47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
56 case VPInterleaveEVLSC:
59 case VPWidenStoreEVLSC:
67 ->getCalledScalarFunction()
69 case VPWidenIntrinsicSC:
71 case VPCanonicalIVPHISC:
72 case VPBranchOnMaskSC:
74 case VPFirstOrderRecurrencePHISC:
75 case VPReductionPHISC:
76 case VPScalarIVStepsSC:
80 case VPReductionEVLSC:
82 case VPVectorPointerSC:
83 case VPWidenCanonicalIVSC:
86 case VPWidenIntOrFpInductionSC:
87 case VPWidenLoadEVLSC:
90 case VPWidenPointerInductionSC:
92 case VPWidenSelectSC: {
96 assert((!
I || !
I->mayWriteToMemory()) &&
97 "underlying instruction may write to memory");
109 case VPInstructionSC:
111 case VPWidenLoadEVLSC:
116 ->mayReadFromMemory();
119 ->getCalledScalarFunction()
120 ->onlyWritesMemory();
121 case VPWidenIntrinsicSC:
123 case VPBranchOnMaskSC:
125 case VPFirstOrderRecurrencePHISC:
126 case VPPredInstPHISC:
127 case VPScalarIVStepsSC:
128 case VPWidenStoreEVLSC:
132 case VPReductionEVLSC:
134 case VPVectorPointerSC:
135 case VPWidenCanonicalIVSC:
138 case VPWidenIntOrFpInductionSC:
140 case VPWidenPointerInductionSC:
142 case VPWidenSelectSC: {
146 assert((!
I || !
I->mayReadFromMemory()) &&
147 "underlying instruction may read from memory");
161 case VPFirstOrderRecurrencePHISC:
162 case VPPredInstPHISC:
163 case VPVectorEndPointerSC:
165 case VPInstructionSC:
167 case VPWidenCallSC: {
171 case VPWidenIntrinsicSC:
174 case VPReductionEVLSC:
175 case VPPartialReductionSC:
177 case VPScalarIVStepsSC:
178 case VPVectorPointerSC:
179 case VPWidenCanonicalIVSC:
182 case VPWidenIntOrFpInductionSC:
184 case VPWidenPointerInductionSC:
186 case VPWidenSelectSC: {
190 assert((!
I || !
I->mayHaveSideEffects()) &&
191 "underlying instruction has side-effects");
194 case VPInterleaveEVLSC:
197 case VPWidenLoadEVLSC:
199 case VPWidenStoreEVLSC:
204 "mayHaveSideffects result for ingredient differs from this "
207 case VPReplicateSC: {
209 return R->getUnderlyingInstr()->mayHaveSideEffects();
217 assert(!Parent &&
"Recipe already in some VPBasicBlock");
219 "Insertion position not in any VPBasicBlock");
225 assert(!Parent &&
"Recipe already in some VPBasicBlock");
231 assert(!Parent &&
"Recipe already in some VPBasicBlock");
233 "Insertion position not in any VPBasicBlock");
268 UI = IG->getInsertPos();
270 UI = &WidenMem->getIngredient();
273 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
283 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
307 std::optional<unsigned> Opcode;
317 auto *PhiType = Ctx.Types.inferScalarType(
getChainOp());
318 auto *InputType = Ctx.Types.inferScalarType(
getVecOp());
319 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputType, InputType,
325 Type *InputTypeA =
nullptr, *InputTypeB =
nullptr;
335 if (WidenCastR->getOpcode() == Instruction::CastOps::ZExt)
337 if (WidenCastR->getOpcode() == Instruction::CastOps::SExt)
348 Opcode =
Widen->getOpcode();
351 InputTypeA = Ctx.Types.inferScalarType(ExtAR ? ExtAR->
getOperand(0)
352 :
Widen->getOperand(0));
353 InputTypeB = Ctx.Types.inferScalarType(ExtBR ? ExtBR->
getOperand(0)
354 :
Widen->getOperand(1));
355 ExtAType = GetExtendKind(ExtAR);
356 ExtBType = GetExtendKind(ExtBR);
362 InputTypeB = InputTypeA;
368 InputTypeA = Ctx.Types.inferScalarType(OpR->
getOperand(0));
369 ExtAType = GetExtendKind(OpR);
373 InputTypeA = Ctx.Types.inferScalarType(RedPhiOp1R->getOperand(0));
374 ExtAType = GetExtendKind(RedPhiOp1R);
380 return Reduction->computeCost(VF, Ctx);
382 auto *PhiType = Ctx.Types.inferScalarType(
getOperand(1));
383 return Ctx.TTI.getPartialReductionCost(
getOpcode(), InputTypeA, InputTypeB,
384 PhiType, VF, ExtAType, ExtBType,
385 Opcode, Ctx.CostKind);
389 auto &Builder = State.Builder;
392 "Unhandled partial reduction opcode");
396 assert(PhiVal && BinOpVal &&
"Phi and Mul must be set");
401 Builder.CreateIntrinsic(RetTy, Intrinsic::vector_partial_reduce_add,
402 {PhiVal, BinOpVal},
nullptr,
"partial.reduce");
407#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
410 O << Indent <<
"PARTIAL-REDUCE ";
418 assert(OpType == Other.OpType &&
"OpType must match");
420 case OperationType::OverflowingBinOp:
421 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
422 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
424 case OperationType::Trunc:
428 case OperationType::DisjointOp:
431 case OperationType::PossiblyExactOp:
432 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
434 case OperationType::GEPOp:
437 case OperationType::FPMathOp:
438 FMFs.NoNaNs &= Other.FMFs.NoNaNs;
439 FMFs.NoInfs &= Other.FMFs.NoInfs;
441 case OperationType::NonNegOp:
444 case OperationType::Cmp:
447 case OperationType::Other:
454 assert(OpType == OperationType::FPMathOp &&
455 "recipe doesn't have fast math flags");
467#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
471template <
unsigned PartOpIdx>
474 if (U.getNumOperands() == PartOpIdx + 1)
475 return U.getOperand(PartOpIdx);
479template <
unsigned PartOpIdx>
498 "Set flags not supported for the provided opcode");
499 assert((getNumOperandsForOpcode(Opcode) == -1u ||
501 "number of operands does not match opcode");
505unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
516 case Instruction::Alloca:
517 case Instruction::ExtractValue:
518 case Instruction::Freeze:
519 case Instruction::Load:
534 case Instruction::ICmp:
535 case Instruction::FCmp:
536 case Instruction::Store:
545 case Instruction::Select:
552 case Instruction::Call:
553 case Instruction::GetElementPtr:
554 case Instruction::PHI:
555 case Instruction::Switch:
567bool VPInstruction::canGenerateScalarForFirstLane()
const {
573 case Instruction::Freeze:
574 case Instruction::ICmp:
575 case Instruction::PHI:
576 case Instruction::Select:
