47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPCanonicalIVPHISC:
77 case VPBranchOnMaskSC:
79 case VPFirstOrderRecurrencePHISC:
80 case VPReductionPHISC:
81 case VPScalarIVStepsSC:
85 case VPReductionEVLSC:
87 case VPVectorPointerSC:
88 case VPWidenCanonicalIVSC:
91 case VPWidenIntOrFpInductionSC:
92 case VPWidenLoadEVLSC:
95 case VPWidenPointerInductionSC:
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
149 assert((!
I || !
I->mayReadFromMemory()) &&
150 "underlying instruction may read from memory");
164 case VPFirstOrderRecurrencePHISC:
165 case VPPredInstPHISC:
166 case VPVectorEndPointerSC:
168 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
196 assert((!
I || !
I->mayHaveSideEffects()) &&
197 "underlying instruction has side-effects");
200 case VPInterleaveEVLSC:
203 case VPWidenLoadEVLSC:
205 case VPWidenStoreEVLSC:
210 "mayHaveSideffects result for ingredient differs from this "
213 case VPReplicateSC: {
215 return R->getUnderlyingInstr()->mayHaveSideEffects();
223 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 "Insertion position not in any VPBasicBlock");
231 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 assert(!Parent &&
"Recipe already in some VPBasicBlock");
239 "Insertion position not in any VPBasicBlock");
274 UI = IG->getInsertPos();
276 UI = &WidenMem->getIngredient();
279 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
293 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
315 assert(OpType == Other.OpType &&
"OpType must match");
317 case OperationType::OverflowingBinOp:
318 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
319 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 case OperationType::Trunc:
325 case OperationType::DisjointOp:
328 case OperationType::PossiblyExactOp:
329 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 case OperationType::GEPOp:
334 case OperationType::FPMathOp:
335 case OperationType::FCmp:
336 assert((OpType != OperationType::FCmp ||
337 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
338 "Cannot drop CmpPredicate");
339 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
340 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 case OperationType::NonNegOp:
345 case OperationType::Cmp:
348 case OperationType::ReductionOp:
350 "Cannot change RecurKind");
352 "Cannot change IsOrdered");
354 "Cannot change IsInLoop");
355 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
356 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
358 case OperationType::Other:
365 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp ||
366 OpType == OperationType::ReductionOp) &&
367 "recipe doesn't have fast math flags");
368 const FastMathFlagsTy &
F = getFMFsRef();
380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396template <
unsigned PartOpIdx>
399 if (U.getNumOperands() == PartOpIdx + 1)
400 return U.getOperand(PartOpIdx);
404template <
unsigned PartOpIdx>
423 "Set flags not supported for the provided opcode");
426 "number of operands does not match opcode");
441 case Instruction::Alloca:
442 case Instruction::ExtractValue:
443 case Instruction::Freeze:
444 case Instruction::Load:
461 case Instruction::ICmp:
462 case Instruction::FCmp:
463 case Instruction::ExtractElement:
464 case Instruction::Store:
473 case Instruction::Select:
481 case Instruction::Call:
482 case Instruction::GetElementPtr:
483 case Instruction::PHI:
484 case Instruction::Switch:
502bool VPInstruction::canGenerateScalarForFirstLane()
const {
508 case Instruction::Freeze:
509 case Instruction::ICmp:
510 case Instruction::PHI:
511 case Instruction::Select:
528 IRBuilderBase &Builder = State.
Builder;
547 case Instruction::ExtractElement: {
550 unsigned IdxToExtract =
558 case Instruction::Freeze: {
562 case Instruction::FCmp:
563 case Instruction::ICmp: {
569 case Instruction::PHI: {
572 case Instruction::Select: {
598 {VIVElem0, ScalarTC},
nullptr, Name);
614 if (!V1->getType()->isVectorTy())
634 "Requested vector length should be an integer.");
640 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
641 {AVL, VFArg, Builder.getTrue()});
647 assert(Part != 0 &&
"Must have a positive part");
660 VPBasicBlock *SecondVPSucc =
682 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
706 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
725 ReducedPartRdx,
"bin.rdx");
734 RecurKind RK = PhiR->getRecurrenceKind();
736 "Unexpected reduction kind");
737 assert(!PhiR->isInLoop() &&
738 "In-loop FindLastIV reduction is not supported yet");
750 for (
unsigned Part = 1; Part <
UF; ++Part)
751 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
768 return Builder.
CreateSelect(Cmp, ReducedIV, Start,
"rdx.select");
775 "should be handled by ComputeFindIVResult");
780 for (
unsigned Part = 0; Part < NumOperandsToReduce; ++Part)
783 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
788 Value *ReducedPartRdx = RdxParts[0];
790 ReducedPartRdx = RdxParts[NumOperandsToReduce - 1];
793 for (
unsigned Part = 1; Part < NumOperandsToReduce; ++Part) {
794 Value *RdxPart = RdxParts[Part];
796 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
805 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
819 return ReducedPartRdx;
828 "invalid offset to extract from");
833 assert(
Offset <= 1 &&
"invalid offset to extract from");
847 "can only generate first lane for PtrAdd");
867 Value *Res =
nullptr;
872 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
873 Value *VectorIdx = Idx == 1
875 : Builder.
