47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPCanonicalIVPHISC:
77 case VPBranchOnMaskSC:
79 case VPFirstOrderRecurrencePHISC:
80 case VPReductionPHISC:
81 case VPScalarIVStepsSC:
85 case VPReductionEVLSC:
87 case VPVectorPointerSC:
88 case VPWidenCanonicalIVSC:
91 case VPWidenIntOrFpInductionSC:
92 case VPWidenLoadEVLSC:
95 case VPWidenPointerInductionSC:
97 case VPWidenSelectSC: {
101 assert((!
I || !
I->mayWriteToMemory()) &&
102 "underlying instruction may write to memory");
114 case VPInstructionSC:
116 case VPWidenLoadEVLSC:
121 ->mayReadFromMemory();
124 ->getCalledScalarFunction()
125 ->onlyWritesMemory();
126 case VPWidenIntrinsicSC:
128 case VPBranchOnMaskSC:
130 case VPFirstOrderRecurrencePHISC:
131 case VPPredInstPHISC:
132 case VPScalarIVStepsSC:
133 case VPWidenStoreEVLSC:
137 case VPReductionEVLSC:
139 case VPVectorPointerSC:
140 case VPWidenCanonicalIVSC:
143 case VPWidenIntOrFpInductionSC:
145 case VPWidenPointerInductionSC:
147 case VPWidenSelectSC: {
151 assert((!
I || !
I->mayReadFromMemory()) &&
152 "underlying instruction may read from memory");
166 case VPFirstOrderRecurrencePHISC:
167 case VPPredInstPHISC:
168 case VPVectorEndPointerSC:
170 case VPInstructionSC: {
176 case VPWidenCallSC: {
180 case VPWidenIntrinsicSC:
183 case VPReductionEVLSC:
185 case VPScalarIVStepsSC:
186 case VPVectorPointerSC:
187 case VPWidenCanonicalIVSC:
190 case VPWidenIntOrFpInductionSC:
192 case VPWidenPointerInductionSC:
194 case VPWidenSelectSC: {
198 assert((!
I || !
I->mayHaveSideEffects()) &&
199 "underlying instruction has side-effects");
202 case VPInterleaveEVLSC:
205 case VPWidenLoadEVLSC:
207 case VPWidenStoreEVLSC:
212 "mayHaveSideffects result for ingredient differs from this "
215 case VPReplicateSC: {
217 return R->getUnderlyingInstr()->mayHaveSideEffects();
225 assert(!Parent &&
"Recipe already in some VPBasicBlock");
227 "Insertion position not in any VPBasicBlock");
233 assert(!Parent &&
"Recipe already in some VPBasicBlock");
239 assert(!Parent &&
"Recipe already in some VPBasicBlock");
241 "Insertion position not in any VPBasicBlock");
276 UI = IG->getInsertPos();
278 UI = &WidenMem->getIngredient();
281 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
295 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
317 assert(OpType == Other.OpType &&
"OpType must match");
319 case OperationType::OverflowingBinOp:
320 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
321 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
323 case OperationType::Trunc:
327 case OperationType::DisjointOp:
330 case OperationType::PossiblyExactOp:
331 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
333 case OperationType::GEPOp:
336 case OperationType::FPMathOp:
337 case OperationType::FCmp:
338 assert((OpType != OperationType::FCmp ||
339 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
340 "Cannot drop CmpPredicate");
341 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
342 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
344 case OperationType::NonNegOp:
347 case OperationType::Cmp:
350 case OperationType::Other:
357 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
358 "recipe doesn't have fast math flags");
359 const FastMathFlagsTy &
F = getFMFsRef();
371#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
387template <
unsigned PartOpIdx>
390 if (U.getNumOperands() == PartOpIdx + 1)
391 return U.getOperand(PartOpIdx);
395template <
unsigned PartOpIdx>
414 "Set flags not supported for the provided opcode");
415 assert((getNumOperandsForOpcode(Opcode) == -1u ||
417 "number of operands does not match opcode");
421unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
432 case Instruction::Alloca:
433 case Instruction::ExtractValue:
434 case Instruction::Freeze:
435 case Instruction::Load:
451 case Instruction::ICmp:
452 case Instruction::FCmp:
453 case Instruction::ExtractElement:
454 case Instruction::Store:
464 case Instruction::Select:
471 case Instruction::Call:
472 case Instruction::GetElementPtr:
473 case Instruction::PHI:
474 case Instruction::Switch:
491bool VPInstruction::canGenerateScalarForFirstLane()
const {
497 case Instruction::Freeze:
498 case Instruction::ICmp:
499 case Instruction::PHI:
500 case Instruction::Select:
516 IRBuilderBase &Builder = State.
Builder;
535 case Instruction::ExtractElement: {
538 unsigned IdxToExtract =
546 case Instruction::Freeze: {
550 case Instruction::FCmp:
551 case Instruction::ICmp: {
557 case Instruction::PHI: {
560 case Instruction::Select: {
586 {VIVElem0, ScalarTC},
nullptr, Name);
602 if (!V1->getType()->isVectorTy())
622 "Requested vector length should be an integer.");
628 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
629 {AVL, VFArg, Builder.getTrue()});
635 assert(Part != 0 &&
"Must have a positive part");
648 VPBasicBlock *SecondVPSucc =
670 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
694 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
713 ReducedPartRdx,
"bin.rdx");
722 RecurKind RK = PhiR->getRecurrenceKind();
724 "Unexpected reduction kind");
725 assert(!PhiR->isInLoop() &&
726 "In-loop FindLastIV reduction is not supported yet");
738 for (
unsigned Part = 1; Part <
UF; ++Part)
739 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
753 RecurKind RK = PhiR->getRecurrenceKind();
755 "should be handled by ComputeFindIVResult");
761 for (
unsigned Part = 0; Part <
UF; ++Part)
762 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
764 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
769 Value *ReducedPartRdx = RdxParts[0];
770 if (PhiR->isOrdered()) {
771 ReducedPartRdx = RdxParts[
UF - 1];
774 for (
unsigned Part = 1; Part <
UF; ++Part) {
775 Value *RdxPart = RdxParts[Part];
777 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
786 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
793 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
800 return ReducedPartRdx;
809 "invalid offset to extract from");
814 assert(
Offset <= 1 &&
"invalid offset to extract from");
828 "can only generate first lane for PtrAdd");
848 Value *Res =
nullptr;
853 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
854 Value *VectorIdx = Idx == 1
856 : Builder.
CreateSub(LaneToExtract, VectorStart);
881 Value *Res =
nullptr;
882 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
883 Value *TrailingZeros =
915 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
918 case Instruction::FNeg:
919 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
920 case Instruction::UDiv:
921 case Instruction::SDiv:
922 case Instruction::SRem:
923 case Instruction::URem:
924 case Instruction::Add:
925 case Instruction::FAdd:
926 case Instruction::Sub:
927 case Instruction::FSub:
928 case Instruction::Mul:
929 case Instruction::FMul:
930 case Instruction::FDiv:
931 case Instruction::FRem:
932 case Instruction::Shl:
933 case Instruction::LShr:
934 case Instruction::AShr:
935 case Instruction::And:
936 case Instruction::Or:
937 case Instruction::Xor: {
945 RHSInfo = Ctx.getOperandInfo(RHS);
956 return Ctx.TTI.getArithmeticInstrCost(
957 Opcode, ResultTy, Ctx.CostKind,
958 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
959 RHSInfo, Operands, CtxI, &Ctx.TLI);
961 case Instruction::Freeze:
963 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
965 case Instruction::ExtractValue:
966 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
968 case Instruction::ICmp:
969 case Instruction::FCmp: {
973 return Ctx.TTI.getCmpSelInstrCost(
975 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
976 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
992 "Should only generate a vector value or single scalar, not scalars "
1000 case Instruction::Select: {
1003 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1004 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1009 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1012 case Instruction::ExtractElement:
1022 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1026 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1027 return Ctx.TTI.getArithmeticReductionCost(
1033 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1040 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1041 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1046 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1053 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1056 Cost += Ctx.TTI.getArithmeticInstrCost(
1057 Instruction::Xor, PredTy, Ctx.CostKind,
1058 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1059 {TargetTransformInfo::OK_UniformConstantValue,
1060 TargetTransformInfo::OP_None});
1062 Cost += Ctx.TTI.getArithmeticInstrCost(
1070 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1079 unsigned Multiplier =
1084 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1091 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1092 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1095 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1099 VectorTy, {}, Ctx.CostKind,
1105 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1106 VecTy, Ctx.CostKind, 0);
1116 "unexpected VPInstruction witht underlying value");
1124 getOpcode() == Instruction::ExtractElement ||
1136 case Instruction::PHI:
1147 assert(!State.Lane &&
"VPInstruction executing an Lane");
1150 "Set flags not supported for the provided opcode");
1153 Value *GeneratedValue = generate(State);
1156 assert(GeneratedValue &&
"generate must produce a value");
1157 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1162 !GeneratesPerFirstLaneOnly) ||
1163 State.VF.isScalar()) &&
1164 "scalar value but not only first lane defined");
1165 State.set(
this, GeneratedValue,
1166 GeneratesPerFirstLaneOnly);
1173 case Instruction::GetElementPtr:
1174 case Instruction::ExtractElement:
1175 case Instruction::Freeze:
1176 case Instruction::FCmp:
1177 case Instruction::ICmp:
1178 case Instruction::Select:
1179 case Instruction::PHI:
1221 case Instruction::ExtractElement:
1223 case Instruction::PHI:
1225 case Instruction::FCmp:
1226 case Instruction::ICmp:
1227 case Instruction::Select:
1228 case Instruction::Or:
1229 case Instruction::Freeze:
1270 case Instruction::FCmp:
1271 case Instruction::ICmp:
1272 case Instruction::Select:
1282#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1290 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1302 O <<
"combined load";
1305 O <<
"combined store";
1308 O <<
"active lane mask";
1311 O <<
"EXPLICIT-VECTOR-LENGTH";
1314 O <<
"first-order splice";
1317 O <<
"branch-on-cond";
1320 O <<
"TC > VF ? TC - VF : 0";
1326 O <<
"branch-on-count";
1332 O <<
"buildstructvector";
1338 O <<
"extract-lane";
1341 O <<
"extract-last-lane";
1344 O <<
"extract-last-part";
1347 O <<
"extract-penultimate-element";
1350 O <<
"compute-anyof-result";
1353 O <<
"compute-find-iv-result";
1356 O <<
"compute-reduction-result";
1371 O <<
"first-active-lane";
1374 O <<
"last-active-lane";
1377 O <<
"reduction-start-vector";
1380 O <<
"resume-for-epilogue";
1403 State.set(
this, Cast,
VPLane(0));
1414 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1415 State.set(
this,
VScale,
true);
1424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1427 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1433 O <<
"wide-iv-step ";
1437 O <<
"step-vector " << *ResultTy;
1440 O <<
"vscale " << *ResultTy;
1446 O <<
" to " << *ResultTy;
1453 PHINode *NewPhi = State.Builder.CreatePHI(
1454 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1461 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1466 State.set(
this, NewPhi,
VPLane(0));
1469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1487 "PHINodes must be handled by VPIRPhi");
1490 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1503 "can only update exiting operands to phi nodes");
1514#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 O << Indent <<
"IR " << I;
1529 auto *PredVPBB = Pred->getExitingBasicBlock();
1530 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1537 if (Phi->getBasicBlockIndex(PredBB) == -1)
1538 Phi->addIncoming(V, PredBB);
1540 Phi->setIncomingValueForBlock(PredBB, V);
1545 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1550 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1551 "Number of phi operands must match number of predecessors");
1552 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1553 R->removeOperand(Position);
1556#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1570#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1576 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1581 std::get<1>(
Op)->printAsOperand(O);
1589 for (
const auto &[Kind,
Node] : Metadata)
1590 I.setMetadata(Kind,
Node);
1595 for (
const auto &[KindA, MDA] : Metadata) {
1596 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1597 if (KindA == KindB && MDA == MDB) {
1603 Metadata = std::move(MetadataIntersection);
1606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1609 if (Metadata.empty() || !M)
1615 auto [Kind,
Node] = KindNodePair;
1617 "Unexpected unnamed metadata kind");
1618 O <<
"!" << MDNames[Kind] <<
" ";
1626 assert(State.VF.isVector() &&
"not widening");
1627 assert(Variant !=
nullptr &&
"Can't create vector function.");
1638 Arg = State.get(
I.value(),
VPLane(0));
1641 Args.push_back(Arg);
1647 CI->getOperandBundlesAsDefs(OpBundles);
1649 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1652 V->setCallingConv(Variant->getCallingConv());
1654 if (!V->getType()->isVoidTy())
1660 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1661 Variant->getFunctionType()->params(),
1665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1668 O << Indent <<
"WIDEN-CALL ";
1680 O <<
" @" << CalledFn->
getName() <<
"(";
1686 O <<
" (using library function";
1687 if (Variant->hasName())
1688 O <<
": " << Variant->getName();
1694 assert(State.VF.isVector() &&
"not widening");
1707 Arg = State.get(
I.value(),
VPLane(0));
1713 Args.push_back(Arg);
1717 Module *M = State.Builder.GetInsertBlock()->getModule();
1721 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1726 CI->getOperandBundlesAsDefs(OpBundles);
1728 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1733 if (!V->getType()->isVoidTy())
1749 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1750 auto *V =
Op->getUnderlyingValue();
1753 Arguments.push_back(UI->getArgOperand(Idx));
1762 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1768 : Ctx.Types.inferScalarType(
Op));
1773 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1778 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1803 O << Indent <<
"WIDEN-INTRINSIC ";
1804 if (ResultTy->isVoidTy()) {
1832 Value *Mask =
nullptr;
1834 Mask = State.get(VPMask);
1837 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1841 if (Opcode == Instruction::Sub)
1842 IncAmt = Builder.CreateNeg(IncAmt);
1844 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1846 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1861 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1867 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1880 {PtrTy, IncTy, MaskTy});
1883 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1884 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1887#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1890 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1893 if (Opcode == Instruction::Sub)
1896 assert(Opcode == Instruction::Add);
1909 O << Indent <<
"WIDEN-SELECT ";
1928 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1929 State.set(
this, Sel);
1941 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1942 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1950 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1951 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1955 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1956 Operands.