602 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
604 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
612 IRBuilderBase &Builder = State.
Builder;
631 case Instruction::ExtractElement: {
634 unsigned IdxToExtract =
642 case Instruction::Freeze: {
646 case Instruction::FCmp:
647 case Instruction::ICmp: {
653 case Instruction::PHI: {
656 case Instruction::Select: {
681 {VIVElem0, ScalarTC},
nullptr, Name);
697 if (!V1->getType()->isVectorTy())
717 "Requested vector length should be an integer.");
724 {AVL, VFArg, State.Builder.getTrue()});
730 assert(Part != 0 &&
"Must have a positive part");
761 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
785 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
815 RecurKind RK = PhiR->getRecurrenceKind();
817 "Unexpected reduction kind");
818 assert(!PhiR->isInLoop() &&
819 "In-loop FindLastIV reduction is not supported yet");
831 for (
unsigned Part = 1; Part <
UF; ++Part)
832 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
846 RecurKind RK = PhiR->getRecurrenceKind();
848 "should be handled by ComputeFindIVResult");
854 for (
unsigned Part = 0; Part <
UF; ++Part)
855 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
857 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
862 Value *ReducedPartRdx = RdxParts[0];
863 if (PhiR->isOrdered()) {
864 ReducedPartRdx = RdxParts[
UF - 1];
867 for (
unsigned Part = 1; Part <
UF; ++Part) {
868 Value *RdxPart = RdxParts[Part];
870 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
876 Opcode = Instruction::Add;
881 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
888 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
895 return ReducedPartRdx;
905 "invalid offset to extract from");
909 assert(
Offset <= 1 &&
"invalid offset to extract from");
923 "can only generate first lane for PtrAdd");
937 Res = Builder.CreateOr(Res, Builder.CreateFreeze(State.get(
Op)));
938 return State.VF.isScalar() ? Res : Builder.CreateOrReduce(Res);
943 Value *Res =
nullptr;
948 Builder.CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
949 Value *VectorIdx = Idx == 1
951 : Builder.CreateSub(LaneToExtract, VectorStart);
952 Value *Ext = State.VF.isScalar()
954 : Builder.CreateExtractElement(
957 Value *Cmp = Builder.CreateICmpUGE(LaneToExtract, VectorStart);
958 Res = Builder.CreateSelect(Cmp, Ext, Res);
977 Value *Res =
nullptr;
978 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
979 Value *TrailingZeros =
1009 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1012 case Instruction::FNeg:
1013 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
1014 case Instruction::UDiv:
1015 case Instruction::SDiv:
1016 case Instruction::SRem:
1017 case Instruction::URem:
1018 case Instruction::Add:
1019 case Instruction::FAdd:
1020 case Instruction::Sub:
1021 case Instruction::FSub:
1022 case Instruction::Mul:
1023 case Instruction::FMul:
1024 case Instruction::FDiv:
1025 case Instruction::FRem:
1026 case Instruction::Shl:
1027 case Instruction::LShr:
1028 case Instruction::AShr:
1029 case Instruction::And:
1030 case Instruction::Or:
1031 case Instruction::Xor: {
1039 RHSInfo = Ctx.getOperandInfo(RHS);
1050 return Ctx.TTI.getArithmeticInstrCost(
1051 Opcode, ResultTy, Ctx.CostKind,
1052 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1053 RHSInfo, Operands, CtxI, &Ctx.TLI);
1055 case Instruction::Freeze:
1057 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
1059 case Instruction::ExtractValue:
1060 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
1062 case Instruction::ICmp:
1063 case Instruction::FCmp: {
1067 return Ctx.TTI.getCmpSelInstrCost(
1069 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
1070 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1086 "Should only generate a vector value or single scalar, not scalars "
1094 case Instruction::Select: {
1098 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1099 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1104 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1107 case Instruction::ExtractElement:
1117 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1121 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1122 return Ctx.TTI.getArithmeticReductionCost(
1128 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1135 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1136 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1142 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1151 unsigned Multiplier =
1156 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1163 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1164 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1169 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1170 VecTy, Ctx.CostKind, 0);
1180 "unexpected VPInstruction witht underlying value");
1189 getOpcode() == Instruction::ExtractElement ||
1200 case Instruction::PHI:
1211 assert(!State.Lane &&
"VPInstruction executing an Lane");
1214 "Set flags not supported for the provided opcode");
1217 Value *GeneratedValue = generate(State);
1220 assert(GeneratedValue &&
"generate must produce a value");
1221 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1226 !GeneratesPerFirstLaneOnly) ||
1227 State.VF.isScalar()) &&
1228 "scalar value but not only first lane defined");
1229 State.set(
this, GeneratedValue,
1230 GeneratesPerFirstLaneOnly);
1237 case Instruction::ExtractElement:
1238 case Instruction::Freeze:
1239 case Instruction::FCmp:
1240 case Instruction::ICmp:
1241 case Instruction::Select:
1242 case Instruction::PHI:
1279 case Instruction::ExtractElement:
1281 case Instruction::PHI:
1283 case Instruction::FCmp:
1284 case Instruction::ICmp:
1285 case Instruction::Select:
1286 case Instruction::Or:
1287 case Instruction::Freeze:
1328 case Instruction::FCmp:
1329 case Instruction::ICmp:
1330 case Instruction::Select:
1340#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1348 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1360 O <<
"combined load";
1363 O <<
"combined store";
1366 O <<
"active lane mask";
1369 O <<
"EXPLICIT-VECTOR-LENGTH";
1372 O <<
"first-order splice";
1375 O <<
"branch-on-cond";
1378 O <<
"TC > VF ? TC - VF : 0";
1384 O <<
"branch-on-count";
1390 O <<
"buildstructvector";
1396 O <<
"extract-lane";
1399 O <<
"extract-last-element";
1402 O <<
"extract-last-lane-per-part";
1405 O <<
"extract-penultimate-element";
1408 O <<
"compute-anyof-result";
1411 O <<
"compute-find-iv-result";
1414 O <<
"compute-reduction-result";
1429 O <<
"first-active-lane";
1432 O <<
"reduction-start-vector";
1435 O <<
"resume-for-epilogue";
1460 State.set(
this, Cast,
VPLane(0));
1471 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1472 State.set(
this,
VScale,
true);
1481#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1484 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1490 O <<
"wide-iv-step ";
1494 O <<
"step-vector " << *ResultTy;
1497 O <<
"vscale " << *ResultTy;
1503 O <<
" to " << *ResultTy;
1510 PHINode *NewPhi = State.Builder.CreatePHI(
1511 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1518 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1523 State.set(
this, NewPhi,
VPLane(0));
1526#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1529 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1544 "PHINodes must be handled by VPIRPhi");
1547 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1559 "can only update exiting operands to phi nodes");
1569#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1572 O << Indent <<
"IR " << I;
1584 auto *PredVPBB = Pred->getExitingBasicBlock();
1585 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1592 if (Phi->getBasicBlockIndex(PredBB) == -1)
1593 Phi->addIncoming(V, PredBB);
1595 Phi->setIncomingValueForBlock(PredBB, V);
1600 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1605 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1606 "Number of phi operands must match number of predecessors");
1607 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1608 R->removeOperand(Position);
1611#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1625#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1631 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1636 std::get<1>(
Op)->printAsOperand(O);
1649 Metadata.emplace_back(LLVMContext::MD_alias_scope, AliasScopeMD);
1651 Metadata.emplace_back(LLVMContext::MD_noalias, NoAliasMD);
1655 for (
const auto &[Kind,
Node] : Metadata)
1656 I.setMetadata(Kind,
Node);
1661 for (
const auto &[KindA, MDA] : Metadata) {
1662 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1663 if (KindA == KindB && MDA == MDB) {
1669 Metadata = std::move(MetadataIntersection);
1673 assert(State.VF.isVector() &&
"not widening");
1674 assert(Variant !=
nullptr &&
"Can't create vector function.");
1685 Arg = State.get(
I.value(),
VPLane(0));
1688 Args.push_back(Arg);
1694 CI->getOperandBundlesAsDefs(OpBundles);
1696 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1699 V->setCallingConv(Variant->getCallingConv());
1701 if (!V->getType()->isVoidTy())
1707 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1708 Variant->getFunctionType()->params(),
1712#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1715 O << Indent <<
"WIDEN-CALL ";
1727 O <<
" @" << CalledFn->
getName() <<
"(";
1733 O <<
" (using library function";
1734 if (Variant->hasName())
1735 O <<
": " << Variant->getName();
1741 assert(State.VF.isVector() &&
"not widening");
1754 Arg = State.get(
I.value(),
VPLane(0));
1760 Args.push_back(Arg);
1764 Module *M = State.Builder.GetInsertBlock()->getModule();
1768 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1773 CI->getOperandBundlesAsDefs(OpBundles);
1775 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1780 if (!V->getType()->isVoidTy())
1796 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1797 auto *V =
Op->getUnderlyingValue();
1800 Arguments.push_back(UI->getArgOperand(Idx));
1809 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1815 : Ctx.Types.inferScalarType(
Op));
1820 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1825 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1847#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1850 O << Indent <<
"WIDEN-INTRINSIC ";
1851 if (ResultTy->isVoidTy()) {
1879 Value *Mask =
nullptr;
1881 Mask = State.get(VPMask);
1884 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1888 if (Opcode == Instruction::Sub)
1889 IncAmt = Builder.CreateNeg(IncAmt);
1891 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1893 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1908 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1914 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1927 {PtrTy, IncTy, MaskTy});
1930 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1931 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1934#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1937 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1940 if (Opcode == Instruction::Sub)
1943 assert(Opcode == Instruction::Add);
1956 O << Indent <<
"WIDEN-SELECT ";
1978 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1979 State.set(
this, Sel);
1991 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1992 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2000 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
