45 cl::desc(
"Enable use of wide get active lane mask instructions"));
50 GetIntOrFpInductionDescriptor,
57 if (!VPBB->getParent())
60 auto EndIter = Term ? Term->getIterator() : VPBB->end();
65 VPValue *VPV = Ingredient.getVPSingleValue();
74 const auto *
II = GetIntOrFpInductionDescriptor(Phi);
84 Phi, Start, Step, &Plan.
getVF(), *
II, Ingredient.getDebugLoc());
88 "only VPInstructions expected here");
93 *Load, Ingredient.getOperand(0),
nullptr ,
94 false ,
false , Load->getAlign(),
98 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
99 nullptr ,
false ,
false ,
101 Ingredient.getDebugLoc());
110 drop_end(Ingredient.operands()), CI->getType(),
116 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
127 "Only recpies with zero or one defined values expected");
128 Ingredient.eraseFromParent();
144 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi())
149 return RepR && RepR->getOpcode() == Instruction::Alloca;
165 for (
auto &Recipe : *VPBB) {
169 WorkList.
insert({VPBB, Def});
175 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
178 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
179 if (SinkCandidate->
getParent() == SinkTo ||
184 if (!ScalarVFOnly && RepR->isSingleScalar())
189 bool NeedsDuplicating =
false;
194 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
195 SinkCandidate](
VPUser *U) {
197 if (UI->getParent() == SinkTo)
199 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
202 return NeedsDuplicating &&
205 if (!
all_of(SinkCandidate->
users(), CanSinkWithUser))
208 if (NeedsDuplicating) {
212 if (
auto *SinkCandidateRepR =
218 nullptr , *SinkCandidateRepR);
221 Clone = SinkCandidate->
clone();
233 WorkList.
insert({SinkTo, Def});
243 if (!EntryBB || EntryBB->size() != 1 ||
253 if (EntryBB->getNumSuccessors() != 2)
258 if (!Succ0 || !Succ1)
261 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
263 if (Succ0->getSingleSuccessor() == Succ1)
265 if (Succ1->getSingleSuccessor() == Succ0)
282 if (!Region1->isReplicator())
284 auto *MiddleBasicBlock =
286 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
291 if (!Region2 || !Region2->isReplicator())
296 if (!Mask1 || Mask1 != Mask2)
299 assert(Mask1 && Mask2 &&
"both region must have conditions");
305 if (TransformedRegions.
contains(Region1))
312 if (!Then1 || !Then2)
332 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
338 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
339 Phi1ToMove.eraseFromParent();
342 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
356 TransformedRegions.
insert(Region1);
359 return !TransformedRegions.
empty();
366 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
367 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
368 auto *BlockInMask = PredRecipe->
getMask();
386 RecipeWithoutMask->getDebugLoc());
410 if (RepR->isPredicated())
429 if (ParentRegion && ParentRegion->
getExiting() == CurrentBlock)
443 if (!VPBB->getParent())
447 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
456 R.moveBefore(*PredVPBB, PredVPBB->
end());
458 auto *ParentRegion = VPBB->getParent();
459 if (ParentRegion && ParentRegion->getExiting() == VPBB)
460 ParentRegion->setExiting(PredVPBB);
461 for (
auto *Succ :
to_vector(VPBB->successors())) {
467 return !WorkList.
empty();
474 bool ShouldSimplify =
true;
475 while (ShouldSimplify) {
491 if (!
IV ||
IV->getTruncInst())
502 auto &Casts =
IV->getInductionDescriptor().getCastInsts();
506 for (
auto *U : FindMyCast->
users()) {
508 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
509 FoundUserCast = UserCast;
513 FindMyCast = FoundUserCast;
538 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
559 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
561 if (IsConditionalAssume)
564 if (R.mayHaveSideEffects())
568 return all_of(R.definedValues(),
569 [](
VPValue *V) { return V->getNumUsers() == 0; });
585 if (!PhiR || PhiR->getNumOperands() != 2 || PhiR->getNumUsers() != 1)
588 if (*PhiR->user_begin() !=
Incoming->getDefiningRecipe() ||
591 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
592 PhiR->eraseFromParent();
593 Incoming->getDefiningRecipe()->eraseFromParent();
608 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
618 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy,
DL);
624 if (ResultTy != StepTy) {
631 Builder.setInsertPoint(VecPreheader);
632 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy,
DL);
634 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
640 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
645 Users.insert_range(V->users());
647 return Users.takeVector();
681 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
682 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
690 Def->operands(),
true);
691 Clone->insertAfter(Def);
692 Def->replaceAllUsesWith(Clone);
704 VPValue *StepV = PtrIV->getOperand(1);
707 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
709 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
719 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
720 return U->usesScalars(WideIV);
726 Plan,
ID.getKind(),
ID.getInductionOpcode(),
728 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
729 WideIV->getDebugLoc(), Builder);
732 if (!HasOnlyVectorVFs)
733 WideIV->replaceAllUsesWith(Steps);
735 WideIV->replaceUsesWithIf(Steps, [WideIV](
VPUser &U,
unsigned) {
736 return U.usesScalars(WideIV);
751 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
756 if (!Def || Def->getNumOperands() != 2)
764 auto IsWideIVInc = [&]() {
765 auto &
ID = WideIV->getInductionDescriptor();
768 VPValue *IVStep = WideIV->getStepValue();
769 switch (
ID.getInductionOpcode()) {
770 case Instruction::Add:
772 case Instruction::FAdd:
775 case Instruction::FSub:
778 case Instruction::Sub: {
797 return IsWideIVInc() ? WideIV :
nullptr;
817 if (WideIntOrFp && WideIntOrFp->getTruncInst())
830 FirstActiveLane =
B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
831 FirstActiveLaneType,
DL);
833 B.createNaryOp(Instruction::Add, {CanonicalIV, FirstActiveLane},
DL);
840 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, One},
DL);
843 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
845 VPValue *Start = WideIV->getStartValue();
846 VPValue *Step = WideIV->getStepValue();
847 EndValue =
B.createDerivedIV(
849 Start, EndValue, Step);
869 assert(EndValue &&
"end value must have been pre-computed");
879 VPValue *Step = WideIV->getStepValue();
882 return B.createNaryOp(Instruction::Sub, {EndValue, Step}, {},
"ind.escape");
886 return B.createPtrAdd(EndValue,
887 B.createNaryOp(Instruction::Sub, {Zero, Step}),
891 const auto &
ID = WideIV->getInductionDescriptor();
892 return B.createNaryOp(
893 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
896 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
911 for (
auto [Idx, PredVPBB] :
enumerate(ExitVPBB->getPredecessors())) {
913 if (PredVPBB == MiddleVPBB)
915 ExitIRI->getOperand(Idx),
919 ExitIRI->getOperand(Idx), SE);
921 ExitIRI->setOperand(Idx, Escape);
938 const auto &[V, Inserted] = SCEV2VPV.