CreateSub(LaneToExtract, VectorStart);
900 Value *Res =
nullptr;
901 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
902 Value *TrailingZeros =
933 Intrinsic::experimental_vector_extract_last_active, {VTy},
943 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
946 case Instruction::FNeg:
947 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
948 case Instruction::UDiv:
949 case Instruction::SDiv:
950 case Instruction::SRem:
951 case Instruction::URem:
952 case Instruction::Add:
953 case Instruction::FAdd:
954 case Instruction::Sub:
955 case Instruction::FSub:
956 case Instruction::Mul:
957 case Instruction::FMul:
958 case Instruction::FDiv:
959 case Instruction::FRem:
960 case Instruction::Shl:
961 case Instruction::LShr:
962 case Instruction::AShr:
963 case Instruction::And:
964 case Instruction::Or:
965 case Instruction::Xor: {
973 RHSInfo = Ctx.getOperandInfo(RHS);
984 return Ctx.TTI.getArithmeticInstrCost(
985 Opcode, ResultTy, Ctx.CostKind,
986 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
987 RHSInfo, Operands, CtxI, &Ctx.TLI);
989 case Instruction::Freeze:
991 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
993 case Instruction::ExtractValue:
994 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
996 case Instruction::ICmp:
997 case Instruction::FCmp: {
1001 return Ctx.TTI.getCmpSelInstrCost(
1003 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1004 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1006 case Instruction::BitCast: {
1007 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1012 case Instruction::SExt:
1013 case Instruction::ZExt:
1014 case Instruction::FPToUI:
1015 case Instruction::FPToSI:
1016 case Instruction::FPExt:
1017 case Instruction::PtrToInt:
1018 case Instruction::PtrToAddr:
1019 case Instruction::IntToPtr:
1020 case Instruction::SIToFP:
1021 case Instruction::UIToFP:
1022 case Instruction::Trunc:
1023 case Instruction::FPTrunc:
1024 case Instruction::AddrSpaceCast: {
1039 if (WidenMemoryRecipe ==
nullptr)
1043 if (!WidenMemoryRecipe->isConsecutive())
1045 if (WidenMemoryRecipe->isReverse())
1047 if (WidenMemoryRecipe->isMasked())
1055 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
1057 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
1065 CCH = ComputeCCH(Recipe);
1069 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1070 Opcode == Instruction::FPExt) {
1076 CCH = ComputeCCH(Recipe);
1084 Opcode, ResultTy, SrcTy, CCH, Ctx.
CostKind,
1087 case Instruction::Select: {
1098 (IsLogicalAnd || IsLogicalOr)) {
1104 SmallVector<const Value *, 2> Operands;
1106 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1109 IsLogicalOr ? Instruction::Or : Instruction::And, ResultTy,
1110 Ctx.
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1117 llvm::CmpPredicate Pred;
1121 Pred = Cmp->getPredicate();
1124 Instruction::Select, VectorTy, CondTy, Pred, Ctx.
CostKind,
1125 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1141 "Should only generate a vector value or single scalar, not scalars "
1149 case Instruction::Select: {
1152 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1153 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1158 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1161 case Instruction::ExtractElement:
1171 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1175 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1176 return Ctx.TTI.getArithmeticReductionCost(
1182 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1189 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1190 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1195 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1202 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1205 Cost += Ctx.TTI.getArithmeticInstrCost(
1206 Instruction::Xor, PredTy, Ctx.CostKind,
1207 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1208 {TargetTransformInfo::OK_UniformConstantValue,
1209 TargetTransformInfo::OP_None});
1211 Cost += Ctx.TTI.getArithmeticInstrCost(
1216 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1220 Intrinsic::experimental_vector_extract_last_active, ScalarTy,
1221 {VecTy, MaskTy, ScalarTy});
1222 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind);
1228 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1237 unsigned Multiplier =
1242 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1249 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1250 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1253 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1257 VectorTy, {}, Ctx.CostKind,
1263 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1264 VecTy, Ctx.CostKind, 0);
1274 "unexpected VPInstruction witht underlying value");
1282 getOpcode() == Instruction::ExtractElement ||
1295 case Instruction::PHI:
1306 assert(!State.Lane &&
"VPInstruction executing an Lane");
1309 "Set flags not supported for the provided opcode");
1312 Value *GeneratedValue = generate(State);
1315 assert(GeneratedValue &&
"generate must produce a value");
1316 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1321 !GeneratesPerFirstLaneOnly) ||
1322 State.VF.isScalar()) &&
1323 "scalar value but not only first lane defined");
1324 State.set(
this, GeneratedValue,
1325 GeneratesPerFirstLaneOnly);
1332 case Instruction::GetElementPtr:
1333 case Instruction::ExtractElement:
1334 case Instruction::Freeze:
1335 case Instruction::FCmp:
1336 case Instruction::ICmp:
1337 case Instruction::Select:
1338 case Instruction::PHI:
1382 case Instruction::ExtractElement:
1384 case Instruction::PHI:
1386 case Instruction::FCmp:
1387 case Instruction::ICmp:
1388 case Instruction::Select:
1389 case Instruction::Or:
1390 case Instruction::Freeze:
1431 case Instruction::FCmp:
1432 case Instruction::ICmp:
1433 case Instruction::Select:
1444#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1452 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1464 O <<
"combined load";
1467 O <<
"combined store";
1470 O <<
"active lane mask";
1473 O <<
"EXPLICIT-VECTOR-LENGTH";
1476 O <<
"first-order splice";
1479 O <<
"branch-on-cond";
1482 O <<
"branch-on-two-conds";
