LLVM 22.0.0git
VPlanRecipes.cpp
Go to the documentation of this file.
1//===- VPlanRecipes.cpp - Implementations for VPlan recipes ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains implementations for different VPlan recipes.
11///
12//===----------------------------------------------------------------------===//
13
15#include "VPlan.h"
16#include "VPlanAnalysis.h"
17#include "VPlanHelpers.h"
18#include "VPlanPatternMatch.h"
19#include "VPlanUtils.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instruction.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Type.h"
32#include "llvm/IR/Value.h"
35#include "llvm/Support/Debug.h"
39#include <cassert>
40
41using namespace llvm;
42using namespace llvm::VPlanPatternMatch;
43
45
46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
48
50 switch (getVPDefID()) {
51 case VPExpressionSC:
52 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
53 case VPInstructionSC: {
54 auto *VPI = cast<VPInstruction>(this);
55 // Loads read from memory but don't write to memory.
56 if (VPI->getOpcode() == Instruction::Load)
57 return false;
58 return VPI->opcodeMayReadOrWriteFromMemory();
59 }
60 case VPInterleaveEVLSC:
61 case VPInterleaveSC:
62 return cast<VPInterleaveBase>(this)->getNumStoreOperands() > 0;
63 case VPWidenStoreEVLSC:
64 case VPWidenStoreSC:
65 return true;
66 case VPReplicateSC:
67 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
68 ->mayWriteToMemory();
69 case VPWidenCallSC:
70 return !cast<VPWidenCallRecipe>(this)
71 ->getCalledScalarFunction()
72 ->onlyReadsMemory();
73 case VPWidenIntrinsicSC:
74 return cast<VPWidenIntrinsicRecipe>(this)->mayWriteToMemory();
75 case VPCanonicalIVPHISC:
76 case VPBranchOnMaskSC:
77 case VPDerivedIVSC:
78 case VPFirstOrderRecurrencePHISC:
79 case VPReductionPHISC:
80 case VPScalarIVStepsSC:
81 case VPPredInstPHISC:
82 return false;
83 case VPBlendSC:
84 case VPReductionEVLSC:
85 case VPReductionSC:
86 case VPVectorPointerSC:
87 case VPWidenCanonicalIVSC:
88 case VPWidenCastSC:
89 case VPWidenGEPSC:
90 case VPWidenIntOrFpInductionSC:
91 case VPWidenLoadEVLSC:
92 case VPWidenLoadSC:
93 case VPWidenPHISC:
94 case VPWidenPointerInductionSC:
95 case VPWidenSC:
96 case VPWidenSelectSC: {
97 const Instruction *I =
98 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
99 (void)I;
100 assert((!I || !I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
102 return false;
103 }
104 default:
105 return true;
106 }
107}
108
110 switch (getVPDefID()) {
111 case VPExpressionSC:
112 return cast<VPExpressionRecipe>(this)->mayReadOrWriteMemory();
113 case VPInstructionSC:
114 return cast<VPInstruction>(this)->opcodeMayReadOrWriteFromMemory();
115 case VPWidenLoadEVLSC:
116 case VPWidenLoadSC:
117 return true;
118 case VPReplicateSC:
119 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
120 ->mayReadFromMemory();
121 case VPWidenCallSC:
122 return !cast<VPWidenCallRecipe>(this)
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
126 return cast<VPWidenIntrinsicRecipe>(this)->mayReadFromMemory();
127 case VPBranchOnMaskSC:
128 case VPDerivedIVSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
133 case VPWidenStoreSC:
134 return false;
135 case VPBlendSC:
136 case VPReductionEVLSC:
137 case VPReductionSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
140 case VPWidenCastSC:
141 case VPWidenGEPSC:
142 case VPWidenIntOrFpInductionSC:
143 case VPWidenPHISC:
144 case VPWidenPointerInductionSC:
145 case VPWidenSC:
146 case VPWidenSelectSC: {
147 const Instruction *I =
148 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
149 (void)I;
150 assert((!I || !I->mayReadFromMemory()) &&
151 "underlying instruction may read from memory");
152 return false;
153 }
154 default:
155 // FIXME: Return false if the recipe represents an interleaved store.
156 return true;
157 }
158}
159
161 switch (getVPDefID()) {
162 case VPExpressionSC:
163 return cast<VPExpressionRecipe>(this)->mayHaveSideEffects();
164 case VPDerivedIVSC:
165 case VPFirstOrderRecurrencePHISC:
166 case VPPredInstPHISC:
167 case VPVectorEndPointerSC:
168 return false;
169 case VPInstructionSC: {
170 auto *VPI = cast<VPInstruction>(this);
171 return mayWriteToMemory() ||
172 VPI->getOpcode() == VPInstruction::BranchOnCount ||
173 VPI->getOpcode() == VPInstruction::BranchOnCond;
174 }
175 case VPWidenCallSC: {
176 Function *Fn = cast<VPWidenCallRecipe>(this)->getCalledScalarFunction();
177 return mayWriteToMemory() || !Fn->doesNotThrow() || !Fn->willReturn();
178 }
179 case VPWidenIntrinsicSC:
180 return cast<VPWidenIntrinsicRecipe>(this)->mayHaveSideEffects();
181 case VPBlendSC:
182 case VPReductionEVLSC:
183 case VPReductionSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
187 case VPWidenCastSC:
188 case VPWidenGEPSC:
189 case VPWidenIntOrFpInductionSC:
190 case VPWidenPHISC:
191 case VPWidenPointerInductionSC:
192 case VPWidenSC:
193 case VPWidenSelectSC: {
194 const Instruction *I =
195 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
196 (void)I;
197 assert((!I || !I->mayHaveSideEffects()) &&
198 "underlying instruction has side-effects");
199 return false;
200 }
201 case VPInterleaveEVLSC:
202 case VPInterleaveSC:
203 return mayWriteToMemory();
204 case VPWidenLoadEVLSC:
205 case VPWidenLoadSC:
206 case VPWidenStoreEVLSC:
207 case VPWidenStoreSC:
208 assert(
209 cast<VPWidenMemoryRecipe>(this)->getIngredient().mayHaveSideEffects() ==
211 "mayHaveSideffects result for ingredient differs from this "
212 "implementation");
213 return mayWriteToMemory();
214 case VPReplicateSC: {
215 auto *R = cast<VPReplicateRecipe>(this);
216 return R->getUnderlyingInstr()->mayHaveSideEffects();
217 }
218 default:
219 return true;
220 }
221}
222
224 assert(!Parent && "Recipe already in some VPBasicBlock");
225 assert(InsertPos->getParent() &&
226 "Insertion position not in any VPBasicBlock");
227 InsertPos->getParent()->insert(this, InsertPos->getIterator());
228}
229
230void VPRecipeBase::insertBefore(VPBasicBlock &BB,
232 assert(!Parent && "Recipe already in some VPBasicBlock");
233 assert(I == BB.end() || I->getParent() == &BB);
234 BB.insert(this, I);
235}
236
238 assert(!Parent && "Recipe already in some VPBasicBlock");
239 assert(InsertPos->getParent() &&
240 "Insertion position not in any VPBasicBlock");
241 InsertPos->getParent()->insert(this, std::next(InsertPos->getIterator()));
242}
243
245 assert(getParent() && "Recipe not in any VPBasicBlock");
247 Parent = nullptr;
248}
249
251 assert(getParent() && "Recipe not in any VPBasicBlock");
253}
254
257 insertAfter(InsertPos);
258}
259
265
267 // Get the underlying instruction for the recipe, if there is one. It is used
268 // to
269 // * decide if cost computation should be skipped for this recipe,
270 // * apply forced target instruction cost.
271 Instruction *UI = nullptr;
272 if (auto *S = dyn_cast<VPSingleDefRecipe>(this))
273 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
274 else if (auto *IG = dyn_cast<VPInterleaveBase>(this))
275 UI = IG->getInsertPos();
276 else if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(this))
277 UI = &WidenMem->getIngredient();
278
279 InstructionCost RecipeCost;
280 if (UI && Ctx.skipCostComputation(UI, VF.isVector())) {
281 RecipeCost = 0;
282 } else {
283 RecipeCost = computeCost(VF, Ctx);
284 if (ForceTargetInstructionCost.getNumOccurrences() > 0 &&
285 RecipeCost.isValid()) {
286 if (UI)
288 else
289 RecipeCost = InstructionCost(0);
290 }
291 }
292
293 LLVM_DEBUG({
294 dbgs() << "Cost of " << RecipeCost << " for VF " << VF << ": ";
295 dump();
296 });
297 return RecipeCost;
298}
299
301 VPCostContext &Ctx) const {
302 llvm_unreachable("subclasses should implement computeCost");
303}
304
306 return (getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC) ||
308}
309
311 auto *VPI = dyn_cast<VPInstruction>(this);
312 return VPI && Instruction::isCast(VPI->getOpcode());
313}
314
316 assert(OpType == Other.OpType && "OpType must match");
317 switch (OpType) {
318 case OperationType::OverflowingBinOp:
319 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
320 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 break;
322 case OperationType::Trunc:
323 TruncFlags.HasNUW &= Other.TruncFlags.HasNUW;
324 TruncFlags.HasNSW &= Other.TruncFlags.HasNSW;
325 break;
326 case OperationType::DisjointOp:
327 DisjointFlags.IsDisjoint &= Other.DisjointFlags.IsDisjoint;
328 break;
329 case OperationType::PossiblyExactOp:
330 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 break;
332 case OperationType::GEPOp:
333 GEPFlags &= Other.GEPFlags;
334 break;
335 case OperationType::FPMathOp:
336 case OperationType::FCmp:
337 assert((OpType != OperationType::FCmp ||
338 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
339 "Cannot drop CmpPredicate");
340 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
341 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 break;
343 case OperationType::NonNegOp:
344 NonNegFlags.NonNeg &= Other.NonNegFlags.NonNeg;
345 break;
346 case OperationType::Cmp:
347 assert(CmpPredicate == Other.CmpPredicate && "Cannot drop CmpPredicate");
348 break;
349 case OperationType::Other:
350 assert(AllFlags == Other.AllFlags && "Cannot drop other flags");
351 break;
352 }
353}
354
356 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
357 "recipe doesn't have fast math flags");
358 const FastMathFlagsTy &F = getFMFsRef();
359 FastMathFlags Res;
360 Res.setAllowReassoc(F.AllowReassoc);
361 Res.setNoNaNs(F.NoNaNs);
362 Res.setNoInfs(F.NoInfs);
363 Res.setNoSignedZeros(F.NoSignedZeros);
364 Res.setAllowReciprocal(F.AllowReciprocal);
365 Res.setAllowContract(F.AllowContract);
366 Res.setApproxFunc(F.ApproxFunc);
367 return Res;
368}
369
370#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
372
373void VPRecipeBase::print(raw_ostream &O, const Twine &Indent,
374 VPSlotTracker &SlotTracker) const {
375 printRecipe(O, Indent, SlotTracker);
376 if (auto DL = getDebugLoc()) {
377 O << ", !dbg ";
378 DL.print(O);
379 }
380
381 if (auto *Metadata = dyn_cast<VPIRMetadata>(this))
383}
384#endif
385
386template <unsigned PartOpIdx>
387VPValue *
389 if (U.getNumOperands() == PartOpIdx + 1)
390 return U.getOperand(PartOpIdx);
391 return nullptr;
392}
393
394template <unsigned PartOpIdx>
396 if (auto *UnrollPartOp = getUnrollPartOperand(U))
397 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
398 return 0;
399}
400
401namespace llvm {
402template class VPUnrollPartAccessor<1>;
403template class VPUnrollPartAccessor<2>;
404template class VPUnrollPartAccessor<3>;
405}
406
408 const VPIRFlags &Flags, const VPIRMetadata &MD,
409 DebugLoc DL, const Twine &Name)
410 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, Flags, DL),
411 VPIRMetadata(MD), Opcode(Opcode), Name(Name.str()) {
413 "Set flags not supported for the provided opcode");
414 assert((getNumOperandsForOpcode(Opcode) == -1u ||
415 getNumOperandsForOpcode(Opcode) == getNumOperands()) &&
416 "number of operands does not match opcode");
417}
418
419#ifndef NDEBUG
420unsigned VPInstruction::getNumOperandsForOpcode(unsigned Opcode) {
421 if (Instruction::isUnaryOp(Opcode) || Instruction::isCast(Opcode))
422 return 1;
423
424 if (Instruction::isBinaryOp(Opcode))
425 return 2;
426
427 switch (Opcode) {
430 return 0;
431 case Instruction::Alloca:
432 case Instruction::ExtractValue:
433 case Instruction::Freeze:
434 case Instruction::Load:
448 return 1;
449 case Instruction::ICmp:
450 case Instruction::FCmp:
451 case Instruction::ExtractElement:
452 case Instruction::Store:
461 return 2;
462 case Instruction::Select:
466 return 3;
468 return 4;
469 case Instruction::Call:
470 case Instruction::GetElementPtr:
471 case Instruction::PHI:
472 case Instruction::Switch:
478 // Cannot determine the number of operands from the opcode.
479 return -1u;
480 }
481 llvm_unreachable("all cases should be handled above");
482}
483#endif
484
488
489bool VPInstruction::canGenerateScalarForFirstLane() const {
491 return true;
493 return true;
494 switch (Opcode) {
495 case Instruction::Freeze:
496 case Instruction::ICmp:
497 case Instruction::PHI:
498 case Instruction::Select:
507 return true;
508 default:
509 return false;
510 }
511}
512
513/// Create a conditional branch using \p Cond branching to the successors of \p
514/// VPBB. Note that the first successor is always forward (i.e. not created yet)
515/// while the second successor may already have been created (if it is a header
516/// block and VPBB is a latch).
518 VPTransformState &State) {
519 // Replace the temporary unreachable terminator with a new conditional
520 // branch, hooking it up to backward destination (header) for latch blocks
521 // now, and to forward destination(s) later when they are created.
522 // Second successor may be backwards - iff it is already in VPBB2IRBB.
523 VPBasicBlock *SecondVPSucc = cast<VPBasicBlock>(VPBB->getSuccessors()[1]);
524 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
525 BasicBlock *IRBB = State.CFG.VPBB2IRBB[VPBB];
526 BranchInst *CondBr = State.Builder.CreateCondBr(Cond, IRBB, SecondIRSucc);
527 // First successor is always forward, reset it to nullptr
528 CondBr->setSuccessor(0, nullptr);
530 return CondBr;
531}
532
533Value *VPInstruction::generate(VPTransformState &State) {
534 IRBuilderBase &Builder = State.Builder;
535
537 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
538 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
539 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
540 auto *Res =
541 Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B, Name);
542 if (auto *I = dyn_cast<Instruction>(Res))
543 applyFlags(*I);
544 return Res;
545 }
546
547 switch (getOpcode()) {
548 case VPInstruction::Not: {
549 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
550 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
551 return Builder.CreateNot(A, Name);
552 }
553 case Instruction::ExtractElement: {
554 assert(State.VF.isVector() && "Only extract elements from vectors");
555 if (getOperand(1)->isLiveIn()) {
556 unsigned IdxToExtract =
557 cast<ConstantInt>(getOperand(1)->getLiveInIRValue())->getZExtValue();
558 return State.get(getOperand(0), VPLane(IdxToExtract));
559 }
560 Value *Vec = State.get(getOperand(0));
561 Value *Idx = State.get(getOperand(1), /*IsScalar=*/true);
562 return Builder.CreateExtractElement(Vec, Idx, Name);
563 }
564 case Instruction::Freeze: {
566 return Builder.CreateFreeze(Op, Name);
567 }
568 case Instruction::FCmp:
569 case Instruction::ICmp: {
570 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
571 Value *A = State.get(getOperand(0), OnlyFirstLaneUsed);
572 Value *B = State.get(getOperand(1), OnlyFirstLaneUsed);
573 return Builder.CreateCmp(getPredicate(), A, B, Name);
574 }
575 case Instruction::PHI: {
576 llvm_unreachable("should be handled by VPPhi::execute");
577 }
578 case Instruction::Select: {
579 bool OnlyFirstLaneUsed = vputils::onlyFirstLaneUsed(this);
580 Value *Cond =
581 State.get(getOperand(0),
582 OnlyFirstLaneUsed || vputils::isSingleScalar(getOperand(0)));
583 Value *Op1 = State.get(getOperand(1), OnlyFirstLaneUsed);
584 Value *Op2 = State.get(getOperand(2), OnlyFirstLaneUsed);
585 return Builder.CreateSelect(Cond, Op1, Op2, Name);
586 }
588 // Get first lane of vector induction variable.
589 Value *VIVElem0 = State.get(getOperand(0), VPLane(0));
590 // Get the original loop tripcount.
591 Value *ScalarTC = State.get(getOperand(1), VPLane(0));
592
593 // If this part of the active lane mask is scalar, generate the CMP directly
594 // to avoid unnecessary extracts.
595 if (State.VF.isScalar())
596 return Builder.CreateCmp(CmpInst::Predicate::ICMP_ULT, VIVElem0, ScalarTC,
597 Name);
598
599 ElementCount EC = State.VF.multiplyCoefficientBy(
600 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
601 auto *PredTy = VectorType::get(Builder.getInt1Ty(), EC);
602 return Builder.CreateIntrinsic(Intrinsic::get_active_lane_mask,
603 {PredTy, ScalarTC->getType()},
604 {VIVElem0, ScalarTC}, nullptr, Name);
605 }
607 // Generate code to combine the previous and current values in vector v3.
608 //
609 // vector.ph:
610 // v_init = vector(..., ..., ..., a[-1])
611 // br vector.body
612 //
613 // vector.body
614 // i = phi [0, vector.ph], [i+4, vector.body]
615 // v1 = phi [v_init, vector.ph], [v2, vector.body]
616 // v2 = a[i, i+1, i+2, i+3];
617 // v3 = vector(v1(3), v2(0, 1, 2))
618
619 auto *V1 = State.get(getOperand(0));
620 if (!V1->getType()->isVectorTy())
621 return V1;
622 Value *V2 = State.get(getOperand(1));
623 return Builder.CreateVectorSplice(V1, V2, -1, Name);
624 }
626 unsigned UF = getParent()->getPlan()->getUF();
627 Value *ScalarTC = State.get(getOperand(0), VPLane(0));
628 Value *Step = createStepForVF(Builder, ScalarTC->getType(), State.VF, UF);
629 Value *Sub = Builder.CreateSub(ScalarTC, Step);
630 Value *Cmp = Builder.CreateICmp(CmpInst::Predicate::ICMP_UGT, ScalarTC, Step);
632 return Builder.CreateSelect(Cmp, Sub, Zero);
633 }
635 // TODO: Restructure this code with an explicit remainder loop, vsetvli can
636 // be outside of the main loop.
637 Value *AVL = State.get(getOperand(0), /*IsScalar*/ true);
638 // Compute EVL
639 assert(AVL->getType()->isIntegerTy() &&
640 "Requested vector length should be an integer.");
641
642 assert(State.VF.isScalable() && "Expected scalable vector factor.");
643 Value *VFArg = Builder.getInt32(State.VF.getKnownMinValue());
644
645 Value *EVL = Builder.CreateIntrinsic(
646 Builder.getInt32Ty(), Intrinsic::experimental_get_vector_length,
647 {AVL, VFArg, Builder.getTrue()});
648 return EVL;
649 }
651 unsigned Part = getUnrollPart(*this);
652 auto *IV = State.get(getOperand(0), VPLane(0));
653 assert(Part != 0 && "Must have a positive part");
654 // The canonical IV is incremented by the vectorization factor (num of
655 // SIMD elements) times the unroll part.