try_emplace(ExpR->getSCEV(), ExpR);
941 ExpR->replaceAllUsesWith(V->second);
942 ExpR->eraseFromParent();
951 while (!WorkList.
empty()) {
953 if (!Seen.
insert(Cur).second)
961 R->eraseFromParent();
968static std::optional<std::pair<bool, unsigned>>
971 std::optional<std::pair<bool, unsigned>>>(R)
974 [](
auto *
I) {
return std::make_pair(
false,
I->getOpcode()); })
975 .Case<VPWidenIntrinsicRecipe>([](
auto *
I) {
976 return std::make_pair(
true,
I->getVectorIntrinsicID());
978 .Case<VPVectorPointerRecipe, VPPredInstPHIRecipe>([](
auto *
I) {
982 return std::make_pair(
false,
985 .
Default([](
auto *) {
return std::nullopt; });
1001 if (!
Op->isLiveIn() || !
Op->getLiveInIRValue())
1003 Ops.push_back(
Op->getLiveInIRValue());
1006 auto FoldToIRValue = [&]() ->
Value * {
1008 if (OpcodeOrIID->first) {
1009 if (R.getNumOperands() != 2)
1011 unsigned ID = OpcodeOrIID->second;
1012 return Folder.FoldBinaryIntrinsic(
ID,
Ops[0],
Ops[1],
1015 unsigned Opcode = OpcodeOrIID->second;
1024 return Folder.FoldSelect(
Ops[0],
Ops[1],
1027 return Folder.FoldBinOp(Instruction::BinaryOps::Xor,
Ops[0],
1029 case Instruction::Select:
1030 return Folder.FoldSelect(
Ops[0],
Ops[1],
Ops[2]);
1031 case Instruction::ICmp:
1032 case Instruction::FCmp:
1035 case Instruction::GetElementPtr: {
1038 return Folder.FoldGEP(
GEP->getSourceElementType(),
Ops[0],
1048 case Instruction::ExtractElement:
1055 if (
Value *V = FoldToIRValue())
1056 return R.getParent()->getPlan()->getOrAddLiveIn(V);
1062 VPlan *Plan = R.getParent()->getPlan();
1073 return Def->replaceAllUsesWith(V);
1079 PredPHI->replaceAllUsesWith(
Op);
1087 if (TruncTy == ATy) {
1088 Def->replaceAllUsesWith(
A);
1097 : Instruction::ZExt;
1100 if (
auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1102 Ext->setUnderlyingValue(UnderlyingExt);
1104 Def->replaceAllUsesWith(Ext);
1106 auto *Trunc = Builder.createWidenCast(Instruction::Trunc,
A, TruncTy);
1107 Def->replaceAllUsesWith(Trunc);
1115 for (
VPUser *U :
A->users()) {
1117 for (
VPValue *VPV : R->definedValues())
1131 Def->replaceAllUsesWith(
X);
1132 Def->eraseFromParent();
1138 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1142 return Def->replaceAllUsesWith(
X);
1146 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1150 return Def->replaceAllUsesWith(Def->getOperand(1));
1157 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1158 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1159 return Def->replaceAllUsesWith(
1160 Builder.createLogicalAnd(
X, Builder.createOr(
Y, Z)));
1164 return Def->replaceAllUsesWith(Plan->
getFalse());
1167 return Def->replaceAllUsesWith(
X);
1172 Def->setOperand(0,
C);
1173 Def->setOperand(1,
Y);
1174 Def->setOperand(2,
X);
1183 X->hasMoreThanOneUniqueUser())
1184 return Def->replaceAllUsesWith(
1185 Builder.createLogicalAnd(
X, Builder.createLogicalAnd(
Y, Z)));
1188 return Def->replaceAllUsesWith(
A);
1191 return Def->replaceAllUsesWith(R.getOperand(0) ==
A ? R.getOperand(1)
1196 return Def->replaceAllUsesWith(
A);
1211 R->setOperand(1,
Y);
1212 R->setOperand(2,
X);
1216 R->replaceAllUsesWith(Cmp);
1221 if (!Cmp->getDebugLoc() && R.getDebugLoc())
1222 Cmp->setDebugLoc(R.getDebugLoc());
1232 return Def->replaceAllUsesWith(Def->getOperand(1));
1238 X = Builder.createWidenCast(Instruction::Trunc,
X, WideStepTy);
1239 Def->replaceAllUsesWith(
X);
1249 Def->setOperand(1, Def->getOperand(0));
1250 Def->setOperand(0,
Y);
1255 if (Phi->getOperand(0) == Phi->getOperand(1))
1256 Def->replaceAllUsesWith(Phi->getOperand(0));
1264 Def->replaceAllUsesWith(
1265 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1273 Def->replaceAllUsesWith(
1274 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1281 Def->replaceAllUsesWith(BuildVector->getOperand(Idx));
1286 if (Phi->getNumOperands() == 1)
1287 Phi->replaceAllUsesWith(Phi->getOperand(0));
1300 if (Phi->getOperand(1) != Def &&
match(Phi->getOperand(0),
m_ZeroInt()) &&
1301 Phi->getNumUsers() == 1 && (*Phi->user_begin() == &R)) {
1302 Phi->setOperand(0,
Y);
1303 Def->replaceAllUsesWith(Phi);
1310 if (VecPtr->isFirstPart()) {
1311 VecPtr->replaceAllUsesWith(VecPtr->getOperand(0));
1320 Steps->replaceAllUsesWith(Steps->getOperand(0));
1328 Def->replaceUsesWithIf(StartV, [](
const VPUser &U,
unsigned Idx) {
1330 return PhiR && PhiR->isInLoop();
1338 Def->replaceAllUsesWith(
A);
1348 [Def,
A](
VPUser *U) { return U->usesScalars(A) || Def == U; })) {
1349 return Def->replaceAllUsesWith(
A);
1352 if (Plan->
getUF() == 1 &&
1354 return Def->replaceAllUsesWith(
1384 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1391 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1392 true ,
nullptr , *RepR );
1393 Clone->insertBefore(RepOrWidenR);
1394 unsigned ExtractOpc =
1398 auto *Ext =
new VPInstruction(ExtractOpc, {Clone->getOperand(0)});
1399 Ext->insertBefore(Clone);
1400 Clone->setOperand(0, Ext);
1401 RepR->eraseFromParent();
1409 !