1485 O <<
"TC > VF ? TC - VF : 0";
1491 O <<
"branch-on-count";
1497 O <<
"buildstructvector";
1503 O <<
"extract-lane";
1506 O <<
"extract-last-lane";
1509 O <<
"extract-last-part";
1512 O <<
"extract-penultimate-element";
1515 O <<
"compute-anyof-result";
1518 O <<
"compute-find-iv-result";
1521 O <<
"compute-reduction-result";
1536 O <<
"first-active-lane";
1539 O <<
"last-active-lane";
1542 O <<
"reduction-start-vector";
1545 O <<
"resume-for-epilogue";
1554 O <<
"extract-last-active";
1571 State.set(
this, Cast,
VPLane(0));
1582 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1583 State.set(
this,
VScale,
true);
1592#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1595 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1601 O <<
"wide-iv-step ";
1605 O <<
"step-vector " << *ResultTy;
1608 O <<
"vscale " << *ResultTy;
1614 O <<
" to " << *ResultTy;
1621 PHINode *NewPhi = State.Builder.CreatePHI(
1622 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1629 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1634 State.set(
this, NewPhi,
VPLane(0));
1637#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1640 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1655 "PHINodes must be handled by VPIRPhi");
1658 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1671 "can only update exiting operands to phi nodes");
1682#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1685 O << Indent <<
"IR " << I;
1697 auto *PredVPBB = Pred->getExitingBasicBlock();
1698 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1705 if (Phi->getBasicBlockIndex(PredBB) == -1)
1706 Phi->addIncoming(V, PredBB);
1708 Phi->setIncomingValueForBlock(PredBB, V);
1713 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1718 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1719 "Number of phi operands must match number of predecessors");
1720 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1721 R->removeOperand(Position);
1724#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1738#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1744 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1749 std::get<1>(
Op)->printAsOperand(O);
1757 for (
const auto &[Kind,
Node] : Metadata)
1758 I.setMetadata(Kind,
Node);
1763 for (
const auto &[KindA, MDA] : Metadata) {
1764 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1765 if (KindA == KindB && MDA == MDB) {
1771 Metadata = std::move(MetadataIntersection);
1774#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1777 if (Metadata.empty() || !M)
1783 auto [Kind,
Node] = KindNodePair;
1785 "Unexpected unnamed metadata kind");
1786 O <<
"!" << MDNames[Kind] <<
" ";
1794 assert(State.VF.isVector() &&
"not widening");
1795 assert(Variant !=
nullptr &&
"Can't create vector function.");
1806 Arg = State.get(
I.value(),
VPLane(0));
1809 Args.push_back(Arg);
1815 CI->getOperandBundlesAsDefs(OpBundles);
1817 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1820 V->setCallingConv(Variant->getCallingConv());
1822 if (!V->getType()->isVoidTy())
1828 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1829 Variant->getFunctionType()->params(),
1833#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1836 O << Indent <<
"WIDEN-CALL ";
1848 O <<
" @" << CalledFn->
getName() <<
"(";
1854 O <<
" (using library function";
1855 if (Variant->hasName())
1856 O <<
": " << Variant->getName();
1862 assert(State.VF.isVector() &&
"not widening");
1878 Arg = State.get(
I.value(),
VPLane(0));
1884 Args.push_back(Arg);
1888 Module *M = State.Builder.GetInsertBlock()->getModule();
1892 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1897 CI->getOperandBundlesAsDefs(OpBundles);
1899 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1904 if (!V->getType()->isVoidTy())
1920 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1921 auto *V =
Op->getUnderlyingValue();
1924 Arguments.push_back(UI->getArgOperand(Idx));
1933 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1939 : Ctx.Types.inferScalarType(
Op));
1944 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1949 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1971#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1974 O << Indent <<
"WIDEN-INTRINSIC ";
1975 if (ResultTy->isVoidTy()) {
2003 Value *Mask =
nullptr;
2005 Mask = State.get(VPMask);
2008 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
2012 if (Opcode == Instruction::Sub)
2013 IncAmt = Builder.CreateNeg(IncAmt);
2015 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
2017 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
2032 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
2038 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
2051 {PtrTy, IncTy, MaskTy});
2054 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
2055 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
2058#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2061 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
2064 if (Opcode == Instruction::Sub)
2067 assert(Opcode == Instruction::Add);
2079VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2092 case OperationType::OverflowingBinOp:
2093 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2094 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
2095 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2096 case OperationType::Trunc:
2097 return Opcode == Instruction::Trunc;
2098 case OperationType::DisjointOp:
2099 return Opcode == Instruction::Or;
2100 case OperationType::PossiblyExactOp:
2101 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2102 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2103 case OperationType::GEPOp:
2104 return Opcode == Instruction::GetElementPtr ||
2107 case OperationType::FPMathOp:
2108 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2109 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2110 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2111 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2112 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2115 case OperationType::FCmp:
2116 return Opcode == Instruction::FCmp;
2117 case OperationType::NonNegOp:
2118 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2119 case OperationType::Cmp:
2120 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2121 case OperationType::ReductionOp:
2123 case OperationType::Other:
2130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2133 case OperationType::Cmp:
2136 case OperationType::FCmp:
2140 case OperationType::DisjointOp:
2144 case OperationType::PossiblyExactOp:
2148 case OperationType::OverflowingBinOp:
2154 case OperationType::Trunc:
2160 case OperationType::FPMathOp:
2163 case OperationType::GEPOp:
2166 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2171 case OperationType::NonNegOp:
2175 case OperationType::ReductionOp: {
2221 case OperationType::Other:
2229 auto &Builder = State.Builder;
2231 case Instruction::Call:
2232 case Instruction::Br:
2233 case Instruction::PHI:
2234 case Instruction::GetElementPtr:
2236 case Instruction::UDiv:
2237 case Instruction::SDiv:
2238 case Instruction::SRem:
2239 case Instruction::URem:
2240 case Instruction::Add:
2241 case Instruction::FAdd:
2242 case Instruction::Sub:
2243 case Instruction::FSub:
2244 case Instruction::FNeg:
2245 case Instruction::Mul:
2246 case Instruction::FMul:
2247 case Instruction::FDiv:
2248 case Instruction::FRem:
2249 case Instruction::Shl:
2250 case Instruction::LShr:
2251 case Instruction::AShr:
2252 case Instruction::And:
2253 case Instruction::Or:
2254 case Instruction::Xor: {
2258 Ops.push_back(State.get(VPOp));
2260 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2271 case Instruction::ExtractValue: {
2275 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2276 State.set(
this, Extract);
2279 case Instruction::Freeze: {
2281 Value *Freeze = Builder.CreateFreeze(
Op);
2282 State.set(
this, Freeze);
2285 case Instruction::ICmp:
2286 case Instruction::FCmp: {
2288 bool FCmp = Opcode == Instruction::FCmp;
2304 case Instruction::Select: {
2309 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
2310 State.set(
this, Sel);
2329 State.get(
this)->getType() &&
2330 "inferred type and type from generated instructions do not match");
2337 case Instruction::UDiv:
2338 case Instruction::SDiv:
2339 case Instruction::SRem:
2340 case Instruction::URem:
2345 case Instruction::FNeg:
2346 case Instruction::Add:
2347 case Instruction::FAdd:
2348 case Instruction::Sub:
2349 case Instruction::FSub:
2350 case Instruction::Mul:
2351 case Instruction::FMul:
2352 case Instruction::FDiv:
2353 case Instruction::FRem:
2354 case Instruction::Shl:
2355 case Instruction::LShr:
2356 case Instruction::AShr:
2357 case Instruction::And:
2358 case Instruction::Or:
2359 case Instruction::Xor:
2360 case Instruction::Freeze:
2361 case Instruction::ExtractValue:
2362 case Instruction::ICmp:
2363 case Instruction::FCmp:
2364 case Instruction::Select:
2371#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2374 O << Indent <<
"WIDEN ";
2383 auto &Builder = State.Builder;
2385 assert(State.VF.isVector() &&
"Not vectorizing?");
2390 State.set(
this, Cast);
2407#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2410 O << Indent <<
"WIDEN-CAST ";
2421 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2429 O <<
" = WIDEN-INDUCTION";
2434 O <<
" (truncated to " << *TI->getType() <<
")";
2448 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2452#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2457 O <<
" = DERIVED-IV ";
2481 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2488 AddOp = Instruction::Add;
2489 MulOp = Instruction::Mul;
2491 AddOp = InductionOpcode;
2492 MulOp = Instruction::FMul;
2502 unsigned StartLane = 0;
2503 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2505 StartLane = State.Lane->getKnownLane();
2506 EndLane = StartLane + 1;
2510 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2515 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2518 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2522 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2524 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2529 ? ConstantInt::get(BaseIVTy, Lane,
false,
2531 : ConstantFP::get(BaseIVTy, Lane);
2532 Value *StartIdx = Builder.CreateBinOp(AddOp, StartIdx0, LaneValue);
2536 "Expected StartIdx to be folded to a constant when VF is not "
2538 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2539 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2544#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2549 O <<
" = SCALAR-STEPS ";
2560 assert(State.VF.isVector() &&
"not widening");
2568 return Op->isDefinedOutsideLoopRegions();
2570 if (AllOperandsAreInvariant) {
2585 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2586 State.set(
this,
Splat);
2594 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2601 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2608 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2609 "NewGEP is not a pointer vector");
2610 State.set(
this, NewGEP);
2613#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2616 O << Indent <<
"WIDEN-GEP ";
2617 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2619 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2623 O <<
" = getelementptr";
2630 auto &Builder = State.Builder;
2632 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2633 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2637 if (IndexTy != RunTimeVF->
getType())
2638 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2640 Value *NumElt = Builder.CreateMul(
2644 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2651 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2654 State.set(
this, ResultPtr,
true);
2657#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2662 O <<
" = vector-end-pointer";
2669 auto &Builder = State.Builder;
2671 "Expected prior simplification of recipe without offset");
2676 State.set(
this, ResultPtr,
true);
2679#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2684 O <<
" = vector-pointer";
2697 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2700 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2704#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2707 O << Indent <<
"BLEND ";
2729 assert(!State.Lane &&