656 Value *Step = createStepForVF(Builder, IV->getType(), State.VF, Part);
657 return Builder.CreateAdd(IV, Step, Name, hasNoUnsignedWrap(),
659 }
661 Value *Cond = State.get(getOperand(0), VPLane(0));
662 auto *Br = createCondBranch(Cond, getParent(), State);
663 applyMetadata(*Br);
664 return Br;
665 }
667 // First create the compare.
668 Value *IV = State.get(getOperand(0), /*IsScalar*/ true);
669 Value *TC = State.get(getOperand(1), /*IsScalar*/ true);
670 Value *Cond = Builder.CreateICmpEQ(IV, TC);
671 return createCondBranch(Cond, getParent(), State);
672 }
674 return Builder.CreateVectorSplat(
675 State.VF, State.get(getOperand(0), /*IsScalar*/ true), "broadcast");
676 }
678 // For struct types, we need to build a new 'wide' struct type, where each
679 // element is widened, i.e., we create a struct of vectors.
680 auto *StructTy =
682 Value *Res = PoisonValue::get(toVectorizedTy(StructTy, State.VF));
683 for (const auto &[LaneIndex, Op] : enumerate(operands())) {
684 for (unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
685 FieldIndex++) {
686 Value *ScalarValue =
687 Builder.CreateExtractValue(State.get(Op, true), FieldIndex);
688 Value *VectorValue = Builder.CreateExtractValue(Res, FieldIndex);
689 VectorValue =
690 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneIndex);
691 Res = Builder.CreateInsertValue(Res, VectorValue, FieldIndex);
692 }
693 }
694 return Res;
695 }
697 auto *ScalarTy = State.TypeAnalysis.inferScalarType(getOperand(0));
698 auto NumOfElements = ElementCount::getFixed(getNumOperands());
699 Value *Res = PoisonValue::get(toVectorizedTy(ScalarTy, NumOfElements));
700 for (const auto &[Idx, Op] : enumerate(operands()))
701 Res = Builder.CreateInsertElement(Res, State.get(Op, true),
702 Builder.getInt32(Idx));
703 return Res;
704 }
706 if (State.VF.isScalar())
707 return State.get(getOperand(0), true);
708 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
710 // If this start vector is scaled then it should produce a vector with fewer
711 // elements than the VF.
712 ElementCount VF = State.VF.divideCoefficientBy(
713 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue());
714 auto *Iden = Builder.CreateVectorSplat(VF, State.get(getOperand(1), true));
715 return Builder.CreateInsertElement(Iden, State.get(getOperand(0), true),
716 Builder.getInt32(0));
717 }
719 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
720 // and will be removed by breaking up the recipe further.
721 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
722 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
723 Value *ReducedPartRdx = State.get(getOperand(2));
724 for (unsigned Idx = 3; Idx < getNumOperands(); ++Idx)
725 ReducedPartRdx =
726 Builder.CreateBinOp(Instruction::Or, State.get(getOperand(Idx)),
727 ReducedPartRdx, "bin.rdx");
728 return createAnyOfReduction(Builder, ReducedPartRdx,
729 State.get(getOperand(1), VPLane(0)), OrigPhi);
730 }
732 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
733 // and will be removed by breaking up the recipe further.
734 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
735 // Get its reduction variable descriptor.
736 RecurKind RK = PhiR->getRecurrenceKind();
738 "Unexpected reduction kind");
739 assert(!PhiR->isInLoop() &&
740 "In-loop FindLastIV reduction is not supported yet");
741
742 // The recipe's operands are the reduction phi, the start value, the
743 // sentinel value, followed by one operand for each part of the reduction.
744 unsigned UF = getNumOperands() - 3;
745 Value *ReducedPartRdx = State.get(getOperand(3));
746 RecurKind MinMaxKind;
749 MinMaxKind = IsSigned ? RecurKind::SMax : RecurKind::UMax;
750 else
751 MinMaxKind = IsSigned ? RecurKind::SMin : RecurKind::UMin;
752 for (unsigned Part = 1; Part < UF; ++Part)
753 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
754 State.get(getOperand(3 + Part)));
755
756 Value *Start = State.get(getOperand(1), true);
758 return createFindLastIVReduction(Builder, ReducedPartRdx, RK, Start,
759 Sentinel);
760 }
762 // FIXME: The cross-recipe dependency on VPReductionPHIRecipe is temporary
763 // and will be removed by breaking up the recipe further.
764 auto *PhiR = cast<VPReductionPHIRecipe>(getOperand(0));
765 // Get its reduction variable descriptor.
766
767 RecurKind RK = PhiR->getRecurrenceKind();
769 "should be handled by ComputeFindIVResult");
770
771 // The recipe's operands are the reduction phi, followed by one operand for
772 // each part of the reduction.
773 unsigned UF = getNumOperands() - 1;
774 VectorParts RdxParts(UF);
775 for (unsigned Part = 0; Part < UF; ++Part)
776 RdxParts[Part] = State.get(getOperand(1 + Part), PhiR->isInLoop());
777
778 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
779 if (hasFastMathFlags())
781
782 // Reduce all of the unrolled parts into a single vector.
783 Value *ReducedPartRdx = RdxParts[0];
784 if (PhiR->isOrdered()) {
785 ReducedPartRdx = RdxParts[UF - 1];
786 } else {
787 // Floating-point operations should have some FMF to enable the reduction.
788 for (unsigned Part = 1; Part < UF; ++Part) {
789 Value *RdxPart = RdxParts[Part];
791 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
792 else {
793 // For sub-recurrences, each UF's reduction variable is already
794 // negative, we need to do: reduce.add(-acc_uf0 + -acc_uf1)
796 RK == RecurKind::Sub
797 ? Instruction::Add
799 ReducedPartRdx =
800 Builder.CreateBinOp(Opcode, RdxPart, ReducedPartRdx, "bin.rdx");
801 }
802 }
803 }
804
805 // Create the reduction after the loop. Note that inloop reductions create
806 // the target reduction in the loop using a Reduction recipe.
807 if (State.VF.isVector() && !PhiR->isInLoop()) {
808 // TODO: Support in-order reductions based on the recurrence descriptor.
809 // All ops in the reduction inherit fast-math-flags from the recurrence
810 // descriptor.
811 ReducedPartRdx = createSimpleReduction(Builder, ReducedPartRdx, RK);
812 }
813
814 return ReducedPartRdx;
815 }
818 unsigned Offset =
820 Value *Res;
821 if (State.VF.isVector()) {
822 assert(Offset <= State.VF.getKnownMinValue() &&
823 "invalid offset to extract from");
824 // Extract lane VF - Offset from the operand.
825 Res = State.get(getOperand(0), VPLane::getLaneFromEnd(State.VF, Offset));
826 } else {
827 // TODO: Remove ExtractLastLane for scalar VFs.
828 assert(Offset <= 1 && "invalid offset to extract from");
829 Res = State.get(getOperand(0));
830 }
832 Res->setName(Name);
833 return Res;
834 }
836 Value *A = State.get(getOperand(0));
837 Value *B = State.get(getOperand(1));
838 return Builder.CreateLogicalAnd(A, B, Name);
839 }
842 "can only generate first lane for PtrAdd");
843 Value *Ptr = State.get(getOperand(0), VPLane(0));
844 Value *Addend = State.get(getOperand(1), VPLane(0));
845 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
846 }
848 Value *Ptr =
850 Value *Addend = State.get(getOperand(1));
851 return Builder.CreatePtrAdd(Ptr, Addend, Name, getGEPNoWrapFlags());
852 }
854 Value *Res = Builder.CreateFreeze(State.get(getOperand(0)));
855 for (VPValue *Op : drop_begin(operands()))
856 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(Op)));
857 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
858 }
860 Value *LaneToExtract = State.get(getOperand(0), true);
861 Type *IdxTy = State.TypeAnalysis.inferScalarType(getOperand(0));
862 Value *Res = nullptr;
863 Value *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
864
865 for (unsigned Idx = 1; Idx != getNumOperands(); ++Idx) {
866 Value *VectorStart =
867 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
868 Value *VectorIdx = Idx == 1
869 ? LaneToExtract
870 : Builder.CreateSub(LaneToExtract, VectorStart);
871 Value *Ext = State.VF.isScalar()
872 ? State.get(getOperand(Idx))
873 : Builder.CreateExtractElement(
874 State.get(getOperand(Idx)), VectorIdx);
875 if (Res) {
876 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
877 Res = Builder.CreateSelect(Cmp, Ext, Res);
878 } else {
879 Res = Ext;
880 }
881 }
882 return Res;
883 }
885 if (getNumOperands() == 1) {
886 Value *Mask = State.get(getOperand(0));
887 return Builder.CreateCountTrailingZeroElems(Builder.getInt64Ty(), Mask,
888 /*ZeroIsPoison=*/false, Name);
889 }
890 // If there are multiple operands, create a chain of selects to pick the
891 // first operand with an active lane and add the number of lanes of the
892 // preceding operands.
893 Value *RuntimeVF = getRuntimeVF(Builder, Builder.getInt64Ty(), State.VF);
894 unsigned LastOpIdx = getNumOperands() - 1;
895 Value *Res = nullptr;
896 for (int Idx = LastOpIdx; Idx >= 0; --Idx) {
897 Value *TrailingZeros =
898 State.VF.isScalar()
899 ? Builder.CreateZExt(
900 Builder.CreateICmpEQ(State.get(getOperand(Idx)),
901 Builder.getFalse()),
902 Builder.getInt64Ty())
904 Builder.getInt64Ty(), State.get(getOperand(Idx)),
905 /*ZeroIsPoison=*/false, Name);
906 Value *Current = Builder.CreateAdd(
907 Builder.CreateMul(RuntimeVF, Builder.getInt64(Idx)), TrailingZeros);
908 if (Res) {
909 Value *Cmp = Builder.CreateICmpNE(TrailingZeros, RuntimeVF);
910 Res = Builder.CreateSelect(Cmp, Current, Res);
911 } else {
912 Res = Current;
913 }
914 }
915
916 return Res;
917 }
919 return State.get(getOperand(0), true);
920 default:
921 llvm_unreachable("Unsupported opcode for instruction");
922 }
923}
924
926 unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const {
927 Type *ScalarTy = Ctx.Types.inferScalarType(this);
928 Type *ResultTy = VF.isVector() ? toVectorTy(ScalarTy, VF) : ScalarTy;
929 switch (Opcode) {
930 case Instruction::FNeg:
931 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
932 case Instruction::UDiv:
933 case Instruction::SDiv:
934 case Instruction::SRem:
935 case Instruction::URem:
936 case Instruction::Add:
937 case Instruction::FAdd:
938 case Instruction::Sub:
939 case Instruction::FSub:
940 case Instruction::Mul:
941 case Instruction::FMul:
942 case Instruction::FDiv:
943 case Instruction::FRem:
944 case Instruction::Shl:
945 case Instruction::LShr:
946 case Instruction::AShr:
947 case Instruction::And:
948 case Instruction::Or:
949 case Instruction::Xor: {
952
953 if (VF.isVector()) {
954 // Certain instructions can be cheaper to vectorize if they have a
955 // constant second vector operand. One example of this are shifts on x86.
956 VPValue *RHS = getOperand(1);
957 RHSInfo = Ctx.getOperandInfo(RHS);
958
959 if (RHSInfo.Kind == TargetTransformInfo::OK_AnyValue &&
962 }
963
966 if (CtxI)
967 Operands.append(CtxI->value_op_begin(), CtxI->value_op_end());
968 return Ctx.TTI.getArithmeticInstrCost(
969 Opcode, ResultTy, Ctx.CostKind,
970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
971 RHSInfo, Operands, CtxI, &Ctx.TLI);
972 }
973 case Instruction::Freeze:
974 // This opcode is unknown. Assume that it is the same as 'mul'.
975 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
976 Ctx.CostKind);
977 case Instruction::ExtractValue:
978 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
979 Ctx.CostKind);
980 case Instruction::ICmp:
981 case Instruction::FCmp: {
982 Type *ScalarOpTy = Ctx.Types.inferScalarType(getOperand(0));
983 Type *OpTy = VF.isVector() ? toVectorTy(ScalarOpTy, VF) : ScalarOpTy;
985 return Ctx.TTI.getCmpSelInstrCost(
986 Opcode, OpTy, CmpInst::makeCmpResultType(OpTy), getPredicate(),
987 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
988 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
989 }
990 }
991 llvm_unreachable("called for unsupported opcode");
992}
993
995 VPCostContext &Ctx) const {
997 if (!getUnderlyingValue() && getOpcode() != Instruction::FMul) {
998 // TODO: Compute cost for VPInstructions without underlying values once
999 // the legacy cost model has been retired.
1000 return 0;
1001 }
1002
1004 "Should only generate a vector value or single scalar, not scalars "
1005 "for all lanes.");
1007 getOpcode(),
1009 }
1010
1011 switch (getOpcode()) {
1012 case Instruction::Select: {
1014 match(getOperand(0), m_Cmp(Pred, m_VPValue(), m_VPValue()));
1015 auto *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1016 auto *VecTy = Ctx.Types.inferScalarType(getOperand(1));
1017 if (!vputils::onlyFirstLaneUsed(this)) {
1018 CondTy = toVectorTy(CondTy, VF);
1019 VecTy = toVectorTy(VecTy, VF);
1020 }
1021 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1022 Ctx.CostKind);
1023 }
1024 case Instruction::ExtractElement:
1026 if (VF.isScalar()) {
1027 // ExtractLane with VF=1 takes care of handling extracting across multiple
1028 // parts.
1029 return 0;
1030 }
1031
1032 // Add on the cost of extracting the element.
1033 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1034 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1035 Ctx.CostKind);
1036 }
1037 case VPInstruction::AnyOf: {
1038 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1039 return Ctx.TTI.getArithmeticReductionCost(
1040 Instruction::Or, cast<VectorType>(VecTy), std::nullopt, Ctx.CostKind);
1041 }
1043 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1044 if (VF.isScalar())
1045 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1047 CmpInst::ICMP_EQ, Ctx.CostKind);
1048 // Calculate the cost of determining the lane index.
1049 auto *PredTy = toVectorTy(ScalarTy, VF);
1050 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1051 Type::getInt64Ty(Ctx.LLVMCtx),
1052 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1053 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1054 }
1056 Type *ScalarTy = Ctx.Types.inferScalarType(getOperand(0));
1057 if (VF.isScalar())
1058 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1060 CmpInst::ICMP_EQ, Ctx.CostKind);
1061 // Calculate the cost of determining the lane index: NOT + cttz_elts + SUB.
1062 auto *PredTy = toVectorTy(ScalarTy, VF);
1063 IntrinsicCostAttributes Attrs(Intrinsic::experimental_cttz_elts,
1064 Type::getInt64Ty(Ctx.LLVMCtx),
1065 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1066 InstructionCost Cost = Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1067 // Add cost of NOT operation on the predicate.
1068 Cost += Ctx.TTI.getArithmeticInstrCost(
1069 Instruction::Xor, PredTy, Ctx.CostKind,
1070 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1071 {TargetTransformInfo::OK_UniformConstantValue,
1072 TargetTransformInfo::OP_None});
1073 // Add cost of SUB operation on the index.
1074 Cost += Ctx.TTI.getArithmeticInstrCost(
1075 Instruction::Sub, Type::getInt64Ty(Ctx.LLVMCtx), Ctx.CostKind);
1076 return Cost;
1077 }
1079 assert(VF.isVector() && "Scalar FirstOrderRecurrenceSplice?");
1081 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
1082 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1083
1084 return Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
1085 cast<VectorType>(VectorTy),
1086 cast<VectorType>(VectorTy), Mask,
1087 Ctx.CostKind, VF.getKnownMinValue() - 1);
1088 }
1090 Type *ArgTy = Ctx.Types.inferScalarType(getOperand(0));
1091 unsigned Multiplier =
1092 cast<ConstantInt>(getOperand(2)->getLiveInIRValue())->getZExtValue();
1093 Type *RetTy = toVectorTy(Type::getInt1Ty(Ctx.LLVMCtx), VF * Multiplier);
1094 IntrinsicCostAttributes Attrs(Intrinsic::get_active_lane_mask, RetTy,
1095 {ArgTy, ArgTy});
1096 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1097 }
1099 Type *Arg0Ty = Ctx.Types.inferScalarType(getOperand(0));
1100 Type *I32Ty = Type::getInt32Ty(Ctx.LLVMCtx);
1101 Type *I1Ty = Type::getInt1Ty(Ctx.LLVMCtx);
1102 IntrinsicCostAttributes Attrs(Intrinsic::experimental_get_vector_length,
1103 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1104 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1105 }
1107 // Add on the cost of extracting the element.
1108 auto *VecTy = toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF);
1109 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1110 VecTy, Ctx.CostKind, 0);
1111 }
1113 if (VF == ElementCount::getScalable(1))
1115 [[fallthrough]];
1116 default:
1117 // TODO: Compute cost other VPInstructions once the legacy cost model has
1118 // been retired.
1120 "unexpected VPInstruction witht underlying value");
1121 return 0;
1122 }
1123}
1124
1137
1139 switch (getOpcode()) {
1140 case Instruction::PHI:
1144 return true;
1145 default:
1146 return isScalarCast();
1147 }
1148}
1149
1151 assert(!State.Lane && "VPInstruction executing an Lane");
1152 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
1154 "Set flags not supported for the provided opcode");
1155 if (hasFastMathFlags())
1156 State.Builder.setFastMathFlags(getFastMathFlags());
1157 Value *GeneratedValue = generate(State);
1158 if (!hasResult())
1159 return;
1160 assert(GeneratedValue && "generate must produce a value");
1161 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1164 assert((((GeneratedValue->getType()->isVectorTy() ||
1165 GeneratedValue->getType()->isStructTy()) ==
1166 !GeneratesPerFirstLaneOnly) ||
1167 State.VF.isScalar()) &&
1168 "scalar value but not only first lane defined");
1169 State.set(this, GeneratedValue,
1170 /*IsScalar*/ GeneratesPerFirstLaneOnly);
1171}
1172
1175 return false;
1176 switch (getOpcode()) {
1177 case Instruction::GetElementPtr:
1178 case Instruction::ExtractElement:
1179 case Instruction::Freeze:
1180 case Instruction::FCmp:
1181 case Instruction::ICmp:
1182 case Instruction::Select:
1183 case Instruction::PHI:
1202 case VPInstruction::Not:
1210 return false;
1211 default:
1212 return true;
1213 }
1214}
1215
1217 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1219 return vputils::onlyFirstLaneUsed(this);
1220
1221 switch (getOpcode()) {
1222 default:
1223 return false;
1224 case Instruction::ExtractElement:
1225 return Op == getOperand(1);
1226 case Instruction::PHI:
1227 return true;
1228 case Instruction::FCmp:
1229 case Instruction::ICmp:
1230 case Instruction::Select:
1231 case Instruction::Or:
1232 case Instruction::Freeze:
1233 case VPInstruction::Not:
1234 // TODO: Cover additional opcodes.
1235 return vputils::onlyFirstLaneUsed(this);
1244 return true;
1247 // Before replicating by VF, Build(Struct)Vector uses all lanes of the
1248 // operand, after replicating its operands only the first lane is used.
1249 // Before replicating, it will have only a single operand.