all_of(RepOrWidenR->users(), [RepOrWidenR](
const VPUser *U) {
1410 return U->usesScalars(RepOrWidenR) ||
1411 match(cast<VPRecipeBase>(U),
1412 m_CombineOr(m_ExtractLastElement(m_VPValue()),
1413 m_ExtractLastLanePerPart(m_VPValue())));
1418 RepOrWidenR->operands(),
1420 Clone->insertBefore(RepOrWidenR);
1421 RepOrWidenR->replaceAllUsesWith(Clone);
1457 if (Blend->isNormalized() || !
match(Blend->getMask(0),
m_False()))
1458 UniqueValues.
insert(Blend->getIncomingValue(0));
1459 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
1461 UniqueValues.
insert(Blend->getIncomingValue(
I));
1463 if (UniqueValues.
size() == 1) {
1464 Blend->replaceAllUsesWith(*UniqueValues.
begin());
1465 Blend->eraseFromParent();
1469 if (Blend->isNormalized())
1475 unsigned StartIndex = 0;
1476 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1481 if (Mask->getNumUsers() == 1 && !
match(Mask,
m_False())) {
1488 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
1490 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1491 if (
I == StartIndex)
1493 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
1494 OperandsWithMask.
push_back(Blend->getMask(
I));
1499 OperandsWithMask, Blend->getDebugLoc());
1500 NewBlend->insertBefore(&R);
1502 VPValue *DeadMask = Blend->getMask(StartIndex);
1504 Blend->eraseFromParent();
1509 if (NewBlend->getNumOperands() == 3 &&
1511 VPValue *Inc0 = NewBlend->getOperand(0);
1512 VPValue *Inc1 = NewBlend->getOperand(1);
1513 VPValue *OldMask = NewBlend->getOperand(2);
1514 NewBlend->setOperand(0, Inc1);
1515 NewBlend->setOperand(1, Inc0);
1516 NewBlend->setOperand(2, NewMask);
1543 APInt MaxVal = AlignedTC - 1;
1546 unsigned NewBitWidth =
1552 bool MadeChange =
false;
1561 if (!WideIV || !WideIV->isCanonical() ||
1562 WideIV->hasMoreThanOneUniqueUser() ||
1563 NewIVTy == WideIV->getScalarType())
1568 if (!
match(*WideIV->user_begin(),
1575 auto *NewStart = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 0));
1576 WideIV->setStartValue(NewStart);
1577 auto *NewStep = Plan.
getOrAddLiveIn(ConstantInt::get(NewIVTy, 1));
1578 WideIV->setStepValue(NewStep);
1584 Cmp->setOperand(1, NewBTC);
1598 return any_of(
Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1600 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, SE);
1613 const SCEV *VectorTripCount =
1618 "Trip count SCEV must be computable");
1638 auto *Term = &ExitingVPBB->
back();
1651 for (
unsigned Part = 0; Part < UF; ++Part) {
1658 Extracts[Part] = Ext;
1659 Ext->insertAfter(ALM);
1670 match(Phi->getBackedgeValue(),
1672 assert(Index &&
"Expected index from ActiveLaneMask instruction");
1685 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1692 "Expected incoming values of Phi to be ActiveLaneMasks");
1698 EntryALM->setOperand(2, ALMMultiplier);
1699 LoopALM->setOperand(2, ALMMultiplier);
1703 ExtractFromALM(EntryALM, EntryExtracts);
1708 ExtractFromALM(LoopALM, LoopExtracts);
1710 Not->setOperand(0, LoopExtracts[0]);
1713 for (
unsigned Part = 0; Part < UF; ++Part) {
1714 Phis[Part]->setStartValue(EntryExtracts[Part]);
1715 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
1728 auto *Term = &ExitingVPBB->
back();
1737 const SCEV *TripCount =
1740 "Trip count SCEV must be computable");
1743 if (TripCount->
isZero() ||
1763 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
1764 return R->isCanonical();
1765 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
1766 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
1772 R->getScalarType());
1774 HeaderR.eraseFromParent();
1778 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
1779 HeaderR.eraseFromParent();
1788 B->setParent(
nullptr);
1797 Term->getDebugLoc());
1801 Term->eraseFromParent();
1809 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
1810 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
1818 assert(Plan.
getUF() == BestUF &&
"BestUF must match the Plan's UF");
1836 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
1839 if (SinkCandidate == Previous)
1843 !Seen.
