LLVM 20.0.0git
AMDGPULowerKernelArguments.cpp
Go to the documentation of this file.
1//===-- AMDGPULowerKernelArguments.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This pass replaces accesses to kernel arguments with loads from
10/// offsets from the kernarg base pointer.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
15#include "GCNSubtarget.h"
18#include "llvm/IR/Attributes.h"
19#include "llvm/IR/IRBuilder.h"
20#include "llvm/IR/IntrinsicsAMDGPU.h"
21#include "llvm/IR/MDBuilder.h"
23
24#define DEBUG_TYPE "amdgpu-lower-kernel-arguments"
25
26using namespace llvm;
27
28namespace {
29
30class PreloadKernelArgInfo {
31private:
32 Function &F;
33 const GCNSubtarget &ST;
34 unsigned NumFreeUserSGPRs;
35
36 enum HiddenArg : unsigned {
37 HIDDEN_BLOCK_COUNT_X,
38 HIDDEN_BLOCK_COUNT_Y,
39 HIDDEN_BLOCK_COUNT_Z,
40 HIDDEN_GROUP_SIZE_X,
41 HIDDEN_GROUP_SIZE_Y,
42 HIDDEN_GROUP_SIZE_Z,
43 HIDDEN_REMAINDER_X,
44 HIDDEN_REMAINDER_Y,
45 HIDDEN_REMAINDER_Z,
46 END_HIDDEN_ARGS
47 };
48
49 // Stores information about a specific hidden argument.
50 struct HiddenArgInfo {
51 // Offset in bytes from the location in the kernearg segment pointed to by
52 // the implicitarg pointer.
53 uint8_t Offset;
54 // The size of the hidden argument in bytes.
55 uint8_t Size;
56 // The name of the hidden argument in the kernel signature.
57 const char *Name;
58 };
59
60 static constexpr HiddenArgInfo HiddenArgs[END_HIDDEN_ARGS] = {
61 {0, 4, "_hidden_block_count_x"}, {4, 4, "_hidden_block_count_y"},
62 {8, 4, "_hidden_block_count_z"}, {12, 2, "_hidden_group_size_x"},
63 {14, 2, "_hidden_group_size_y"}, {16, 2, "_hidden_group_size_z"},
64 {18, 2, "_hidden_remainder_x"}, {20, 2, "_hidden_remainder_y"},
65 {22, 2, "_hidden_remainder_z"}};
66
67 static HiddenArg getHiddenArgFromOffset(unsigned Offset) {
68 for (unsigned I = 0; I < END_HIDDEN_ARGS; ++I)
69 if (HiddenArgs[I].Offset == Offset)
70 return static_cast<HiddenArg>(I);
71
72 return END_HIDDEN_ARGS;
73 }
74
75 static Type *getHiddenArgType(LLVMContext &Ctx, HiddenArg HA) {
76 if (HA < END_HIDDEN_ARGS)
77 return Type::getIntNTy(Ctx, HiddenArgs[HA].Size * 8);
78
79 llvm_unreachable("Unexpected hidden argument.");
80 }
81
82 static const char *getHiddenArgName(HiddenArg HA) {
83 if (HA < END_HIDDEN_ARGS) {
84 return HiddenArgs[HA].Name;
85 }
86 llvm_unreachable("Unexpected hidden argument.");
87 }
88
89 // Clones the function after adding implicit arguments to the argument list
90 // and returns the new updated function. Preloaded implicit arguments are
91 // added up to and including the last one that will be preloaded, indicated by
92 // LastPreloadIndex. Currently preloading is only performed on the totality of
93 // sequential data from the kernarg segment including implicit (hidden)
94 // arguments. This means that all arguments up to the last preloaded argument
95 // will also be preloaded even if that data is unused.
