36 GetIntOrFpInductionDescriptor,
40 Plan->getVectorLoopRegion());
41 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
43 if (!VPBB->getParent())
46 auto EndIter = Term ? Term->getIterator() : VPBB->end();
51 VPValue *VPV = Ingredient.getVPSingleValue();
55 if (
auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
57 const auto *
II = GetIntOrFpInductionDescriptor(Phi);
61 VPValue *Start = Plan->getOrAddLiveIn(
II->getStartValue());
65 Phi, Start, Step, &Plan->getVF(), *
II, Ingredient.getDebugLoc());
67 assert(isa<VPInstruction>(&Ingredient) &&
68 "only VPInstructions expected here");
69 assert(!isa<PHINode>(Inst) &&
"phis should be handled above");
71 if (
LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
73 *Load, Ingredient.getOperand(0),
nullptr ,
75 Ingredient.getDebugLoc());
76 }
else if (
StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
79 nullptr ,
false ,
false ,
80 Ingredient.getDebugLoc());
83 }
else if (
CallInst *CI = dyn_cast<CallInst>(Inst)) {
86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
88 }
else if (
SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
90 }
else if (
auto *CI = dyn_cast<CastInst>(Inst)) {
92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
103 "Only recpies with zero or one defined values expected");
104 Ingredient.eraseFromParent();
111 bool Changed =
false;
115 for (
VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
122 for (
auto &Recipe : *VPBB) {
125 dyn_cast_or_null<VPSingleDefRecipe>(
Op->getDefiningRecipe()))
126 WorkList.
insert(std::make_pair(VPBB, Def));
132 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
135 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
136 if (SinkCandidate->
getParent() == SinkTo ||
140 if (
auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
141 if (!ScalarVFOnly && RepR->isUniform())
143 }
else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
146 bool NeedsDuplicating =
false;
151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
152 SinkCandidate](
VPUser *U) {
153 auto *UI = cast<VPRecipeBase>(U);
154 if (UI->getParent() == SinkTo)
156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
160 if (!
all_of(SinkCandidate->
users(), CanSinkWithUser))
163 if (NeedsDuplicating) {
170 Clone->insertBefore(SinkCandidate);
172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
178 dyn_cast_or_null<VPSingleDefRecipe>(
Op->getDefiningRecipe()))
179 WorkList.
insert(std::make_pair(SinkTo, Def));
188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
189 if (!EntryBB || EntryBB->size() != 1 ||
190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
199 if (EntryBB->getNumSuccessors() != 2)
202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
204 if (!Succ0 || !Succ1)
207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
209 if (Succ0->getSingleSuccessor() == Succ1)
211 if (Succ1->getSingleSuccessor() == Succ0)
226 for (
VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
228 if (!Region1->isReplicator())
230 auto *MiddleBasicBlock =
231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
237 if (!Region2 || !Region2->isReplicator())
242 if (!Mask1 || Mask1 != Mask2)
245 assert(Mask1 && Mask2 &&
"both region must have conditions");
251 if (DeletedRegions.
contains(Region1))
253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
258 if (!Then1 || !Then2)
277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
280 return cast<VPRecipeBase>(&U)->getParent() == Then2;
284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
285 Phi1ToMove.eraseFromParent();
288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
297 DeletedRegions.
insert(Region1);
302 return !DeletedRegions.
empty();
309 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
310 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
311 auto *BlockInMask = PredRecipe->
getMask();
326 RecipeWithoutMask->getDebugLoc());
344 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
347 if (
auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
348 if (RepR->isPredicated())
372 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
377 if (!VPBB->getParent())
380 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
381 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
382 isa<VPIRBasicBlock>(PredVPBB))
388 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
390 R.moveBefore(*PredVPBB, PredVPBB->
end());
392 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
393 if (ParentRegion && ParentRegion->getExiting() == VPBB)
394 ParentRegion->setExiting(PredVPBB);
395 for (
auto *Succ :
to_vector(VPBB->successors())) {
401 return !WorkList.
empty();
408 bool ShouldSimplify =
true;
409 while (ShouldSimplify) {
424 auto *
IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
425 if (!