insert(SinkCandidate).second ||
1856 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
1859 "only recipes with a single defined value expected");
1874 if (SinkCandidate == FOR)
1877 SinkCandidate->moveAfter(Previous);
1878 Previous = SinkCandidate;
1896 for (
VPUser *U : FOR->users()) {
1902 [&VPDT, HoistPoint](
VPUser *U) {
1903 auto *R = cast<VPRecipeBase>(U);
1904 return HoistPoint == R ||
1905 VPDT.properlyDominates(HoistPoint, R);
1907 "HoistPoint must dominate all users of FOR");
1909 auto NeedsHoisting = [HoistPoint, &VPDT,
1911 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
1912 if (!HoistCandidate)
1917 HoistCandidate->
getRegion() == EnclosingLoopRegion) &&
1918 "CFG in VPlan should still be flat, without replicate regions");
1920 if (!Visited.
insert(HoistCandidate).second)
1932 return HoistCandidate;
1941 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
1944 "only recipes with a single defined value expected");
1956 if (
auto *R = NeedsHoisting(
Op))
1968 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
1987 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1990 while (
auto *PrevPhi =
1992 assert(PrevPhi->getParent() == FOR->getParent());
1994 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
2012 {FOR, FOR->getBackedgeValue()});
2014 FOR->replaceAllUsesWith(RecurSplice);
2017 RecurSplice->setOperand(0, FOR);
2028 RecurKind RK = PhiR->getRecurrenceKind();
2035 RecWithFlags->dropPoisonGeneratingFlags();
2041struct VPCSEDenseMapInfo :
public DenseMapInfo<VPSingleDefRecipe *> {
2043 return Def == getEmptyKey() || Def == getTombstoneKey();
2054 return GEP->getSourceElementType();
2057 .Case<VPVectorPointerRecipe, VPWidenGEPRecipe>(
2058 [](
auto *
I) {
return I->getSourceElementType(); })
2059 .
Default([](
auto *) {
return nullptr; });
2063 static bool canHandle(
const VPSingleDefRecipe *Def) {
2072 if (!
C || (!
C->first && (
C->second == Instruction::InsertValue ||
2073 C->second == Instruction::ExtractValue)))
2079 return !
Def->mayReadFromMemory();
2083 static unsigned getHashValue(
const VPSingleDefRecipe *Def) {
2084 const VPlan *Plan =
Def->getParent()->getPlan();
2085 VPTypeAnalysis TypeInfo(*Plan);
2088 getGEPSourceElementType(Def), TypeInfo.inferScalarType(Def),
2091 if (RFlags->hasPredicate())
2097 static bool isEqual(
const VPSingleDefRecipe *L,
const VPSingleDefRecipe *R) {
2100 if (
L->getVPDefID() !=
R->getVPDefID() ||
2102 getGEPSourceElementType(L) != getGEPSourceElementType(R) ||
2104 !
equal(
L->operands(),
R->operands()))
2107 "must have valid opcode info for both recipes");
2109 if (LFlags->hasPredicate() &&
2110 LFlags->getPredicate() !=
2116 const VPRegionBlock *RegionL =
L->getRegion();
2117 const VPRegionBlock *RegionR =
R->getRegion();
2120 L->getParent() !=
R->getParent())
2122 const VPlan *Plan =
L->getParent()->getPlan();
2123 VPTypeAnalysis TypeInfo(*Plan);
2124 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2139 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2143 if (!VPDT.
dominates(V->getParent(), VPBB))
2148 Def->replaceAllUsesWith(V);
2167 "Expected vector prehader's successor to be the vector loop region");
2174 return !Op->isDefinedOutsideLoopRegions();
2177 R.moveBefore(*Preheader, Preheader->
end());
2201 VPValue *ResultVPV = R.getVPSingleValue();
2203 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
2204 if (!NewResSizeInBits)
2217 (void)OldResSizeInBits;
2225 VPW->dropPoisonGeneratingFlags();
2227 if (OldResSizeInBits != NewResSizeInBits &&
2232 Ext->insertAfter(&R);
2234 Ext->setOperand(0, ResultVPV);
2235 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
2238 "Only ICmps should not need extending the result.");
2247 for (
unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2248 auto *
Op = R.getOperand(Idx);
2249 unsigned OpSizeInBits =
2251 if (OpSizeInBits == NewResSizeInBits)
2253 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
2254 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.
try_emplace(
Op);
2256 R.setOperand(Idx, ProcessedIter->second);
2264 Builder.setInsertPoint(&R);
2266 Builder.createWidenCast(Instruction::Trunc,
Op, NewResTy);
2267 ProcessedIter->second = NewOp;
2268 R.setOperand(Idx, NewOp);
2283 assert(VPBB->getNumSuccessors() == 2 &&
2284 "Two successors expected for BranchOnCond");
2285 unsigned RemovedIdx;
2296 "There must be a single edge between VPBB and its successor");
2305 VPBB->back().eraseFromParent();
2366 VPValue *StartV = CanonicalIVPHI->getStartValue();
2368 auto *CanonicalIVIncrement =
2372 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2373 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2383 VPValue *TripCount, *IncrementValue;
2388 IncrementValue = CanonicalIVIncrement;
2394 IncrementValue = CanonicalIVPHI;
2398 auto *EntryIncrement = Builder.createOverflowingOp(
2406 {EntryIncrement, TC, ALMMultiplier},
DL,
2407 "active.lane.mask.entry");
2413 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2418 Builder.setInsertPoint(OriginalTerminator);
2419 auto *InLoopIncrement =
2421 {IncrementValue}, {
false,
false},
DL);
2423 {InLoopIncrement, TripCount, ALMMultiplier},
2424 DL,
"active.lane.mask.next");
2429 auto *NotMask = Builder.createNot(ALM,
DL);
2442 auto *FoundWidenCanonicalIVUser =
find_if(
2446 "Must have at most one VPWideCanonicalIVRecipe");
2447 if (FoundWidenCanonicalIVUser !=
2449 auto *WideCanonicalIV =
2451 WideCanonicalIVs.
push_back(WideCanonicalIV);
2459 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2460 WideCanonicalIVs.