2001 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
2005 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
2006 Operands.
append(
SI->op_begin(),
SI->op_end());
2008 return Ctx.TTI.getArithmeticInstrCost(
2009 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
2010 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
2019 Pred = Cmp->getPredicate();
2020 return Ctx.TTI.getCmpSelInstrCost(
2021 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
2022 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
2025VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2038 case OperationType::OverflowingBinOp:
2039 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2040 Opcode == Instruction::Mul ||
2041 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2042 case OperationType::Trunc:
2043 return Opcode == Instruction::Trunc;
2044 case OperationType::DisjointOp:
2045 return Opcode == Instruction::Or;
2046 case OperationType::PossiblyExactOp:
2047 return Opcode == Instruction::AShr;
2048 case OperationType::GEPOp:
2049 return Opcode == Instruction::GetElementPtr ||
2052 case OperationType::FPMathOp:
2053 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
2054 Opcode == Instruction::FSub || Opcode == Instruction::FNeg ||
2055 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
2056 Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc ||
2057 Opcode == Instruction::FCmp || Opcode == Instruction::Select ||
2061 case OperationType::NonNegOp:
2062 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2063 case OperationType::Cmp:
2064 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2065 case OperationType::Other:
2072#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2075 case OperationType::Cmp:
2078 case OperationType::DisjointOp:
2082 case OperationType::PossiblyExactOp:
2086 case OperationType::OverflowingBinOp:
2092 case OperationType::Trunc:
2098 case OperationType::FPMathOp:
2101 case OperationType::GEPOp:
2104 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2109 case OperationType::NonNegOp:
2113 case OperationType::Other:
2121 auto &Builder = State.Builder;
2123 case Instruction::Call:
2124 case Instruction::Br:
2125 case Instruction::PHI:
2126 case Instruction::GetElementPtr:
2127 case Instruction::Select:
2129 case Instruction::UDiv:
2130 case Instruction::SDiv:
2131 case Instruction::SRem:
2132 case Instruction::URem:
2133 case Instruction::Add:
2134 case Instruction::FAdd:
2135 case Instruction::Sub:
2136 case Instruction::FSub:
2137 case Instruction::FNeg:
2138 case Instruction::Mul:
2139 case Instruction::FMul:
2140 case Instruction::FDiv:
2141 case Instruction::FRem:
2142 case Instruction::Shl:
2143 case Instruction::LShr:
2144 case Instruction::AShr:
2145 case Instruction::And:
2146 case Instruction::Or:
2147 case Instruction::Xor: {
2151 Ops.push_back(State.get(VPOp));
2153 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2164 case Instruction::ExtractValue: {
2168 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2169 State.set(
this, Extract);
2172 case Instruction::Freeze: {
2174 Value *Freeze = Builder.CreateFreeze(
Op);
2175 State.set(
this, Freeze);
2178 case Instruction::ICmp:
2179 case Instruction::FCmp: {
2181 bool FCmp = Opcode == Instruction::FCmp;
2187 C = Builder.CreateFCmpFMF(
2209 State.get(
this)->getType() &&
2210 "inferred type and type from generated instructions do not match");
2217 case Instruction::UDiv:
2218 case Instruction::SDiv:
2219 case Instruction::SRem:
2220 case Instruction::URem:
2225 case Instruction::FNeg:
2226 case Instruction::Add:
2227 case Instruction::FAdd:
2228 case Instruction::Sub:
2229 case Instruction::FSub:
2230 case Instruction::Mul:
2231 case Instruction::FMul:
2232 case Instruction::FDiv:
2233 case Instruction::FRem:
2234 case Instruction::Shl:
2235 case Instruction::LShr:
2236 case Instruction::AShr:
2237 case Instruction::And:
2238 case Instruction::Or:
2239 case Instruction::Xor:
2240 case Instruction::Freeze:
2241 case Instruction::ExtractValue:
2242 case Instruction::ICmp:
2243 case Instruction::FCmp:
2250#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2253 O << Indent <<
"WIDEN ";
2262 auto &Builder = State.Builder;
2264 assert(State.VF.isVector() &&
"Not vectorizing?");
2269 State.set(
this, Cast);
2293 if (WidenMemoryRecipe ==
nullptr)
2295 if (!WidenMemoryRecipe->isConsecutive())
2297 if (WidenMemoryRecipe->isReverse())
2299 if (WidenMemoryRecipe->isMasked())
2307 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2310 CCH = ComputeCCH(StoreRecipe);
2313 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2314 Opcode == Instruction::FPExt) {
2325 return Ctx.TTI.getCastInstrCost(
2326 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2330#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2333 O << Indent <<
"WIDEN-CAST ";
2344 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2351 : ConstantFP::get(Ty,
C);
2354#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2359 O <<
" = WIDEN-INDUCTION ";
2363 O <<
" (truncated to " << *TI->getType() <<
")";
2375 auto *CanIV =
getRegion()->getCanonicalIV();
2376 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2385 O <<
" = DERIVED-IV ";
2409 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2416 AddOp = Instruction::Add;
2417 MulOp = Instruction::Mul;
2419 AddOp = InductionOpcode;
2420 MulOp = Instruction::FMul;
2429 Type *VecIVTy =
nullptr;
2430 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
2431 if (!FirstLaneOnly && State.VF.isScalable()) {
2435 SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2436 SplatIV = Builder.CreateVectorSplat(State.VF, BaseIV);
2439 unsigned StartLane = 0;
2440 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2442 StartLane = State.Lane->getKnownLane();
2443 EndLane = StartLane + 1;
2447 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2452 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2455 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2458 if (!FirstLaneOnly && State.VF.isScalable()) {
2459 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2460 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2462 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2463 auto *
Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2464 auto *
Add = Builder.CreateBinOp(AddOp, SplatIV,
Mul);
2465 State.set(
this,
Add);
2472 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2474 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2475 Value *StartIdx = Builder.CreateBinOp(
