *Cur = Worklist[
I];
8781 for (VPUser *U : Cur->
users()) {
8783 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8784 assert((UserRecipe->getParent() == MiddleVPBB ||
8785 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8786 "U must be either in the loop region, the middle block or the "
8787 "scalar preheader.");
8790 Worklist.
insert(UserRecipe);
8801 VPSingleDefRecipe *PreviousLink = PhiR;
8802 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8804 assert(Blend->getNumIncomingValues() == 2 &&
8805 "Blend must have 2 incoming values");
8806 if (Blend->getIncomingValue(0) == PhiR) {
8807 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8809 assert(Blend->getIncomingValue(1) == PhiR &&
8810 "PhiR must be an operand of the blend");
8811 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8816 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8819 unsigned IndexOfFirstOperand;
8823 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8827 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8830 CurrentLink->getOperand(2) == PreviousLink &&
8831 "expected a call where the previous link is the added operand");
8837 VPInstruction *FMulRecipe =
new VPInstruction(
8839 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8841 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8844 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8845 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8846 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8847 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8848 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8850 Sub->setUnderlyingValue(CurrentLinkI);
8851 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8857 "need to have the compare of the select");
8861 "must be a select recipe");
8862 IndexOfFirstOperand = 1;
8865 "Expected to replace a VPWidenSC");
8866 IndexOfFirstOperand = 0;
8871 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8872 ? IndexOfFirstOperand + 1
8873 : IndexOfFirstOperand;
8874 VecOp = CurrentLink->getOperand(VecOpId);
8875 assert(VecOp != PreviousLink &&
8876 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8877 (VecOpId - IndexOfFirstOperand)) ==
8879 "PreviousLink must be the operand other than VecOp");
8882 VPValue *CondOp =
nullptr;
8883 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8887 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8893 auto *RedRecipe =
new VPReductionRecipe(
8894 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8901 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8905 CurrentLink->replaceAllUsesWith(RedRecipe);
8907 PreviousLink = RedRecipe;
8911 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8913 for (VPRecipeBase &R :
8914 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8919 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8930 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8933 std::optional<FastMathFlags> FMFs =
8938 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8939 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8948 if (CM.usePredicatedReductionSelect())
8959 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8965 VPInstruction *FinalReductionResult;
8966 VPBuilder::InsertPointGuard Guard(Builder);
8967 Builder.setInsertPoint(MiddleVPBB, IP);
8972 FinalReductionResult =
8977 FinalReductionResult =
8979 {PhiR,
Start, NewExitingVPV}, ExitDL);
8985 FinalReductionResult =
8987 {PhiR, NewExitingVPV},
Flags, ExitDL);
8994 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8996 "Unexpected truncated min-max recurrence!");
8999 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
9001 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
9002 auto *Extnd =
new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
9003 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
9004 Extnd->insertAfter(Trunc);
9006 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9011 FinalReductionResult =
9012 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9017 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9019 if (FinalReductionResult == U || Parent->getParent())
9021 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9032 return isa<VPWidenSelectRecipe>(U) ||
9033 (isa<VPReplicateRecipe>(U) &&
9034 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9035 Instruction::Select);
9040 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9042 Builder.setInsertPoint(
Select);
9046 if (
Select->getOperand(1) == PhiR)
9047 Cmp = Builder.createNot(Cmp);
9048 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9049 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9055 OrigLoop->getHeader()->getContext())));
9070 VPBuilder PHBuilder(Plan->getVectorPreheader());
9071 VPValue *Iden = Plan->getOrAddLiveIn(
9074 unsigned ScaleFactor =
9078 auto *ScaleFactorVPV =
9079 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9080 VPValue *StartV = PHBuilder.createNaryOp(
9088 for (VPRecipeBase *R : ToDelete)
9089 R->eraseFromParent();
9094void LoopVectorizationPlanner::attachRuntimeChecks(
9095 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9096 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9097 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9098 assert((!CM.OptForSize ||
9100 "Cannot SCEV check stride or overflow when optimizing for size");
9104 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9105 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9109 "Runtime checks are not supported for outer loops yet");
9111 if (CM.OptForSize) {
9114 "Cannot emit memory checks when optimizing for size, unless forced "
9117 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9118 OrigLoop->getStartLoc(),
9119 OrigLoop->getHeader())
9120 <<
"Code-size may be reduced by not forcing "
9121 "vectorization, or by source-code modifications "
9122 "eliminating the need for runtime checks "
9123 "(e.g., adding 'restrict').";
9137 bool IsIndvarOverflowCheckNeededForVF =
9138 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9140 CM.getTailFoldingStyle() !=
9147 Plan, VF, UF, MinProfitableTripCount,
9148 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9149 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9150 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9155 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9160 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9168 State.set(
this, DerivedIV,
VPLane(0));
9214 if (
TTI->preferPredicateOverEpilogue(&TFI))
9233 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9237 Function *
F = L->getHeader()->getParent();
9243 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9244 &Hints, IAI, PSI, BFI);
9248 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9268 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9270 BFI, PSI, Checks, BestPlan);
9272 << L->getHeader()->getParent()->getName() <<
"\"\n");
9294 if (S->getValueOperand()->getType()->isFloatTy())
9304 while (!Worklist.