push_back(WidenOriginalIV);
2466 for (
auto *Wide : WideCanonicalIVs) {
2472 assert(VPI->getOperand(0) == Wide &&
2473 "WidenCanonicalIV must be the first operand of the compare");
2474 assert(!HeaderMask &&
"Multiple header masks found?");
2482 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
2485 UseActiveLaneMaskForControlFlow) &&
2486 "DataAndControlFlowWithoutRuntimeCheck implies "
2487 "UseActiveLaneMaskForControlFlow");
2490 auto *FoundWidenCanonicalIVUser =
find_if(
2492 assert(FoundWidenCanonicalIVUser &&
2493 "Must have widened canonical IV when tail folding!");
2495 auto *WideCanonicalIV =
2498 if (UseActiveLaneMaskForControlFlow) {
2508 nullptr,
"active.lane.mask");
2534 assert(OrigMask &&
"Unmasked recipe when folding tail");
2539 return HeaderMask == OrigMask ? nullptr : OrigMask;
2543 auto GetNewAddr = [&CurRecipe, &EVL](
VPValue *Addr) ->
VPValue * {
2547 assert(EndPtr->getOperand(1) == &EndPtr->getParent()->getPlan()->getVF() &&
2548 "VPVectorEndPointerRecipe with non-VF VF operand?");
2552 return cast<VPWidenMemoryRecipe>(U)->isReverse();
2554 "VPVectorEndPointRecipe not used by reversed widened memory recipe?");
2563 VPValue *NewMask = GetNewMask(L->getMask());
2564 VPValue *NewAddr = GetNewAddr(L->getAddr());
2573 VPValue *NewMask = GetNewMask(
IR->getMask());
2577 VPValue *NewMask = GetNewMask(Red->getCondOp());
2592 Intrinsic::vp_merge, {&AllOneMask,
LHS,
RHS, &EVL},
2608 "User of VF that we can't transform to EVL.");
2614 [&LoopRegion, &Plan](
VPUser *U) {
2616 m_c_Add(m_Specific(LoopRegion->getCanonicalIV()),
2617 m_Specific(&Plan.getVFxUF()))) ||
2618 isa<VPWidenPointerInductionRecipe>(U);
2620 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
2621 "increment of the canonical induction.");
2641 MaxEVL = Builder.createScalarZExtOrTrunc(
2645 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
2646 VPValue *PrevEVL = Builder.createScalarPhi(
2660 Intrinsic::experimental_vp_splice,
2661 {V1, V2, Imm, AllOneMask, PrevEVL, &EVL},
2664 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
2682 VPValue *EVLMask = Builder.createICmp(
2700 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
2701 "New recipe must define the same number of values as the "
2706 for (
unsigned I = 0;
I < NumDefVal; ++
I) {
2707 VPValue *CurVPV = CurRecipe->getVPValue(
I);
2719 R->eraseFromParent();
2769 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
2777 VPValue *StartV = CanonicalIVPHI->getStartValue();
2781 EVLPhi->insertAfter(CanonicalIVPHI);
2782 VPBuilder Builder(Header, Header->getFirstNonPhi());
2785 VPPhi *AVLPhi = Builder.createScalarPhi(
2789 if (MaxSafeElements) {
2792 Plan.
getOrAddLiveIn(ConstantInt::get(CanIVTy, *MaxSafeElements));
2800 auto *CanonicalIVIncrement =
2802 Builder.setInsertPoint(CanonicalIVIncrement);
2806 OpVPEVL = Builder.createScalarZExtOrTrunc(
2807 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
2809 auto *NextEVLIV = Builder.createOverflowingOp(
2810 Instruction::Add, {OpVPEVL, EVLPhi},
2811 {CanonicalIVIncrement->hasNoUnsignedWrap(),
2812 CanonicalIVIncrement->hasNoSignedWrap()},
2813 CanonicalIVIncrement->getDebugLoc(),
"index.evl.next");
2814 EVLPhi->addOperand(NextEVLIV);
2816 VPValue *NextAVL = Builder.createOverflowingOp(
2817 Instruction::Sub, {AVLPhi, OpVPEVL}, {
true,
false},
2825 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
2826 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
2840 assert(!EVLPhi &&
"Found multiple EVL PHIs. Only one expected");
2851 [[maybe_unused]]
bool FoundAVL =
2854 assert(FoundAVL &&
"Didn't find AVL?");
2862 [[maybe_unused]]
bool FoundAVLNext =
2865 assert(FoundAVLNext &&
"Didn't find AVL backedge?");
2876 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
2879 "Unexpected canonical iv");
2885 CanonicalIV->eraseFromParent();
2898 match(LatchExitingBr,
2901 "Unexpected terminator in EVL loop");
2909 LatchExitingBr->eraseFromParent();
2919 return R->getRegion() ||
2923 for (
const SCEV *Stride : StridesMap.
values()) {
2926 const APInt *StrideConst;
2927 if (!
match(PSE.
getSCEV(StrideV), m_scev_APInt(StrideConst)))
2932 Plan.
getOrAddLiveIn(ConstantInt::get(Stride->getType(), *StrideConst));
2944 unsigned BW = U->getType()->getScalarSizeInBits();
2950 RewriteMap[StrideV] = PSE.
getSCEV(StrideV);
2957 const SCEV *ScevExpr = ExpSCEV->getSCEV();
2960 if (NewSCEV != ScevExpr) {
2962 ExpSCEV->replaceAllUsesWith(NewExp);
2971 const std::function<
bool(
BasicBlock *)> &BlockNeedsPredication) {
2975 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
2980 while (!Worklist.
empty()) {
2983 if (!Visited.