append(
SI->op_begin(),
SI->op_end());
1958 return Ctx.TTI.getArithmeticInstrCost(
1959 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1960 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
1971 Pred = Cmp->getPredicate();
1972 return Ctx.TTI.getCmpSelInstrCost(
1973 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1974 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1977VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
1990 case OperationType::OverflowingBinOp:
1991 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1992 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1993 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1994 case OperationType::Trunc:
1995 return Opcode == Instruction::Trunc;
1996 case OperationType::DisjointOp:
1997 return Opcode == Instruction::Or;
1998 case OperationType::PossiblyExactOp:
1999 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2000 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2001 case OperationType::GEPOp:
2002 return Opcode == Instruction::GetElementPtr ||
2005 case OperationType::FPMathOp:
2006 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2007 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2008 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2009 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2010 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2014 case OperationType::FCmp:
2015 return Opcode == Instruction::FCmp;
2016 case OperationType::NonNegOp:
2017 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2018 case OperationType::Cmp:
2019 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2020 case OperationType::Other:
2027#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2030 case OperationType::Cmp:
2033 case OperationType::FCmp:
2037 case OperationType::DisjointOp:
2041 case OperationType::PossiblyExactOp:
2045 case OperationType::OverflowingBinOp:
2051 case OperationType::Trunc:
2057 case OperationType::FPMathOp:
2060 case OperationType::GEPOp:
2063 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2068 case OperationType::NonNegOp:
2072 case OperationType::Other:
2080 auto &Builder = State.Builder;
2082 case Instruction::Call:
2083 case Instruction::Br:
2084 case Instruction::PHI:
2085 case Instruction::GetElementPtr:
2086 case Instruction::Select:
2088 case Instruction::UDiv:
2089 case Instruction::SDiv:
2090 case Instruction::SRem:
2091 case Instruction::URem:
2092 case Instruction::Add:
2093 case Instruction::FAdd:
2094 case Instruction::Sub:
2095 case Instruction::FSub:
2096 case Instruction::FNeg:
2097 case Instruction::Mul:
2098 case Instruction::FMul:
2099 case Instruction::FDiv:
2100 case Instruction::FRem:
2101 case Instruction::Shl:
2102 case Instruction::LShr:
2103 case Instruction::AShr:
2104 case Instruction::And:
2105 case Instruction::Or:
2106 case Instruction::Xor: {
2110 Ops.push_back(State.get(VPOp));
2112 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2123 case Instruction::ExtractValue: {
2127 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2128 State.set(
this, Extract);
2131 case Instruction::Freeze: {
2133 Value *Freeze = Builder.CreateFreeze(
Op);
2134 State.set(
this, Freeze);
2137 case Instruction::ICmp:
2138 case Instruction::FCmp: {
2140 bool FCmp = Opcode == Instruction::FCmp;
2167 State.get(
this)->getType() &&
2168 "inferred type and type from generated instructions do not match");
2175 case Instruction::UDiv:
2176 case Instruction::SDiv:
2177 case Instruction::SRem:
2178 case Instruction::URem:
2183 case Instruction::FNeg:
2184 case Instruction::Add:
2185 case Instruction::FAdd:
2186 case Instruction::Sub:
2187 case Instruction::FSub:
2188 case Instruction::Mul:
2189 case Instruction::FMul:
2190 case Instruction::FDiv:
2191 case Instruction::FRem:
2192 case Instruction::Shl:
2193 case Instruction::LShr:
2194 case Instruction::AShr:
2195 case Instruction::And:
2196 case Instruction::Or:
2197 case Instruction::Xor:
2198 case Instruction::Freeze:
2199 case Instruction::ExtractValue:
2200 case Instruction::ICmp:
2201 case Instruction::FCmp:
2208#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2211 O << Indent <<
"WIDEN ";
2220 auto &Builder = State.Builder;
2222 assert(State.VF.isVector() &&
"Not vectorizing?");
2227 State.set(
this, Cast);
2251 if (WidenMemoryRecipe ==
nullptr)
2253 if (!WidenMemoryRecipe->isConsecutive())
2255 if (WidenMemoryRecipe->isReverse())
2257 if (WidenMemoryRecipe->isMasked())
2265 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
2267 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
2276 CCH = ComputeCCH(Recipe);
2280 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2281 Opcode == Instruction::FPExt) {
2289 CCH = ComputeCCH(Recipe);
2297 return Ctx.TTI.getCastInstrCost(
2298 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2302#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2305 O << Indent <<
"WIDEN-CAST ";
2316 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2323 : ConstantFP::get(Ty,
C);
2326#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2331 O <<
" = WIDEN-INDUCTION";
2336 O <<
" (truncated to " << *TI->getType() <<
")";
2348 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2352#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2357 O <<
" = DERIVED-IV ";
2381 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2388 AddOp = Instruction::Add;
2389 MulOp = Instruction::Mul;
2391 AddOp = InductionOpcode;
2392 MulOp = Instruction::FMul;
2402 unsigned StartLane = 0;
2403 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2405 StartLane = State.Lane->getKnownLane();
2406 EndLane = StartLane + 1;
2410 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2415 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2418 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2422 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2424 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2425 Value *StartIdx = Builder.CreateBinOp(
2430 "Expected StartIdx to be folded to a constant when VF is not "
2432 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2433 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2438#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2443 O <<
" = SCALAR-STEPS ";
2454 assert(State.VF.isVector() &&
"not widening");
2463 [](
VPValue *
Op) {
return !
