LLVM 19.0.0git
MVETailPredication.cpp
Go to the documentation of this file.
1//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11/// branches to help accelerate DSP applications. These two extensions,
12/// combined with a new form of predication called tail-predication, can be used
13/// to provide implicit vector predication within a low-overhead loop.
14/// This is implicit because the predicate of active/inactive lanes is
15/// calculated by hardware, and thus does not need to be explicitly passed
16/// to vector instructions. The instructions responsible for this are the
17/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18/// the total number of data elements processed by the loop. The loop-end
19/// LETP instruction is responsible for decrementing and setting the remaining
20/// elements to be processed and generating the mask of active lanes.
21///
22/// The HardwareLoops pass inserts intrinsics identifying loops that the
23/// backend will attempt to convert into a low-overhead loop. The vectorizer is
24/// responsible for generating a vectorized loop in which the lanes are
25/// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26/// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27/// instructions. This will be picked up by the ARM Low-overhead loop pass later
28/// in the backend, which performs the final transformation to a DLSTP or WLSTP
29/// tail-predicated loop.
30//
31//===----------------------------------------------------------------------===//
32
33#include "ARM.h"
34#include "ARMSubtarget.h"
44#include "llvm/IR/IRBuilder.h"
46#include "llvm/IR/IntrinsicsARM.h"
49#include "llvm/Support/Debug.h"
54
55using namespace llvm;
56
57#define DEBUG_TYPE "mve-tail-predication"
58#define DESC "Transform predicated vector loops to use MVE tail predication"
59
61 "tail-predication", cl::desc("MVE tail-predication pass options"),
64 "Don't tail-predicate loops"),
66 "enabled-no-reductions",
67 "Enable tail-predication, but not for reduction loops"),
69 "enabled",
70 "Enable tail-predication, including reduction loops"),
72 "force-enabled-no-reductions",
73 "Enable tail-predication, but not for reduction loops, "
74 "and force this which might be unsafe"),
76 "force-enabled",
77 "Enable tail-predication, including reduction loops, "
78 "and force this which might be unsafe")));
79
80
81namespace {
82
83class MVETailPredication : public LoopPass {
85 Loop *L = nullptr;
86 ScalarEvolution *SE = nullptr;
87 TargetTransformInfo *TTI = nullptr;
88 const ARMSubtarget *ST = nullptr;
89
90public:
91 static char ID;
92
93 MVETailPredication() : LoopPass(ID) { }
94
95 void getAnalysisUsage(AnalysisUsage &AU) const override {
101 AU.setPreservesCFG();
102 }
103
104 bool runOnLoop(Loop *L, LPPassManager&) override;
105
106private:
107 /// Perform the relevant checks on the loop and convert active lane masks if
108 /// possible.
109 bool TryConvertActiveLaneMask(Value *TripCount);
110
111 /// Perform several checks on the arguments of @llvm.get.active.lane.mask
112 /// intrinsic. E.g., check that the loop induction variable and the element
113 /// count are of the form we expect, and also perform overflow checks for
114 /// the new expressions that are created.
115 const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
116
117 /// Insert the intrinsic to represent the effect of tail predication.
118 void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start);
119};
120
121} // end namespace
122
123bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
124 if (skipLoop(L) || !EnableTailPredication)
125 return false;
126
127 MaskedInsts.clear();
128 Function &F = *L->getHeader()->getParent();
129 auto &TPC = getAnalysis<TargetPassConfig>();
130 auto &TM = TPC.getTM<TargetMachine>();
131 ST = &TM.getSubtarget<ARMSubtarget>(F);
132 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
133 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
134 this->L = L;
135
136 // The MVE and LOB extensions are combined to enable tail-predication, but
137 // there's nothing preventing us from generating VCTP instructions for v8.1m.