insert(CurRec).second)
3005 RecWithFlags->isDisjoint()) {
3008 Instruction::Add, {
A,
B}, {
false,
false},
3009 RecWithFlags->getDebugLoc());
3010 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
3011 RecWithFlags->replaceAllUsesWith(New);
3012 RecWithFlags->eraseFromParent();
3015 RecWithFlags->dropPoisonGeneratingFlags();
3020 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
3021 "found instruction with poison generating flags not covered by "
3022 "VPRecipeWithIRFlags");
3027 if (
VPRecipeBase *OpDef = Operand->getDefiningRecipe())
3039 Instruction &UnderlyingInstr = WidenRec->getIngredient();
3040 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
3041 if (AddrDef && WidenRec->isConsecutive() &&
3042 BlockNeedsPredication(UnderlyingInstr.
getParent()))
3043 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
3045 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
3049 InterleaveRec->getInterleaveGroup();
3050 bool NeedPredication =
false;
3052 I < NumMembers; ++
I) {
3055 NeedPredication |= BlockNeedsPredication(Member->getParent());
3058 if (NeedPredication)
3059 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
3071 if (InterleaveGroups.empty())
3078 for (
const auto *IG : InterleaveGroups) {
3084 StoredValues.
push_back(StoreR->getStoredValue());
3085 for (
unsigned I = 1;
I < IG->getFactor(); ++
I) {
3092 StoredValues.
push_back(StoreR->getStoredValue());
3096 bool NeedsMaskForGaps =
3097 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
3098 (!StoredValues.
empty() && !IG->isFull());
3110 VPValue *Addr = Start->getAddr();
3119 assert(IG->getIndex(IRInsertPos) != 0 &&
3120 "index of insert position shouldn't be zero");
3124 IG->getIndex(IRInsertPos),
3129 Addr =
B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3135 if (IG->isReverse()) {
3138 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3139 ReversePtr->insertBefore(InsertPos);
3143 InsertPos->getMask(), NeedsMaskForGaps,
3144 InterleaveMD, InsertPos->getDebugLoc());
3145 VPIG->insertBefore(InsertPos);
3148 for (
unsigned i = 0; i < IG->getFactor(); ++i)
3151 if (!Member->getType()->isVoidTy()) {
3212 AddOp = Instruction::Add;
3213 MulOp = Instruction::Mul;
3215 AddOp =
ID.getInductionOpcode();
3216 MulOp = Instruction::FMul;
3217 Flags =
ID.getInductionBinOp()->getFastMathFlags();
3225 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty,
DL);
3226 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty,
DL);
3235 Init = Builder.createWidenCast(Instruction::UIToFP,
Init, StepTy);
3240 Init = Builder.createNaryOp(MulOp, {
Init, SplatStep}, Flags);
3241 Init = Builder.createNaryOp(AddOp, {SplatStart,
Init}, Flags,
3247 WidePHI->insertBefore(WidenIVR);
3258 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3262 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3265 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3268 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3275 auto *
Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3278 WidePHI->addOperand(
Next);
3306 VPlan *Plan = R->getParent()->getPlan();
3307 VPValue *Start = R->getStartValue();
3308 VPValue *Step = R->getStepValue();
3309 VPValue *VF = R->getVFValue();
3311 assert(R->getInductionDescriptor().getKind() ==
3313 "Not a pointer induction according to InductionDescriptor!");
3316 "Recipe should have been replaced");
3322 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start,
DL,
"pointer.phi");
3326 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3329 Offset = Builder.createNaryOp(Instruction::Mul, {
Offset, Step});
3330 VPValue *PtrAdd = Builder.createNaryOp(
3332 R->replaceAllUsesWith(PtrAdd);
3337 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.
inferScalarType(VF),
3339 VPValue *Inc = Builder.createNaryOp(Instruction::Mul, {Step, VF});
3342 Builder.createPtrAdd(ScalarPtrPhi, Inc,
DL,
"ptr.ind");
3351 if (!R->isReplicator())
3355 R->dissolveToCFGLoop();
3380 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
3381 Select = Builder.createSelect(Blend->getMask(
I),
3382 Blend->getIncomingValue(
I),
Select,
3383 R.getDebugLoc(),
"predphi");
3384 Blend->replaceAllUsesWith(
Select);
3404 ? Instruction::UIToFP
3405 : Instruction::Trunc;
3406 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3412 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3417 Flags = {VPI->getFastMathFlags()};
3422 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3424 VPI->replaceAllUsesWith(VectorStep);
3430 R->eraseFromParent();
3443 "unsupported early exit VPBB");
3454 "Terminator must be be BranchOnCond");
3455 VPValue *CondOfEarlyExitingVPBB =
3457 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3458 ? CondOfEarlyExitingVPBB
3459 : Builder.createNot(CondOfEarlyExitingVPBB);
3476 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3481 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3482 if (ExitIRI->getNumOperands() != 1) {
3485 ExitIRI->extractLastLaneOfFirstOperand(MiddleBuilder);
3488 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
3489 if (!IncomingFromEarlyExit->
isLiveIn()) {
3493 "first.active.lane");
3496 nullptr,
"early.exit.value");
3497 ExitIRI->
setOperand(EarlyExitIdx, IncomingFromEarlyExit);
3507 "Unexpected terminator");
3508 auto *IsLatchExitTaken =
3510 LatchExitingBranch->getOperand(1));
3511 auto *AnyExitTaken = Builder.createNaryOp(
3512 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
3514 LatchExitingBranch->eraseFromParent();
3524 Type *RedTy = Ctx.Types.inferScalarType(Red);
3525 VPValue *VecOp = Red->getVecOp();
3528 auto IsExtendedRedValidAndClampRange =
3545 ExtRedCost = Ctx.TTI.getPartialReductionCost(
3546 Opcode, SrcTy,
nullptr, RedTy, VF, ExtKind,
3549 ExtRedCost = Ctx.TTI.getExtendedReductionCost(
3550 Opcode, ExtOpc == Instruction::CastOps::ZExt, RedTy, SrcVecTy,
3551 Red->getFastMathFlags(),
CostKind);
3553 return ExtRedCost.