2480 "Expected StartIdx to be folded to a constant when VF is not "
2482 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2483 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2488#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2493 O <<
" = SCALAR-STEPS ";
2499 assert(State.VF.isVector() &&
"not widening");
2506 if (areAllOperandsInvariant()) {
2526 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2527 State.set(
this,
Splat);
2533 auto *
Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2540 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2547 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2548 "NewGEP is not a pointer vector");
2549 State.set(
this, NewGEP);
2553#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2556 O << Indent <<
"WIDEN-GEP ";
2557 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2559 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2563 O <<
" = getelementptr";
2573 const DataLayout &
DL = Builder.GetInsertBlock()->getDataLayout();
2574 return !IsUnitStride || (IsScalable && (IsReverse || CurrentPart > 0))
2575 ?
DL.getIndexType(Builder.getPtrTy(0))
2576 : Builder.getInt32Ty();
2580 auto &Builder = State.Builder;
2582 bool IsUnitStride = Stride == 1 || Stride == -1;
2584 IsUnitStride, CurrentPart, Builder);
2588 if (IndexTy != RunTimeVF->
getType())
2589 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2591 Value *NumElt = Builder.CreateMul(
2592 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2594 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2596 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2600 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2603 State.set(
this, ResultPtr,
true);
2606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2611 O <<
" = vector-end-pointer";
2618 auto &Builder = State.Builder;
2621 true, CurrentPart, Builder);
2628 State.set(
this, ResultPtr,
true);
2631#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2636 O <<
" = vector-pointer ";
2647 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2649 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2652 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2656#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2659 O << Indent <<
"BLEND ";
2681 assert(!State.Lane &&
"Reduction being replicated.");
2685 "In-loop AnyOf reductions aren't currently supported");
2691 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2696 if (State.VF.isVector())
2697 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2699 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2705 if (State.VF.isVector())
2709 NewRed = State.Builder.CreateBinOp(
2711 PrevInChain, NewVecOp);
2712 PrevInChain = NewRed;
2713 NextInChain = NewRed;
2718 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2720 NextInChain = State.Builder.CreateBinOp(
2722 PrevInChain, NewRed);
2724 State.set(
this, NextInChain,
true);
2728 assert(!State.Lane &&
"Reduction being replicated.");
2730 auto &Builder = State.Builder;
2742 Mask = State.get(CondOp);
2744 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2754 NewRed = Builder.CreateBinOp(
2758 State.set(
this, NewRed,
true);
2764 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2768 std::optional<FastMathFlags> OptionalFMF =
2775 "Any-of reduction not implemented in VPlan-based cost model currently.");
2781 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2786 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2791 ExpressionTypes ExpressionType,
2794 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2795 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2799 "expression cannot contain recipes with side-effects");
2803 for (
auto *R : ExpressionRecipes)
2804 ExpressionRecipesAsSetOfUsers.
insert(R);
2810 if (R != ExpressionRecipes.back() &&
2811 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2812 return !ExpressionRecipesAsSetOfUsers.contains(U);
2817 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2819 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2824 R->removeFromParent();
2831 for (
auto *R : ExpressionRecipes) {
2832 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2833 auto *
Def =
Op->getDefiningRecipe();
2834 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2837 LiveInPlaceholders.push_back(
new VPValue());
2843 for (
auto *R : ExpressionRecipes)
2844 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2845 R->replaceUsesOfWith(LiveIn, Tmp);
2849 for (
auto *R : ExpressionRecipes)
2852 if (!R->getParent())
2853 R->insertBefore(
this);
2856 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2859 ExpressionRecipes.clear();
2864 Type *RedTy = Ctx.Types.inferScalarType(
this);
2868 "VPExpressionRecipe only supports integer types currently.");
2871 switch (ExpressionType) {
2872 case ExpressionTypes::ExtendedReduction: {
2877 ? Ctx.TTI.getPartialReductionCost(
2878 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2883 : Ctx.TTI.getExtendedReductionCost(
2884 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2885 SrcVecTy, std::nullopt, Ctx.CostKind);
2887 case ExpressionTypes::MulAccReduction:
2888 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2891 case ExpressionTypes::ExtNegatedMulAccReduction:
2892 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2893 Opcode = Instruction::Sub;
2895 case ExpressionTypes::ExtMulAccReduction: {
2900 return Ctx.TTI.getPartialReductionCost(
2901 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2902 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2904 Ext0R->getOpcode()),
2906 Ext1R->getOpcode()),
2907 Mul->getOpcode(), Ctx.CostKind);
2909 return Ctx.TTI.getMulAccReductionCost(
2912 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2920 return R->mayReadFromMemory() || R->mayWriteToMemory();
2928 "expression cannot contain recipes with side-effects");
2939#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2943 O << Indent <<
"EXPRESSION ";
2950 switch (ExpressionType) {
2951 case ExpressionTypes::ExtendedReduction: {
2953 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
2960 << *Ext0->getResultType();
2961 if (Red->isConditional()) {
2968 case ExpressionTypes::ExtNegatedMulAccReduction: {
2970 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
2980 << *Ext0->getResultType() <<
"), (";
2984 << *Ext1->getResultType() <<
")";
2985 if (Red->isConditional()) {
2992 case ExpressionTypes::MulAccReduction:
2993 case ExpressionTypes::ExtMulAccReduction: {
2995 O <<
" + " << (IsPartialReduction ?