Op->isDefinedOutsideLoopRegions(); }) &&
2464 "Expected at least one loop-variant operand");
2470 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2477 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2484 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2485 "NewGEP is not a pointer vector");
2486 State.set(
this, NewGEP);
2489#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2492 O << Indent <<
"WIDEN-GEP ";
2493 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2495 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2499 O <<
" = getelementptr";
2506 auto &Builder = State.Builder;
2508 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2509 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2513 if (IndexTy != RunTimeVF->
getType())
2514 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2516 Value *NumElt = Builder.CreateMul(
2517 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2519 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2526 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2529 State.set(
this, ResultPtr,
true);
2532#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2537 O <<
" = vector-end-pointer";
2544 auto &Builder = State.Builder;
2546 "Expected prior simplification of recipe without offset");
2551 State.set(
this, ResultPtr,
true);
2554#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2559 O <<
" = vector-pointer";
2572 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2575 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2579#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2582 O << Indent <<
"BLEND ";
2604 assert(!State.Lane &&
"Reduction being replicated.");
2607 "In-loop AnyOf reductions aren't currently supported");
2613 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2618 if (State.VF.isVector())
2619 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2621 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2628 if (State.VF.isVector())
2632 NewRed = State.Builder.CreateBinOp(
2634 PrevInChain, NewVecOp);
2635 PrevInChain = NewRed;
2636 NextInChain = NewRed;
2640 NewRed = State.Builder.CreateIntrinsic(
2641 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2642 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2643 PrevInChain = NewRed;
2644 NextInChain = NewRed;
2647 "The reduction must either be ordered, partial or in-loop");
2651 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2653 NextInChain = State.Builder.CreateBinOp(
2655 PrevInChain, NewRed);
2661 assert(!State.Lane &&
"Reduction being replicated.");
2663 auto &Builder = State.Builder;
2675 Mask = State.get(CondOp);
2677 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2687 NewRed = Builder.CreateBinOp(
2691 State.set(
this, NewRed,
true);
2697 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2701 std::optional<FastMathFlags> OptionalFMF =
2710 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2711 CondTy, Pred, Ctx.CostKind);
2713 return CondCost + Ctx.TTI.getPartialReductionCost(
2714 Opcode, ElementTy, ElementTy, ElementTy, VF,
2724 "Any-of reduction not implemented in VPlan-based cost model currently.");
2730 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2735 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2740 ExpressionTypes ExpressionType,
2743 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2744 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2748 "expression cannot contain recipes with side-effects");
2752 for (
auto *R : ExpressionRecipes)
2753 ExpressionRecipesAsSetOfUsers.
insert(R);
2759 if (R != ExpressionRecipes.back() &&
2760 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2761 return !ExpressionRecipesAsSetOfUsers.contains(U);
2766 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2768 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2773 R->removeFromParent();
2780 for (
auto *R : ExpressionRecipes) {
2781 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2782 auto *
Def =
Op->getDefiningRecipe();
2783 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2786 LiveInPlaceholders.push_back(
new VPValue());
2792 for (
auto *R : ExpressionRecipes)
2793 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2794 R->replaceUsesOfWith(LiveIn, Tmp);
2798 for (
auto *R : ExpressionRecipes)
2801 if (!R->getParent())
2802 R->insertBefore(
this);
2805 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2808 ExpressionRecipes.clear();
2813 Type *RedTy = Ctx.Types.inferScalarType(
this);
2817 "VPExpressionRecipe only supports integer types currently.");
2820 switch (ExpressionType) {
2821 case ExpressionTypes::ExtendedReduction: {
2827 ->isPartialReduction()
2828 ? Ctx.TTI.getPartialReductionCost(
2829 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2834 : Ctx.TTI.getExtendedReductionCost(
2835 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2836 SrcVecTy, std::nullopt, Ctx.CostKind);
2838 case ExpressionTypes::MulAccReduction:
2839 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2842 case ExpressionTypes::ExtNegatedMulAccReduction:
2843 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2844 Opcode = Instruction::Sub;
2846 case ExpressionTypes::ExtMulAccReduction: {
2848 if (RedR->isPartialReduction()) {
2852 return Ctx.TTI.getPartialReductionCost(
2853 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2854 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2856 Ext0R->getOpcode()),
2858 Ext1R->getOpcode()),
2859 Mul->getOpcode(), Ctx.CostKind);
2861 return Ctx.TTI.getMulAccReductionCost(
2864 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2872 return R->mayReadFromMemory() || R->mayWriteToMemory();
2880 "expression cannot contain recipes with side-effects");
2888 return RR && !RR->isPartialReduction();
2891#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2895 O << Indent <<
"EXPRESSION ";
2901 switch (ExpressionType) {
2902 case ExpressionTypes::ExtendedReduction: {
2904 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2911 << *Ext0->getResultType();