IV ||
IV->getTruncInst())
436 auto &Casts =
IV->getInductionDescriptor().getCastInsts();
440 for (
auto *U : FindMyCast->
users()) {
441 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
442 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
443 FoundUserCast = UserCast;
447 FindMyCast = FoundUserCast;
459 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
469 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
471 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
478 if (
any_of(WidenOriginalIV->users(),
479 [WidenOriginalIV](
VPUser *U) {
480 return !U->usesScalars(WidenOriginalIV);
495 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
496 bool IsConditionalAssume =
497 RepR && RepR->isPredicated() &&
498 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
499 if (IsConditionalAssume)
502 if (R.mayHaveSideEffects())
506 return all_of(R.definedValues(),
507 [](
VPValue *V) { return V->getNumUsers() == 0; });
532 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
549 if (ResultTy != StepTy) {
579 if (
auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
586 VPValue *StepV = PtrIV->getOperand(1);
589 nullptr, StartV, StepV, Builder);
600 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
603 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
604 return U->usesScalars(WideIV);
610 Plan,
ID.getKind(),
ID.getInductionOpcode(),
611 dyn_cast_or_null<FPMathOperator>(
ID.getInductionBinOp()),
612 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
616 if (!HasOnlyVectorVFs)
617 WideIV->replaceAllUsesWith(Steps);
619 WideIV->replaceUsesWithIf(Steps, [WideIV](
VPUser &U,
unsigned) {
620 return U.usesScalars(WideIV);
632 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
636 auto I = SCEV2VPV.
insert({ExpR->getSCEV(), ExpR});
639 ExpR->replaceAllUsesWith(
I.first->second);
640 ExpR->eraseFromParent();
649 while (!WorkList.
empty()) {
651 if (!Seen.
insert(Cur).second)
658 WorkList.
append(R->op_begin(), R->op_end());
659 R->eraseFromParent();
666 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
667 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
670 auto *Term = &ExitingVPBB->
back();
677 if (!
match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
679 m_BranchOnCond(
m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
683 const SCEV *TripCount =
685 assert(!isa<SCEVCouldNotCompute>(TripCount) &&
686 "Trip count SCEV must be computable");
689 if (TripCount->
isZero() ||
699 Term->eraseFromParent();
721 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
724 if (SinkCandidate == Previous)
727 if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
728 !Seen.
insert(SinkCandidate).second ||
732 if (SinkCandidate->mayHaveSideEffects())
741 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
744 "only recipes with a single defined value expected");
747 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(
User)))
759 if (SinkCandidate == FOR)
762 SinkCandidate->moveAfter(Previous);
763 Previous = SinkCandidate;
781 for (
VPUser *U : FOR->users()) {
782 auto *R = cast<VPRecipeBase>(U);
787 [&VPDT, HoistPoint](
VPUser *U) {
788 auto *R = cast<VPRecipeBase>(U);
789 return HoistPoint == R ||
790 VPDT.properlyDominates(HoistPoint, R);
792 "HoistPoint must dominate all users of FOR");
794 auto NeedsHoisting = [HoistPoint, &VPDT,
796 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
803 "CFG in VPlan should still be flat, without replicate regions");
805 if (!Visited.
insert(HoistCandidate).second)
810 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
817 return HoistCandidate;
831 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
834 "only recipes with a single defined value expected");
835 if (!CanHoist(Current))
846 if (
auto *R = NeedsHoisting(
Op))
858 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
873 if (
auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
878 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
881 while (
auto *PrevPhi =
882 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
883 assert(PrevPhi->getParent() == FOR->getParent());
885 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
895 if (isa<VPHeaderPHIRecipe>(Previous))
901 auto *RecurSplice = cast<VPInstruction>(
903 {FOR, FOR->getBackedgeValue()}));
905 FOR->replaceAllUsesWith(RecurSplice);
908 RecurSplice->setOperand(0, FOR);
915 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
917 if (isa<VPHeaderPHIRecipe>(Cur))
920 Users.insert(V->user_begin(), V->user_end());
922 return Users.takeVector();
928 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
937 if (
auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
938 RecWithFlags->dropPoisonGeneratingFlags();
947 if (
auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
950 if (Blend->isNormalized() || !
match(Blend->getMask(0), m_False()))
951 UniqueValues.
insert(Blend->getIncomingValue(0));
952 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
953 if (!
match(Blend->getMask(
I), m_False()))
954 UniqueValues.
insert(Blend->getIncomingValue(
I));
956 if (UniqueValues.
size() == 1) {
957 Blend->replaceAllUsesWith(*UniqueValues.
begin());
958 Blend->eraseFromParent();
962 if (Blend->isNormalized())
968 unsigned StartIndex = 0;
969 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
974 if (Mask->getNumUsers() == 1 && !