"partial." :
"") <<
"reduce.";
3000 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3002 : ExpressionRecipes[0]);
3010 << *Ext0->getResultType() <<
"), (";
3018 << *Ext1->getResultType() <<
")";
3020 if (Red->isConditional()) {
3032 O << Indent <<
"REDUCE ";
3052 O << Indent <<
"REDUCE ";
3080 assert((!Instr->getType()->isAggregateType() ||
3082 "Expected vectorizable or non-aggregate type.");
3085 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3089 Cloned->
setName(Instr->getName() +
".cloned");
3090 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3094 if (ResultTy != Cloned->
getType())
3105 State.setDebugLocFrom(
DL);
3110 auto InputLane = Lane;
3114 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3118 State.Builder.Insert(Cloned);
3120 State.set(RepRecipe, Cloned, Lane);
3124 State.AC->registerAssumption(
II);
3130 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3131 "Expected a recipe is either within a region or all of its operands "
3132 "are defined outside the vectorized region.");
3139 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3140 "must have already been unrolled");
3146 "uniform recipe shouldn't be predicated");
3147 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3152 State.Lane->isFirstLane()
3155 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3173 auto *PtrR =
Ptr->getDefiningRecipe();
3176 Instruction::GetElementPtr) ||
3184 if (!Opd->isDefinedOutsideLoopRegions() &&
3198 while (!WorkList.
empty()) {
3200 if (!Cur || !Seen.
insert(Cur).second)
3208 return Seen.contains(
3209 Blend->getIncomingValue(I)->getDefiningRecipe());
3213 for (
VPUser *U : Cur->users()) {
3215 if (InterleaveR->getAddr() == Cur)
3218 if (RepR->getOpcode() == Instruction::Load &&
3219 RepR->getOperand(0) == Cur)
3221 if (RepR->getOpcode() == Instruction::Store &&
3222 RepR->getOperand(1) == Cur)
3226 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3247 Ctx.SkipCostComputation.insert(UI);
3253 case Instruction::GetElementPtr:
3259 case Instruction::Call: {
3265 for (
const VPValue *ArgOp : ArgOps)
3266 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3268 if (CalledFn->isIntrinsic())
3271 switch (CalledFn->getIntrinsicID()) {
3272 case Intrinsic::assume:
3273 case Intrinsic::lifetime_end:
3274 case Intrinsic::lifetime_start:
3275 case Intrinsic::sideeffect:
3276 case Intrinsic::pseudoprobe:
3277 case Intrinsic::experimental_noalias_scope_decl: {
3280 "scalarizing intrinsic should be free");
3287 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3289 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3291 if (CalledFn->isIntrinsic())
3292 ScalarCallCost = std::min(
3296 return ScalarCallCost;
3300 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3302 case Instruction::Add:
3303 case Instruction::Sub:
3304 case Instruction::FAdd:
3305 case Instruction::FSub:
3306 case Instruction::Mul:
3307 case Instruction::FMul:
3308 case Instruction::FDiv:
3309 case Instruction::FRem:
3310 case Instruction::Shl:
3311 case Instruction::LShr:
3312 case Instruction::AShr:
3313 case Instruction::And:
3314 case Instruction::Or:
3315 case Instruction::Xor:
3316 case Instruction::ICmp:
3317 case Instruction::FCmp:
3321 case Instruction::SDiv:
3322 case Instruction::UDiv:
3323 case Instruction::SRem:
3324 case Instruction::URem: {
3331 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3340 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3347 case Instruction::Load:
3348 case Instruction::Store: {
3355 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3362 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3363 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3368 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3371 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3372 bool UsedByLoadStoreAddress =
3375 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3376 PtrTy, UsedByLoadStoreAddress ?