1250 return getNumOperands() > 1;
1252 return Op == getOperand(0) || vputils::onlyFirstLaneUsed(this);
1254 // WidePtrAdd supports scalar and vector base addresses.
1255 return false;
1258 return Op == getOperand(1);
1260 return Op == getOperand(0);
1261 };
1262 llvm_unreachable("switch should return");
1263}
1264
1266 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1268 return vputils::onlyFirstPartUsed(this);
1269
1270 switch (getOpcode()) {
1271 default:
1272 return false;
1273 case Instruction::FCmp:
1274 case Instruction::ICmp:
1275 case Instruction::Select:
1276 return vputils::onlyFirstPartUsed(this);
1280 return true;
1281 };
1282 llvm_unreachable("switch should return");
1283}
1284
1285#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1287 VPSlotTracker SlotTracker(getParent()->getPlan());
1289}
1290
1292 VPSlotTracker &SlotTracker) const {
1293 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1294
1295 if (hasResult()) {
1297 O << " = ";
1298 }
1299
1300 switch (getOpcode()) {
1301 case VPInstruction::Not:
1302 O << "not";
1303 break;
1305 O << "combined load";
1306 break;
1308 O << "combined store";
1309 break;
1311 O << "active lane mask";
1312 break;
1314 O << "EXPLICIT-VECTOR-LENGTH";
1315 break;
1317 O << "first-order splice";
1318 break;
1320 O << "branch-on-cond";
1321 break;
1323 O << "TC > VF ? TC - VF : 0";
1324 break;
1326 O << "VF * Part +";
1327 break;
1329 O << "branch-on-count";
1330 break;
1332 O << "broadcast";
1333 break;
1335 O << "buildstructvector";
1336 break;
1338 O << "buildvector";
1339 break;
1341 O << "extract-lane";
1342 break;
1344 O << "extract-last-lane";
1345 break;
1347 O << "extract-last-part";
1348 break;
1350 O << "extract-penultimate-element";
1351 break;
1353 O << "compute-anyof-result";
1354 break;
1356 O << "compute-find-iv-result";
1357 break;
1359 O << "compute-reduction-result";
1360 break;
1362 O << "logical-and";
1363 break;
1365 O << "ptradd";
1366 break;
1368 O << "wide-ptradd";
1369 break;
1371 O << "any-of";
1372 break;
1374 O << "first-active-lane";
1375 break;
1377 O << "last-active-lane";
1378 break;
1380 O << "reduction-start-vector";
1381 break;
1383 O << "resume-for-epilogue";
1384 break;
1386 O << "unpack";
1387 break;
1388 default:
1390 }
1391
1392 printFlags(O);
1394}
1395#endif
1396
1398 State.setDebugLocFrom(getDebugLoc());
1399 if (isScalarCast()) {
1400 Value *Op = State.get(getOperand(0), VPLane(0));
1401 Value *Cast = State.Builder.CreateCast(Instruction::CastOps(getOpcode()),
1402 Op, ResultTy);
1403 State.set(this, Cast, VPLane(0));
1404 return;
1405 }
1406 switch (getOpcode()) {
1408 Value *StepVector =
1409 State.Builder.CreateStepVector(VectorType::get(ResultTy, State.VF));
1410 State.set(this, StepVector);
1411 break;
1412 }
1413 case VPInstruction::VScale: {
1414 Value *VScale = State.Builder.CreateVScale(ResultTy);
1415 State.set(this, VScale, true);
1416 break;
1417 }
1418
1419 default:
1420 llvm_unreachable("opcode not implemented yet");
1421 }
1422}
1423
1424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1426 VPSlotTracker &SlotTracker) const {
1427 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1429 O << " = ";
1430
1431 switch (getOpcode()) {
1433 O << "wide-iv-step ";
1435 break;
1437 O << "step-vector " << *ResultTy;
1438 break;
1440 O << "vscale " << *ResultTy;
1441 break;
1442 default:
1443 assert(Instruction::isCast(getOpcode()) && "unhandled opcode");
1446 O << " to " << *ResultTy;
1447 }
1448}
1449#endif
1450
1452 State.setDebugLocFrom(getDebugLoc());
1453 PHINode *NewPhi = State.Builder.CreatePHI(
1454 State.TypeAnalysis.inferScalarType(this), 2, getName());
1455 unsigned NumIncoming = getNumIncoming();
1456 if (getParent() != getParent()->getPlan()->getScalarPreheader()) {
1457 // TODO: Fixup all incoming values of header phis once recipes defining them
1458 // are introduced.
1459 NumIncoming = 1;
1460 }
1461 for (unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1462 Value *IncV = State.get(getIncomingValue(Idx), VPLane(0));
1463 BasicBlock *PredBB = State.CFG.VPBB2IRBB.at(getIncomingBlock(Idx));
1464 NewPhi->addIncoming(IncV, PredBB);
1465 }
1466 State.set(this, NewPhi, VPLane(0));
1467}
1468
1469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1470void VPPhi::printRecipe(raw_ostream &O, const Twine &Indent,
1471 VPSlotTracker &SlotTracker) const {
1472 O << Indent << "EMIT" << (isSingleScalar() ? "-SCALAR" : "") << " ";
1474 O << " = phi ";
1476}
1477#endif
1478
1479VPIRInstruction *VPIRInstruction ::create(Instruction &I) {
1480 if (auto *Phi = dyn_cast<PHINode>(&I))
1481 return new VPIRPhi(*Phi);
1482 return new VPIRInstruction(I);
1483}
1484
1486 assert(!isa<VPIRPhi>(this) && getNumOperands() == 0 &&
1487 "PHINodes must be handled by VPIRPhi");
1488 // Advance the insert point after the wrapped IR instruction. This allows
1489 // interleaving VPIRInstructions and other recipes.
1490 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1491}
1492
1494 VPCostContext &Ctx) const {
1495 // The recipe wraps an existing IR instruction on the border of VPlan's scope,
1496 // hence it does not contribute to the cost-modeling for the VPlan.
1497 return 0;
1498}
1499
1501 VPBuilder &Builder) {
1503 "can only update exiting operands to phi nodes");
1504 assert(getNumOperands() > 0 && "must have at least one operand");
1505 VPValue *Exiting = getOperand(0);
1506 if (Exiting->isLiveIn())
1507 return;
1508
1509 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastPart, Exiting);
1510 Exiting = Builder.createNaryOp(VPInstruction::ExtractLastLane, Exiting);
1511 setOperand(0, Exiting);
1512}
1513
1514#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1516 VPSlotTracker &SlotTracker) const {
1517 O << Indent << "IR " << I;
1518}
1519#endif
1520
1522 PHINode *Phi = &getIRPhi();
1523 for (const auto &[Idx, Op] : enumerate(operands())) {
1524 VPValue *ExitValue = Op;
1525 auto Lane = vputils::isSingleScalar(ExitValue)
1527 : VPLane::getLastLaneForVF(State.VF);
1528 VPBlockBase *Pred = getParent()->getPredecessors()[Idx];
1529 auto *PredVPBB = Pred->getExitingBasicBlock();
1530 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1531 // Set insertion point in PredBB in case an extract needs to be generated.
1532 // TODO: Model extracts explicitly.
1533 State.Builder.SetInsertPoint(PredBB, PredBB->getFirstNonPHIIt());
1534 Value *V = State.get(ExitValue, VPLane(Lane));
1535 // If there is no existing block for PredBB in the phi, add a new incoming
1536 // value. Otherwise update the existing incoming value for PredBB.
1537 if (Phi->getBasicBlockIndex(PredBB) == -1)
1538 Phi->addIncoming(V, PredBB);
1539 else
1540 Phi->setIncomingValueForBlock(PredBB, V);
1541 }
1542
1543 // Advance the insert point after the wrapped IR instruction. This allows
1544 // interleaving VPIRInstructions and other recipes.
1545 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1546}
1547
1549 VPRecipeBase *R = const_cast<VPRecipeBase *>(getAsRecipe());
1550 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1551 "Number of phi operands must match number of predecessors");
1552 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1553 R->removeOperand(Position);
1554}
1555
1556#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1558 VPSlotTracker &SlotTracker) const {
1559 interleaveComma(enumerate(getAsRecipe()->operands()), O,
1560 [this, &O, &SlotTracker](auto Op) {
1561 O << "[ ";
1562 Op.value()->printAsOperand(O, SlotTracker);
1563 O << ", ";
1564 getIncomingBlock(Op.index())->printAsOperand(O);
1565 O << " ]";
1566 });
1567}
1568#endif
1569
1570#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1572 VPSlotTracker &SlotTracker) const {
1574
1575 if (getNumOperands() != 0) {
1576 O << " (extra operand" << (getNumOperands() > 1 ? "s" : "") << ": ";
1578 [&O, &SlotTracker](auto Op) {
1579 std::get<0>(Op)->printAsOperand(O, SlotTracker);
1580 O << " from ";
1581 std::get<1>(Op)->printAsOperand(O);
1582 });
1583 O << ")";
1584 }
1585}
1586#endif
1587
1589 for (const auto &[Kind, Node] : Metadata)
1590 I.setMetadata(Kind, Node);
1591}
1592
1594 SmallVector<std::pair<unsigned, MDNode *>> MetadataIntersection;
1595 for (const auto &[KindA, MDA] : Metadata) {
1596 for (const auto &[KindB, MDB] : Other.Metadata) {
1597 if (KindA == KindB && MDA == MDB) {
1598 MetadataIntersection.emplace_back(KindA, MDA);
1599 break;
1600 }
1601 }
1602 }
1603 Metadata = std::move(MetadataIntersection);
1604}
1605
1606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1608 const Module *M = SlotTracker.getModule();
1609 if (Metadata.empty() || !M)
1610 return;
1611
1612 ArrayRef<StringRef> MDNames = SlotTracker.getMDNames();
1613 O << " (";
1614 interleaveComma(Metadata, O, [&](const auto &KindNodePair) {
1615 auto [Kind, Node] = KindNodePair;
1616 assert(Kind < MDNames.size() && !MDNames[Kind].empty() &&
1617 "Unexpected unnamed metadata kind");
1618 O << "!" << MDNames[Kind] << " ";
1619 Node->printAsOperand(O, M);
1620 });
1621 O << ")";
1622}
1623#endif
1624
1626 assert(State.VF.isVector() && "not widening");
1627 assert(Variant != nullptr && "Can't create vector function.");
1628
1629 FunctionType *VFTy = Variant->getFunctionType();
1630 // Add return type if intrinsic is overloaded on it.
1632 for (const auto &I : enumerate(args())) {
1633 Value *Arg;
1634 // Some vectorized function variants may also take a scalar argument,
1635 // e.g. linear parameters for pointers. This needs to be the scalar value
1636 // from the start of the respective part when interleaving.
1637 if (!VFTy->getParamType(I.index())->isVectorTy())
1638 Arg = State.get(I.value(), VPLane(0));
1639 else
1640 Arg = State.get(I.value(), usesFirstLaneOnly(I.value()));
1641 Args.push_back(Arg);
1642 }
1643
1646 if (CI)
1647 CI->getOperandBundlesAsDefs(OpBundles);
1648
1649 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1650 applyFlags(*V);
1651 applyMetadata(*V);
1652 V->setCallingConv(Variant->getCallingConv());
1653
1654 if (!V->getType()->isVoidTy())
1655 State.set(this, V);
1656}
1657
1659 VPCostContext &Ctx) const {
1660 return Ctx.TTI.getCallInstrCost(nullptr, Variant->getReturnType(),
1661 Variant->getFunctionType()->params(),
1662 Ctx.CostKind);
1663}
1664
1665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1667 VPSlotTracker &SlotTracker) const {
1668 O << Indent << "WIDEN-CALL ";
1669
1670 Function *CalledFn = getCalledScalarFunction();
1671 if (CalledFn->getReturnType()->isVoidTy())
1672 O << "void ";
1673 else {
1675 O << " = ";
1676 }
1677
1678 O << "call";
1679 printFlags(O);
1680 O << " @" << CalledFn->getName() << "(";
1681 interleaveComma(args(), O, [&O, &SlotTracker](VPValue *Op) {
1682 Op->printAsOperand(O, SlotTracker);
1683 });
1684 O << ")";
1685
1686 O << " (using library function";
1687 if (Variant->hasName())
1688 O << ": " << Variant->getName();
1689 O << ")";
1690}
1691#endif
1692
1694 assert(State.VF.isVector() && "not widening");
1695
1696 SmallVector<Type *, 2> TysForDecl;
1697 // Add return type if intrinsic is overloaded on it.
1698 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, -1, State.TTI))
1699 TysForDecl.push_back(VectorType::get(getResultType(), State.VF));
1701 for (const auto &I : enumerate(operands())) {
1702 // Some intrinsics have a scalar argument - don't replace it with a
1703 // vector.
1704 Value *Arg;
1705 if (isVectorIntrinsicWithScalarOpAtArg(VectorIntrinsicID, I.index(),
1706 State.TTI))
1707 Arg = State.get(I.value(), VPLane(0));
1708 else
1709 Arg = State.get(I.value(), usesFirstLaneOnly(I.value()));
1710 if (isVectorIntrinsicWithOverloadTypeAtArg(VectorIntrinsicID, I.index(),
1711 State.TTI))
1712 TysForDecl.push_back(Arg->getType());
1713 Args.push_back(Arg);
1714 }
1715
1716 // Use vector version of the intrinsic.
1717 Module *M = State.Builder.GetInsertBlock()->getModule();
1718 Function *VectorF =
1719 Intrinsic::getOrInsertDeclaration(M, VectorIntrinsicID, TysForDecl);
1720 assert(VectorF &&
1721 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1722
1725 if (CI)
1726 CI->getOperandBundlesAsDefs(OpBundles);
1727
1728 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1729
1730 applyFlags(*V);
1731 applyMetadata(*V);
1732
1733 if (!V->getType()->isVoidTy())
1734 State.set(this, V);
1735}
1736
1737/// Compute the cost for the intrinsic \p ID with \p Operands, produced by \p R.
1740 const VPRecipeWithIRFlags &R,
1741 ElementCount VF,
1742 VPCostContext &Ctx) {
1743 // Some backends analyze intrinsic arguments to determine cost. Use the
1744 // underlying value for the operand if it has one. Otherwise try to use the
1745 // operand of the underlying call instruction, if there is one. Otherwise
1746 // clear Arguments.
1747 // TODO: Rework TTI interface to be independent of concrete IR values.
1749 for (const auto &[Idx, Op] : enumerate(Operands)) {
1750 auto *V = Op->getUnderlyingValue();
1751 if (!V) {
1752 if (auto *UI = dyn_cast_or_null<CallBase>(R.getUnderlyingValue())) {
1753 Arguments.push_back(UI->getArgOperand(Idx));
1754 continue;
1755 }
1756 Arguments.clear();
1757 break;
1758 }
1759 Arguments.push_back(V);
1760 }
1761
1762 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1763 Type *RetTy = VF.isVector() ? toVectorizedTy(ScalarRetTy, VF) : ScalarRetTy;
1764 SmallVector<Type *> ParamTys;
1765 for (const VPValue *Op : Operands) {
1766 ParamTys.push_back(VF.isVector()
1767 ? toVectorTy(Ctx.Types.inferScalarType(Op), VF)
1768 : Ctx.Types.inferScalarType(Op));
1769 }
1770
1771 // TODO: Rework TTI interface to avoid reliance on underlying IntrinsicInst.
1772 FastMathFlags FMF =
1773 R.hasFastMathFlags() ? R.getFastMathFlags() : FastMathFlags();
1774 IntrinsicCostAttributes CostAttrs(
1775 ID, RetTy, Arguments, ParamTys, FMF,
1776 dyn_cast_or_null<IntrinsicInst>(R.getUnderlyingValue()),
1777 InstructionCost::getInvalid(), &Ctx.TLI);
1778 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1779}
1780
1782 VPCostContext &Ctx) const {
1784 return getCostForIntrinsics(VectorIntrinsicID, ArgOps, *this, VF, Ctx);
1785}
1786
1788 return Intrinsic::getBaseName(VectorIntrinsicID);
1789}
1790
1792 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
1793 return all_of(enumerate(operands()), [this, &Op](const auto &X) {
1794 auto [Idx, V] = X;
1796 Idx, nullptr);
1797 });
1798}
1799
1800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1802 VPSlotTracker &SlotTracker) const {
1803 O << Indent << "WIDEN-INTRINSIC ";
1804 if (ResultTy->isVoidTy()) {
1805 O << "void ";
1806 } else {
1808 O << " = ";
1809 }
1810
1811 O << "call";
1812 printFlags(O);
1813 O << getIntrinsicName() << "(";
1814
1816 Op->printAsOperand(O, SlotTracker);
1817 });
1818 O << ")";
1819}
1820#endif
1821
1823 IRBuilderBase &Builder = State.Builder;
1824
1825 Value *Address = State.get(getOperand(0));
1826 Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
1827 VectorType *VTy = cast<VectorType>(Address->getType());
1828
1829 // The histogram intrinsic requires a mask even if the recipe doesn't;
1830 // if the mask operand was omitted then all lanes should be executed and
1831 // we just need to synthesize an all-true mask.
1832 Value *Mask = nullptr;
1833 if (VPValue *VPMask = getMask())
1834 Mask = State.get(VPMask);
1835 else
1836 Mask =
1837 Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
1838
1839 // If this is a subtract, we want to invert the increment amount. We may
1840 // add a separate intrinsic in future, but for now we'll try this.
1841 if (Opcode == Instruction::Sub)
1842 IncAmt = Builder.CreateNeg(IncAmt);
1843 else
1844 assert(Opcode == Instruction::Add && "only add or sub supported for now");
1845
1846 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1847 {VTy, IncAmt->getType()},
1848 {Address, IncAmt, Mask});
1849}
1850
1852 VPCostContext &Ctx) const {
1853 // FIXME: Take the gather and scatter into account as well. For now we're
1854 // generating the same cost as the fallback path, but we'll likely
1855 // need to create a new TTI method for determining the cost, including
1856 // whether we can use base + vec-of-smaller-indices or just
1857 // vec-of-pointers.
1858 assert(VF.isVector() && "Invalid VF for histogram cost");
1859 Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
1860 VPValue *IncAmt = getOperand(1);
1861 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1862 VectorType *VTy = VectorType::get(IncTy, VF);
1863
1864 // Assume that a non-constant update value (or a constant != 1) requires
1865 // a multiply, and add that into the cost.
1866 InstructionCost MulCost =
1867 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1868 if (IncAmt->isLiveIn()) {
1870
1871 if (CI && CI->getZExtValue() == 1)
1872 MulCost = TTI::TCC_Free;
1873 }
1874
1875 // Find the cost of the histogram operation itself.
1876 Type *PtrTy = VectorType::get(AddressTy, VF);
1877 Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
1878 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
1879 Type::getVoidTy(Ctx.LLVMCtx),
1880 {PtrTy, IncTy, MaskTy});
1881
1882 // Add the costs together with the add/sub operation.