match(Mask, m_False())) {
981 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
983 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
986 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
987 OperandsWithMask.
push_back(Blend->getMask(
I));
991 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask);
992 NewBlend->insertBefore(&R);
994 VPValue *DeadMask = Blend->getMask(StartIndex);
996 Blend->eraseFromParent();
1003 VPValue *Trunc = R.getVPSingleValue();
1006 if (TruncTy == ATy) {
1010 if (isa<VPReplicateRecipe>(&R))
1014 unsigned ExtOpcode =
match(R.getOperand(0),
m_SExt(m_VPValue()))
1016 : Instruction::ZExt;
1019 if (
auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1021 VPC->setUnderlyingValue(UnderlyingExt);
1023 VPC->insertBefore(&R);
1027 VPC->insertBefore(&R);
1035 R.getParent()->getPlan()->getCanonicalIV()->getScalarType());
1037 for (
VPUser *U :
A->users()) {
1038 auto *R = cast<VPRecipeBase>(U);
1039 for (
VPValue *VPV : R->definedValues())
1053 X == X1 &&
Y == Y1) {
1054 R.getVPSingleValue()->replaceAllUsesWith(
X);
1055 R.eraseFromParent();
1060 return R.getVPSingleValue()->replaceAllUsesWith(
A);
1063 return R.getVPSingleValue()->replaceAllUsesWith(
A);
1072 return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1));
1084 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
1085 return RepR && RepR->getOpcode() == Instruction::Alloca;
1092 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1095 if (CannotHoistRecipe(R))
1099 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
1101 return !Op->isDefinedOutsideLoopRegions();
1104 R.moveBefore(*Preheader, Preheader->
end());
1115 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
1127 unsigned NumProcessedRecipes = 0;
1137 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1144 VPValue *ResultVPV = R.getVPSingleValue();
1146 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
1147 if (!NewResSizeInBits)
1151 NumProcessedRecipes++;
1157 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
1167 if (!
Op->isLiveIn())
1169 auto *UV = dyn_cast_or_null<Instruction>(
Op->getUnderlyingValue());
1172 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) {
1175 ProcessedTruncs[
Op] =
nullptr;
1176 NumProcessedRecipes += 1;
1186 (void)OldResSizeInBits;
1194 if (
auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
1195 VPW->dropPoisonGeneratingFlags();
1198 if (OldResSizeInBits != NewResSizeInBits &&
1199 !
match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
1203 Ext->insertAfter(&R);
1205 Ext->setOperand(0, ResultVPV);
1206 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
1209 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
1210 "Only ICmps should not need extending the result.");
1213 assert(!isa<VPWidenStoreRecipe>(&R) &&
"stores cannot be narrowed");
1214 if (isa<VPWidenLoadRecipe>(&R))
1218 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
1219 for (
unsigned Idx = StartIdx;
Idx != R.getNumOperands(); ++
Idx) {
1220 auto *
Op = R.getOperand(
Idx);
1221 unsigned OpSizeInBits =
1223 if (OpSizeInBits == NewResSizeInBits)
1225 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
1226 auto [ProcessedIter, IterIsEmpty] =
1227 ProcessedTruncs.
insert({
Op,
nullptr});
1231 : ProcessedIter->second;
1232 R.setOperand(
Idx, NewOp);
1235 ProcessedIter->second = NewOp;
1236 if (!
Op->isLiveIn()) {
1241 auto *OpInst = dyn_cast<Instruction>(
Op->getLiveInIRValue());
1242 bool IsContained = MinBWs.
contains(OpInst);
1243 NumProcessedRecipes += IsContained;
1251 assert(MinBWs.
size() == NumProcessedRecipes &&
1252 "some entries in MinBWs haven't been processed");
1308 VPValue *StartV = CanonicalIVPHI->getStartValue();
1310 auto *CanonicalIVIncrement =
1311 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
1314 CanonicalIVIncrement->dropPoisonGeneratingFlags();
1315 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
1325 VPValue *TripCount, *IncrementValue;
1330 IncrementValue = CanonicalIVIncrement;
1336 IncrementValue = CanonicalIVPHI;
1347 DL,
"active.lane.mask.entry");
1352 LaneMaskPhi->insertAfter(CanonicalIVPHI);
1358 auto *InLoopIncrement =
1360 {IncrementValue}, {
false,
false},
DL);
1362 {InLoopIncrement, TripCount},
DL,
1363 "active.lane.mask.next");
1380 auto *FoundWidenCanonicalIVUser =
1382 [](
VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
1384 [](
VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
1386 "Must have at most one VPWideCanonicalIVRecipe");
1388 auto *WideCanonicalIV =
1389 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
1390 WideCanonicalIVs.
push_back(WideCanonicalIV);
