48#define LV_NAME "loop-vectorize"
49#define DEBUG_TYPE LV_NAME
56 switch (cast<VPInstruction>(
this)->
getOpcode()) {
58 case Instruction::ICmp:
59 case Instruction::Select:
73 return cast<VPInterleaveRecipe>(
this)->getNumStoreOperands() > 0;
74 case VPWidenStoreEVLSC:
81 return !cast<VPWidenCallRecipe>(
this)
82 ->getCalledScalarFunction()
84 case VPWidenIntrinsicSC:
85 return cast<VPWidenIntrinsicRecipe>(
this)->mayWriteToMemory();
86 case VPBranchOnMaskSC:
87 case VPScalarIVStepsSC:
91 case VPReductionEVLSC:
93 case VPVectorPointerSC:
94 case VPWidenCanonicalIVSC:
97 case VPWidenIntOrFpInductionSC:
98 case VPWidenLoadEVLSC:
103 case VPWidenSelectSC: {
107 assert((!
I || !
I->mayWriteToMemory()) &&
108 "underlying instruction may write to memory");
118 case VPWidenLoadEVLSC:
123 ->mayReadFromMemory();
125 return !cast<VPWidenCallRecipe>(
this)
126 ->getCalledScalarFunction()
127 ->onlyWritesMemory();
128 case VPWidenIntrinsicSC:
129 return cast<VPWidenIntrinsicRecipe>(
this)->mayReadFromMemory();
130 case VPBranchOnMaskSC:
131 case VPPredInstPHISC:
132 case VPScalarIVStepsSC:
133 case VPWidenStoreEVLSC:
137 case VPReductionEVLSC:
139 case VPVectorPointerSC:
140 case VPWidenCanonicalIVSC:
143 case VPWidenIntOrFpInductionSC:
147 case VPWidenSelectSC: {
151 assert((!
I || !
I->mayReadFromMemory()) &&
152 "underlying instruction may read from memory");
163 case VPPredInstPHISC:
165 case VPReverseVectorPointerSC:
167 case VPInstructionSC:
169 case VPWidenCallSC: {
170 Function *Fn = cast<VPWidenCallRecipe>(
this)->getCalledScalarFunction();
173 case VPWidenIntrinsicSC:
174 return cast<VPWidenIntrinsicRecipe>(
this)->mayHaveSideEffects();
176 case VPReductionEVLSC:
178 case VPScalarIVStepsSC:
179 case VPVectorPointerSC:
180 case VPWidenCanonicalIVSC:
183 case VPWidenIntOrFpInductionSC:
185 case VPWidenPointerInductionSC:
188 case VPWidenSelectSC: {
192 assert((!
I || !
I->mayHaveSideEffects()) &&
193 "underlying instruction has side-effects");
198 case VPWidenLoadEVLSC:
200 case VPWidenStoreEVLSC:
205 "mayHaveSideffects result for ingredient differs from this "
208 case VPReplicateSC: {
209 auto *R = cast<VPReplicateRecipe>(
this);
210 return R->getUnderlyingInstr()->mayHaveSideEffects();
218 assert(!Parent &&
"Recipe already in some VPBasicBlock");
220 "Insertion position not in any VPBasicBlock");
226 assert(!Parent &&
"Recipe already in some VPBasicBlock");
232 assert(!Parent &&
"Recipe already in some VPBasicBlock");
234 "Insertion position not in any VPBasicBlock");
266 if (
auto *S = dyn_cast<VPSingleDefRecipe>(
this))
267 UI = dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
268 else if (
auto *IG = dyn_cast<VPInterleaveRecipe>(
this))
269 UI = IG->getInsertPos();
270 else if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(
this))
271 UI = &WidenMem->getIngredient();
284 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
296 assert(OpType == OperationType::FPMathOp &&
297 "recipe doesn't have fast math flags");
309#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
313template <
unsigned PartOpIdx>
316 if (U.getNumOperands() == PartOpIdx + 1)
317 return U.getOperand(PartOpIdx);
321template <
unsigned PartOpIdx>
323 if (
auto *UnrollPartOp = getUnrollPartOperand(U))
324 return cast<ConstantInt>(UnrollPartOp->getLiveInIRValue())->getZExtValue();
334 assert(Opcode == Instruction::ICmp &&
335 "only ICmp predicates supported at the moment");
339 std::initializer_list<VPValue *>
Operands,
344 assert(isFPMathOp() &&
"this op can't take fast-math flags");
347bool VPInstruction::doesGeneratePerAllLanes()
const {
351bool VPInstruction::canGenerateScalarForFirstLane()
const {
357 case Instruction::ICmp:
358 case Instruction::Select:
377 "only PtrAdd opcodes are supported for now");
391 if (
auto *
I = dyn_cast<Instruction>(Res))
401 case Instruction::ICmp: {
407 case Instruction::Select: {
430 {VIVElem0, ScalarTC},
nullptr, Name);
446 if (!V1->getType()->isVectorTy())
466 "Requested vector length should be an integer.");
473 {AVL, VFArg, State.Builder.getTrue()});
479 assert(Part != 0 &&
"Must have a positive part");
529 auto *PhiR = cast<VPReductionPHIRecipe>(
getOperand(0));
530 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
536 Type *PhiTy = OrigPhi->getType();
541 for (
unsigned Part = 0; Part < UF; ++Part)
542 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
550 for (
unsigned Part = 0; Part < UF; ++Part)
551 RdxParts[Part] = Builder.
CreateTrunc(RdxParts[Part], RdxVecTy);
554 Value *ReducedPartRdx = RdxParts[0];
557 Op = Instruction::Or;
559 if (PhiR->isOrdered()) {
560 ReducedPartRdx = RdxParts[UF - 1];
565 for (
unsigned Part = 1; Part < UF; ++Part) {
566 Value *RdxPart = RdxParts[Part];
567 if (
Op != Instruction::ICmp &&
Op != Instruction::FCmp)
574 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
594 return ReducedPartRdx;
598 unsigned Offset = CI->getZExtValue();
599 assert(
Offset > 0 &&
"Offset from end must be positive");
603 "invalid offset to extract from");
607 assert(
Offset <= 1 &&
"invalid offset to extract from");
610 if (isa<ExtractElementInst>(Res))
621 "can only generate first lane for PtrAdd");
627 Value *IncomingFromVPlanPred =
629 Value *IncomingFromOtherPreds =
636 NewPhi->addIncoming(IncomingFromVPlanPred, VPlanPred);
638 if (OtherPred == VPlanPred)
640 NewPhi->addIncoming(IncomingFromOtherPreds, OtherPred);
665bool VPInstruction::isFPMathOp()
const {
668 return Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
669 Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
670 Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
671 Opcode == Instruction::FCmp || Opcode == Instruction::Select;
676 assert(!State.
Lane &&
"VPInstruction executing an Lane");
680 "Recipe not a FPMathOp but has fast-math flags?");
684 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
687 bool GeneratesPerAllLanes = doesGeneratePerAllLanes();
688 if (GeneratesPerAllLanes) {
690 Lane != NumLanes; ++Lane) {
691 Value *GeneratedValue = generatePerLane(State,
VPLane(Lane));
692 assert(GeneratedValue &&
"generatePerLane must produce a value");
693 State.
set(
this, GeneratedValue,
VPLane(Lane));
698 Value *GeneratedValue = generate(State);
701 assert(GeneratedValue &&
"generate must produce a value");
705 "scalar value but not only first lane defined");
706 State.
set(
this, GeneratedValue,
707 GeneratesPerFirstLaneOnly);
718 case Instruction::ICmp:
719 case Instruction::Select:
720 case Instruction::Or:
744 case Instruction::ICmp:
745 case Instruction::Select:
755#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
763 O << Indent <<
"EMIT ";
775 O <<
"combined load";
778 O <<
"combined store";
781 O <<
"active lane mask";
787 O <<
"EXPLICIT-VECTOR-LENGTH";
790 O <<
"first-order splice";
793 O <<
"branch-on-cond";
796 O <<
"TC > VF ? TC - VF : 0";
802 O <<
"branch-on-count";
805 O <<
"extract-from-end";
808 O <<
"compute-reduction-result";
835 "Only PHINodes can have extra operands");
848 auto *Phi = cast<PHINode>(&I);
851 if (Phi->getBasicBlockIndex(PredBB) == -1)
852 Phi->addIncoming(V, PredBB);
854 Phi->setIncomingValueForBlock(PredBB, V);
869#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
872 O << Indent <<
"IR " << I;
875 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
906 assert(Variant !=
nullptr &&
"Can't create vector function.");
911 CI->getOperandBundlesAsDefs(OpBundles);
916 if (!V->getType()->isVoidTy())
929#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
932 O << Indent <<
"WIDEN-CALL ";
944 O <<
" @" << CalledFn->
getName() <<
"(";
950 O <<
" (using library function";
952 O <<
": " << Variant->
getName();
986 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
991 CI->getOperandBundlesAsDefs(OpBundles);
997 if (!V->getType()->isVoidTy())
1013 auto *V =
Op->getUnderlyingValue();
1060#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1063 O << Indent <<
"WIDEN-INTRINSIC ";
1093 Value *Mask =
nullptr;
1095 Mask = State.
get(VPMask);
1102 if (Opcode == Instruction::Sub)
1105 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1141 {PtrTy, IncTy, MaskTy});
1149#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1152 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1155 if (Opcode == Instruction::Sub)
1158 assert(Opcode == Instruction::Add);
1171 O << Indent <<
"WIDEN-SELECT ";
1197 State.
set(
this, Sel);
1221 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1222 Operands.append(SI->op_begin(), SI->op_end());
1223 bool IsLogicalOr =
match(
this,
m_LogicalOr(m_VPValue(Op0), m_VPValue(Op1)));
1225 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
CostKind,
1226 {Op1VK, Op1VP}, {Op2VK, Op2VP},
Operands, SI);
1234 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
1235 Pred = Cmp->getPredicate();
1241VPRecipeWithIRFlags::FastMathFlagsTy::FastMathFlagsTy(
1252#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1255 case OperationType::Cmp:
1258 case OperationType::DisjointOp:
1262 case OperationType::PossiblyExactOp:
1266 case OperationType::OverflowingBinOp:
1272 case OperationType::FPMathOp:
1275 case OperationType::GEPOp:
1283 case OperationType::NonNegOp:
1287 case OperationType::Other:
1297 auto &Builder = State.
Builder;
1299 case Instruction::Call:
1300 case Instruction::Br:
1301 case Instruction::PHI:
1302 case Instruction::GetElementPtr:
1303 case Instruction::Select:
1305 case Instruction::UDiv:
1306 case Instruction::SDiv:
1307 case Instruction::SRem:
1308 case Instruction::URem:
1309 case Instruction::Add:
1310 case Instruction::FAdd:
1311 case Instruction::Sub:
1312 case Instruction::FSub:
1313 case Instruction::FNeg:
1314 case Instruction::Mul:
1315 case Instruction::FMul:
1316 case Instruction::FDiv:
1317 case Instruction::FRem:
1318 case Instruction::Shl:
1319 case Instruction::LShr:
1320 case Instruction::AShr:
1321 case Instruction::And:
1322 case Instruction::Or:
1323 case Instruction::Xor: {
1331 if (
auto *VecOp = dyn_cast<Instruction>(V))
1339 case Instruction::Freeze: {
1343 State.
set(
this, Freeze);
1346 case Instruction::ICmp:
1347 case Instruction::FCmp: {
1349 bool FCmp = Opcode == Instruction::FCmp;
1378 "inferred type and type from generated instructions do not match");
1386 case Instruction::FNeg: {
1394 case Instruction::UDiv:
1395 case Instruction::SDiv:
1396 case Instruction::SRem:
1397 case Instruction::URem:
1400 case Instruction::Add:
1401 case Instruction::FAdd:
1402 case Instruction::Sub:
1403 case Instruction::FSub:
1404 case Instruction::Mul:
1405 case Instruction::FMul:
1406 case Instruction::FDiv:
1407 case Instruction::FRem:
1408 case Instruction::Shl:
1409 case Instruction::LShr:
1410 case Instruction::AShr:
1411 case Instruction::And:
1412 case Instruction::Or:
1413 case Instruction::Xor: {
1419 if (
RHS->isLiveIn())
1436 case Instruction::Freeze: {
1441 case Instruction::ICmp:
1442 case Instruction::FCmp: {
1464 "VPWidenEVLRecipe should not be used for scalars");
1467 Value *EVLArg = State.
get(EVL,
true);
1483 if (isa<FPMathOperator>(VPInst))
1484 setFlags(cast<Instruction>(VPInst));
1486 State.
set(
this, VPInst);
1491#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1494 O << Indent <<
"WIDEN ";
1503 O << Indent <<
"WIDEN ";
1513 auto &Builder = State.
Builder;
1520 State.
set(
this, Cast);
1522 if (
auto *CastOp = dyn_cast<Instruction>(Cast))
1537 if (isa<VPInterleaveRecipe>(R))
1539 if (
const auto *ReplicateRecipe = dyn_cast<VPReplicateRecipe>(R))
1542 const auto *WidenMemoryRecipe = dyn_cast<VPWidenMemoryRecipe>(R);
1543 if (WidenMemoryRecipe ==
nullptr)
1545 if (!WidenMemoryRecipe->isConsecutive())
1547 if (WidenMemoryRecipe->isReverse())
1549 if (WidenMemoryRecipe->isMasked())
1557 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
1559 if (
auto *StoreRecipe = dyn_cast<VPRecipeBase>(*
user_begin()))
1560 CCH = ComputeCCH(StoreRecipe);
1563 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1564 Opcode == Instruction::FPExt) {
1580#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1583 O << Indent <<
"WIDEN-CAST ";
1607 auto *ValVTy = cast<VectorType>(Val->
getType());
1612 "Induction Step must be an integer or FP");
1620 Type *InitVecValSTy =
1631 Step = Builder.
CreateMul(InitVec, Step);
1632 return Builder.
CreateAdd(Val, Step,
"induction");
1636 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1637 "Binary Opcode should be specified for FP induction");
1642 return Builder.
CreateBinOp(BinOp, Val, MulOp,
"induction");
1649 : ConstantFP::get(Ty,
C);
1653 assert(!State.
Lane &&
"Int or FP induction being replicated.");
1660 "Types must match");
1669 if (
ID.getInductionBinOp() && isa<FPMathOperator>(
ID.getInductionBinOp()))
1675 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1676 "Expected either an induction phi-node or a truncate of it!");
1679 auto CurrIP = Builder.
saveIP();
1682 if (isa<TruncInst>(EntryVal)) {
1683 assert(Start->getType()->isIntegerTy() &&
1684 "Truncation requires an integer type");
1685 auto *TruncType = cast<IntegerType>(EntryVal->
getType());
1687 Start = Builder.
CreateCast(Instruction::Trunc, Start, TruncType);
1699 AddOp = Instruction::Add;
1700 MulOp = Instruction::Mul;
1702 AddOp =
ID.getInductionOpcode();
1703 MulOp = Instruction::FMul;
1710 SplatVF = State.
get(SplatVFOperand);
1733 State.
set(
this, VecInd);
1736 Builder.
CreateBinOp(AddOp, VecInd, SplatVF,
"vec.ind.next"));
1737 if (isa<TruncInst>(EntryVal))
1750#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1755 O <<
" = WIDEN-INDUCTION ";
1759 O <<
" (truncated to " << *TI->getType() <<
")";
1771 auto *CanIV = cast<VPCanonicalIVPHIRecipe>(&*
getParent()->begin());
1772 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
1776#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1781 O <<
" = DERIVED-IV ";
1805 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
1812 AddOp = Instruction::Add;
1813 MulOp = Instruction::Mul;
1815 AddOp = InductionOpcode;
1816 MulOp = Instruction::FMul;
1825 Type *VecIVTy =
nullptr;
1826 Value *UnitStepVec =
nullptr, *SplatStep =
nullptr, *SplatIV =
nullptr;
1835 unsigned StartLane = 0;
1838 StartLane = State.
Lane->getKnownLane();
1839 EndLane = StartLane + 1;
1846 auto *InitVec = Builder.
CreateAdd(SplatStartIdx, UnitStepVec);
1860 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
1866 "Expected StartIdx to be folded to a constant when VF is not "
1874#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1879 O <<
" = SCALAR-STEPS ";
1893 if (areAllOperandsInvariant()) {
1929 if (isIndexLoopInvariant(
I - 1))
1940 "NewGEP is not a pointer vector");
1941 State.
set(
this, NewGEP);
1946#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1949 O << Indent <<
"WIDEN-GEP ";
1950 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
1952 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
1956 O <<
" = getelementptr";
1967 return IsScalable && (IsReverse || CurrentPart > 0)
1973 auto &Builder = State.
Builder;
1977 CurrentPart, Builder);
1981 if (IndexTy != RunTimeVF->
getType())
1985 ConstantInt::get(IndexTy, -(int64_t)CurrentPart), RunTimeVF);
1987 Value *LastLane = Builder.
CreateSub(ConstantInt::get(IndexTy, 1), RunTimeVF);
1991 ResultPtr = Builder.
CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
1994 State.
set(
this, ResultPtr,
true);
1997#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2002 O <<
" = reverse-vector-pointer";
2009 auto &Builder = State.
Builder;
2013 CurrentPart, Builder);
2020 State.
set(
this, ResultPtr,
true);
2023#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2028 O <<
" = vector-pointer ";
2054 Value *Result =
nullptr;
2055 for (
unsigned In = 0; In < NumIncoming; ++In) {
2068 State.
set(
this, Result, OnlyFirstLaneUsed);
2087#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2090 O << Indent <<
"BLEND ";
2112 assert(!State.
Lane &&
"Reduction being replicated.");
2146 PrevInChain = NewRed;
2147 NextInChain = NewRed;
2153 NewRed, PrevInChain);
2158 State.
set(
this, NextInChain,
true);
2162 assert(!State.
Lane &&
"Reduction being replicated.");
2164 auto &Builder = State.
Builder;
2180 Mask = State.
get(CondOp);
2196 State.
set(
this, NewRed,
true);
2203 auto *VectorTy = cast<VectorType>(
toVectorTy(ElementTy, VF));
2211 "Any-of reduction not implemented in VPlan-based cost model currently.");
2213 (!cast<VPReductionPHIRecipe>(
getOperand(0))->isInLoop() ||
2215 "In-loop reduction not implemented in VPlan-based cost model currently.");
2218 "Inferred type and recurrence type mismatch.");
2233#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2236 O << Indent <<
"REDUCE ";
2251 O <<
" (with final reduction value stored in invariant address sank "
2258 O << Indent <<
"REDUCE ";
2275 O <<
" (with final reduction value stored in invariant address sank "
2284 if (
auto *PredR = dyn_cast<VPPredInstPHIRecipe>(U))
2285 return any_of(PredR->users(), [PredR](
const VPUser *U) {
2286 return !U->usesScalars(PredR);
2301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2304 O << Indent << (IsUniform ?
"CLONE " :
"REPLICATE ");
2313 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
2332 "Codegen only implemented for first lane.");
2334 case Instruction::SExt:
2335 case Instruction::ZExt:
2336 case Instruction::Trunc: {
2347 State.
set(
this, generate(State),
VPLane(0));
2350#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2353 O << Indent <<
"SCALAR-CAST ";
2357 O <<
" to " << *ResultTy;
2362 assert(State.
Lane &&
"Branch on Mask works only on single instance.");
2364 unsigned Lane = State.
Lane->getKnownLane();
2366 Value *ConditionBit =
nullptr;
2369 ConditionBit = State.
get(BlockInMask);
2379 assert(isa<UnreachableInst>(CurrentTerminator) &&
2380 "Expected to replace unreachable terminator with conditional branch.");
2396 assert(State.
Lane &&
"Predicated instruction PHI works per instance.");
2401 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
2403 "operand must be VPReplicateRecipe");
2418 State.
reset(
this, VPhi);
2420 State.
set(
this, VPhi);
2432 Phi->addIncoming(ScalarPredInst, PredicatedBB);
2436 State.
set(
this, Phi, *State.
Lane);
2443#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2446 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
2456 const Align Alignment =
2468 "Inconsecutive memory access should not have the order.");
2489 cast<VectorType>(Ty), {},
CostKind, 0);
2500 auto &Builder = State.
Builder;
2502 Value *Mask =
nullptr;
2503 if (
auto *VPMask =
getMask()) {
2506 Mask = State.
get(VPMask);
2515 "wide.masked.gather");
2527 State.
set(
this, NewLI);
2530#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2533 O << Indent <<
"WIDEN ";
2545 Value *AllTrueMask =
2547 return Builder.
CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
2548 {Operand, AllTrueMask, EVL},
nullptr,
Name);
2559 auto &Builder = State.
Builder;
2564 Value *Mask =
nullptr;
2566 Mask = State.
get(VPMask);
2576 nullptr,
"wide.masked.gather");
2581 Instruction::Load, DataTy,
Addr,
"vp.op.load"));
2589 State.
set(
this, Res);
2603 const Align Alignment =
2614 cast<VectorType>(Ty), {},
CostKind, 0);
2617#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2620 O << Indent <<
"WIDEN ";
2634 auto &Builder = State.
Builder;
2637 Value *Mask =
nullptr;
2638 if (
auto *VPMask =
getMask()) {
2641 Mask = State.
get(VPMask);
2646 Value *StoredVal = State.
get(StoredVPValue);
2665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2668 O << Indent <<
"WIDEN store ";
2680 auto &Builder = State.
Builder;
2684 Value *StoredVal = State.
get(StoredValue);
2688 Value *Mask =
nullptr;
2690 Mask = State.
get(VPMask);
2697 if (CreateScatter) {
2699 Intrinsic::vp_scatter,
2700 {StoredVal, Addr, Mask, EVL});
2706 {StoredVal, Addr}));
2724 const Align Alignment =
2735 cast<VectorType>(Ty), {},
CostKind, 0);
2738#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2741 O << Indent <<
"WIDEN vp.store ";
2749 auto VF = DstVTy->getElementCount();
2750 auto *SrcVecTy = cast<VectorType>(V->getType());
2751 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
2752 Type *SrcElemTy = SrcVecTy->getElementType();
2753 Type *DstElemTy = DstVTy->getElementType();
2754 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
2755 "Vector elements must have same size");
2766 "Only one type should be a pointer type");
2768 "Only one type should be a floating point type");
2780 unsigned Factor = Vals.
size();
2781 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
2785 for (
Value *Val : Vals)
2786 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
2791 if (VecTy->isScalableTy()) {
2793 "scalable vectors, must be power of 2");
2797 auto *InterleaveTy = cast<VectorType>(InterleavingValues[0]->
getType());
2798 for (
unsigned Midpoint = Factor / 2; Midpoint > 0; Midpoint /= 2) {
2800 for (
unsigned I = 0;
I < Midpoint; ++
I)
2802 InterleaveTy, Intrinsic::vector_interleave2,
2803 {InterleavingValues[I], InterleavingValues[Midpoint + I]},
2806 return InterleavingValues[0];
2813 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
2847 assert(!State.
Lane &&
"Interleave group being replicated.");
2853 unsigned InterleaveFactor = Group->
getFactor();
2859 "Reversed masked interleave-group not supported.");
2863 if (
auto *
I = dyn_cast<Instruction>(ResAddr))
2879 bool InBounds =
false;
2881 InBounds = Gep->isInBounds();
2888 auto CreateGroupMask = [&BlockInMask, &State,
2889 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
2891 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
2893 "Unsupported deinterleave factor for scalable vectors");
2894 auto *ResBlockInMask = State.
get(BlockInMask);
2902 Value *ResBlockInMask = State.
get(BlockInMask);
2906 "interleaved.mask");
2908 ShuffledMask, MaskForGaps)
2914 if (isa<LoadInst>(Instr)) {
2915 Value *MaskForGaps =
nullptr;
2916 if (NeedsMaskForGaps) {
2919 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
2923 if (BlockInMask || MaskForGaps) {
2924 Value *GroupMask = CreateGroupMask(MaskForGaps);
2927 PoisonVec,
"wide.masked.vec");
2935 if (VecTy->isScalableTy()) {
2937 "Unsupported deinterleave factor for scalable vectors");
2942 DeinterleavedValues[0] = NewLoad;
2949 for (
unsigned NumVectors = 1; NumVectors < InterleaveFactor;
2953 for (
unsigned I = 0;
I < NumVectors; ++
I) {
2954 auto *DiTy = DeinterleavedValues[
I]->getType();
2956 Intrinsic::vector_deinterleave2, DiTy, DeinterleavedValues[
I],
2957 nullptr,
"strided.vec");
2960 for (
unsigned I = 0;
I < 2; ++
I)
2961 for (
unsigned J = 0; J < NumVectors; ++J)
2962 DeinterleavedValues[NumVectors *
I + J] =
2967 for (
Value *Val : DeinterleavedValues)
2968 assert(Val &&
"NULL Deinterleaved Value");
2970 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
2972 Value *StridedVec = DeinterleavedValues[
I];
2979 if (Member->getType() != ScalarTy) {
2988 State.
set(VPDefs[J], StridedVec);
2998 for (
unsigned I = 0;
I < InterleaveFactor; ++
I) {
3011 if (Member->getType() != ScalarTy) {
3021 State.
set(VPDefs[J], StridedVec);
3031 Value *MaskForGaps =
3034 "masking gaps for scalable vectors is not yet supported.");
3038 unsigned StoredIdx = 0;
3039 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3041 "Fail to get a member from an interleaved store group");
3051 Value *StoredVec = State.
get(StoredValues[StoredIdx]);
3059 if (StoredVec->
getType() != SubVT)
3068 if (BlockInMask || MaskForGaps) {
3069 Value *GroupMask = CreateGroupMask(MaskForGaps);
3071 IVec, ResAddr, Group->
getAlign(), GroupMask);
3079#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3082 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
3083 IG->getInsertPos()->printAsOperand(O,
false);
3093 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
3094 if (!IG->getMember(i))
3097 O <<
"\n" << Indent <<
" store ";
3099 O <<
" to index " << i;
3101 O <<
"\n" << Indent <<
" ";
3103 O <<
" = load from index " << i;
3114 unsigned InsertPosIdx = 0;
3115 for (
unsigned Idx = 0; IG->getFactor(); ++
Idx)
3116 if (
auto *Member = IG->getMember(
Idx)) {
3117 if (Member == InsertPos)
3124 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
3128 unsigned InterleaveFactor = IG->getFactor();
3133 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
3134 if (IG->getMember(IF))
3139 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
3142 if (!IG->isReverse())
3145 return Cost + IG->getNumMembers() *
3147 VectorTy, std::nullopt,
CostKind, 0);
3150#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3153 O << Indent <<
"EMIT ";
3155 O <<
" = CANONICAL-INDUCTION ";
3161 return IsScalarAfterVectorization &&
3168 "Not a pointer induction according to InductionDescriptor!");
3170 "Unexpected type.");
3172 "Recipe should have been replaced");
3178 Type *ScStValueType = ScalarStartValue->
getType();
3181 PHINode *NewPointerPhi =
nullptr;
3182 if (CurrentPart == 0) {
3183 auto *IVR = cast<VPHeaderPHIRecipe>(&
getParent()
3185 ->getVectorLoopRegion()
3186 ->getEntryBasicBlock()
3188 PHINode *CanonicalIV = cast<PHINode>(State.
get(IVR,
true));
3191 NewPointerPhi->
addIncoming(ScalarStartValue, VectorPH);
3198 NewPointerPhi = cast<PHINode>(
GEP->getPointerOperand());
3211 if (CurrentPart == 0) {
3215 Value *NumUnrolledElems =
3223 NewPointerPhi->
addIncoming(InductionGEP, VectorPH);
3230 RuntimeVF, ConstantInt::get(PhiType, CurrentPart));
3231 Value *StartOffset =
3238 "scalar step must be the same across all parts");
3242 State.
VF, ScalarStepValue)),
3247#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3251 "unexpected number of operands");
3252 O << Indent <<
"EMIT ";
3254 O <<
" = WIDEN-POINTER-INDUCTION ";
3268 assert(!State.
Lane &&
"cannot be used in per-lane");
3276 "Results must match");
3289#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3292 O << Indent <<
"EMIT ";
3294 O <<
" = EXPAND SCEV " << *Expr;
3312 Value *CanonicalVectorIV = Builder.
CreateAdd(VStart, VStep,
"vec.iv");
3313 State.
set(
this, CanonicalVectorIV);
3316#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3319 O << Indent <<
"EMIT ";
3321 O <<
" = WIDEN-CANONICAL-INDUCTION ";
3327 auto &Builder = State.
Builder;
3332 ? VectorInit->getType()
3338 auto *One = ConstantInt::get(IdxTy, 1);
3342 auto *LastIdx = Builder.
CreateSub(RuntimeVF, One);
3350 Phi->addIncoming(VectorInit, VectorPH);
3351 State.
set(
this, Phi);
3370 cast<VectorType>(VectorTy), Mask,
CostKind,
3374#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3377 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
3385 auto &Builder = State.
Builder;
3396 bool ScalarPHI = State.
VF.
isScalar() || IsInLoop;
3402 "recipe must be in the vector loop header");
3405 State.
set(
this, Phi, IsInLoop);
3409 Value *Iden =
nullptr;
3421 StartV = Iden = State.
get(StartVPV);
3444 if (CurrentPart == 0) {
3459 Phi = cast<PHINode>(State.
get(
this, IsInLoop));
3460 Value *StartVal = (CurrentPart == 0) ? StartV : Iden;
3461 Phi->addIncoming(StartVal, VectorPH);
3464#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3467 O << Indent <<
"WIDEN-REDUCTION-PHI ";
3477 "Non-native vplans are not expected to have VPWidenPHIRecipes.");
3482 State.
set(
this, VecPhi);
3485#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3488 O << Indent <<
"WIDEN-PHI ";
3513 Phi->addIncoming(StartMask, VectorPH);
3515 State.
set(
this, Phi);
3518#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3521 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
3529#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3532 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
3544 Phi->addIncoming(Start, VectorPH);
3546 State.
set(
this, Phi,
true);
3549#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3552 O << Indent <<
"SCALAR-PHI ";
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
mir Rename Register Operands
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
cl::opt< unsigned > ForceTargetInstructionCost
static Value * getStepVector(Value *Val, Value *Step, Instruction::BinaryOps BinOp, ElementCount VF, IRBuilderBase &Builder)
This function adds (0 * Step, 1 * Step, 2 * Step, ...) to each vector element of Val.
static Type * getGEPIndexTy(bool IsScalable, bool IsReverse, unsigned CurrentPart, IRBuilderBase &Builder)
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void print(raw_ostream &O) const
Print fast-math flags to O.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
ArrayRef< Type * > params() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Common base class shared among various IRBuilders.
ConstantInt * getInt1(bool V)
Get a constant value representing either true or false.
Value * CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateSIToFP(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
ConstantInt * getTrue()
Get the constant value for i1 true.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
CallInst * CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Load intrinsic.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
BasicBlock::iterator GetInsertPoint() const
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Value * CreateUIToFP(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
BasicBlock * GetInsertBlock() const
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
InsertPoint saveIP() const
Returns the current insert point.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateNAryOp(unsigned Opc, ArrayRef< Value * > Ops, const Twine &Name="", MDNode *FPMathTag=nullptr)
Create either a UnaryOperator or BinaryOperator depending on Opc.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
LLVMContext & getContext() const
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
CallInst * CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment, Value *Mask)
Create a call to Masked Store intrinsic.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="")
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile=false)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Value * CreateStepVector(Type *DstType, const Twine &Name="")
Creates a vector of type DstType with the linear sequence <0, 1, ...>
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
CallInst * CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment, Value *Mask=nullptr)
Create a call to Masked Scatter intrinsic.
CallInst * CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment, Value *Mask=nullptr, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Gather intrinsic.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
@ IK_PtrInduction
Pointer induction var. Step = C.
This instruction inserts a single (scalar) element into a VectorType value.
VectorType * getType() const
Overload to return most specific vector type.
static InstructionCost getInvalid(CostType Val=0)
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
BlockT * getHeader() const
void print(raw_ostream &OS, const SlotIndexes *=nullptr, bool IsStandalone=true) const
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
FastMathFlags getFastMathFlags() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
TrackingVH< Value > getRecurrenceStartValue() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
StoreInst * IntermediateStore
Reductions may store temporary or final result to an invariant address.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class uses information about analyze scalars to rewrite expressions in canonical form.
Type * getType() const
Return the LLVM type of this SCEV expression.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
value_op_iterator value_op_end()
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
const VPBlocksTy & getPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPValue * getMask() const
Return the mask used by this recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
VPValue * getStartValue() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
@ FirstOrderRecurrenceSplice
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
unsigned getOpcode() const
bool onlyFirstPartUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getMask() const
Return the mask used by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
Instruction * getInsertPos() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInterleaveRecipe.
unsigned getNumStoreOperands() const
Returns the number of stored operands of this interleave group.
static bool isVPIntrinsic(Intrinsic::ID)
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
Class to record LLVM IR flag for a recipe along with it.
NonNegFlagsTy NonNegFlags
GEPNoWrapFlags getGEPNoWrapFlags() const
void setFlags(Instruction *I) const
Set the IR flags for I.
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
void printFlags(raw_ostream &O) const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
FastMathFlags getFastMathFlags() const
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
const RecurrenceDescriptor & getRecurrenceDescriptor() const
Return the recurrence decriptor for the in-loop reduction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getCondOp() const
The VPValue of the condition for the block.
bool isOrdered() const
Return true if the in-loop reduction is ordered.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStepValue() const
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
This class can be used to assign names to VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
VPValue * getUnrollPartOperand(VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool onlyFirstLaneUsed(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop region.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
friend class VPInstruction
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
user_iterator user_begin()
unsigned getNumUsers() const
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
operand_range arg_operands()
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe.
void execute(VPTransformState &State) override final
Produce a vp-intrinsic using the opcode and operands of the recipe, processing EVL elements.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
void execute(VPTransformState &State) override
Generate the vectorized and scalarized versions of the phi node as needed by their users.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getSplatVFValue()
bool onlyFirstLaneUsed(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
VPValue * getFirstUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the first unrolled part,...
void execute(VPTransformState &State) override
Generate vector values for the pointer induction.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void setName(const Twine &Name)
Change the name of the value.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
VectorBuilder & setEVL(Value *NewExplicitVectorLength)
VectorBuilder & setMask(Value *NewMask)
Value * createVectorInstruction(unsigned Opcode, Type *ReturnTy, ArrayRef< Value * > VecOpArray, const Twine &Name=Twine())
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static VectorType * getDoubleElementsVectorType(VectorType *VTy)
This static method returns a VectorType with twice as many elements as the input type and the same el...
Type * getElementType() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
self_iterator getIterator()
base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
This is an optimization pass for GlobalISel generic memory operations.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
Value * createOrderedReduction(IRBuilderBase &B, const RecurrenceDescriptor &Desc, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence descriptor Desc.
Value * createReduction(IRBuilderBase &B, const RecurrenceDescriptor &Desc, Value *Src, PHINode *OrigPhi=nullptr)
Create a generic reduction using a recurrence descriptor Desc Fast-math-flags are propagated using th...
llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
const TargetLibraryInfo & TLI
const TargetTransformInfo & TTI
SmallPtrSet< Instruction *, 8 > SkipCostComputation
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the wide load or gather.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool isInvariantCond() const
VPValue * getCond() const
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
VPValue * getStoredValue() const
Return the value stored by this recipe.
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.