1883 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1884 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1885}
1886
1887#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1889 VPSlotTracker &SlotTracker) const {
1890 O << Indent << "WIDEN-HISTOGRAM buckets: ";
1892
1893 if (Opcode == Instruction::Sub)
1894 O << ", dec: ";
1895 else {
1896 assert(Opcode == Instruction::Add);
1897 O << ", inc: ";
1898 }
1900
1901 if (VPValue *Mask = getMask()) {
1902 O << ", mask: ";
1903 Mask->printAsOperand(O, SlotTracker);
1904 }
1905}
1906
1908 VPSlotTracker &SlotTracker) const {
1909 O << Indent << "WIDEN-SELECT ";
1911 O << " = select";
1912 printFlags(O);
1914 O << ", ";
1916 O << ", ";
1918 O << (vputils::isSingleScalar(getCond()) ? " (condition is single-scalar)"
1919 : "");
1920}
1921#endif
1922
1924 Value *Cond = State.get(getCond(), vputils::isSingleScalar(getCond()));
1925
1926 Value *Op0 = State.get(getOperand(1));
1927 Value *Op1 = State.get(getOperand(2));
1928 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
1929 State.set(this, Sel);
1930 if (auto *I = dyn_cast<Instruction>(Sel)) {
1932 applyFlags(*I);
1933 applyMetadata(*I);
1934 }
1935}
1936
1938 VPCostContext &Ctx) const {
1940 bool ScalarCond = getOperand(0)->isDefinedOutsideLoopRegions();
1941 Type *ScalarTy = Ctx.Types.inferScalarType(this);
1942 Type *VectorTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
1943
1944 VPValue *Op0, *Op1;
1945 if (!ScalarCond && ScalarTy->getScalarSizeInBits() == 1 &&
1946 (match(this, m_LogicalAnd(m_VPValue(Op0), m_VPValue(Op1))) ||
1947 match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1))))) {
1948 // select x, y, false --> x & y
1949 // select x, true, y --> x | y
1950 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1951 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1952
1954 if (all_of(operands(),
1955 [](VPValue *Op) { return Op->getUnderlyingValue(); }))
1956 Operands.append(SI->op_begin(), SI->op_end());
1957 bool IsLogicalOr = match(this, m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1958 return Ctx.TTI.getArithmeticInstrCost(
1959 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1960 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1961 }
1962
1963 Type *CondTy = Ctx.Types.inferScalarType(getOperand(0));
1964 if (!ScalarCond)
1965 CondTy = VectorType::get(CondTy, VF);
1966
1968 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1969 Pred = Cmp->getPredicate();
1970 return Ctx.TTI.getCmpSelInstrCost(
1971 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1972 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1973}
1974
1975VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(const FastMathFlags &FMF) {
1976 AllowReassoc = FMF.allowReassoc();
1977 NoNaNs = FMF.noNaNs();
1978 NoInfs = FMF.noInfs();
1979 NoSignedZeros = FMF.noSignedZeros();
1980 AllowReciprocal = FMF.allowReciprocal();
1981 AllowContract = FMF.allowContract();
1982 ApproxFunc = FMF.approxFunc();
1983}
1984
1985#if !defined(NDEBUG)
1986bool VPIRFlags::flagsValidForOpcode(unsigned Opcode) const {
1987 switch (OpType) {
1988 case OperationType::OverflowingBinOp:
1989 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1990 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1991 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1992 case OperationType::Trunc:
1993 return Opcode == Instruction::Trunc;
1994 case OperationType::DisjointOp:
1995 return Opcode == Instruction::Or;
1996 case OperationType::PossiblyExactOp:
1997 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
1998 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
1999 case OperationType::GEPOp:
2000 return Opcode == Instruction::GetElementPtr ||
2001 Opcode == VPInstruction::PtrAdd ||
2002 Opcode == VPInstruction::WidePtrAdd;
2003 case OperationType::FPMathOp:
2004 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2005 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2006 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2007 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2008 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2009 Opcode == VPInstruction::WideIVStep ||
2012 case OperationType::FCmp:
2013 return Opcode == Instruction::FCmp;
2014 case OperationType::NonNegOp:
2015 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2016 case OperationType::Cmp:
2017 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2018 case OperationType::Other:
2019 return true;
2020 }
2021 llvm_unreachable("Unknown OperationType enum");
2022}
2023#endif
2024
2025#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2027 switch (OpType) {
2028 case OperationType::Cmp:
2030 break;
2031 case OperationType::FCmp:
2034 break;
2035 case OperationType::DisjointOp:
2036 if (DisjointFlags.IsDisjoint)
2037 O << " disjoint";
2038 break;
2039 case OperationType::PossiblyExactOp:
2040 if (ExactFlags.IsExact)
2041 O << " exact";
2042 break;
2043 case OperationType::OverflowingBinOp:
2044 if (WrapFlags.HasNUW)
2045 O << " nuw";
2046 if (WrapFlags.HasNSW)
2047 O << " nsw";
2048 break;
2049 case OperationType::Trunc:
2050 if (TruncFlags.HasNUW)
2051 O << " nuw";
2052 if (TruncFlags.HasNSW)
2053 O << " nsw";
2054 break;
2055 case OperationType::FPMathOp:
2057 break;
2058 case OperationType::GEPOp:
2059 if (GEPFlags.isInBounds())
2060 O << " inbounds";
2061 else if (GEPFlags.hasNoUnsignedSignedWrap())
2062 O << " nusw";
2063 if (GEPFlags.hasNoUnsignedWrap())
2064 O << " nuw";
2065 break;
2066 case OperationType::NonNegOp:
2067 if (NonNegFlags.NonNeg)
2068 O << " nneg";
2069 break;
2070 case OperationType::Other:
2071 break;
2072 }
2073 O << " ";
2074}
2075#endif
2076
2078 auto &Builder = State.Builder;
2079 switch (Opcode) {
2080 case Instruction::Call:
2081 case Instruction::Br:
2082 case Instruction::PHI:
2083 case Instruction::GetElementPtr:
2084 case Instruction::Select:
2085 llvm_unreachable("This instruction is handled by a different recipe.");
2086 case Instruction::UDiv:
2087 case Instruction::SDiv:
2088 case Instruction::SRem:
2089 case Instruction::URem:
2090 case Instruction::Add:
2091 case Instruction::FAdd:
2092 case Instruction::Sub:
2093 case Instruction::FSub:
2094 case Instruction::FNeg:
2095 case Instruction::Mul:
2096 case Instruction::FMul:
2097 case Instruction::FDiv:
2098 case Instruction::FRem:
2099 case Instruction::Shl:
2100 case Instruction::LShr:
2101 case Instruction::AShr:
2102 case Instruction::And:
2103 case Instruction::Or:
2104 case Instruction::Xor: {
2105 // Just widen unops and binops.
2107 for (VPValue *VPOp : operands())
2108 Ops.push_back(State.get(VPOp));
2109
2110 Value *V = Builder.CreateNAryOp(Opcode, Ops);
2111
2112 if (auto *VecOp = dyn_cast<Instruction>(V)) {
2113 applyFlags(*VecOp);
2114 applyMetadata(*VecOp);
2115 }
2116
2117 // Use this vector value for all users of the original instruction.
2118 State.set(this, V);
2119 break;
2120 }
2121 case Instruction::ExtractValue: {
2122 assert(getNumOperands() == 2 && "expected single level extractvalue");
2123 Value *Op = State.get(getOperand(0));
2125 Value *Extract = Builder.CreateExtractValue(Op, CI->getZExtValue());
2126 State.set(this, Extract);
2127 break;
2128 }
2129 case Instruction::Freeze: {
2130 Value *Op = State.get(getOperand(0));
2131 Value *Freeze = Builder.CreateFreeze(Op);
2132 State.set(this, Freeze);
2133 break;
2134 }
2135 case Instruction::ICmp:
2136 case Instruction::FCmp: {
2137 // Widen compares. Generate vector compares.
2138 bool FCmp = Opcode == Instruction::FCmp;
2139 Value *A = State.get(getOperand(0));
2140 Value *B = State.get(getOperand(1));
2141 Value *C = nullptr;
2142 if (FCmp) {
2143 C = Builder.CreateFCmp(getPredicate(), A, B);
2144 } else {
2145 C = Builder.CreateICmp(getPredicate(), A, B);
2146 }
2147 if (auto *I = dyn_cast<Instruction>(C)) {
2148 applyFlags(*I);
2149 applyMetadata(*I);
2150 }
2151 State.set(this, C);
2152 break;
2153 }
2154 default:
2155 // This instruction is not vectorized by simple widening.
2156 LLVM_DEBUG(dbgs() << "LV: Found an unhandled opcode : "
2157 << Instruction::getOpcodeName(Opcode));
2158 llvm_unreachable("Unhandled instruction!");
2159 } // end of switch.
2160
2161#if !defined(NDEBUG)
2162 // Verify that VPlan type inference results agree with the type of the
2163 // generated values.
2164 assert(VectorType::get(State.TypeAnalysis.inferScalarType(this), State.VF) ==
2165 State.get(this)->getType() &&
2166 "inferred type and type from generated instructions do not match");
2167#endif
2168}
2169
2171 VPCostContext &Ctx) const {
2172 switch (Opcode) {
2173 case Instruction::UDiv:
2174 case Instruction::SDiv:
2175 case Instruction::SRem:
2176 case Instruction::URem:
2177 // If the div/rem operation isn't safe to speculate and requires
2178 // predication, then the only way we can even create a vplan is to insert
2179 // a select on the second input operand to ensure we use the value of 1
2180 // for the inactive lanes. The select will be costed separately.
2181 case Instruction::FNeg:
2182 case Instruction::Add:
2183 case Instruction::FAdd:
2184 case Instruction::Sub:
2185 case Instruction::FSub:
2186 case Instruction::Mul:
2187 case Instruction::FMul:
2188 case Instruction::FDiv:
2189 case Instruction::FRem:
2190 case Instruction::Shl:
2191 case Instruction::LShr:
2192 case Instruction::AShr:
2193 case Instruction::And:
2194 case Instruction::Or:
2195 case Instruction::Xor:
2196 case Instruction::Freeze:
2197 case Instruction::ExtractValue:
2198 case Instruction::ICmp:
2199 case Instruction::FCmp:
2200 return getCostForRecipeWithOpcode(getOpcode(), VF, Ctx);
2201 default:
2202 llvm_unreachable("Unsupported opcode for instruction");
2203 }
2204}
2205
2206#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2208 VPSlotTracker &SlotTracker) const {
2209 O << Indent << "WIDEN ";
2211 O << " = " << Instruction::getOpcodeName(Opcode);
2212 printFlags(O);
2214}
2215#endif
2216
2218 auto &Builder = State.Builder;
2219 /// Vectorize casts.
2220 assert(State.VF.isVector() && "Not vectorizing?");
2221 Type *DestTy = VectorType::get(getResultType(), State.VF);
2222 VPValue *Op = getOperand(0);
2223 Value *A = State.get(Op);
2224 Value *Cast = Builder.CreateCast(Instruction::CastOps(Opcode), A, DestTy);
2225 State.set(this, Cast);
2226 if (auto *CastOp = dyn_cast<Instruction>(Cast)) {
2227 applyFlags(*CastOp);
2228 applyMetadata(*CastOp);
2229 }
2230}
2231
2233 VPCostContext &Ctx) const {
2234 // TODO: In some cases, VPWidenCastRecipes are created but not considered in
2235 // the legacy cost model, including truncates/extends when evaluating a
2236 // reduction in a smaller type.
2237 if (!getUnderlyingValue())
2238 return 0;
2239 // Computes the CastContextHint from a recipes that may access memory.
2240 auto ComputeCCH = [&](const VPRecipeBase *R) -> TTI::CastContextHint {
2241 if (VF.isScalar())
2243 if (isa<VPInterleaveBase>(R))
2245 if (const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
2246 return ReplicateRecipe->isPredicated() ? TTI::CastContextHint::Masked
2248 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
2249 if (WidenMemoryRecipe == nullptr)
2251 if (!WidenMemoryRecipe->isConsecutive())
2253 if (WidenMemoryRecipe->isReverse())
2255 if (WidenMemoryRecipe->isMasked())
2258 };
2259
2260 VPValue *Operand = getOperand(0);
2262 // For Trunc/FPTrunc, get the context from the only user.
2263 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2265 if (auto *StoreRecipe = dyn_cast<VPRecipeBase>(*user_begin()))
2266 CCH = ComputeCCH(StoreRecipe);
2267 }
2268 // For Z/Sext, get the context from the operand.
2269 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2270 Opcode == Instruction::FPExt) {
2271 if (Operand->isLiveIn())
2273 else if (Operand->getDefiningRecipe())
2274 CCH = ComputeCCH(Operand->getDefiningRecipe());
2275 }
2276
2277 auto *SrcTy =
2278 cast<VectorType>(toVectorTy(Ctx.Types.inferScalarType(Operand), VF));
2279 auto *DestTy = cast<VectorType>(toVectorTy(getResultType(), VF));
2280 // Arm TTI will use the underlying instruction to determine the cost.
2281 return Ctx.TTI.getCastInstrCost(
2282 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2284}
2285
2286#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2288 VPSlotTracker &SlotTracker) const {
2289 O << Indent << "WIDEN-CAST ";
2291 O << " = " << Instruction::getOpcodeName(Opcode);
2292 printFlags(O);
2294 O << " to " << *getResultType();
2295}
2296#endif
2297
2299 VPCostContext &Ctx) const {
2300 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2301}
2302
2303/// A helper function that returns an integer or floating-point constant with
2304/// value C.
2306 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
2307 : ConstantFP::get(Ty, C);
2308}
2309
2310#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2312 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
2313 O << Indent;
2315 O << " = WIDEN-INDUCTION";
2316 printFlags(O);
2317 O << " ";
2319
2320 if (auto *TI = getTruncInst())
2321 O << " (truncated to " << *TI->getType() << ")";
2322}
2323#endif
2324
2326 // The step may be defined by a recipe in the preheader (e.g. if it requires
2327 // SCEV expansion), but for the canonical induction the step is required to be
2328 // 1, which is represented as live-in.
2330 return false;
2333 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2334 getScalarType() == getRegion()->getCanonicalIVType();
2335}
2336
2337#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2339 VPSlotTracker &SlotTracker) const {
2340 O << Indent;
2342 O << " = DERIVED-IV ";
2343 getStartValue()->printAsOperand(O, SlotTracker);
2344 O << " + ";
2345 getOperand(1)->printAsOperand(O, SlotTracker);
2346 O << " * ";
2347 getStepValue()->printAsOperand(O, SlotTracker);
2348}
2349#endif
2350
2352 // Fast-math-flags propagate from the original induction instruction.
2353 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
2354 if (hasFastMathFlags())
2355 State.Builder.setFastMathFlags(getFastMathFlags());
2356
2357 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2358 /// variable on which to base the steps, \p Step is the size of the step.
2359
2360 Value *BaseIV = State.get(getOperand(0), VPLane(0));
2361 Value *Step = State.get(getStepValue(), VPLane(0));
2362 IRBuilderBase &Builder = State.Builder;
2363
2364 // Ensure step has the same type as that of scalar IV.
2365 Type *BaseIVTy = BaseIV->getType()->getScalarType();
2366 assert(BaseIVTy == Step->getType() && "Types of BaseIV and Step must match!");
2367
2368 // We build scalar steps for both integer and floating-point induction
2369 // variables. Here, we determine the kind of arithmetic we will perform.
2372 if (BaseIVTy->isIntegerTy()) {
2373 AddOp = Instruction::Add;
2374 MulOp = Instruction::Mul;
2375 } else {
2376 AddOp = InductionOpcode;
2377 MulOp = Instruction::FMul;
2378 }
2379
2380 // Determine the number of scalars we need to generate for each unroll
2381 // iteration.
2382 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(this);
2383 // Compute the scalar steps and save the results in State.
2384 Type *IntStepTy =
2385 IntegerType::get(BaseIVTy->getContext(), BaseIVTy->getScalarSizeInBits());
2386
2387 unsigned StartLane = 0;
2388 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2389 if (State.Lane) {
2390 StartLane = State.Lane->getKnownLane();
2391 EndLane = StartLane + 1;
2392 }
2393 Value *StartIdx0;
2394 if (getUnrollPart(*this) == 0)
2395 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2396 else {
2397 StartIdx0 = State.get(getOperand(2), true);
2398 if (getUnrollPart(*this) != 1) {
2399 StartIdx0 =
2400 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->getType(),
2401 getUnrollPart(*this)));
2402 }
2403 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2404 }
2405
2406 if (BaseIVTy->isFloatingPointTy())
2407 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2408
2409 for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2410 Value *StartIdx = Builder.CreateBinOp(
2411 AddOp, StartIdx0, getSignedIntOrFpConstant(BaseIVTy, Lane));
2412 // The step returned by `createStepForVF` is a runtime-evaluated value
2413 // when VF is scalable. Otherwise, it should be folded into a Constant.
2414 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2415 "Expected StartIdx to be folded to a constant when VF is not "
2416 "scalable");
2417 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2418 auto *Add = Builder.CreateBinOp(AddOp, BaseIV, Mul);
2419 State.set(this, Add, VPLane(Lane));
2420 }
2421}
2422
2423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2425 VPSlotTracker &SlotTracker) const {
2426 O << Indent;
2428 O << " = SCALAR-STEPS ";
2430}
2431#endif
2432
2434 assert(is_contained(operands(), Op) && "Op must be an operand of the recipe");
2436}
2437
2439 assert(State.VF.isVector() && "not widening");
2440 // Construct a vector GEP by widening the operands of the scalar GEP as
2441 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
2442 // results in a vector of pointers when at least one operand of the GEP
2443 // is vector-typed. Thus, to keep the representation compact, we only use
2444 // vector-typed operands for loop-varying values.
2445
2446 assert(
2447 any_of(operands(),
2448 [](VPValue *Op) { return !Op->isDefinedOutsideLoopRegions(); }) &&
2449 "Expected at least one loop-variant operand");
2450
2451 // If the GEP has at least one loop-varying operand, we are sure to
2452 // produce a vector of pointers unless VF is scalar.
2453 // The pointer operand of the new GEP. If it's loop-invariant, we
2454 // won't broadcast it.
2455 auto *Ptr = State.get(getOperand(0), isPointerLoopInvariant());
2456
2457 // Collect all the indices for the new GEP. If any index is
2458 // loop-invariant, we won't broadcast it.
2460 for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
2461 VPValue *Operand = getOperand(I);
2462 Indices.push_back(State.get(Operand, isIndexLoopInvariant(I - 1)));
2463 }
2464
2465 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
2466 // but it should be a vector, otherwise.
2467 auto *NewGEP = State.Builder.CreateGEP(getSourceElementType(), Ptr, Indices,
2468 "", getGEPNoWrapFlags());
2469 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2470 "NewGEP is not a pointer vector");
2471 State.set(this, NewGEP);
2472}
2473
2474#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2476 VPSlotTracker &SlotTracker) const {
2477 O << Indent << "WIDEN-GEP ";
2478 O << (isPointerLoopInvariant() ? "Inv" : "Var");
2479 for (size_t I = 0; I < getNumOperands() - 1; ++I)
2480 O << "[" << (isIndexLoopInvariant(I) ? "Inv" : "Var") << "]";
2481
2482 O << " ";
2484 O << " = getelementptr";
2485 printFlags(O);
2487}
2488#endif
2489
2491 auto &Builder = State.Builder;
2492 unsigned CurrentPart = getUnrollPart(*this);
2493 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2494 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2495
2496 // The wide store needs to start at the last vector element.
