94#include "llvm/IR/IntrinsicsAArch64.h"
95#include "llvm/IR/IntrinsicsAMDGPU.h"
96#include "llvm/IR/IntrinsicsARM.h"
97#include "llvm/IR/IntrinsicsNVPTX.h"
98#include "llvm/IR/IntrinsicsWebAssembly.h"
136 cl::desc(
"Ensure that llvm.experimental.noalias.scope.decl for identical "
137 "scopes are not dominating"));
160 *
OS <<
"; ModuleID = '" << M->getModuleIdentifier() <<
"'\n";
173 V.printAsOperand(*
OS,
true,
MST);
178 void Write(
const DbgRecord *DR) {
194 *
OS <<
"declare_value";
215 template <
class T>
void Write(
const MDTupleTypedArrayWrapper<T> &MD) {
219 void Write(
const NamedMDNode *NMD) {
232 void Write(
const Comdat *
C) {
238 void Write(
const APInt *AI) {
244 void Write(
const unsigned i) { *
OS << i <<
'\n'; }
250 *
OS <<
A->getAsString() <<
'\n';
254 void Write(
const AttributeSet *AS) {
261 void Write(
const AttributeList *AL) {
267 void Write(Printable
P) { *
OS <<
P <<
'\n'; }
269 template <
typename T>
void Write(ArrayRef<T> Vs) {
270 for (
const T &V : Vs)
274 template <
typename T1,
typename... Ts>
275 void WriteTs(
const T1 &V1,
const Ts &... Vs) {
280 template <
typename... Ts>
void WriteTs() {}
289 *
OS << Message <<
'\n';
297 template <
typename T1,
typename... Ts>
307 *
OS << Message <<
'\n';
313 template <
typename T1,
typename... Ts>
345 Type *LandingPadResultTy;
352 bool HasDebugInfo =
false;
395 SawFrameEscape(
false), TBAAVerifyHelper(this) {
396 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
399 bool hasBrokenDebugInfo()
const {
return BrokenDebugInfo; }
401 bool verify(
const Function &
F) {
402 llvm::TimeTraceScope timeScope(
"Verifier");
404 "An instance of this class only works with a specific module!");
413 DT.recalculate(
const_cast<Function &
>(
F));
415 for (
const BasicBlock &BB :
F) {
416 if (!BB.empty() && BB.back().isTerminator())
420 *OS <<
"Basic Block in function '" <<
F.getName()
421 <<
"' does not have terminator!\n";
422 BB.printAsOperand(*OS,
true, MST);
428 auto FailureCB = [
this](
const Twine &Message) {
429 this->CheckFailed(Message);
431 ConvergenceVerifyHelper.initialize(OS, FailureCB,
F);
436 verifySiblingFuncletUnwinds();
438 if (ConvergenceVerifyHelper.sawTokens())
439 ConvergenceVerifyHelper.verify(DT);
441 InstsInThisBlock.clear();
443 LandingPadResultTy =
nullptr;
444 SawFrameEscape =
false;
445 SiblingFuncletInfo.clear();
446 verifyNoAliasScopeDecl();
447 NoAliasScopeDecls.clear();
457 for (
const Function &
F : M)
458 if (
F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
459 DeoptimizeDeclarations.push_back(&
F);
463 verifyFrameRecoverIndices();
464 for (
const GlobalVariable &GV :
M.globals())
465 visitGlobalVariable(GV);
467 for (
const GlobalAlias &GA :
M.aliases())
468 visitGlobalAlias(GA);
470 for (
const GlobalIFunc &GI :
M.ifuncs())
471 visitGlobalIFunc(GI);
473 for (
const NamedMDNode &NMD :
M.named_metadata())
474 visitNamedMDNode(NMD);
476 for (
const StringMapEntry<Comdat> &SMEC :
M.getComdatSymbolTable())
477 visitComdat(SMEC.getValue());
481 visitModuleCommandLines();
482 visitModuleErrnoTBAA();
484 verifyCompileUnits();
486 verifyDeoptimizeCallingConvs();
487 DISubprogramAttachments.clear();
493 enum class AreDebugLocsAllowed {
No,
Yes };
497 enum class RangeLikeMetadataKind {
504 void visitGlobalValue(
const GlobalValue &GV);
505 void visitGlobalVariable(
const GlobalVariable &GV);
506 void visitGlobalAlias(
const GlobalAlias &GA);
507 void visitGlobalIFunc(
const GlobalIFunc &GI);
508 void visitAliaseeSubExpr(
const GlobalAlias &
A,
const Constant &
C);
509 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
510 const GlobalAlias &
A,
const Constant &
C);
511 void visitNamedMDNode(
const NamedMDNode &NMD);
512 void visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs);
513 void visitMetadataAsValue(
const MetadataAsValue &MD, Function *
F);
514 void visitValueAsMetadata(
const ValueAsMetadata &MD, Function *
F);
515 void visitDIArgList(
const DIArgList &AL, Function *
F);
516 void visitComdat(
const Comdat &
C);
517 void visitModuleIdents();
518 void visitModuleCommandLines();
519 void visitModuleErrnoTBAA();
520 void visitModuleFlags();
521 void visitModuleFlag(
const MDNode *
Op,
522 DenseMap<const MDString *, const MDNode *> &SeenIDs,
523 SmallVectorImpl<const MDNode *> &Requirements);
524 void visitModuleFlagCGProfileEntry(
const MDOperand &MDO);
525 void visitFunction(
const Function &
F);
526 void visitBasicBlock(BasicBlock &BB);
527 void verifyRangeLikeMetadata(
const Value &V,
const MDNode *
Range,
Type *Ty,
528 RangeLikeMetadataKind Kind);
529 void visitRangeMetadata(Instruction &
I, MDNode *
Range,
Type *Ty);
530 void visitNoaliasAddrspaceMetadata(Instruction &
I, MDNode *
Range,
Type *Ty);
531 void visitDereferenceableMetadata(Instruction &
I, MDNode *MD);
532 void visitNofreeMetadata(Instruction &
I, MDNode *MD);
533 void visitProfMetadata(Instruction &
I, MDNode *MD);
534 void visitCallStackMetadata(MDNode *MD);
535 void visitMemProfMetadata(Instruction &
I, MDNode *MD);
536 void visitCallsiteMetadata(Instruction &
I, MDNode *MD);
537 void visitCalleeTypeMetadata(Instruction &
I, MDNode *MD);
538 void visitDIAssignIDMetadata(Instruction &
I, MDNode *MD);
539 void visitMMRAMetadata(Instruction &
I, MDNode *MD);
540 void visitAnnotationMetadata(MDNode *Annotation);
541 void visitAliasScopeMetadata(
const MDNode *MD);
542 void visitAliasScopeListMetadata(
const MDNode *MD);
543 void visitAccessGroupMetadata(
const MDNode *MD);
544 void visitCapturesMetadata(Instruction &
I,
const MDNode *Captures);
545 void visitAllocTokenMetadata(Instruction &
I, MDNode *MD);
547 template <
class Ty>
bool isValidMetadataArray(
const MDTuple &
N);
548#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
549#include "llvm/IR/Metadata.def"
550 void visitDIScope(
const DIScope &
N);
574 void checkPtrToAddr(
Type *SrcTy,
Type *DestTy,
const Value &V);
579 void visitPHINode(
PHINode &PN);
588 void visitVAArgInst(
VAArgInst &VAA) { visitInstruction(VAA); }
589 void visitCallInst(CallInst &CI);
590 void visitInvokeInst(InvokeInst &
II);
591 void visitGetElementPtrInst(GetElementPtrInst &
GEP);
592 void visitLoadInst(LoadInst &LI);
593 void visitStoreInst(StoreInst &SI);
594 void verifyDominatesUse(Instruction &
I,
unsigned i);
595 void visitInstruction(Instruction &
I);
596 void visitTerminator(Instruction &
I);
597 void visitBranchInst(BranchInst &BI);
598 void visitReturnInst(ReturnInst &RI);
599 void visitSwitchInst(SwitchInst &SI);
600 void visitIndirectBrInst(IndirectBrInst &BI);
601 void visitCallBrInst(CallBrInst &CBI);
602 void visitSelectInst(SelectInst &SI);
603 void visitUserOp1(Instruction &
I);
604 void visitUserOp2(Instruction &
I) { visitUserOp1(
I); }
606 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
607 void visitVPIntrinsic(VPIntrinsic &VPI);
608 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
609 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
610 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
611 void visitFenceInst(FenceInst &FI);
612 void visitAllocaInst(AllocaInst &AI);
613 void visitExtractValueInst(ExtractValueInst &EVI);
614 void visitInsertValueInst(InsertValueInst &IVI);
615 void visitEHPadPredecessors(Instruction &
I);
616 void visitLandingPadInst(LandingPadInst &LPI);
617 void visitResumeInst(ResumeInst &RI);
618 void visitCatchPadInst(CatchPadInst &CPI);
619 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
620 void visitCleanupPadInst(CleanupPadInst &CPI);
621 void visitFuncletPadInst(FuncletPadInst &FPI);
622 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
623 void visitCleanupReturnInst(CleanupReturnInst &CRI);
625 void verifySwiftErrorCall(CallBase &
Call,
const Value *SwiftErrorVal);
626 void verifySwiftErrorValue(
const Value *SwiftErrorVal);
627 void verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs, StringRef
Context);
628 void verifyMustTailCall(CallInst &CI);
629 bool verifyAttributeCount(AttributeList Attrs,
unsigned Params);
630 void verifyAttributeTypes(AttributeSet Attrs,
const Value *V);
631 void verifyParameterAttrs(AttributeSet Attrs,
Type *Ty,
const Value *V);
632 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
634 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
635 const Value *V,
bool IsIntrinsic,
bool IsInlineAsm);
636 void verifyFunctionMetadata(
ArrayRef<std::pair<unsigned, MDNode *>> MDs);
637 void verifyUnknownProfileMetadata(MDNode *MD);
638 void visitConstantExprsRecursively(
const Constant *EntryC);
639 void visitConstantExpr(
const ConstantExpr *CE);
640 void visitConstantPtrAuth(
const ConstantPtrAuth *CPA);
641 void verifyInlineAsmCall(
const CallBase &
Call);
642 void verifyStatepoint(
const CallBase &
Call);
643 void verifyFrameRecoverIndices();
644 void verifySiblingFuncletUnwinds();
646 void verifyFragmentExpression(
const DbgVariableRecord &
I);
647 template <
typename ValueOrMetadata>
648 void verifyFragmentExpression(
const DIVariable &V,
650 ValueOrMetadata *
Desc);
651 void verifyFnArgs(
const DbgVariableRecord &DVR);
652 void verifyNotEntryValue(
const DbgVariableRecord &
I);
655 void verifyCompileUnits();
659 void verifyDeoptimizeCallingConvs();
661 void verifyAttachedCallBundle(
const CallBase &
Call,
662 const OperandBundleUse &BU);
665 void verifyNoAliasScopeDecl();
671#define Check(C, ...) \
674 CheckFailed(__VA_ARGS__); \
681#define CheckDI(C, ...) \
684 DebugInfoCheckFailed(__VA_ARGS__); \
692 CheckDI(
I.DebugMarker->MarkedInstr == &
I,
693 "Instruction has invalid DebugMarker", &
I);
695 "PHI Node must not have any attached DbgRecords", &
I);
698 "DbgRecord had invalid DebugMarker", &
I, &DR);
701 visitMDNode(*
Loc, AreDebugLocsAllowed::Yes);
706 verifyFragmentExpression(*DVR);
707 verifyNotEntryValue(*DVR);
714void Verifier::visit(Instruction &
I) {
716 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i)
717 Check(
I.getOperand(i) !=
nullptr,
"Operand is null", &
I);
729 while (!WorkList.
empty()) {
731 if (!Visited.
insert(Cur).second)
738void Verifier::visitGlobalValue(
const GlobalValue &GV) {
740 "Global is external, but doesn't have external or weak linkage!", &GV);
743 if (
const MDNode *Associated =
744 GO->getMetadata(LLVMContext::MD_associated)) {
745 Check(Associated->getNumOperands() == 1,
746 "associated metadata must have one operand", &GV, Associated);
747 const Metadata *
Op = Associated->getOperand(0).get();
748 Check(
Op,
"associated metadata must have a global value", GO, Associated);
751 Check(VM,
"associated metadata must be ValueAsMetadata", GO, Associated);
754 "associated value must be pointer typed", GV, Associated);
756 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
758 "associated metadata must point to a GlobalObject", GO, Stripped);
759 Check(Stripped != GO,
760 "global values should not associate to themselves", GO,
766 if (
const MDNode *AbsoluteSymbol =
767 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
768 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
769 DL.getIntPtrType(GO->getType()),
770 RangeLikeMetadataKind::AbsoluteSymbol);
775 "Only global variables can have appending linkage!", &GV);
780 "Only global arrays can have appending linkage!", GVar);
784 Check(!GV.
hasComdat(),
"Declaration may not be in a Comdat!", &GV);
788 "dllexport GlobalValue must have default or protected visibility",
793 "dllimport GlobalValue must have default visibility", &GV);
794 Check(!GV.
isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!",
800 "Global is marked as dllimport, but not external", &GV);
805 "GlobalValue with local linkage or non-default "
806 "visibility must be dso_local!",
811 if (!
I->getParent() || !
I->getParent()->getParent())
812 CheckFailed(
"Global is referenced by parentless instruction!", &GV, &M,
814 else if (
I->getParent()->getParent()->getParent() != &M)
815 CheckFailed(
"Global is referenced in a different module!", &GV, &M,
I,
816 I->getParent()->getParent(),
817 I->getParent()->getParent()->getParent());
820 if (
F->getParent() != &M)
821 CheckFailed(
"Global is used by function in a different module", &GV, &M,
829void Verifier::visitGlobalVariable(
const GlobalVariable &GV) {
833 Check(
A->value() <= Value::MaximumAlignment,
834 "huge alignment values are unsupported", &GV);
839 "Global variable initializer type does not match global "
843 "Global variable initializer must be sized", &GV);
849 "'common' global must have a zero initializer!", &GV);
852 Check(!GV.
hasComdat(),
"'common' global may not be in a Comdat!", &GV);
857 GV.
getName() ==
"llvm.global_dtors")) {
859 "invalid linkage for intrinsic global variable", &GV);
861 "invalid uses of intrinsic global variable", &GV);
868 PointerType::get(
Context,
DL.getProgramAddressSpace());
872 "wrong type for intrinsic global variable", &GV);
874 "the third field of the element type is mandatory, "
875 "specify ptr null to migrate from the obsoleted 2-field form");
883 GV.
getName() ==
"llvm.compiler.used")) {
885 "invalid linkage for intrinsic global variable", &GV);
887 "invalid uses of intrinsic global variable", &GV);
891 Check(PTy,
"wrong type for intrinsic global variable", &GV);
895 Check(InitArray,
"wrong initializer for intrinsic global variable",
901 Twine(
"invalid ") + GV.
getName() +
" member", V);
903 Twine(
"members of ") + GV.
getName() +
" must be named", V);
912 for (
auto *MD : MDs) {
914 visitDIGlobalVariableExpression(*GVE);
916 CheckDI(
false,
"!dbg attachment of global variable must be a "
917 "DIGlobalVariableExpression");
927 "Global @" + GV.
getName() +
" has illegal target extension type",
931 visitGlobalValue(GV);
938 visitGlobalValue(GV);
941void Verifier::visitAliaseeSubExpr(
const GlobalAlias &GA,
const Constant &
C) {
942 SmallPtrSet<const GlobalAlias*, 4> Visited;
944 visitAliaseeSubExpr(Visited, GA,
C);
947void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
948 const GlobalAlias &GA,
const Constant &
C) {
952 "available_externally alias must point to available_externally "
963 Check(Visited.
insert(GA2).second,
"Aliases cannot form a cycle", &GA);
965 Check(!GA2->isInterposable(),
966 "Alias cannot point to an interposable alias", &GA);
975 visitConstantExprsRecursively(CE);
977 for (
const Use &U :
C.operands()) {
980 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
982 visitAliaseeSubExpr(Visited, GA, *C2);
986void Verifier::visitGlobalAlias(
const GlobalAlias &GA) {
988 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
989 "weak_odr, external, or available_externally linkage!",
992 Check(Aliasee,
"Aliasee cannot be NULL!", &GA);
994 "Alias and aliasee types should match!", &GA);
997 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
999 visitAliaseeSubExpr(GA, *Aliasee);
1001 visitGlobalValue(GA);
1004void Verifier::visitGlobalIFunc(
const GlobalIFunc &GI) {
1005 visitGlobalValue(GI);
1009 for (
const auto &
I : MDs) {
1010 CheckDI(
I.first != LLVMContext::MD_dbg,
1011 "an ifunc may not have a !dbg attachment", &GI);
1012 Check(
I.first != LLVMContext::MD_prof,
1013 "an ifunc may not have a !prof attachment", &GI);
1014 visitMDNode(*
I.second, AreDebugLocsAllowed::No);
1018 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1019 "weak_odr, or external linkage!",
1024 Check(Resolver,
"IFunc must have a Function resolver", &GI);
1026 "IFunc resolver must be a definition", &GI);
1033 "IFunc resolver must return a pointer", &GI);
1036 "IFunc resolver has incorrect type", &GI);
1039void Verifier::visitNamedMDNode(
const NamedMDNode &NMD) {
1044 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1045 for (
const MDNode *MD : NMD.
operands()) {
1046 if (NMD.
getName() ==
"llvm.dbg.cu")
1052 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1056void Verifier::visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1059 if (!MDNodes.
insert(&MD).second)
1063 "MDNode context does not match Module context!", &MD);
1068 case Metadata::MDTupleKind:
1070#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1071 case Metadata::CLASS##Kind: \
1072 visit##CLASS(cast<CLASS>(MD)); \
1074#include "llvm/IR/Metadata.def"
1083 "DILocation not allowed within this metadata node", &MD,
Op);
1085 visitMDNode(*
N, AllowLocs);
1089 visitValueAsMetadata(*V,
nullptr);
1101 "Expected second operand to be an integer constant of type i32 or "
1111void Verifier::visitValueAsMetadata(
const ValueAsMetadata &MD, Function *
F) {
1114 "Unexpected metadata round-trip through values", &MD, MD.
getValue());
1120 Check(
F,
"function-local metadata used outside a function", L);
1126 Check(
I->getParent(),
"function-local metadata not in basic block", L,
I);
1132 assert(ActualF &&
"Unimplemented function local metadata case!");
1134 Check(ActualF ==
F,
"function-local metadata used in wrong function", L);
1137void Verifier::visitDIArgList(
const DIArgList &AL, Function *
F) {
1138 for (
const ValueAsMetadata *VAM :
AL.getArgs())
1139 visitValueAsMetadata(*VAM,
F);
1142void Verifier::visitMetadataAsValue(
const MetadataAsValue &MDV, Function *
F) {
1145 visitMDNode(*
N, AreDebugLocsAllowed::No);
1151 if (!MDNodes.
insert(MD).second)
1155 visitValueAsMetadata(*V,
F);
1158 visitDIArgList(*AL,
F);
1166void Verifier::visitDILocation(
const DILocation &
N) {
1168 "location requires a valid scope", &
N,
N.getRawScope());
1169 if (
auto *IA =
N.getRawInlinedAt())
1172 CheckDI(
SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1175void Verifier::visitGenericDINode(
const GenericDINode &
N) {
1179void Verifier::visitDIScope(
const DIScope &
N) {
1180 if (
auto *
F =
N.getRawFile())
1184void Verifier::visitDISubrangeType(
const DISubrangeType &
N) {
1185 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1188 auto *LBound =
N.getRawLowerBound();
1191 "LowerBound must be signed constant or DIVariable or DIExpression",
1193 auto *UBound =
N.getRawUpperBound();
1196 "UpperBound must be signed constant or DIVariable or DIExpression",
1198 auto *Stride =
N.getRawStride();
1201 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1202 auto *Bias =
N.getRawBias();
1205 "Bias must be signed constant or DIVariable or DIExpression", &
N);
1207 auto *
Size =
N.getRawSizeInBits();
1209 "SizeInBits must be a constant");
1212void Verifier::visitDISubrange(
const DISubrange &
N) {
1213 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1214 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1215 "Subrange can have any one of count or upperBound", &
N);
1216 auto *CBound =
N.getRawCountNode();
1219 "Count must be signed constant or DIVariable or DIExpression", &
N);
1220 auto Count =
N.getCount();
1223 "invalid subrange count", &
N);
1224 auto *LBound =
N.getRawLowerBound();
1227 "LowerBound must be signed constant or DIVariable or DIExpression",
1229 auto *UBound =
N.getRawUpperBound();
1232 "UpperBound must be signed constant or DIVariable or DIExpression",
1234 auto *Stride =
N.getRawStride();
1237 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1240void Verifier::visitDIGenericSubrange(
const DIGenericSubrange &
N) {
1241 CheckDI(
N.getTag() == dwarf::DW_TAG_generic_subrange,
"invalid tag", &
N);
1242 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1243 "GenericSubrange can have any one of count or upperBound", &
N);
1244 auto *CBound =
N.getRawCountNode();
1246 "Count must be signed constant or DIVariable or DIExpression", &
N);
1247 auto *LBound =
N.getRawLowerBound();
1248 CheckDI(LBound,
"GenericSubrange must contain lowerBound", &
N);
1250 "LowerBound must be signed constant or DIVariable or DIExpression",
1252 auto *UBound =
N.getRawUpperBound();
1254 "UpperBound must be signed constant or DIVariable or DIExpression",
1256 auto *Stride =
N.getRawStride();
1257 CheckDI(Stride,
"GenericSubrange must contain stride", &
N);
1259 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1262void Verifier::visitDIEnumerator(
const DIEnumerator &
N) {
1263 CheckDI(
N.getTag() == dwarf::DW_TAG_enumerator,
"invalid tag", &
N);
1266void Verifier::visitDIBasicType(
const DIBasicType &
N) {
1267 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type ||
1268 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1269 N.getTag() == dwarf::DW_TAG_string_type,
1272 auto *
Size =
N.getRawSizeInBits();
1274 "SizeInBits must be a constant");
1277void Verifier::visitDIFixedPointType(
const DIFixedPointType &
N) {
1278 visitDIBasicType(
N);
1280 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type,
"invalid tag", &
N);
1281 CheckDI(
N.getEncoding() == dwarf::DW_ATE_signed_fixed ||
1282 N.getEncoding() == dwarf::DW_ATE_unsigned_fixed,
1283 "invalid encoding", &
N);
1287 "invalid kind", &
N);
1289 N.getFactorRaw() == 0,
1290 "factor should be 0 for rationals", &
N);
1292 (
N.getNumeratorRaw() == 0 &&
N.getDenominatorRaw() == 0),
1293 "numerator and denominator should be 0 for non-rationals", &
N);
1296void Verifier::visitDIStringType(
const DIStringType &
N) {
1297 CheckDI(
N.getTag() == dwarf::DW_TAG_string_type,
"invalid tag", &
N);
1298 CheckDI(!(
N.isBigEndian() &&
N.isLittleEndian()),
"has conflicting flags",
1302void Verifier::visitDIDerivedType(
const DIDerivedType &
N) {
1306 CheckDI(
N.getTag() == dwarf::DW_TAG_typedef ||
1307 N.getTag() == dwarf::DW_TAG_pointer_type ||
1308 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1309 N.getTag() == dwarf::DW_TAG_reference_type ||
1310 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1311 N.getTag() == dwarf::DW_TAG_const_type ||
1312 N.getTag() == dwarf::DW_TAG_immutable_type ||
1313 N.getTag() == dwarf::DW_TAG_volatile_type ||
1314 N.getTag() == dwarf::DW_TAG_restrict_type ||
1315 N.getTag() == dwarf::DW_TAG_atomic_type ||
1316 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1317 N.getTag() == dwarf::DW_TAG_member ||
1318 (
N.getTag() == dwarf::DW_TAG_variable &&
N.isStaticMember()) ||
1319 N.getTag() == dwarf::DW_TAG_inheritance ||
1320 N.getTag() == dwarf::DW_TAG_friend ||
1321 N.getTag() == dwarf::DW_TAG_set_type ||
1322 N.getTag() == dwarf::DW_TAG_template_alias,
1324 if (
N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1325 CheckDI(
isType(
N.getRawExtraData()),
"invalid pointer to member type", &
N,
1326 N.getRawExtraData());
1327 }
else if (
N.getTag() == dwarf::DW_TAG_template_alias) {
1329 N.getRawExtraData());
1330 }
else if (
N.getTag() == dwarf::DW_TAG_inheritance ||
1331 N.getTag() == dwarf::DW_TAG_member ||
1332 N.getTag() == dwarf::DW_TAG_variable) {
1333 auto *ExtraData =
N.getRawExtraData();
1334 auto IsValidExtraData = [&]() {
1335 if (ExtraData ==
nullptr)
1341 if (Tuple->getNumOperands() != 1)
1348 "extraData must be ConstantAsMetadata, MDString, DIObjCProperty, "
1349 "or MDTuple with single ConstantAsMetadata operand",
1353 if (
N.getTag() == dwarf::DW_TAG_set_type) {
1354 if (
auto *
T =
N.getRawBaseType()) {
1359 (Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1360 (Subrange &&
Subrange->getTag() == dwarf::DW_TAG_subrange_type) ||
1361 (
Basic && (
Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1362 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1363 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1364 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1365 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1366 "invalid set base type", &
N,
T);
1372 N.getRawBaseType());
1374 if (
N.getDWARFAddressSpace()) {
1375 CheckDI(
N.getTag() == dwarf::DW_TAG_pointer_type ||
1376 N.getTag() == dwarf::DW_TAG_reference_type ||
1377 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1378 "DWARF address space only applies to pointer or reference types",
1382 auto *
Size =
N.getRawSizeInBits();
1385 "SizeInBits must be a constant or DIVariable or DIExpression");
1390 return ((Flags & DINode::FlagLValueReference) &&
1391 (Flags & DINode::FlagRValueReference)) ||
1392 ((Flags & DINode::FlagTypePassByValue) &&
1393 (Flags & DINode::FlagTypePassByReference));
1396void Verifier::visitTemplateParams(
const MDNode &
N,
const Metadata &RawParams) {
1398 CheckDI(Params,
"invalid template params", &
N, &RawParams);
1405void Verifier::visitDICompositeType(
const DICompositeType &
N) {
1409 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type ||
1410 N.getTag() == dwarf::DW_TAG_structure_type ||
1411 N.getTag() == dwarf::DW_TAG_union_type ||
1412 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1413 N.getTag() == dwarf::DW_TAG_class_type ||
1414 N.getTag() == dwarf::DW_TAG_variant_part ||
1415 N.getTag() == dwarf::DW_TAG_variant ||
1416 N.getTag() == dwarf::DW_TAG_namelist,
1421 N.getRawBaseType());
1424 "invalid composite elements", &
N,
N.getRawElements());
1426 N.getRawVTableHolder());
1428 "invalid reference flags", &
N);
1429 unsigned DIBlockByRefStruct = 1 << 4;
1430 CheckDI((
N.getFlags() & DIBlockByRefStruct) == 0,
1431 "DIBlockByRefStruct on DICompositeType is no longer supported", &
N);
1433 "DISubprogram contains null entry in `elements` field", &
N);
1436 const DINodeArray
Elements =
N.getElements();
1438 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1439 "invalid vector, expected one element of type subrange", &
N);
1442 if (
auto *Params =
N.getRawTemplateParams())
1443 visitTemplateParams(
N, *Params);
1445 if (
auto *
D =
N.getRawDiscriminator()) {
1447 "discriminator can only appear on variant part");
1450 if (
N.getRawDataLocation()) {
1451 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1452 "dataLocation can only appear in array type");
1455 if (
N.getRawAssociated()) {
1456 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1457 "associated can only appear in array type");
1460 if (
N.getRawAllocated()) {
1461 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1462 "allocated can only appear in array type");
1465 if (
N.getRawRank()) {
1466 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1467 "rank can only appear in array type");
1470 if (
N.getTag() == dwarf::DW_TAG_array_type) {
1471 CheckDI(
N.getRawBaseType(),
"array types must have a base type", &
N);
1474 auto *
Size =
N.getRawSizeInBits();
1477 "SizeInBits must be a constant or DIVariable or DIExpression");
1480void Verifier::visitDISubroutineType(
const DISubroutineType &
N) {
1481 CheckDI(
N.getTag() == dwarf::DW_TAG_subroutine_type,
"invalid tag", &
N);
1482 if (
auto *Types =
N.getRawTypeArray()) {
1484 for (
Metadata *Ty :
N.getTypeArray()->operands()) {
1485 CheckDI(
isType(Ty),
"invalid subroutine type ref", &
N, Types, Ty);
1489 "invalid reference flags", &
N);
1492void Verifier::visitDIFile(
const DIFile &
N) {
1493 CheckDI(
N.getTag() == dwarf::DW_TAG_file_type,
"invalid tag", &
N);
1494 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum =
N.getChecksum();
1496 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1497 "invalid checksum kind", &
N);
1499 switch (Checksum->Kind) {
1510 CheckDI(Checksum->Value.size() ==
Size,
"invalid checksum length", &
N);
1512 "invalid checksum", &
N);
1516void Verifier::visitDICompileUnit(
const DICompileUnit &
N) {
1517 CheckDI(
N.isDistinct(),
"compile units must be distinct", &
N);
1518 CheckDI(
N.getTag() == dwarf::DW_TAG_compile_unit,
"invalid tag", &
N);
1524 CheckDI(!
N.getFile()->getFilename().empty(),
"invalid filename", &
N,
1528 "invalid emission kind", &
N);
1530 if (
auto *Array =
N.getRawEnumTypes()) {
1532 for (
Metadata *
Op :
N.getEnumTypes()->operands()) {
1534 CheckDI(Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1535 "invalid enum type", &
N,
N.getEnumTypes(),
Op);
1538 if (
auto *Array =
N.getRawRetainedTypes()) {
1540 for (
Metadata *
Op :
N.getRetainedTypes()->operands()) {
1544 "invalid retained type", &
N,
Op);
1547 if (
auto *Array =
N.getRawGlobalVariables()) {
1549 for (
Metadata *
Op :
N.getGlobalVariables()->operands()) {
1551 "invalid global variable ref", &
N,
Op);
1554 if (
auto *Array =
N.getRawImportedEntities()) {
1556 for (
Metadata *
Op :
N.getImportedEntities()->operands()) {
1561 if (
auto *Array =
N.getRawMacros()) {
1570void Verifier::visitDISubprogram(
const DISubprogram &
N) {
1571 CheckDI(
N.getTag() == dwarf::DW_TAG_subprogram,
"invalid tag", &
N);
1573 if (
auto *
F =
N.getRawFile())
1576 CheckDI(
N.getLine() == 0,
"line specified with no file", &
N,
N.getLine());
1577 if (
auto *
T =
N.getRawType())
1579 CheckDI(
isType(
N.getRawContainingType()),
"invalid containing type", &
N,
1580 N.getRawContainingType());
1581 if (
auto *Params =
N.getRawTemplateParams())
1582 visitTemplateParams(
N, *Params);
1583 if (
auto *S =
N.getRawDeclaration())
1585 "invalid subprogram declaration", &
N, S);
1586 if (
auto *RawNode =
N.getRawRetainedNodes()) {
1588 CheckDI(Node,
"invalid retained nodes list", &
N, RawNode);
1590 CheckDI(
Op,
"nullptr in retained nodes", &
N, Node);
1592 auto True = [](
const Metadata *) {
return true; };
1593 auto False = [](
const Metadata *) {
return false; };
1594 bool IsTypeCorrect =
1595 DISubprogram::visitRetainedNode<bool>(
Op, True, True, True, False);
1597 "invalid retained nodes, expected DILocalVariable, DILabel or "
1605 "invalid retained nodes, retained node is not local", &
N, Node,
1608 RetainedNodeScope->getSubprogram() == &
N,
1609 "invalid retained nodes, retained node does not belong to subprogram",
1610 &
N, Node, RetainedNode, RetainedNodeScope);
1614 "invalid reference flags", &
N);
1616 auto *
Unit =
N.getRawUnit();
1617 if (
N.isDefinition()) {
1619 CheckDI(
N.isDistinct(),
"subprogram definitions must be distinct", &
N);
1620 CheckDI(Unit,
"subprogram definitions must have a compile unit", &
N);
1625 if (CT && CT->getRawIdentifier() &&
1626 M.getContext().isODRUniquingDebugTypes())
1628 "definition subprograms cannot be nested within DICompositeType "
1629 "when enabling ODR",
1633 CheckDI(!Unit,
"subprogram declarations must not have a compile unit", &
N);
1635 "subprogram declaration must not have a declaration field");
1638 if (
auto *RawThrownTypes =
N.getRawThrownTypes()) {
1640 CheckDI(ThrownTypes,
"invalid thrown types list", &
N, RawThrownTypes);
1646 if (
N.areAllCallsDescribed())
1648 "DIFlagAllCallsDescribed must be attached to a definition");
1651void Verifier::visitDILexicalBlockBase(
const DILexicalBlockBase &
N) {
1652 CheckDI(
N.getTag() == dwarf::DW_TAG_lexical_block,
"invalid tag", &
N);
1654 "invalid local scope", &
N,
N.getRawScope());
1656 CheckDI(
SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1659void Verifier::visitDILexicalBlock(
const DILexicalBlock &
N) {
1660 visitDILexicalBlockBase(
N);
1663 "cannot have column info without line info", &
N);
1666void Verifier::visitDILexicalBlockFile(
const DILexicalBlockFile &
N) {
1667 visitDILexicalBlockBase(
N);
1670void Verifier::visitDICommonBlock(
const DICommonBlock &
N) {
1671 CheckDI(
N.getTag() == dwarf::DW_TAG_common_block,
"invalid tag", &
N);
1672 if (
auto *S =
N.getRawScope())
1674 if (
auto *S =
N.getRawDecl())
1678void Verifier::visitDINamespace(
const DINamespace &
N) {
1679 CheckDI(
N.getTag() == dwarf::DW_TAG_namespace,
"invalid tag", &
N);
1680 if (
auto *S =
N.getRawScope())
1684void Verifier::visitDIMacro(
const DIMacro &
N) {
1687 "invalid macinfo type", &
N);
1688 CheckDI(!
N.getName().empty(),
"anonymous macro", &
N);
1689 if (!
N.getValue().empty()) {
1690 assert(
N.getValue().data()[0] !=
' ' &&
"Macro value has a space prefix");
1694void Verifier::visitDIMacroFile(
const DIMacroFile &
N) {
1696 "invalid macinfo type", &
N);
1697 if (
auto *
F =
N.getRawFile())
1700 if (
auto *Array =
N.getRawElements()) {
1702 for (
Metadata *
Op :
N.getElements()->operands()) {
1708void Verifier::visitDIModule(
const DIModule &
N) {
1709 CheckDI(
N.getTag() == dwarf::DW_TAG_module,
"invalid tag", &
N);
1710 CheckDI(!
N.getName().empty(),
"anonymous module", &
N);
1713void Verifier::visitDITemplateParameter(
const DITemplateParameter &
N) {
1717void Verifier::visitDITemplateTypeParameter(
const DITemplateTypeParameter &
N) {
1718 visitDITemplateParameter(
N);
1720 CheckDI(
N.getTag() == dwarf::DW_TAG_template_type_parameter,
"invalid tag",
1724void Verifier::visitDITemplateValueParameter(
1725 const DITemplateValueParameter &
N) {
1726 visitDITemplateParameter(
N);
1728 CheckDI(
N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1729 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1730 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1734void Verifier::visitDIVariable(
const DIVariable &
N) {
1735 if (
auto *S =
N.getRawScope())
1737 if (
auto *
F =
N.getRawFile())
1741void Verifier::visitDIGlobalVariable(
const DIGlobalVariable &
N) {
1745 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1748 if (
N.isDefinition())
1749 CheckDI(
N.getType(),
"missing global variable type", &
N);
1750 if (
auto *Member =
N.getRawStaticDataMemberDeclaration()) {
1752 "invalid static data member declaration", &
N, Member);
1756void Verifier::visitDILocalVariable(
const DILocalVariable &
N) {
1761 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1763 "local variable requires a valid scope", &
N,
N.getRawScope());
1764 if (
auto Ty =
N.getType())
1768void Verifier::visitDIAssignID(
const DIAssignID &
N) {
1769 CheckDI(!
N.getNumOperands(),
"DIAssignID has no arguments", &
N);
1770 CheckDI(
N.isDistinct(),
"DIAssignID must be distinct", &
N);
1773void Verifier::visitDILabel(
const DILabel &
N) {
1774 if (
auto *S =
N.getRawScope())
1776 if (
auto *
F =
N.getRawFile())
1779 CheckDI(
N.getTag() == dwarf::DW_TAG_label,
"invalid tag", &
N);
1781 "label requires a valid scope", &
N,
N.getRawScope());
1784void Verifier::visitDIExpression(
const DIExpression &
N) {
1785 CheckDI(
N.isValid(),
"invalid expression", &
N);
1788void Verifier::visitDIGlobalVariableExpression(
1789 const DIGlobalVariableExpression &GVE) {
1792 visitDIGlobalVariable(*Var);
1794 visitDIExpression(*Expr);
1795 if (
auto Fragment = Expr->getFragmentInfo())
1796 verifyFragmentExpression(*GVE.
getVariable(), *Fragment, &GVE);
1800void Verifier::visitDIObjCProperty(
const DIObjCProperty &
N) {
1801 CheckDI(
N.getTag() == dwarf::DW_TAG_APPLE_property,
"invalid tag", &
N);
1802 if (
auto *
T =
N.getRawType())
1804 if (
auto *
F =
N.getRawFile())
1808void Verifier::visitDIImportedEntity(
const DIImportedEntity &
N) {
1809 CheckDI(
N.getTag() == dwarf::DW_TAG_imported_module ||
1810 N.getTag() == dwarf::DW_TAG_imported_declaration,
1812 if (
auto *S =
N.getRawScope())
1818void Verifier::visitComdat(
const Comdat &
C) {
1821 if (
TT.isOSBinFormatCOFF())
1822 if (
const GlobalValue *GV =
M.getNamedValue(
C.getName()))
1827void Verifier::visitModuleIdents() {
1828 const NamedMDNode *Idents =
M.getNamedMetadata(
"llvm.ident");
1834 for (
const MDNode *
N : Idents->
operands()) {
1835 Check(
N->getNumOperands() == 1,
1836 "incorrect number of operands in llvm.ident metadata",
N);
1838 (
"invalid value for llvm.ident metadata entry operand"
1839 "(the operand should be a string)"),
1844void Verifier::visitModuleCommandLines() {
1845 const NamedMDNode *CommandLines =
M.getNamedMetadata(
"llvm.commandline");
1852 for (
const MDNode *
N : CommandLines->
operands()) {
1853 Check(
N->getNumOperands() == 1,
1854 "incorrect number of operands in llvm.commandline metadata",
N);
1856 (
"invalid value for llvm.commandline metadata entry operand"
1857 "(the operand should be a string)"),
1862void Verifier::visitModuleErrnoTBAA() {
1863 const NamedMDNode *ErrnoTBAA =
M.getNamedMetadata(
"llvm.errno.tbaa");
1868 "llvm.errno.tbaa must have at least one operand", ErrnoTBAA);
1870 for (
const MDNode *
N : ErrnoTBAA->
operands())
1874void Verifier::visitModuleFlags() {
1875 const NamedMDNode *
Flags =
M.getModuleFlagsMetadata();
1879 DenseMap<const MDString*, const MDNode*> SeenIDs;
1881 uint64_t PAuthABIPlatform = -1;
1882 uint64_t PAuthABIVersion = -1;
1883 for (
const MDNode *MDN :
Flags->operands()) {
1884 visitModuleFlag(MDN, SeenIDs, Requirements);
1885 if (MDN->getNumOperands() != 3)
1888 if (FlagName->getString() ==
"aarch64-elf-pauthabi-platform") {
1889 if (
const auto *PAP =
1891 PAuthABIPlatform = PAP->getZExtValue();
1892 }
else if (FlagName->getString() ==
"aarch64-elf-pauthabi-version") {
1893 if (
const auto *PAV =
1895 PAuthABIVersion = PAV->getZExtValue();
1900 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1901 CheckFailed(
"either both or no 'aarch64-elf-pauthabi-platform' and "
1902 "'aarch64-elf-pauthabi-version' module flags must be present");
1905 for (
const MDNode *Requirement : Requirements) {
1907 const Metadata *ReqValue = Requirement->getOperand(1);
1909 const MDNode *
Op = SeenIDs.
lookup(Flag);
1911 CheckFailed(
"invalid requirement on flag, flag is not present in module",
1916 if (
Op->getOperand(2) != ReqValue) {
1917 CheckFailed((
"invalid requirement on flag, "
1918 "flag does not have the required value"),
1926Verifier::visitModuleFlag(
const MDNode *
Op,
1927 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1928 SmallVectorImpl<const MDNode *> &Requirements) {
1932 "incorrect number of operands in module flag",
Op);
1933 Module::ModFlagBehavior MFB;
1934 if (!Module::isValidModFlagBehavior(
Op->getOperand(0), MFB)) {
1936 "invalid behavior operand in module flag (expected constant integer)",
1939 "invalid behavior operand in module flag (unexpected constant)",
1943 Check(
ID,
"invalid ID operand in module flag (expected metadata string)",
1949 case Module::Warning:
1950 case Module::Override:
1956 Check(V &&
V->getValue().isNonNegative(),
1957 "invalid value for 'min' module flag (expected constant non-negative "
1965 "invalid value for 'max' module flag (expected constant integer)",
1970 case Module::Require: {
1975 "invalid value for 'require' module flag (expected metadata pair)",
1978 (
"invalid value for 'require' module flag "
1979 "(first value operand should be a string)"),
1980 Value->getOperand(0));
1988 case Module::Append:
1989 case Module::AppendUnique: {
1992 "invalid value for 'append'-type module flag "
1993 "(expected a metadata node)",
2000 if (MFB != Module::Require) {
2003 "module flag identifiers must be unique (or of 'require' type)",
ID);
2006 if (
ID->getString() ==
"wchar_size") {
2009 Check(
Value,
"wchar_size metadata requires constant integer argument");
2012 if (
ID->getString() ==
"Linker Options") {
2016 Check(
M.getNamedMetadata(
"llvm.linker.options"),
2017 "'Linker Options' named metadata no longer supported");
2020 if (
ID->getString() ==
"SemanticInterposition") {
2021 ConstantInt *
Value =
2024 "SemanticInterposition metadata requires constant integer argument");
2027 if (
ID->getString() ==
"CG Profile") {
2028 for (
const MDOperand &MDO :
cast<MDNode>(
Op->getOperand(2))->operands())
2029 visitModuleFlagCGProfileEntry(MDO);
2033void Verifier::visitModuleFlagCGProfileEntry(
const MDOperand &MDO) {
2034 auto CheckFunction = [&](
const MDOperand &FuncMDO) {
2039 "expected a Function or null", FuncMDO);
2042 Check(Node &&
Node->getNumOperands() == 3,
"expected a MDNode triple", MDO);
2043 CheckFunction(
Node->getOperand(0));
2044 CheckFunction(
Node->getOperand(1));
2047 "expected an integer constant",
Node->getOperand(2));
2050void Verifier::verifyAttributeTypes(AttributeSet Attrs,
const Value *V) {
2053 if (
A.isStringAttribute()) {
2054#define GET_ATTR_NAMES
2055#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
2056#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
2057 if (A.getKindAsString() == #DISPLAY_NAME) { \
2058 auto V = A.getValueAsString(); \
2059 if (!(V.empty() || V == "true" || V == "false")) \
2060 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
2064#include "llvm/IR/Attributes.inc"
2068 if (
A.isIntAttribute() != Attribute::isIntAttrKind(
A.getKindAsEnum())) {
2069 CheckFailed(
"Attribute '" +
A.getAsString() +
"' should have an Argument",
2078void Verifier::verifyParameterAttrs(AttributeSet Attrs,
Type *Ty,
2080 if (!