"Reduction being replicated.");
2732 "In-loop AnyOf reductions aren't currently supported");
2738 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2743 if (State.VF.isVector())
2744 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2746 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2753 if (State.VF.isVector())
2757 NewRed = State.Builder.CreateBinOp(
2759 PrevInChain, NewVecOp);
2760 PrevInChain = NewRed;
2761 NextInChain = NewRed;
2765 NewRed = State.Builder.CreateIntrinsic(
2766 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2767 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2768 PrevInChain = NewRed;
2769 NextInChain = NewRed;
2772 "The reduction must either be ordered, partial or in-loop");
2776 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2778 NextInChain = State.Builder.CreateBinOp(
2780 PrevInChain, NewRed);
2786 assert(!State.Lane &&
"Reduction being replicated.");
2788 auto &Builder = State.Builder;
2800 Mask = State.get(CondOp);
2802 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2812 NewRed = Builder.CreateBinOp(
2816 State.set(
this, NewRed,
true);
2822 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2826 std::optional<FastMathFlags> OptionalFMF =
2835 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2836 CondTy, Pred, Ctx.CostKind);
2838 return CondCost + Ctx.TTI.getPartialReductionCost(
2839 Opcode, ElementTy, ElementTy, ElementTy, VF,
2849 "Any-of reduction not implemented in VPlan-based cost model currently.");
2855 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2860 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2864VPExpressionRecipe::VPExpressionRecipe(
2865 ExpressionTypes ExpressionType,
2868 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2869 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2873 "expression cannot contain recipes with side-effects");
2877 for (
auto *R : ExpressionRecipes)
2878 ExpressionRecipesAsSetOfUsers.
insert(R);
2884 if (R != ExpressionRecipes.back() &&
2885 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2886 return !ExpressionRecipesAsSetOfUsers.contains(U);
2891 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2893 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2898 R->removeFromParent();
2905 for (
auto *R : ExpressionRecipes) {
2906 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2907 auto *
Def =
Op->getDefiningRecipe();
2908 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2917 for (
auto *R : ExpressionRecipes)
2918 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2919 R->replaceUsesOfWith(LiveIn, Tmp);
2923 for (
auto *R : ExpressionRecipes)
2926 if (!R->getParent())
2927 R->insertBefore(
this);
2930 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2933 ExpressionRecipes.clear();
2938 Type *RedTy = Ctx.Types.inferScalarType(
this);
2942 "VPExpressionRecipe only supports integer types currently.");
2945 switch (ExpressionType) {
2946 case ExpressionTypes::ExtendedReduction: {
2952 ->isPartialReduction()
2953 ? Ctx.TTI.getPartialReductionCost(
2954 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2959 : Ctx.TTI.getExtendedReductionCost(
2960 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2961 SrcVecTy, std::nullopt, Ctx.CostKind);
2963 case ExpressionTypes::MulAccReduction:
2964 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2967 case ExpressionTypes::ExtNegatedMulAccReduction:
2968 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2969 Opcode = Instruction::Sub;
2971 case ExpressionTypes::ExtMulAccReduction: {
2973 if (RedR->isPartialReduction()) {
2977 return Ctx.TTI.getPartialReductionCost(
2978 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2979 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2981 Ext0R->getOpcode()),
2983 Ext1R->getOpcode()),
2984 Mul->getOpcode(), Ctx.CostKind);
2986 return Ctx.TTI.getMulAccReductionCost(
2989 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2997 return R->mayReadFromMemory() || R->mayWriteToMemory();
3005 "expression cannot contain recipes with side-effects");
3013 return RR && !RR->isPartialReduction();
3016#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3020 O << Indent <<
"EXPRESSION ";
3026 switch (ExpressionType) {
3027 case ExpressionTypes::ExtendedReduction: {
3029 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3036 << *Ext0->getResultType();
3037 if (Red->isConditional()) {
3044 case ExpressionTypes::ExtNegatedMulAccReduction: {
3046 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3056 << *Ext0->getResultType() <<
"), (";
3060 << *Ext1->getResultType() <<
")";
3061 if (Red->isConditional()) {
3068 case ExpressionTypes::MulAccReduction:
3069 case ExpressionTypes::ExtMulAccReduction: {
3071 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3076 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3078 : ExpressionRecipes[0]);
3086 << *Ext0->getResultType() <<
"), (";
3094 << *Ext1->getResultType() <<
")";
3096 if (Red->isConditional()) {
3109 O << Indent <<
"PARTIAL-REDUCE ";
3111 O << Indent <<
"REDUCE ";
3131 O << Indent <<
"REDUCE ";
3159 assert((!Instr->getType()->isAggregateType() ||
3161 "Expected vectorizable or non-aggregate type.");
3164 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3168 Cloned->
setName(Instr->getName() +
".cloned");
3169 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3173 if (ResultTy != Cloned->
getType())
3184 State.setDebugLocFrom(
DL);
3189 auto InputLane = Lane;
3193 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3197 State.Builder.Insert(Cloned);
3199 State.set(RepRecipe, Cloned, Lane);
3203 State.AC->registerAssumption(
II);
3209 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3210 "Expected a recipe is either within a region or all of its operands "
3211 "are defined outside the vectorized region.");
3218 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3219 "must have already been unrolled");
3225 "uniform recipe shouldn't be predicated");
3226 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3231 State.Lane->isFirstLane()
3234 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3270 while (!WorkList.