2912 if (Red->isConditional()) {
2919 case ExpressionTypes::ExtNegatedMulAccReduction: {
2921 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2931 << *Ext0->getResultType() <<
"), (";
2935 << *Ext1->getResultType() <<
")";
2936 if (Red->isConditional()) {
2943 case ExpressionTypes::MulAccReduction:
2944 case ExpressionTypes::ExtMulAccReduction: {
2946 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2951 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2953 : ExpressionRecipes[0]);
2961 << *Ext0->getResultType() <<
"), (";
2969 << *Ext1->getResultType() <<
")";
2971 if (Red->isConditional()) {
2984 O << Indent <<
"PARTIAL-REDUCE ";
2986 O << Indent <<
"REDUCE ";
3006 O << Indent <<
"REDUCE ";
3034 assert((!Instr->getType()->isAggregateType() ||
3036 "Expected vectorizable or non-aggregate type.");
3039 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3043 Cloned->
setName(Instr->getName() +
".cloned");
3044 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3048 if (ResultTy != Cloned->
getType())
3059 State.setDebugLocFrom(
DL);
3064 auto InputLane = Lane;
3068 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3072 State.Builder.Insert(Cloned);
3074 State.set(RepRecipe, Cloned, Lane);
3078 State.AC->registerAssumption(
II);
3084 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3085 "Expected a recipe is either within a region or all of its operands "
3086 "are defined outside the vectorized region.");
3093 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3094 "must have already been unrolled");
3100 "uniform recipe shouldn't be predicated");
3101 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3106 State.Lane->isFirstLane()
3109 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3135 Instruction::GetElementPtr) ||
3153 while (!WorkList.
empty()) {
3155 if (!Cur || !Seen.
insert(Cur).second)
3163 return Seen.contains(
3164 Blend->getIncomingValue(I)->getDefiningRecipe());
3168 for (
VPUser *U : Cur->users()) {
3170 if (InterleaveR->getAddr() == Cur)
3173 if (RepR->getOpcode() == Instruction::Load &&
3174 RepR->getOperand(0) == Cur)
3176 if (RepR->getOpcode() == Instruction::Store &&
3177 RepR->getOperand(1) == Cur)
3181 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3202 Ctx.SkipCostComputation.insert(UI);
3208 case Instruction::GetElementPtr:
3214 case Instruction::Call: {
3220 for (
const VPValue *ArgOp : ArgOps)
3221 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3223 if (CalledFn->isIntrinsic())
3226 switch (CalledFn->getIntrinsicID()) {
3227 case Intrinsic::assume:
3228 case Intrinsic::lifetime_end:
3229 case Intrinsic::lifetime_start:
3230 case Intrinsic::sideeffect:
3231 case Intrinsic::pseudoprobe:
3232 case Intrinsic::experimental_noalias_scope_decl: {
3235 "scalarizing intrinsic should be free");
3242 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3244 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3246 if (CalledFn->isIntrinsic())
3247 ScalarCallCost = std::min(
3251 return ScalarCallCost;
3255 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3257 case Instruction::Add:
3258 case Instruction::Sub:
3259 case Instruction::FAdd:
3260 case Instruction::FSub:
3261 case Instruction::Mul:
3262 case Instruction::FMul:
3263 case Instruction::FDiv:
3264 case Instruction::FRem:
3265 case Instruction::Shl:
3266 case Instruction::LShr:
3267 case Instruction::AShr:
3268 case Instruction::And:
3269 case Instruction::Or:
3270 case Instruction::Xor:
3271 case Instruction::ICmp:
3272 case Instruction::FCmp:
3276 case Instruction::SDiv:
3277 case Instruction::UDiv:
3278 case Instruction::SRem:
3279 case Instruction::URem: {
3286 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3295 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3299 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3302 case Instruction::Load:
3303 case Instruction::Store: {
3310 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3316 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3317 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3322 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3325 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3326 bool UsedByLoadStoreAddress =
3330 Ctx.TTI.getAddressComputationCost(
3331 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3342 if (!UsedByLoadStoreAddress) {
3343 bool EfficientVectorLoadStore =
3344 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3345 if (!(IsLoad && !PreferVectorizedAddressing) &&
3346 !(!IsLoad && EfficientVectorLoadStore))
3349 if (!EfficientVectorLoadStore)
3350 ResultTy = Ctx.Types.inferScalarType(
this);
3354 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3358 return Ctx.getLegacyCost(UI, VF);
3361#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3364 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3373 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3391 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3394 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3398 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3400 "Expected to replace unreachable terminator with conditional branch.");
3402 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3403 CondBr->setSuccessor(0,
nullptr);
3404 CurrentTerminator->eraseFromParent();
3416 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3421 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3423 "operand must be VPReplicateRecipe");
3434 "Packed operands must generate an insertelement or insertvalue");
3442 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3445 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3446 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3448 if (State.hasVectorValue(
this))
3449 State.reset(
this, VPhi);
3451 State.set(
this, VPhi);
3459 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3460 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3463 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3464 if (State.hasScalarValue(
this, *State.Lane))
3465 State.reset(
this, Phi, *State.Lane);
3467 State.set(
this, Phi, *State.Lane);
3470 State.reset(
getOperand(0), Phi, *State.Lane);
3474#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3477 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3488 ->getAddressSpace();
3491 : Instruction::Store;
3498 "Inconsecutive memory access should not have the order.");
3511 : Intrinsic::vp_scatter;
3512 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3514 Ctx.TTI.getMemIntrinsicInstrCost(
3523 : Intrinsic::masked_store;
3524 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3530 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3541 auto &Builder = State.Builder;
3542 Value *Mask =
nullptr;
3543 if (
auto *VPMask =
getMask()) {
3546 Mask = State.get(VPMask);
3548 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3554 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3555 "wide.masked.gather");
3558 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3561 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3564 State.set(
this, NewLI);
3567#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3570 O << Indent <<
"WIDEN ";
3582 Value *AllTrueMask =
3583 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3584 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3585 {Operand, AllTrueMask, EVL},
nullptr, Name);
3593 auto &Builder = State.Builder;
3597 Value *Mask =
nullptr;
3599 Mask = State.get(VPMask);
3603 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3608 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3609 nullptr,
"wide.masked.gather");
3611 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3612 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3618 State.set(
this, Res);
3633 ->getAddressSpace();
3634 return Ctx.TTI.getMemIntrinsicInstrCost(
3639#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3642 O << Indent <<
"WIDEN ";
3653 auto &Builder = State.Builder;
3655 Value *Mask =
nullptr;
3656 if (
auto *VPMask =
getMask()) {
3659 Mask = State.get(VPMask);
3661 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3664 Value *StoredVal = State.get(StoredVPValue);
3668 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3670 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3672 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3676#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3679 O << Indent <<
"WIDEN store ";
3688 auto &Builder = State.Builder;
3691 Value *StoredVal = State.get(StoredValue);
3693 Value *Mask =
nullptr;
3695 Mask = State.get(VPMask);
3699 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3702 if (CreateScatter) {
3704 Intrinsic::vp_scatter,
3705 {StoredVal, Addr, Mask, EVL});
3708 Intrinsic::vp_store,
3709 {StoredVal, Addr, Mask, EVL});
3728 ->getAddressSpace();
3729 return Ctx.TTI.getMemIntrinsicInstrCost(
3734#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3737 O << Indent <<
"WIDEN vp.store ";
3745 auto VF = DstVTy->getElementCount();
3747 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3748 Type *SrcElemTy = SrcVecTy->getElementType();
3749 Type *DstElemTy = DstVTy->getElementType();
3750 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3751 "Vector elements must have same size");
3755 return Builder.CreateBitOrPointerCast(V, DstVTy);
3762 "Only one type should be a pointer type");
3764 "Only one type should be a floating point type");
3768 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3769 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3775 const Twine &Name) {
3776 unsigned Factor = Vals.
size();
3777 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3781 for (
Value *Val : Vals)
3782 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3787 if (VecTy->isScalableTy()) {
3788 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3789 return Builder.CreateVectorInterleave(Vals, Name);
3796 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3797 return Builder.CreateShuffleVector(
3830 assert(!State.Lane &&
"Interleave group being replicated.");
3832 "Masking gaps for scalable vectors is not yet supported.");
3838 unsigned InterleaveFactor = Group->
getFactor();
3845 auto CreateGroupMask = [&BlockInMask, &State,
3846 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3847 if (State.VF.isScalable()) {
3848 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3849 assert(InterleaveFactor <= 8 &&
3850 "Unsupported deinterleave factor for scalable vectors");
3851 auto *ResBlockInMask = State.get(BlockInMask);
3859 Value *ResBlockInMask = State.get(BlockInMask);
3860 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3863 "interleaved.mask");
3864 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3865 ShuffledMask, MaskForGaps)
3869 const DataLayout &DL = Instr->getDataLayout();
3872 Value *MaskForGaps =
nullptr;
3876 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3880 if (BlockInMask || MaskForGaps) {
3881 Value *GroupMask = CreateGroupMask(MaskForGaps);
3883 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3885 PoisonVec,
"wide.masked.vec");
3887 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3894 if (VecTy->isScalableTy()) {
3897 assert(InterleaveFactor <= 8 &&
3898 "Unsupported deinterleave factor for scalable vectors");
3899 NewLoad = State.Builder.CreateIntrinsic(
3902 nullptr,
"strided.vec");
3905 auto CreateStridedVector = [&InterleaveFactor, &State,
3906 &NewLoad](
unsigned Index) ->
Value * {
3907 assert(Index < InterleaveFactor &&
"Illegal group index");
3908 if (State.VF.isScalable())
3909 return State.Builder.CreateExtractValue(NewLoad, Index);
3915 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3919 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3926 Value *StridedVec = CreateStridedVector(
I);
3929 if (Member->getType() != ScalarTy) {
3936 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3938 State.set(VPDefs[J], StridedVec);
3948 Value *MaskForGaps =
3951 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3955 unsigned StoredIdx = 0;