empty()) {
9306 if (!L->contains(
I))
9308 if (!Visited.
insert(
I).second)
9318 I->getDebugLoc(), L->getHeader())
9319 <<
"floating point conversion changes vector width. "
9320 <<
"Mixed floating point precision requires an up/down "
9321 <<
"cast that will negatively impact performance.";
9324 for (
Use &
Op :
I->operands())
9340 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9346 << PredVPBB->getName() <<
":\n");
9347 Cost += PredVPBB->cost(VF, CostCtx);
9366 std::optional<unsigned> VScale) {
9382 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9441 uint64_t MinTC = std::max(MinTC1, MinTC2);
9443 MinTC =
alignTo(MinTC, IntVF);
9447 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9454 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9455 "trip count < minimum profitable VF ("
9466 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9468 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9489 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9508 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9509 bool UpdateResumePhis) {
9515 VPValue *OrigStart = VPI->getOperand(1);
9519 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9521 if (UpdateResumePhis)
9527 AddFreezeForFindLastIVReductions(MainPlan,
true);
9528 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9535 auto ResumePhiIter =
9537 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9540 VPPhi *ResumePhi =
nullptr;
9541 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9545 "vec.epilog.resume.val");
9548 if (MainScalarPH->
begin() == MainScalarPH->
end())
9550 else if (&*MainScalarPH->
begin() != ResumePhi)
9562 const SCEV2ValueTy &ExpandedSCEVs,
9566 Header->
setName(
"vec.epilog.vector.body");
9580 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9585 "Must only have a single non-zero incoming value");
9597 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9598 "all incoming values must be 0");
9604 return isa<VPScalarIVStepsRecipe>(U) ||
9605 isa<VPDerivedIVRecipe>(U) ||
9606 cast<VPRecipeBase>(U)->isScalarCast() ||
9607 cast<VPInstruction>(U)->getOpcode() ==
9610 "the canonical IV should only be used by its increment or "
9611 "ScalarIVSteps when resetting the start value");
9612 IV->setOperand(0, VPV);
9616 Value *ResumeV =
nullptr;
9621 auto *VPI = dyn_cast<VPInstruction>(U);
9623 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9624 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9625 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9628 ->getIncomingValueForBlock(L->getLoopPreheader());
9629 RecurKind RK = ReductionPhi->getRecurrenceKind();
9637 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9640 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9651 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9652 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9653 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9659 "unexpected start value");
9660 VPI->setOperand(0, StartVal);
9672 assert(ResumeV &&
"Must have a resume value");
9686 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9688 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9703 ExpandR->eraseFromParent();
9713 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9718 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9719 if (OrigPhi != OldInduction) {
9720 auto *BinOp =
II.getInductionBinOp();
9726 EndValueFromAdditionalBypass =
9728 II.getStartValue(), Step,
II.getKind(), BinOp);
9729 EndValueFromAdditionalBypass->
setName(
"ind.end");
9731 return EndValueFromAdditionalBypass;
9737 const SCEV2ValueTy &ExpandedSCEVs,
9738 Value *MainVectorTripCount) {
9743 if (Phi.getBasicBlockIndex(Pred) != -1)
9745 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9749 if (ScalarPH->hasPredecessors()) {
9752 for (
const auto &[R, IRPhi] :
9753 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9762 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9764 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9767 Inc->setIncomingValueForBlock(BypassBlock, V);
9773 "VPlan-native path is not enabled. Only process inner loops.");
9776 << L->getHeader()->getParent()->getName() <<
"' from "
9777 << L->getLocStr() <<
"\n");
9782 dbgs() <<
"LV: Loop hints:"
9793 Function *
F = L->getHeader()->getParent();
9815 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9822 "early exit is not enabled",
9823 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9829 "faulting load is not supported",
9830 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9839 if (!L->isInnermost())
9843 assert(L->isInnermost() &&
"Inner loop expected.");
9846 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9860 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9862 "requiring a scalar epilogue is unsupported",
9863 "UncountableEarlyExitUnsupported",
ORE, L);
9876 if (ExpectedTC && ExpectedTC->isFixed() &&
9878 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9879 <<
"This loop is worth vectorizing only if no scalar "
9880 <<
"iteration overheads are incurred.");
9882 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9898 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9900 "Can't vectorize when the NoImplicitFloat attribute is used",
9901 "loop not vectorized due to NoImplicitFloat attribute",
9902 "NoImplicitFloat",
ORE, L);
9912 TTI->isFPVectorizationPotentiallyUnsafe()) {
9914 "Potentially unsafe FP op prevents vectorization",
9915 "loop not vectorized due to unsafe FP support.",
9916 "UnsafeFP",
ORE, L);
9921 bool AllowOrderedReductions;
9926 AllowOrderedReductions =
TTI->enableOrderedReductions();
9931 ExactFPMathInst->getDebugLoc(),
9932 ExactFPMathInst->getParent())
9933 <<
"loop not vectorized: cannot prove it is safe to reorder "
9934 "floating-point operations";
9936 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9937 "reorder floating-point operations\n");
9943 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9946 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9954 LVP.