empty()) {
3272 if (!Cur || !Seen.
insert(Cur).second)
3280 return Seen.contains(
3281 Blend->getIncomingValue(I)->getDefiningRecipe());
3285 for (
VPUser *U : Cur->users()) {
3287 if (InterleaveR->getAddr() == Cur)
3290 if (RepR->getOpcode() == Instruction::Load &&
3291 RepR->getOperand(0) == Cur)
3293 if (RepR->getOpcode() == Instruction::Store &&
3294 RepR->getOperand(1) == Cur)
3298 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3319 Ctx.SkipCostComputation.insert(UI);
3325 case Instruction::Alloca:
3328 return Ctx.TTI.getArithmeticInstrCost(
3329 Instruction::Mul, Ctx.Types.inferScalarType(
this), Ctx.CostKind);
3330 case Instruction::GetElementPtr:
3336 case Instruction::Call: {
3342 for (
const VPValue *ArgOp : ArgOps)
3343 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3345 if (CalledFn->isIntrinsic())
3348 switch (CalledFn->getIntrinsicID()) {
3349 case Intrinsic::assume:
3350 case Intrinsic::lifetime_end:
3351 case Intrinsic::lifetime_start:
3352 case Intrinsic::sideeffect:
3353 case Intrinsic::pseudoprobe:
3354 case Intrinsic::experimental_noalias_scope_decl: {
3357 "scalarizing intrinsic should be free");
3364 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3366 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3368 if (CalledFn->isIntrinsic())
3369 ScalarCallCost = std::min(
3373 return ScalarCallCost;
3377 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3379 case Instruction::Add:
3380 case Instruction::Sub:
3381 case Instruction::FAdd:
3382 case Instruction::FSub:
3383 case Instruction::Mul:
3384 case Instruction::FMul:
3385 case Instruction::FDiv:
3386 case Instruction::FRem:
3387 case Instruction::Shl:
3388 case Instruction::LShr:
3389 case Instruction::AShr:
3390 case Instruction::And:
3391 case Instruction::Or:
3392 case Instruction::Xor:
3393 case Instruction::ICmp:
3394 case Instruction::FCmp:
3398 case Instruction::SDiv:
3399 case Instruction::UDiv:
3400 case Instruction::SRem:
3401 case Instruction::URem: {
3408 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3417 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3421 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3424 case Instruction::Load:
3425 case Instruction::Store: {
3432 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3438 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3439 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3444 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3447 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3448 bool UsedByLoadStoreAddress =
3452 Ctx.TTI.getAddressComputationCost(
3453 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3464 if (!UsedByLoadStoreAddress) {
3465 bool EfficientVectorLoadStore =
3466 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3467 if (!(IsLoad && !PreferVectorizedAddressing) &&
3468 !(!IsLoad && EfficientVectorLoadStore))
3471 if (!EfficientVectorLoadStore)
3472 ResultTy = Ctx.Types.inferScalarType(
this);
3476 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3478 case Instruction::SExt:
3479 case Instruction::ZExt:
3480 case Instruction::FPToUI:
3481 case Instruction::FPToSI:
3482 case Instruction::FPExt:
3483 case Instruction::PtrToInt:
3484 case Instruction::PtrToAddr:
3485 case Instruction::IntToPtr:
3486 case Instruction::SIToFP:
3487 case Instruction::UIToFP:
3488 case Instruction::Trunc:
3489 case Instruction::FPTrunc:
3490 case Instruction::AddrSpaceCast: {
3495 case Instruction::ExtractValue:
3496 case Instruction::InsertValue:
3497 return Ctx.TTI.getInsertExtractValueCost(
getOpcode(), Ctx.CostKind);
3500 return Ctx.getLegacyCost(UI, VF);
3503#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3506 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3515 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3533 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3536 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3540 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3542 "Expected to replace unreachable terminator with conditional branch.");
3544 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3545 CondBr->setSuccessor(0,
nullptr);
3546 CurrentTerminator->eraseFromParent();
3558 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3563 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3565 "operand must be VPReplicateRecipe");
3576 "Packed operands must generate an insertelement or insertvalue");
3584 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3587 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3588 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3590 if (State.hasVectorValue(
this))
3591 State.reset(
this, VPhi);
3593 State.set(
this, VPhi);
3601 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3602 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3605 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3606 if (State.hasScalarValue(
this, *State.Lane))
3607 State.reset(
this, Phi, *State.Lane);
3609 State.set(
this, Phi, *State.Lane);
3612 State.reset(
getOperand(0), Phi, *State.Lane);
3616#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3619 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3630 ->getAddressSpace();
3633 : Instruction::Store;
3640 "Inconsecutive memory access should not have the order.");
3653 : Intrinsic::vp_scatter;
3654 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3656 Ctx.TTI.getMemIntrinsicInstrCost(
3665 : Intrinsic::masked_store;
3666 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3672 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3683 auto &Builder = State.Builder;
3684 Value *Mask =
nullptr;
3685 if (
auto *VPMask =
getMask()) {
3688 Mask = State.get(VPMask);
3690 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3696 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3697 "wide.masked.gather");
3700 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3703 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3706 State.set(
this, NewLI);
3709#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3712 O << Indent <<
"WIDEN ";
3724 Value *AllTrueMask =
3725 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3726 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3727 {Operand, AllTrueMask, EVL},
nullptr, Name);
3735 auto &Builder = State.Builder;
3739 Value *Mask =
nullptr;
3741 Mask = State.get(VPMask);
3745 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3750 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3751 nullptr,
"wide.masked.gather");
3753 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3754 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3760 State.set(
this, Res);
3775 ->getAddressSpace();
3776 return Ctx.TTI.getMemIntrinsicInstrCost(
3781#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3784 O << Indent <<
"WIDEN ";
3795 auto &Builder = State.Builder;
3797 Value *Mask =
nullptr;
3798 if (
auto *VPMask =
getMask()) {
3801 Mask = State.get(VPMask);
3803 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3806 Value *StoredVal = State.get(StoredVPValue);
3810 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3812 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3814 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3818#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3821 O << Indent <<
"WIDEN store ";
3830 auto &Builder = State.Builder;
3833 Value *StoredVal = State.get(StoredValue);
3835 Value *Mask =
nullptr;
3837 Mask = State.get(VPMask);
3841 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3844 if (CreateScatter) {
3846 Intrinsic::vp_scatter,
3847 {StoredVal, Addr, Mask, EVL});
3850 Intrinsic::vp_store,
3851 {StoredVal, Addr, Mask, EVL});
3870 ->getAddressSpace();
3871 return Ctx.TTI.getMemIntrinsicInstrCost(
3876#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3879 O << Indent <<
"WIDEN vp.store ";
3887 auto VF = DstVTy->getElementCount();
3889 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3890 Type *SrcElemTy = SrcVecTy->getElementType();
3891 Type *DstElemTy = DstVTy->getElementType();
3892 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3893 "Vector elements must have same size");
3897 return Builder.CreateBitOrPointerCast(V, DstVTy);
3904 "Only one type should be a pointer type");
3906 "Only one type should be a floating point type");
3910 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3911 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3917 const Twine &Name) {
3918 unsigned Factor = Vals.
size();
3919 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3923 for (
Value *Val : Vals)
3924 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3929 if (VecTy->isScalableTy()) {
3930 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3931 return Builder.CreateVectorInterleave(Vals, Name);
3938 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3939 return Builder.CreateShuffleVector(
3972 assert(!State.Lane &&
"Interleave group being replicated.");
3974 "Masking gaps for scalable vectors is not yet supported.");
3980 unsigned InterleaveFactor = Group->
getFactor();
3987 auto CreateGroupMask = [&BlockInMask, &State,
3988 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3989 if (State.VF.isScalable()) {
3990 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3991 assert(InterleaveFactor <= 8 &&
3992 "Unsupported deinterleave factor for scalable vectors");
3993 auto *ResBlockInMask = State.get(BlockInMask);
4001 Value *ResBlockInMask = State.get(BlockInMask);
4002 Value *ShuffledMask = State.Builder.CreateShuffleVector(
4005 "interleaved.mask");
4006 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
4007 ShuffledMask, MaskForGaps)
4011 const DataLayout &DL = Instr->getDataLayout();
4014 Value *MaskForGaps =
nullptr;
4018 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
4022 if (BlockInMask || MaskForGaps) {
4023 Value *GroupMask = CreateGroupMask(MaskForGaps);
4025 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
4027 PoisonVec,
"wide.masked.vec");
4029 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
4036 if (VecTy->isScalableTy()) {
4039 assert(InterleaveFactor <= 8 &&
4040 "Unsupported deinterleave factor for scalable vectors");
4041 NewLoad = State.Builder.CreateIntrinsic(
4044 nullptr,
"strided.vec");
4047 auto CreateStridedVector = [&InterleaveFactor, &State,
4048 &NewLoad](
unsigned Index) ->
Value * {
4049 assert(Index < InterleaveFactor &&
"Illegal group index");
4050 if (State.VF.isScalable())
4051 return State.Builder.CreateExtractValue(NewLoad, Index);
4057 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
4061 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4068 Value *StridedVec = CreateStridedVector(
I);
4071 if (Member->getType() != ScalarTy) {
4078 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4080 State.set(VPDefs[J], StridedVec);
4090 Value *MaskForGaps =
4093 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4097 unsigned StoredIdx = 0;
4098 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4100 "Fail to get a member from an interleaved store group");
4110 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4114 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4118 if (StoredVec->
getType() != SubVT)
4127 if (BlockInMask || MaskForGaps) {
4128 Value *GroupMask = CreateGroupMask(MaskForGaps);
4129 NewStoreInstr = State.Builder.CreateMaskedStore(
4130 IVec, ResAddr, Group->
getAlign(), GroupMask);
4133 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4140#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4144 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4145 IG->getInsertPos()->printAsOperand(O,
false);
4155 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4156 if (!IG->getMember(i))
4159 O <<
"\n" << Indent <<
" store ";
4161 O <<
" to index " << i;
4163 O <<
"\n" << Indent <<
" ";
4165 O <<
" = load from index " << i;
4173 assert(!State.Lane &&
"Interleave group being replicated.");
4174 assert(State.VF.isScalable() &&
4175 "Only support scalable VF for EVL tail-folding.");
4177 "Masking gaps for scalable vectors is not yet supported.");
4183 unsigned InterleaveFactor = Group->
getFactor();
4184 assert(InterleaveFactor <= 8 &&
4185 "Unsupported deinterleave/interleave factor for scalable vectors");
4192 Value *InterleaveEVL = State.Builder.CreateMul(
4193 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4197 Value *GroupMask =
nullptr;
4203 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4208 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4209 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4220 NewLoad = State.Builder.CreateIntrinsic(
4223 nullptr,
"strided.vec");
4225 const DataLayout &DL = Instr->getDataLayout();
4226 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4232 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4234 if (Member->getType() != ScalarTy) {
4252 const DataLayout &DL = Instr->getDataLayout();
4253 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4261 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4263 if (StoredVec->
getType() != SubVT)
4273 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4274 {IVec, ResAddr, GroupMask, InterleaveEVL});
4283#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4287 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4288 IG->getInsertPos()->printAsOperand(O,
false);
4299 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4300 if (!IG->getMember(i))
4303 O <<
"\n" << Indent <<
" vp.store ";
4305 O <<
" to index " << i;
4307 O <<
"\n" << Indent <<
" ";
4309 O <<
" = vp.load from index " << i;
4320 unsigned InsertPosIdx = 0;
4321 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4322 if (
auto *Member = IG->getMember(Idx)) {
4323 if (Member == InsertPos)
4327 Type *ValTy = Ctx.Types.inferScalarType(
4332 ->getAddressSpace();
4334 unsigned InterleaveFactor = IG->getFactor();
4339 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4340 if (IG->getMember(IF))
4345 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4346 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4348 if (!IG->isReverse())
4351 return Cost + IG->getNumMembers() *
4353 VectorTy, VectorTy, {}, Ctx.CostKind,
4357#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4360 O << Indent <<
"EMIT ";
4362 O <<
" = CANONICAL-INDUCTION ";
4372#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4376 "unexpected number of operands");
4377 O << Indent <<
"EMIT ";
4379 O <<
" = WIDEN-POINTER-INDUCTION ";
4395 O << Indent <<
"EMIT ";
4397 O <<
" = EXPAND SCEV " << *Expr;
4404 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4408 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4411 VStep = Builder.CreateVectorSplat(VF, VStep);
4413 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4415 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4416 State.set(
this, CanonicalVectorIV);
4419#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4422 O << Indent <<
"EMIT ";
4424 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4430 auto &Builder = State.Builder;
4434 Type *VecTy = State.VF.isScalar()
4435 ? VectorInit->getType()
4439 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4440 if (State.VF.isVector()) {
4442 auto *One = ConstantInt::get(IdxTy, 1);
4445 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4446 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4447 VectorInit = Builder.CreateInsertElement(
4453 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4454 Phi->addIncoming(VectorInit, VectorPH);
4455 State.set(
this, Phi);
4462 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4467#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4470 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4487 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4488 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4489 Value *StartV = State.get(StartVPV, ScalarPHI);
4493 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4494 "recipe must be in the vector loop header");
4499 Phi->addIncoming(StartV, VectorPH);
4502#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4505 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4518 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4519 State.set(
this, VecPhi);
4524 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4527#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4530 O << Indent <<
"WIDEN-PHI ";
4540 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4543 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4544 Phi->addIncoming(StartMask, VectorPH);
4545 State.set(
this, Phi);
4548#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4551 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4559#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4562 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVM_ABI CallInst * CreateIntMaxReduce(Value *Src, bool IsSigned=false)
Create a vector integer max reduction intrinsic of the source vector.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI CallInst * CreateIntMinReduce(Value *Src, bool IsSigned=false)
Create a vector integer min reduction intrinsic of the source vector.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
unsigned getVPDefID() const
VPIRValue * getStartValue() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
ReductionFlagsTy ReductionFlags
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
bool isReductionOrdered() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
bool isReductionInLoop() const
void applyFlags(Instruction &I) const
Apply the IR flags to I.
RecurKind getRecurKind() const
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
static unsigned getNumOperandsForOpcode(unsigned Opcode)
Return the number of operands determined by the opcode of the VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLastActive
Extracts the lane from the first operand corresponding to the last active (non-zero) lane in the mask...
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getStepValue()
Returns the step value of the induction.
VPIRValue * getStartValue() const
Returns the start value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenPHIRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ FMaximum
FP max with llvm.maximum semantics.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
TargetTransformInfo::TargetCostKind CostKind
const TargetTransformInfo & TTI
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
A VPValue representing a live-in from the input IR or a constant.
Value * getValue() const
Returns the underlying IR value.
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.