3956 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3958 "Fail to get a member from an interleaved store group");
3968 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3972 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3976 if (StoredVec->
getType() != SubVT)
3985 if (BlockInMask || MaskForGaps) {
3986 Value *GroupMask = CreateGroupMask(MaskForGaps);
3987 NewStoreInstr = State.Builder.CreateMaskedStore(
3988 IVec, ResAddr, Group->
getAlign(), GroupMask);
3991 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
3998#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4002 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4003 IG->getInsertPos()->printAsOperand(O,
false);
4013 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4014 if (!IG->getMember(i))
4017 O <<
"\n" << Indent <<
" store ";
4019 O <<
" to index " << i;
4021 O <<
"\n" << Indent <<
" ";
4023 O <<
" = load from index " << i;
4031 assert(!State.Lane &&
"Interleave group being replicated.");
4032 assert(State.VF.isScalable() &&
4033 "Only support scalable VF for EVL tail-folding.");
4035 "Masking gaps for scalable vectors is not yet supported.");
4041 unsigned InterleaveFactor = Group->
getFactor();
4042 assert(InterleaveFactor <= 8 &&
4043 "Unsupported deinterleave/interleave factor for scalable vectors");
4050 Value *InterleaveEVL = State.Builder.CreateMul(
4051 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4055 Value *GroupMask =
nullptr;
4061 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4066 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4067 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4078 NewLoad = State.Builder.CreateIntrinsic(
4081 nullptr,
"strided.vec");
4083 const DataLayout &DL = Instr->getDataLayout();
4084 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4090 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4092 if (Member->getType() != ScalarTy) {
4110 const DataLayout &DL = Instr->getDataLayout();
4111 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4119 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4121 if (StoredVec->
getType() != SubVT)
4131 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4132 {IVec, ResAddr, GroupMask, InterleaveEVL});
4141#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4145 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4146 IG->getInsertPos()->printAsOperand(O,
false);
4157 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4158 if (!IG->getMember(i))
4161 O <<
"\n" << Indent <<
" vp.store ";
4163 O <<
" to index " << i;
4165 O <<
"\n" << Indent <<
" ";
4167 O <<
" = vp.load from index " << i;
4178 unsigned InsertPosIdx = 0;
4179 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4180 if (
auto *Member = IG->getMember(Idx)) {
4181 if (Member == InsertPos)
4185 Type *ValTy = Ctx.Types.inferScalarType(
4190 ->getAddressSpace();
4192 unsigned InterleaveFactor = IG->getFactor();
4197 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4198 if (IG->getMember(IF))
4203 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4204 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4206 if (!IG->isReverse())
4209 return Cost + IG->getNumMembers() *
4211 VectorTy, VectorTy, {}, Ctx.CostKind,
4215#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4218 O << Indent <<
"EMIT ";
4220 O <<
" = CANONICAL-INDUCTION ";
4230#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4234 "unexpected number of operands");
4235 O << Indent <<
"EMIT ";
4237 O <<
" = WIDEN-POINTER-INDUCTION ";
4253 O << Indent <<
"EMIT ";
4255 O <<
" = EXPAND SCEV " << *Expr;
4262 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4266 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4269 VStep = Builder.CreateVectorSplat(VF, VStep);
4271 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4273 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4274 State.set(
this, CanonicalVectorIV);
4277#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4280 O << Indent <<
"EMIT ";
4282 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4288 auto &Builder = State.Builder;
4292 Type *VecTy = State.VF.isScalar()
4293 ? VectorInit->getType()
4297 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4298 if (State.VF.isVector()) {
4300 auto *One = ConstantInt::get(IdxTy, 1);
4303 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4304 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4305 VectorInit = Builder.CreateInsertElement(
4311 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4312 Phi->addIncoming(VectorInit, VectorPH);
4313 State.set(
this, Phi);
4320 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4325#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4328 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4345 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4346 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4347 Value *StartV = State.get(StartVPV, ScalarPHI);
4351 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4352 "recipe must be in the vector loop header");
4357 Phi->addIncoming(StartV, VectorPH);
4360#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4363 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4376 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4377 State.set(
this, VecPhi);
4380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4383 O << Indent <<
"WIDEN-PHI ";
4393 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4396 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4397 Phi->addIncoming(StartMask, VectorPH);
4398 State.set(
this, Phi);
4401#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4404 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4412#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4415 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=true)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStartValue() const
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getCond() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.