52#define DEBUG_TYPE "pipeliner"
56 "Number of loops that we attempt to use window scheduling");
58 "Number of times that we run list schedule in the window scheduling");
60 "Number of loops that we successfully use window scheduling");
62 "Window scheduling abort due to the failure of the II analysis");
65 WindowSearchNum(
"window-search-num",
66 cl::desc(
"The number of searches per loop in the window "
67 "algorithm. 0 means no search number limit."),
71 "window-search-ratio",
72 cl::desc(
"The ratio of searches per loop in the window algorithm. 100 "
73 "means search all positions in the loop, while 0 means not "
74 "performing any search."),
80 "The coefficient used when initializing II in the window algorithm."),
84 "window-region-limit",
86 "The lower limit of the scheduling region in the window algorithm."),
91 cl::desc(
"The lower limit of the difference between best II and base II in "
92 "the window algorithm. If the difference is smaller than "
93 "this lower limit, window scheduling will not be performed."),
101 cl::desc(
"The upper limit of II in the window algorithm."),
108 TripleDAG = std::unique_ptr<ScheduleDAGInstrs>(
114 LLVM_DEBUG(
dbgs() <<
"The WindowScheduler failed to initialize!\n");
120 ++NumTryWindowSchedule;
126 for (
unsigned Idx : SearchIndexes) {
128 ++NumTryWindowSearch;
133 SchedDAG->startBlock(
MBB);
135 SchedDAG->schedule();
140 LLVM_DEBUG(
dbgs() <<
"Can't find a valid II. Keep searching...\n");
158 <<
" and Best II is " <<
BestII <<
".\n");
167 return OnlyBuildGraph
175 if (!
Subtarget->enableWindowScheduler()) {
202 if (PrevUses.
count(Phi.getOperand(0).getReg()))
204 PrevDefs.
insert(Phi.getOperand(0).getReg());
205 for (
unsigned I = 1, E = Phi.getNumOperands();
I != E;
I += 2) {
206 if (PrevDefs.
count(Phi.getOperand(
I).getReg()))
208 PrevUses.
insert(Phi.getOperand(
I).getReg());
212 auto PLI =
TII->analyzeLoopForPipelining(
MBB);
213 for (
auto &
MI : *
MBB) {
214 if (
MI.isMetaInstruction() ||
MI.isTerminator())
217 if (IsLoopCarried(
MI)) {
218 LLVM_DEBUG(
dbgs() <<
"Loop carried phis are not supported yet!\n");
225 if (
TII->isSchedulingBoundary(
MI,
MBB, *
MF)) {
227 dbgs() <<
"Boundary MI is not allowed in window scheduling!\n");
230 if (PLI->shouldIgnoreForPipelining(&
MI)) {
231 LLVM_DEBUG(
dbgs() <<
"Special MI defined by target is not allowed in "
232 "window scheduling!\n");
235 for (
auto &Def :
MI.all_defs())
236 if (Def.isReg() && Def.getReg().isPhysical()) {
238 "window scheduling!\n");
243 LLVM_DEBUG(
dbgs() <<
"There are too few MIs in the window region!\n");
256 MBB,
MBB->begin(),
MBB->getFirstTerminator(),
257 std::distance(
MBB->begin(),
MBB->getFirstTerminator()));
270 for (
auto &
MI :
MBB->instrs())
274 Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(
MI,
true);
282 Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(
MI,
true);
283 MI.eraseFromParent();
291 const unsigned DuplicateNum = 3;
294 assert(
OriMIs.size() > 0 &&
"The Original MIs were not backed up!");
300 if (
MI->isMetaInstruction() ||
MI->isTerminator())
304 DefPairs[
MI->getOperand(0).getReg()] = AntiReg;
305 auto *NewMI =
MF->CloneMachineInstr(
MI);
306 MBB->push_back(NewMI);
313 for (
size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
315 if (
MI->isPHI() ||
MI->isMetaInstruction() ||
316 (
MI->isTerminator() && Cnt < DuplicateNum - 1))
318 auto *NewMI =
MF->CloneMachineInstr(
MI);
321 for (
auto MO : NewMI->all_defs())
322 if (MO.isReg() && MO.getReg().isVirtual()) {
324 MRI->createVirtualRegister(
MRI->getRegClass(MO.getReg()));
325 NewMI->substituteRegister(MO.getReg(), NewDef, 0, *
TRI);
326 NewDefs[MO.getReg()] = NewDef;
329 for (
auto DefRegPair : DefPairs)
330 if (NewMI->readsRegister(DefRegPair.first,
TRI)) {
331 Register NewUse = DefRegPair.second;
359 if (
auto It = DefPairs.find(NewUse); It != DefPairs.end())
361 NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *
TRI);
364 for (
auto &NewDef : NewDefs)
365 DefPairs[NewDef.first] = NewDef.second;
366 MBB->push_back(NewMI);
377 for (
auto &Phi :
MBB->phis()) {
378 for (
auto DefRegPair : DefPairs)
379 if (Phi.readsRegister(DefRegPair.first,
TRI))
380 Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *
TRI);
387 for (
size_t I = 0;
I <
TriMIs.size(); ++
I) {
389 auto OldPos =
MBB->begin();
390 std::advance(OldPos,
I);
391 auto CurPos =
MI->getIterator();
392 if (CurPos != OldPos) {
393 MBB->splice(OldPos,
MBB, CurPos);
400 unsigned SearchRatio) {
405 assert(SearchRatio <= 100 &&
"SearchRatio should be equal or less than 100!");
407 unsigned Step = SearchNum > 0 && SearchNum <= MaxIdx ? MaxIdx / SearchNum : 1;
409 for (
unsigned Idx = 0; Idx < MaxIdx; Idx += Step)
411 return SearchIndexes;
416 unsigned MaxDepth = 1;
417 for (
auto &SU : DAG.
SUnits)
418 MaxDepth = std::max(SU.getDepth() + SU.Latency, MaxDepth);
419 return MaxDepth * WindowIICoeff;
434 int ExpectCycle = CurCycle;
436 for (
auto &Pred : SU->Preds) {
439 auto *PredMI = Pred.getSUnit()->getInstr();
441 ExpectCycle = std::max(ExpectCycle, PredCycle + (
int)Pred.getLatency());
444 if (!
TII->isZeroCost(
MI.getOpcode())) {
447 while (!RM.canReserveResources(*SU, CurCycle) || CurCycle < ExpectCycle) {
452 RM.reserveResources(*SU, CurCycle);
493 int MaxStallCycle = 0;
494 int CurrentII = MaxCycle + 1;
499 for (
auto &Succ : SU->Succs) {
500 if (Succ.isWeak() || Succ.getSUnit() == &
TripleDAG->ExitSU)
503 if (DefCycle + (
int)Succ.getLatency() <= CurrentII)
508 auto *SuccMI = Succ.getSUnit()->getInstr();
510 if (DefCycle < UseCycle)
513 int StallCycle = DefCycle + (int)Succ.getLatency() - CurrentII - UseCycle;
514 MaxStallCycle = std::max(MaxStallCycle, StallCycle);
517 LLVM_DEBUG(
dbgs() <<
"MaxStallCycle is " << MaxStallCycle <<
".\n");
518 return MaxStallCycle;
530 return MaxCycle + StallCycle + 1;
535 for (
auto &Phi :
MBB->phis()) {
536 int LateCycle = INT_MAX;
538 for (
auto &Succ : SU->Succs) {
544 auto *SuccMI = Succ.getSUnit()->getInstr();
547 LateCycle = std::min(LateCycle,
Cycle);
551 auto *AntiMI =
MRI->getVRegDef(AntiReg);
553 if (AntiMI->getParent() ==
MBB) {
556 LateCycle = std::min(LateCycle, AntiCycle);
560 if (LateCycle == INT_MAX)
561 LateCycle = (int)(
II - 1);
562 LLVM_DEBUG(
dbgs() <<
"\tCycle range [0, " << LateCycle <<
"] " << Phi);
575 for (
auto &Phi :
MBB->phis())
585 if (It == CycleToMIs.
end())
587 for (
auto *
MI : It->second)
588 IssueOrder[
MI] = Id++;
613 assert(IssueOrder.count(Pair.first) &&
"Cannot find original MI!");
614 SchedResult.push_back(std::make_tuple(Pair.first, Pair.second,
616 IssueOrder[Pair.first]));
623 [](
const std::tuple<MachineInstr *, int, int, int> &
A,
624 const std::tuple<MachineInstr *, int, int, int> &
B) {
625 return std::get<3>(
A) < std::get<3>(
B);
630 std::vector<MachineInstr *> OrderedInsts;
632 auto *
MI = std::get<0>(Info);
633 OrderedInsts.push_back(
MI);
634 Cycles[
MI] = std::get<1>(Info);
635 Stages[
MI] = std::get<2>(Info);
651 if (!MO.isReg() || MO.getReg() == 0)
657 Context->LIS->repairIntervalsInRange(
MBB,
MBB->begin(),
MBB->end(), UsedRegs);
662 auto RegionBegin =
MBB->begin();
663 std::advance(RegionBegin,
Offset);
664 auto RegionEnd = RegionBegin;
665 std::advance(RegionEnd, Num);
690 if (
MI->isMetaInstruction())
696 return Id >= (size_t)
Offset ? 1 : 0;
700 assert(Phi->isPHI() &&
"Expecting PHI!");
702 for (
auto MO : Phi->uses()) {
704 AntiReg = MO.getReg();
705 else if (MO.isMBB() && MO.getMBB() ==
MBB)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Target-Independent Code Generator Pass Configuration Options pass.
static cl::opt< unsigned > WindowIILimit("window-ii-limit", cl::desc("The upper limit of II in the window algorithm."), cl::Hidden, cl::init(1000))
iterator find(const_arg_type_t< KeyT > Val)
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, rewriting the old loop and...
void cleanup()
Performs final cleanup after expansion.
void expand()
Performs the actual expansion.
DenseMap< MachineInstr *, std::pair< Register, int64_t > > InstrChangesTy
Represents a schedule for a single-block loop.
Wrapper class representing virtual and physical registers.
@ Data
Regular data dependence (aka true-dependence).
A ScheduleDAG for scheduling lists of MachineInstr.
SUnit * getSUnit(MachineInstr *MI) const
Returns an existing SUnit for this MI, or nullptr.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
std::vector< SUnit > SUnits
The scheduling units.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The TimeTraceScope is a helper class to call the begin and end functions of the time trace profiler.
MachineInstr * getOriMI(MachineInstr *NewMI)
Get the original MI from which the new MI is cloned.
virtual ScheduleDAGInstrs * createMachineScheduler(bool OnlyBuildGraph=false)
Two types of ScheduleDAGs are needed, one for creating dependency graphs only, and the other for list...
unsigned SchedPhiNum
SchedPhiNum records the number of phi in the original MBB, and the scheduling starts with MI after ph...
virtual void preProcess()
Add some related processing before running window scheduling.
MachineSchedContext * Context
virtual void restoreTripleMBB()
Restore the order of MIs in TripleMBB after each list scheduling.
virtual void postProcess()
Add some related processing after running window scheduling.
DenseMap< MachineInstr *, int > OriToCycle
OriToCycle keeps the mappings between the original MI and its issue cycle.
virtual int calculateMaxCycle(ScheduleDAGInstrs &DAG, unsigned Offset)
Calculate MIs execution cycle after list scheduling.
MachineRegisterInfo * MRI
unsigned BestII
BestII and BestOffset record the characteristics of the best scheduling result and are used together ...
void backupMBB()
Back up the MIs in the original MBB and remove them from MBB.
DenseMap< MachineInstr *, MachineInstr * > TriToOri
TriToOri keeps the mappings between the MI clones in TripleMBB and their original MI.
int getEstimatedII(ScheduleDAGInstrs &DAG)
Estimate a II value at which all MIs will be scheduled successfully.
virtual void expand()
Using the scheduling infrastructure to expand the results of window scheduling.
DenseMap< MachineInstr *, int > getIssueOrder(unsigned Offset, unsigned II)
Get the final issue order of all scheduled MIs including phis.
Register getAntiRegister(MachineInstr *Phi)
Gets the register in phi which is generated from the current MBB.
unsigned getOriStage(MachineInstr *OriMI, unsigned Offset)
Get the scheduling stage, where the stage of the new MI is identical to the original MI.
const TargetRegisterInfo * TRI
virtual void updateLiveIntervals()
Update the live intervals for all registers used within MBB.
const TargetSubtargetInfo * Subtarget
std::unique_ptr< ScheduleDAGInstrs > TripleDAG
To innovatively identify the dependencies between MIs across two trips, we construct a DAG for a new ...
unsigned BaseII
BaseII is the II obtained when the window offset is SchedPhiNum.
virtual void schedulePhi(int Offset, unsigned &II)
Phis are scheduled separately after each list scheduling.
virtual unsigned analyseII(ScheduleDAGInstrs &DAG, unsigned Offset)
Analyzes the II value after each list scheduling.
int getOriCycle(MachineInstr *NewMI)
Get the issue cycle of the new MI based on the cycle of the original MI.
unsigned SchedInstrNum
SchedInstrNum records the MIs involved in scheduling in the original MBB, excluding debug instruction...
const TargetInstrInfo * TII
virtual void generateTripleMBB()
Make three copies of the original MBB to generate a new TripleMBB.
iterator_range< MachineBasicBlock::iterator > getScheduleRange(unsigned Offset, unsigned Num)
Gets the iterator range of MIs in the scheduling window.
virtual bool isScheduleValid()
Check whether the final result of window scheduling is valid.
virtual int calculateStallCycle(unsigned Offset, int MaxCycle)
Calculate the stall cycle between two trips after list scheduling.
virtual void updateScheduleResult(unsigned Offset, unsigned II)
Update the scheduling result after each list scheduling.
SmallVector< MachineInstr * > OriMIs
OriMIs keeps the MIs removed from the original MBB.
virtual bool initialize()
Initializes the algorithm and determines if it can be executed.
SmallVector< std::tuple< MachineInstr *, int, int, int >, 256 > SchedResult
SchedResult keeps the result of each list scheduling, and the format of the tuple is <MI pointer,...
virtual SmallVector< unsigned > getSearchIndexes(unsigned SearchNum, unsigned SearchRatio)
Give the folding position in the window algorithm, where different heuristics can be used.
void restoreMBB()
Erase the MIs in current MBB and restore the original MIs.
WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
SmallVector< MachineInstr * > TriMIs
TriMIs keeps the MIs of TripleMBB, which is used to restore TripleMBB.
A range adaptor for a pair of iterators.
@ C
The default llvm calling convention, compatible with C.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
void stable_sort(R &&Range)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...