2497 Value *RunTimeVF = State.get(getVFValue(), VPLane(0));
2498 if (IndexTy != RunTimeVF->getType())
2499 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2500 // NumElt = Stride * CurrentPart * RunTimeVF
2501 Value *NumElt = Builder.CreateMul(
2502 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2503 // LastLane = Stride * (RunTimeVF - 1)
2504 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2505 if (Stride != 1)
2506 LastLane =
2507 Builder.CreateMul(ConstantInt::getSigned(IndexTy, Stride), LastLane);
2508 Value *Ptr = State.get(getOperand(0), VPLane(0));
2509 Value *ResultPtr =
2510 Builder.CreateGEP(IndexedTy, Ptr, NumElt, "", getGEPNoWrapFlags());
2511 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane, "",
2513
2514 State.set(this, ResultPtr, /*IsScalar*/ true);
2515}
2516
2517#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2519 VPSlotTracker &SlotTracker) const {
2520 O << Indent;
2522 O << " = vector-end-pointer";
2523 printFlags(O);
2525}
2526#endif
2527
2529 auto &Builder = State.Builder;
2530 unsigned CurrentPart = getUnrollPart(*this);
2531 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2532 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(this));
2533 Value *Ptr = State.get(getOperand(0), VPLane(0));
2534
2535 Value *Increment = createStepForVF(Builder, IndexTy, State.VF, CurrentPart);
2536 Value *ResultPtr = Builder.CreateGEP(getSourceElementType(), Ptr, Increment,
2537 "", getGEPNoWrapFlags());
2538
2539 State.set(this, ResultPtr, /*IsScalar*/ true);
2540}
2541
2542#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2544 VPSlotTracker &SlotTracker) const {
2545 O << Indent;
2547 O << " = vector-pointer";
2548 printFlags(O);
2550}
2551#endif
2552
2554 VPCostContext &Ctx) const {
2555 Type *ResultTy = toVectorTy(Ctx.Types.inferScalarType(this), VF);
2556 Type *CmpTy = toVectorTy(Type::getInt1Ty(Ctx.Types.getContext()), VF);
2557 return (getNumIncomingValues() - 1) *
2558 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2559 CmpInst::BAD_ICMP_PREDICATE, Ctx.CostKind);
2560}
2561
2562#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2564 VPSlotTracker &SlotTracker) const {
2565 O << Indent << "BLEND ";
2567 O << " =";
2568 if (getNumIncomingValues() == 1) {
2569 // Not a User of any mask: not really blending, this is a
2570 // single-predecessor phi.
2571 O << " ";
2572 getIncomingValue(0)->printAsOperand(O, SlotTracker);
2573 } else {
2574 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
2575 O << " ";
2576 getIncomingValue(I)->printAsOperand(O, SlotTracker);
2577 if (I == 0)
2578 continue;
2579 O << "/";
2580 getMask(I)->printAsOperand(O, SlotTracker);
2581 }
2582 }
2583}
2584#endif
2585
2587 assert(!State.Lane && "Reduction being replicated.");
2590 "In-loop AnyOf reductions aren't currently supported");
2591 // Propagate the fast-math flags carried by the underlying instruction.
2592 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
2593 State.Builder.setFastMathFlags(getFastMathFlags());
2594 Value *NewVecOp = State.get(getVecOp());
2595 if (VPValue *Cond = getCondOp()) {
2596 Value *NewCond = State.get(Cond, State.VF.isScalar());
2597 VectorType *VecTy = dyn_cast<VectorType>(NewVecOp->getType());
2598 Type *ElementTy = VecTy ? VecTy->getElementType() : NewVecOp->getType();
2599
2600 Value *Start = getRecurrenceIdentity(Kind, ElementTy, getFastMathFlags());
2601 if (State.VF.isVector())
2602 Start = State.Builder.CreateVectorSplat(VecTy->getElementCount(), Start);
2603
2604 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2605 NewVecOp = Select;
2606 }
2607 Value *NewRed;
2608 Value *NextInChain;
2609 if (isOrdered()) {
2610 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2611 if (State.VF.isVector())
2612 NewRed =
2613 createOrderedReduction(State.Builder, Kind, NewVecOp, PrevInChain);
2614 else
2615 NewRed = State.Builder.CreateBinOp(
2617 PrevInChain, NewVecOp);
2618 PrevInChain = NewRed;
2619 NextInChain = NewRed;
2620 } else if (isPartialReduction()) {
2621 assert(Kind == RecurKind::Add && "Unexpected partial reduction kind");
2622 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ false);
2623 NewRed = State.Builder.CreateIntrinsic(
2624 PrevInChain->getType(), Intrinsic::vector_partial_reduce_add,
2625 {PrevInChain, NewVecOp}, nullptr, "partial.reduce");
2626 PrevInChain = NewRed;
2627 NextInChain = NewRed;
2628 } else {
2629 assert(isInLoop() &&
2630 "The reduction must either be ordered, partial or in-loop");
2631 Value *PrevInChain = State.get(getChainOp(), /*IsScalar*/ true);
2632 NewRed = createSimpleReduction(State.Builder, NewVecOp, Kind);
2634 NextInChain = createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2635 else
2636 NextInChain = State.Builder.CreateBinOp(
2638 PrevInChain, NewRed);
2639 }
2640 State.set(this, NextInChain, /*IsScalar*/ !isPartialReduction());
2641}
2642
2644 assert(!State.Lane && "Reduction being replicated.");
2645
2646 auto &Builder = State.Builder;
2647 // Propagate the fast-math flags carried by the underlying instruction.
2648 IRBuilderBase::FastMathFlagGuard FMFGuard(Builder);
2649 Builder.setFastMathFlags(getFastMathFlags());
2650
2652 Value *Prev = State.get(getChainOp(), /*IsScalar*/ true);
2653 Value *VecOp = State.get(getVecOp());
2654 Value *EVL = State.get(getEVL(), VPLane(0));
2655
2656 Value *Mask;
2657 if (VPValue *CondOp = getCondOp())
2658 Mask = State.get(CondOp);
2659 else
2660 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2661
2662 Value *NewRed;
2663 if (isOrdered()) {
2664 NewRed = createOrderedReduction(Builder, Kind, VecOp, Prev, Mask, EVL);
2665 } else {
2666 NewRed = createSimpleReduction(Builder, VecOp, Kind, Mask, EVL);
2668 NewRed = createMinMaxOp(Builder, Kind, NewRed, Prev);
2669 else
2670 NewRed = Builder.CreateBinOp(
2672 Prev);
2673 }
2674 State.set(this, NewRed, /*IsScalar*/ true);
2675}
2676
2678 VPCostContext &Ctx) const {
2679 RecurKind RdxKind = getRecurrenceKind();
2680 Type *ElementTy = Ctx.Types.inferScalarType(this);
2681 auto *VectorTy = cast<VectorType>(toVectorTy(ElementTy, VF));
2682 unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
2684 std::optional<FastMathFlags> OptionalFMF =
2685 ElementTy->isFloatingPointTy() ? std::make_optional(FMFs) : std::nullopt;
2686
2687 if (isPartialReduction()) {
2688 InstructionCost CondCost = 0;
2689 if (isConditional()) {
2691 auto *CondTy = cast<VectorType>(
2692 toVectorTy(Ctx.Types.inferScalarType(getCondOp()), VF));
2693 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2694 CondTy, Pred, Ctx.CostKind);
2695 }
2696 return CondCost + Ctx.TTI.getPartialReductionCost(
2697 Opcode, ElementTy, ElementTy, ElementTy, VF,
2699 TargetTransformInfo::PR_None, std::nullopt,
2700 Ctx.CostKind);
2701 }
2702
2703 // TODO: Support any-of reductions.
2704 assert(
2706 ForceTargetInstructionCost.getNumOccurrences() > 0) &&
2707 "Any-of reduction not implemented in VPlan-based cost model currently.");
2708
2709 // Note that TTI should model the cost of moving result to the scalar register
2710 // and the BinOp cost in the getMinMaxReductionCost().
2713 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy, FMFs, Ctx.CostKind);
2714 }
2715
2716 // Note that TTI should model the cost of moving result to the scalar register
2717 // and the BinOp cost in the getArithmeticReductionCost().
2718 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2719 Ctx.CostKind);
2720}
2721
2723 ExpressionTypes ExpressionType,
2724 ArrayRef<VPSingleDefRecipe *> ExpressionRecipes)
2725 : VPSingleDefRecipe(VPDef::VPExpressionSC, {}, {}),
2726 ExpressionRecipes(ExpressionRecipes), ExpressionType(ExpressionType) {
2727 assert(!ExpressionRecipes.empty() && "Nothing to combine?");
2728 assert(
2729 none_of(ExpressionRecipes,
2730 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2731 "expression cannot contain recipes with side-effects");
2732
2733 // Maintain a copy of the expression recipes as a set of users.
2734 SmallPtrSet<VPUser *, 4> ExpressionRecipesAsSetOfUsers;
2735 for (auto *R : ExpressionRecipes)
2736 ExpressionRecipesAsSetOfUsers.insert(R);
2737
2738 // Recipes in the expression, except the last one, must only be used by
2739 // (other) recipes inside the expression. If there are other users, external
2740 // to the expression, use a clone of the recipe for external users.
2741 for (VPSingleDefRecipe *R : reverse(ExpressionRecipes)) {
2742 if (R != ExpressionRecipes.back() &&
2743 any_of(R->users(), [&ExpressionRecipesAsSetOfUsers](VPUser *U) {
2744 return !ExpressionRecipesAsSetOfUsers.contains(U);
2745 })) {
2746 // There are users outside of the expression. Clone the recipe and use the
2747 // clone those external users.
2748 VPSingleDefRecipe *CopyForExtUsers = R->clone();
2749 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2750 VPUser &U, unsigned) {
2751 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2752 });
2753 CopyForExtUsers->insertBefore(R);
2754 }
2755 if (R->getParent())
2756 R->removeFromParent();
2757 }
2758
2759 // Internalize all external operands to the expression recipes. To do so,
2760 // create new temporary VPValues for all operands defined by a recipe outside
2761 // the expression. The original operands are added as operands of the
2762 // VPExpressionRecipe itself.
2763 for (auto *R : ExpressionRecipes) {
2764 for (const auto &[Idx, Op] : enumerate(R->operands())) {
2765 auto *Def = Op->getDefiningRecipe();
2766 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2767 continue;
2768 addOperand(Op);
2769 LiveInPlaceholders.push_back(new VPValue());
2770 }
2771 }
2772
2773 // Replace each external operand with the first one created for it in
2774 // LiveInPlaceholders.
2775 for (auto *R : ExpressionRecipes)
2776 for (auto const &[LiveIn, Tmp] : zip(operands(), LiveInPlaceholders))
2777 R->replaceUsesOfWith(LiveIn, Tmp);
2778}
2779
2781 for (auto *R : ExpressionRecipes)
2782 // Since the list could contain duplicates, make sure the recipe hasn't
2783 // already been inserted.
2784 if (!R->getParent())
2785 R->insertBefore(this);
2786
2787 for (const auto &[Idx, Op] : enumerate(operands()))
2788 LiveInPlaceholders[Idx]->replaceAllUsesWith(Op);
2789
2790 replaceAllUsesWith(ExpressionRecipes.back());
2791 ExpressionRecipes.clear();
2792}
2793
2795 VPCostContext &Ctx) const {
2796 Type *RedTy = Ctx.Types.inferScalarType(this);
2797 auto *SrcVecTy = cast<VectorType>(
2798 toVectorTy(Ctx.Types.inferScalarType(getOperand(0)), VF));
2799 assert(RedTy->isIntegerTy() &&
2800 "VPExpressionRecipe only supports integer types currently.");
2801 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2802 cast<VPReductionRecipe>(ExpressionRecipes.back())->getRecurrenceKind());
2803 switch (ExpressionType) {
2804 case ExpressionTypes::ExtendedReduction: {
2805 unsigned Opcode = RecurrenceDescriptor::getOpcode(
2806 cast<VPReductionRecipe>(ExpressionRecipes[1])->getRecurrenceKind());
2807 auto *ExtR = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2808
2809 return cast<VPReductionRecipe>(ExpressionRecipes.back())
2810 ->isPartialReduction()
2811 ? Ctx.TTI.getPartialReductionCost(
2812 Opcode, Ctx.Types.inferScalarType(getOperand(0)), nullptr,
2813 RedTy, VF,
2815 ExtR->getOpcode()),
2816 TargetTransformInfo::PR_None, std::nullopt, Ctx.CostKind)
2817 : Ctx.TTI.getExtendedReductionCost(
2818 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2819 SrcVecTy, std::nullopt, Ctx.CostKind);
2820 }
2821 case ExpressionTypes::MulAccReduction:
2822 return Ctx.TTI.getMulAccReductionCost(false, Opcode, RedTy, SrcVecTy,
2823 Ctx.CostKind);
2824
2825 case ExpressionTypes::ExtNegatedMulAccReduction:
2826 assert(Opcode == Instruction::Add && "Unexpected opcode");
2827 Opcode = Instruction::Sub;
2828 [[fallthrough]];
2829 case ExpressionTypes::ExtMulAccReduction: {
2830 auto *RedR = cast<VPReductionRecipe>(ExpressionRecipes.back());
2831 if (RedR->isPartialReduction()) {
2832 auto *Ext0R = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2833 auto *Ext1R = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2834 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2835 return Ctx.TTI.getPartialReductionCost(
2836 Opcode, Ctx.Types.inferScalarType(getOperand(0)),
2837 Ctx.Types.inferScalarType(getOperand(1)), RedTy, VF,
2839 Ext0R->getOpcode()),
2841 Ext1R->getOpcode()),
2842 Mul->getOpcode(), Ctx.CostKind);
2843 }
2844 return Ctx.TTI.getMulAccReductionCost(
2845 cast<VPWidenCastRecipe>(ExpressionRecipes.front())->getOpcode() ==
2846 Instruction::ZExt,
2847 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2848 }
2849 }
2850 llvm_unreachable("Unknown VPExpressionRecipe::ExpressionTypes enum");
2851}
2852
2854 return any_of(ExpressionRecipes, [](VPSingleDefRecipe *R) {
2855 return R->mayReadFromMemory() || R->mayWriteToMemory();
2856 });
2857}
2858
2860 assert(
2861 none_of(ExpressionRecipes,
2862 [](VPSingleDefRecipe *R) { return R->mayHaveSideEffects(); }) &&
2863 "expression cannot contain recipes with side-effects");
2864 return false;
2865}
2866
2868 // Cannot use vputils::isSingleScalar(), because all external operands
2869 // of the expression will be live-ins while bundled.
2870 auto *RR = dyn_cast<VPReductionRecipe>(ExpressionRecipes.back());
2871 return RR && !RR->isPartialReduction();
2872}
2873
2874#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2875
2877 VPSlotTracker &SlotTracker) const {
2878 O << Indent << "EXPRESSION ";
2880 O << " = ";
2881 auto *Red = cast<VPReductionRecipe>(ExpressionRecipes.back());
2882 unsigned Opcode = RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind());
2883
2884 switch (ExpressionType) {
2885 case ExpressionTypes::ExtendedReduction: {
2887 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2888 O << Instruction::getOpcodeName(Opcode) << " (";
2890 Red->printFlags(O);
2891
2892 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2893 O << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2894 << *Ext0->getResultType();
2895 if (Red->isConditional()) {
2896 O << ", ";
2897 Red->getCondOp()->printAsOperand(O, SlotTracker);
2898 }
2899 O << ")";
2900 break;
2901 }
2902 case ExpressionTypes::ExtNegatedMulAccReduction: {
2904 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2906 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2907 << " (sub (0, mul";
2908 auto *Mul = cast<VPWidenRecipe>(ExpressionRecipes[2]);
2909 Mul->printFlags(O);
2910 O << "(";
2912 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2913 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2914 << *Ext0->getResultType() << "), (";
2916 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2917 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2918 << *Ext1->getResultType() << ")";
2919 if (Red->isConditional()) {
2920 O << ", ";
2921 Red->getCondOp()->printAsOperand(O, SlotTracker);
2922 }
2923 O << "))";
2924 break;
2925 }
2926 case ExpressionTypes::MulAccReduction:
2927 case ExpressionTypes::ExtMulAccReduction: {
2929 O << " + " << (Red->isPartialReduction() ? "partial." : "") << "reduce.";
2931 RecurrenceDescriptor::getOpcode(Red->getRecurrenceKind()))
2932 << " (";
2933 O << "mul";
2934 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2935 auto *Mul = cast<VPWidenRecipe>(IsExtended ? ExpressionRecipes[2]
2936 : ExpressionRecipes[0]);
2937 Mul->printFlags(O);
2938 if (IsExtended)
2939 O << "(";
2941 if (IsExtended) {
2942 auto *Ext0 = cast<VPWidenCastRecipe>(ExpressionRecipes[0]);
2943 O << " " << Instruction::getOpcodeName(Ext0->getOpcode()) << " to "
2944 << *Ext0->getResultType() << "), (";
2945 } else {
2946 O << ", ";
2947 }
2949 if (IsExtended) {
2950 auto *Ext1 = cast<VPWidenCastRecipe>(ExpressionRecipes[1]);
2951 O << " " << Instruction::getOpcodeName(Ext1->getOpcode()) << " to "
2952 << *Ext1->getResultType() << ")";
2953 }
2954 if (Red->isConditional()) {
2955 O << ", ";
2956 Red->getCondOp()->printAsOperand(O, SlotTracker);
2957 }
2958 O << ")";
2959 break;
2960 }
2961 }
2962}
2963
2965 VPSlotTracker &SlotTracker) const {
2966 if (isPartialReduction())
2967 O << Indent << "PARTIAL-REDUCE ";
2968 else
2969 O << Indent << "REDUCE ";
2971 O << " = ";
2973 O << " +";
2974 printFlags(O);
2975 O << " reduce."
2978 << " (";
2980 if (isConditional()) {
2981 O << ", ";
2983 }
2984 O << ")";
2985}
2986
2988 VPSlotTracker &SlotTracker) const {
2989 O << Indent << "REDUCE ";
2991 O << " = ";
2993 O << " +";
2994 printFlags(O);
2995 O << " vp.reduce."
2998 << " (";
3000 O << ", ";
3002 if (isConditional()) {
3003 O << ", ";
3005 }
3006 O << ")";
3007}
3008
3009#endif
3010
3011/// A helper function to scalarize a single Instruction in the innermost loop.
3012/// Generates a sequence of scalar instances for lane \p Lane. Uses the VPValue
3013/// operands from \p RepRecipe instead of \p Instr's operands.
3014static void scalarizeInstruction(const Instruction *Instr,
3015 VPReplicateRecipe *RepRecipe,
3016 const VPLane &Lane, VPTransformState &State) {
3017 assert((!Instr->getType()->isAggregateType() ||
3018 canVectorizeTy(Instr->getType())) &&
3019 "Expected vectorizable or non-aggregate type.");
3020
3021 // Does this instruction return a value ?
3022 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3023
3024 Instruction *Cloned = Instr->clone();
3025 if (!IsVoidRetTy) {
3026 Cloned->setName(Instr->getName() + ".cloned");
3027 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3028 // The operands of the replicate recipe may have been narrowed, resulting in
3029 // a narrower result type. Update the type of the cloned instruction to the
3030 // correct type.
3031 if (ResultTy != Cloned->getType())
3032 Cloned->mutateType(ResultTy);
3033 }
3034
3035 RepRecipe->applyFlags(*Cloned);
3036 RepRecipe->applyMetadata(*Cloned);
3037
3038 if (RepRecipe->hasPredicate())
3039 cast<CmpInst>(Cloned)->setPredicate(RepRecipe->getPredicate());
3040
3041 if (auto DL = RepRecipe->getDebugLoc())
3042 State.setDebugLocFrom(DL);
3043
3044 // Replace the operands of the cloned instructions with their scalar
3045 // equivalents in the new loop.