plan(UserVF, UserIC);
9961 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9966 unsigned SelectedIC = std::max(IC, UserIC);
9975 if (Checks.getSCEVChecks().first &&
9976 match(Checks.getSCEVChecks().first,
m_One()))
9978 if (Checks.getMemRuntimeChecks().first &&
9979 match(Checks.getMemRuntimeChecks().first,
m_One()))
9984 bool ForceVectorization =
9988 if (!ForceVectorization &&
9994 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9996 <<
"loop not vectorized: cannot prove it is safe to reorder "
9997 "memory operations";
10006 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10007 bool VectorizeLoop =
true, InterleaveLoop =
true;
10009 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10011 "VectorizationNotBeneficial",
10012 "the cost-model indicates that vectorization is not beneficial"};
10013 VectorizeLoop =
false;
10019 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10020 "interleaving should be avoided up front\n");
10021 IntDiagMsg = {
"InterleavingAvoided",
10022 "Ignoring UserIC, because interleaving was avoided up front"};
10023 InterleaveLoop =
false;
10024 }
else if (IC == 1 && UserIC <= 1) {
10028 "InterleavingNotBeneficial",
10029 "the cost-model indicates that interleaving is not beneficial"};
10030 InterleaveLoop =
false;
10032 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10033 IntDiagMsg.second +=
10034 " and is explicitly disabled or interleave count is set to 1";
10036 }
else if (IC > 1 && UserIC == 1) {
10038 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10040 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10041 "the cost-model indicates that interleaving is beneficial "
10042 "but is explicitly disabled or interleave count is set to 1"};
10043 InterleaveLoop =
false;
10049 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10050 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10051 <<
"to histogram operations.\n");
10053 "HistogramPreventsScalarInterleaving",
10054 "Unable to interleave without vectorization due to constraints on "
10055 "the order of histogram operations"};
10056 InterleaveLoop =
false;
10060 IC = UserIC > 0 ? UserIC : IC;
10064 if (!VectorizeLoop && !InterleaveLoop) {
10068 L->getStartLoc(), L->getHeader())
10069 << VecDiagMsg.second;
10073 L->getStartLoc(), L->getHeader())
10074 << IntDiagMsg.second;
10079 if (!VectorizeLoop && InterleaveLoop) {
10083 L->getStartLoc(), L->getHeader())
10084 << VecDiagMsg.second;
10086 }
else if (VectorizeLoop && !InterleaveLoop) {
10088 <<
") in " << L->getLocStr() <<
'\n');
10091 L->getStartLoc(), L->getHeader())
10092 << IntDiagMsg.second;
10094 }
else if (VectorizeLoop && InterleaveLoop) {
10096 <<
") in " << L->getLocStr() <<
'\n');
10102 using namespace ore;
10107 <<
"interleaved loop (interleaved count: "
10108 << NV(
"InterleaveCount", IC) <<
")";
10125 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10136 PSI, Checks, *BestMainPlan);
10138 *BestMainPlan, MainILV,
DT,
false);
10144 BFI,
PSI, Checks, BestEpiPlan);
10152 BestEpiPlan, LVL, ExpandedSCEVs,
10154 ++LoopsEpilogueVectorized;
10156 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10170 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10171 "DT not preserved correctly");
10186 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10190 bool Changed =
false, CFGChanged =
false;
10197 for (
const auto &L : *
LI)
10209 LoopsAnalyzed += Worklist.
size();
10212 while (!Worklist.
empty()) {
10254 if (
PSI &&
PSI->hasProfileSummary())
10257 if (!Result.MadeAnyChange)
10271 if (Result.MadeCFGChange) {
10287 OS, MapClassName2PassName);
10290 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10291 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, bool VectorizingEpilogue, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
iterator_range< op_iterator > op_range
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks