LLVM 20.0.0git
MachineIRBuilder.cpp
Go to the documentation of this file.
1//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.cpp - MIBuilder--*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the MachineIRBuidler class.
10//===----------------------------------------------------------------------===//
21
22using namespace llvm;
23
25 State.MF = &MF;
26 State.MBB = nullptr;
27 State.MRI = &MF.getRegInfo();
28 State.TII = MF.getSubtarget().getInstrInfo();
29 State.DL = DebugLoc();
30 State.PCSections = nullptr;
31 State.MMRA = nullptr;
33 State.Observer = nullptr;
34}
35
36//------------------------------------------------------------------------------
37// Build instruction variants.
38//------------------------------------------------------------------------------
39
42 getTII().get(Opcode));
43}
44
46 getMBB().insert(getInsertPt(), MIB);
47 recordInsertion(MIB);
48 return MIB;
49}
50
53 const MDNode *Expr) {
54 assert(isa<DILocalVariable>(Variable) && "not a variable");
55 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
56 assert(
57 cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
58 "Expected inlined-at fields to agree");
59 return insertInstr(BuildMI(getMF(), getDL(),
60 getTII().get(TargetOpcode::DBG_VALUE),
61 /*IsIndirect*/ false, Reg, Variable, Expr));
62}
63
66 const MDNode *Expr) {
67 assert(isa<DILocalVariable>(Variable) && "not a variable");
68 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
69 assert(
70 cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
71 "Expected inlined-at fields to agree");
72 return insertInstr(BuildMI(getMF(), getDL(),
73 getTII().get(TargetOpcode::DBG_VALUE),
74 /*IsIndirect*/ true, Reg, Variable, Expr));
75}
76
78 const MDNode *Variable,
79 const MDNode *Expr) {
80 assert(isa<DILocalVariable>(Variable) && "not a variable");
81 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
82 assert(
83 cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
84 "Expected inlined-at fields to agree");
85 return insertInstr(buildInstrNoInsert(TargetOpcode::DBG_VALUE)
86 .addFrameIndex(FI)
87 .addImm(0)
88 .addMetadata(Variable)
89 .addMetadata(Expr));
90}
91
93 const MDNode *Variable,
94 const MDNode *Expr) {
95 assert(isa<DILocalVariable>(Variable) && "not a variable");
96 assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
97 assert(
98 cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
99 "Expected inlined-at fields to agree");
100 auto MIB = buildInstrNoInsert(TargetOpcode::DBG_VALUE);
101
102 auto *NumericConstant = [&] () -> const Constant* {
103 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
104 if (CE->getOpcode() == Instruction::IntToPtr)
105 return CE->getOperand(0);
106 return &C;
107 }();
108
109 if (auto *CI = dyn_cast<ConstantInt>(NumericConstant)) {
110 if (CI->getBitWidth() > 64)
111 MIB.addCImm(CI);
112 else
113 MIB.addImm(CI->getZExtValue());
114 } else if (auto *CFP = dyn_cast<ConstantFP>(NumericConstant)) {
115 MIB.addFPImm(CFP);
116 } else if (isa<ConstantPointerNull>(NumericConstant)) {
117 MIB.addImm(0);
118 } else {
119 // Insert $noreg if we didn't find a usable constant and had to drop it.
120 MIB.addReg(Register());
121 }
122
123 MIB.addImm(0).addMetadata(Variable).addMetadata(Expr);
124 return insertInstr(MIB);
125}
126
128 assert(isa<DILabel>(Label) && "not a label");
129 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(State.DL) &&
130 "Expected inlined-at fields to agree");
131 auto MIB = buildInstr(TargetOpcode::DBG_LABEL);
132
133 return MIB.addMetadata(Label);
134}
135
137 const SrcOp &Size,
138 Align Alignment) {
139 assert(Res.getLLTTy(*getMRI()).isPointer() && "expected ptr dst type");
140 auto MIB = buildInstr(TargetOpcode::G_DYN_STACKALLOC);
141 Res.addDefToMIB(*getMRI(), MIB);
142 Size.addSrcToMIB(MIB);
143 MIB.addImm(Alignment.value());
144 return MIB;
145}
146
148 int Idx) {
149 assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
150 auto MIB = buildInstr(TargetOpcode::G_FRAME_INDEX);
151 Res.addDefToMIB(*getMRI(), MIB);
152 MIB.addFrameIndex(Idx);
153 return MIB;
154}
155
157 const GlobalValue *GV) {
158 assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
159 assert(Res.getLLTTy(*getMRI()).getAddressSpace() ==
160 GV->getType()->getAddressSpace() &&
161 "address space mismatch");
162
163 auto MIB = buildInstr(TargetOpcode::G_GLOBAL_VALUE);
164 Res.addDefToMIB(*getMRI(), MIB);
165 MIB.addGlobalAddress(GV);
166 return MIB;
167}
168
170 unsigned Idx) {
171 assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
172 auto MIB = buildInstr(TargetOpcode::G_CONSTANT_POOL);
173 Res.addDefToMIB(*getMRI(), MIB);
174 MIB.addConstantPoolIndex(Idx);
175 return MIB;
176}
177
179 unsigned JTI) {
180 return buildInstr(TargetOpcode::G_JUMP_TABLE, {PtrTy}, {})
181 .addJumpTableIndex(JTI);
182}
183
184void MachineIRBuilder::validateUnaryOp(const LLT Res, const LLT Op0) {
185 assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
186 assert((Res == Op0) && "type mismatch");
187}
188
190 const LLT Op1) {
191 assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
192 assert((Res == Op0 && Res == Op1) && "type mismatch");
193}
194
195void MachineIRBuilder::validateShiftOp(const LLT Res, const LLT Op0,
196 const LLT Op1) {
197 assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
198 assert((Res == Op0) && "type mismatch");
199}
200
203 const SrcOp &Op1, std::optional<unsigned> Flags) {
204 assert(Res.getLLTTy(*getMRI()).isPointerOrPointerVector() &&
205 Res.getLLTTy(*getMRI()) == Op0.getLLTTy(*getMRI()) && "type mismatch");
206 assert(Op1.getLLTTy(*getMRI()).getScalarType().isScalar() && "invalid offset type");
207
208 return buildInstr(TargetOpcode::G_PTR_ADD, {Res}, {Op0, Op1}, Flags);
209}
210
211std::optional<MachineInstrBuilder>
213 const LLT ValueTy, uint64_t Value) {
214 assert(Res == 0 && "Res is a result argument");
215 assert(ValueTy.isScalar() && "invalid offset type");
216
217 if (Value == 0) {
218 Res = Op0;
219 return std::nullopt;
220 }
221
223 auto Cst = buildConstant(ValueTy, Value);
224 return buildPtrAdd(Res, Op0, Cst.getReg(0));
225}
226
228 const SrcOp &Op0,
229 uint32_t NumBits) {
230 LLT PtrTy = Res.getLLTTy(*getMRI());
231 LLT MaskTy = LLT::scalar(PtrTy.getSizeInBits());
232 Register MaskReg = getMRI()->createGenericVirtualRegister(MaskTy);
233 buildConstant(MaskReg, maskTrailingZeros<uint64_t>(NumBits));
234 return buildPtrMask(Res, Op0, MaskReg);
235}
236
239 const SrcOp &Op0) {
240 LLT ResTy = Res.getLLTTy(*getMRI());
241 LLT Op0Ty = Op0.getLLTTy(*getMRI());
242
243 assert(ResTy.isVector() && "Res non vector type");
244
246 if (Op0Ty.isVector()) {
247 assert((ResTy.getElementType() == Op0Ty.getElementType()) &&
248 "Different vector element types");
249 assert((ResTy.getNumElements() > Op0Ty.getNumElements()) &&
250 "Op0 has more elements");
251 auto Unmerge = buildUnmerge(Op0Ty.getElementType(), Op0);
252
253 for (auto Op : Unmerge.getInstr()->defs())
254 Regs.push_back(Op.getReg());
255 } else {
256 assert((ResTy.getSizeInBits() > Op0Ty.getSizeInBits()) &&
257 "Op0 has more size");
258 Regs.push_back(Op0.getReg());
259 }
260 Register Undef =
261 buildUndef(Op0Ty.isVector() ? Op0Ty.getElementType() : Op0Ty).getReg(0);
262 unsigned NumberOfPadElts = ResTy.getNumElements() - Regs.size();
263 for (unsigned i = 0; i < NumberOfPadElts; ++i)
264 Regs.push_back(Undef);
265 return buildMergeLikeInstr(Res, Regs);
266}
267
270 const SrcOp &Op0) {
271 LLT ResTy = Res.getLLTTy(*getMRI());
272 LLT Op0Ty = Op0.getLLTTy(*getMRI());
273
274 assert(Op0Ty.isVector() && "Non vector type");
275 assert(((ResTy.isScalar() && (ResTy == Op0Ty.getElementType())) ||
276 (ResTy.isVector() &&
277 (ResTy.getElementType() == Op0Ty.getElementType()))) &&
278 "Different vector element types");
279 assert(
280 (ResTy.isScalar() || (ResTy.getNumElements() < Op0Ty.getNumElements())) &&
281 "Op0 has fewer elements");
282
283 auto Unmerge = buildUnmerge(Op0Ty.getElementType(), Op0);
284 if (ResTy.isScalar())
285 return buildCopy(Res, Unmerge.getReg(0));
287 for (unsigned i = 0; i < ResTy.getNumElements(); ++i)
288 Regs.push_back(Unmerge.getReg(i));
289 return buildMergeLikeInstr(Res, Regs);
290}
291
293 return buildInstr(TargetOpcode::G_BR).addMBB(&Dest);
294}
295
297 assert(getMRI()->getType(Tgt).isPointer() && "invalid branch destination");
298 return buildInstr(TargetOpcode::G_BRINDIRECT).addUse(Tgt);
299}
300
302 unsigned JTI,
303 Register IndexReg) {
304 assert(getMRI()->getType(TablePtr).isPointer() &&
305 "Table reg must be a pointer");
306 return buildInstr(TargetOpcode::G_BRJT)
307 .addUse(TablePtr)
309 .addUse(IndexReg);
310}
311
313 const SrcOp &Op) {
314 return buildInstr(TargetOpcode::COPY, Res, Op);
315}
316
318 const ConstantInt &Val) {
319 LLT Ty = Res.getLLTTy(*getMRI());
320 LLT EltTy = Ty.getScalarType();
321 assert(EltTy.getScalarSizeInBits() == Val.getBitWidth() &&
322 "creating constant with the wrong size");
323
324 assert(!Ty.isScalableVector() &&
325 "unexpected scalable vector in buildConstant");
326
327 if (Ty.isFixedVector()) {
328 auto Const = buildInstr(TargetOpcode::G_CONSTANT)
329 .addDef(getMRI()->createGenericVirtualRegister(EltTy))
330 .addCImm(&Val);
331 return buildSplatBuildVector(Res, Const);
332 }
333
334 auto Const = buildInstr(TargetOpcode::G_CONSTANT);
335 Const->setDebugLoc(DebugLoc());
336 Res.addDefToMIB(*getMRI(), Const);
337 Const.addCImm(&Val);
338 return Const;
339}
340
342 int64_t Val) {
345 ConstantInt *CI = ConstantInt::get(IntN, Val, true);
346 return buildConstant(Res, *CI);
347}
348
350 const ConstantFP &Val) {
351 LLT Ty = Res.getLLTTy(*getMRI());
352 LLT EltTy = Ty.getScalarType();
353
355 == EltTy.getSizeInBits() &&
356 "creating fconstant with the wrong size");
357
358 assert(!Ty.isPointer() && "invalid operand type");
359
360 assert(!Ty.isScalableVector() &&
361 "unexpected scalable vector in buildFConstant");
362
363 if (Ty.isFixedVector()) {
364 auto Const = buildInstr(TargetOpcode::G_FCONSTANT)
365 .addDef(getMRI()->createGenericVirtualRegister(EltTy))
366 .addFPImm(&Val);
367
368 return buildSplatBuildVector(Res, Const);
369 }
370
371 auto Const = buildInstr(TargetOpcode::G_FCONSTANT);
372 Const->setDebugLoc(DebugLoc());
373 Res.addDefToMIB(*getMRI(), Const);
374 Const.addFPImm(&Val);
375 return Const;
376}
377
379 const APInt &Val) {
380 ConstantInt *CI = ConstantInt::get(getMF().getFunction().getContext(), Val);
381 return buildConstant(Res, *CI);
382}
383
385 double Val) {
386 LLT DstTy = Res.getLLTTy(*getMRI());
387 auto &Ctx = getMF().getFunction().getContext();
388 auto *CFP =
389 ConstantFP::get(Ctx, getAPFloatFromSize(Val, DstTy.getScalarSizeInBits()));
390 return buildFConstant(Res, *CFP);
391}
392
394 const APFloat &Val) {
395 auto &Ctx = getMF().getFunction().getContext();
396 auto *CFP = ConstantFP::get(Ctx, Val);
397 return buildFConstant(Res, *CFP);
398}
399
402 const ConstantPtrAuth *CPA,
403 Register Addr, Register AddrDisc) {
404 auto MIB = buildInstr(TargetOpcode::G_PTRAUTH_GLOBAL_VALUE);
405 Res.addDefToMIB(*getMRI(), MIB);
406 MIB.addUse(Addr);
407 MIB.addImm(CPA->getKey()->getZExtValue());
408 MIB.addUse(AddrDisc);
409 MIB.addImm(CPA->getDiscriminator()->getZExtValue());
410 return MIB;
411}
412
414 MachineBasicBlock &Dest) {
415 assert(Tst.getLLTTy(*getMRI()).isScalar() && "invalid operand type");
416
417 auto MIB = buildInstr(TargetOpcode::G_BRCOND);
418 Tst.addSrcToMIB(MIB);
419 MIB.addMBB(&Dest);
420 return MIB;
421}
422
425 MachinePointerInfo PtrInfo, Align Alignment,
427 const AAMDNodes &AAInfo) {
428 MMOFlags |= MachineMemOperand::MOLoad;
429 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
430
431 LLT Ty = Dst.getLLTTy(*getMRI());
432 MachineMemOperand *MMO =
433 getMF().getMachineMemOperand(PtrInfo, MMOFlags, Ty, Alignment, AAInfo);
434 return buildLoad(Dst, Addr, *MMO);
435}
436
438 const DstOp &Res,
439 const SrcOp &Addr,
440 MachineMemOperand &MMO) {
441 assert(Res.getLLTTy(*getMRI()).isValid() && "invalid operand type");
442 assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
443
444 auto MIB = buildInstr(Opcode);
445 Res.addDefToMIB(*getMRI(), MIB);
446 Addr.addSrcToMIB(MIB);
447 MIB.addMemOperand(&MMO);
448 return MIB;
449}
450
452 const DstOp &Dst, const SrcOp &BasePtr,
453 MachineMemOperand &BaseMMO, int64_t Offset) {
454 LLT LoadTy = Dst.getLLTTy(*getMRI());
455 MachineMemOperand *OffsetMMO =
456 getMF().getMachineMemOperand(&BaseMMO, Offset, LoadTy);
457
458 if (Offset == 0) // This may be a size or type changing load.
459 return buildLoad(Dst, BasePtr, *OffsetMMO);
460
461 LLT PtrTy = BasePtr.getLLTTy(*getMRI());
462 LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
463 auto ConstOffset = buildConstant(OffsetTy, Offset);
464 auto Ptr = buildPtrAdd(PtrTy, BasePtr, ConstOffset);
465 return buildLoad(Dst, Ptr, *OffsetMMO);
466}
467
469 const SrcOp &Addr,
470 MachineMemOperand &MMO) {
471 assert(Val.getLLTTy(*getMRI()).isValid() && "invalid operand type");
472 assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
473
474 auto MIB = buildInstr(TargetOpcode::G_STORE);
475 Val.addSrcToMIB(MIB);
476 Addr.addSrcToMIB(MIB);
477 MIB.addMemOperand(&MMO);
478 return MIB;
479}
480
483 MachinePointerInfo PtrInfo, Align Alignment,
485 const AAMDNodes &AAInfo) {
486 MMOFlags |= MachineMemOperand::MOStore;
487 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
488
489 LLT Ty = Val.getLLTTy(*getMRI());
490 MachineMemOperand *MMO =
491 getMF().getMachineMemOperand(PtrInfo, MMOFlags, Ty, Alignment, AAInfo);
492 return buildStore(Val, Addr, *MMO);
493}
494
496 const SrcOp &Op) {
497 return buildInstr(TargetOpcode::G_ANYEXT, Res, Op);
498}
499
501 const SrcOp &Op) {
502 return buildInstr(TargetOpcode::G_SEXT, Res, Op);
503}
504
506 const SrcOp &Op,
507 std::optional<unsigned> Flags) {
508 return buildInstr(TargetOpcode::G_ZEXT, Res, Op, Flags);
509}
510
511unsigned MachineIRBuilder::getBoolExtOp(bool IsVec, bool IsFP) const {
512 const auto *TLI = getMF().getSubtarget().getTargetLowering();
513 switch (TLI->getBooleanContents(IsVec, IsFP)) {
515 return TargetOpcode::G_SEXT;
517 return TargetOpcode::G_ZEXT;
518 default:
519 return TargetOpcode::G_ANYEXT;
520 }
521}
522
524 const SrcOp &Op,
525 bool IsFP) {
526 unsigned ExtOp = getBoolExtOp(getMRI()->getType(Op.getReg()).isVector(), IsFP);
527 return buildInstr(ExtOp, Res, Op);
528}
529
531 const SrcOp &Op,
532 bool IsVector,
533 bool IsFP) {
534 const auto *TLI = getMF().getSubtarget().getTargetLowering();
535 switch (TLI->getBooleanContents(IsVector, IsFP)) {
537 return buildSExtInReg(Res, Op, 1);
539 return buildZExtInReg(Res, Op, 1);
541 return buildCopy(Res, Op);
542 }
543
544 llvm_unreachable("unexpected BooleanContent");
545}
546
548 const DstOp &Res,
549 const SrcOp &Op) {
550 assert((TargetOpcode::G_ANYEXT == ExtOpc || TargetOpcode::G_ZEXT == ExtOpc ||
551 TargetOpcode::G_SEXT == ExtOpc) &&
552 "Expecting Extending Opc");
553 assert(Res.getLLTTy(*getMRI()).isScalar() ||
554 Res.getLLTTy(*getMRI()).isVector());
555 assert(Res.getLLTTy(*getMRI()).isScalar() ==
556 Op.getLLTTy(*getMRI()).isScalar());
557
558 unsigned Opcode = TargetOpcode::COPY;
559 if (Res.getLLTTy(*getMRI()).getSizeInBits() >
560 Op.getLLTTy(*getMRI()).getSizeInBits())
561 Opcode = ExtOpc;
562 else if (Res.getLLTTy(*getMRI()).getSizeInBits() <
563 Op.getLLTTy(*getMRI()).getSizeInBits())
564 Opcode = TargetOpcode::G_TRUNC;
565 else
566 assert(Res.getLLTTy(*getMRI()) == Op.getLLTTy(*getMRI()));
567
568 return buildInstr(Opcode, Res, Op);
569}
570
572 const SrcOp &Op) {
573 return buildExtOrTrunc(TargetOpcode::G_SEXT, Res, Op);
574}
575
577 const SrcOp &Op) {
578 return buildExtOrTrunc(TargetOpcode::G_ZEXT, Res, Op);
579}
580
582 const SrcOp &Op) {
583 return buildExtOrTrunc(TargetOpcode::G_ANYEXT, Res, Op);
584}
585
587 const SrcOp &Op,
588 int64_t ImmOp) {
589 LLT ResTy = Res.getLLTTy(*getMRI());
590 auto Mask = buildConstant(
591 ResTy, APInt::getLowBitsSet(ResTy.getScalarSizeInBits(), ImmOp));
592 return buildAnd(Res, Op, Mask);
593}
594
596 const SrcOp &Src) {
597 LLT SrcTy = Src.getLLTTy(*getMRI());
598 LLT DstTy = Dst.getLLTTy(*getMRI());
599 if (SrcTy == DstTy)
600 return buildCopy(Dst, Src);
601
602 unsigned Opcode;
603 if (SrcTy.isPointer() && DstTy.isScalar())
604 Opcode = TargetOpcode::G_PTRTOINT;
605 else if (DstTy.isPointer() && SrcTy.isScalar())
606 Opcode = TargetOpcode::G_INTTOPTR;
607 else {
608 assert(!SrcTy.isPointer() && !DstTy.isPointer() && "n G_ADDRCAST yet");
609 Opcode = TargetOpcode::G_BITCAST;
610 }
611
612 return buildInstr(Opcode, Dst, Src);
613}
614
616 const SrcOp &Src,
617 uint64_t Index) {
618 LLT SrcTy = Src.getLLTTy(*getMRI());
619 LLT DstTy = Dst.getLLTTy(*getMRI());
620
621#ifndef NDEBUG
622 assert(SrcTy.isValid() && "invalid operand type");
623 assert(DstTy.isValid() && "invalid operand type");
624 assert(Index + DstTy.getSizeInBits() <= SrcTy.getSizeInBits() &&
625 "extracting off end of register");
626#endif
627
628 if (DstTy.getSizeInBits() == SrcTy.getSizeInBits()) {
629 assert(Index == 0 && "insertion past the end of a register");
630 return buildCast(Dst, Src);
631 }
632
633 auto Extract = buildInstr(TargetOpcode::G_EXTRACT);
634 Dst.addDefToMIB(*getMRI(), Extract);
635 Src.addSrcToMIB(Extract);
636 Extract.addImm(Index);
637 return Extract;
638}
639
641 return buildInstr(TargetOpcode::G_IMPLICIT_DEF, {Res}, {});
642}
643
645 ArrayRef<Register> Ops) {
646 // Unfortunately to convert from ArrayRef<LLT> to ArrayRef<SrcOp>,
647 // we need some temporary storage for the DstOp objects. Here we use a
648 // sufficiently large SmallVector to not go through the heap.
649 SmallVector<SrcOp, 8> TmpVec(Ops);
650 assert(TmpVec.size() > 1);
651 return buildInstr(TargetOpcode::G_MERGE_VALUES, Res, TmpVec);
652}
653
656 ArrayRef<Register> Ops) {
657 // Unfortunately to convert from ArrayRef<LLT> to ArrayRef<SrcOp>,
658 // we need some temporary storage for the DstOp objects. Here we use a
659 // sufficiently large SmallVector to not go through the heap.
660 SmallVector<SrcOp, 8> TmpVec(Ops);
661 assert(TmpVec.size() > 1);
662 return buildInstr(getOpcodeForMerge(Res, TmpVec), Res, TmpVec);
663}
664
667 std::initializer_list<SrcOp> Ops) {
668 assert(Ops.size() > 1);
669 return buildInstr(getOpcodeForMerge(Res, Ops), Res, Ops);
670}
671
672unsigned MachineIRBuilder::getOpcodeForMerge(const DstOp &DstOp,
673 ArrayRef<SrcOp> SrcOps) const {
674 if (DstOp.getLLTTy(*getMRI()).isVector()) {
675 if (SrcOps[0].getLLTTy(*getMRI()).isVector())
676 return TargetOpcode::G_CONCAT_VECTORS;
677 return TargetOpcode::G_BUILD_VECTOR;
678 }
679
680 return TargetOpcode::G_MERGE_VALUES;
681}
682
684 const SrcOp &Op) {
685 // Unfortunately to convert from ArrayRef<LLT> to ArrayRef<DstOp>,
686 // we need some temporary storage for the DstOp objects. Here we use a
687 // sufficiently large SmallVector to not go through the heap.
688 SmallVector<DstOp, 8> TmpVec(Res);
689 assert(TmpVec.size() > 1);
690 return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
691}
692
694 const SrcOp &Op) {
695 unsigned NumReg = Op.getLLTTy(*getMRI()).getSizeInBits() / Res.getSizeInBits();
696 SmallVector<DstOp, 8> TmpVec(NumReg, Res);
697 return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
698}
699
701 const SrcOp &Op) {
702 // Unfortunately to convert from ArrayRef<Register> to ArrayRef<DstOp>,
703 // we need some temporary storage for the DstOp objects. Here we use a
704 // sufficiently large SmallVector to not go through the heap.
705 SmallVector<DstOp, 8> TmpVec(Res);
706 assert(TmpVec.size() > 1);
707 return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
708}
709
711 ArrayRef<Register> Ops) {
712 // Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
713 // we need some temporary storage for the DstOp objects. Here we use a
714 // sufficiently large SmallVector to not go through the heap.
715 SmallVector<SrcOp, 8> TmpVec(Ops);
716 return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
717}
718
721 ArrayRef<APInt> Ops) {
722 SmallVector<SrcOp> TmpVec;
723 TmpVec.reserve(Ops.size());
724 LLT EltTy = Res.getLLTTy(*getMRI()).getElementType();
725 for (const auto &Op : Ops)
726 TmpVec.push_back(buildConstant(EltTy, Op));
727 return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
728}
729
731 const SrcOp &Src) {
733 return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
734}
735
738 ArrayRef<Register> Ops) {
739 // Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
740 // we need some temporary storage for the DstOp objects. Here we use a
741 // sufficiently large SmallVector to not go through the heap.
742 SmallVector<SrcOp, 8> TmpVec(Ops);
743 if (TmpVec[0].getLLTTy(*getMRI()).getSizeInBits() ==
744 Res.getLLTTy(*getMRI()).getElementType().getSizeInBits())
745 return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
746 return buildInstr(TargetOpcode::G_BUILD_VECTOR_TRUNC, Res, TmpVec);
747}
748
750 const SrcOp &Src) {
751 LLT DstTy = Res.getLLTTy(*getMRI());
752 assert(Src.getLLTTy(*getMRI()) == DstTy.getElementType() &&
753 "Expected Src to match Dst elt ty");
754 auto UndefVec = buildUndef(DstTy);
755 auto Zero = buildConstant(LLT::scalar(64), 0);
756 auto InsElt = buildInsertVectorElement(DstTy, UndefVec, Src, Zero);
757 SmallVector<int, 16> ZeroMask(DstTy.getNumElements());
758 return buildShuffleVector(DstTy, InsElt, UndefVec, ZeroMask);
759}
760
762 const SrcOp &Src) {
763 assert(Src.getLLTTy(*getMRI()) == Res.getLLTTy(*getMRI()).getElementType() &&
764 "Expected Src to match Dst elt ty");
765 return buildInstr(TargetOpcode::G_SPLAT_VECTOR, Res, Src);
766}
767
769 const SrcOp &Src1,
770 const SrcOp &Src2,
771 ArrayRef<int> Mask) {
772 LLT DstTy = Res.getLLTTy(*getMRI());
773 LLT Src1Ty = Src1.getLLTTy(*getMRI());
774 LLT Src2Ty = Src2.getLLTTy(*getMRI());
775 assert((size_t)(Src1Ty.getNumElements() + Src2Ty.getNumElements()) >=
776 Mask.size());
777 assert(DstTy.getElementType() == Src1Ty.getElementType() &&
778 DstTy.getElementType() == Src2Ty.getElementType());
779 (void)DstTy;
780 (void)Src1Ty;
781 (void)Src2Ty;
782 ArrayRef<int> MaskAlloc = getMF().allocateShuffleMask(Mask);
783 return buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {Res}, {Src1, Src2})
784 .addShuffleMask(MaskAlloc);
785}
786
789 // Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
790 // we need some temporary storage for the DstOp objects. Here we use a
791 // sufficiently large SmallVector to not go through the heap.
792 SmallVector<SrcOp, 8> TmpVec(Ops);
793 return buildInstr(TargetOpcode::G_CONCAT_VECTORS, Res, TmpVec);
794}
795
797 const SrcOp &Src,
798 const SrcOp &Op,
799 unsigned Index) {
800 assert(Index + Op.getLLTTy(*getMRI()).getSizeInBits() <=
801 Res.getLLTTy(*getMRI()).getSizeInBits() &&
802 "insertion past the end of a register");
803
804 if (Res.getLLTTy(*getMRI()).getSizeInBits() ==
805 Op.getLLTTy(*getMRI()).getSizeInBits()) {
806 return buildCast(Res, Op);
807 }
808
809 return buildInstr(TargetOpcode::G_INSERT, Res, {Src, Op, uint64_t(Index)});
810}
811
813 unsigned MinElts) {
814
817 ConstantInt *CI = ConstantInt::get(IntN, MinElts);
818 return buildVScale(Res, *CI);
819}
820
822 const ConstantInt &MinElts) {
823 auto VScale = buildInstr(TargetOpcode::G_VSCALE);
824 VScale->setDebugLoc(DebugLoc());
825 Res.addDefToMIB(*getMRI(), VScale);
826 VScale.addCImm(&MinElts);
827 return VScale;
828}
829
831 const APInt &MinElts) {
832 ConstantInt *CI =
833 ConstantInt::get(getMF().getFunction().getContext(), MinElts);
834 return buildVScale(Res, *CI);
835}
836
837static unsigned getIntrinsicOpcode(bool HasSideEffects, bool IsConvergent) {
838 if (HasSideEffects && IsConvergent)
839 return TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS;
840 if (HasSideEffects)
841 return TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS;
842 if (IsConvergent)
843 return TargetOpcode::G_INTRINSIC_CONVERGENT;
844 return TargetOpcode::G_INTRINSIC;
845}
846
849 ArrayRef<Register> ResultRegs,
850 bool HasSideEffects, bool isConvergent) {
851 auto MIB = buildInstr(getIntrinsicOpcode(HasSideEffects, isConvergent));
852 for (unsigned ResultReg : ResultRegs)
853 MIB.addDef(ResultReg);
854 MIB.addIntrinsicID(ID);
855 return MIB;
856}
857
860 ArrayRef<Register> ResultRegs) {
861 auto Attrs = Intrinsic::getAttributes(getContext(), ID);
862 bool HasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
863 bool isConvergent = Attrs.hasFnAttr(Attribute::Convergent);
864 return buildIntrinsic(ID, ResultRegs, HasSideEffects, isConvergent);
865}
866
869 bool HasSideEffects,
870 bool isConvergent) {
871 auto MIB = buildInstr(getIntrinsicOpcode(HasSideEffects, isConvergent));
872 for (DstOp Result : Results)
873 Result.addDefToMIB(*getMRI(), MIB);
874 MIB.addIntrinsicID(ID);
875 return MIB;
876}
877
880 auto Attrs = Intrinsic::getAttributes(getContext(), ID);
881 bool HasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
882 bool isConvergent = Attrs.hasFnAttr(Attribute::Convergent);
883 return buildIntrinsic(ID, Results, HasSideEffects, isConvergent);
884}
885
888 std::optional<unsigned> Flags) {
889 return buildInstr(TargetOpcode::G_TRUNC, Res, Op, Flags);
890}
891
894 std::optional<unsigned> Flags) {
895 return buildInstr(TargetOpcode::G_FPTRUNC, Res, Op, Flags);
896}
897
899 const DstOp &Res,
900 const SrcOp &Op0,
901 const SrcOp &Op1) {
902 return buildInstr(TargetOpcode::G_ICMP, Res, {Pred, Op0, Op1});
903}
904
906 const DstOp &Res,
907 const SrcOp &Op0,
908 const SrcOp &Op1,
909 std::optional<unsigned> Flags) {
910
911 return buildInstr(TargetOpcode::G_FCMP, Res, {Pred, Op0, Op1}, Flags);
912}
913
915 const SrcOp &Op0,
916 const SrcOp &Op1) {
917 return buildInstr(TargetOpcode::G_SCMP, Res, {Op0, Op1});
918}
919
921 const SrcOp &Op0,
922 const SrcOp &Op1) {
923 return buildInstr(TargetOpcode::G_UCMP, Res, {Op0, Op1});
924}
925
928 const SrcOp &Op0, const SrcOp &Op1,
929 std::optional<unsigned> Flags) {
930
931 return buildInstr(TargetOpcode::G_SELECT, {Res}, {Tst, Op0, Op1}, Flags);
932}
933
935 const SrcOp &Src0,
936 const SrcOp &Src1,
937 unsigned Idx) {
938 return buildInstr(TargetOpcode::G_INSERT_SUBVECTOR, Res,
939 {Src0, Src1, uint64_t(Idx)});
940}
941
943 const SrcOp &Src,
944 unsigned Idx) {
945 return buildInstr(TargetOpcode::G_INSERT_SUBVECTOR, Res,
946 {Src, uint64_t(Idx)});
947}
948
951 const SrcOp &Elt, const SrcOp &Idx) {
952 return buildInstr(TargetOpcode::G_INSERT_VECTOR_ELT, Res, {Val, Elt, Idx});
953}
954
957 const SrcOp &Idx) {
958 return buildInstr(TargetOpcode::G_EXTRACT_VECTOR_ELT, Res, {Val, Idx});
959}
960
962 const DstOp &OldValRes, const DstOp &SuccessRes, const SrcOp &Addr,
963 const SrcOp &CmpVal, const SrcOp &NewVal, MachineMemOperand &MMO) {
964#ifndef NDEBUG
965 LLT OldValResTy = OldValRes.getLLTTy(*getMRI());
966 LLT SuccessResTy = SuccessRes.getLLTTy(*getMRI());
967 LLT AddrTy = Addr.getLLTTy(*getMRI());
968 LLT CmpValTy = CmpVal.getLLTTy(*getMRI());
969 LLT NewValTy = NewVal.getLLTTy(*getMRI());
970 assert(OldValResTy.isScalar() && "invalid operand type");
971 assert(SuccessResTy.isScalar() && "invalid operand type");
972 assert(AddrTy.isPointer() && "invalid operand type");
973 assert(CmpValTy.isValid() && "invalid operand type");
974 assert(NewValTy.isValid() && "invalid operand type");
975 assert(OldValResTy == CmpValTy && "type mismatch");
976 assert(OldValResTy == NewValTy && "type mismatch");
977#endif
978
979 auto MIB = buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS);
980 OldValRes.addDefToMIB(*getMRI(), MIB);
981 SuccessRes.addDefToMIB(*getMRI(), MIB);
982 Addr.addSrcToMIB(MIB);
983 CmpVal.addSrcToMIB(MIB);
984 NewVal.addSrcToMIB(MIB);
985 MIB.addMemOperand(&MMO);
986 return MIB;
987}
988
991 const SrcOp &CmpVal, const SrcOp &NewVal,
992 MachineMemOperand &MMO) {
993#ifndef NDEBUG
994 LLT OldValResTy = OldValRes.getLLTTy(*getMRI());
995 LLT AddrTy = Addr.getLLTTy(*getMRI());
996 LLT CmpValTy = CmpVal.getLLTTy(*getMRI());
997 LLT NewValTy = NewVal.getLLTTy(*getMRI());
998 assert(OldValResTy.isScalar() && "invalid operand type");
999 assert(AddrTy.isPointer() && "invalid operand type");
1000 assert(CmpValTy.isValid() && "invalid operand type");
1001 assert(NewValTy.isValid() && "invalid operand type");
1002 assert(OldValResTy == CmpValTy && "type mismatch");
1003 assert(OldValResTy == NewValTy && "type mismatch");
1004#endif
1005
1006 auto MIB = buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG);
1007 OldValRes.addDefToMIB(*getMRI(), MIB);
1008 Addr.addSrcToMIB(MIB);
1009 CmpVal.addSrcToMIB(MIB);
1010 NewVal.addSrcToMIB(MIB);
1011 MIB.addMemOperand(&MMO);
1012 return MIB;
1013}
1014
1016 unsigned Opcode, const DstOp &OldValRes,
1017 const SrcOp &Addr, const SrcOp &Val,
1018 MachineMemOperand &MMO) {
1019
1020#ifndef NDEBUG
1021 LLT OldValResTy = OldValRes.getLLTTy(*getMRI());
1022 LLT AddrTy = Addr.getLLTTy(*getMRI());
1023 LLT ValTy = Val.getLLTTy(*getMRI());
1024 assert(AddrTy.isPointer() && "invalid operand type");
1025 assert(ValTy.isValid() && "invalid operand type");
1026 assert(OldValResTy == ValTy && "type mismatch");
1027 assert(MMO.isAtomic() && "not atomic mem operand");
1028#endif
1029
1030 auto MIB = buildInstr(Opcode);
1031 OldValRes.addDefToMIB(*getMRI(), MIB);
1032 Addr.addSrcToMIB(MIB);
1033 Val.addSrcToMIB(MIB);
1034 MIB.addMemOperand(&MMO);
1035 return MIB;
1036}
1037
1040 Register Val, MachineMemOperand &MMO) {
1041 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XCHG, OldValRes, Addr, Val,
1042 MMO);
1043}
1046 Register Val, MachineMemOperand &MMO) {
1047 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_ADD, OldValRes, Addr, Val,
1048 MMO);
1049}
1052 Register Val, MachineMemOperand &MMO) {
1053 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_SUB, OldValRes, Addr, Val,
1054 MMO);
1055}
1058 Register Val, MachineMemOperand &MMO) {
1059 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_AND, OldValRes, Addr, Val,
1060 MMO);
1061}
1064 Register Val, MachineMemOperand &MMO) {
1065 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_NAND, OldValRes, Addr, Val,
1066 MMO);
1067}
1069 Register Addr,
1070 Register Val,
1071 MachineMemOperand &MMO) {
1072 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_OR, OldValRes, Addr, Val,
1073 MMO);
1074}
1077 Register Val, MachineMemOperand &MMO) {
1078 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XOR, OldValRes, Addr, Val,
1079 MMO);
1080}
1083 Register Val, MachineMemOperand &MMO) {
1084 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MAX, OldValRes, Addr, Val,
1085 MMO);
1086}
1089 Register Val, MachineMemOperand &MMO) {
1090 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MIN, OldValRes, Addr, Val,
1091 MMO);
1092}
1095 Register Val, MachineMemOperand &MMO) {
1096 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMAX, OldValRes, Addr, Val,
1097 MMO);
1098}
1101 Register Val, MachineMemOperand &MMO) {
1102 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMIN, OldValRes, Addr, Val,
1103 MMO);
1104}
1105
1108 const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1109 MachineMemOperand &MMO) {
1110 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FADD, OldValRes, Addr, Val,
1111 MMO);
1112}
1113
1115MachineIRBuilder::buildAtomicRMWFSub(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
1116 MachineMemOperand &MMO) {
1117 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FSUB, OldValRes, Addr, Val,
1118 MMO);
1119}
1120
1123 const SrcOp &Val, MachineMemOperand &MMO) {
1124 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FMAX, OldValRes, Addr, Val,
1125 MMO);
1126}
1127
1130 const SrcOp &Val, MachineMemOperand &MMO) {
1131 return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FMIN, OldValRes, Addr, Val,
1132 MMO);
1133}
1134
1136MachineIRBuilder::buildFence(unsigned Ordering, unsigned Scope) {
1137 return buildInstr(TargetOpcode::G_FENCE)
1138 .addImm(Ordering)
1139 .addImm(Scope);
1140}
1141
1143 unsigned RW,
1144 unsigned Locality,
1145 unsigned CacheType,
1146 MachineMemOperand &MMO) {
1147 auto MIB = buildInstr(TargetOpcode::G_PREFETCH);
1148 Addr.addSrcToMIB(MIB);
1149 MIB.addImm(RW).addImm(Locality).addImm(CacheType);
1150 MIB.addMemOperand(&MMO);
1151 return MIB;
1152}
1153
1156#ifndef NDEBUG
1157 assert(getMRI()->getType(Res).isPointer() && "invalid res type");
1158#endif
1159
1160 return buildInstr(TargetOpcode::G_BLOCK_ADDR).addDef(Res).addBlockAddress(BA);
1161}
1162
1163void MachineIRBuilder::validateTruncExt(const LLT DstTy, const LLT SrcTy,
1164 bool IsExtend) {
1165#ifndef NDEBUG
1166 if (DstTy.isVector()) {
1167 assert(SrcTy.isVector() && "mismatched cast between vector and non-vector");
1168 assert(SrcTy.getElementCount() == DstTy.getElementCount() &&
1169 "different number of elements in a trunc/ext");
1170 } else
1171 assert(DstTy.isScalar() && SrcTy.isScalar() && "invalid extend/trunc");
1172
1173 if (IsExtend)
1175 "invalid narrowing extend");
1176 else
1178 "invalid widening trunc");
1179#endif
1180}
1181
1182void MachineIRBuilder::validateSelectOp(const LLT ResTy, const LLT TstTy,
1183 const LLT Op0Ty, const LLT Op1Ty) {
1184#ifndef NDEBUG
1185 assert((ResTy.isScalar() || ResTy.isVector() || ResTy.isPointer()) &&
1186 "invalid operand type");
1187 assert((ResTy == Op0Ty && ResTy == Op1Ty) && "type mismatch");
1188 if (ResTy.isScalar() || ResTy.isPointer())
1189 assert(TstTy.isScalar() && "type mismatch");
1190 else
1191 assert((TstTy.isScalar() ||
1192 (TstTy.isVector() &&
1193 TstTy.getElementCount() == Op0Ty.getElementCount())) &&
1194 "type mismatch");
1195#endif
1196}
1197
1200 ArrayRef<SrcOp> SrcOps,
1201 std::optional<unsigned> Flags) {
1202 switch (Opc) {
1203 default:
1204 break;
1205 case TargetOpcode::G_SELECT: {
1206 assert(DstOps.size() == 1 && "Invalid select");
1207 assert(SrcOps.size() == 3 && "Invalid select");
1209 DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()),
1210 SrcOps[1].getLLTTy(*getMRI()), SrcOps[2].getLLTTy(*getMRI()));
1211 break;
1212 }
1213 case TargetOpcode::G_FNEG:
1214 case TargetOpcode::G_ABS:
1215 // All these are unary ops.
1216 assert(DstOps.size() == 1 && "Invalid Dst");
1217 assert(SrcOps.size() == 1 && "Invalid Srcs");
1218 validateUnaryOp(DstOps[0].getLLTTy(*getMRI()),
1219 SrcOps[0].getLLTTy(*getMRI()));
1220 break;
1221 case TargetOpcode::G_ADD:
1222 case TargetOpcode::G_AND:
1223 case TargetOpcode::G_MUL:
1224 case TargetOpcode::G_OR:
1225 case TargetOpcode::G_SUB:
1226 case TargetOpcode::G_XOR:
1227 case TargetOpcode::G_UDIV:
1228 case TargetOpcode::G_SDIV:
1229 case TargetOpcode::G_UREM:
1230 case TargetOpcode::G_SREM:
1231 case TargetOpcode::G_SMIN:
1232 case TargetOpcode::G_SMAX:
1233 case TargetOpcode::G_UMIN:
1234 case TargetOpcode::G_UMAX:
1235 case TargetOpcode::G_UADDSAT:
1236 case TargetOpcode::G_SADDSAT:
1237 case TargetOpcode::G_USUBSAT:
1238 case TargetOpcode::G_SSUBSAT: {
1239 // All these are binary ops.
1240 assert(DstOps.size() == 1 && "Invalid Dst");
1241 assert(SrcOps.size() == 2 && "Invalid Srcs");
1242 validateBinaryOp(DstOps[0].getLLTTy(*getMRI()),
1243 SrcOps[0].getLLTTy(*getMRI()),
1244 SrcOps[1].getLLTTy(*getMRI()));
1245 break;
1246 }
1247 case TargetOpcode::G_SHL:
1248 case TargetOpcode::G_ASHR:
1249 case TargetOpcode::G_LSHR:
1250 case TargetOpcode::G_USHLSAT:
1251 case TargetOpcode::G_SSHLSAT: {
1252 assert(DstOps.size() == 1 && "Invalid Dst");
1253 assert(SrcOps.size() == 2 && "Invalid Srcs");
1254 validateShiftOp(DstOps[0].getLLTTy(*getMRI()),
1255 SrcOps[0].getLLTTy(*getMRI()),
1256 SrcOps[1].getLLTTy(*getMRI()));
1257 break;
1258 }
1259 case TargetOpcode::G_SEXT:
1260 case TargetOpcode::G_ZEXT:
1261 case TargetOpcode::G_ANYEXT:
1262 assert(DstOps.size() == 1 && "Invalid Dst");
1263 assert(SrcOps.size() == 1 && "Invalid Srcs");
1264 validateTruncExt(DstOps[0].getLLTTy(*getMRI()),
1265 SrcOps[0].getLLTTy(*getMRI()), true);
1266 break;
1267 case TargetOpcode::G_TRUNC:
1268 case TargetOpcode::G_FPTRUNC: {
1269 assert(DstOps.size() == 1 && "Invalid Dst");
1270 assert(SrcOps.size() == 1 && "Invalid Srcs");
1271 validateTruncExt(DstOps[0].getLLTTy(*getMRI()),
1272 SrcOps[0].getLLTTy(*getMRI()), false);
1273 break;
1274 }
1275 case TargetOpcode::G_BITCAST: {
1276 assert(DstOps.size() == 1 && "Invalid Dst");
1277 assert(SrcOps.size() == 1 && "Invalid Srcs");
1278 assert(DstOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
1279 SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() && "invalid bitcast");
1280 break;
1281 }
1282 case TargetOpcode::COPY:
1283 assert(DstOps.size() == 1 && "Invalid Dst");
1284 // If the caller wants to add a subreg source it has to be done separately
1285 // so we may not have any SrcOps at this point yet.
1286 break;
1287 case TargetOpcode::G_FCMP:
1288 case TargetOpcode::G_ICMP: {
1289 assert(DstOps.size() == 1 && "Invalid Dst Operands");
1290 assert(SrcOps.size() == 3 && "Invalid Src Operands");
1291 // For F/ICMP, the first src operand is the predicate, followed by
1292 // the two comparands.
1293 assert(SrcOps[0].getSrcOpKind() == SrcOp::SrcType::Ty_Predicate &&
1294 "Expecting predicate");
1295 assert([&]() -> bool {
1296 CmpInst::Predicate Pred = SrcOps[0].getPredicate();
1297 return Opc == TargetOpcode::G_ICMP ? CmpInst::isIntPredicate(Pred)
1298 : CmpInst::isFPPredicate(Pred);
1299 }() && "Invalid predicate");
1300 assert(SrcOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) &&
1301 "Type mismatch");
1302 assert([&]() -> bool {
1303 LLT Op0Ty = SrcOps[1].getLLTTy(*getMRI());
1304 LLT DstTy = DstOps[0].getLLTTy(*getMRI());
1305 if (Op0Ty.isScalar() || Op0Ty.isPointer())
1306 return DstTy.isScalar();
1307 else
1308 return DstTy.isVector() &&
1309 DstTy.getElementCount() == Op0Ty.getElementCount();
1310 }() && "Type Mismatch");
1311 break;
1312 }
1313 case TargetOpcode::G_UNMERGE_VALUES: {
1314 assert(!DstOps.empty() && "Invalid trivial sequence");
1315 assert(SrcOps.size() == 1 && "Invalid src for Unmerge");
1316 assert(llvm::all_of(DstOps,
1317 [&, this](const DstOp &Op) {
1318 return Op.getLLTTy(*getMRI()) ==
1319 DstOps[0].getLLTTy(*getMRI());
1320 }) &&
1321 "type mismatch in output list");
1322 assert((TypeSize::ScalarTy)DstOps.size() *
1323 DstOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
1324 SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
1325 "input operands do not cover output register");
1326 break;
1327 }
1328 case TargetOpcode::G_MERGE_VALUES: {
1329 assert(SrcOps.size() >= 2 && "invalid trivial sequence");
1330 assert(DstOps.size() == 1 && "Invalid Dst");
1331 assert(llvm::all_of(SrcOps,
1332 [&, this](const SrcOp &Op) {
1333 return Op.getLLTTy(*getMRI()) ==
1334 SrcOps[0].getLLTTy(*getMRI());
1335 }) &&
1336 "type mismatch in input list");
1337 assert((TypeSize::ScalarTy)SrcOps.size() *
1338 SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
1339 DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
1340 "input operands do not cover output register");
1341 assert(!DstOps[0].getLLTTy(*getMRI()).isVector() &&
1342 "vectors should be built with G_CONCAT_VECTOR or G_BUILD_VECTOR");
1343 break;
1344 }
1345 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1346 assert(DstOps.size() == 1 && "Invalid Dst size");
1347 assert(SrcOps.size() == 2 && "Invalid Src size");
1348 assert(SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type");
1349 assert((DstOps[0].getLLTTy(*getMRI()).isScalar() ||
1350 DstOps[0].getLLTTy(*getMRI()).isPointer()) &&
1351 "Invalid operand type");
1352 assert(SrcOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand type");
1353 assert(SrcOps[0].getLLTTy(*getMRI()).getElementType() ==
1354 DstOps[0].getLLTTy(*getMRI()) &&
1355 "Type mismatch");
1356 break;
1357 }
1358 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1359 assert(DstOps.size() == 1 && "Invalid dst size");
1360 assert(SrcOps.size() == 3 && "Invalid src size");
1361 assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
1362 SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type");
1363 assert(DstOps[0].getLLTTy(*getMRI()).getElementType() ==
1364 SrcOps[1].getLLTTy(*getMRI()) &&
1365 "Type mismatch");
1366 assert(SrcOps[2].getLLTTy(*getMRI()).isScalar() && "Invalid index");
1367 assert(DstOps[0].getLLTTy(*getMRI()).getElementCount() ==
1368 SrcOps[0].getLLTTy(*getMRI()).getElementCount() &&
1369 "Type mismatch");
1370 break;
1371 }
1372 case TargetOpcode::G_BUILD_VECTOR: {
1373 assert((!SrcOps.empty() || SrcOps.size() < 2) &&
1374 "Must have at least 2 operands");
1375 assert(DstOps.size() == 1 && "Invalid DstOps");
1376 assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
1377 "Res type must be a vector");
1378 assert(llvm::all_of(SrcOps,
1379 [&, this](const SrcOp &Op) {
1380 return Op.getLLTTy(*getMRI()) ==
1381 SrcOps[0].getLLTTy(*getMRI());
1382 }) &&
1383 "type mismatch in input list");
1384 assert((TypeSize::ScalarTy)SrcOps.size() *
1385 SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
1386 DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
1387 "input scalars do not exactly cover the output vector register");
1388 break;
1389 }
1390 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1391 assert((!SrcOps.empty() || SrcOps.size() < 2) &&
1392 "Must have at least 2 operands");
1393 assert(DstOps.size() == 1 && "Invalid DstOps");
1394 assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
1395 "Res type must be a vector");
1396 assert(llvm::all_of(SrcOps,
1397 [&, this](const SrcOp &Op) {
1398 return Op.getLLTTy(*getMRI()) ==
1399 SrcOps[0].getLLTTy(*getMRI());
1400 }) &&
1401 "type mismatch in input list");
1402 break;
1403 }
1404 case TargetOpcode::G_CONCAT_VECTORS: {
1405 assert(DstOps.size() == 1 && "Invalid DstOps");
1406 assert((!SrcOps.empty() || SrcOps.size() < 2) &&
1407 "Must have at least 2 operands");
1408 assert(llvm::all_of(SrcOps,
1409 [&, this](const SrcOp &Op) {
1410 return (Op.getLLTTy(*getMRI()).isVector() &&
1411 Op.getLLTTy(*getMRI()) ==
1412 SrcOps[0].getLLTTy(*getMRI()));
1413 }) &&
1414 "type mismatch in input list");
1415 assert((TypeSize::ScalarTy)SrcOps.size() *
1416 SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
1417 DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
1418 "input vectors do not exactly cover the output vector register");
1419 break;
1420 }
1421 case TargetOpcode::G_UADDE: {
1422 assert(DstOps.size() == 2 && "Invalid no of dst operands");
1423 assert(SrcOps.size() == 3 && "Invalid no of src operands");
1424 assert(DstOps[0].getLLTTy(*getMRI()).isScalar() && "Invalid operand");
1425 assert((DstOps[0].getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI())) &&
1426 (DstOps[0].getLLTTy(*getMRI()) == SrcOps[1].getLLTTy(*getMRI())) &&
1427 "Invalid operand");
1428 assert(DstOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand");
1429 assert(DstOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) &&
1430 "type mismatch");
1431 break;
1432 }
1433 }
1434
1435 auto MIB = buildInstr(Opc);
1436 for (const DstOp &Op : DstOps)
1437 Op.addDefToMIB(*getMRI(), MIB);
1438 for (const SrcOp &Op : SrcOps)
1439 Op.addSrcToMIB(MIB);
1440 if (Flags)
1441 MIB->setFlags(*Flags);
1442 return MIB;
1443}
Function Alias Analysis Results
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Addr
uint64_t Size
static Function * getFunction(Constant *C)
Definition: Evaluator.cpp:236
static unsigned getIntrinsicOpcode(bool HasSideEffects, bool IsConvergent)
This file declares the MachineIRBuilder class.
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
static unsigned getScalarSizeInBits(Type *Ty)
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
This file describes how to lower LLVM code to machine code.
const fltSemantics & getSemantics() const
Definition: APFloat.h:1368
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:284
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
The address of a basic block.
Definition: Constants.h:890
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:757
bool isFPPredicate() const
Definition: InstrTypes.h:864
bool isIntPredicate() const
Definition: InstrTypes.h:865
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:269
const APFloat & getValueAPF() const
Definition: Constants.h:312
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition: Constants.h:149
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:155
A signed pointer, in the ptrauth sense.
Definition: Constants.h:1012
ConstantInt * getKey() const
The Key ID, an i32 constant.
Definition: Constants.h:1040
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
Definition: Constants.h:1043
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
void addDefToMIB(MachineRegisterInfo &MRI, MachineInstrBuilder &MIB) const
LLT getLLTTy(const MachineRegisterInfo &MRI) const
Register getReg() const
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:380
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:266
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
Definition: LowLevelType.h:182
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:267
constexpr bool isScalar() const
Definition: LowLevelType.h:146
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
constexpr bool isValid() const
Definition: LowLevelType.h:145
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
Definition: LowLevelType.h:159
constexpr bool isVector() const
Definition: LowLevelType.h:148
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
Definition: LowLevelType.h:193
constexpr bool isPointer() const
Definition: LowLevelType.h:149
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
Definition: LowLevelType.h:290
constexpr ElementCount getElementCount() const
Definition: LowLevelType.h:184
constexpr bool isFixedVector() const
Returns true if the LLT is a fixed vector.
Definition: LowLevelType.h:178
constexpr LLT getScalarType() const
Definition: LowLevelType.h:208
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Metadata node.
Definition: Metadata.h:1069
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
MachineInstrBundleIterator< MachineInstr > iterator
ArrayRef< int > allocateShuffleMask(ArrayRef< int > Mask)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
MachineInstrBuilder buildLoadFromOffset(const DstOp &Dst, const SrcOp &BasePtr, MachineMemOperand &BaseMMO, int64_t Offset)
Helper to create a load from a constant offset given a base address.
MachineInstrBuilder buildAtomicRMWFMin(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_FMIN Addr, Val, MMO.
MachineInstrBuilder buildBoolExtInReg(const DstOp &Res, const SrcOp &Op, bool IsVector, bool IsFP)
MachineInstrBuilder insertInstr(MachineInstrBuilder MIB)
Insert an existing instruction at the insertion point.
MachineInstrBuilder buildAtomicRMWXor(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_XOR Addr, Val, MMO.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV)
Build and insert Res = G_GLOBAL_VALUE GV.
MachineInstrBuilder buildBr(MachineBasicBlock &Dest)
Build and insert G_BR Dest.
std::optional< MachineInstrBuilder > materializePtrAdd(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value)
Materialize and insert Res = G_PTR_ADD Op0, (G_CONSTANT Value)
LLVMContext & getContext() const
MachineInstrBuilder buildUndef(const DstOp &Res)
Build and insert Res = IMPLICIT_DEF.
MachineInstrBuilder buildUCmp(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert a Res = G_UCMP Op0, Op1.
MachineInstrBuilder buildConstantPool(const DstOp &Res, unsigned Idx)
Build and insert Res = G_CONSTANT_POOL Idx.
MachineInstrBuilder buildJumpTable(const LLT PtrTy, unsigned JTI)
Build and insert Res = G_JUMP_TABLE JTI.
MachineInstrBuilder buildBoolExt(const DstOp &Res, const SrcOp &Op, bool IsFP)
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildSCmp(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert a Res = G_SCMP Op0, Op1.
MachineInstrBuilder buildFence(unsigned Ordering, unsigned Scope)
Build and insert G_FENCE Ordering, Scope.
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_SELECT Tst, Op0, Op1.
MachineInstrBuilder buildAtomicRMWAnd(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_AND Addr, Val, MMO.
MachineInstrBuilder buildZExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp)
Build and inserts Res = G_AND Op, LowBitsSet(ImmOp) Since there is no G_ZEXT_INREG like G_SEXT_INREG,...
MachineInstrBuilder buildAtomicRMWMin(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_MIN Addr, Val, MMO.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index)
Build and insert Res0, ... = G_EXTRACT Src, Idx0.
MachineInstrBuilder buildInsertSubvector(const DstOp &Res, const SrcOp &Src0, const SrcOp &Src1, unsigned Index)
Build and insert Res = G_INSERT_SUBVECTOR Src0, Src1, Idx.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1)
Build and insert Res = G_AND Op0, Op1.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineInstrBuilder buildCast(const DstOp &Dst, const SrcOp &Src)
Build and insert an appropriate cast between two registers of equal size.
const TargetInstrInfo & getTII()
MachineInstrBuilder buildAtomicRMWFAdd(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_FADD Addr, Val, MMO.
MachineInstrBuilder buildAtomicRMWNand(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_NAND Addr, Val, MMO.
MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Res = COPY Op depending on the differing sizes of Res and Op.
MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_SEXT Op.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_SEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
MachineInstrBuilder buildShuffleSplat(const DstOp &Res, const SrcOp &Src)
Build and insert a vector splat of a scalar Src using a G_INSERT_VECTOR_ELT and G_SHUFFLE_VECTOR idio...
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ZEXT Op.
MachineInstrBuilder buildConcatVectors(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_CONCAT_VECTORS Op0, ...
MachineInstrBuilder buildAtomicRMW(unsigned Opcode, const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_<Opcode> Addr, Val, MMO.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MDNode * getPCSections()
Get the current instruction's PC sections metadata.
MachineInstrBuilder buildVScale(const DstOp &Res, unsigned MinElts)
Build and insert Res = G_VSCALE MinElts.
MachineInstrBuilder buildSplatBuildVector(const DstOp &Res, const SrcOp &Src)
Build and insert Res = G_BUILD_VECTOR with Src replicated to fill the number of elements.
MachineInstrBuilder buildIndirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instruction expressing the fact that the associated Variable lives in me...
unsigned getBoolExtOp(bool IsVec, bool IsFP) const
MachineInstrBuilder buildAtomicRMWUmax(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_UMAX Addr, Val, MMO.
MachineInstrBuilder buildBuildVector(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_BUILD_VECTOR Op0, ...
MachineInstrBuilder buildConstDbgValue(const Constant &C, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instructions specifying that Variable is given by C (suitably modified b...
void recordInsertion(MachineInstr *InsertedInstr) const
MachineInstrBuilder buildBrCond(const SrcOp &Tst, MachineBasicBlock &Dest)
Build and insert G_BRCOND Tst, Dest.
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
MachineInstrBuilder buildExtractVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Idx)
Build and insert Res = G_EXTRACT_VECTOR_ELT Val, Idx.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ZEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
MachineInstrBuilder buildBuildVectorTrunc(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_BUILD_VECTOR_TRUNC Op0, ...
virtual MachineInstrBuilder buildFConstant(const DstOp &Res, const ConstantFP &Val)
Build and insert Res = G_FCONSTANT Val.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildPadVectorWithUndefElements(const DstOp &Res, const SrcOp &Op0)
Build and insert a, b, ..., x = G_UNMERGE_VALUES Op0 Res = G_BUILD_VECTOR a, b, .....
void validateSelectOp(const LLT ResTy, const LLT TstTy, const LLT Op0Ty, const LLT Op1Ty)
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineInstrBuilder buildDirectDbgValue(Register Reg, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instruction expressing the fact that the associated Variable lives in Re...
const DebugLoc & getDL()
Getter for DebugLoc.
MachineInstrBuilder buildBuildVectorConstant(const DstOp &Res, ArrayRef< APInt > Ops)
Build and insert Res = G_BUILD_VECTOR Op0, ... where each OpN is built with G_CONSTANT.
MachineInstrBuilder buildAtomicRMWUmin(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_UMIN Addr, Val, MMO.
void validateBinaryOp(const LLT Res, const LLT Op0, const LLT Op1)
void validateShiftOp(const LLT Res, const LLT Op0, const LLT Op1)
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildDbgLabel(const MDNode *Label)
Build and insert a DBG_LABEL instructions specifying that Label is given.
MachineInstrBuilder buildBrJT(Register TablePtr, unsigned JTI, Register IndexReg)
Build and insert G_BRJT TablePtr, JTI, IndexReg.
MachineInstrBuilder buildInsert(const DstOp &Res, const SrcOp &Src, const SrcOp &Op, unsigned Index)
MachineInstrBuilder buildDynStackAlloc(const DstOp &Res, const SrcOp &Size, Align Alignment)
Build and insert Res = G_DYN_STACKALLOC Size, Align.
MachineInstrBuilder buildFIDbgValue(int FI, const MDNode *Variable, const MDNode *Expr)
Build and insert a DBG_VALUE instruction expressing the fact that the associated Variable lives in th...
MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res, const SrcOp &Op)
Build and insert Res = ExtOpc, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes of...
MachineInstrBuilder buildAtomicRMWSub(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_SUB Addr, Val, MMO.
MachineInstrBuilder buildMergeValues(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ...
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
MachineInstrBuilder buildAtomicRMWFMax(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_FMAX Addr, Val, MMO.
MachineInstrBuilder buildAtomicRMWOr(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_OR Addr, Val, MMO.
const MachineBasicBlock & getMBB() const
Getter for the basic block we currently build.
MachineInstrBuilder buildInsertVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Elt, const SrcOp &Idx)
Build and insert Res = G_INSERT_VECTOR_ELT Val, Elt, Idx.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
MachineInstrBuilder buildAtomicCmpXchgWithSuccess(const DstOp &OldValRes, const DstOp &SuccessRes, const SrcOp &Addr, const SrcOp &CmpVal, const SrcOp &NewVal, MachineMemOperand &MMO)
Build and insert OldValRes<def>, SuccessRes<def> = G_ATOMIC_CMPXCHG_WITH_SUCCESS Addr,...
MachineInstrBuilder buildDeleteTrailingVectorElements(const DstOp &Res, const SrcOp &Op0)
Build and insert a, b, ..., x, y, z = G_UNMERGE_VALUES Op0 Res = G_BUILD_VECTOR a,...
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildAtomicRMWAdd(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_ADD Addr, Val, MMO.
MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FPTRUNC Op.
MachineInstrBuilder buildAtomicCmpXchg(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &CmpVal, const SrcOp &NewVal, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMIC_CMPXCHG Addr, CmpVal, NewVal, MMO.
MachineInstrBuilder buildShuffleVector(const DstOp &Res, const SrcOp &Src1, const SrcOp &Src2, ArrayRef< int > Mask)
Build and insert Res = G_SHUFFLE_VECTOR Src1, Src2, Mask.
void validateTruncExt(const LLT Dst, const LLT Src, bool IsExtend)
MachineInstrBuilder buildInstrNoInsert(unsigned Opcode)
Build but don't insert <empty> = Opcode <empty>.
MachineInstrBuilder buildPtrMask(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1)
Build and insert Res = G_PTRMASK Op0, Op1.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
void validateUnaryOp(const LLT Res, const LLT Op0)
MachineInstrBuilder buildBlockAddress(Register Res, const BlockAddress *BA)
Build and insert Res = G_BLOCK_ADDR BA.
MDNode * getMMRAMetadata()
Get the current instruction's MMRA metadata.
MachineInstrBuilder buildAtomicRMWMax(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_MAX Addr, Val, MMO.
MachineInstrBuilder buildPrefetch(const SrcOp &Addr, unsigned RW, unsigned Locality, unsigned CacheType, MachineMemOperand &MMO)
Build and insert G_PREFETCH Addr, RW, Locality, CacheType.
MachineInstrBuilder buildExtractSubvector(const DstOp &Res, const SrcOp &Src, unsigned Index)
Build and insert Res = G_EXTRACT_SUBVECTOR Src, Idx0.
MachineInstrBuilder buildBrIndirect(Register Tgt)
Build and insert G_BRINDIRECT Tgt.
MachineInstrBuilder buildSplatVector(const DstOp &Res, const SrcOp &Val)
Build and insert Res = G_SPLAT_VECTOR Val.
MachineInstrBuilder buildLoadInstr(unsigned Opcode, const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = <opcode> Addr, MMO.
void setMF(MachineFunction &MF)
MachineInstrBuilder buildAtomicRMWFSub(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_FSUB Addr, Val, MMO.
MachineInstrBuilder buildAtomicRMWXchg(Register OldValRes, Register Addr, Register Val, MachineMemOperand &MMO)
Build and insert OldValRes<def> = G_ATOMICRMW_XCHG Addr, Val, MMO.
MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0, uint32_t NumBits)
Build and insert Res = G_PTRMASK Op0, G_CONSTANT (1 << NumBits) - 1.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
MachineInstrBuilder buildFCmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_FCMP PredOp0, Op1.
MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp)
Build and insert Res = G_SEXT_INREG Op, ImmOp.
MachineInstrBuilder buildConstantPtrAuth(const DstOp &Res, const ConstantPtrAuth *CPA, Register Addr, Register AddrDisc)
Build and insert G_PTRAUTH_GLOBAL_VALUE.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addCImm(const ConstantInt *Val) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addBlockAddress(const BlockAddress *BA, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const MachineInstrBuilder & addJumpTableIndex(unsigned Idx, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
A description of a memory reference used in the backend.
bool isAtomic() const
Returns true if this operation has an atomic ordering requirement of unordered or higher,...
Flags
Flags values. These may be or'd together.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
Register createGenericVirtualRegister(LLT Ty, StringRef Name="")
Create and return a new generic virtual register with low-level type Ty.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:679
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
size_t size() const
Definition: SmallVector.h:91
void reserve(size_type N)
Definition: SmallVector.h:676
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
LLT getLLTTy(const MachineRegisterInfo &MRI) const
void addSrcToMIB(MachineInstrBuilder &MIB) const
Register getReg() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
LLVM Value Representation.
Definition: Value.h:74
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:218
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:225
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
AttributeList getAttributes(LLVMContext &C, ID id)
Return the attributes for an intrinsic.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
DWARFExpression::Operation Op
APFloat getAPFloatFromSize(double Val, unsigned Size)
Returns an APFloat from Val converted to the appropriate size.
Definition: Utils.cpp:652
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
static unsigned getSizeInBits(const fltSemantics &Sem)
Returns the size of the floating point number (in bits) in the given semantics.
Definition: APFloat.cpp:368
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
MachineFunction * MF
MachineFunction under construction.
MDNode * MMRA
MMRA Metadata to be set on any instruction we create.
DebugLoc DL
Debug location to be set to any instruction we create.
const TargetInstrInfo * TII
Information used to access the description of the opcodes.
MDNode * PCSections
PC sections metadata to be set to any instruction we create.
MachineBasicBlock::iterator II
MachineRegisterInfo * MRI
Information used to verify types are consistent and to create virtual registers.
GISelChangeObserver * Observer
This class contains a discriminated union of information about pointers in memory operands,...