3046 for (const auto &I : enumerate(RepRecipe->operands())) {
3047 auto InputLane = Lane;
3048 VPValue *Operand = I.value();
3049 if (vputils::isSingleScalar(Operand))
3050 InputLane = VPLane::getFirstLane();
3051 Cloned->setOperand(I.index(), State.get(Operand, InputLane));
3052 }
3053
3054 // Place the cloned scalar in the new loop.
3055 State.Builder.Insert(Cloned);
3056
3057 State.set(RepRecipe, Cloned, Lane);
3058
3059 // If we just cloned a new assumption, add it the assumption cache.
3060 if (auto *II = dyn_cast<AssumeInst>(Cloned))
3061 State.AC->registerAssumption(II);
3062
3063 assert(
3064 (RepRecipe->getRegion() ||
3065 !RepRecipe->getParent()->getPlan()->getVectorLoopRegion() ||
3066 all_of(RepRecipe->operands(),
3067 [](VPValue *Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3068 "Expected a recipe is either within a region or all of its operands "
3069 "are defined outside the vectorized region.");
3070}
3071
3074
3075 if (!State.Lane) {
3076 assert(IsSingleScalar && "VPReplicateRecipes outside replicate regions "
3077 "must have already been unrolled");
3078 scalarizeInstruction(UI, this, VPLane(0), State);
3079 return;
3080 }
3081
3082 assert((State.VF.isScalar() || !isSingleScalar()) &&
3083 "uniform recipe shouldn't be predicated");
3084 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
3085 scalarizeInstruction(UI, this, *State.Lane, State);
3086 // Insert scalar instance packing it into a vector.
3087 if (State.VF.isVector() && shouldPack()) {
3088 Value *WideValue =
3089 State.Lane->isFirstLane()
3090 ? PoisonValue::get(toVectorizedTy(UI->getType(), State.VF))
3091 : State.get(this);
3092 State.set(this, State.packScalarIntoVectorizedValue(this, WideValue,
3093 *State.Lane));
3094 }
3095}
3096
3098 // Find if the recipe is used by a widened recipe via an intervening
3099 // VPPredInstPHIRecipe. In this case, also pack the scalar values in a vector.
3100 return any_of(users(), [](const VPUser *U) {
3101 if (auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
3102 return !vputils::onlyScalarValuesUsed(PredR);
3103 return false;
3104 });
3105}
3106
3107/// Returns a SCEV expression for \p Ptr if it is a pointer computation for
3108/// which the legacy cost model computes a SCEV expression when computing the
3109/// address cost. Computing SCEVs for VPValues is incomplete and returns
3110/// SCEVCouldNotCompute in cases the legacy cost model can compute SCEVs. In
3111/// those cases we fall back to the legacy cost model. Otherwise return nullptr.
3112static const SCEV *getAddressAccessSCEV(const VPValue *Ptr, ScalarEvolution &SE,
3113 const Loop *L) {
3114 auto *PtrR = Ptr->getDefiningRecipe();
3115 if (!PtrR || !((isa<VPReplicateRecipe>(Ptr) &&
3117 Instruction::GetElementPtr) ||
3118 isa<VPWidenGEPRecipe>(Ptr) ||
3120 return nullptr;
3121
3122 // We are looking for a GEP where all indices are either loop invariant or
3123 // inductions.
3124 for (VPValue *Opd : drop_begin(PtrR->operands())) {
3125 if (!Opd->isDefinedOutsideLoopRegions() &&
3127 return nullptr;
3128 }
3129
3130 return vputils::getSCEVExprForVPValue(Ptr, SE, L);
3131}
3132
3133/// Returns true if \p V is used as part of the address of another load or
3134/// store.
3135static bool isUsedByLoadStoreAddress(const VPUser *V) {
3137 SmallVector<const VPUser *> WorkList = {V};
3138
3139 while (!WorkList.empty()) {
3140 auto *Cur = dyn_cast<VPSingleDefRecipe>(WorkList.pop_back_val());
3141 if (!Cur || !Seen.insert(Cur).second)
3142 continue;
3143
3144 auto *Blend = dyn_cast<VPBlendRecipe>(Cur);
3145 // Skip blends that use V only through a compare by checking if any incoming
3146 // value was already visited.
3147 if (Blend && none_of(seq<unsigned>(0, Blend->getNumIncomingValues()),
3148 [&](unsigned I) {
3149 return Seen.contains(
3150 Blend->getIncomingValue(I)->getDefiningRecipe());
3151 }))
3152 continue;
3153
3154 for (VPUser *U : Cur->users()) {
3155 if (auto *InterleaveR = dyn_cast<VPInterleaveBase>(U))
3156 if (InterleaveR->getAddr() == Cur)
3157 return true;
3158 if (auto *RepR = dyn_cast<VPReplicateRecipe>(U)) {
3159 if (RepR->getOpcode() == Instruction::Load &&
3160 RepR->getOperand(0) == Cur)
3161 return true;
3162 if (RepR->getOpcode() == Instruction::Store &&
3163 RepR->getOperand(1) == Cur)
3164 return true;
3165 }
3166 if (auto *MemR = dyn_cast<VPWidenMemoryRecipe>(U)) {
3167 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3168 return true;
3169 }
3170 }
3171
3172 // The legacy cost model only supports scalarization loads/stores with phi
3173 // addresses, if the phi is directly used as load/store address. Don't
3174 // traverse further for Blends.
3175 if (Blend)
3176 continue;
3177
3178 append_range(WorkList, Cur->users());
3179 }
3180 return false;
3181}
3182
3184 VPCostContext &Ctx) const {
3186 // VPReplicateRecipe may be cloned as part of an existing VPlan-to-VPlan
3187 // transform, avoid computing their cost multiple times for now.
3188 Ctx.SkipCostComputation.insert(UI);
3189
3190 if (VF.isScalable() && !isSingleScalar())
3192
3193 switch (UI->getOpcode()) {
3194 case Instruction::GetElementPtr:
3195 // We mark this instruction as zero-cost because the cost of GEPs in
3196 // vectorized code depends on whether the corresponding memory instruction
3197 // is scalarized or not. Therefore, we handle GEPs with the memory
3198 // instruction cost.
3199 return 0;
3200 case Instruction::Call: {
3201 auto *CalledFn =
3203
3206 for (const VPValue *ArgOp : ArgOps)
3207 Tys.push_back(Ctx.Types.inferScalarType(ArgOp));
3208
3209 if (CalledFn->isIntrinsic())
3210 // Various pseudo-intrinsics with costs of 0 are scalarized instead of
3211 // vectorized via VPWidenIntrinsicRecipe. Return 0 for them early.
3212 switch (CalledFn->getIntrinsicID()) {
3213 case Intrinsic::assume:
3214 case Intrinsic::lifetime_end:
3215 case Intrinsic::lifetime_start:
3216 case Intrinsic::sideeffect:
3217 case Intrinsic::pseudoprobe:
3218 case Intrinsic::experimental_noalias_scope_decl: {
3219 assert(getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3220 ElementCount::getFixed(1), Ctx) == 0 &&
3221 "scalarizing intrinsic should be free");
3222 return InstructionCost(0);
3223 }
3224 default:
3225 break;
3226 }
3227
3228 Type *ResultTy = Ctx.Types.inferScalarType(this);
3229 InstructionCost ScalarCallCost =
3230 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3231 if (isSingleScalar()) {
3232 if (CalledFn->isIntrinsic())
3233 ScalarCallCost = std::min(
3234 ScalarCallCost,
3235 getCostForIntrinsics(CalledFn->getIntrinsicID(), ArgOps, *this,
3236 ElementCount::getFixed(1), Ctx));
3237 return ScalarCallCost;
3238 }
3239
3240 return ScalarCallCost * VF.getFixedValue() +
3241 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3242 }
3243 case Instruction::Add:
3244 case Instruction::Sub:
3245 case Instruction::FAdd:
3246 case Instruction::FSub:
3247 case Instruction::Mul:
3248 case Instruction::FMul:
3249 case Instruction::FDiv:
3250 case Instruction::FRem:
3251 case Instruction::Shl:
3252 case Instruction::LShr:
3253 case Instruction::AShr:
3254 case Instruction::And:
3255 case Instruction::Or:
3256 case Instruction::Xor:
3257 case Instruction::ICmp:
3258 case Instruction::FCmp:
3260 Ctx) *
3261 (isSingleScalar() ? 1 : VF.getFixedValue());
3262 case Instruction::SDiv:
3263 case Instruction::UDiv:
3264 case Instruction::SRem:
3265 case Instruction::URem: {
3266 InstructionCost ScalarCost =
3268 if (isSingleScalar())
3269 return ScalarCost;
3270
3271 ScalarCost = ScalarCost * VF.getFixedValue() +
3272 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(this),
3273 to_vector(operands()), VF);
3274 // If the recipe is not predicated (i.e. not in a replicate region), return
3275 // the scalar cost. Otherwise handle predicated cost.
3276 if (!getRegion()->isReplicator())
3277 return ScalarCost;
3278
3279 // Account for the phi nodes that we will create.
3280 ScalarCost += VF.getFixedValue() *
3281 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3282 // Scale the cost by the probability of executing the predicated blocks.
3283 // This assumes the predicated block for each vector lane is equally
3284 // likely.
3285 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->getParent());
3286 return ScalarCost;
3287 }
3288 case Instruction::Load:
3289 case Instruction::Store: {
3290 // TODO: See getMemInstScalarizationCost for how to handle replicating and
3291 // predicated cases.
3292 const VPRegionBlock *ParentRegion = getRegion();
3293 if (ParentRegion && ParentRegion->isReplicator())
3294 break;
3295
3296 bool IsLoad = UI->getOpcode() == Instruction::Load;
3297 const VPValue *PtrOp = getOperand(!IsLoad);
3298 const SCEV *PtrSCEV = getAddressAccessSCEV(PtrOp, Ctx.SE, Ctx.L);
3300 break;
3301
3302 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ? this : getOperand(0));
3303 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3304 const Align Alignment = getLoadStoreAlignment(UI);
3305 unsigned AS = cast<PointerType>(ScalarPtrTy)->getAddressSpace();
3307 InstructionCost ScalarMemOpCost = Ctx.TTI.getMemoryOpCost(
3308 UI->getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3309
3310 Type *PtrTy = isSingleScalar() ? ScalarPtrTy : toVectorTy(ScalarPtrTy, VF);
3311 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3312 bool UsedByLoadStoreAddress =
3313 !PreferVectorizedAddressing && isUsedByLoadStoreAddress(this);
3314 InstructionCost ScalarCost =
3315 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3316 PtrTy, UsedByLoadStoreAddress ? nullptr : &Ctx.SE,
3317 PtrSCEV, Ctx.CostKind);
3318 if (isSingleScalar())
3319 return ScalarCost;
3320
3321 SmallVector<const VPValue *> OpsToScalarize;
3322 Type *ResultTy = Type::getVoidTy(PtrTy->getContext());
3323 // Set ResultTy and OpsToScalarize, if scalarization is needed. Currently we
3324 // don't assign scalarization overhead in general, if the target prefers
3325 // vectorized addressing or the loaded value is used as part of an address
3326 // of another load or store.
3327 if (!UsedByLoadStoreAddress) {
3328 bool EfficientVectorLoadStore =
3329 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3330 if (!(IsLoad && !PreferVectorizedAddressing) &&
3331 !(!IsLoad && EfficientVectorLoadStore))
3332 append_range(OpsToScalarize, operands());
3333
3334 if (!EfficientVectorLoadStore)
3335 ResultTy = Ctx.Types.inferScalarType(this);
3336 }
3337
3338 return (ScalarCost * VF.getFixedValue()) +
3339 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF, true);
3340 }
3341 }
3342
3343 return Ctx.getLegacyCost(UI, VF);
3344}
3345
3346#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3348 VPSlotTracker &SlotTracker) const {
3349 O << Indent << (IsSingleScalar ? "CLONE " : "REPLICATE ");
3350
3351 if (!getUnderlyingInstr()->getType()->isVoidTy()) {
3353 O << " = ";
3354 }
3355 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) {
3356 O << "call";
3357 printFlags(O);
3358 O << "@" << CB->getCalledFunction()->getName() << "(";
3360 O, [&O, &SlotTracker](VPValue *Op) {
3361 Op->printAsOperand(O, SlotTracker);
3362 });
3363 O << ")";
3364 } else {
3366 printFlags(O);
3368 }
3369
3370 if (shouldPack())
3371 O << " (S->V)";
3372}
3373#endif
3374
3376 assert(State.Lane && "Branch on Mask works only on single instance.");
3377
3378 VPValue *BlockInMask = getOperand(0);
3379 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3380
3381 // Replace the temporary unreachable terminator with a new conditional branch,
3382 // whose two destinations will be set later when they are created.
3383 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3384 assert(isa<UnreachableInst>(CurrentTerminator) &&
3385 "Expected to replace unreachable terminator with conditional branch.");
3386 auto CondBr =
3387 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB, nullptr);
3388 CondBr->setSuccessor(0, nullptr);
3389 CurrentTerminator->eraseFromParent();
3390}
3391
3393 VPCostContext &Ctx) const {
3394 // The legacy cost model doesn't assign costs to branches for individual
3395 // replicate regions. Match the current behavior in the VPlan cost model for
3396 // now.
3397 return 0;
3398}
3399
3401 assert(State.Lane && "Predicated instruction PHI works per instance.");
3402 Instruction *ScalarPredInst =
3403 cast<Instruction>(State.get(getOperand(0), *State.Lane));
3404 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
3405 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
3406 assert(PredicatingBB && "Predicated block has no single predecessor.");
3408 "operand must be VPReplicateRecipe");
3409
3410 // By current pack/unpack logic we need to generate only a single phi node: if
3411 // a vector value for the predicated instruction exists at this point it means
3412 // the instruction has vector users only, and a phi for the vector value is
3413 // needed. In this case the recipe of the predicated instruction is marked to
3414 // also do that packing, thereby "hoisting" the insert-element sequence.
3415 // Otherwise, a phi node for the scalar value is needed.
3416 if (State.hasVectorValue(getOperand(0))) {
3417 auto *VecI = cast<Instruction>(State.get(getOperand(0)));
3419 "Packed operands must generate an insertelement or insertvalue");
3420
3421 // If VectorI is a struct, it will be a sequence like:
3422 // %1 = insertvalue %unmodified, %x, 0
3423 // %2 = insertvalue %1, %y, 1
3424 // %VectorI = insertvalue %2, %z, 2
3425 // To get the unmodified vector we need to look through the chain.
3426 if (auto *StructTy = dyn_cast<StructType>(VecI->getType()))
3427 for (unsigned I = 0; I < StructTy->getNumContainedTypes() - 1; I++)
3428 VecI = cast<InsertValueInst>(VecI->getOperand(0));
3429
3430 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3431 VPhi->addIncoming(VecI->getOperand(0), PredicatingBB); // Unmodified vector.
3432 VPhi->addIncoming(VecI, PredicatedBB); // New vector with inserted element.
3433 if (State.hasVectorValue(this))
3434 State.reset(this, VPhi);
3435 else
3436 State.set(this, VPhi);
3437 // NOTE: Currently we need to update the value of the operand, so the next
3438 // predicated iteration inserts its generated value in the correct vector.
3439 State.reset(getOperand(0), VPhi);
3440 } else {
3441 if (vputils::onlyFirstLaneUsed(this) && !State.Lane->isFirstLane())
3442 return;
3443
3444 Type *PredInstType = State.TypeAnalysis.inferScalarType(getOperand(0));
3445 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3446 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
3447 PredicatingBB);
3448 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3449 if (State.hasScalarValue(this, *State.Lane))
3450 State.reset(this, Phi, *State.Lane);
3451 else
3452 State.set(this, Phi, *State.Lane);
3453 // NOTE: Currently we need to update the value of the operand, so the next
3454 // predicated iteration inserts its generated value in the correct vector.
3455 State.reset(getOperand(0), Phi, *State.Lane);
3456 }
3457}
3458
3459#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3461 VPSlotTracker &SlotTracker) const {
3462 O << Indent << "PHI-PREDICATED-INSTRUCTION ";
3464 O << " = ";
3466}
3467#endif
3468
3470 VPCostContext &Ctx) const {
3472 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3473 ->getAddressSpace();
3474 unsigned Opcode = isa<VPWidenLoadRecipe, VPWidenLoadEVLRecipe>(this)
3475 ? Instruction::Load
3476 : Instruction::Store;
3477
3478 if (!Consecutive) {
3479 // TODO: Using the original IR may not be accurate.
3480 // Currently, ARM will use the underlying IR to calculate gather/scatter
3481 // instruction cost.
3482 assert(!Reverse &&
3483 "Inconsecutive memory access should not have the order.");
3484
3486 Type *PtrTy = Ptr->getType();
3487
3488 // If the address value is uniform across all lanes, then the address can be
3489 // calculated with scalar type and broadcast.
3491 PtrTy = toVectorTy(PtrTy, VF);
3492
3493 unsigned IID = isa<VPWidenLoadRecipe>(this) ? Intrinsic::masked_gather
3494 : isa<VPWidenStoreRecipe>(this) ? Intrinsic::masked_scatter
3495 : isa<VPWidenLoadEVLRecipe>(this) ? Intrinsic::vp_gather
3496 : Intrinsic::vp_scatter;
3497 return Ctx.TTI.getAddressComputationCost(PtrTy, nullptr, nullptr,
3498 Ctx.CostKind) +
3499 Ctx.TTI.getMemIntrinsicInstrCost(
3501 &Ingredient),
3502 Ctx.CostKind);
3503 }
3504
3506 if (IsMasked) {
3507 unsigned IID = isa<VPWidenLoadRecipe>(this) ? Intrinsic::masked_load
3508 : Intrinsic::masked_store;
3509 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3510 MemIntrinsicCostAttributes(IID, Ty, Alignment, AS), Ctx.CostKind);
3511 } else {
3512 TTI::OperandValueInfo OpInfo = Ctx.getOperandInfo(
3514 : getOperand(1));
3515 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty, Alignment, AS, Ctx.CostKind,
3516 OpInfo, &Ingredient);
3517 }
3518 if (!Reverse)
3519 return Cost;
3520
3521 return Cost += Ctx.TTI.getShuffleCost(
3523 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3524}
3525
3527 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3528 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3529 bool CreateGather = !isConsecutive();
3530
3531 auto &Builder = State.Builder;
3532 Value *Mask = nullptr;
3533 if (auto *VPMask = getMask()) {
3534 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3535 // of a null all-one mask is a null mask.
3536 Mask = State.get(VPMask);
3537 if (isReverse())
3538 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3539 }
3540
3541 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateGather);
3542 Value *NewLI;
3543 if (CreateGather) {
3544 NewLI = Builder.CreateMaskedGather(DataTy, Addr, Alignment, Mask, nullptr,
3545 "wide.masked.gather");
3546 } else if (Mask) {
3547 NewLI =
3548 Builder.CreateMaskedLoad(DataTy, Addr, Alignment, Mask,
3549 PoisonValue::get(DataTy), "wide.masked.load");
3550 } else {
3551 NewLI = Builder.CreateAlignedLoad(DataTy, Addr, Alignment, "wide.load");
3552 }
3554 if (Reverse)
3555 NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
3556 State.set(this, NewLI);
3557}
3558
3559#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3561 VPSlotTracker &SlotTracker) const {
3562 O << Indent << "WIDEN ";
3564 O << " = load ";
3566}
3567#endif
3568
3569/// Use all-true mask for reverse rather than actual mask, as it avoids a
3570/// dependence w/o affecting the result.
3572 Value *EVL, const Twine &Name) {
3573 VectorType *ValTy = cast<VectorType>(Operand->getType());
3574 Value *AllTrueMask =
3575 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3576 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3577 {Operand, AllTrueMask, EVL}, nullptr, Name);
3578}
3579
3581 Type *ScalarDataTy = getLoadStoreType(&Ingredient);
3582 auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
3583 bool CreateGather = !isConsecutive();
3584
3585 auto &Builder = State.Builder;
3586 CallInst *NewLI;
3587 Value *EVL = State.get(getEVL(), VPLane(0));
3588 Value *Addr = State.get(getAddr(), !CreateGather);
3589 Value *Mask = nullptr;
3590 if (VPValue *VPMask = getMask()) {
3591 Mask = State.get(VPMask);
3592 if (isReverse())
3593 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3594 } else {
3595 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3596 }
3597
3598 if (CreateGather) {
3599 NewLI =
3600 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3601 nullptr, "wide.masked.gather");
3602 } else {
3603 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3604 {Addr, Mask, EVL}, nullptr, "vp.op.load");
3605 }
3606 NewLI->addParamAttr(
3608 applyMetadata(*NewLI);
3609 Instruction *Res = NewLI;
3610 if (isReverse())
3611 Res = createReverseEVL(Builder, Res, EVL, "vp.reverse");
3612 State.set(this, Res);
3613}
3614
3616 VPCostContext &Ctx) const {
3617 if (!Consecutive || IsMasked)
3618 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3619
3620 // We need to use the getMemIntrinsicInstrCost() instead of getMemoryOpCost()
3621 // here because the EVL recipes using EVL to replace the tail mask. But in the
3622 // legacy model, it will always calculate the cost of mask.
3623 // TODO: Using getMemoryOpCost() instead of getMemIntrinsicInstrCost when we
3624 // don't need to compare to the legacy cost model.
3626 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3627 ->getAddressSpace();
3628 InstructionCost Cost = Ctx.TTI.getMemIntrinsicInstrCost(
3629 MemIntrinsicCostAttributes(Intrinsic::vp_load, Ty, Alignment, AS),
3630 Ctx.CostKind);
3631 if (!Reverse)
3632 return Cost;
3633
3634 return Cost + Ctx.TTI.getShuffleCost(
3636 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3637}
3638
3639#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3641 VPSlotTracker &SlotTracker) const {
3642 O << Indent << "WIDEN ";
3644 O << " = vp.load ";
3646}
3647#endif
3648
3650 VPValue *StoredVPValue = getStoredValue();
3651 bool CreateScatter = !isConsecutive();
3652
3653 auto &Builder = State.Builder;
3654
3655 Value *Mask = nullptr;
3656 if (auto *VPMask = getMask()) {
3657 // Mask reversal is only needed for non-all-one (null) masks, as reverse
3658 // of a null all-one mask is a null mask.
3659 Mask = State.get(VPMask);
3660 if (isReverse())
3661 Mask = Builder.CreateVectorReverse(Mask, "reverse");
3662 }
3663
3664 Value *StoredVal = State.get(StoredVPValue);
3665 if (isReverse()) {
3666 // If we store to reverse consecutive memory locations, then we need
3667 // to reverse the order of elements in the stored value.
3668 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
3669 // We don't want to update the value in the map as it might be used in
3670 // another expression. So don't call resetVectorValue(StoredVal).
3671 }
3672 Value *Addr = State.get(getAddr(), /*IsScalar*/ !CreateScatter);
3673 Instruction *NewSI = nullptr;
3674 if (CreateScatter)
3675 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr, Alignment, Mask);
3676 else if (Mask)
3677 NewSI = Builder.CreateMaskedStore(StoredVal, Addr, Alignment, Mask);
3678 else
3679 NewSI = Builder.CreateAlignedStore(StoredVal, Addr, Alignment);
3680 applyMetadata(*NewSI);
3681}
3682
3683#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3685 VPSlotTracker &SlotTracker) const {
3686 O << Indent << "WIDEN store ";
3688}
3689#endif
3690
3692 VPValue *StoredValue = getStoredValue();
3693 bool CreateScatter = !isConsecutive();
3694
3695 auto &Builder = State.Builder;
3696
3697 CallInst *NewSI = nullptr;
3698 Value *StoredVal = State.get(StoredValue);
3699 Value *EVL = State.get(getEVL(), VPLane(0));
3700 if (isReverse())
3701 StoredVal = createReverseEVL(Builder, StoredVal, EVL, "vp.reverse");
3702 Value *Mask = nullptr;
3703 if (VPValue *VPMask = getMask()) {
3704 Mask = State.get(VPMask);
3705 if (isReverse())
3706 Mask = createReverseEVL(Builder, Mask, EVL, "vp.reverse.mask");
3707 } else {
3708 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3709 }
3710 Value *Addr = State.get(getAddr(), !CreateScatter);
3711 if (CreateScatter) {
3712 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3713 Intrinsic::vp_scatter,
3714 {StoredVal, Addr, Mask, EVL});
3715 } else {
3716 NewSI = Builder.CreateIntrinsic(Type::getVoidTy(EVL->getContext()),
3717 Intrinsic::vp_store,
3718 {StoredVal, Addr, Mask, EVL});
3719 }
3720 NewSI->addParamAttr(
3722 applyMetadata(*NewSI);
3723}
3724
3726 VPCostContext &Ctx) const {
3727 if (!Consecutive || IsMasked)
3728 return VPWidenMemoryRecipe::computeCost(VF, Ctx);
3729
3730 // We need to use the getMemIntrinsicInstrCost() instead of getMemoryOpCost()
3731 // here because the EVL recipes using EVL to replace the tail mask. But in the
3732 // legacy model, it will always calculate the cost of mask.
3733 // TODO: Using getMemoryOpCost() instead of getMemIntrinsicInstrCost when we
3734 // don't need to compare to the legacy cost model.
3736 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
3737 ->getAddressSpace();
3738 InstructionCost Cost = Ctx.TTI.getMemIntrinsicInstrCost(
3739 MemIntrinsicCostAttributes(Intrinsic::vp_store, Ty, Alignment, AS),
3740 Ctx.CostKind);
3741 if (!Reverse)
3742 return Cost;
3743
3744 return Cost + Ctx.TTI.getShuffleCost(
3746 cast<VectorType>(Ty), {}, Ctx.CostKind, 0);
3747}
3748
3749#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3751 VPSlotTracker &SlotTracker) const {
3752 O << Indent << "WIDEN vp.store ";
3754}
3755#endif
3756
3758 VectorType *DstVTy, const DataLayout &DL) {
3759 // Verify that V is a vector type with same number of elements as DstVTy.
3760 auto VF = DstVTy->getElementCount();
3761 auto *SrcVecTy = cast<VectorType>(V->getType());
3762 assert(VF == SrcVecTy->getElementCount() && "Vector dimensions do not match");
3763 Type *SrcElemTy = SrcVecTy->getElementType();
3764 Type *DstElemTy = DstVTy->getElementType();
3765 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3766 "Vector elements must have same size");
3767
3768 // Do a direct cast if element types are castable.
3769 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3770 return Builder.CreateBitOrPointerCast(V, DstVTy);
3771 }
3772 // V cannot be directly casted to desired vector type.
3773 // May happen when V is a floating point vector but DstVTy is a vector of
3774 // pointers or vice-versa. Handle this using a two-step bitcast using an
3775 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3776 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3777 "Only one type should be a pointer type");
3778 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3779 "Only one type should be a floating point type");
3780 Type *IntTy =
3781 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3782 auto *VecIntTy = VectorType::get(IntTy, VF);
3783 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3784 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3785}
3786
3787/// Return a vector containing interleaved elements from multiple
3788/// smaller input vectors.
3790 const Twine &Name) {
3791 unsigned Factor = Vals.size();
3792 assert(Factor > 1 && "Tried to interleave invalid number of vectors");
3793
3794 VectorType *VecTy = cast<VectorType>(Vals[0]->getType());
3795#ifndef NDEBUG
3796 for (Value *Val : Vals)
3797 assert(Val->getType() == VecTy && "Tried to interleave mismatched types");
3798#endif
3799
3800 // Scalable vectors cannot use arbitrary shufflevectors (only splats), so
3801 // must use intrinsics to interleave.
3802 if (VecTy->isScalableTy()) {
3803 assert(Factor <= 8 && "Unsupported interleave factor for scalable vectors");
3804 return Builder.CreateVectorInterleave(Vals, Name);
3805 }
3806
3807 // Fixed length. Start by concatenating all vectors into a wide vector.
3808 Value *WideVec = concatenateVectors(Builder, Vals);
3809
3810 // Interleave the elements into the wide vector.
3811 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3812 return Builder.CreateShuffleVector(
3813 WideVec, createInterleaveMask(NumElts, Factor), Name);
3814}
3815
3816// Try to vectorize the interleave group that \p Instr belongs to.
3817//
3818// E.g. Translate following interleaved load group (factor = 3):
3819// for (i = 0; i < N; i+=3) {
3820// R = Pic[i]; // Member of index 0
3821// G = Pic[i+1]; // Member of index 1
3822// B = Pic[i+2]; // Member of index 2
3823// ... // do something to R, G, B
3824// }
3825// To:
3826// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
3827// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
3828// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
3829// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
3830//
3831// Or translate following interleaved store group (factor = 3):
3832// for (i = 0; i < N; i+=3) {
3833// ... do something to R, G, B
3834// Pic[i] = R; // Member of index 0
3835// Pic[i+1] = G; // Member of index 1
3836// Pic[i+2] = B; // Member of index 2
3837// }
3838// To:
3839// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
3840// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
3841// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
3842// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
3843// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
3845 assert(!State.Lane && "Interleave group being replicated.");
3846 assert((!needsMaskForGaps() || !State.VF.isScalable()) &&
3847 "Masking gaps for scalable vectors is not yet supported.");
3849 Instruction *Instr = Group->getInsertPos();
3850
3851 // Prepare for the vector type of the interleaved load/store.
3852 Type *ScalarTy = getLoadStoreType(Instr);
3853 unsigned InterleaveFactor = Group->getFactor();
3854 auto *VecTy = VectorType::get(ScalarTy, State.VF * InterleaveFactor);
3855
3856 VPValue *BlockInMask = getMask();
3857 VPValue *Addr = getAddr();
3858 Value *ResAddr = State.get(Addr, VPLane(0));
3859
3860 auto CreateGroupMask = [&BlockInMask, &State,
3861 &InterleaveFactor](Value *MaskForGaps) -> Value * {
3862 if (State.VF.isScalable()) {
3863 assert(!MaskForGaps && "Interleaved groups with gaps are not supported.");
3864 assert(InterleaveFactor <= 8 &&
3865 "Unsupported deinterleave factor for scalable vectors");
3866 auto *ResBlockInMask = State.get(BlockInMask);
3867 SmallVector<Value *> Ops(InterleaveFactor, ResBlockInMask);
3868 return interleaveVectors(State.Builder, Ops, "interleaved.mask");
3869 }
3870
3871 if (!BlockInMask)
3872 return MaskForGaps;
3873
3874 Value *ResBlockInMask = State.get(BlockInMask);
3875 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3876 ResBlockInMask,
3877 createReplicatedMask(InterleaveFactor, State.VF.getFixedValue()),
3878 "interleaved.mask");
3879 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3880 ShuffledMask, MaskForGaps)
3881 : ShuffledMask;
3882 };
3883
3884 const DataLayout &DL = Instr->getDataLayout();
3885 // Vectorize the interleaved load group.
3886 if (isa<LoadInst>(Instr)) {
3887 Value *MaskForGaps = nullptr;
3888 if (needsMaskForGaps()) {
3889 MaskForGaps =
3890 createBitMaskForGaps(State.Builder, State.VF.getFixedValue(), *Group);
3891 assert(MaskForGaps && "Mask for Gaps is required but it is null");
3892 }
3893
3894 Instruction *NewLoad;
3895 if (BlockInMask || MaskForGaps) {
3896 Value *GroupMask = CreateGroupMask(MaskForGaps);
3897 Value *PoisonVec = PoisonValue::get(VecTy);
3898 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3899 Group->getAlign(), GroupMask,
3900 PoisonVec, "wide.masked.vec");
3901 } else
3902 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3903 Group->getAlign(), "wide.vec");
3904 applyMetadata(*NewLoad);
3905 // TODO: Also manage existing metadata using VPIRMetadata.
3906 Group->addMetadata(NewLoad);
3907
3909 if (VecTy->isScalableTy()) {
3910 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
3911 // so must use intrinsics to deinterleave.
3912 assert(InterleaveFactor <= 8 &&
3913 "Unsupported deinterleave factor for scalable vectors");
3914 NewLoad = State.Builder.CreateIntrinsic(
3915 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
3916 NewLoad->getType(), NewLoad,
3917 /*FMFSource=*/nullptr, "strided.vec");
3918 }
3919
3920 auto CreateStridedVector = [&InterleaveFactor, &State,
3921 &NewLoad](unsigned Index) -> Value * {
3922 assert(Index < InterleaveFactor && "Illegal group index");
3923 if (State.VF.isScalable())
3924 return State.Builder.CreateExtractValue(NewLoad, Index);
3925
3926 // For fixed length VF, use shuffle to extract the sub-vectors from the
3927 // wide load.
3928 auto StrideMask =
3929 createStrideMask(Index, InterleaveFactor, State.VF.getFixedValue());
3930 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3931 "strided.vec");
3932 };
3933
3934 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
3935 Instruction *Member = Group->getMember(I);
3936
3937 // Skip the gaps in the group.
3938 if (!Member)
3939 continue;
3940
3941 Value *StridedVec = CreateStridedVector(I);
3942
3943 // If this member has different type, cast the result type.
3944 if (Member->getType() != ScalarTy) {
3945 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
3946 StridedVec =
3947 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
3948 }
3949
3950 if (Group->isReverse())
3951 StridedVec = State.Builder.CreateVectorReverse(StridedVec, "reverse");
3952
3953 State.set(VPDefs[J], StridedVec);
3954 ++J;
3955 }
3956 return;
3957 }
3958
3959 // The sub vector type for current instruction.
3960 auto *SubVT = VectorType::get(ScalarTy, State.VF);
3961
3962 // Vectorize the interleaved store group.
3963 Value *MaskForGaps =
3964 createBitMaskForGaps(State.Builder, State.VF.getKnownMinValue(), *Group);
3965 assert(((MaskForGaps != nullptr) == needsMaskForGaps()) &&
3966 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3967 ArrayRef<VPValue *> StoredValues = getStoredValues();
3968 // Collect the stored vector from each member.
3969 SmallVector<Value *, 4> StoredVecs;
3970 unsigned StoredIdx = 0;
3971 for (unsigned i = 0; i < InterleaveFactor; i++) {
3972 assert((Group->getMember(i) || MaskForGaps) &&
3973 "Fail to get a member from an interleaved store group");
3974 Instruction *Member = Group->getMember(i);
3975
3976 // Skip the gaps in the group.
3977 if (!Member) {
3978 Value *Undef = PoisonValue::get(SubVT);
3979 StoredVecs.push_back(Undef);
3980 continue;
3981 }
3982
3983 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3984 ++StoredIdx;
3985
3986 if (Group->isReverse())
3987 StoredVec = State.Builder.CreateVectorReverse(StoredVec, "reverse");
3988
3989 // If this member has different type, cast it to a unified type.
3990
3991 if (StoredVec->getType() != SubVT)
3992 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
3993
3994 StoredVecs.push_back(StoredVec);
3995 }
3996
3997 // Interleave all the smaller vectors into one wider vector.
3998 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
3999 Instruction *NewStoreInstr;
4000 if (BlockInMask || MaskForGaps) {
4001 Value *GroupMask = CreateGroupMask(MaskForGaps);
4002 NewStoreInstr = State.Builder.CreateMaskedStore(
4003 IVec, ResAddr, Group->getAlign(), GroupMask);
4004 } else
4005 NewStoreInstr =
4006 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->getAlign());
4007
4008 applyMetadata(*NewStoreInstr);
4009 // TODO: Also manage existing metadata using VPIRMetadata.
4010 Group->addMetadata(NewStoreInstr);
4011}
4012
4013#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4015 VPSlotTracker &SlotTracker) const {
4017 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4018 IG->getInsertPos()->printAsOperand(O, false);
4019 O << ", ";
4021 VPValue *Mask = getMask();
4022 if (Mask) {
4023 O << ", ";
4024 Mask->printAsOperand(O, SlotTracker);
4025 }
4026
4027 unsigned OpIdx = 0;
4028 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4029 if (!IG->getMember(i))
4030 continue;
4031 if (getNumStoreOperands() > 0) {
4032 O << "\n" << Indent << " store ";
4034 O << " to index " << i;
4035 } else {
4036 O << "\n" << Indent << " ";
4038 O << " = load from index " << i;
4039 }
4040 ++OpIdx;
4041 }
4042}
4043#endif
4044
4046 assert(!State.Lane && "Interleave group being replicated.");
4047 assert(State.VF.isScalable() &&
4048 "Only support scalable VF for EVL tail-folding.");
4050 "Masking gaps for scalable vectors is not yet supported.");
4052 Instruction *Instr = Group->getInsertPos();
4053
4054 // Prepare for the vector type of the interleaved load/store.
4055 Type *ScalarTy = getLoadStoreType(Instr);
4056 unsigned InterleaveFactor = Group->getFactor();
4057 assert(InterleaveFactor <= 8 &&
4058 "Unsupported deinterleave/interleave factor for scalable vectors");
4059 ElementCount WideVF = State.VF * InterleaveFactor;
4060 auto *VecTy = VectorType::get(ScalarTy, WideVF);
4061
4062 VPValue *Addr = getAddr();
4063 Value *ResAddr = State.get(Addr, VPLane(0));
4064 Value *EVL = State.get(getEVL(), VPLane(0));
4065 Value *InterleaveEVL = State.Builder.CreateMul(
4066 EVL, ConstantInt::get(EVL->getType(), InterleaveFactor), "interleave.evl",
4067 /* NUW= */ true, /* NSW= */ true);
4068 LLVMContext &Ctx = State.Builder.getContext();
4069
4070 Value *GroupMask = nullptr;
4071 if (VPValue *BlockInMask = getMask()) {
4072 SmallVector<Value *> Ops(InterleaveFactor, State.get(BlockInMask));
4073 GroupMask = interleaveVectors(State.Builder, Ops, "interleaved.mask");
4074 } else {
4075 GroupMask =
4076 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4077 }
4078
4079 // Vectorize the interleaved load group.
4080 if (isa<LoadInst>(Instr)) {
4081 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4082 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL}, nullptr,
4083 "wide.vp.load");
4084 NewLoad->addParamAttr(0,
4085 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4086
4087 applyMetadata(*NewLoad);
4088 // TODO: Also manage existing metadata using VPIRMetadata.
4089 Group->addMetadata(NewLoad);
4090
4091 // Scalable vectors cannot use arbitrary shufflevectors (only splats),
4092 // so must use intrinsics to deinterleave.