Attrs.hasAttributes())
2083 verifyAttributeTypes(Attrs, V);
2086 Check(Attr.isStringAttribute() ||
2087 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
2088 "Attribute '" + Attr.getAsString() +
"' does not apply to parameters",
2091 if (
Attrs.hasAttribute(Attribute::ImmArg)) {
2092 unsigned AttrCount =
2093 Attrs.getNumAttributes() -
Attrs.hasAttribute(Attribute::Range);
2094 Check(AttrCount == 1,
2095 "Attribute 'immarg' is incompatible with other attributes except the "
2096 "'range' attribute",
2102 unsigned AttrCount = 0;
2103 AttrCount +=
Attrs.hasAttribute(Attribute::ByVal);
2104 AttrCount +=
Attrs.hasAttribute(Attribute::InAlloca);
2105 AttrCount +=
Attrs.hasAttribute(Attribute::Preallocated);
2106 AttrCount +=
Attrs.hasAttribute(Attribute::StructRet) ||
2107 Attrs.hasAttribute(Attribute::InReg);
2108 AttrCount +=
Attrs.hasAttribute(Attribute::Nest);
2109 AttrCount +=
Attrs.hasAttribute(Attribute::ByRef);
2110 Check(AttrCount <= 1,
2111 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
2112 "'byref', and 'sret' are incompatible!",
2115 Check(!(
Attrs.hasAttribute(Attribute::InAlloca) &&
2116 Attrs.hasAttribute(Attribute::ReadOnly)),
2118 "'inalloca and readonly' are incompatible!",
2121 Check(!(
Attrs.hasAttribute(Attribute::StructRet) &&
2122 Attrs.hasAttribute(Attribute::Returned)),
2124 "'sret and returned' are incompatible!",
2127 Check(!(
Attrs.hasAttribute(Attribute::ZExt) &&
2128 Attrs.hasAttribute(Attribute::SExt)),
2130 "'zeroext and signext' are incompatible!",
2133 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
2134 Attrs.hasAttribute(Attribute::ReadOnly)),
2136 "'readnone and readonly' are incompatible!",
2139 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
2140 Attrs.hasAttribute(Attribute::WriteOnly)),
2142 "'readnone and writeonly' are incompatible!",
2145 Check(!(
Attrs.hasAttribute(Attribute::ReadOnly) &&
2146 Attrs.hasAttribute(Attribute::WriteOnly)),
2148 "'readonly and writeonly' are incompatible!",
2151 Check(!(
Attrs.hasAttribute(Attribute::NoInline) &&
2152 Attrs.hasAttribute(Attribute::AlwaysInline)),
2154 "'noinline and alwaysinline' are incompatible!",
2157 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2158 Attrs.hasAttribute(Attribute::ReadNone)),
2159 "Attributes writable and readnone are incompatible!", V);
2161 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2162 Attrs.hasAttribute(Attribute::ReadOnly)),
2163 "Attributes writable and readonly are incompatible!", V);
2165 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs);
2167 if (!Attr.isStringAttribute() &&
2168 IncompatibleAttrs.
contains(Attr.getKindAsEnum())) {
2169 CheckFailed(
"Attribute '" + Attr.getAsString() +
2170 "' applied to incompatible type!", V);
2176 if (
Attrs.hasAttribute(Attribute::Alignment)) {
2177 Align AttrAlign =
Attrs.getAlignment().valueOrOne();
2178 Check(AttrAlign.
value() <= Value::MaximumAlignment,
2179 "huge alignment values are unsupported", V);
2181 if (
Attrs.hasAttribute(Attribute::ByVal)) {
2183 SmallPtrSet<Type *, 4> Visited;
2185 "Attribute 'byval' does not support unsized types!", V);
2189 "'byval' argument has illegal target extension type", V);
2190 Check(
DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2191 "huge 'byval' arguments are unsupported", V);
2193 if (
Attrs.hasAttribute(Attribute::ByRef)) {
2194 SmallPtrSet<Type *, 4> Visited;
2195 Check(
Attrs.getByRefType()->isSized(&Visited),
2196 "Attribute 'byref' does not support unsized types!", V);
2197 Check(
DL.getTypeAllocSize(
Attrs.getByRefType()).getKnownMinValue() <
2199 "huge 'byref' arguments are unsupported", V);
2201 if (
Attrs.hasAttribute(Attribute::InAlloca)) {
2202 SmallPtrSet<Type *, 4> Visited;
2203 Check(
Attrs.getInAllocaType()->isSized(&Visited),
2204 "Attribute 'inalloca' does not support unsized types!", V);
2205 Check(
DL.getTypeAllocSize(
Attrs.getInAllocaType()).getKnownMinValue() <
2207 "huge 'inalloca' arguments are unsupported", V);
2209 if (
Attrs.hasAttribute(Attribute::Preallocated)) {
2210 SmallPtrSet<Type *, 4> Visited;
2211 Check(
Attrs.getPreallocatedType()->isSized(&Visited),
2212 "Attribute 'preallocated' does not support unsized types!", V);
2214 DL.getTypeAllocSize(
Attrs.getPreallocatedType()).getKnownMinValue() <
2216 "huge 'preallocated' arguments are unsupported", V);
2220 if (
Attrs.hasAttribute(Attribute::Initializes)) {
2221 auto Inits =
Attrs.getAttribute(Attribute::Initializes).getInitializes();
2222 Check(!Inits.empty(),
"Attribute 'initializes' does not support empty list",
2225 "Attribute 'initializes' does not support unordered ranges", V);
2228 if (
Attrs.hasAttribute(Attribute::NoFPClass)) {
2229 uint64_t Val =
Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2230 Check(Val != 0,
"Attribute 'nofpclass' must have at least one test bit set",
2233 "Invalid value for 'nofpclass' test mask", V);
2235 if (
Attrs.hasAttribute(Attribute::Range)) {
2236 const ConstantRange &CR =
2237 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2239 "Range bit width must match type bit width!", V);
2243void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2245 if (
Attrs.hasFnAttr(Attr)) {
2246 StringRef S =
Attrs.getFnAttr(Attr).getValueAsString();
2249 CheckFailed(
"\"" + Attr +
"\" takes an unsigned integer: " + S, V);
2255void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2256 const Value *V,
bool IsIntrinsic,
2258 if (
Attrs.isEmpty())
2261 if (AttributeListsVisited.
insert(
Attrs.getRawPointer()).second) {
2263 "Attribute list does not match Module context!", &Attrs, V);
2264 for (
const auto &AttrSet : Attrs) {
2265 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(
Context),
2266 "Attribute set does not match Module context!", &AttrSet, V);
2267 for (
const auto &
A : AttrSet) {
2269 "Attribute does not match Module context!", &
A, V);
2274 bool SawNest =
false;
2275 bool SawReturned =
false;
2276 bool SawSRet =
false;
2277 bool SawSwiftSelf =
false;
2278 bool SawSwiftAsync =
false;
2279 bool SawSwiftError =
false;
2282 AttributeSet RetAttrs =
Attrs.getRetAttrs();
2285 Attribute::canUseAsRetAttr(
RetAttr.getKindAsEnum()),
2286 "Attribute '" +
RetAttr.getAsString() +
2287 "' does not apply to function return values",
2290 unsigned MaxParameterWidth = 0;
2291 auto GetMaxParameterWidth = [&MaxParameterWidth](
Type *Ty) {
2294 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2295 if (
Size > MaxParameterWidth)
2296 MaxParameterWidth =
Size;
2300 GetMaxParameterWidth(FT->getReturnType());
2301 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2304 for (
unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2305 Type *Ty = FT->getParamType(i);
2306 AttributeSet ArgAttrs =
Attrs.getParamAttrs(i);
2310 "immarg attribute only applies to intrinsics", V);
2313 "Attribute 'elementtype' can only be applied to intrinsics"
2318 verifyParameterAttrs(ArgAttrs, Ty, V);
2319 GetMaxParameterWidth(Ty);
2322 Check(!SawNest,
"More than one parameter has attribute nest!", V);
2327 Check(!SawReturned,
"More than one parameter has attribute returned!", V);
2329 "Incompatible argument and return types for 'returned' attribute",
2335 Check(!SawSRet,
"Cannot have multiple 'sret' parameters!", V);
2336 Check(i == 0 || i == 1,
2337 "Attribute 'sret' is not on first or second parameter!", V);
2342 Check(!SawSwiftSelf,
"Cannot have multiple 'swiftself' parameters!", V);
2343 SawSwiftSelf =
true;
2347 Check(!SawSwiftAsync,
"Cannot have multiple 'swiftasync' parameters!", V);
2348 SawSwiftAsync =
true;
2352 Check(!SawSwiftError,
"Cannot have multiple 'swifterror' parameters!", V);
2353 SawSwiftError =
true;
2357 Check(i == FT->getNumParams() - 1,
2358 "inalloca isn't on the last parameter!", V);
2362 if (!
Attrs.hasFnAttrs())
2365 verifyAttributeTypes(
Attrs.getFnAttrs(), V);
2368 Attribute::canUseAsFnAttr(
FnAttr.getKindAsEnum()),
2369 "Attribute '" +
FnAttr.getAsString() +
2370 "' does not apply to functions!",
2373 Check(!(
Attrs.hasFnAttr(Attribute::NoInline) &&
2374 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2375 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2377 if (
Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2379 "Attribute 'optnone' requires 'noinline'!", V);
2381 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2382 "Attributes 'optsize and optnone' are incompatible!", V);
2385 "Attributes 'minsize and optnone' are incompatible!", V);
2387 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2388 "Attributes 'optdebug and optnone' are incompatible!", V);
2391 Check(!(
Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2392 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2394 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2397 if (
Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2398 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2399 "Attributes 'optsize and optdebug' are incompatible!", V);
2402 "Attributes 'minsize and optdebug' are incompatible!", V);
2405 Check(!
Attrs.hasAttrSomewhere(Attribute::Writable) ||
2406 isModSet(
Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2407 "Attribute writable and memory without argmem: write are incompatible!",
2410 if (
Attrs.hasFnAttr(
"aarch64_pstate_sm_enabled")) {
2411 Check(!
Attrs.hasFnAttr(
"aarch64_pstate_sm_compatible"),
2412 "Attributes 'aarch64_pstate_sm_enabled and "
2413 "aarch64_pstate_sm_compatible' are incompatible!",
2417 Check((
Attrs.hasFnAttr(
"aarch64_new_za") +
Attrs.hasFnAttr(
"aarch64_in_za") +
2418 Attrs.hasFnAttr(
"aarch64_inout_za") +
2419 Attrs.hasFnAttr(
"aarch64_out_za") +
2420 Attrs.hasFnAttr(
"aarch64_preserves_za") +
2421 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2422 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2423 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2424 "'aarch64_za_state_agnostic' are mutually exclusive",
2428 Attrs.hasFnAttr(
"aarch64_in_zt0") +
2429 Attrs.hasFnAttr(
"aarch64_inout_zt0") +
2430 Attrs.hasFnAttr(
"aarch64_out_zt0") +
2431 Attrs.hasFnAttr(
"aarch64_preserves_zt0") +
2432 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2433 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2434 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2435 "'aarch64_za_state_agnostic' are mutually exclusive",
2438 if (
Attrs.hasFnAttr(Attribute::JumpTable)) {
2441 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2444 if (
auto Args =
Attrs.getFnAttrs().getAllocSizeArgs()) {
2445 auto CheckParam = [&](StringRef
Name,
unsigned ParamNo) {
2446 if (ParamNo >= FT->getNumParams()) {
2447 CheckFailed(
"'allocsize' " + Name +
" argument is out of bounds", V);
2451 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2452 CheckFailed(
"'allocsize' " + Name +
2453 " argument must refer to an integer parameter",
2461 if (!CheckParam(
"element size",
Args->first))
2464 if (
Args->second && !CheckParam(
"number of elements", *
Args->second))
2468 if (
Attrs.hasFnAttr(Attribute::AllocKind)) {
2471 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2473 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2476 "'allockind()' requires exactly one of alloc, realloc, and free");
2477 if ((
Type == AllocFnKind::Free) &&
2478 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2479 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2480 CheckFailed(
"'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2481 "or aligned modifiers.");
2482 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2483 if ((K & ZeroedUninit) == ZeroedUninit)
2484 CheckFailed(
"'allockind()' can't be both zeroed and uninitialized");
2488 StringRef S =
A.getValueAsString();
2489 Check(!S.
empty(),
"'alloc-variant-zeroed' must not be empty");
2497 "'alloc-variant-zeroed' must name a function belonging to the "
2498 "same 'alloc-family'");
2501 (
Variant->getFnAttribute(Attribute::AllocKind).getAllocKind() &
2502 AllocFnKind::Zeroed) != AllocFnKind::Unknown,
2503 "'alloc-variant-zeroed' must name a function with "
2504 "'allockind(\"zeroed\")'");
2507 "'alloc-variant-zeroed' must name a function with the same "
2512 if (
Attrs.hasFnAttr(Attribute::VScaleRange)) {
2513 unsigned VScaleMin =
Attrs.getFnAttrs().getVScaleRangeMin();
2515 CheckFailed(
"'vscale_range' minimum must be greater than 0", V);
2517 CheckFailed(
"'vscale_range' minimum must be power-of-two value", V);
2518 std::optional<unsigned> VScaleMax =
Attrs.getFnAttrs().getVScaleRangeMax();
2519 if (VScaleMax && VScaleMin > VScaleMax)
2520 CheckFailed(
"'vscale_range' minimum cannot be greater than maximum", V);
2522 CheckFailed(
"'vscale_range' maximum must be power-of-two value", V);
2525 if (
Attribute FPAttr =
Attrs.getFnAttr(
"frame-pointer"); FPAttr.isValid()) {
2526 StringRef
FP = FPAttr.getValueAsString();
2527 if (
FP !=
"all" &&
FP !=
"non-leaf" &&
FP !=
"none" &&
FP !=
"reserved" &&
2528 FP !=
"non-leaf-no-reserve")
2529 CheckFailed(
"invalid value for 'frame-pointer' attribute: " +
FP, V);
2532 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-prefix", V);
2533 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-entry", V);
2534 if (
Attrs.hasFnAttr(
"patchable-function-entry-section"))
2535 Check(!
Attrs.getFnAttr(
"patchable-function-entry-section")
2538 "\"patchable-function-entry-section\" must not be empty");
2539 checkUnsignedBaseTenFuncAttr(Attrs,
"warn-stack-size", V);
2541 if (
auto A =
Attrs.getFnAttr(
"sign-return-address");
A.isValid()) {
2542 StringRef S =
A.getValueAsString();
2543 if (S !=
"none" && S !=
"all" && S !=
"non-leaf")
2544 CheckFailed(
"invalid value for 'sign-return-address' attribute: " + S, V);
2547 if (
auto A =
Attrs.getFnAttr(
"sign-return-address-key");
A.isValid()) {
2548 StringRef S =
A.getValueAsString();
2549 if (S !=
"a_key" && S !=
"b_key")
2550 CheckFailed(
"invalid value for 'sign-return-address-key' attribute: " + S,
2552 if (
auto AA =
Attrs.getFnAttr(
"sign-return-address"); !AA.isValid()) {
2554 "'sign-return-address-key' present without `sign-return-address`");
2558 if (
auto A =
Attrs.getFnAttr(
"branch-target-enforcement");
A.isValid()) {
2559 StringRef S =
A.getValueAsString();
2560 if (S !=
"" && S !=
"true" && S !=
"false")
2562 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2565 if (
auto A =
Attrs.getFnAttr(
"branch-protection-pauth-lr");
A.isValid()) {
2566 StringRef S =
A.getValueAsString();
2567 if (S !=
"" && S !=
"true" && S !=
"false")
2569 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2572 if (
auto A =
Attrs.getFnAttr(
"guarded-control-stack");
A.isValid()) {
2573 StringRef S =
A.getValueAsString();
2574 if (S !=
"" && S !=
"true" && S !=
"false")
2575 CheckFailed(
"invalid value for 'guarded-control-stack' attribute: " + S,
2579 if (
auto A =
Attrs.getFnAttr(
"vector-function-abi-variant");
A.isValid()) {
2580 StringRef S =
A.getValueAsString();
2583 CheckFailed(
"invalid name for a VFABI variant: " + S, V);
2586 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math");
A.isValid()) {
2587 StringRef S =
A.getValueAsString();
2589 CheckFailed(
"invalid value for 'denormal-fp-math' attribute: " + S, V);
2592 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math-f32");
A.isValid()) {
2593 StringRef S =
A.getValueAsString();
2595 CheckFailed(
"invalid value for 'denormal-fp-math-f32' attribute: " + S,
2599 if (
auto A =
Attrs.getFnAttr(
"modular-format");
A.isValid()) {
2600 StringRef S =
A.getValueAsString();
2604 "modular-format attribute requires at least 5 arguments", V);
2605 unsigned FirstArgIdx;
2606 Check(!Args[2].getAsInteger(10, FirstArgIdx),
2607 "modular-format attribute first arg index is not an integer", V);
2608 unsigned UpperBound = FT->getNumParams() + (FT->isVarArg() ? 1 : 0);
2609 Check(FirstArgIdx > 0 && FirstArgIdx <= UpperBound,
2610 "modular-format attribute first arg index is out of bounds", V);
2613void Verifier::verifyUnknownProfileMetadata(MDNode *MD) {
2615 "'unknown' !prof should have a single additional operand", MD);
2618 "'unknown' !prof should have an additional operand of type "
2621 "the 'unknown' !prof operand should not be an empty string");
2624void Verifier::verifyFunctionMetadata(
2625 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2626 for (
const auto &Pair : MDs) {
2627 if (Pair.first == LLVMContext::MD_prof) {
2628 MDNode *MD = Pair.second;
2630 "!prof annotations should have no less than 2 operands", MD);
2635 verifyUnknownProfileMetadata(MD);
2640 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null",
2643 "expected string with name of the !prof annotation", MD);
2648 "first operand should be 'function_entry_count'"
2649 " or 'synthetic_function_entry_count'",
2653 Check(MD->
getOperand(1) !=
nullptr,
"second operand should not be null",
2656 "expected integer argument to function_entry_count", MD);
2657 }
else if (Pair.first == LLVMContext::MD_kcfi_type) {
2658 MDNode *MD = Pair.second;
2660 "!kcfi_type must have exactly one operand", MD);
2661 Check(MD->
getOperand(0) !=
nullptr,
"!kcfi_type operand must not be null",
2664 "expected a constant operand for !kcfi_type", MD);
2667 "expected a constant integer operand for !kcfi_type", MD);
2669 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2674void Verifier::visitConstantExprsRecursively(
const Constant *EntryC) {
2675 if (!ConstantExprVisited.
insert(EntryC).second)
2679 Stack.push_back(EntryC);
2681 while (!
Stack.empty()) {
2686 visitConstantExpr(CE);
2689 visitConstantPtrAuth(CPA);
2694 Check(GV->
getParent() == &M,
"Referencing global in another module!",
2700 for (
const Use &U :
C->operands()) {
2704 if (!ConstantExprVisited.
insert(OpC).second)
2706 Stack.push_back(OpC);
2711void Verifier::visitConstantExpr(
const ConstantExpr *CE) {
2712 if (
CE->getOpcode() == Instruction::BitCast)
2715 "Invalid bitcast", CE);
2716 else if (
CE->getOpcode() == Instruction::PtrToAddr)
2717 checkPtrToAddr(
CE->getOperand(0)->getType(),
CE->getType(), *CE);
2720void Verifier::visitConstantPtrAuth(
const ConstantPtrAuth *CPA) {
2722 "signed ptrauth constant base pointer must have pointer type");
2725 "signed ptrauth constant must have same type as its base pointer");
2728 "signed ptrauth constant key must be i32 constant integer");
2731 "signed ptrauth constant address discriminator must be a pointer");
2734 "signed ptrauth constant discriminator must be i64 constant integer");
2737 "signed ptrauth constant deactivation symbol must be a pointer");
2741 "signed ptrauth constant deactivation symbol must be a global value "
2745bool Verifier::verifyAttributeCount(AttributeList Attrs,
unsigned Params) {
2748 return Attrs.getNumAttrSets() <= Params + 2;
2751void Verifier::verifyInlineAsmCall(
const CallBase &
Call) {
2754 unsigned LabelNo = 0;
2755 for (
const InlineAsm::ConstraintInfo &CI :
IA->ParseConstraints()) {
2765 if (CI.isIndirect) {
2768 "Operand for indirect constraint must have pointer type", &
Call);
2771 "Operand for indirect constraint must have elementtype attribute",
2775 "Elementtype attribute can only be applied for indirect "
2784 Check(LabelNo == CallBr->getNumIndirectDests(),
2785 "Number of label constraints does not match number of callbr dests",
2788 Check(LabelNo == 0,
"Label constraints can only be used with callbr",
2794void Verifier::verifyStatepoint(
const CallBase &
Call) {
2799 "gc.statepoint must read and write all memory to preserve "
2800 "reordering restrictions required by safepoint semantics",
2803 const int64_t NumPatchBytes =
2806 Check(NumPatchBytes >= 0,
2807 "gc.statepoint number of patchable bytes must be "
2812 Check(TargetElemType,
2813 "gc.statepoint callee argument must have elementtype attribute",
Call);
2815 Check(TargetFuncType,
2816 "gc.statepoint callee elementtype must be function type",
Call);
2819 Check(NumCallArgs >= 0,
2820 "gc.statepoint number of arguments to underlying call "
2823 const int NumParams = (int)TargetFuncType->getNumParams();
2824 if (TargetFuncType->isVarArg()) {
2825 Check(NumCallArgs >= NumParams,
2826 "gc.statepoint mismatch in number of vararg call args",
Call);
2829 Check(TargetFuncType->getReturnType()->isVoidTy(),
2830 "gc.statepoint doesn't support wrapping non-void "
2831 "vararg functions yet",
2834 Check(NumCallArgs == NumParams,
2835 "gc.statepoint mismatch in number of call args",
Call);
2837 const uint64_t
Flags
2839 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2840 "unknown flag used in gc.statepoint flags argument",
Call);
2845 for (
int i = 0; i < NumParams; i++) {
2846 Type *ParamType = TargetFuncType->getParamType(i);
2848 Check(ArgType == ParamType,
2849 "gc.statepoint call argument does not match wrapped "
2853 if (TargetFuncType->isVarArg()) {
2854 AttributeSet ArgAttrs =
Attrs.getParamAttrs(5 + i);
2856 "Attribute 'sret' cannot be used for vararg call arguments!",
Call);
2860 const int EndCallArgsInx = 4 + NumCallArgs;
2864 "gc.statepoint number of transition arguments "
2865 "must be constant integer",
2867 const int NumTransitionArgs =
2869 Check(NumTransitionArgs == 0,
2870 "gc.statepoint w/inline transition bundle is deprecated",
Call);
2871 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2875 "gc.statepoint number of deoptimization arguments "
2876 "must be constant integer",
2879 Check(NumDeoptArgs == 0,
2880 "gc.statepoint w/inline deopt operands is deprecated",
Call);
2882 const int ExpectedNumArgs = 7 + NumCallArgs;
2884 "gc.statepoint too many arguments",
Call);
2891 Check(UserCall,
"illegal use of statepoint token",
Call, U);
2895 "gc.result or gc.relocate are the only value uses "
2896 "of a gc.statepoint",
2900 "gc.result connected to wrong gc.statepoint",
Call, UserCall);
2903 "gc.relocate connected to wrong gc.statepoint",
Call, UserCall);
2917void Verifier::verifyFrameRecoverIndices() {
2918 for (
auto &Counts : FrameEscapeInfo) {
2920 unsigned EscapedObjectCount = Counts.second.first;
2921 unsigned MaxRecoveredIndex = Counts.second.second;
2922 Check(MaxRecoveredIndex <= EscapedObjectCount,
2923 "all indices passed to llvm.localrecover must be less than the "
2924 "number of arguments passed to llvm.localescape in the parent "
2933 UnwindDest =
II->getUnwindDest();
2935 UnwindDest = CSI->getUnwindDest();
2941void Verifier::verifySiblingFuncletUnwinds() {
2942 llvm::TimeTraceScope timeScope(
"Verifier verify sibling funclet unwinds");
2943 SmallPtrSet<Instruction *, 8> Visited;
2944 SmallPtrSet<Instruction *, 8>
Active;
2945 for (
const auto &Pair : SiblingFuncletInfo) {
2947 if (Visited.
count(PredPad))
2953 if (
Active.count(SuccPad)) {
2956 SmallVector<Instruction *, 8> CycleNodes;
2959 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2960 if (CycleTerminator != CyclePad)
2963 }
while (CyclePad != SuccPad);
2964 Check(
false,
"EH pads can't handle each other's exceptions",
2968 if (!Visited.
insert(SuccPad).second)
2972 auto TermI = SiblingFuncletInfo.find(PredPad);
2973 if (TermI == SiblingFuncletInfo.end())
2986void Verifier::visitFunction(
const Function &
F) {
2987 visitGlobalValue(
F);
2990 FunctionType *FT =
F.getFunctionType();
2991 unsigned NumArgs =
F.arg_size();
2994 "Function context does not match Module context!", &
F);
2996 Check(!
F.hasCommonLinkage(),
"Functions may not have common linkage", &
F);
2997 Check(FT->getNumParams() == NumArgs,
2998 "# formal arguments must match # of arguments for function type!", &
F,
3000 Check(
F.getReturnType()->isFirstClassType() ||
3001 F.getReturnType()->isVoidTy() ||
F.getReturnType()->isStructTy(),
3002 "Functions cannot return aggregate values!", &
F);
3004 Check(!
F.hasStructRetAttr() ||
F.getReturnType()->isVoidTy(),
3005 "Invalid struct return type!", &
F);
3007 if (MaybeAlign
A =
F.getAlign()) {
3008 Check(
A->value() <= Value::MaximumAlignment,
3009 "huge alignment values are unsupported", &
F);
3012 AttributeList
Attrs =
F.getAttributes();
3014 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
3015 "Attribute after last parameter!", &
F);
3017 bool IsIntrinsic =
F.isIntrinsic();
3020 verifyFunctionAttrs(FT, Attrs, &
F, IsIntrinsic,
false);
3026 "Attribute 'builtin' can only be applied to a callsite.", &
F);
3028 Check(!
Attrs.hasAttrSomewhere(Attribute::ElementType),
3029 "Attribute 'elementtype' can only be applied to a callsite.", &
F);
3032 "Attribute 'aarch64_zt0_undef' can only be applied to a callsite.");
3034 if (
Attrs.hasFnAttr(Attribute::Naked))
3035 for (
const Argument &Arg :
F.args())
3036 Check(Arg.use_empty(),
"cannot use argument of naked function", &Arg);
3041 switch (
F.getCallingConv()) {
3043 case CallingConv::C:
3045 case CallingConv::X86_INTR: {
3046 Check(
F.arg_empty() ||
Attrs.hasParamAttr(0, Attribute::ByVal),
3047 "Calling convention parameter requires byval", &
F);
3050 case CallingConv::AMDGPU_KERNEL:
3051 case CallingConv::SPIR_KERNEL:
3052 case CallingConv::AMDGPU_CS_Chain:
3053 case CallingConv::AMDGPU_CS_ChainPreserve:
3054 Check(
F.getReturnType()->isVoidTy(),
3055 "Calling convention requires void return type", &
F);
3057 case CallingConv::AMDGPU_VS:
3058 case CallingConv::AMDGPU_HS:
3059 case CallingConv::AMDGPU_GS:
3060 case CallingConv::AMDGPU_PS:
3061 case CallingConv::AMDGPU_CS:
3062 Check(!
F.hasStructRetAttr(),
"Calling convention does not allow sret", &
F);
3063 if (
F.getCallingConv() != CallingConv::SPIR_KERNEL) {
3064 const unsigned StackAS =
DL.getAllocaAddrSpace();
3066 for (
const Argument &Arg :
F.args()) {
3067 Check(!
Attrs.hasParamAttr(i, Attribute::ByVal),
3068 "Calling convention disallows byval", &
F);
3069 Check(!
Attrs.hasParamAttr(i, Attribute::Preallocated),
3070 "Calling convention disallows preallocated", &
F);
3071 Check(!
Attrs.hasParamAttr(i, Attribute::InAlloca),
3072 "Calling convention disallows inalloca", &
F);
3074 if (
Attrs.hasParamAttr(i, Attribute::ByRef)) {
3077 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
3078 "Calling convention disallows stack byref", &
F);
3086 case CallingConv::Fast:
3087 case CallingConv::Cold:
3088 case CallingConv::Intel_OCL_BI:
3089 case CallingConv::PTX_Kernel:
3090 case CallingConv::PTX_Device:
3092 "Calling convention does not support varargs or "
3093 "perfect forwarding!",
3096 case CallingConv::AMDGPU_Gfx_WholeWave:
3097 Check(!
F.arg_empty() &&
F.arg_begin()->getType()->isIntegerTy(1),
3098 "Calling convention requires first argument to be i1", &
F);
3099 Check(!
F.arg_begin()->hasInRegAttr(),
3100 "Calling convention requires first argument to not be inreg", &
F);
3102 "Calling convention does not support varargs or "
3103 "perfect forwarding!",
3110 for (
const Argument &Arg :
F.args()) {
3111 Check(Arg.getType() == FT->getParamType(i),
3112 "Argument value does not match function argument type!", &Arg,
3113 FT->getParamType(i));
3114 Check(Arg.getType()->isFirstClassType(),
3115 "Function arguments must have first-class types!", &Arg);
3117 Check(!Arg.getType()->isMetadataTy(),
3118 "Function takes metadata but isn't an intrinsic", &Arg, &
F);
3119 Check(!Arg.getType()->isTokenLikeTy(),
3120 "Function takes token but isn't an intrinsic", &Arg, &
F);
3121 Check(!Arg.getType()->isX86_AMXTy(),
3122 "Function takes x86_amx but isn't an intrinsic", &Arg, &
F);
3126 if (
Attrs.hasParamAttr(i, Attribute::SwiftError)) {
3127 verifySwiftErrorValue(&Arg);
3133 Check(!
F.getReturnType()->isTokenLikeTy(),
3134 "Function returns a token but isn't an intrinsic", &
F);
3135 Check(!
F.getReturnType()->isX86_AMXTy(),
3136 "Function returns a x86_amx but isn't an intrinsic", &
F);
3141 F.getAllMetadata(MDs);
3142 assert(
F.hasMetadata() != MDs.
empty() &&
"Bit out-of-sync");
3143 verifyFunctionMetadata(MDs);
3146 if (
F.hasPersonalityFn()) {
3149 Check(Per->getParent() ==
F.getParent(),
3150 "Referencing personality function in another module!", &
F,
3151 F.getParent(), Per, Per->getParent());
3155 BlockEHFuncletColors.
clear();
3157 if (
F.isMaterializable()) {
3159 Check(MDs.
empty(),
"unmaterialized function cannot have metadata", &
F,
3161 }
else if (
F.isDeclaration()) {
3162 for (
const auto &
I : MDs) {
3164 CheckDI(
I.first != LLVMContext::MD_dbg ||
3166 "function declaration may only have a unique !dbg attachment",
3168 Check(
I.first != LLVMContext::MD_prof,
3169 "function declaration may not have a !prof attachment", &
F);
3172 visitMDNode(*
I.second, AreDebugLocsAllowed::Yes);
3174 Check(!
F.hasPersonalityFn(),
3175 "Function declaration shouldn't have a personality routine", &
F);
3179 Check(!IsIntrinsic,
"llvm intrinsics cannot be defined!", &
F);
3184 "Entry block to function must not have predecessors!", Entry);
3187 if (
Entry->hasAddressTaken()) {
3189 "blockaddress may not be used with the entry block!", Entry);
3192 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
3193 NumKCFIAttachments = 0;
3195 for (
const auto &
I : MDs) {
3197 auto AllowLocs = AreDebugLocsAllowed::No;
3201 case LLVMContext::MD_dbg: {
3202 ++NumDebugAttachments;
3203 CheckDI(NumDebugAttachments == 1,
3204 "function must have a single !dbg attachment", &
F,
I.second);
3206 "function !dbg attachment must be a subprogram", &
F,
I.second);
3208 "function definition may only have a distinct !dbg attachment",
3212 const Function *&AttachedTo = DISubprogramAttachments[
SP];
3213 CheckDI(!AttachedTo || AttachedTo == &
F,
3214 "DISubprogram attached to more than one function", SP, &
F);
3216 AllowLocs = AreDebugLocsAllowed::Yes;
3219 case LLVMContext::MD_prof:
3220 ++NumProfAttachments;
3221 Check(NumProfAttachments == 1,
3222 "function must have a single !prof attachment", &
F,
I.second);
3224 case LLVMContext::MD_kcfi_type:
3225 ++NumKCFIAttachments;
3226 Check(NumKCFIAttachments == 1,
3227 "function must have a single !kcfi_type attachment", &
F,
3233 visitMDNode(*
I.second, AllowLocs);
3241 if (
F.isIntrinsic() &&
F.getParent()->isMaterialized()) {
3243 if (
F.hasAddressTaken(&U,
false,
true,
false,
3245 Check(
false,
"Invalid user of intrinsic instruction!", U);
3249 switch (
F.getIntrinsicID()) {
3250 case Intrinsic::experimental_gc_get_pointer_base: {
3251 FunctionType *FT =
F.getFunctionType();
3252 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3254 "gc.get.pointer.base must return a pointer",
F);
3255 Check(FT->getParamType(0) ==
F.getReturnType(),
3256 "gc.get.pointer.base operand and result must be of the same type",
F);
3259 case Intrinsic::experimental_gc_get_pointer_offset: {
3260 FunctionType *FT =
F.getFunctionType();
3261 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3263 "gc.get.pointer.offset operand must be a pointer",
F);
3264 Check(
F.getReturnType()->isIntegerTy(),
3265 "gc.get.pointer.offset must return integer",
F);
3270 auto *
N =
F.getSubprogram();
3271 HasDebugInfo = (
N !=
nullptr);
3279 SmallPtrSet<const MDNode *, 32> Seen;
3291 "DILocation's scope must be a DILocalScope",
N, &
F, &
I,
DL, Parent);
3293 DILocalScope *
Scope =
DL->getInlinedAtScope();
3294 Check(Scope,
"Failed to find DILocalScope",
DL);
3296 if (!Seen.
insert(Scope).second)
3299 DISubprogram *
SP =
Scope->getSubprogram();
3303 if ((Scope != SP) && !Seen.
insert(SP).second)
3307 "!dbg attachment points at wrong subprogram for function",
N, &
F,
3311 for (
auto &
I : BB) {
3312 VisitDebugLoc(
I,
I.getDebugLoc().getAsMDNode());
3314 if (
auto MD =
I.getMetadata(LLVMContext::MD_loop))
3317 if (BrokenDebugInfo)
3324void Verifier::visitBasicBlock(BasicBlock &BB) {
3325 InstsInThisBlock.
clear();
3326 ConvergenceVerifyHelper.
visit(BB);
3337 for (
const PHINode &PN : BB.
phis()) {
3338 Check(PN.getNumIncomingValues() == Preds.size(),
3339 "PHINode should have one entry for each predecessor of its "
3340 "parent basic block!",
3345 Values.
reserve(PN.getNumIncomingValues());
3346 for (
unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3348 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3351 for (
unsigned i = 0, e = Values.
size(); i != e; ++i) {
3356 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3357 Values[i].second == Values[i - 1].second,
3358 "PHI node has multiple entries for the same basic block with "
3359 "different incoming values!",
3360 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3364 Check(Values[i].first == Preds[i],
3365 "PHI node entries do not match predecessors!", &PN,
3366 Values[i].first, Preds[i]);
3374 Check(
I.getParent() == &BB,
"Instruction has bogus parent pointer!");
3378 CheckDI(!BB.getTrailingDbgRecords(),
"Basic Block has trailing DbgRecords!",
3382void Verifier::visitTerminator(Instruction &
I) {
3384 Check(&
I ==
I.getParent()->getTerminator(),
3385 "Terminator found in the middle of a basic block!",
I.getParent());
3386 visitInstruction(
I);
3389void Verifier::visitBranchInst(BranchInst &BI) {
3392 "Branch condition is not 'i1' type!", &BI, BI.
getCondition());
3394 visitTerminator(BI);
3397void Verifier::visitReturnInst(ReturnInst &RI) {
3400 if (
F->getReturnType()->isVoidTy())
3402 "Found return instr that returns non-void in Function of void "
3404 &RI,
F->getReturnType());
3407 "Function return type does not match operand "
3408 "type of return inst!",
3409 &RI,
F->getReturnType());
3413 visitTerminator(RI);
3416void Verifier::visitSwitchInst(SwitchInst &SI) {
3417 Check(
SI.getType()->isVoidTy(),
"Switch must have void result type!", &SI);
3420 Type *SwitchTy =
SI.getCondition()->getType();
3421 SmallPtrSet<ConstantInt*, 32>
Constants;
3422 for (
auto &Case :
SI.cases()) {
3424 "Case value is not a constant integer.", &SI);
3425 Check(Case.getCaseValue()->getType() == SwitchTy,
3426 "Switch constants must all be same type as switch value!", &SI);
3428 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3431 visitTerminator(SI);
3434void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3436 "Indirectbr operand must have pointer type!", &BI);
3439 "Indirectbr destinations must all have pointer type!", &BI);
3441 visitTerminator(BI);
3444void Verifier::visitCallBrInst(CallBrInst &CBI) {
3445 Check(CBI.
isInlineAsm(),
"Callbr is currently only used for asm-goto!", &CBI);
3447 Check(!
IA->canThrow(),
"Unwinding from Callbr is not allowed");
3449 verifyInlineAsmCall(CBI);
3450 visitTerminator(CBI);
3453void Verifier::visitSelectInst(SelectInst &SI) {
3456 "Invalid operands for select instruction!", &SI);
3458 Check(
SI.getTrueValue()->getType() ==
SI.getType(),
3459 "Select values must have same type as select instruction!", &SI);
3460 visitInstruction(SI);
3466void Verifier::visitUserOp1(Instruction &
I) {
3467 Check(
false,
"User-defined operators should not live outside of a pass!", &
I);
3470void Verifier::visitTruncInst(TruncInst &
I) {
3472 Type *SrcTy =
I.getOperand(0)->getType();
3473 Type *DestTy =
I.getType();
3482 "trunc source and destination must both be a vector or neither", &
I);
3483 Check(SrcBitSize > DestBitSize,
"DestTy too big for Trunc", &
I);
3485 visitInstruction(
I);
3488void Verifier::visitZExtInst(ZExtInst &
I) {
3490 Type *SrcTy =
I.getOperand(0)->getType();
3491 Type *DestTy =
I.getType();
3497 "zext source and destination must both be a vector or neither", &
I);
3501 Check(SrcBitSize < DestBitSize,
"Type too small for ZExt", &
I);
3503 visitInstruction(
I);
3506void Verifier::visitSExtInst(SExtInst &
I) {
3508 Type *SrcTy =
I.getOperand(0)->getType();
3509 Type *DestTy =
I.getType();
3518 "sext source and destination must both be a vector or neither", &
I);
3519 Check(SrcBitSize < DestBitSize,
"Type too small for SExt", &
I);
3521 visitInstruction(
I);
3524void Verifier::visitFPTruncInst(FPTruncInst &
I) {
3526 Type *SrcTy =
I.getOperand(0)->getType();
3527 Type *DestTy =
I.getType();
3535 "fptrunc source and destination must both be a vector or neither", &
I);
3536 Check(SrcBitSize > DestBitSize,
"DestTy too big for FPTrunc", &
I);
3538 visitInstruction(
I);
3541void Verifier::visitFPExtInst(FPExtInst &
I) {
3543 Type *SrcTy =
I.getOperand(0)->getType();
3544 Type *DestTy =
I.getType();
3553 "fpext source and destination must both be a vector or neither", &
I);
3554 Check(SrcBitSize < DestBitSize,
"DestTy too small for FPExt", &
I);
3556 visitInstruction(
I);
3559void Verifier::visitUIToFPInst(UIToFPInst &
I) {
3561 Type *SrcTy =
I.getOperand(0)->getType();
3562 Type *DestTy =
I.getType();
3567 Check(SrcVec == DstVec,
3568 "UIToFP source and dest must both be vector or scalar", &
I);
3570 "UIToFP source must be integer or integer vector", &
I);
3574 if (SrcVec && DstVec)
3577 "UIToFP source and dest vector length mismatch", &
I);
3579 visitInstruction(
I);
3582void Verifier::visitSIToFPInst(SIToFPInst &
I) {
3584 Type *SrcTy =
I.getOperand(0)->getType();
3585 Type *DestTy =
I.getType();
3590 Check(SrcVec == DstVec,
3591 "SIToFP source and dest must both be vector or scalar", &
I);
3593 "SIToFP source must be integer or integer vector", &
I);
3597 if (SrcVec && DstVec)
3600 "SIToFP source and dest vector length mismatch", &
I);
3602 visitInstruction(
I);
3605void Verifier::visitFPToUIInst(FPToUIInst &
I) {
3607 Type *SrcTy =
I.getOperand(0)->getType();
3608 Type *DestTy =
I.getType();
3613 Check(SrcVec == DstVec,
3614 "FPToUI source and dest must both be vector or scalar", &
I);
3617 "FPToUI result must be integer or integer vector", &
I);
3619 if (SrcVec && DstVec)
3622 "FPToUI source and dest vector length mismatch", &
I);
3624 visitInstruction(
I);
3627void Verifier::visitFPToSIInst(FPToSIInst &
I) {
3629 Type *SrcTy =
I.getOperand(0)->getType();
3630 Type *DestTy =
I.getType();
3635 Check(SrcVec == DstVec,
3636 "FPToSI source and dest must both be vector or scalar", &
I);
3639 "FPToSI result must be integer or integer vector", &
I);
3641 if (SrcVec && DstVec)
3644 "FPToSI source and dest vector length mismatch", &
I);
3646 visitInstruction(
I);
3649void Verifier::checkPtrToAddr(
Type *SrcTy,
Type *DestTy,
const Value &V) {
3658 Check(VSrc->getElementCount() == VDest->getElementCount(),
3659 "PtrToAddr vector length mismatch", V);
3662 Type *AddrTy =
DL.getAddressType(SrcTy);
3663 Check(AddrTy == DestTy,
"PtrToAddr result must be address width", V);
3666void Verifier::visitPtrToAddrInst(PtrToAddrInst &
I) {
3667 checkPtrToAddr(
I.getOperand(0)->getType(),
I.getType(),
I);
3668 visitInstruction(
I);
3671void Verifier::visitPtrToIntInst(PtrToIntInst &
I) {
3673 Type *SrcTy =
I.getOperand(0)->getType();
3674 Type *DestTy =
I.getType();
3685 Check(VSrc->getElementCount() == VDest->getElementCount(),
3686 "PtrToInt Vector length mismatch", &
I);
3689 visitInstruction(
I);
3692void Verifier::visitIntToPtrInst(IntToPtrInst &
I) {
3694 Type *SrcTy =
I.getOperand(0)->getType();
3695 Type *DestTy =
I.getType();
3705 Check(VSrc->getElementCount() == VDest->getElementCount(),
3706 "IntToPtr Vector length mismatch", &
I);
3708 visitInstruction(
I);
3711void Verifier::visitBitCastInst(BitCastInst &
I) {
3714 "Invalid bitcast", &
I);
3715 visitInstruction(
I);
3718void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &
I) {
3719 Type *SrcTy =
I.getOperand(0)->getType();
3720 Type *DestTy =
I.getType();
3727 "AddrSpaceCast must be between different address spaces", &
I);
3729 Check(SrcVTy->getElementCount() ==
3731 "AddrSpaceCast vector pointer number of elements mismatch", &
I);
3732 visitInstruction(
I);
3737void Verifier::visitPHINode(PHINode &PN) {
3744 "PHI nodes not grouped at top of basic block!", &PN, PN.
getParent());
3753 "PHI node operands are not the same type as the result!", &PN);
3758 visitInstruction(PN);
3761void Verifier::visitCallBase(CallBase &
Call) {
3763 "Called function must be a pointer!",
Call);
3767 if (FTy->isVarArg())
3769 "Called function requires more parameters than were provided!",
Call);
3772 "Incorrect number of arguments passed to called function!",
Call);
3775 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3777 "Call parameter type does not match function signature!",
3783 "Attribute after last parameter!",
Call);
3790 "Intrinsic called with incompatible signature",
Call);
3794 "calling convention does not permit calls",
Call);
3800 auto VerifyTypeAlign = [&](
Type *Ty,
const Twine &Message) {
3803 Align ABIAlign =
DL.getABITypeAlign(Ty);
3804 Check(ABIAlign.
value() <= Value::MaximumAlignment,
3805 "Incorrect alignment of " + Message +
" to called function!",
Call);
3809 VerifyTypeAlign(FTy->getReturnType(),
"return type");
3810 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3811 Type *Ty = FTy->getParamType(i);
3812 VerifyTypeAlign(Ty,
"argument passed");
3816 if (
Attrs.hasFnAttr(Attribute::Speculatable)) {
3820 "speculatable attribute may not apply to call sites",
Call);
3823 if (
Attrs.hasFnAttr(Attribute::Preallocated)) {
3825 "preallocated as a call site attribute can only be on "
3826 "llvm.call.preallocated.arg");
3838 Check(AI->isUsedWithInAlloca(),
3839 "inalloca argument for call has mismatched alloca", AI,
Call);
3845 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3849 Check(AI->isSwiftError(),
3850 "swifterror argument for call has mismatched alloca", AI,
Call);
3854 Check(ArgI,
"swifterror argument should come from an alloca or parameter",
3855 SwiftErrorArg,
Call);
3856 Check(ArgI->hasSwiftErrorAttr(),
3857 "swifterror argument for call has mismatched parameter", ArgI,
3861 if (
Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3864 Check(Callee &&
Callee->hasParamAttribute(i, Attribute::ImmArg),
3872 "immarg operand has non-immediate parameter", ArgVal,
Call);
3878 const ConstantRange &CR =
3881 "immarg value " + Twine(CI->getValue().getSExtValue()) +
3894 Check(hasOB != isMustTail,
3895 "preallocated operand either requires a preallocated bundle or "
3896 "the call to be musttail (but not both)",
3901 if (FTy->isVarArg()) {
3903 bool SawNest =
false;
3904 bool SawReturned =
false;
3906 for (
unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3907 if (
Attrs.hasParamAttr(Idx, Attribute::Nest))
3909 if (
Attrs.hasParamAttr(Idx, Attribute::Returned))
3914 for (
unsigned Idx = FTy->getNumParams(); Idx <
Call.
arg_size(); ++Idx) {
3916 AttributeSet ArgAttrs =
Attrs.getParamAttrs(Idx);
3917 verifyParameterAttrs(ArgAttrs, Ty, &
Call);
3920 Check(!SawNest,
"More than one parameter has attribute nest!",
Call);
3925 Check(!SawReturned,
"More than one parameter has attribute returned!",
3928 "Incompatible argument and return types for 'returned' "
3938 "Attribute 'sret' cannot be used for vararg call arguments!",
3943 "inalloca isn't on the last argument!",
Call);
3949 for (
Type *ParamTy : FTy->params()) {
3950 Check(!ParamTy->isMetadataTy(),
3951 "Function has metadata parameter but isn't an intrinsic",
Call);
3952 Check(!ParamTy->isTokenLikeTy(),
3953 "Function has token parameter but isn't an intrinsic",
Call);
3959 Check(!FTy->getReturnType()->isTokenLikeTy(),
3960 "Return type cannot be token for indirect call!");
3961 Check(!FTy->getReturnType()->isX86_AMXTy(),
3962 "Return type cannot be x86_amx for indirect call!");
3966 visitIntrinsicCall(
ID,
Call);
3971 bool FoundDeoptBundle =
false, FoundFuncletBundle =
false,
3972 FoundGCTransitionBundle =
false, FoundCFGuardTargetBundle =
false,
3973 FoundPreallocatedBundle =
false, FoundGCLiveBundle =
false,
3974 FoundPtrauthBundle =
false, FoundKCFIBundle =
false,
3975 FoundAttachedCallBundle =
false;
3980 Check(!FoundDeoptBundle,
"Multiple deopt operand bundles",
Call);
3981 FoundDeoptBundle =
true;
3983 Check(!FoundGCTransitionBundle,
"Multiple gc-transition operand bundles",
3985 FoundGCTransitionBundle =
true;
3987 Check(!FoundFuncletBundle,
"Multiple funclet operand bundles",
Call);
3988 FoundFuncletBundle =
true;
3990 "Expected exactly one funclet bundle operand",
Call);
3992 "Funclet bundle operands should correspond to a FuncletPadInst",
3995 Check(!FoundCFGuardTargetBundle,
"Multiple CFGuardTarget operand bundles",
3997 FoundCFGuardTargetBundle =
true;
3999 "Expected exactly one cfguardtarget bundle operand",
Call);
4001 Check(!FoundPtrauthBundle,
"Multiple ptrauth operand bundles",
Call);
4002 FoundPtrauthBundle =
true;
4004 "Expected exactly two ptrauth bundle operands",
Call);
4006 BU.
Inputs[0]->getType()->isIntegerTy(32),
4007 "Ptrauth bundle key operand must be an i32 constant",
Call);
4009 "Ptrauth bundle discriminator operand must be an i64",
Call);
4011 Check(!FoundKCFIBundle,
"Multiple kcfi operand bundles",
Call);
4012 FoundKCFIBundle =
true;
4013 Check(BU.
Inputs.size() == 1,
"Expected exactly one kcfi bundle operand",
4016 BU.
Inputs[0]->getType()->isIntegerTy(32),
4017 "Kcfi bundle operand must be an i32 constant",
Call);
4019 Check(!FoundPreallocatedBundle,
"Multiple preallocated operand bundles",
4021 FoundPreallocatedBundle =
true;
4023 "Expected exactly one preallocated bundle operand",
Call);
4026 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
4027 "\"preallocated\" argument must be a token from "
4028 "llvm.call.preallocated.setup",
4031 Check(!FoundGCLiveBundle,
"Multiple gc-live operand bundles",
Call);
4032 FoundGCLiveBundle =
true;
4034 Check(!FoundAttachedCallBundle,
4035 "Multiple \"clang.arc.attachedcall\" operand bundles",
Call);
4036 FoundAttachedCallBundle =
true;
4037 verifyAttachedCallBundle(
Call, BU);
4043 "Direct call cannot have a ptrauth bundle",
Call);
4055 "inlinable function call in a function with "
4056 "debug info must have a !dbg location",
4060 verifyInlineAsmCall(
Call);
4064 visitInstruction(
Call);
4067void Verifier::verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs,
4070 Twine(
"inalloca attribute not allowed in ") +
Context);
4072 Twine(
"inreg attribute not allowed in ") +
Context);
4073 Check(!
Attrs.contains(Attribute::SwiftError),
4074 Twine(
"swifterror attribute not allowed in ") +
Context);
4075 Check(!
Attrs.contains(Attribute::Preallocated),
4076 Twine(
"preallocated attribute not allowed in ") +
Context);
4078 Twine(
"byref attribute not allowed in ") +
Context);
4090 return PL->getAddressSpace() == PR->getAddressSpace();
4095 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
4096 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
4097 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
4099 AttrBuilder Copy(
C);
4100 for (
auto AK : ABIAttrs) {
4101 Attribute Attr = Attrs.getParamAttrs(
I).getAttribute(AK);
4103 Copy.addAttribute(Attr);
4107 if (Attrs.hasParamAttr(
I, Attribute::Alignment) &&
4108 (Attrs.hasParamAttr(
I, Attribute::ByVal) ||
4109 Attrs.hasParamAttr(
I, Attribute::ByRef)))
4110 Copy.addAlignmentAttr(Attrs.getParamAlignment(
I));
4114void Verifier::verifyMustTailCall(CallInst &CI) {
4118 FunctionType *CallerTy =
F->getFunctionType();
4120 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
4121 "cannot guarantee tail call due to mismatched varargs", &CI);
4123 "cannot guarantee tail call due to mismatched return types", &CI);
4127 "cannot guarantee tail call due to mismatched calling conv", &CI);
4133 Value *RetVal = &CI;
4139 "bitcast following musttail call must use the call", BI);
4146 Check(Ret,
"musttail call must precede a ret with an optional bitcast", &CI);
4147 Check(!
Ret->getReturnValue() ||
Ret->getReturnValue() == RetVal ||
4149 "musttail call result must be returned", Ret);
4151 AttributeList CallerAttrs =
F->getAttributes();
4156 CI.
getCallingConv() == CallingConv::Tail ?
"tailcc" :
"swifttailcc";
4160 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4162 SmallString<32>
Context{CCName, StringRef(
" musttail caller")};
4163 verifyTailCCMustTailAttrs(ABIAttrs,
Context);
4165 for (
unsigned I = 0,
E = CalleeTy->getNumParams();
I !=
E; ++
I) {
4167 SmallString<32>
Context{CCName, StringRef(
" musttail callee")};
4168 verifyTailCCMustTailAttrs(ABIAttrs,
Context);
4171 Check(!CallerTy->isVarArg(), Twine(
"cannot guarantee ") + CCName +
4172 " tail call for varargs function");
4180 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
4181 "cannot guarantee tail call due to mismatched parameter counts", &CI);
4182 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4185 "cannot guarantee tail call due to mismatched parameter types", &CI);
4191 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4194 Check(CallerABIAttrs == CalleeABIAttrs,
4195 "cannot guarantee tail call due to mismatched ABI impacting "
4196 "function attributes",
4201void Verifier::visitCallInst(CallInst &CI) {
4205 verifyMustTailCall(CI);
4208void Verifier::visitInvokeInst(InvokeInst &
II) {
4214 II.getUnwindDest()->isEHPad(),
4215 "The unwind destination does not have an exception handling instruction!",
4218 visitTerminator(
II);
4223void Verifier::visitUnaryOperator(UnaryOperator &U) {
4224 Check(
U.getType() ==
U.getOperand(0)->getType(),
4225 "Unary operators must have same type for"
4226 "operands and result!",
4229 switch (
U.getOpcode()) {
4232 case Instruction::FNeg:
4233 Check(
U.getType()->isFPOrFPVectorTy(),
4234 "FNeg operator only works with float types!", &U);
4240 visitInstruction(U);
4246void Verifier::visitBinaryOperator(BinaryOperator &
B) {
4247 Check(
B.getOperand(0)->getType() ==
B.getOperand(1)->getType(),
4248 "Both operands to a binary operator are not of the same type!", &
B);
4250 switch (
B.getOpcode()) {
4253 case Instruction::Add:
4254 case Instruction::Sub:
4255 case Instruction::Mul:
4256 case Instruction::SDiv:
4257 case Instruction::UDiv:
4258 case Instruction::SRem:
4259 case Instruction::URem:
4260 Check(
B.getType()->isIntOrIntVectorTy(),
4261 "Integer arithmetic operators only work with integral types!", &
B);
4262 Check(
B.getType() ==
B.getOperand(0)->getType(),
4263 "Integer arithmetic operators must have same type "
4264 "for operands and result!",
4269 case Instruction::FAdd:
4270 case Instruction::FSub:
4271 case Instruction::FMul:
4272 case Instruction::FDiv:
4273 case Instruction::FRem:
4274 Check(
B.getType()->isFPOrFPVectorTy(),
4275 "Floating-point arithmetic operators only work with "
4276 "floating-point types!",
4278 Check(
B.getType() ==
B.getOperand(0)->getType(),
4279 "Floating-point arithmetic operators must have same type "
4280 "for operands and result!",
4284 case Instruction::And:
4285 case Instruction::Or:
4286 case Instruction::Xor:
4287 Check(
B.getType()->isIntOrIntVectorTy(),
4288 "Logical operators only work with integral types!", &
B);
4289 Check(
B.getType() ==
B.getOperand(0)->getType(),
4290 "Logical operators must have same type for operands and result!", &
B);
4292 case Instruction::Shl:
4293 case Instruction::LShr:
4294 case Instruction::AShr:
4295 Check(
B.getType()->isIntOrIntVectorTy(),
4296 "Shifts only work with integral types!", &
B);
4297 Check(
B.getType() ==
B.getOperand(0)->getType(),
4298 "Shift return type must be same as operands!", &
B);
4304 visitInstruction(
B);
4307void Verifier::visitICmpInst(ICmpInst &IC) {
4311 Check(Op0Ty == Op1Ty,
4312 "Both operands to ICmp instruction are not of the same type!", &IC);
4315 "Invalid operand types for ICmp instruction", &IC);
4319 visitInstruction(IC);
4322void Verifier::visitFCmpInst(FCmpInst &FC) {
4324 Type *Op0Ty =
FC.getOperand(0)->getType();
4325 Type *Op1Ty =
FC.getOperand(1)->getType();
4326 Check(Op0Ty == Op1Ty,
4327 "Both operands to FCmp instruction are not of the same type!", &FC);
4332 Check(
FC.isFPPredicate(),
"Invalid predicate in FCmp instruction!", &FC);
4334 visitInstruction(FC);
4337void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4339 "Invalid extractelement operands!", &EI);
4340 visitInstruction(EI);
4343void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4346 "Invalid insertelement operands!", &IE);
4347 visitInstruction(IE);
4350void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4353 "Invalid shufflevector operands!", &SV);
4354 visitInstruction(SV);
4357void Verifier::visitGetElementPtrInst(GetElementPtrInst &
GEP) {
4358 Type *TargetTy =
GEP.getPointerOperandType()->getScalarType();
4361 "GEP base pointer is not a vector or a vector of pointers", &
GEP);
4362 Check(
GEP.getSourceElementType()->isSized(),
"GEP into unsized type!", &
GEP);
4366 "getelementptr cannot target structure that contains scalable vector"
4371 SmallVector<Value *, 16> Idxs(
GEP.indices());
4373 all_of(Idxs, [](
Value *V) {
return V->getType()->isIntOrIntVectorTy(); }),
4374 "GEP indexes must be integers", &
GEP);
4377 Check(ElTy,
"Invalid indices for GEP pointer type!", &
GEP);
4381 Check(PtrTy &&
GEP.getResultElementType() == ElTy,
4382 "GEP is not of right type for indices!", &
GEP, ElTy);
4386 ElementCount GEPWidth = GEPVTy->getElementCount();
4387 if (
GEP.getPointerOperandType()->isVectorTy())
4391 "Vector GEP result width doesn't match operand's", &
GEP);
4392 for (
Value *Idx : Idxs) {
4393 Type *IndexTy = Idx->getType();
4395 ElementCount IndexWidth = IndexVTy->getElementCount();
4396 Check(IndexWidth == GEPWidth,
"Invalid GEP index vector width", &
GEP);
4399 "All GEP indices should be of integer type");
4403 Check(
GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4404 "GEP address space doesn't match type", &
GEP);
4406 visitInstruction(
GEP);
4410 return A.getUpper() ==
B.getLower() ||
A.getLower() ==
B.getUpper();
4415void Verifier::verifyRangeLikeMetadata(
const Value &
I,
const MDNode *
Range,
4416 Type *Ty, RangeLikeMetadataKind Kind) {
4417 unsigned NumOperands =
Range->getNumOperands();
4418 Check(NumOperands % 2 == 0,
"Unfinished range!",
Range);
4419 unsigned NumRanges = NumOperands / 2;
4420 Check(NumRanges >= 1,
"It should have at least one range!",
Range);
4422 ConstantRange LastRange(1,
true);
4423 for (
unsigned i = 0; i < NumRanges; ++i) {
4426 Check(
Low,
"The lower limit must be an integer!",
Low);
4431 Check(
High->getType() ==
Low->getType(),
"Range pair types must match!",
4434 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4436 "noalias.addrspace type must be i32!", &
I);
4439 "Range types must match instruction type!", &
I);
4442 APInt HighV =
High->getValue();
4443 APInt LowV =
Low->getValue();
4448 "The upper and lower limits cannot be the same value", &
I);
4450 ConstantRange CurRange(LowV, HighV);
4451 Check(!CurRange.isEmptySet() &&
4452 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4453 !CurRange.isFullSet()),
4454 "Range must not be empty!",
Range);
4456 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4457 "Intervals are overlapping",
Range);
4458 Check(LowV.
sgt(LastRange.getLower()),
"Intervals are not in order",
4463 LastRange = ConstantRange(LowV, HighV);
4465 if (NumRanges > 2) {
4470 ConstantRange FirstRange(FirstLow, FirstHigh);
4471 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4472 "Intervals are overlapping",
Range);
4478void Verifier::visitRangeMetadata(Instruction &
I, MDNode *
Range,
Type *Ty) {
4480 "precondition violation");
4481 verifyRangeLikeMetadata(
I,
Range, Ty, RangeLikeMetadataKind::Range);
4484void Verifier::visitNoaliasAddrspaceMetadata(Instruction &
I, MDNode *
Range,
4487 "precondition violation");
4488 verifyRangeLikeMetadata(
I,
Range, Ty,
4489 RangeLikeMetadataKind::NoaliasAddrspace);
4492void Verifier::checkAtomicMemAccessSize(
Type *Ty,
const Instruction *
I) {
4493 unsigned Size =
DL.getTypeSizeInBits(Ty).getFixedValue();
4494 Check(
Size >= 8,
"atomic memory access' size must be byte-sized", Ty,
I);
4496 "atomic memory access' operand must have a power-of-two size", Ty,
I);
4499void Verifier::visitLoadInst(LoadInst &LI) {
4501 Check(PTy,
"Load operand must be a pointer.", &LI);
4504 Check(
A->value() <= Value::MaximumAlignment,
4505 "huge alignment values are unsupported", &LI);
4507 Check(ElTy->
isSized(),
"loading unsized types is not allowed", &LI);
4510 LI.
getOrdering() != AtomicOrdering::AcquireRelease,
4511 "Load cannot have Release ordering", &LI);
4514 "atomic load operand must have integer, pointer, floating point, "
4518 checkAtomicMemAccessSize(ElTy, &LI);
4521 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4524 visitInstruction(LI);
4527void Verifier::visitStoreInst(StoreInst &SI) {
4529 Check(PTy,
"Store operand must be a pointer.", &SI);
4530 Type *ElTy =
SI.getOperand(0)->getType();
4531 if (MaybeAlign
A =
SI.getAlign()) {
4532 Check(
A->value() <= Value::MaximumAlignment,
4533 "huge alignment values are unsupported", &SI);
4535 Check(ElTy->
isSized(),
"storing unsized types is not allowed", &SI);
4536 if (
SI.isAtomic()) {
4537 Check(
SI.getOrdering() != AtomicOrdering::Acquire &&
4538 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4539 "Store cannot have Acquire ordering", &SI);
4542 "atomic store operand must have integer, pointer, floating point, "
4545 checkAtomicMemAccessSize(ElTy, &SI);
4548 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4550 visitInstruction(SI);
4554void Verifier::verifySwiftErrorCall(CallBase &
Call,
4555 const Value *SwiftErrorVal) {
4557 if (
I.value() == SwiftErrorVal) {
4559 "swifterror value when used in a callsite should be marked "
4560 "with swifterror attribute",
4561 SwiftErrorVal,
Call);
4566void Verifier::verifySwiftErrorValue(
const Value *SwiftErrorVal) {
4569 for (
const User *U : SwiftErrorVal->
users()) {
4572 "swifterror value can only be loaded and stored from, or "
4573 "as a swifterror argument!",
4577 Check(StoreI->getOperand(1) == SwiftErrorVal,
4578 "swifterror value should be the second operand when used "
4582 verifySwiftErrorCall(*
const_cast<CallBase *
>(
Call), SwiftErrorVal);
4586void Verifier::visitAllocaInst(AllocaInst &AI) {
4588 SmallPtrSet<Type*, 4> Visited;
4589 Check(Ty->
isSized(&Visited),
"Cannot allocate unsized type", &AI);
4593 "Alloca has illegal target extension type", &AI);
4595 "Alloca array size must have integer type", &AI);
4597 Check(
A->value() <= Value::MaximumAlignment,
4598 "huge alignment values are unsupported", &AI);
4604 "swifterror alloca must not be array allocation", &AI);
4605 verifySwiftErrorValue(&AI);
4608 if (
TT.isAMDGPU()) {
4610 "alloca on amdgpu must be in addrspace(5)", &AI);
4613 visitInstruction(AI);
4616void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4619 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4620 checkAtomicMemAccessSize(ElTy, &CXI);
4621 visitInstruction(CXI);
4624void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4626 "atomicrmw instructions cannot be unordered.", &RMWI);
4633 " operand must have integer or floating point type!",
4638 " operand must have floating-point or fixed vector of floating-point "
4644 " operand must have integer type!",
4647 checkAtomicMemAccessSize(ElTy, &RMWI);
4649 "Invalid binary operation!", &RMWI);
4650 visitInstruction(RMWI);
4653void Verifier::visitFenceInst(FenceInst &FI) {
4655 Check(Ordering == AtomicOrdering::Acquire ||
4656 Ordering == AtomicOrdering::Release ||
4657 Ordering == AtomicOrdering::AcquireRelease ||
4658 Ordering == AtomicOrdering::SequentiallyConsistent,
4659 "fence instructions may only have acquire, release, acq_rel, or "
4660 "seq_cst ordering.",
4662 visitInstruction(FI);
4665void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4668 "Invalid ExtractValueInst operands!", &EVI);
4670 visitInstruction(EVI);
4673void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4677 "Invalid InsertValueInst operands!", &IVI);
4679 visitInstruction(IVI);
4684 return FPI->getParentPad();
4689void Verifier::visitEHPadPredecessors(Instruction &
I) {
4695 Check(BB != &
F->getEntryBlock(),
"EH pad cannot be in entry block.", &
I);
4703 Check(
II &&
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4704 "Block containing LandingPadInst must be jumped to "
4705 "only by the unwind edge of an invoke.",
4713 "Block containg CatchPadInst must be jumped to "
4714 "only by its catchswitch.",
4716 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4717 "Catchswitch cannot unwind to one of its catchpads",
4718 CPI->getCatchSwitch(), CPI);
4730 Check(
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4731 "EH pad must be jumped to via an unwind edge", ToPad,
II);
4734 if (CalledFn && CalledFn->isIntrinsic() &&
II->doesNotThrow() &&
4738 FromPad = Bundle->Inputs[0];
4742 FromPad = CRI->getOperand(0);
4743 Check(FromPad != ToPadParent,
"A cleanupret must exit its cleanup", CRI);
4747 Check(
false,
"EH pad must be jumped to via an unwind edge", ToPad, TI);
4751 SmallPtrSet<Value *, 8> Seen;
4753 Check(FromPad != ToPad,
4754 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4755 if (FromPad == ToPadParent) {
4760 "A single unwind edge may only enter one EH pad", TI);
4761 Check(Seen.
insert(FromPad).second,
"EH pad jumps through a cycle of pads",
4767 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4772void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4776 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4778 visitEHPadPredecessors(LPI);
4780 if (!LandingPadResultTy)
4781 LandingPadResultTy = LPI.
getType();
4784 "The landingpad instruction should have a consistent result type "
4785 "inside a function.",
4789 Check(
F->hasPersonalityFn(),
4790 "LandingPadInst needs to be in a function with a personality.", &LPI);
4795 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4801 "Catch operand does not have pointer type!", &LPI);
4803 Check(LPI.
isFilter(i),
"Clause is neither catch nor filter!", &LPI);
4805 "Filter operand is not an array of constants!", &LPI);
4809 visitInstruction(LPI);
4812void Verifier::visitResumeInst(ResumeInst &RI) {
4814 "ResumeInst needs to be in a function with a personality.", &RI);
4816 if (!LandingPadResultTy)
4820 "The resume instruction should have a consistent result type "
4821 "inside a function.",
4824 visitTerminator(RI);
4827void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4831 Check(
F->hasPersonalityFn(),
4832 "CatchPadInst needs to be in a function with a personality.", &CPI);
4835 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4841 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4843 visitEHPadPredecessors(CPI);
4844 visitFuncletPadInst(CPI);
4847void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4849 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4852 visitTerminator(CatchReturn);
4855void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4859 Check(
F->hasPersonalityFn(),
4860 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4865 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4869 "CleanupPadInst has an invalid parent.", &CPI);
4871 visitEHPadPredecessors(CPI);
4872 visitFuncletPadInst(CPI);
4875void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4876 User *FirstUser =
nullptr;
4877 Value *FirstUnwindPad =
nullptr;
4879 SmallPtrSet<FuncletPadInst *, 8> Seen;
4881 while (!Worklist.empty()) {
4882 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4884 "FuncletPadInst must not be nested within itself", CurrentPad);
4885 Value *UnresolvedAncestorPad =
nullptr;
4886 for (User *U : CurrentPad->
users()) {
4889 UnwindDest = CRI->getUnwindDest();
4895 if (CSI->unwindsToCaller())
4897 UnwindDest = CSI->getUnwindDest();
4899 UnwindDest =
II->getUnwindDest();
4909 Worklist.push_back(CPI);
4924 if (UnwindParent == CurrentPad)
4930 Value *ExitedPad = CurrentPad;
4933 if (ExitedPad == &FPI) {
4938 UnresolvedAncestorPad = &FPI;
4942 if (ExitedParent == UnwindParent) {
4946 UnresolvedAncestorPad = ExitedParent;
4949 ExitedPad = ExitedParent;
4955 UnresolvedAncestorPad = &FPI;
4962 Check(UnwindPad == FirstUnwindPad,
4963 "Unwind edges out of a funclet "
4964 "pad must have the same unwind "
4966 &FPI, U, FirstUser);
4969 FirstUnwindPad = UnwindPad;
4978 if (CurrentPad != &FPI)
4981 if (UnresolvedAncestorPad) {
4982 if (CurrentPad == UnresolvedAncestorPad) {
4986 assert(CurrentPad == &FPI);
4994 Value *ResolvedPad = CurrentPad;
4995 while (!Worklist.empty()) {
4996 Value *UnclePad = Worklist.back();
5000 while (ResolvedPad != AncestorPad) {
5002 if (ResolvedParent == UnresolvedAncestorPad) {
5005 ResolvedPad = ResolvedParent;
5009 if (ResolvedPad != AncestorPad)
5012 Worklist.pop_back();
5017 if (FirstUnwindPad) {
5019 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
5020 Value *SwitchUnwindPad;
5021 if (SwitchUnwindDest)
5025 Check(SwitchUnwindPad == FirstUnwindPad,
5026 "Unwind edges out of a catch must have the same unwind dest as "
5027 "the parent catchswitch",
5028 &FPI, FirstUser, CatchSwitch);
5032 visitInstruction(FPI);
5035void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
5039 Check(
F->hasPersonalityFn(),
5040 "CatchSwitchInst needs to be in a function with a personality.",
5046 "CatchSwitchInst not the first non-PHI instruction in the block.",
5051 "CatchSwitchInst has an invalid parent.", ParentPad);
5056 "CatchSwitchInst must unwind to an EH block which is not a "
5062 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
5066 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
5068 for (BasicBlock *Handler : CatchSwitch.
handlers()) {
5070 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
5073 visitEHPadPredecessors(CatchSwitch);
5074 visitTerminator(CatchSwitch);
5077void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
5079 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
5085 "CleanupReturnInst must unwind to an EH block which is not a "
5090 visitTerminator(CRI);
5093void Verifier::verifyDominatesUse(Instruction &
I,
unsigned i) {
5099 if (
II->getNormalDest() ==
II->getUnwindDest())
5113 const Use &
U =
I.getOperandUse(i);
5114 Check(DT.dominates(
Op, U),
"Instruction does not dominate all uses!",
Op, &
I);
5117void Verifier::visitDereferenceableMetadata(Instruction&
I, MDNode* MD) {
5118 Check(
I.getType()->isPointerTy(),
5119 "dereferenceable, dereferenceable_or_null "
5120 "apply only to pointer types",
5123 "dereferenceable, dereferenceable_or_null apply only to load"
5124 " and inttoptr instructions, use attributes for calls or invokes",
5127 "dereferenceable, dereferenceable_or_null "
5128 "take one operand!",
5133 "dereferenceable_or_null metadata value must be an i64!",
5137void Verifier::visitNofreeMetadata(Instruction &
I, MDNode *MD) {
5138 Check(
I.getType()->isPointerTy(),
"nofree applies only to pointer types", &
I);
5144void Verifier::visitProfMetadata(Instruction &
I, MDNode *MD) {
5145 auto GetBranchingTerminatorNumOperands = [&]() {
5146 unsigned ExpectedNumOperands = 0;
5150 ExpectedNumOperands =
SI->getNumSuccessors();
5152 ExpectedNumOperands = 1;
5154 ExpectedNumOperands = IBI->getNumDestinations();
5156 ExpectedNumOperands = 2;
5159 return ExpectedNumOperands;
5162 "!prof annotations should have at least 1 operand", MD);
5164 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null", MD);
5166 "expected string with name of the !prof annotation", MD);
5172 "'unknown' !prof should only appear on instructions on which "
5173 "'branch_weights' would",
5175 verifyUnknownProfileMetadata(MD);
5180 "!prof annotations should have no less than 2 operands", MD);
5186 Check(NumBranchWeights == 1 || NumBranchWeights == 2,
5187 "Wrong number of InvokeInst branch_weights operands", MD);
5189 const unsigned ExpectedNumOperands = GetBranchingTerminatorNumOperands();
5190 if (ExpectedNumOperands == 0)
5191 CheckFailed(
"!prof branch_weights are not allowed for this instruction",
5194 Check(NumBranchWeights == ExpectedNumOperands,
"Wrong number of operands",
5200 Check(MDO,
"second operand should not be null", MD);
5202 "!prof brunch_weights operand is not a const int");
5207 Check(KindInt,
"VP !prof missing kind argument", MD);
5210 Check(Kind >= InstrProfValueKind::IPVK_First &&
5211 Kind <= InstrProfValueKind::IPVK_Last,
5212 "Invalid VP !prof kind", MD);
5214 "VP !prof should have an even number "
5215 "of arguments after 'VP'",
5217 if (Kind == InstrProfValueKind::IPVK_IndirectCallTarget ||
5218 Kind == InstrProfValueKind::IPVK_MemOPSize)
5220 "VP !prof indirect call or memop size expected to be applied to "
5221 "CallBase instructions only",
5224 CheckFailed(
"expected either branch_weights or VP profile name", MD);
5228void Verifier::visitDIAssignIDMetadata(Instruction &
I, MDNode *MD) {
5229 assert(
I.hasMetadata(LLVMContext::MD_DIAssignID));
5234 bool ExpectedInstTy =
5236 CheckDI(ExpectedInstTy,
"!DIAssignID attached to unexpected instruction kind",
5241 for (
auto *User : AsValue->users()) {
5243 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
5247 CheckDI(DAI->getFunction() ==
I.getFunction(),
5248 "dbg.assign not in same function as inst", DAI, &
I);
5251 for (DbgVariableRecord *DVR :
5254 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
5255 CheckDI(DVR->getFunction() ==
I.getFunction(),
5256 "DVRAssign not in same function as inst", DVR, &
I);
5260void Verifier::visitMMRAMetadata(Instruction &
I, MDNode *MD) {
5262 "!mmra metadata attached to unexpected instruction kind",
I, MD);
5273 for (
const MDOperand &MDOp : MD->
operands())
5275 "!mmra metadata tuple operand is not an MMRA tag",
I, MDOp.get());
5278void Verifier::visitCallStackMetadata(MDNode *MD) {
5282 "call stack metadata should have at least 1 operand", MD);
5286 "call stack metadata operand should be constant integer",
Op);
5289void Verifier::visitMemProfMetadata(Instruction &
I, MDNode *MD) {
5292 "!memprof annotations should have at least 1 metadata operand "
5297 for (
auto &MIBOp : MD->
operands()) {
5303 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
5307 "!memprof MemInfoBlock first operand should not be null", MIB);
5309 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
5311 visitCallStackMetadata(StackMD);
5318 "!memprof MemInfoBlock second operand should be an MDString",
5327 Check(OpNode,
"Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5330 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5335 [](
const MDOperand &
Op) {
5336 return mdconst::hasa<ConstantInt>(Op);
5338 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5339 "ConstantInt operands",
5345void Verifier::visitCallsiteMetadata(Instruction &
I, MDNode *MD) {
5349 visitCallStackMetadata(MD);
5358void Verifier::visitCalleeTypeMetadata(Instruction &
I, MDNode *MD) {
5363 "The callee_type metadata must be a list of type metadata nodes",
Op);
5365 Check(TypeMD->getNumOperands() == 2,
5366 "Well-formed generalized type metadata must contain exactly two "
5371 "The first operand of type metadata for functions must be zero",
Op);
5372 Check(TypeMD->hasGeneralizedMDString(),
5373 "Only generalized type metadata can be part of the callee_type "
5379void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
5382 "annotation must have at least one operand");
5384 bool TupleOfStrings =
5390 "operands must be a string or a tuple of strings");
5394void Verifier::visitAliasScopeMetadata(
const MDNode *MD) {
5399 "first scope operand must be self-referential or string", MD);
5402 "third scope operand must be string (if used)", MD);
5405 Check(
Domain !=
nullptr,
"second scope operand must be MDNode", MD);
5407 unsigned NumDomainOps =
Domain->getNumOperands();
5408 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5409 "domain must have one or two operands",
Domain);
5412 "first domain operand must be self-referential or string",
Domain);
5413 if (NumDomainOps == 2)
5415 "second domain operand must be string (if used)",
Domain);
5418void Verifier::visitAliasScopeListMetadata(
const MDNode *MD) {
5421 Check(OpMD !=
nullptr,
"scope list must consist of MDNodes", MD);
5422 visitAliasScopeMetadata(OpMD);
5426void Verifier::visitAccessGroupMetadata(
const MDNode *MD) {
5427 auto IsValidAccessScope = [](
const MDNode *MD) {
5432 if (IsValidAccessScope(MD))
5438 Check(OpMD !=
nullptr,
"Access scope list must consist of MDNodes", MD);
5439 Check(IsValidAccessScope(OpMD),
5440 "Access scope list contains invalid access scope", MD);
5444void Verifier::visitCapturesMetadata(Instruction &
I,
const MDNode *Captures) {
5445 static const char *ValidArgs[] = {
"address_is_null",
"address",
5446 "read_provenance",
"provenance"};
5449 Check(SI,
"!captures metadata can only be applied to store instructions", &
I);
5450 Check(
SI->getValueOperand()->getType()->isPointerTy(),
5451 "!captures metadata can only be applied to store with value operand of "
5459 Check(Str,
"!captures metadata must be a list of strings", &
I);
5461 "invalid entry in !captures metadata", &
I, Str);
5465void Verifier::visitAllocTokenMetadata(Instruction &
I, MDNode *MD) {
5470 "expected integer constant", MD);
5475void Verifier::visitInstruction(Instruction &
I) {
5477 Check(BB,
"Instruction not embedded in basic block!", &
I);
5480 for (User *U :
I.users()) {
5481 Check(U != (User *)&
I || !DT.isReachableFromEntry(BB),
5482 "Only PHI nodes may reference their own value!", &
I);
5487 Check(!
I.getType()->isVoidTy() || !
I.hasName(),
5488 "Instruction has a name, but provides a void value!", &
I);
5492 Check(
I.getType()->isVoidTy() ||
I.getType()->isFirstClassType(),
5493 "Instruction returns a non-scalar type!", &
I);
5498 "Invalid use of metadata!", &
I);
5503 for (Use &U :
I.uses()) {
5506 "Instruction referencing"
5507 " instruction not embedded in a basic block!",
5510 CheckFailed(
"Use of instruction is not an instruction!", U);
5519 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i) {
5520 Check(
I.getOperand(i) !=
nullptr,
"Instruction has null operand!", &
I);
5524 if (!
I.getOperand(i)->getType()->isFirstClassType()) {
5525 Check(
false,
"Instruction operands must be first-class values!", &
I);
5531 auto IsAttachedCallOperand = [](
Function *
F,
const CallBase *CBI,
5533 return CBI && CBI->isOperandBundleOfType(
5541 Check((!
F->isIntrinsic() ||
5542 (CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i)) ||
5543 IsAttachedCallOperand(
F, CBI, i)),
5544 "Cannot take the address of an intrinsic!", &
I);
5546 F->getIntrinsicID() == Intrinsic::donothing ||
5547 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5548 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5549 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5550 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5551 F->getIntrinsicID() == Intrinsic::coro_resume ||
5552 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5553 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5554 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5555 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5556 F->getIntrinsicID() ==
5557 Intrinsic::experimental_patchpoint_void ||
5558 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5559 F->getIntrinsicID() == Intrinsic::fake_use ||
5560 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5561 F->getIntrinsicID() == Intrinsic::wasm_throw ||
5562 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5563 IsAttachedCallOperand(
F, CBI, i),
5564 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5565 "statepoint, coro_resume, coro_destroy, clang.arc.attachedcall or "
5568 Check(
F->getParent() == &M,
"Referencing function in another module!", &
I,
5569 &M,
F,
F->getParent());
5572 "Referring to a basic block in another function!", &
I);
5575 "Referring to an argument in another function!", &
I);
5577 Check(GV->
getParent() == &M,
"Referencing global in another module!", &
I,
5581 "Referring to an instruction in another function!", &
I);
5582 verifyDominatesUse(
I, i);
5584 Check(CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i),
5585 "Cannot take the address of an inline asm!", &
I);
5587 visitConstantExprsRecursively(CPA);
5589 if (
CE->getType()->isPtrOrPtrVectorTy()) {
5592 visitConstantExprsRecursively(CE);
5597 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_fpmath)) {
5598 Check(
I.getType()->isFPOrFPVectorTy(),
5599 "fpmath requires a floating point result!", &
I);
5601 if (ConstantFP *CFP0 =
5603 const APFloat &Accuracy = CFP0->getValueAPF();
5605 "fpmath accuracy must have float type", &
I);
5607 "fpmath accuracy not a positive number!", &
I);
5609 Check(
false,
"invalid fpmath accuracy!", &
I);
5613 if (MDNode *
Range =
I.getMetadata(LLVMContext::MD_range)) {
5615 "Ranges are only for loads, calls and invokes!", &
I);
5616 visitRangeMetadata(
I,
Range,
I.getType());
5619 if (MDNode *
Range =
I.getMetadata(LLVMContext::MD_noalias_addrspace)) {
5622 "noalias.addrspace are only for memory operations!", &
I);
5623 visitNoaliasAddrspaceMetadata(
I,
Range,
I.getType());
5626 if (
I.hasMetadata(LLVMContext::MD_invariant_group)) {
5628 "invariant.group metadata is only for loads and stores", &
I);
5631 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_nonnull)) {
5632 Check(
I.getType()->isPointerTy(),
"nonnull applies only to pointer types",
5635 "nonnull applies only to load instructions, use attributes"
5636 " for calls or invokes",
5641 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable))
5642 visitDereferenceableMetadata(
I, MD);
5644 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5645 visitDereferenceableMetadata(
I, MD);
5647 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_nofree))
5648 visitNofreeMetadata(
I, MD);
5650 if (MDNode *TBAA =
I.getMetadata(LLVMContext::MD_tbaa))
5653 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_noalias))
5654 visitAliasScopeListMetadata(MD);
5655 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_alias_scope))
5656 visitAliasScopeListMetadata(MD);
5658 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_access_group))
5659 visitAccessGroupMetadata(MD);
5661 if (MDNode *AlignMD =
I.getMetadata(LLVMContext::MD_align)) {
5662 Check(
I.getType()->isPointerTy(),
"align applies only to pointer types",
5665 "align applies only to load instructions, "
5666 "use attributes for calls or invokes",
5668 Check(AlignMD->getNumOperands() == 1,
"align takes one operand!", &
I);
5671 "align metadata value must be an i64!", &
I);
5675 Check(Align <= Value::MaximumAlignment,
5676 "alignment is larger that implementation defined limit", &
I);
5679 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_prof))
5680 visitProfMetadata(
I, MD);
5682 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_memprof))
5683 visitMemProfMetadata(
I, MD);
5685 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_callsite))
5686 visitCallsiteMetadata(
I, MD);
5688 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_callee_type))
5689 visitCalleeTypeMetadata(
I, MD);
5691 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_DIAssignID))
5692 visitDIAssignIDMetadata(
I, MD);
5694 if (MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra))
5695 visitMMRAMetadata(
I, MMRA);
5697 if (MDNode *Annotation =
I.getMetadata(LLVMContext::MD_annotation))
5698 visitAnnotationMetadata(Annotation);
5700 if (MDNode *Captures =
I.getMetadata(LLVMContext::MD_captures))
5701 visitCapturesMetadata(
I, Captures);
5703 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_alloc_token))
5704 visitAllocTokenMetadata(
I, MD);
5706 if (MDNode *
N =
I.getDebugLoc().getAsMDNode()) {
5708 visitMDNode(*
N, AreDebugLocsAllowed::Yes);
5711 if (
DL->getAtomGroup()) {
5712 CheckDI(
DL->getScope()->getSubprogram()->getKeyInstructionsEnabled(),
5713 "DbgLoc uses atomGroup but DISubprogram doesn't have Key "
5714 "Instructions enabled",
5715 DL,
DL->getScope()->getSubprogram());
5721 I.getAllMetadata(MDs);
5722 for (
auto Attachment : MDs) {
5723 unsigned Kind = Attachment.first;
5725 (
Kind == LLVMContext::MD_dbg ||
Kind == LLVMContext::MD_loop)
5726 ? AreDebugLocsAllowed::Yes
5727 : AreDebugLocsAllowed::
No;
5728 visitMDNode(*Attachment.second, AllowLocs);
5743 bool IsVarArg = IFTy->isVarArg();
5754 "Intrinsic has incorrect return type!", IF);
5756 "Intrinsic has incorrect argument type!", IF);
5761 "Intrinsic was not defined with variable arguments!", IF);
5764 "Callsite was not defined with variable arguments!", IF);
5773 const std::string ExpectedName =
5776 "Intrinsic name not mangled correctly for type arguments! "
5788 "const x86_amx is not allowed in argument!");
5794 case Intrinsic::assume: {
5798 "assume with operand bundles must have i1 true condition",
Call);
5801 unsigned ArgCount = Elem.End - Elem.Begin;
5804 if (Elem.Tag->getKey() ==
"separate_storage") {
5805 Check(ArgCount == 2,
5806 "separate_storage assumptions should have 2 arguments",
Call);
5809 "arguments to separate_storage assumptions should be pointers",
5813 Check(Elem.Tag->getKey() ==
"ignore" ||
5814 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5815 "tags must be valid attribute names",
Call);
5816 Attribute::AttrKind
Kind =
5817 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5818 if (Kind == Attribute::Alignment) {
5819 Check(ArgCount <= 3 && ArgCount >= 2,
5820 "alignment assumptions should have 2 or 3 arguments",
Call);
5822 "first argument should be a pointer",
Call);
5824 "second argument should be an integer",
Call);
5827 "third argument should be an integer if present",
Call);
5830 if (Kind == Attribute::Dereferenceable) {
5831 Check(ArgCount == 2,
5832 "dereferenceable assumptions should have 2 arguments",
Call);
5834 "first argument should be a pointer",
Call);
5836 "second argument should be an integer",
Call);
5839 Check(ArgCount <= 2,
"too many arguments",
Call);
5840 if (Kind == Attribute::None)
5842 if (Attribute::isIntAttrKind(Kind)) {
5843 Check(ArgCount == 2,
"this attribute should have 2 arguments",
Call);
5845 "the second argument should be a constant integral value",
Call);
5846 }
else if (Attribute::canUseAsParamAttr(Kind)) {
5847 Check((ArgCount) == 1,
"this attribute should have one argument",
Call);
5848 }
else if (Attribute::canUseAsFnAttr(Kind)) {
5849 Check((ArgCount) == 0,
"this attribute has no argument",
Call);
5854 case Intrinsic::ucmp:
5855 case Intrinsic::scmp: {
5860 "result type must be at least 2 bits wide",
Call);
5862 bool IsDestTypeVector = DestTy->
isVectorTy();
5864 "ucmp/scmp argument and result types must both be either vector or "
5867 if (IsDestTypeVector) {
5870 Check(SrcVecLen == DestVecLen,
5871 "return type and arguments must have the same number of "
5877 case Intrinsic::coro_id: {
5883 "info argument of llvm.coro.id must refer to an initialized "
5887 "info argument of llvm.coro.id must refer to either a struct or "
5891 case Intrinsic::is_fpclass: {
5894 "unsupported bits for llvm.is.fpclass test mask");
5897 case Intrinsic::fptrunc_round: {
5902 MD = MAV->getMetadata();
5904 Check(MD !=
nullptr,
"missing rounding mode argument",
Call);
5907 (
"invalid value for llvm.fptrunc.round metadata operand"
5908 " (the operand should be a string)"),
5911 std::optional<RoundingMode> RoundMode =
5913 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5914 "unsupported rounding mode argument",
Call);
5917#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5918#include "llvm/IR/VPIntrinsics.def"
5919#undef BEGIN_REGISTER_VP_INTRINSIC
5922#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5923 case Intrinsic::INTRINSIC:
5924#include "llvm/IR/ConstrainedOps.def"
5928 case Intrinsic::dbg_declare:
5929 case Intrinsic::dbg_value:
5930 case Intrinsic::dbg_assign:
5931 case Intrinsic::dbg_label:
5938 case Intrinsic::memcpy:
5939 case Intrinsic::memcpy_inline:
5940 case Intrinsic::memmove:
5941 case Intrinsic::memset:
5942 case Intrinsic::memset_inline:
5944 case Intrinsic::experimental_memset_pattern: {
5946 Check(Memset->getValue()->getType()->isSized(),
5947 "unsized types cannot be used as memset patterns",
Call);
5950 case Intrinsic::memcpy_element_unordered_atomic:
5951 case Intrinsic::memmove_element_unordered_atomic:
5952 case Intrinsic::memset_element_unordered_atomic: {
5955 ConstantInt *ElementSizeCI =
5957 const APInt &ElementSizeVal = ElementSizeCI->
getValue();
5959 "element size of the element-wise atomic memory intrinsic "
5960 "must be a power of 2",
5963 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5964 return Alignment && ElementSizeVal.
ule(Alignment->value());
5966 Check(IsValidAlignment(AMI->getDestAlign()),
5967 "incorrect alignment of the destination argument",
Call);
5969 Check(IsValidAlignment(AMT->getSourceAlign()),
5970 "incorrect alignment of the source argument",
Call);
5974 case Intrinsic::call_preallocated_setup: {
5976 bool FoundCall =
false;
5979 Check(UseCall !=
nullptr,
5980 "Uses of llvm.call.preallocated.setup must be calls");
5982 if (IID == Intrinsic::call_preallocated_arg) {
5984 Check(AllocArgIndex !=
nullptr,
5985 "llvm.call.preallocated.alloc arg index must be a constant");
5986 auto AllocArgIndexInt = AllocArgIndex->getValue();
5987 Check(AllocArgIndexInt.sge(0) &&
5988 AllocArgIndexInt.slt(NumArgs->getValue()),
5989 "llvm.call.preallocated.alloc arg index must be between 0 and "
5991 "llvm.call.preallocated.setup's argument count");
5992 }
else if (IID == Intrinsic::call_preallocated_teardown) {
5995 Check(!FoundCall,
"Can have at most one call corresponding to a "
5996 "llvm.call.preallocated.setup");
5998 size_t NumPreallocatedArgs = 0;
5999 for (
unsigned i = 0; i < UseCall->arg_size(); i++) {
6000 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
6001 ++NumPreallocatedArgs;
6004 Check(NumPreallocatedArgs != 0,
6005 "cannot use preallocated intrinsics on a call without "
6006 "preallocated arguments");
6007 Check(NumArgs->equalsInt(NumPreallocatedArgs),
6008 "llvm.call.preallocated.setup arg size must be equal to number "
6009 "of preallocated arguments "
6019 auto PreallocatedBundle =
6021 Check(PreallocatedBundle,
6022 "Use of llvm.call.preallocated.setup outside intrinsics "
6023 "must be in \"preallocated\" operand bundle");
6024 Check(PreallocatedBundle->Inputs.front().get() == &
Call,
6025 "preallocated bundle must have token from corresponding "
6026 "llvm.call.preallocated.setup");
6031 case Intrinsic::call_preallocated_arg: {
6034 Token->getIntrinsicID() == Intrinsic::call_preallocated_setup,
6035 "llvm.call.preallocated.arg token argument must be a "
6036 "llvm.call.preallocated.setup");
6038 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
6039 "call site attribute");
6042 case Intrinsic::call_preallocated_teardown: {
6045 Token->getIntrinsicID() == Intrinsic::call_preallocated_setup,
6046 "llvm.call.preallocated.teardown token argument must be a "
6047 "llvm.call.preallocated.setup");
6050 case Intrinsic::gcroot:
6051 case Intrinsic::gcwrite:
6052 case Intrinsic::gcread:
6053 if (
ID == Intrinsic::gcroot) {
6056 Check(AI,
"llvm.gcroot parameter #1 must be an alloca.",
Call);
6058 "llvm.gcroot parameter #2 must be a constant.",
Call);
6061 "llvm.gcroot parameter #1 must either be a pointer alloca, "
6062 "or argument #2 must be a non-null constant.",
6068 "Enclosing function does not use GC.",
Call);
6070 case Intrinsic::init_trampoline:
6072 "llvm.init_trampoline parameter #2 must resolve to a function.",
6075 case Intrinsic::prefetch:
6077 "rw argument to llvm.prefetch must be 0-1",
Call);
6079 "locality argument to llvm.prefetch must be 0-3",
Call);
6081 "cache type argument to llvm.prefetch must be 0-1",
Call);
6083 case Intrinsic::reloc_none: {
6086 "llvm.reloc.none argument must be a metadata string", &
Call);
6089 case Intrinsic::stackprotector:
6091 "llvm.stackprotector parameter #2 must resolve to an alloca.",
Call);
6093 case Intrinsic::localescape: {
6097 Check(!SawFrameEscape,
"multiple calls to llvm.localescape in one function",
6104 "llvm.localescape only accepts static allocas",
Call);
6107 SawFrameEscape =
true;
6110 case Intrinsic::localrecover: {
6114 "llvm.localrecover first "
6115 "argument must be function defined in this module",
6118 auto &
Entry = FrameEscapeInfo[Fn];
6119 Entry.second = unsigned(
6120 std::max(uint64_t(
Entry.second), IdxArg->getLimitedValue(~0U) + 1));
6124 case Intrinsic::experimental_gc_statepoint:
6126 Check(!CI->isInlineAsm(),
6127 "gc.statepoint support for inline assembly unimplemented", CI);
6129 "Enclosing function does not use GC.",
Call);
6131 verifyStatepoint(
Call);
6133 case Intrinsic::experimental_gc_result: {
6135 "Enclosing function does not use GC.",
Call);
6143 Check(StatepointCall && StatepointCall->getIntrinsicID() ==
6144 Intrinsic::experimental_gc_statepoint,
6145 "gc.result operand #1 must be from a statepoint",
Call,
6149 auto *TargetFuncType =
6152 "gc.result result type does not match wrapped callee",
Call);
6155 case Intrinsic::experimental_gc_relocate: {
6159 "gc.relocate must return a pointer or a vector of pointers",
Call);
6164 if (LandingPadInst *LandingPad =
6168 LandingPad->getParent()->getUniquePredecessor();
6172 Check(InvokeBB,
"safepoints should have unique landingpads",
6173 LandingPad->getParent());
6177 "gc relocate should be linked to a statepoint", InvokeBB);
6184 "gc relocate is incorrectly tied to the statepoint",
Call, Token);
6193 "gc.relocate operand #2 must be integer offset",
Call);
6197 "gc.relocate operand #3 must be integer offset",
Call);
6207 Check(BaseIndex < Opt->Inputs.size(),
6208 "gc.relocate: statepoint base index out of bounds",
Call);
6209 Check(DerivedIndex < Opt->Inputs.size(),
6210 "gc.relocate: statepoint derived index out of bounds",
Call);
6223 "gc.relocate: relocated value must be a pointer",
Call);
6224 Check(DerivedType->isPtrOrPtrVectorTy(),
6225 "gc.relocate: relocated value must be a pointer",
Call);
6227 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
6228 "gc.relocate: vector relocates to vector and pointer to pointer",
6231 ResultType->getPointerAddressSpace() ==
6232 DerivedType->getPointerAddressSpace(),
6233 "gc.relocate: relocating a pointer shouldn't change its address space",
6237 Check(GC,
"gc.relocate: calling function must have GCStrategy",
6240 auto isGCPtr = [&
GC](
Type *PTy) {
6241 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(
true);
6243 Check(isGCPtr(ResultType),
"gc.relocate: must return gc pointer",
Call);
6245 "gc.relocate: relocated value must be a gc pointer",
Call);
6246 Check(isGCPtr(DerivedType),
6247 "gc.relocate: relocated value must be a gc pointer",
Call);
6251 case Intrinsic::experimental_patchpoint: {
6254 "patchpoint: invalid return type used with anyregcc",
Call);
6258 case Intrinsic::eh_exceptioncode:
6259 case Intrinsic::eh_exceptionpointer: {
6261 "eh.exceptionpointer argument must be a catchpad",
Call);
6264 case Intrinsic::get_active_lane_mask: {
6266 "get_active_lane_mask: must return a "
6270 Check(ElemTy->isIntegerTy(1),
6271 "get_active_lane_mask: element type is not "
6276 case Intrinsic::experimental_get_vector_length: {
6279 "get_vector_length: VF must be positive",
Call);
6282 case Intrinsic::masked_load: {
6288 Check(
Mask->getType()->isVectorTy(),
"masked_load: mask must be vector",
6291 "masked_load: pass through and return type must match",
Call);
6294 "masked_load: vector mask must be same length as return",
Call);
6297 case Intrinsic::masked_store: {
6300 Check(
Mask->getType()->isVectorTy(),
"masked_store: mask must be vector",
6304 "masked_store: vector mask must be same length as value",
Call);
6308 case Intrinsic::experimental_guard: {
6311 "experimental_guard must have exactly one "
6312 "\"deopt\" operand bundle");
6316 case Intrinsic::experimental_deoptimize: {
6320 "experimental_deoptimize must have exactly one "
6321 "\"deopt\" operand bundle");
6323 "experimental_deoptimize return type must match caller return type");
6328 "calls to experimental_deoptimize must be followed by a return");
6332 "calls to experimental_deoptimize must be followed by a return "
6333 "of the value computed by experimental_deoptimize");
6338 case Intrinsic::vastart: {
6340 "va_start called in a non-varargs function");
6343 case Intrinsic::get_dynamic_area_offset: {
6345 Check(IntTy &&
DL.getPointerSizeInBits(
DL.getAllocaAddrSpace()) ==
6346 IntTy->getBitWidth(),
6347 "get_dynamic_area_offset result type must be scalar integer matching "
6348 "alloca address space width",
6352 case Intrinsic::vector_reduce_and:
6353 case Intrinsic::vector_reduce_or:
6354 case Intrinsic::vector_reduce_xor:
6355 case Intrinsic::vector_reduce_add:
6356 case Intrinsic::vector_reduce_mul:
6357 case Intrinsic::vector_reduce_smax:
6358 case Intrinsic::vector_reduce_smin:
6359 case Intrinsic::vector_reduce_umax:
6360 case Intrinsic::vector_reduce_umin: {
6363 "Intrinsic has incorrect argument type!");
6366 case Intrinsic::vector_reduce_fmax:
6367 case Intrinsic::vector_reduce_fmin: {
6370 "Intrinsic has incorrect argument type!");
6373 case Intrinsic::vector_reduce_fadd:
6374 case Intrinsic::vector_reduce_fmul: {
6379 "Intrinsic has incorrect argument type!");
6382 case Intrinsic::smul_fix:
6383 case Intrinsic::smul_fix_sat:
6384 case Intrinsic::umul_fix:
6385 case Intrinsic::umul_fix_sat:
6386 case Intrinsic::sdiv_fix:
6387 case Intrinsic::sdiv_fix_sat:
6388 case Intrinsic::udiv_fix:
6389 case Intrinsic::udiv_fix_sat: {
6393 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6396 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6400 Check(Op3->getType()->isIntegerTy(),
6401 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6402 Check(Op3->getBitWidth() <= 32,
6403 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6405 if (
ID == Intrinsic::smul_fix ||
ID == Intrinsic::smul_fix_sat ||
6406 ID == Intrinsic::sdiv_fix ||
ID == Intrinsic::sdiv_fix_sat) {
6408 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6412 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6413 "to the width of the operands");
6417 case Intrinsic::lrint:
6418 case Intrinsic::llrint:
6419 case Intrinsic::lround:
6420 case Intrinsic::llround: {
6426 ExpectedName +
": argument must be floating-point or vector "
6427 "of floating-points, and result must be integer or "
6428 "vector of integers",
6431 ExpectedName +
": argument and result disagree on vector use", &
Call);
6433 Check(VTy->getElementCount() == RTy->getElementCount(),
6434 ExpectedName +
": argument must be same length as result", &
Call);
6438 case Intrinsic::bswap: {
6441 Check(
Size % 16 == 0,
"bswap must be an even number of bytes", &
Call);
6444 case Intrinsic::invariant_start: {
6446 Check(InvariantSize &&
6448 "invariant_start parameter must be -1, 0 or a positive number",
6452 case Intrinsic::matrix_multiply:
6453 case Intrinsic::matrix_transpose:
6454 case Intrinsic::matrix_column_major_load:
6455 case Intrinsic::matrix_column_major_store: {
6457 ConstantInt *Stride =
nullptr;
6458 ConstantInt *NumRows;
6459 ConstantInt *NumColumns;
6461 Type *Op0ElemTy =
nullptr;
6462 Type *Op1ElemTy =
nullptr;
6464 case Intrinsic::matrix_multiply: {
6469 ->getNumElements() ==
6471 "First argument of a matrix operation does not match specified "
6474 ->getNumElements() ==
6476 "Second argument of a matrix operation does not match specified "
6486 case Intrinsic::matrix_transpose:
6493 case Intrinsic::matrix_column_major_load: {
6500 case Intrinsic::matrix_column_major_store: {
6513 Check(ResultTy->getElementType()->isIntegerTy() ||
6514 ResultTy->getElementType()->isFloatingPointTy(),
6515 "Result type must be an integer or floating-point type!", IF);
6518 Check(ResultTy->getElementType() == Op0ElemTy,
6519 "Vector element type mismatch of the result and first operand "
6524 Check(ResultTy->getElementType() == Op1ElemTy,
6525 "Vector element type mismatch of the result and second operand "
6531 "Result of a matrix operation does not fit in the returned vector!");
6537 "Stride must be greater or equal than the number of rows!", IF);
6542 case Intrinsic::vector_splice: {
6545 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6548 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
6549 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
6551 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6552 (Idx >= 0 && Idx < KnownMinNumElements),
6553 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6554 "known minimum number of elements in the vector. For scalable "
6555 "vectors the minimum number of elements is determined from "
6560 case Intrinsic::stepvector: {
6562 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6563 VecTy->getScalarSizeInBits() >= 8,
6564 "stepvector only supported for vectors of integers "
6565 "with a bitwidth of at least 8.",
6569 case Intrinsic::experimental_vector_match: {
6578 Check(Op1Ty && Op2Ty && MaskTy,
"Operands must be vectors.", &
Call);
6580 "Second operand must be a fixed length vector.", &
Call);
6581 Check(Op1Ty->getElementType()->isIntegerTy(),
6582 "First operand must be a vector of integers.", &
Call);
6583 Check(Op1Ty->getElementType() == Op2Ty->getElementType(),
6584 "First two operands must have the same element type.", &
Call);
6585 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(),
6586 "First operand and mask must have the same number of elements.",
6588 Check(MaskTy->getElementType()->isIntegerTy(1),
6589 "Mask must be a vector of i1's.", &
Call);
6594 case Intrinsic::vector_insert: {
6603 ElementCount VecEC = VecTy->getElementCount();
6604 ElementCount SubVecEC = SubVecTy->getElementCount();
6605 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6606 "vector_insert parameters must have the same element "
6610 "vector_insert index must be a constant multiple of "
6611 "the subvector's known minimum vector length.");
6619 "subvector operand of vector_insert would overrun the "
6620 "vector being inserted into.");
6624 case Intrinsic::vector_extract: {
6632 ElementCount VecEC = VecTy->getElementCount();
6633 ElementCount ResultEC = ResultTy->getElementCount();
6635 Check(ResultTy->getElementType() == VecTy->getElementType(),
6636 "vector_extract result must have the same element "
6637 "type as the input vector.",
6640 "vector_extract index must be a constant multiple of "
6641 "the result type's known minimum vector length.");
6649 "vector_extract would overrun.");
6653 case Intrinsic::vector_partial_reduce_fadd:
6654 case Intrinsic::vector_partial_reduce_add: {
6658 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6659 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6661 Check((VecWidth % AccWidth) == 0,
6662 "Invalid vector widths for partial "
6663 "reduction. The width of the input vector "
6664 "must be a positive integer multiple of "
6665 "the width of the accumulator vector.");
6668 case Intrinsic::experimental_noalias_scope_decl: {
6672 case Intrinsic::preserve_array_access_index:
6673 case Intrinsic::preserve_struct_access_index:
6674 case Intrinsic::aarch64_ldaxr:
6675 case Intrinsic::aarch64_ldxr:
6676 case Intrinsic::arm_ldaex:
6677 case Intrinsic::arm_ldrex: {
6679 Check(ElemTy,
"Intrinsic requires elementtype attribute on first argument.",
6683 case Intrinsic::aarch64_stlxr:
6684 case Intrinsic::aarch64_stxr:
6685 case Intrinsic::arm_stlex:
6686 case Intrinsic::arm_strex: {
6689 "Intrinsic requires elementtype attribute on second argument.",
6693 case Intrinsic::aarch64_prefetch: {
6695 "write argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6697 "target argument to llvm.aarch64.prefetch must be 0-3",
Call);
6699 "stream argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6701 "isdata argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6704 case Intrinsic::callbr_landingpad: {
6706 Check(CBR,
"intrinstic requires callbr operand", &
Call);
6713 CheckFailed(
"Intrinsic in block must have 1 unique predecessor", &
Call);
6717 CheckFailed(
"Intrinsic must have corresponding callbr in predecessor",
6722 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6723 "block in indirect destination list",
6726 Check(&
First == &
Call,
"No other instructions may proceed intrinsic",
6730 case Intrinsic::amdgcn_cs_chain: {
6733 case CallingConv::AMDGPU_CS:
6734 case CallingConv::AMDGPU_CS_Chain:
6735 case CallingConv::AMDGPU_CS_ChainPreserve:
6738 CheckFailed(
"Intrinsic can only be used from functions with the "
6739 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6740 "calling conventions",
6746 "SGPR arguments must have the `inreg` attribute", &
Call);
6748 "VGPR arguments must not have the `inreg` attribute", &
Call);
6753 Intrinsic::amdgcn_unreachable;
6755 "llvm.amdgcn.cs.chain must be followed by unreachable", &
Call);
6758 case Intrinsic::amdgcn_init_exec_from_input: {
6761 "only inreg arguments to the parent function are valid as inputs to "
6766 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6769 case CallingConv::AMDGPU_CS_Chain:
6770 case CallingConv::AMDGPU_CS_ChainPreserve:
6773 CheckFailed(
"Intrinsic can only be used from functions with the "
6774 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6775 "calling conventions",
6780 unsigned InactiveIdx = 1;
6782 "Value for inactive lanes must not have the `inreg` attribute",
6785 "Value for inactive lanes must be a function argument", &
Call);
6787 "Value for inactive lanes must be a VGPR function argument", &
Call);
6790 case Intrinsic::amdgcn_call_whole_wave: {
6792 Check(
F,
"Indirect whole wave calls are not allowed", &
Call);
6794 CallingConv::ID CC =
F->getCallingConv();
6795 Check(CC == CallingConv::AMDGPU_Gfx_WholeWave,
6796 "Callee must have the amdgpu_gfx_whole_wave calling convention",
6799 Check(!
F->isVarArg(),
"Variadic whole wave calls are not allowed", &
Call);
6802 "Call argument count must match callee argument count", &
Call);
6806 Check(
F->arg_begin()->getType()->isIntegerTy(1),
6807 "Callee must have i1 as its first argument", &
Call);
6808 for (
auto [CallArg, FuncArg] :
6810 Check(CallArg->getType() == FuncArg.getType(),
6811 "Argument types must match", &
Call);
6815 FuncArg.hasInRegAttr(),
6816 "Argument inreg attributes must match", &
Call);
6820 case Intrinsic::amdgcn_s_prefetch_data: {
6824 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6827 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4:
6828 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: {
6834 Check(CBSZ <= 4,
"invalid value for cbsz format",
Call,
6836 Check(BLGP <= 4,
"invalid value for blgp format",
Call,
6840 auto getFormatNumRegs = [](
unsigned FormatVal) {
6841 switch (FormatVal) {
6855 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6856 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6858 unsigned NumElts = Ty->getNumElements();
6859 return NumElts == 4 || NumElts == 6 || NumElts == 8;
6864 Check(isValidSrcASrcBVector(Src0Ty),
6865 "operand 0 must be 4, 6 or 8 element i32 vector", &
Call, Src0);
6866 Check(isValidSrcASrcBVector(Src1Ty),
6867 "operand 1 must be 4, 6 or 8 element i32 vector", &
Call, Src1);
6870 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ),
6872 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP),
6876 case Intrinsic::amdgcn_wmma_f32_16x16x128_f8f6f4:
6877 case Intrinsic::amdgcn_wmma_scale_f32_16x16x128_f8f6f4:
6878 case Intrinsic::amdgcn_wmma_scale16_f32_16x16x128_f8f6f4: {
6884 Check(FmtA <= 4,
"invalid value for matrix format",
Call,
6886 Check(FmtB <= 4,
"invalid value for matrix format",
Call,
6890 auto getFormatNumRegs = [](
unsigned FormatVal) {
6891 switch (FormatVal) {
6905 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6906 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6908 unsigned NumElts = Ty->getNumElements();
6909 return NumElts == 16 || NumElts == 12 || NumElts == 8;
6914 Check(isValidSrcASrcBVector(Src0Ty),
6915 "operand 1 must be 8, 12 or 16 element i32 vector", &
Call, Src0);
6916 Check(isValidSrcASrcBVector(Src1Ty),
6917 "operand 3 must be 8, 12 or 16 element i32 vector", &
Call, Src1);
6920 Check(Src0Ty->getNumElements() >= getFormatNumRegs(FmtA),
6922 Check(Src1Ty->getNumElements() >= getFormatNumRegs(FmtB),
6926 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
6927 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
6928 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
6929 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
6930 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
6931 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
6936 "cooperative atomic intrinsics require a generic or global pointer",
6943 "cooperative atomic intrinsics require that the last argument is a "
6948 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6949 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6952 Check(RegCount % 8 == 0,
6953 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6956 case Intrinsic::experimental_convergence_entry:
6957 case Intrinsic::experimental_convergence_anchor:
6959 case Intrinsic::experimental_convergence_loop:
6961 case Intrinsic::ptrmask: {
6965 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6970 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6975 "llvm.ptrmask intrinsic arguments must have the same number of "
6979 "llvm.ptrmask intrinsic second argument bitwidth must match "
6980 "pointer index type size of first argument",
6984 case Intrinsic::thread_pointer: {
6986 DL.getDefaultGlobalsAddressSpace(),
6987 "llvm.thread.pointer intrinsic return type must be for the globals "
6992 case Intrinsic::threadlocal_address: {
6995 "llvm.threadlocal.address first argument must be a GlobalValue");
6997 "llvm.threadlocal.address operand isThreadLocal() must be true");
7000 case Intrinsic::lifetime_start:
7001 case Intrinsic::lifetime_end: {
7004 "llvm.lifetime.start/end can only be used on alloca or poison",
7013 if (
F->hasPersonalityFn() &&
7017 if (BlockEHFuncletColors.
empty())
7021 bool InEHFunclet =
false;
7025 for (BasicBlock *ColorFirstBB : CV)
7026 if (
auto It = ColorFirstBB->getFirstNonPHIIt();
7027 It != ColorFirstBB->end())
7032 bool HasToken =
false;
7039 Check(HasToken,
"Missing funclet token on intrinsic call", &
Call);
7063void Verifier::visit(DbgLabelRecord &DLR) {
7065 "invalid #dbg_label intrinsic variable", &DLR, DLR.
getRawLabel());
7078 CheckDI(Loc,
"#dbg_label record requires a !dbg attachment", &DLR, BB,
F);
7082 if (!LabelSP || !LocSP)
7086 "mismatched subprogram between #dbg_label label and !dbg attachment",
7087 &DLR, BB,
F, Label,
Label->getScope()->getSubprogram(), Loc,
7088 Loc->getScope()->getSubprogram());
7091void Verifier::visit(DbgVariableRecord &DVR) {
7095 CheckDI(DVR.
getType() == DbgVariableRecord::LocationType::Value ||
7096 DVR.
getType() == DbgVariableRecord::LocationType::Declare ||
7097 DVR.
getType() == DbgVariableRecord::LocationType::DeclareValue ||
7098 DVR.
getType() == DbgVariableRecord::LocationType::Assign,
7099 "invalid #dbg record type", &DVR, DVR.
getType(), BB,
F);
7107 "invalid #dbg record address/value", &DVR, MD, BB,
F);
7109 visitValueAsMetadata(*VAM,
F);
7112 Type *Ty = VAM->getValue()->getType();
7114 "location of #dbg_declare must be a pointer or int", &DVR, MD, BB,
7118 visitDIArgList(*AL,
F);
7132 "invalid #dbg_assign DIAssignID", &DVR, DVR.
getRawAssignID(), BB,
7135 AreDebugLocsAllowed::No);
7144 "invalid #dbg_assign address", &DVR, DVR.
getRawAddress(), BB,
F);
7146 visitValueAsMetadata(*VAM,
F);
7149 "invalid #dbg_assign address expression", &DVR,
7156 "inst not in same function as #dbg_assign",
I, &DVR, BB,
F);
7166 &DVR, DLNode, BB,
F);
7172 if (!VarSP || !LocSP)
7176 "mismatched subprogram between #dbg record variable and DILocation",
7178 Loc->getScope()->getSubprogram(), BB,
F);
7183void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
7187 Check(RetTy->getElementCount() == ValTy->getElementCount(),
7188 "VP cast intrinsic first argument and result vector lengths must be "
7192 switch (VPCast->getIntrinsicID()) {
7195 case Intrinsic::vp_trunc:
7197 "llvm.vp.trunc intrinsic first argument and result element type "
7201 "llvm.vp.trunc intrinsic the bit size of first argument must be "
7202 "larger than the bit size of the return type",
7205 case Intrinsic::vp_zext:
7206 case Intrinsic::vp_sext:
7208 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
7209 "element type must be integer",
7212 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
7213 "argument must be smaller than the bit size of the return type",
7216 case Intrinsic::vp_fptoui:
7217 case Intrinsic::vp_fptosi:
7218 case Intrinsic::vp_lrint:
7219 case Intrinsic::vp_llrint:
7222 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
7223 "type must be floating-point and result element type must be integer",
7226 case Intrinsic::vp_uitofp:
7227 case Intrinsic::vp_sitofp:
7230 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
7231 "type must be integer and result element type must be floating-point",
7234 case Intrinsic::vp_fptrunc:
7236 "llvm.vp.fptrunc intrinsic first argument and result element type "
7237 "must be floating-point",
7240 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
7241 "larger than the bit size of the return type",
7244 case Intrinsic::vp_fpext:
7246 "llvm.vp.fpext intrinsic first argument and result element type "
7247 "must be floating-point",
7250 "llvm.vp.fpext intrinsic the bit size of first argument must be "
7251 "smaller than the bit size of the return type",
7254 case Intrinsic::vp_ptrtoint:
7256 "llvm.vp.ptrtoint intrinsic first argument element type must be "
7257 "pointer and result element type must be integer",
7260 case Intrinsic::vp_inttoptr:
7262 "llvm.vp.inttoptr intrinsic first argument element type must be "
7263 "integer and result element type must be pointer",
7270 case Intrinsic::vp_fcmp: {
7273 "invalid predicate for VP FP comparison intrinsic", &VPI);
7276 case Intrinsic::vp_icmp: {
7279 "invalid predicate for VP integer comparison intrinsic", &VPI);
7282 case Intrinsic::vp_is_fpclass: {
7285 "unsupported bits for llvm.vp.is.fpclass test mask");
7288 case Intrinsic::experimental_vp_splice: {
7291 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
7293 AttributeList
Attrs = VPI.
getParent()->getParent()->getAttributes();
7294 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
7295 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
7297 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
7298 (Idx >= 0 && Idx < KnownMinNumElements),
7299 "The splice index exceeds the range [-VL, VL-1] where VL is the "
7300 "known minimum number of elements in the vector. For scalable "
7301 "vectors the minimum number of elements is determined from "
7309void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
7311 bool HasRoundingMD =
7315 NumOperands += (1 + HasRoundingMD);
7321 "invalid arguments for constrained FP intrinsic", &FPI);
7324 case Intrinsic::experimental_constrained_lrint:
7325 case Intrinsic::experimental_constrained_llrint: {
7329 "Intrinsic does not support vectors", &FPI);
7333 case Intrinsic::experimental_constrained_lround:
7334 case Intrinsic::experimental_constrained_llround: {
7338 "Intrinsic does not support vectors", &FPI);
7342 case Intrinsic::experimental_constrained_fcmp:
7343 case Intrinsic::experimental_constrained_fcmps: {
7346 "invalid predicate for constrained FP comparison intrinsic", &FPI);
7350 case Intrinsic::experimental_constrained_fptosi:
7351 case Intrinsic::experimental_constrained_fptoui: {
7355 "Intrinsic first argument must be floating point", &FPI);
7362 "Intrinsic first argument and result disagree on vector use", &FPI);
7364 "Intrinsic result must be an integer", &FPI);
7367 "Intrinsic first argument and result vector lengths must be equal",
7373 case Intrinsic::experimental_constrained_sitofp:
7374 case Intrinsic::experimental_constrained_uitofp: {
7378 "Intrinsic first argument must be integer", &FPI);
7385 "Intrinsic first argument and result disagree on vector use", &FPI);
7387 "Intrinsic result must be a floating point", &FPI);
7390 "Intrinsic first argument and result vector lengths must be equal",
7396 case Intrinsic::experimental_constrained_fptrunc:
7397 case Intrinsic::experimental_constrained_fpext: {
7403 "Intrinsic first argument must be FP or FP vector", &FPI);
7405 "Intrinsic result must be FP or FP vector", &FPI);
7407 "Intrinsic first argument and result disagree on vector use", &FPI);
7411 "Intrinsic first argument and result vector lengths must be equal",
7414 if (FPI.
getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
7416 "Intrinsic first argument's type must be larger than result type",
7420 "Intrinsic first argument's type must be smaller than result type",
7436 "invalid exception behavior argument", &FPI);
7437 if (HasRoundingMD) {
7443void Verifier::verifyFragmentExpression(
const DbgVariableRecord &DVR) {
7448 if (!V || !
E || !
E->isValid())
7452 auto Fragment =
E->getFragmentInfo();
7462 if (
V->isArtificial())
7465 verifyFragmentExpression(*V, *Fragment, &DVR);
7468template <
typename ValueOrMetadata>
7469void Verifier::verifyFragmentExpression(
const DIVariable &V,
7471 ValueOrMetadata *
Desc) {
7474 auto VarSize =
V.getSizeInBits();
7480 CheckDI(FragSize + FragOffset <= *VarSize,
7481 "fragment is larger than or outside of variable",
Desc, &V);
7482 CheckDI(FragSize != *VarSize,
"fragment covers entire variable",
Desc, &V);
7485void Verifier::verifyFnArgs(
const DbgVariableRecord &DVR) {
7497 CheckDI(Var,
"#dbg record without variable");
7499 unsigned ArgNo = Var->
getArg();
7505 if (DebugFnArgs.
size() < ArgNo)
7506 DebugFnArgs.
resize(ArgNo,
nullptr);
7508 auto *Prev = DebugFnArgs[ArgNo - 1];
7509 DebugFnArgs[ArgNo - 1] = Var;
7510 CheckDI(!Prev || (Prev == Var),
"conflicting debug info for argument", &DVR,
7514void Verifier::verifyNotEntryValue(
const DbgVariableRecord &DVR) {
7518 if (!
E || !
E->isValid())
7528 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7533 "Entry values are only allowed in MIR unless they target a "
7534 "swiftasync Argument",
7538void Verifier::verifyCompileUnits() {
7542 if (
M.getContext().isODRUniquingDebugTypes())
7544 auto *CUs =
M.getNamedMetadata(
"llvm.dbg.cu");
7545 SmallPtrSet<const Metadata *, 2> Listed;
7548 for (
const auto *CU : CUVisited)
7549 CheckDI(Listed.
count(CU),
"DICompileUnit not listed in llvm.dbg.cu", CU);
7553void Verifier::verifyDeoptimizeCallingConvs() {
7554 if (DeoptimizeDeclarations.
empty())
7558 for (
const auto *
F :
ArrayRef(DeoptimizeDeclarations).slice(1)) {
7559 Check(
First->getCallingConv() ==
F->getCallingConv(),
7560 "All llvm.experimental.deoptimize declarations must have the same "
7561 "calling convention",
7566void Verifier::verifyAttachedCallBundle(
const CallBase &
Call,
7567 const OperandBundleUse &BU) {
7570 Check((FTy->getReturnType()->isPointerTy() ||
7572 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7573 "function returning a pointer or a non-returning function that has a "
7578 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7586 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7587 IID == Intrinsic::objc_claimAutoreleasedReturnValue ||
7588 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7589 "invalid function argument",
Call);
7591 StringRef FnName = Fn->
getName();
7592 Check((FnName ==
"objc_retainAutoreleasedReturnValue" ||
7593 FnName ==
"objc_claimAutoreleasedReturnValue" ||
7594 FnName ==
"objc_unsafeClaimAutoreleasedReturnValue"),
7595 "invalid function argument",
Call);
7599void Verifier::verifyNoAliasScopeDecl() {
7600 if (NoAliasScopeDecls.
empty())
7604 for (
auto *
II : NoAliasScopeDecls) {
7605 assert(
II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7606 "Not a llvm.experimental.noalias.scope.decl ?");
7609 Check(ScopeListMV !=
nullptr,
7610 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7615 Check(ScopeListMD !=
nullptr,
"!id.scope.list must point to an MDNode",
II);
7616 Check(ScopeListMD->getNumOperands() == 1,
7617 "!id.scope.list must point to a list with a single scope",
II);
7618 visitAliasScopeListMetadata(ScopeListMD);
7628 auto GetScope = [](IntrinsicInst *
II) {
7631 return &
cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7636 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7637 return GetScope(Lhs) < GetScope(Rhs);
7644 auto ItCurrent = NoAliasScopeDecls.begin();
7645 while (ItCurrent != NoAliasScopeDecls.end()) {
7646 auto CurScope = GetScope(*ItCurrent);
7647 auto ItNext = ItCurrent;
7650 }
while (ItNext != NoAliasScopeDecls.end() &&
7651 GetScope(*ItNext) == CurScope);
7656 if (ItNext - ItCurrent < 32)
7660 Check(!DT.dominates(
I, J),
7661 "llvm.experimental.noalias.scope.decl dominates another one "
7662 "with the same scope",
7676 Verifier V(OS,
true, *f.getParent());
7680 return !V.verify(
F);
7684 bool *BrokenDebugInfo) {
7686 Verifier V(OS, !BrokenDebugInfo, M);
7688 bool Broken =
false;
7690 Broken |= !V.verify(
F);
7692 Broken |= !V.verify();
7693 if (BrokenDebugInfo)
7694 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7705 std::unique_ptr<Verifier> V;
7706 bool FatalErrors =
true;
7711 explicit VerifierLegacyPass(
bool FatalErrors)
7713 FatalErrors(FatalErrors) {
7717 bool doInitialization(
Module &M)
override {
7718 V = std::make_unique<Verifier>(
7724 if (!
V->verify(
F) && FatalErrors) {
7725 errs() <<
"in function " <<
F.getName() <<
'\n';
7731 bool doFinalization(
Module &M)
override {
7732 bool HasErrors =
false;
7733 for (Function &
F : M)
7734 if (
F.isDeclaration())
7735 HasErrors |= !
V->verify(
F);
7737 HasErrors |= !
V->verify();
7738 if (FatalErrors && (HasErrors ||
V->hasBrokenDebugInfo()))
7743 void getAnalysisUsage(AnalysisUsage &AU)
const override {
7751template <
typename... Tys>
void TBAAVerifier::CheckFailed(Tys &&... Args) {
7753 return Diagnostic->CheckFailed(
Args...);
7756#define CheckTBAA(C, ...) \
7759 CheckFailed(__VA_ARGS__); \
7767TBAAVerifier::TBAABaseNodeSummary
7771 CheckFailed(
"Base nodes must have at least two operands",
I, BaseNode);
7775 auto Itr = TBAABaseNodes.find(BaseNode);
7776 if (Itr != TBAABaseNodes.end())
7779 auto Result = verifyTBAABaseNodeImpl(
I, BaseNode, IsNewFormat);
7780 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7782 assert(InsertResult.second &&
"We just checked!");
7786TBAAVerifier::TBAABaseNodeSummary
7787TBAAVerifier::verifyTBAABaseNodeImpl(
const Instruction *
I,
7788 const MDNode *BaseNode,
bool IsNewFormat) {
7789 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {
true, ~0
u};
7793 return isValidScalarTBAANode(BaseNode)
7794 ? TBAAVerifier::TBAABaseNodeSummary({
false, 0})
7800 CheckFailed(
"Access tag nodes must have the number of operands that is a "
7801 "multiple of 3!", BaseNode);
7806 CheckFailed(
"Struct tag nodes must have an odd number of operands!",
7816 if (!TypeSizeNode) {
7817 CheckFailed(
"Type size nodes must be constants!",
I, BaseNode);
7824 CheckFailed(
"Struct tag nodes have a string as their first operand",
7831 std::optional<APInt> PrevOffset;
7836 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7837 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7838 for (
unsigned Idx = FirstFieldOpNo; Idx < BaseNode->
getNumOperands();
7839 Idx += NumOpsPerField) {
7840 const MDOperand &FieldTy = BaseNode->
getOperand(Idx);
7841 const MDOperand &FieldOffset = BaseNode->
getOperand(Idx + 1);
7843 CheckFailed(
"Incorrect field entry in struct type node!",
I, BaseNode);
7848 auto *OffsetEntryCI =
7850 if (!OffsetEntryCI) {
7851 CheckFailed(
"Offset entries must be constants!",
I, BaseNode);
7857 BitWidth = OffsetEntryCI->getBitWidth();
7859 if (OffsetEntryCI->getBitWidth() !=
BitWidth) {
7861 "Bitwidth between the offsets and struct type entries must match",
I,
7873 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7876 CheckFailed(
"Offsets must be increasing!",
I, BaseNode);
7880 PrevOffset = OffsetEntryCI->getValue();
7885 if (!MemberSizeNode) {
7886 CheckFailed(
"Member size entries must be constants!",
I, BaseNode);
7893 return Failed ? InvalidNode
7894 : TBAAVerifier::TBAABaseNodeSummary(
false,
BitWidth);
7916 return Parent && Visited.
insert(Parent).second &&
7920bool TBAAVerifier::isValidScalarTBAANode(
const MDNode *MD) {
7921 auto ResultIt = TBAAScalarNodes.find(MD);
7922 if (ResultIt != TBAAScalarNodes.end())
7923 return ResultIt->second;
7925 SmallPtrSet<const MDNode *, 4> Visited;
7927 auto InsertResult = TBAAScalarNodes.insert({MD,
Result});
7929 assert(InsertResult.second &&
"Just checked!");
7938MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(
const Instruction *
I,
7939 const MDNode *BaseNode,
7950 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7951 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7952 for (
unsigned Idx = FirstFieldOpNo; Idx < BaseNode->
getNumOperands();
7953 Idx += NumOpsPerField) {
7954 auto *OffsetEntryCI =
7956 if (OffsetEntryCI->getValue().ugt(
Offset)) {
7957 if (Idx == FirstFieldOpNo) {
7958 CheckFailed(
"Could not find TBAA parent in struct type node",
I,
7963 unsigned PrevIdx = Idx - NumOpsPerField;
7964 auto *PrevOffsetEntryCI =
7966 Offset -= PrevOffsetEntryCI->getValue();
7974 Offset -= LastOffsetEntryCI->getValue();
7979 if (!
Type ||
Type->getNumOperands() < 3)
7995 "This instruction shall not have a TBAA access tag!",
I);
7997 bool IsStructPathTBAA =
8001 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
8011 "Access tag metadata must have either 4 or 5 operands",
I, MD);
8014 "Struct tag metadata must have either 3 or 4 operands",
I, MD);
8021 CheckTBAA(AccessSizeNode,
"Access size field must be a constant",
I, MD);
8025 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
8030 "Immutability tag on struct tag metadata must be a constant",
I,
8033 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
8034 "Immutability part of the struct tag metadata must be either 0 or 1",
I,
8039 "Malformed struct tag metadata: base and access-type "
8040 "should be non-null and point to Metadata nodes",
8041 I, MD, BaseNode, AccessType);
8044 CheckTBAA(isValidScalarTBAANode(AccessType),
8045 "Access type node must be a valid scalar type",
I, MD,
8050 CheckTBAA(OffsetCI,
"Offset must be constant integer",
I, MD);
8053 bool SeenAccessTypeInPath =
false;
8059 getFieldNodeFromTBAABaseNode(
I, BaseNode,
Offset, IsNewFormat)) {
8060 if (!StructPath.
insert(BaseNode).second) {
8061 CheckFailed(
"Cycle detected in struct path",
I, MD);
8066 unsigned BaseNodeBitWidth;
8067 std::tie(
Invalid, BaseNodeBitWidth) =
8068 verifyTBAABaseNode(
I, BaseNode, IsNewFormat);
8075 SeenAccessTypeInPath |= BaseNode == AccessType;
8077 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
8082 (BaseNodeBitWidth == 0 &&
Offset == 0) ||
8083 (IsNewFormat && BaseNodeBitWidth == ~0u),
8084 "Access bit-width not the same as description bit-width",
I, MD,
8085 BaseNodeBitWidth,
Offset.getBitWidth());
8087 if (IsNewFormat && SeenAccessTypeInPath)
8091 CheckTBAA(SeenAccessTypeInPath,
"Did not see access type in access path!",
I,
8096char VerifierLegacyPass::ID = 0;
8097INITIALIZE_PASS(VerifierLegacyPass,
"verify",
"Module Verifier",
false,
false)
8100 return new VerifierLegacyPass(FatalErrors);
8118 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
8126 if (res.IRBroken && FatalErrors)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU address space definition.
ArrayRef< TableEntry > TableRef
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file declares the LLVM IR specialization of the GenericConvergenceVerifier template.
static DISubprogram * getSubprogram(bool IsDistinct, Ts &&...Args)
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
static bool runOnFunction(Function &F, bool PostInlining)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
Machine Check Debug Module
This file implements a map that provides insertion order iteration.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static unsigned getNumElements(Type *Ty)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
verify safepoint Safepoint IR Verifier
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool IsScalarTBAANodeImpl(const MDNode *MD, SmallPtrSetImpl< const MDNode * > &Visited)
static bool isType(const Metadata *MD)
static Instruction * getSuccPad(Instruction *Terminator)
static bool isMDTuple(const Metadata *MD)
static bool isNewFormatTBAATypeNode(llvm::MDNode *Type)
#define CheckDI(C,...)
We know that a debug info condition should be true, if not print an error message.
static void forEachUser(const Value *User, SmallPtrSet< const Value *, 32 > &Visited, llvm::function_ref< bool(const Value *)> Callback)
static bool isDINode(const Metadata *MD)
static bool isScope(const Metadata *MD)
static cl::opt< bool > VerifyNoAliasScopeDomination("verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " "scopes are not dominating"))
static bool isTypeCongruent(Type *L, Type *R)
Two types are "congruent" if they are identical, or if they are both pointer types with different poi...
static bool isConstantIntMetadataOperand(const Metadata *MD)
static bool IsRootTBAANode(const MDNode *MD)
static Value * getParentPad(Value *EHPad)
static bool hasConflictingReferenceFlags(unsigned Flags)
Detect mutually exclusive flags.
static AttrBuilder getParameterABIAttributes(LLVMContext &C, unsigned I, AttributeList Attrs)
static const char PassName[]
bool isFiniteNonZero() const
const fltSemantics & getSemantics() const
Class for arbitrary precision integers.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isMinValue() const
Determine if this is the smallest unsigned value.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
int64_t getSExtValue() const
Get sign extended value.
bool isMaxValue() const
Determine if this is the largest unsigned value.
This class represents a conversion between pointers from one address space to another.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
const Value * getArraySize() const
Get the number of elements allocated.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
void setPreservesAll()
Set by analyses that do not transform their input at all.
LLVM_ABI bool hasInRegAttr() const
Return true if this argument has the inreg attribute.
bool empty() const
empty - Check if the array is empty.
static bool isFPOperation(BinOp Op)
BinOp getOperation() const
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
bool contains(Attribute::AttrKind A) const
Return true if the builder has the specified attribute.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI const ConstantRange & getValueAsConstantRange() const
Return the attribute's value as a ConstantRange.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Instruction & front() const
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a no-op cast from one type to another.
static LLVM_ABI BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool isInlineAsm() const
Check if this call is an inline asm statement.
bool hasInAllocaArgument() const
Determine if there are is an inalloca argument.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool doesNotAccessMemory(unsigned OpNo) const
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Get the attribute of a given kind from a given arg.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Type * getParamElementType(unsigned ArgNo) const
Extract the elementtype type for a parameter.
Value * getArgOperand(unsigned i) const
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
bool doesNotReturn() const
Determine if the call cannot return.
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
bool isMustTailCall() const
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
Value * getParentPad() const
BasicBlock * getUnwindDest() const
handler_range handlers()
iteration adapter for range-for loops.
BasicBlock * getUnwindDest() const
bool isFPPredicate() const
bool isIntPredicate() const
static bool isIntPredicate(Predicate P)
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
Constant * getPointer() const
The pointer that is signed in this ptrauth signed pointer.
ConstantInt * getKey() const
The Key ID, an i32 constant.
Constant * getDeactivationSymbol() const
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
static LLVM_ABI bool isOrderedRanges(ArrayRef< ConstantRange > RangesRef)
This class represents a range of values.
const APInt & getLower() const
Return the lower value for this range.
const APInt & getUpper() const
Return the upper value for this range.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DbgVariableFragmentInfo FragmentInfo
@ FixedPointBinary
Scale factor 2^Factor.
@ FixedPointDecimal
Scale factor 10^Factor.
@ FixedPointRational
Arbitrary rational scale factor.
DIGlobalVariable * getVariable() const
DIExpression * getExpression() const
LLVM_ABI DISubprogram * getSubprogram() const
Get the subprogram for this scope.
DILocalScope * getScope() const
Get the local scope for this variable.
Metadata * getRawScope() const
Base class for scope-like contexts.
Subprogram description. Uses SubclassData1.
static const DIScope * getRawRetainedNodeScope(const MDNode *N)
Base class for template parameters.
Base class for variables.
Metadata * getRawType() const
Metadata * getRawScope() const
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
MDNode * getRawLabel() const
DILabel * getLabel() const
Base class for non-instruction debug metadata records that have positions within IR.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
LLVM_ABI const BasicBlock * getParent() const
LLVM_ABI Function * getFunction()
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
DILocalVariable * getVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
bool isDbgDeclare() const
Metadata * getRawAddress() const
@ End
Marks the end of the concrete types.
@ Any
To indicate all LocationTypes in searches.
DIExpression * getAddressExpression() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
This instruction compares its operands according to the predicate given to the constructor.
This class represents an extension of floating point types.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Value * getParentPad() const
Convenience accessors.
FunctionPass class - This class is used to implement most global optimizations.
Type * getReturnType() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
DISubprogram * getSubprogram() const
Get the attached subprogram.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
bool hasPersonalityFn() const
Check whether this function has a personality function.
const Function & getFunction() const
const std::string & getGC() const
Type * getReturnType() const
Returns the type of the ret val.
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
void visit(const BlockT &BB)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static bool isValidLinkage(LinkageTypes L)
const Constant * getAliasee() const
LLVM_ABI const Function * getResolverFunction() const
static bool isValidLinkage(LinkageTypes L)
const Constant * getResolver() const
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
bool hasExternalLinkage() const
bool isImplicitDSOLocal() const
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
bool hasValidDeclarationLinkage() const
LinkageTypes getLinkage() const
bool hasDefaultVisibility() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool hasExternalWeakLinkage() const
bool hasDLLImportStorageClass() const
bool hasDLLExportStorageClass() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
LLVM_ABI bool isInterposable() const
Return true if this global's definition can be substituted with an arbitrary definition at link time ...
bool hasCommonLinkage() const
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
bool hasAvailableExternallyLinkage() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasInitializer() const
Definitions have initializers, declarations don't.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
BasicBlock * getDestination(unsigned i)
Return the specified destination.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
unsigned getNumSuccessors() const
This instruction inserts a single (scalar) element into a VectorType value.
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Value * getAggregateOperand()
ArrayRef< unsigned > getIndices() const
Base class for instruction visitors.
void visit(Iterator Start, Iterator End)
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
This class represents a cast from an integer to a pointer.
static LLVM_ABI bool mayLowerToFunctionCall(Intrinsic::ID IID)
Check if the intrinsic might lower into a regular function call in the course of IR transformations.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
const MDOperand & getOperand(unsigned I) const
ArrayRef< MDOperand > operands() const
unsigned getNumOperands() const
Return number of MDNode operands.
bool isResolved() const
Check if node is fully resolved.
LLVMContext & getContext() const
bool equalsStr(StringRef Str) const
LLVM_ABI StringRef getString() const
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
A Module instance is used to store all the information related to an LLVM module.
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
LLVM_ABI unsigned getNumOperands() const
iterator_range< op_iterator > operands()
op_range incoming_values()
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
This class represents a cast from a pointer to an integer.
Value * getValue() const
Convenience accessor.
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
This instruction constructs a fixed permutation of two input vectors.
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
static constexpr size_t npos
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr bool empty() const
empty - Check if the string is empty.
unsigned getNumElements() const
Random access to the elements.
LLVM_ABI Type * getTypeAtIndex(const Value *V) const
Given an index value into the type, return the type of the element.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Returns true if this struct contains a scalable vector.
Verify that the TBAA Metadatas are valid.
LLVM_ABI bool visitTBAAMetadata(const Instruction *I, const MDNode *MD)
Visit an instruction, or a TBAA node itself as part of a metadata, and return true if it is valid,...
Triple - Helper class for working with autoconf configuration names.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool containsNonGlobalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a global...
bool isArrayTy() const
True if this is an instance of ArrayType.
LLVM_ABI bool containsNonLocalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a local.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isLabelTy() const
Return true if this is 'label'.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isTokenLikeTy() const
Returns true if this is 'token' or a token-like target type.s.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
bool isMetadataTy() const
Return true if this is 'metadata'.
This class represents a cast unsigned integer to floating point.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM Value Representation.
iterator_range< user_iterator > materialized_users()
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {}) const
Strip off pointer casts and inbounds GEPs.
iterator_range< user_iterator > users()
bool materialized_use_empty() const
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Check a module for errors, and report separate error states for IR and debug info errors.
LLVM_ABI Result run(Module &M, ModuleAnalysisManager &)
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
This class represents zero extension of integer types.
constexpr bool isNonZero() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
This class implements an extremely fast bulk output stream that can only output to a stream.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ PRIVATE_ADDRESS
Address space for private memory.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
bool isFlatGlobalAddrSpace(unsigned AS)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI MatchIntrinsicTypesResult matchIntrinsicSignature(FunctionType *FTy, ArrayRef< IITDescriptor > &Infos, SmallVectorImpl< Type * > &ArgTys)
Match the specified function type with the type constraints specified by the .td file.
LLVM_ABI void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
MatchIntrinsicTypesResult
@ MatchIntrinsicTypes_NoMatchRet
@ MatchIntrinsicTypes_NoMatchArg
LLVM_ABI bool hasConstrainedFPRoundingModeOperand(ID QID)
Returns true if the intrinsic ID is for one of the "ConstrainedFloating-Point Intrinsics" that take r...
LLVM_ABI StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
static const int NoAliasScopeDeclScopeArg
LLVM_ABI bool matchIntrinsicVarArg(bool isVarArg, ArrayRef< IITDescriptor > &Infos)
Verify if the intrinsic has variable arguments.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
@ System
Synchronized with respect to all concurrently executing threads.
LLVM_ABI std::optional< VFInfo > tryDemangleForVFABI(StringRef MangledName, const FunctionType *FTy)
Function to construct a VFInfo out of a mangled names in the following format:
@ CE
Windows NT (Windows on ARM)
LLVM_ABI AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
initializer< Ty > init(const Ty &Val)
Scope
Defines the scope in which this symbol should be visible: Default – Visible in the public interface o...
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract_or_null(Y &&MD)
Extract a Value from Metadata, if any, allowing null.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract(Y &&MD)
Extract a Value from Metadata, if any.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool canInstructionHaveMMRAs(const Instruction &I)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
LLVM_ABI unsigned getBranchWeightOffset(const MDNode *ProfileData)
Return the offset to the first branch weight data.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
testing::Matcher< const detail::ErrorHolder & > Failed()
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI DenseMap< BasicBlock *, ColorVector > colorEHFunclets(Function &F)
If an EH funclet personality is in use (see isFuncletEHPersonality), this will recompute which blocks...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
bool isa_and_nonnull(const Y &Val)
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
auto dyn_cast_or_null(const Y &Val)
GenericConvergenceVerifier< SSAContext > ConvergenceVerifier
LLVM_ABI void initializeVerifierLegacyPassPass(PassRegistry &)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
FunctionAddr VTableAddr Count
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isValueProfileMD(const MDNode *ProfileData)
Checks if an MDNode contains value profiling Metadata.
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI FunctionPass * createVerifierPass(bool FatalErrors=true)
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
TinyPtrVector< BasicBlock * > ColorVector
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
DenormalMode parseDenormalFPAttribute(StringRef Str)
Returns the denormal mode to use for inputs and outputs.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
LLVM_ABI std::unique_ptr< GCStrategy > getGCStrategy(const StringRef Name)
Lookup the GCStrategy object associated with the given gc name.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
bool isHexDigit(char C)
Checks if character C is a hexadecimal numeric character.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
constexpr bool isCallableCC(CallingConv::ID CC)
LLVM_ABI bool verifyModule(const Module &M, raw_ostream *OS=nullptr, bool *BrokenDebugInfo=nullptr)
Check a module for errors.
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI const char * SyntheticFunctionEntryCount
static LLVM_ABI const char * UnknownBranchWeightsMarker
static LLVM_ABI const char * ValueProfile
static LLVM_ABI const char * FunctionEntryCount
static LLVM_ABI const char * BranchWeights
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
void DebugInfoCheckFailed(const Twine &Message)
A debug info check failed.
VerifierSupport(raw_ostream *OS, const Module &M)
bool Broken
Track the brokenness of the module while recursively visiting.
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A check failed (with values to print).
bool BrokenDebugInfo
Broken debug info can be "recovered" from by stripping the debug info.
bool TreatBrokenDebugInfoAsError
Whether to treat broken debug info as an error.
void CheckFailed(const Twine &Message)
A check failed, so printout out the condition and the message.
void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A debug info check failed (with values to print).