96 Function *cloneFunctionWithPreloadImplicitArgs(unsigned LastPreloadIndex) {
97 FunctionType *FT = F.getFunctionType();
98 LLVMContext &Ctx = F.getParent()->getContext();
99 SmallVector<Type *, 16> FTypes(FT->param_begin(), FT->param_end());
100 for (unsigned I = 0; I <= LastPreloadIndex; ++I)
101 FTypes.push_back(getHiddenArgType(Ctx, HiddenArg(I)));
102
103 FunctionType *NFT =
104 FunctionType::get(FT->getReturnType(), FTypes, FT->isVarArg());
105 Function *NF =
106 Function::Create(NFT, F.getLinkage(), F.getAddressSpace(), F.getName());
107
108 NF->copyAttributesFrom(&F);
109 NF->copyMetadata(&F, 0);
110 NF->setIsNewDbgInfoFormat(F.IsNewDbgInfoFormat);
111
112 F.getParent()->getFunctionList().insert(F.getIterator(), NF);
113 NF->takeName(&F);
114 NF->splice(NF->begin(), &F);
115
116 Function::arg_iterator NFArg = NF->arg_begin();
117 for (Argument &Arg : F.args()) {
118 Arg.replaceAllUsesWith(&*NFArg);
119 NFArg->takeName(&Arg);
120 ++NFArg;
121 }
122
123 AttrBuilder AB(Ctx);
124 AB.addAttribute(Attribute::InReg);
125 AB.addAttribute("amdgpu-hidden-argument");
126 AttributeList AL = NF->getAttributes();
127 for (unsigned I = 0; I <= LastPreloadIndex; ++I) {
128 AL = AL.addParamAttributes(Ctx, NFArg->getArgNo(), AB);
129 NFArg++->setName(getHiddenArgName(HiddenArg(I)));
130 }
131
132 NF->setAttributes(AL);
133 F.replaceAllUsesWith(NF);
134 F.setCallingConv(CallingConv::C);
135
136 return NF;
137 }
138
139public:
140 PreloadKernelArgInfo(Function &F, const GCNSubtarget &ST) : F(F), ST(ST) {
141 setInitialFreeUserSGPRsCount();
142 }
143
144 // Returns the maximum number of user SGPRs that we have available to preload
145 // arguments.
146 void setInitialFreeUserSGPRsCount() {
147 GCNUserSGPRUsageInfo UserSGPRInfo(F, ST);
148 NumFreeUserSGPRs = UserSGPRInfo.getNumFreeUserSGPRs();
149 }
150
151 bool tryAllocPreloadSGPRs(unsigned AllocSize, uint64_t ArgOffset,
152 uint64_t LastExplicitArgOffset) {
153 // Check if this argument may be loaded into the same register as the
154 // previous argument.
155 if (ArgOffset - LastExplicitArgOffset < 4 &&
156 !isAligned(Align(4), ArgOffset))
157 return true;
158
159 // Pad SGPRs for kernarg alignment.
160 ArgOffset = alignDown(ArgOffset, 4);
161 unsigned Padding = ArgOffset - LastExplicitArgOffset;
162 unsigned PaddingSGPRs = alignTo(Padding, 4) / 4;
163 unsigned NumPreloadSGPRs = alignTo(AllocSize, 4) / 4;
164 if (NumPreloadSGPRs + PaddingSGPRs > NumFreeUserSGPRs)
165 return false;
166
167 NumFreeUserSGPRs -= (NumPreloadSGPRs + PaddingSGPRs);
168 return true;
169 }
170
171 // Try to allocate SGPRs to preload implicit kernel arguments.
172 void tryAllocImplicitArgPreloadSGPRs(uint64_t ImplicitArgsBaseOffset,
173 uint64_t LastExplicitArgOffset,
174 IRBuilder<> &Builder) {
176 F.getParent(), Intrinsic::amdgcn_implicitarg_ptr);
177 if (!ImplicitArgPtr)
178 return;
179
180 const DataLayout &DL = F.getParent()->getDataLayout();
181 // Pair is the load and the load offset.
183 for (auto *U : ImplicitArgPtr->users()) {
184 Instruction *CI = dyn_cast<Instruction>(U);
185 if (!CI || CI->getParent()->getParent() != &F)
186 continue;
187
188 for (auto *U : CI->users()) {
189 int64_t Offset = 0;
190 auto *Load = dyn_cast<LoadInst>(U); // Load from ImplicitArgPtr?
191 if (!Load) {
193 continue;
194
195 Load = dyn_cast<LoadInst>(*U->user_begin()); // Load from GEP?
196 }
197
198 if (!Load || !Load->isSimple())
199 continue;
200
201 // FIXME: Expand to handle 64-bit implicit args and large merged loads.
202 LLVMContext &Ctx = F.getParent()->getContext();
203 Type *LoadTy = Load->getType();
204 HiddenArg HA = getHiddenArgFromOffset(Offset);
205 if (HA == END_HIDDEN_ARGS || LoadTy != getHiddenArgType(Ctx, HA))
206 continue;
207
208 ImplicitArgLoads.push_back(std::make_pair(Load, Offset));
209 }
210 }
211
212 if (ImplicitArgLoads.empty())
213 return;
214
215 // Allocate loads in order of offset. We need to be sure that the implicit
216 // argument can actually be preloaded.
217 std::sort(ImplicitArgLoads.begin(), ImplicitArgLoads.end(), less_second());
218
219 // If we fail to preload any implicit argument we know we don't have SGPRs
220 // to preload any subsequent ones with larger offsets. Find the first
221 // argument that we cannot preload.
222 auto *PreloadEnd = std::find_if(
223 ImplicitArgLoads.begin(), ImplicitArgLoads.end(),
224 [&](const std::pair<LoadInst *, unsigned> &Load) {
225 unsigned LoadSize = DL.getTypeStoreSize(Load.first->getType());
226 unsigned LoadOffset = Load.second;
227 if (!tryAllocPreloadSGPRs(LoadSize,
228 LoadOffset + ImplicitArgsBaseOffset,
229 LastExplicitArgOffset))
230 return true;
231
232 LastExplicitArgOffset =
233 ImplicitArgsBaseOffset + LoadOffset + LoadSize;
234 return false;
235 });
236
237 if (PreloadEnd == ImplicitArgLoads.begin())
238 return;
239
240 unsigned LastHiddenArgIndex = getHiddenArgFromOffset(PreloadEnd[-1].second);
241 Function *NF = cloneFunctionWithPreloadImplicitArgs(LastHiddenArgIndex);
242 assert(NF);
243 for (const auto *I = ImplicitArgLoads.begin(); I != PreloadEnd; ++I) {
244 LoadInst *LoadInst = I->first;
245 unsigned LoadOffset = I->second;
246 unsigned HiddenArgIndex = getHiddenArgFromOffset(LoadOffset);
247 unsigned Index = NF->arg_size() - LastHiddenArgIndex + HiddenArgIndex - 1;
248 Argument *Arg = NF->getArg(Index);
250 }
251 }
252};
253
254class AMDGPULowerKernelArguments : public FunctionPass {
255public:
256 static char ID;
257
258 AMDGPULowerKernelArguments() : FunctionPass(ID) {}
259
260 bool runOnFunction(Function &F) override;
261
262 void getAnalysisUsage(AnalysisUsage &AU) const override {
264 AU.setPreservesAll();
265 }
266};
267
268} // end anonymous namespace
269
270// skip allocas
273 for (BasicBlock::iterator E = BB.end(); InsPt != E; ++InsPt) {
274 AllocaInst *AI = dyn_cast<AllocaInst>(&*InsPt);
275
276 // If this is a dynamic alloca, the value may depend on the loaded kernargs,
277 // so loads will need to be inserted before it.
278 if (!AI || !AI->isStaticAlloca())
279 break;
280 }
281
282 return InsPt;
283}
284
286 CallingConv::ID CC = F.getCallingConv();
287 if (CC != CallingConv::AMDGPU_KERNEL || F.arg_empty())
288 return false;
289
290 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
291 LLVMContext &Ctx = F.getParent()->getContext();
292 const DataLayout &DL = F.getDataLayout();
293 BasicBlock &EntryBlock = *F.begin();
294 IRBuilder<> Builder(&EntryBlock, getInsertPt(EntryBlock));
295
296 const Align KernArgBaseAlign(16); // FIXME: Increase if necessary
297 const uint64_t BaseOffset = ST.getExplicitKernelArgOffset();
298
299 Align MaxAlign;
300 // FIXME: Alignment is broken with explicit arg offset.;
301 const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(F, MaxAlign);
302 if (TotalKernArgSize == 0)
303 return false;
304
305 CallInst *KernArgSegment =
306 Builder.CreateIntrinsic(Intrinsic::amdgcn_kernarg_segment_ptr, {}, {},
307 nullptr, F.getName() + ".kernarg.segment");
308 KernArgSegment->addRetAttr(Attribute::NonNull);
309 KernArgSegment->addRetAttr(
310 Attribute::getWithDereferenceableBytes(Ctx, TotalKernArgSize));
311
312 uint64_t ExplicitArgOffset = 0;
313 // Preloaded kernel arguments must be sequential.
314 bool InPreloadSequence = true;
315 PreloadKernelArgInfo PreloadInfo(F, ST);
316
317 for (Argument &Arg : F.args()) {
318 const bool IsByRef = Arg.hasByRefAttr();
319 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
320 MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
321 Align ABITypeAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
322
323 uint64_t Size = DL.getTypeSizeInBits(ArgTy);
324 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
325
326 uint64_t EltOffset = alignTo(ExplicitArgOffset, ABITypeAlign) + BaseOffset;
327 uint64_t LastExplicitArgOffset = ExplicitArgOffset;
328 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABITypeAlign) + AllocSize;
329
330 // Guard against the situation where hidden arguments have already been
331 // lowered and added to the kernel function signiture, i.e. in a situation
332 // where this pass has run twice.
333 if (Arg.hasAttribute("amdgpu-hidden-argument"))
334 break;
335
336 // Try to preload this argument into user SGPRs.
337 if (Arg.hasInRegAttr() && InPreloadSequence && ST.hasKernargPreload() &&
338 !Arg.getType()->isAggregateType())
339 if (PreloadInfo.tryAllocPreloadSGPRs(AllocSize, EltOffset,
340 LastExplicitArgOffset))
341 continue;
342
343 InPreloadSequence = false;
344
345 if (Arg.use_empty())
346 continue;
347
348 // If this is byval, the loads are already explicit in the function. We just
349 // need to rewrite the pointer values.
350 if (IsByRef) {
351 Value *ArgOffsetPtr = Builder.CreateConstInBoundsGEP1_64(
352 Builder.getInt8Ty(), KernArgSegment, EltOffset,
353 Arg.getName() + ".byval.kernarg.offset");
354
355 Value *CastOffsetPtr =
356 Builder.CreateAddrSpaceCast(ArgOffsetPtr, Arg.getType());
357 Arg.replaceAllUsesWith(CastOffsetPtr);
358 continue;
359 }
360
361 if (PointerType *PT = dyn_cast<PointerType>(ArgTy)) {
362 // FIXME: Hack. We rely on AssertZext to be able to fold DS addressing
363 // modes on SI to know the high bits are 0 so pointer adds don't wrap. We
364 // can't represent this with range metadata because it's only allowed for
365 // integer types.
366 if ((PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
367 PT->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) &&
368 !ST.hasUsableDSOffset())
369 continue;
370
371 // FIXME: We can replace this with equivalent alias.scope/noalias
372 // metadata, but this appears to be a lot of work.
373 if (Arg.hasNoAliasAttr())
374 continue;
375 }
376
377 auto *VT = dyn_cast<FixedVectorType>(ArgTy);
378 bool IsV3 = VT && VT->getNumElements() == 3;
379 bool DoShiftOpt = Size < 32 && !ArgTy->isAggregateType();
380
381 VectorType *V4Ty = nullptr;
382
383 int64_t AlignDownOffset = alignDown(EltOffset, 4);
384 int64_t OffsetDiff = EltOffset - AlignDownOffset;
385 Align AdjustedAlign = commonAlignment(
386 KernArgBaseAlign, DoShiftOpt ? AlignDownOffset : EltOffset);
387
388 Value *ArgPtr;
389 Type *AdjustedArgTy;
390 if (DoShiftOpt) { // FIXME: Handle aggregate types
391 // Since we don't have sub-dword scalar loads, avoid doing an extload by
392 // loading earlier than the argument address, and extracting the relevant
393 // bits.
394 // TODO: Update this for GFX12 which does have scalar sub-dword loads.
395 //
396 // Additionally widen any sub-dword load to i32 even if suitably aligned,
397 // so that CSE between different argument loads works easily.
398 ArgPtr = Builder.CreateConstInBoundsGEP1_64(
399 Builder.getInt8Ty(), KernArgSegment, AlignDownOffset,
400 Arg.getName() + ".kernarg.offset.align.down");
401 AdjustedArgTy = Builder.getInt32Ty();
402 } else {
403 ArgPtr = Builder.CreateConstInBoundsGEP1_64(
404 Builder.getInt8Ty(), KernArgSegment, EltOffset,
405 Arg.getName() + ".kernarg.offset");
406 AdjustedArgTy = ArgTy;
407 }
408
409 if (IsV3 && Size >= 32) {
410 V4Ty = FixedVectorType::get(VT->getElementType(), 4);
411 // Use the hack that clang uses to avoid SelectionDAG ruining v3 loads
412 AdjustedArgTy = V4Ty;
413 }
414
415 LoadInst *Load =
416 Builder.CreateAlignedLoad(AdjustedArgTy, ArgPtr, AdjustedAlign);
417 Load->setMetadata(LLVMContext::MD_invariant_load, MDNode::get(Ctx, {}));
418
419 MDBuilder MDB(Ctx);
420
421 if (Arg.hasAttribute(Attribute::NoUndef))
422 Load->setMetadata(LLVMContext::MD_noundef, MDNode::get(Ctx, {}));
423
424 if (Arg.hasAttribute(Attribute::Range)) {
425 const ConstantRange &Range =
426 Arg.getAttribute(Attribute::Range).getValueAsConstantRange();
427 Load->setMetadata(LLVMContext::MD_range,
429 }
430
431 if (isa<PointerType>(ArgTy)) {
432 if (Arg.hasNonNullAttr())
433 Load->setMetadata(LLVMContext::MD_nonnull, MDNode::get(Ctx, {}));
434
435 uint64_t DerefBytes = Arg.getDereferenceableBytes();
436 if (DerefBytes != 0) {
437 Load->setMetadata(
438 LLVMContext::MD_dereferenceable,
439 MDNode::get(Ctx,
440 MDB.createConstant(
441 ConstantInt::get(Builder.getInt64Ty(), DerefBytes))));
442 }
443
444 uint64_t DerefOrNullBytes = Arg.getDereferenceableOrNullBytes();
445 if (DerefOrNullBytes != 0) {
446 Load->setMetadata(
447 LLVMContext::MD_dereferenceable_or_null,
448 MDNode::get(Ctx,
449 MDB.createConstant(ConstantInt::get(Builder.getInt64Ty(),
450 DerefOrNullBytes))));
451 }
452
453 if (MaybeAlign ParamAlign = Arg.getParamAlign()) {
454 Load->setMetadata(
455 LLVMContext::MD_align,
456 MDNode::get(Ctx, MDB.createConstant(ConstantInt::get(
457 Builder.getInt64Ty(), ParamAlign->value()))));
458 }
459 }
460
461 // TODO: Convert noalias arg to !noalias
462
463 if (DoShiftOpt) {
464 Value *ExtractBits = OffsetDiff == 0 ?
465 Load : Builder.CreateLShr(Load, OffsetDiff * 8);
466
467 IntegerType *ArgIntTy = Builder.getIntNTy(Size);
468 Value *Trunc = Builder.CreateTrunc(ExtractBits, ArgIntTy);
469 Value *NewVal = Builder.CreateBitCast(Trunc, ArgTy,
470 Arg.getName() + ".load");
471 Arg.replaceAllUsesWith(NewVal);
472 } else if (IsV3) {
473 Value *Shuf = Builder.CreateShuffleVector(Load, ArrayRef<int>{0, 1, 2},
474 Arg.getName() + ".load");
475 Arg.replaceAllUsesWith(Shuf);
476 } else {
477 Load->setName(Arg.getName() + ".load");
478 Arg.replaceAllUsesWith(Load);
479 }
480 }
481
482 KernArgSegment->addRetAttr(
483 Attribute::getWithAlignment(Ctx, std::max(KernArgBaseAlign, MaxAlign)));
484
485 if (InPreloadSequence) {
486 uint64_t ImplicitArgsBaseOffset =
487 alignTo(ExplicitArgOffset, ST.getAlignmentForImplicitArgPtr()) +
488 BaseOffset;
489 PreloadInfo.tryAllocImplicitArgPreloadSGPRs(ImplicitArgsBaseOffset,
490 ExplicitArgOffset, Builder);
491 }
492
493 return true;
494}
495
496bool AMDGPULowerKernelArguments::runOnFunction(Function &F) {
497 auto &TPC = getAnalysis<TargetPassConfig>();
498 const TargetMachine &TM = TPC.getTM<TargetMachine>();
499 return lowerKernelArguments(F, TM);
500}
501
502INITIALIZE_PASS_BEGIN(AMDGPULowerKernelArguments, DEBUG_TYPE,
503 "AMDGPU Lower Kernel Arguments", false, false)
504INITIALIZE_PASS_END(AMDGPULowerKernelArguments, DEBUG_TYPE, "AMDGPU Lower Kernel Arguments",
506
507char AMDGPULowerKernelArguments::ID = 0;
508
510 return new AMDGPULowerKernelArguments();
511}
512
515 bool Changed = lowerKernelArguments(F, TM);
516 if (Changed) {
517 // TODO: Preserves a lot more.
520 return PA;
521 }
522
523 return PreservedAnalyses::all();
524}
AMDGPU Lower Kernel Arguments
static BasicBlock::iterator getInsertPt(BasicBlock &BB)
static bool lowerKernelArguments(Function &F, const TargetMachine &TM)
#define DEBUG_TYPE
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
uint64_t Size
AMD GCN specific subclass of TargetSubtarget.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Target-Independent Code Generator Pass Configuration Options pass.
PreservedAnalyses run(Function &, FunctionAnalysisManager &)
an instruction to allocate memory on the stack
Definition: Instructions.h:63
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesAll()
Set by analyses that do not transform their input at all.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition: Argument.h:49
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
static Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
Definition: Attributes.cpp:244
static Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
Definition: Attributes.cpp:234
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:416
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:72
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Definition: InstrTypes.h:1492
This class represents a function call, abstracting a target machine's calling convention.
This class represents a range of values.
Definition: ConstantRange.h:47
const APInt & getLower() const
Return the lower value for this range.
const APInt & getUpper() const
Return the upper value for this range.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:791
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:173
void splice(Function::iterator ToIt, Function *FromF)
Transfer all blocks from FromF to this function at ToIt.
Definition: Function.h:761
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:353
iterator begin()
Definition: Function.h:853
arg_iterator arg_begin()
Definition: Function.h:868
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition: Function.h:356
size_t arg_size() const
Definition: Function.h:901
void setIsNewDbgInfoFormat(bool NewVal)
Definition: Function.cpp:105
Argument * getArg(unsigned i) const
Definition: Function.h:886
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:860
void copyMetadata(const GlobalObject *Src, unsigned Offset)
Copy metadata from Src, adjusting offsets by Offset.
Definition: Metadata.cpp:1799
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:536
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Definition: IRBuilder.h:1830
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:890
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1460
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:523
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Definition: IRBuilder.h:528
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2155
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:2525
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2034
Value * CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0, const Twine &Name="")
Definition: IRBuilder.h:1959
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:513
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2160
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
Class to represent integer types.
Definition: DerivedTypes.h:42
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
ConstantAsMetadata * createConstant(Constant *C)
Return the given constant as metadata.
Definition: MDBuilder.cpp:24
MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
Definition: MDBuilder.cpp:95
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1543
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:146
bool empty() const
Definition: SmallVector.h:81
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
Target-Independent Code Generator Pass Configuration Options.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition: Type.h:303
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
const ParentTy * getParent() const
Definition: ilist_node.h:32
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
Definition: CallingConv.h:200
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Function * getDeclarationIfExists(Module *M, ID id, ArrayRef< Type * > Tys, FunctionType *FT=nullptr)
This version supports overloaded intrinsics.
Definition: Intrinsics.cpp:746
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition: Alignment.h:145
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition: MathExtras.h:555
FunctionPass * createAMDGPULowerKernelArgumentsPass()
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Function object to check whether the second component of a container supported by std::get (like std:...
Definition: STLExtras.h:1476