isValid() && ExtRedCost < ExtCost + RedCost;
3561 IsExtendedRedValidAndClampRange(
3564 Ctx.Types.inferScalarType(
A)))
3584 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3587 Type *RedTy = Ctx.Types.inferScalarType(Red);
3590 auto IsMulAccValidAndClampRange =
3597 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
3600 if (IsPartialReduction) {
3602 Ext1 ? Ctx.Types.inferScalarType(Ext1->getOperand(0)) :
nullptr;
3605 MulAccCost = Ctx.TTI.getPartialReductionCost(
3606 Opcode, SrcTy, SrcTy2, RedTy, VF,
3616 if (Ext0 && Ext1 && Ext0->getOpcode() != Ext1->getOpcode())
3620 !Ext0 || Ext0->getOpcode() == Instruction::CastOps::ZExt;
3622 MulAccCost = Ctx.TTI.getMulAccReductionCost(IsZExt, Opcode, RedTy,
3630 ExtCost += Ext0->computeCost(VF, Ctx);
3632 ExtCost += Ext1->computeCost(VF, Ctx);
3634 ExtCost += OuterExt->computeCost(VF, Ctx);
3636 return MulAccCost.
isValid() &&
3637 MulAccCost < ExtCost + MulCost + RedCost;
3642 VPValue *VecOp = Red->getVecOp();
3660 if (!ExtA || ExtB || !ValB->
isLiveIn())
3676 Builder.createWidenCast(Instruction::CastOps::Trunc, ValB, NarrowTy);
3677 Type *WideTy = Ctx.Types.inferScalarType(ExtA);
3678 ValB = ExtB = Builder.createWidenCast(ExtOpc, Trunc, WideTy);
3679 Mul->setOperand(1, ExtB);
3691 ExtendAndReplaceConstantOp(RecipeA, RecipeB,
B,
Mul);
3696 IsMulAccValidAndClampRange(
Mul, RecipeA, RecipeB,
nullptr)) {
3703 if (!
Sub && IsMulAccValidAndClampRange(
Mul,
nullptr,
nullptr,
nullptr))
3720 ExtendAndReplaceConstantOp(Ext0, Ext1,
B,
Mul);
3729 (Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
3730 Ext0->getOpcode() == Ext1->getOpcode() &&
3731 IsMulAccValidAndClampRange(
Mul, Ext0, Ext1, Ext) &&
Mul->hasOneUse()) {
3733 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(), *Ext0,
3734 *Ext0, Ext0->getDebugLoc());
3735 NewExt0->insertBefore(Ext0);
3740 Ext->getResultType(), *Ext1, *Ext1,
3741 Ext1->getDebugLoc());
3744 Mul->setOperand(0, NewExt0);
3745 Mul->setOperand(1, NewExt1);
3746 Red->setOperand(1,
Mul);
3759 auto IP = std::next(Red->getIterator());
3760 auto *VPBB = Red->getParent();
3770 Red->replaceAllUsesWith(AbstractR);
3800 for (
VPValue *VPV : VPValues) {
3802 (VPV->isLiveIn() && VPV->getLiveInIRValue() &&
3810 if (
User->usesScalars(VPV))
3813 HoistPoint = HoistBlock->
begin();
3817 "All users must be in the vector preheader or dominated by it");
3822 VPV->replaceUsesWithIf(Broadcast,
3823 [VPV, Broadcast](
VPUser &U,
unsigned Idx) {
3824 return Broadcast != &U && !U.usesScalars(VPV);
3832 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
3833 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
3867 auto *TCMO = Builder.createNaryOp(
3896 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](
VPUser *U) {
3898 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
3905 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
3915 DefR->replaceUsesWithIf(
3916 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
3918 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
3932 for (
VPValue *Def : R.definedValues()) {
3945 auto IsCandidateUnpackUser = [Def](
VPUser *U) {
3947 return U->usesScalars(Def) &&
3950 if (
none_of(Def->users(), IsCandidateUnpackUser))
3957 Unpack->insertAfter(&R);
3958 Def->replaceUsesWithIf(Unpack,
3959 [&IsCandidateUnpackUser](
VPUser &U,
unsigned) {
3960 return IsCandidateUnpackUser(&U);
3970 bool RequiresScalarEpilogue) {
3972 assert(VectorTC.
isLiveIn() &&
"vector-trip-count must be a live-in");
3991 if (TailByMasking) {
3992 TC = Builder.createNaryOp(
3994 {TC, Builder.createNaryOp(
4006 Builder.createNaryOp(Instruction::URem, {TC, Step},
4015 if (RequiresScalarEpilogue) {
4017 "requiring scalar epilogue is not supported with fail folding");