138 if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
139 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
140 return false;
141 }
142
143 BasicBlock *Preheader = L->getLoopPreheader();
144 if (!Preheader)
145 return false;
146
147 auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
148 for (auto &I : *BB) {
149 auto *Call = dyn_cast<IntrinsicInst>(&I);
150 if (!Call)
151 continue;
152
153 Intrinsic::ID ID = Call->getIntrinsicID();
154 if (ID == Intrinsic::start_loop_iterations ||
155 ID == Intrinsic::test_start_loop_iterations)
156 return cast<IntrinsicInst>(&I);
157 }
158 return nullptr;
159 };
160
161 // Look for the hardware loop intrinsic that sets the iteration count.
162 IntrinsicInst *Setup = FindLoopIterations(Preheader);
163
164 // The test.set iteration could live in the pre-preheader.
165 if (!Setup) {
166 if (!Preheader->getSinglePredecessor())
167 return false;
168 Setup = FindLoopIterations(Preheader->getSinglePredecessor());
169 if (!Setup)
170 return false;
171 }
172
173 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
174
175 bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
176
177 return Changed;
178}
179
180// The active lane intrinsic has this form:
181//
182// @llvm.get.active.lane.mask(IV, TC)
183//
184// Here we perform checks that this intrinsic behaves as expected,
185// which means:
186//
187// 1) Check that the TripCount (TC) belongs to this loop (originally).
188// 2) The element count (TC) needs to be sufficiently large that the decrement
189// of element counter doesn't overflow, which means that we need to prove:
190// ceil(ElementCount / VectorWidth) >= TripCount
191// by rounding up ElementCount up:
192// ((ElementCount + (VectorWidth - 1)) / VectorWidth
193// and evaluate if expression isKnownNonNegative:
194// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
195// 3) The IV must be an induction phi with an increment equal to the
196// vector width.
197const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
198 Value *TripCount) {
199 bool ForceTailPredication =
202
203 Value *ElemCount = ActiveLaneMask->getOperand(1);
204 bool Changed = false;
205 if (!L->makeLoopInvariant(ElemCount, Changed))
206 return nullptr;
207
208 auto *EC= SE->getSCEV(ElemCount);
209 auto *TC = SE->getSCEV(TripCount);
210 int VectorWidth =
211 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
212 if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 &&
213 VectorWidth != 16)
214 return nullptr;
215 ConstantInt *ConstElemCount = nullptr;
216
217 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
218 // this loop. The scalar tripcount corresponds the number of elements
219 // processed by the loop, so we will refer to that from this point on.
220 if (!SE->isLoopInvariant(EC, L)) {
221 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
222 return nullptr;
223 }
224
225 // 2) Find out if IV is an induction phi. Note that we can't use Loop
226 // helpers here to get the induction variable, because the hardware loop is
227 // no longer in loopsimplify form, and also the hwloop intrinsic uses a
228 // different counter. Using SCEV, we check that the induction is of the
229 // form i = i + 4, where the increment must be equal to the VectorWidth.
230 auto *IV = ActiveLaneMask->getOperand(0);
231 auto *IVExpr = SE->getSCEV(IV);
232 auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
233
234 if (!AddExpr) {
235 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
236 return nullptr;
237 }
238 // Check that this AddRec is associated with this loop.
239 if (AddExpr->getLoop() != L) {
240 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
241 return nullptr;
242 }
243 auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
244 if (!Step) {
245 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
246 AddExpr->getOperand(1)->dump());
247 return nullptr;
248 }
249 auto StepValue = Step->getValue()->getSExtValue();
250 if (VectorWidth != StepValue) {
251 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
252 << " doesn't match vector width " << VectorWidth << "\n");
253 return nullptr;
254 }
255
256 if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
257 ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
258 if (!TC) {
259 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
260 "set.loop.iterations\n");
261 return nullptr;
262 }
263
264 // Calculate 2 tripcount values and check that they are consistent with
265 // each other. The TripCount for a predicated vector loop body is
266 // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
267 // work it out here.
268 uint64_t TC1 = TC->getZExtValue();
269 uint64_t TC2 =
270 (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
271
272 // If the tripcount values are inconsistent, we can't insert the VCTP and
273 // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
274 // and legalize this.
275 if (TC1 != TC2) {
276 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
277 << TC1 << " from set.loop.iterations, and "
278 << TC2 << " from get.active.lane.mask\n");
279 return nullptr;
280 }
281 } else if (!ForceTailPredication) {
282 // 3) We need to prove that the sub expression that we create in the
283 // tail-predicated loop body, which calculates the remaining elements to be
284 // processed, is non-negative, i.e. it doesn't overflow:
285 //
286 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
287 //
288 // This is true if:
289 //
290 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
291 //
292 // which what we will be using here.
293 //
294 auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
295 // ElementCount + (VW-1):
296 auto *Start = AddExpr->getStart();
297 auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
298 SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
299
300 // Ceil = ElementCount + (VW-1) / VW
301 auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
302
303 // Prevent unused variable warnings with TC
304 (void)TC;
305 LLVM_DEBUG({
306 dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
307 dbgs() << "ARM TP: - TripCount = " << *TC << "\n";
308 dbgs() << "ARM TP: - ElemCount = " << *EC << "\n";
309 dbgs() << "ARM TP: - Start = " << *Start << "\n";
310 dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n";
311 dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n";
312 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n";
313 });
314
315 // As an example, almost all the tripcount expressions (produced by the
316 // vectoriser) look like this:
317 //
318 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4)
319 //
320 // and "ElementCount + (VW-1) / VW":
321 //
322 // Ceil = ((3 + %N) /u 4)
323 //
324 // Check for equality of TC and Ceil by calculating SCEV expression
325 // TC - Ceil and test it for zero.
326 //
327 const SCEV *Div = SE->getUDivExpr(
328 SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW),
329 SE->getNegativeSCEV(Start)),
330 VW);
331 const SCEV *Sub = SE->getMinusSCEV(SE->getBackedgeTakenCount(L), Div);
332 LLVM_DEBUG(dbgs() << "ARM TP: - Sub = "; Sub->dump());
333
334 // Use context sensitive facts about the path to the loop to refine. This
335 // comes up as the backedge taken count can incorporate context sensitive
336 // reasoning, and our RHS just above doesn't.
337 Sub = SE->applyLoopGuards(Sub, L);
338 LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub->dump());
339
340 if (!Sub->isZero()) {
341 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
342 return nullptr;
343 }
344 }
345
346 // Check that the start value is a multiple of the VectorWidth.
347 // TODO: This could do with a method to check if the scev is a multiple of
348 // VectorWidth. For the moment we just check for constants, muls and unknowns
349 // (which use MaskedValueIsZero and seems to be the most common).
350 if (auto *BaseC = dyn_cast<SCEVConstant>(AddExpr->getStart())) {
351 if (BaseC->getAPInt().urem(VectorWidth) == 0)
352 return SE->getMinusSCEV(EC, BaseC);
353 } else if (auto *BaseV = dyn_cast<SCEVUnknown>(AddExpr->getStart())) {
354 Type *Ty = BaseV->getType();
356 Log2_64(VectorWidth));
357 if (MaskedValueIsZero(BaseV->getValue(), Mask,
358 L->getHeader()->getModule()->getDataLayout()))
359 return SE->getMinusSCEV(EC, BaseV);
360 } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(AddExpr->getStart())) {
361 if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(0)))
362 if (BaseC->getAPInt().urem(VectorWidth) == 0)
363 return SE->getMinusSCEV(EC, BaseC);
364 if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(1)))
365 if (BaseC->getAPInt().urem(VectorWidth) == 0)
366 return SE->getMinusSCEV(EC, BaseC);
367 }
368
370 dbgs() << "ARM TP: induction base is not know to be a multiple of VF: "
371 << *AddExpr->getOperand(0) << "\n");
372 return nullptr;
373}
374
375void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
376 Value *Start) {
377 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
378 Module *M = L->getHeader()->getModule();
379 Type *Ty = IntegerType::get(M->getContext(), 32);
380 unsigned VectorWidth =
381 cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
382
383 // Insert a phi to count the number of elements processed by the loop.