1397 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
1398 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
1399 WideCanonicalIVs.
push_back(WidenOriginalIV);
1405 for (
auto *Wide : WideCanonicalIVs) {
1407 auto *HeaderMask = dyn_cast<VPInstruction>(U);
1411 assert(HeaderMask->getOperand(0) == Wide &&
1412 "WidenCanonicalIV must be the first operand of the compare");
1420 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
1423 UseActiveLaneMaskForControlFlow) &&
1424 "DataAndControlFlowWithoutRuntimeCheck implies "
1425 "UseActiveLaneMaskForControlFlow");
1427 auto *FoundWidenCanonicalIVUser =
1429 [](
VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
1430 assert(FoundWidenCanonicalIVUser &&
1431 "Must have widened canonical IV when tail folding!");
1432 auto *WideCanonicalIV =
1433 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
1435 if (UseActiveLaneMaskForControlFlow) {
1442 "active.lane.mask");
1449 HeaderMask->replaceAllUsesWith(LaneMask);
1466 assert(OrigMask &&
"Unmasked recipe when folding tail");
1467 return HeaderMask == OrigMask ? nullptr : OrigMask;
1472 VPValue *NewMask = GetNewMask(L->getMask());
1480 unsigned Opcode = W->getOpcode();
1486 VPValue *NewMask = GetNewMask(Red->getCondOp());
1489 .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>(
1492 if (
auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) {
1496 auto *CastR = cast<VPWidenCastRecipe>(CR);
1502 "Expected VP intrinsic");
1529 Intrinsic::vp_merge, {&AllOneMask,
LHS,
RHS, &EVL},
1543 if (
auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U))
1544 R->setOperand(1, &EVL);
1551 auto *CurRecipe = cast<VPRecipeBase>(U);
1558 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
1559 "New recipe must define the same number of values as the "
1563 "Only supports recipes with a single definition or without users.");
1565 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) {
1566 VPValue *CurVPV = CurRecipe->getVPSingleValue();
1577 R->eraseFromParent();
1623 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
1628 bool ContainsWidenInductions =
any_of(
1630 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>);
1631 if (ContainsWidenInductions)
1635 VPValue *StartV = CanonicalIVPHI->getStartValue();
1639 EVLPhi->insertAfter(CanonicalIVPHI);
1640 VPBuilder Builder(Header, Header->getFirstNonPhi());
1644 if (MaxSafeElements) {
1647 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements));
1654 auto *CanonicalIVIncrement =
1655 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
1657 if (
unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
1660 : Instruction::ZExt,
1661 OpVPEVL, CanonicalIVPHI->getScalarType());
1666 {CanonicalIVIncrement->hasNoUnsignedWrap(),
1667 CanonicalIVIncrement->hasNoSignedWrap()},
1668 CanonicalIVIncrement->
getDebugLoc(),
"index.evl.next");
1669 NextEVLIV->insertBefore(CanonicalIVIncrement);
1670 EVLPhi->addOperand(NextEVLIV);
1676 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
1677 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
1688 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
1693 while (!Worklist.
empty()) {
1694 VPRecipeBase *CurRec = Worklist.pop_back_val();
1696 if (!Visited.insert(CurRec).second)
1703 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe,
1704 VPHeaderPHIRecipe>(CurRec))
1710 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
1712 using namespace llvm::VPlanPatternMatch;
1718 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
1719 RecWithFlags->isDisjoint()) {
1720 VPBuilder Builder(RecWithFlags);
1721 VPInstruction *New = Builder.createOverflowingOp(
1722 Instruction::Add, {A, B}, {false, false},
1723 RecWithFlags->getDebugLoc());
1724 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
1725 RecWithFlags->replaceAllUsesWith(New);
1726 RecWithFlags->eraseFromParent();
1729 RecWithFlags->dropPoisonGeneratingFlags();
1731 Instruction *Instr = dyn_cast_or_null<Instruction>(
1732 CurRec->getVPSingleValue()->getUnderlyingValue());
1734 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
1735 "found instruction with poison generating flags not covered by "
1736 "VPRecipeWithIRFlags");
1750 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1752 if (
auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
1753 Instruction &UnderlyingInstr = WidenRec->getIngredient();
1754 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
1755 if (AddrDef && WidenRec->isConsecutive() &&
1756 BlockNeedsPredication(UnderlyingInstr.
getParent()))
1757 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
1758 }
else if (
auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1759 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
1763 InterleaveRec->getInterleaveGroup();
1764 bool NeedPredication =
false;
1766 I < NumMembers; ++
I) {
1769 NeedPredication |= BlockNeedsPredication(Member->getParent());
1772 if (NeedPredication)
1773 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
1785 if (InterleaveGroups.empty())
1793 for (
const auto *IG : InterleaveGroups) {
1795 for (
unsigned i = 0; i < IG->getFactor(); ++i)
1796 if (
auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
1797 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.