4018 VPValue *IsZero = Builder.createICmp(
4020 R = Builder.createSelect(IsZero, Step, R);
4023 VPValue *Res = Builder.createNaryOp(
4042 Builder.createElementCount(TCTy, VFEC * Plan.
getUF());
4049 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
4053 BC, [&VF](
VPUser &U,
unsigned) {
return !U.usesScalars(&VF); });
4058 VPValue *MulByUF = Builder.createNaryOp(Instruction::Mul, {RuntimeVF, UF});
4068 BasicBlock *EntryBB = Entry->getIRBasicBlock();
4076 const SCEV *Expr = ExpSCEV->getSCEV();
4079 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
4084 ExpSCEV->eraseFromParent();
4087 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
4088 "after any VPIRInstructions");
4091 auto EI = Entry->begin();
4101 return ExpandedSCEVs;
4121 return IR->getInterleaveGroup()->isFull() &&
IR->getVPValue(Idx) == OpV;
4130 unsigned VectorRegWidth) {
4131 if (!InterleaveR || InterleaveR->
getMask())
4134 Type *GroupElementTy =
nullptr;
4138 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
4139 return TypeInfo.inferScalarType(Op) == GroupElementTy;
4146 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
4147 return TypeInfo.inferScalarType(Op) == GroupElementTy;
4154 return IG->getFactor() == VF && IG->getNumMembers() == VF &&
4155 GroupSize == VectorRegWidth;
4163 return RepR && RepR->isSingleScalar();
4167 unsigned VectorRegWidth) {
4192 if (R.mayWriteToMemory() && !InterleaveR)
4214 if (InterleaveR->getStoredValues().empty())
4219 auto *Member0 = InterleaveR->getStoredValues()[0];
4221 all_of(InterleaveR->getStoredValues(),
4222 [Member0](
VPValue *VPV) { return Member0 == VPV; })) {
4230 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
4233 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
4234 return IR && IR->getInterleaveGroup()->isFull() &&
4235 IR->getVPValue(Op.index()) == Op.value();
4244 InterleaveR->getStoredValues()[0]->getDefiningRecipe());
4247 for (
const auto &[
I, V] :
enumerate(InterleaveR->getStoredValues())) {
4249 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
4250 R->getNumOperands() > 2)
4253 [WideMember0, Idx =
I](
const auto &
P) {
4254 const auto &[OpIdx, OpV] = P;
4255 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
4262 if (StoreGroups.
empty())
4268 auto *R = V->getDefiningRecipe();
4277 *LI, LoadGroup->getAddr(), LoadGroup->getMask(),
true,
4278 false, LI->getAlign(), {}, LoadGroup->getDebugLoc());
4279 L->insertBefore(LoadGroup);
4285 assert(RepR->isSingleScalar() &&
4287 "must be a single scalar load");
4288 NarrowedOps.
insert(RepR);
4293 VPValue *PtrOp = WideLoad->getAddr();
4295 PtrOp = VecPtr->getOperand(0);
4300 nullptr, *WideLoad);
4301 N->insertBefore(WideLoad);
4307 for (
auto *StoreGroup : StoreGroups) {
4309 VPValue *Member0 = StoreGroup->getStoredValues()[0];
4312 }
else if (
auto *WideMember0 =
4314 for (
unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx)
4315 WideMember0->setOperand(Idx, NarrowOp(WideMember0->getOperand(Idx)));
4318 Res = NarrowOp(Member0);
4324 *
SI, StoreGroup->getAddr(), Res,
nullptr,
true,
4325 false,
SI->getAlign(), {}, StoreGroup->getDebugLoc());
4326 S->insertBefore(StoreGroup);
4327 StoreGroup->eraseFromParent();
4337 ConstantInt::get(CanIV->getScalarType(), 1 * Plan.
getUF()));
4345 Inc->setOperand(1, UF);
4347 Plan.
getOrAddLiveIn(ConstantInt::get(CanIV->getScalarType(), 1)));
4364 "must have a BranchOnCond");
4367 if (VF.
isScalable() && VScaleForTuning.has_value())
4368 VectorStep *= *VScaleForTuning;
4369 assert(VectorStep > 0 &&
"trip count should not be zero");
4373 MiddleTerm->addMetadata(LLVMContext::MD_prof, BranchWeights);
4385 if (WideIntOrFp && WideIntOrFp->getTruncInst())
4392 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
4395 Start, VectorTC, Step);
4408 {EndValue, Start}, WideIV->
getDebugLoc(),
"bc.resume.val");
4409 return ResumePhiRecipe;
4421 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
4432 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
4435 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
4436 ScalarPhiIRI->addOperand(ResumePhi);
4443 "should only skip truncated wide inductions");
4451 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
4453 "Cannot handle loops with uncountable early exits");
4457 "vector.recur.extract");
4458 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
4460 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
4470 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
4471 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
4483 "Cannot handle loops with uncountable early exits");
4555 for (
VPUser *U : FOR->users()) {
4569 {},
"vector.recur.extract.for.phi");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefInfo InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getCompilerGenerated()
static DebugLoc getUnknown()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
This class implements a map that also provides access to all stored values in a deterministic order.
ValueT lookup(const KeyT &Key) const
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
RegionT * getParent() const
Get the parent of the Region.
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
static const SCEV * rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToSCEVMapTy &Map)
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createElementCount(Type *Ty, ElementCount EC)
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
A special type of VPBasicBlock that wraps an existing IR basic block.
BasicBlock * getIRBasicBlock() const
Class to record and manage LLVM IR flags.
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ExtractPenultimateElement
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
A recipe for interleaved memory operations with vector-predication intrinsics.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPRegionBlock * getRegion()
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
bool isSingleScalar() const
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void setUnderlyingValue(Value *Val)
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPVectorEndPointerRecipe * clone() override
Clone the current recipe.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
Instruction::CastOps getOpcode() const
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
VPValue * getSplatVFValue()
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
bool hasScalableVF() const
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getTrue()
Return a VPValue wrapping i1 true.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
VPRegionBlock * createReplicateRegion(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="")
Create a new replicate region with Entry, Exiting and Name.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
void setVF(ElementCount VF)
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPValue * getFalse()
Return a VPValue wrapping i1 false.
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastLanePerPart, Op0_t > m_ExtractLastLanePerPart(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< Instruction::ExtractElement, Op0_t, Op1_t > m_ExtractElement(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount > m_BranchOnCount()
specific_intval< 1 > m_True()
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::FirstActiveLane, Op0_t > m_FirstActiveLane(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
VPInstruction_match< VPInstruction::BranchOnCond > m_BranchOnCond()
initializer< Ty > init(const Ty &Val)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isUniformAcrossVFsAndUFs(VPValue *V)
Checks if V is uniform across all VF lanes and UF parts.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
bool isHeaderMask(const VPValue *V, const VPlan &Plan)
Return true if V is a header mask in Plan.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
DenseMap< const Value *, const SCEV * > ValueToSCEVMapTy
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
void sort(IteratorTy Start, IteratorTy End)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
This struct is a compact representation of a valid (non-zero power of two) alignment.
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...