4093 NewLoad = State.Builder.CreateIntrinsic(
4094 Intrinsic::getDeinterleaveIntrinsicID(InterleaveFactor),
4095 NewLoad->getType(), NewLoad,
4096 /*FMFSource=*/nullptr, "strided.vec");
4097
4098 const DataLayout &DL = Instr->getDataLayout();
4099 for (unsigned I = 0, J = 0; I < InterleaveFactor; ++I) {
4100 Instruction *Member = Group->getMember(I);
4101 // Skip the gaps in the group.
4102 if (!Member)
4103 continue;
4104
4105 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad, I);
4106 // If this member has different type, cast the result type.
4107 if (Member->getType() != ScalarTy) {
4108 VectorType *OtherVTy = VectorType::get(Member->getType(), State.VF);
4109 StridedVec =
4110 createBitOrPointerCast(State.Builder, StridedVec, OtherVTy, DL);
4111 }
4112
4113 State.set(getVPValue(J), StridedVec);
4114 ++J;
4115 }
4116 return;
4117 } // End for interleaved load.
4118
4119 // The sub vector type for current instruction.
4120 auto *SubVT = VectorType::get(ScalarTy, State.VF);
4121 // Vectorize the interleaved store group.
4122 ArrayRef<VPValue *> StoredValues = getStoredValues();
4123 // Collect the stored vector from each member.
4124 SmallVector<Value *, 4> StoredVecs;
4125 const DataLayout &DL = Instr->getDataLayout();
4126 for (unsigned I = 0, StoredIdx = 0; I < InterleaveFactor; I++) {
4127 Instruction *Member = Group->getMember(I);
4128 // Skip the gaps in the group.
4129 if (!Member) {
4130 StoredVecs.push_back(PoisonValue::get(SubVT));
4131 continue;
4132 }
4133
4134 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4135 // If this member has different type, cast it to a unified type.
4136 if (StoredVec->getType() != SubVT)
4137 StoredVec = createBitOrPointerCast(State.Builder, StoredVec, SubVT, DL);
4138
4139 StoredVecs.push_back(StoredVec);
4140 ++StoredIdx;
4141 }
4142
4143 // Interleave all the smaller vectors into one wider vector.
4144 Value *IVec = interleaveVectors(State.Builder, StoredVecs, "interleaved.vec");
4145 CallInst *NewStore =
4146 State.Builder.CreateIntrinsic(Type::getVoidTy(Ctx), Intrinsic::vp_store,
4147 {IVec, ResAddr, GroupMask, InterleaveEVL});
4148 NewStore->addParamAttr(1,
4149 Attribute::getWithAlignment(Ctx, Group->getAlign()));
4150
4151 applyMetadata(*NewStore);
4152 // TODO: Also manage existing metadata using VPIRMetadata.
4153 Group->addMetadata(NewStore);
4154}
4155
4156#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4158 VPSlotTracker &SlotTracker) const {
4160 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
4161 IG->getInsertPos()->printAsOperand(O, false);
4162 O << ", ";
4164 O << ", ";
4166 if (VPValue *Mask = getMask()) {
4167 O << ", ";
4168 Mask->printAsOperand(O, SlotTracker);
4169 }
4170
4171 unsigned OpIdx = 0;
4172 for (unsigned i = 0; i < IG->getFactor(); ++i) {
4173 if (!IG->getMember(i))
4174 continue;
4175 if (getNumStoreOperands() > 0) {
4176 O << "\n" << Indent << " vp.store ";
4178 O << " to index " << i;
4179 } else {
4180 O << "\n" << Indent << " ";
4182 O << " = vp.load from index " << i;
4183 }
4184 ++OpIdx;
4185 }
4186}
4187#endif
4188
4190 VPCostContext &Ctx) const {
4191 Instruction *InsertPos = getInsertPos();
4192 // Find the VPValue index of the interleave group. We need to skip gaps.
4193 unsigned InsertPosIdx = 0;
4194 for (unsigned Idx = 0; IG->getFactor(); ++Idx)
4195 if (auto *Member = IG->getMember(Idx)) {
4196 if (Member == InsertPos)
4197 break;
4198 InsertPosIdx++;
4199 }
4200 Type *ValTy = Ctx.Types.inferScalarType(
4201 getNumDefinedValues() > 0 ? getVPValue(InsertPosIdx)
4202 : getStoredValues()[InsertPosIdx]);
4203 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
4204 unsigned AS = cast<PointerType>(Ctx.Types.inferScalarType(getAddr()))
4205 ->getAddressSpace();
4206
4207 unsigned InterleaveFactor = IG->getFactor();
4208 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
4209
4210 // Holds the indices of existing members in the interleaved group.
4212 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
4213 if (IG->getMember(IF))
4214 Indices.push_back(IF);
4215
4216 // Calculate the cost of the whole interleaved group.
4217 InstructionCost Cost = Ctx.TTI.getInterleavedMemoryOpCost(
4218 InsertPos->getOpcode(), WideVecTy, IG->getFactor(), Indices,
4219 IG->getAlign(), AS, Ctx.CostKind, getMask(), NeedsMaskForGaps);
4220
4221 if (!IG->isReverse())
4222 return Cost;
4223
4224 return Cost + IG->getNumMembers() *
4225 Ctx.TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4226 VectorTy, VectorTy, {}, Ctx.CostKind,
4227 0);
4228}
4229
4230#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4232 VPSlotTracker &SlotTracker) const {
4233 O << Indent << "EMIT ";
4235 O << " = CANONICAL-INDUCTION ";
4237}
4238#endif
4239
4241 return vputils::onlyScalarValuesUsed(this) &&
4242 (!IsScalable || vputils::onlyFirstLaneUsed(this));
4243}
4244
4245#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4247 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
4248 assert((getNumOperands() == 3 || getNumOperands() == 5) &&
4249 "unexpected number of operands");
4250 O << Indent << "EMIT ";
4252 O << " = WIDEN-POINTER-INDUCTION ";
4254 O << ", ";
4256 O << ", ";
4258 if (getNumOperands() == 5) {
4259 O << ", ";
4261 O << ", ";
4263 }
4264}
4265
4267 VPSlotTracker &SlotTracker) const {
4268 O << Indent << "EMIT ";
4270 O << " = EXPAND SCEV " << *Expr;
4271}
4272#endif
4273
4275 Value *CanonicalIV = State.get(getOperand(0), /*IsScalar*/ true);
4276 Type *STy = CanonicalIV->getType();
4277 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4278 ElementCount VF = State.VF;
4279 Value *VStart = VF.isScalar()
4280 ? CanonicalIV
4281 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
4282 Value *VStep = createStepForVF(Builder, STy, VF, getUnrollPart(*this));
4283 if (VF.isVector()) {
4284 VStep = Builder.CreateVectorSplat(VF, VStep);
4285 VStep =
4286 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
4287 }
4288 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
4289 State.set(this, CanonicalVectorIV);
4290}
4291
4292#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4294 VPSlotTracker &SlotTracker) const {
4295 O << Indent << "EMIT ";
4297 O << " = WIDEN-CANONICAL-INDUCTION ";
4299}
4300#endif
4301
4303 auto &Builder = State.Builder;
4304 // Create a vector from the initial value.
4305 auto *VectorInit = getStartValue()->getLiveInIRValue();
4306
4307 Type *VecTy = State.VF.isScalar()
4308 ? VectorInit->getType()
4309 : VectorType::get(VectorInit->getType(), State.VF);
4310
4311 BasicBlock *VectorPH =
4312 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4313 if (State.VF.isVector()) {
4314 auto *IdxTy = Builder.getInt32Ty();
4315 auto *One = ConstantInt::get(IdxTy, 1);
4316 IRBuilder<>::InsertPointGuard Guard(Builder);
4317 Builder.SetInsertPoint(VectorPH->getTerminator());
4318 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
4319 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4320 VectorInit = Builder.CreateInsertElement(
4321 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
4322 }
4323
4324 // Create a phi node for the new recurrence.
4325 PHINode *Phi = PHINode::Create(VecTy, 2, "vector.recur");
4326 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4327 Phi->addIncoming(VectorInit, VectorPH);
4328 State.set(this, Phi);
4329}
4330
4333 VPCostContext &Ctx) const {
4334 if (VF.isScalar())
4335 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4336
4337 return 0;
4338}
4339
4340#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4342 raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const {
4343 O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
4345 O << " = phi ";
4347}
4348#endif
4349
4351 // Reductions do not have to start at zero. They can start with
4352 // any loop invariant values.
4353 VPValue *StartVPV = getStartValue();
4354
4355 // In order to support recurrences we need to be able to vectorize Phi nodes.
4356 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4357 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4358 // this value when we vectorize all of the instructions that use the PHI.
4359 BasicBlock *VectorPH =
4360 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4361 bool ScalarPHI = State.VF.isScalar() || isInLoop();
4362 Value *StartV = State.get(StartVPV, ScalarPHI);
4363 Type *VecTy = StartV->getType();
4364
4365 BasicBlock *HeaderBB = State.CFG.PrevBB;
4366 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4367 "recipe must be in the vector loop header");
4368 auto *Phi = PHINode::Create(VecTy, 2, "vec.phi");
4369 Phi->insertBefore(HeaderBB->getFirstInsertionPt());
4370 State.set(this, Phi, isInLoop());
4371
4372 Phi->addIncoming(StartV, VectorPH);
4373}
4374
4375#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4377 VPSlotTracker &SlotTracker) const {
4378 O << Indent << "WIDEN-REDUCTION-PHI ";
4379
4381 O << " = phi ";
4383 if (getVFScaleFactor() > 1)
4384 O << " (VF scaled by 1/" << getVFScaleFactor() << ")";
4385}
4386#endif
4387
4389 Value *Op0 = State.get(getOperand(0));
4390 Type *VecTy = Op0->getType();
4391 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4392 State.set(this, VecPhi);
4393}
4394
4395#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4397 VPSlotTracker &SlotTracker) const {
4398 O << Indent << "WIDEN-PHI ";
4399
4401 O << " = phi ";
4403}
4404#endif
4405
4407 BasicBlock *VectorPH =
4408 State.CFG.VPBB2IRBB.at(getParent()->getCFGPredecessor(0));
4409 Value *StartMask = State.get(getOperand(0));
4410 PHINode *Phi =
4411 State.Builder.CreatePHI(StartMask->getType(), 2, "active.lane.mask");
4412 Phi->addIncoming(StartMask, VectorPH);
4413 State.set(this, Phi);
4414}
4415
4416#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4418 VPSlotTracker &SlotTracker) const {
4419 O << Indent << "ACTIVE-LANE-MASK-PHI ";
4420
4422 O << " = phi ";
4424}
4425#endif
4426
4427#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4429 VPSlotTracker &SlotTracker) const {
4430 O << Indent << "EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
4431
4433 O << " = phi ";
4435}
4436#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Definition blake3_impl.h:83
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:136
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
Definition Operator.cpp:272
void setAllowContract(bool B=true)
Definition FMF.h:90
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setAllowReciprocal(bool B=true)
Definition FMF.h:87
bool allowReciprocal() const
Definition FMF.h:68
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
bool approxFunc() const
Definition FMF.h:70
void setNoNaNs(bool B=true)
Definition FMF.h:78
void setAllowReassoc(bool B=true)
Flag setters.
Definition FMF.h:75
bool noNaNs() const
Definition FMF.h:65
void setApproxFunc(bool B=true)
Definition FMF.h:93
void setNoInfs(bool B=true)
Definition FMF.h:81
bool allowContract() const
Definition FMF.h:69
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
Definition Function.h:661
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition Function.h:594
Type * getReturnType() const
Returns the type of the ret val.
Definition Function.h:214
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2579
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Definition IRBuilder.h:547
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2633
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition IRBuilder.h:2567
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition IRBuilder.h:2626
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition IRBuilder.h:2645
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition IRBuilder.h:562
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition IRBuilder.h:2039
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition IRBuilder.h:567
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2336
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition IRBuilder.h:527
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition IRBuilder.h:1725
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition IRBuilder.h:522
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2466
Value * CreateNot(Value *V, const Twine &Name="")
Definition IRBuilder.h:1808
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2332
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Definition IRBuilder.h:1134
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1420
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition IRBuilder.h:2085
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1403
ConstantInt * getFalse()
Get the constant value for i1 false.
Definition IRBuilder.h:507
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:1708
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2344
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition IRBuilder.h:2442
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Definition IRBuilder.h:1573
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition IRBuilder.h:1437
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
static InstructionCost getInvalid(CostType Val=0)
bool isCast() const
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isReverse() const
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Information for memory intrinsic cost model.
Root of the metadata hierarchy.
Definition Metadata.h:64
LLVM_ABI void print(raw_ostream &OS, const Module *M=nullptr, bool IsForDebug=false) const
Print.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCC_Free
Expected to fold away in lowering.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
value_op_iterator value_op_end()
Definition User.h:313
void setOperand(unsigned i, Value *Val)
Definition User.h:237
Value * getOperand(unsigned i) const
Definition User.h:232
value_op_iterator value_op_begin()
Definition User.h:310
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3964
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
Definition VPlan.h:4017
iterator end()
Definition VPlan.h:4001
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4030
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
Definition VPlan.h:2541
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
Definition VPlan.h:2536
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBlocksTy & getPredecessors() const
Definition VPlan.h:204
VPlan * getPlan()
Definition VPlan.cpp:161
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
Definition VPlan.h:349
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition VPlanValue.h:305
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
Definition VPlan.cpp:122
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:426
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition VPlanValue.h:421
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:399
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
Definition VPlanValue.h:411
friend class VPValue
Definition VPlanValue.h:306
unsigned getVPDefID() const
Definition VPlanValue.h:431
VPValue * getStepValue() const
Definition VPlan.h:3764
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStartValue() const
Definition VPlan.h:3763
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this header phi recipe.
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2081
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Definition VPlan.h:1785
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
FastMathFlagsTy FMFs
Definition VPlan.h:680
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
WrapFlagsTy WrapFlags
Definition VPlan.h:674
CmpInst::Predicate CmpPredicate
Definition VPlan.h:673
void printFlags(raw_ostream &O) const
GEPNoWrapFlags GEPFlags
Definition VPlan.h:678
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
Definition VPlan.h:858
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
TruncFlagsTy TruncFlags
Definition VPlan.h:675
CmpInst::Predicate getPredicate() const
Definition VPlan.h:835
ExactFlagsTy ExactFlags
Definition VPlan.h:677
bool hasNoSignedWrap() const
Definition VPlan.h:884
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
Definition VPlan.h:850
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
Definition VPlan.h:853
DisjointFlagsTy DisjointFlags
Definition VPlan.h:676
unsigned AllFlags
Definition VPlan.h:682
bool hasNoUnsignedWrap() const
Definition VPlan.h:873
FCmpFlagsTy FCmpFlags
Definition VPlan.h:681
NonNegFlagsTy NonNegFlags
Definition VPlan.h:679
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Definition VPlan.h:795
Instruction & getInstruction() const
Definition VPlan.h:1447
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
Definition VPlan.h:1422
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void intersect(const VPIRMetadata &MD)
Intersect this VPIRMetadata object with MD, keeping only metadata nodes that are common to both.
VPIRMetadata()=default
void print(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print metadata with node IDs.
void applyMetadata(Instruction &I) const
Add all metadata to I.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
Definition VPlan.h:1127
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1074
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
Definition VPlan.h:1117
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1130
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
Definition VPlan.h:1071
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1121
@ BuildVector
Creates a fixed-width vector containing all operands.
Definition VPlan.h:1066
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
Definition VPlan.h:1063
@ VScale
Returns the value for vscale.
Definition VPlan.h:1132
@ CanonicalIVIncrementForPart
Definition VPlan.h:1056
bool hasResult() const
Definition VPlan.h:1198
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
Definition VPlan.h:1238
unsigned getOpcode() const
Definition VPlan.h:1182
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
Definition VPlan.h:2652
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
Definition VPlan.h:2656
const InterleaveGroup< Instruction > * getInterleaveGroup() const
Definition VPlan.h:2654
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:2646
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Definition VPlan.h:2675
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:2640
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2750
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2763
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
Definition VPlan.h:2713
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
Definition VPlan.h:1337
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
Definition VPlan.h:4108
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1362
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
Definition VPlan.h:1329
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
Definition VPlan.h:4269
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:398
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
Definition VPlan.h:2913
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
Definition VPlan.h:2465
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2482
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
Definition VPlan.h:2855
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
Definition VPlan.h:2866
VPValue * getCondOp() const
The VPValue of the condition for the block.
Definition VPlan.h:2868
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
Definition VPlan.h:2851
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
Definition VPlan.h:2857
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
Definition VPlan.h:2864
bool isInLoop() const
Returns true if the reduction is in-loop.
Definition VPlan.h:2859
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4152
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition VPlan.h:4220
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2935
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
Definition VPlan.h:2976
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
Definition VPlan.h:3005
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
Definition VPlan.h:3830
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:533
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
Definition VPlan.h:970
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:202
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition VPlan.cpp:1420
operand_range operands()
Definition VPlanValue.h:270
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:246
unsigned getNumOperands() const
Definition VPlanValue.h:240
operand_iterator op_begin()
Definition VPlanValue.h:266
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:241
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
Definition VPlanValue.h:285
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:46
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition VPlan.cpp:1374
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
friend class VPExpressionRecipe
Definition VPlanValue.h:51
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition VPlan.cpp:1416
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Definition VPlanValue.h:138
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:181
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:83
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition VPlan.cpp:94
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1377
user_iterator user_begin()
Definition VPlanValue.h:128
unsigned getNumUsers() const
Definition VPlanValue.h:111
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition VPlanValue.h:176
user_range users()
Definition VPlanValue.h:132
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
Definition VPlan.h:1985
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
operand_range args()
Definition VPlan.h:1741
Function * getCalledScalarFunction() const
Definition VPlan.h:1737
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
Definition VPlan.h:1591
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
Definition VPlan.h:1887
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2144
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Definition VPlan.h:2251
Type * getScalarType() const
Returns the scalar type of the induction.
Definition VPlan.h:2260
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
Definition VPlan.h:1673
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
Definition VPlan.h:1676
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
Definition VPlan.h:3260
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
Definition VPlan.h:3257
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
Definition VPlan.h:3300
Instruction & Ingredient
Definition VPlan.h:3248
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
Definition VPlan.h:3254
VPValue * getMask() const
Return the mask used by this recipe.
Definition VPlan.h:3314
Align Alignment
Alignment information for this memory access.
Definition VPlan.h:3251
VPValue * getAddr() const
Return the address accessed by this recipe.
Definition VPlan.h:3307
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
Definition VPlan.h:3304
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getUF() const
Definition VPlan.h:4503
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1011
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition Value.h:838
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
iterator erase(iterator where)
Definition ilist.h:204
pointer remove(iterator &IT)
Definition ilist.h:188
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2484
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2148
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition STLExtras.h:2243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
Definition STLExtras.h:323
@ Other
Any other memory.
Definition ModRef.h:68
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
@ Increment
Incrementally increasing token ID.
Definition AllocToken.h:26
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
Definition VPlan.h:1485
PHINode & getIRPhi()
Definition VPlan.h:1493
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
Definition VPlan.h:923
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
Definition VPlan.h:924
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
VPTypeAnalysis TypeAnalysis
VPlan-based type analysis.
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition VPlan.cpp:263
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3391
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getCond() const
Definition VPlan.h:1828
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
Definition VPlan.h:3474
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
Definition VPlan.h:3477
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.
Definition VPlan.h:3437