getRecipe(SI));
1798 StoredValues.
push_back(StoreR->getStoredValue());
1801 bool NeedsMaskForGaps =
1802 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed;
1806 cast<VPWidenMemoryRecipe>(RecipeBuilder.
getRecipe(IRInsertPos));
1810 cast<VPWidenMemoryRecipe>(RecipeBuilder.
getRecipe(IG->getMember(0)));
1816 bool InBounds =
false;
1817 if (
auto *Gep = dyn_cast<GetElementPtrInst>(
1819 InBounds = Gep->isInBounds();
1825 assert(IG->getIndex(IRInsertPos) != 0 &&
1826 "index of insert position shouldn't be zero");
1830 IG->getIndex(IRInsertPos),
1835 Addr = InBounds ?
B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV)
1836 :
B.createPtrAdd(InsertPos->getAddr(), OffsetVPV);
1839 InsertPos->getMask(), NeedsMaskForGaps);
1840 VPIG->insertBefore(InsertPos);
1843 for (
unsigned i = 0; i < IG->getFactor(); ++i)
1846 if (!Member->getType()->isVoidTy()) {
1857 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1860 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R))
1862 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1864 isa<VPCanonicalIVPHIRecipe>(PhiR) ?
"index" :
"evl.based.iv";
1867 PhiR->getDebugLoc(),
Name);
1868 ScalarR->insertBefore(PhiR);
1869 PhiR->replaceAllUsesWith(ScalarR);
1870 PhiR->eraseFromParent();
1879 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->
getExiting());
1880 VPBuilder Builder(LatchVPBB->getTerminator());
1882 VPValue *IsEarlyExitTaken =
nullptr;
1888 auto *EarlyExitingBranch =
1890 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0);
1891 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1);
1899 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]);
1902 !OrigLoop->
contains(TrueSucc) ? TrueSucc : FalseSucc);
1906 OrigLoop->
contains(TrueSucc) ? TrueSucc : FalseSucc);
1907 auto *EarlyExitTakenCond = Builder.
createNot(EarlyExitNotTakenCond);
1922 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
1924 "Unexpected terminator");
1925 auto *IsLatchExitTaken =
1927 LatchExitingBranch->getOperand(1));
1929 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
iv Induction Variable Users
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
static ConstantInt * getTrue(LLVMContext &Context)
This class represents an Operation in the Expression.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
static constexpr ElementCount getFixed(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_IntInduction
Integer induction variable. Step = C.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getUniqueExitBlock() const
If getUniqueExitBlocks would return exactly one block, return that block.
Represents a single loop in the control flow graph.
This class implements a map that also provides access to all stored values in a deterministic order.
bool contains(const KeyT &Key) const
ValueT lookup(const KeyT &Key) const
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
RecurKind getRecurrenceKind() const
This class represents an analyzed expression in the program.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getElementCount(Type *Ty, ElementCount EC)
LLVMContext & getContext() const
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
bool insert(const value_type &X)
Insert a new element into the SetVector.
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
VPInstruction * createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL={}, const Twine &Name="")
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, const Twine &Name="")
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPScalarIVStepsRecipe * createScalarIVSteps(Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
Returns true if A properly dominates B.
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A special type of VPBasicBlock that wraps an existing IR basic block.
static VPIRBasicBlock * fromBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
This is a concrete Recipe that models a single VPlan-level instruction.
@ FirstOrderRecurrenceSplice
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
static std::optional< unsigned > getMaskParamPos(Intrinsic::ID IntrinsicID)
static std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
static Intrinsic::ID getForOpcode(unsigned OC)
The llvm.vp.* intrinsics for this instruction Opcode.
static Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
const VPBlockBase * getExiting() const
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
VPScalarCastRecipe is a recipe to create scalar cast instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Recipe to generate a scalar PHI.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
operand_iterator op_end()
operand_iterator op_begin()
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for widening operations with vector-predication intrinsics with explicit vector length (EVL)...
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
VPValue * getMask() const
Return the mask used by this recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
VPBasicBlock * getEntry()
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
bool hasVF(ElementCount VF)
bool hasUF(unsigned UF) const
void setVF(ElementCount VF)
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
bool hasScalarVFOnly() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region.
Type * getType() const
All values are typed, get the type of this value.
void setName(const Twine &Name)
Change the name of the value.
StringRef getName() const
Return a constant reference to the value's name.
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
@ C
The default llvm calling convention, compatible with C.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ Default
The result values are uniform if and only if all operands are uniform.
A recipe for handling first-order recurrence phis.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...