nullptr : &Ctx.SE,
3377 nullptr, Ctx.CostKind);
3387 if (!UsedByLoadStoreAddress) {
3388 bool EfficientVectorLoadStore =
3389 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3390 if (!(IsLoad && !PreferVectorizedAddressing) &&
3391 !(!IsLoad && EfficientVectorLoadStore))
3394 if (!EfficientVectorLoadStore)
3395 ResultTy = Ctx.Types.inferScalarType(
this);
3399 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3403 return Ctx.getLegacyCost(UI, VF);
3406#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3409 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3418 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3436 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3439 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3443 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3445 "Expected to replace unreachable terminator with conditional branch.");
3447 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3448 CondBr->setSuccessor(0,
nullptr);
3449 CurrentTerminator->eraseFromParent();
3461 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3466 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3468 "operand must be VPReplicateRecipe");
3479 "Packed operands must generate an insertelement or insertvalue");
3487 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3490 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3491 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3493 if (State.hasVectorValue(
this))
3494 State.reset(
this, VPhi);
3496 State.set(
this, VPhi);
3504 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3505 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3508 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3509 if (State.hasScalarValue(
this, *State.Lane))
3510 State.reset(
this, Phi, *State.Lane);
3512 State.set(
this, Phi, *State.Lane);
3515 State.reset(
getOperand(0), Phi, *State.Lane);
3519#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3522 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3533 ->getAddressSpace();
3536 : Instruction::Store;
3543 "Inconsecutive memory access should not have the order.");
3553 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3562 Ctx.TTI.getMaskedMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind);
3567 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3573 return Cost += Ctx.TTI.getShuffleCost(
3583 auto &Builder = State.Builder;
3584 Value *Mask =
nullptr;
3585 if (
auto *VPMask =
getMask()) {
3588 Mask = State.get(VPMask);
3590 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3596 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3597 "wide.masked.gather");
3600 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3603 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3607 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3608 State.set(
this, NewLI);
3611#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3614 O << Indent <<
"WIDEN ";
3626 Value *AllTrueMask =
3627 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3628 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3629 {Operand, AllTrueMask, EVL},
nullptr, Name);
3637 auto &Builder = State.Builder;
3641 Value *Mask =
nullptr;
3643 Mask = State.get(VPMask);
3647 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3652 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3653 nullptr,
"wide.masked.gather");
3655 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3656 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3664 State.set(
this, Res);
3679 ->getAddressSpace();
3681 Instruction::Load, Ty,
Alignment, AS, Ctx.CostKind);
3685 return Cost + Ctx.TTI.getShuffleCost(
3690#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3693 O << Indent <<
"WIDEN ";
3704 auto &Builder = State.Builder;
3706 Value *Mask =
nullptr;
3707 if (
auto *VPMask =
getMask()) {
3710 Mask = State.get(VPMask);
3712 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3715 Value *StoredVal = State.get(StoredVPValue);
3719 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3726 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3728 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3730 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3734#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3737 O << Indent <<
"WIDEN store ";
3746 auto &Builder = State.Builder;
3749 Value *StoredVal = State.get(StoredValue);
3753 Value *Mask =
nullptr;
3755 Mask = State.get(VPMask);
3759 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3762 if (CreateScatter) {
3764 Intrinsic::vp_scatter,
3765 {StoredVal, Addr, Mask, EVL});
3768 Intrinsic::vp_store,
3769 {StoredVal, Addr, Mask, EVL});
3788 ->getAddressSpace();
3790 Instruction::Store, Ty,
Alignment, AS, Ctx.CostKind);
3794 return Cost + Ctx.TTI.getShuffleCost(
3799#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3802 O << Indent <<
"WIDEN vp.store ";
3810 auto VF = DstVTy->getElementCount();
3812 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3813 Type *SrcElemTy = SrcVecTy->getElementType();
3814 Type *DstElemTy = DstVTy->getElementType();
3815 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3816 "Vector elements must have same size");
3820 return Builder.CreateBitOrPointerCast(V, DstVTy);
3827 "Only one type should be a pointer type");
3829 "Only one type should be a floating point type");
3833 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3834 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3840 const Twine &Name) {
3841 unsigned Factor = Vals.
size();
3842 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3846 for (
Value *Val : Vals)
3847 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3852 if (VecTy->isScalableTy()) {
3853 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3854 return Builder.CreateVectorInterleave(Vals, Name);
3861 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3862 return Builder.CreateShuffleVector(
3895 assert(!State.Lane &&
"Interleave group being replicated.");
3897 "Masking gaps for scalable vectors is not yet supported.");
3903 unsigned InterleaveFactor = Group->
getFactor();
3910 auto CreateGroupMask = [&BlockInMask, &State,
3911 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3912 if (State.VF.isScalable()) {
3913 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3914 assert(InterleaveFactor <= 8 &&
3915 "Unsupported deinterleave factor for scalable vectors");
3916 auto *ResBlockInMask = State.get(BlockInMask);
3924 Value *ResBlockInMask = State.get(BlockInMask);
3925 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3928 "interleaved.mask");
3929 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3930 ShuffledMask, MaskForGaps)
3934 const DataLayout &DL = Instr->getDataLayout();
3937 Value *MaskForGaps =
nullptr;
3941 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3945 if (BlockInMask || MaskForGaps) {
3946 Value *GroupMask = CreateGroupMask(MaskForGaps);
3948 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3950 PoisonVec,
"wide.masked.vec");
3952 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3959 if (VecTy->isScalableTy()) {
3962 assert(InterleaveFactor <= 8 &&
3963 "Unsupported deinterleave factor for scalable vectors");
3964 NewLoad = State.Builder.CreateIntrinsic(
3967 nullptr,
"strided.vec");
3970 auto CreateStridedVector = [&InterleaveFactor, &State,
3971 &NewLoad](
unsigned Index) ->
Value * {
3972 assert(Index < InterleaveFactor &&
"Illegal group index");
3973 if (State.VF.isScalable())
3974 return State.Builder.CreateExtractValue(NewLoad, Index);
3980 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3984 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3991 Value *StridedVec = CreateStridedVector(
I);
3994 if (Member->getType() != ScalarTy) {
4001 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4003 State.set(VPDefs[J], StridedVec);
4013 Value *MaskForGaps =
4016 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4020 unsigned StoredIdx = 0;
4021 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4023 "Fail to get a member from an interleaved store group");
4033 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4037 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4041 if (StoredVec->
getType() != SubVT)
4050 if (BlockInMask || MaskForGaps) {
4051 Value *GroupMask = CreateGroupMask(MaskForGaps);
4052 NewStoreInstr = State.Builder.CreateMaskedStore(
4053 IVec, ResAddr, Group->
getAlign(), GroupMask);
4056 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4063#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4067 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4068 IG->getInsertPos()->printAsOperand(O,
false);
4078 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4079 if (!IG->getMember(i))
4082 O <<
"\n" << Indent <<
" store ";
4084 O <<
" to index " << i;
4086 O <<
"\n" << Indent <<
" ";
4088 O <<
" = load from index " << i;
4096 assert(!State.Lane &&
"Interleave group being replicated.");
4097 assert(State.VF.isScalable() &&
4098 "Only support scalable VF for EVL tail-folding.");
4100 "Masking gaps for scalable vectors is not yet supported.");
4106 unsigned InterleaveFactor = Group->
getFactor();
4107 assert(InterleaveFactor <= 8 &&
4108 "Unsupported deinterleave/interleave factor for scalable vectors");
4115 Value *InterleaveEVL = State.Builder.CreateMul(
4116 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4120 Value *GroupMask =
nullptr;
4126 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4131 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4132 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4143 NewLoad = State.Builder.CreateIntrinsic(
4146 nullptr,
"strided.vec");
4148 const DataLayout &DL = Instr->getDataLayout();
4149 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4155 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4157 if (Member->getType() != ScalarTy) {
4175 const DataLayout &DL = Instr->getDataLayout();
4176 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4184 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4186 if (StoredVec->
getType() != SubVT)
4196 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4197 {IVec, ResAddr, GroupMask, InterleaveEVL});
4206#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4210 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4211 IG->getInsertPos()->printAsOperand(O,
false);
4222 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4223 if (!IG->getMember(i))
4226 O <<
"\n" << Indent <<
" vp.store ";
4228 O <<
" to index " << i;
4230 O <<
"\n" << Indent <<
" ";
4232 O <<
" = vp.load from index " << i;
4243 unsigned InsertPosIdx = 0;
4244 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4245 if (
auto *Member = IG->getMember(Idx)) {
4246 if (Member == InsertPos)
4250 Type *ValTy = Ctx.Types.inferScalarType(
4255 ->getAddressSpace();
4257 unsigned InterleaveFactor = IG->getFactor();
4262 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4263 if (IG->getMember(IF))
4268 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4269 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4271 if (!IG->isReverse())
4274 return Cost + IG->getNumMembers() *
4276 VectorTy, VectorTy, {}, Ctx.CostKind,
4280#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4283 O << Indent <<
"EMIT ";
4285 O <<
" = CANONICAL-INDUCTION ";
4291 return IsScalarAfterVectorization &&
4295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4299 "unexpected number of operands");
4300 O << Indent <<
"EMIT ";
4302 O <<
" = WIDEN-POINTER-INDUCTION ";
4318 O << Indent <<
"EMIT ";
4320 O <<
" = EXPAND SCEV " << *Expr;
4327 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4331 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4334 VStep = Builder.CreateVectorSplat(VF, VStep);
4336 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4338 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4339 State.set(
this, CanonicalVectorIV);
4342#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4345 O << Indent <<
"EMIT ";
4347 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4353 auto &Builder = State.Builder;
4357 Type *VecTy = State.VF.isScalar()
4358 ? VectorInit->getType()
4362 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4363 if (State.VF.isVector()) {
4365 auto *One = ConstantInt::get(IdxTy, 1);
4368 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4369 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4370 VectorInit = Builder.CreateInsertElement(
4376 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4377 Phi->addIncoming(VectorInit, VectorPH);
4378 State.set(
this, Phi);
4385 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4390#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4393 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4410 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4411 bool ScalarPHI = State.VF.isScalar() || IsInLoop;
4412 Value *StartV = State.get(StartVPV, ScalarPHI);
4416 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4417 "recipe must be in the vector loop header");
4420 State.set(
this, Phi, IsInLoop);
4422 Phi->addIncoming(StartV, VectorPH);
4425#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4428 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4433 if (VFScaleFactor != 1)
4434 O <<
" (VF scaled by 1/" << VFScaleFactor <<
")";
4441 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4442 State.set(
this, VecPhi);
4445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4448 O << Indent <<
"WIDEN-PHI ";
4460 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4463 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4464 Phi->addIncoming(StartMask, VectorPH);
4465 State.set(
this, Phi);
4468#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4471 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4479#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4482 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
static SDValue Widen(SelectionDAG *CurDAG, SDValue N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, bool IsUnitStride, unsigned CurrentPart, IRBuilderBase &Builder)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static bool shouldUseAddressAccessSCEV(const VPValue *Ptr)
Returns true if Ptr is a pointer computation for which the legacy cost model computes a SCEV expressi...
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
Class for arbitrary precision integers.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
std::pair< MDNode *, MDNode * > getNoAliasMetadataFor(const Instruction *OrigInst) const
Returns a pair containing the alias_scope and noalias metadata nodes for OrigInst,...
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void extractLastLaneOfFirstOperand(VPBuilder &Builder)
Update the recipes first operand to the last lane of the operand using Builder.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPPartialReductionRecipe.
unsigned getOpcode() const
Get the binary op's opcode.
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPRegionBlock * getRegion()
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
@ Increment
Incrementally increasing token ID.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.