384 Builder.SetInsertPoint(L->getHeader(), L->getHeader()->getFirstNonPHIIt());
385 PHINode *Processed = Builder.CreatePHI(Ty, 2);
386 Processed->addIncoming(Start, L->getLoopPreheader());
387
388 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
389 // thus represent the effect of tail predication.
390 Builder.SetInsertPoint(ActiveLaneMask);
391 ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
392
393 Intrinsic::ID VCTPID;
394 switch (VectorWidth) {
395 default:
396 llvm_unreachable("unexpected number of lanes");
397 case 2: VCTPID = Intrinsic::arm_mve_vctp64; break;
398 case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
399 case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
400 case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
401 }
402 Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
403 Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
404 ActiveLaneMask->replaceAllUsesWith(VCTPCall);
405
406 // Add the incoming value to the new phi.
407 // TODO: This add likely already exists in the loop.
408 Value *Remaining = Builder.CreateSub(Processed, Factor);
409 Processed->addIncoming(Remaining, L->getLoopLatch());
410 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
411 << *Processed << "\n"
412 << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
413}
414
415bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
416 SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
417 for (auto *BB : L->getBlocks())
418 for (auto &I : *BB)
419 if (auto *Int = dyn_cast<IntrinsicInst>(&I))
420 if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
421 ActiveLaneMasks.push_back(Int);
422
423 if (ActiveLaneMasks.empty())
424 return false;
425
426 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
427
428 for (auto *ActiveLaneMask : ActiveLaneMasks) {
429 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
430 << *ActiveLaneMask << "\n");
431
432 const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount);
433 if (!StartSCEV) {
434 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
435 return false;
436 }
437 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV
438 << "\n");
439 SCEVExpander Expander(*SE, L->getHeader()->getModule()->getDataLayout(),
440 "start");
441 Instruction *Ins = L->getLoopPreheader()->getTerminator();
442 Value *Start = Expander.expandCodeFor(StartSCEV, StartSCEV->getType(), Ins);
443 LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n");
444 InsertVCTPIntrinsic(ActiveLaneMask, Start);
445 }
446
447 // Remove dead instructions and now dead phis.
448 for (auto *II : ActiveLaneMasks)
450 for (auto *I : L->blocks())
452 return true;
453}
454
456 return new MVETailPredication();
457}
458
459char MVETailPredication::ID = 0;
460
461INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
462INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)
This file a TargetTransformInfo::Concept conforming object specific to the ARM target machine.
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:693
#define LLVM_DEBUG(X)
Definition: Debug.h:101
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define DESC
cl::opt< TailPredication::Mode > EnableTailPredication("tail-predication", cl::desc("MVE tail-predication pass options"), cl::init(TailPredication::Enabled), cl::values(clEnumValN(TailPredication::Disabled, "disabled", "Don't tail-predicate loops"), clEnumValN(TailPredication::EnabledNoReductions, "enabled-no-reductions", "Enable tail-predication, but not for reduction loops"), clEnumValN(TailPredication::Enabled, "enabled", "Enable tail-predication, including reduction loops"), clEnumValN(TailPredication::ForceEnabledNoReductions, "force-enabled-no-reductions", "Enable tail-predication, but not for reduction loops, " "and force this which might be unsafe"), clEnumValN(TailPredication::ForceEnabled, "force-enabled", "Enable tail-predication, including reduction loops, " "and force this which might be unsafe")))
#define DEBUG_TYPE
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
Target-Independent Code Generator Pass Configuration Options pass.
This pass exposes codegen information to IR-level passes.
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:76
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:284
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:452
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:154
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2656
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:593
virtual bool runOnLoop(Loop *L, LPPassManager &LPM)=0
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
This class uses information about analyze scalars to rewrite expressions in canonical form.
This class represents an analyzed expression in the program.
bool isZero() const
Return true if the expression is a constant zero.
void dump() const
This method is used for debugging.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
bool empty() const
Definition: SmallVector.h:94
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
Target-Independent Code Generator Pass Configuration Options.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1469
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:718
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:539
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &DL, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:319
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
Pass * createMVETailPredicationPass()
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163