LLVM  9.0.0svn
BitcodeWriter.cpp
Go to the documentation of this file.
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
60 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
68 #include "llvm/Support/SHA1.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 
84 static cl::opt<unsigned>
85  IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86  cl::desc("Number of metadatas above which we emit an index "
87  "to enable lazy-loading"));
88 
90  "write-relbf-to-summary", cl::Hidden, cl::init(false),
91  cl::desc("Write relative block frequency to function summary "));
92 
94 
95 namespace {
96 
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100  // VALUE_SYMTAB_BLOCK abbrev id's.
101  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102  VST_ENTRY_7_ABBREV,
103  VST_ENTRY_6_ABBREV,
104  VST_BBENTRY_6_ABBREV,
105 
106  // CONSTANTS_BLOCK abbrev id's.
107  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108  CONSTANTS_INTEGER_ABBREV,
109  CONSTANTS_CE_CAST_Abbrev,
110  CONSTANTS_NULL_Abbrev,
111 
112  // FUNCTION_BLOCK abbrev id's.
113  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114  FUNCTION_INST_UNOP_ABBREV,
115  FUNCTION_INST_UNOP_FLAGS_ABBREV,
116  FUNCTION_INST_BINOP_ABBREV,
117  FUNCTION_INST_BINOP_FLAGS_ABBREV,
118  FUNCTION_INST_CAST_ABBREV,
119  FUNCTION_INST_RET_VOID_ABBREV,
120  FUNCTION_INST_RET_VAL_ABBREV,
121  FUNCTION_INST_UNREACHABLE_ABBREV,
122  FUNCTION_INST_GEP_ABBREV,
123 };
124 
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129  /// The stream created and owned by the client.
130  BitstreamWriter &Stream;
131 
132  StringTableBuilder &StrtabBuilder;
133 
134 public:
135  /// Constructs a BitcodeWriterBase object that writes to the provided
136  /// \p Stream.
137  BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138  : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
139 
140 protected:
141  void writeBitcodeHeader();
142  void writeModuleVersion();
143 };
144 
145 void BitcodeWriterBase::writeModuleVersion() {
146  // VERSION: [version#]
147  Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
148 }
149 
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154  /// The Module to write to bitcode.
155  const Module &M;
156 
157  /// Enumerates ids for all values in the module.
158  ValueEnumerator VE;
159 
160  /// Optional per-module index to write for ThinLTO.
161  const ModuleSummaryIndex *Index;
162 
163  /// Map that holds the correspondence between GUIDs in the summary index,
164  /// that came from indirect call profiles, and a value id generated by this
165  /// class to use in the VST and summary block records.
166  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
167 
168  /// Tracks the last value id recorded in the GUIDToValueMap.
169  unsigned GlobalValueId;
170 
171  /// Saves the offset of the VSTOffset record that must eventually be
172  /// backpatched with the offset of the actual VST.
173  uint64_t VSTOffsetPlaceholder = 0;
174 
175 public:
176  /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177  /// writing to the provided \p Buffer.
178  ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179  BitstreamWriter &Stream,
180  bool ShouldPreserveUseListOrder,
181  const ModuleSummaryIndex *Index)
182  : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183  VE(M, ShouldPreserveUseListOrder), Index(Index) {
184  // Assign ValueIds to any callee values in the index that came from
185  // indirect call profiles and were recorded as a GUID not a Value*
186  // (which would have been assigned an ID by the ValueEnumerator).
187  // The starting ValueId is just after the number of values in the
188  // ValueEnumerator, so that they can be emitted in the VST.
189  GlobalValueId = VE.getValues().size();
190  if (!Index)
191  return;
192  for (const auto &GUIDSummaryLists : *Index)
193  // Examine all summaries for this GUID.
194  for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195  if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196  // For each call in the function summary, see if the call
197  // is to a GUID (which means it is for an indirect call,
198  // otherwise we would have a Value for it). If so, synthesize
199  // a value id.
200  for (auto &CallEdge : FS->calls())
201  if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202  assignValueId(CallEdge.first.getGUID());
203  }
204 
205 protected:
206  void writePerModuleGlobalValueSummary();
207 
208 private:
209  void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210  GlobalValueSummary *Summary,
211  unsigned ValueID,
212  unsigned FSCallsAbbrev,
213  unsigned FSCallsProfileAbbrev,
214  const Function &F);
215  void writeModuleLevelReferences(const GlobalVariable &V,
216  SmallVector<uint64_t, 64> &NameVals,
217  unsigned FSModRefsAbbrev);
218 
219  void assignValueId(GlobalValue::GUID ValGUID) {
220  GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
221  }
222 
223  unsigned getValueId(GlobalValue::GUID ValGUID) {
224  const auto &VMI = GUIDToValueIdMap.find(ValGUID);
225  // Expect that any GUID value had a value Id assigned by an
226  // earlier call to assignValueId.
227  assert(VMI != GUIDToValueIdMap.end() &&
228  "GUID does not have assigned value Id");
229  return VMI->second;
230  }
231 
232  // Helper to get the valueId for the type of value recorded in VI.
233  unsigned getValueId(ValueInfo VI) {
234  if (!VI.haveGVs() || !VI.getValue())
235  return getValueId(VI.getGUID());
236  return VE.getValueID(VI.getValue());
237  }
238 
239  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
240 };
241 
242 /// Class to manage the bitcode writing for a module.
243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
244  /// Pointer to the buffer allocated by caller for bitcode writing.
245  const SmallVectorImpl<char> &Buffer;
246 
247  /// True if a module hash record should be written.
248  bool GenerateHash;
249 
250  /// If non-null, when GenerateHash is true, the resulting hash is written
251  /// into ModHash.
252  ModuleHash *ModHash;
253 
254  SHA1 Hasher;
255 
256  /// The start bit of the identification block.
257  uint64_t BitcodeStartBit;
258 
259 public:
260  /// Constructs a ModuleBitcodeWriter object for the given Module,
261  /// writing to the provided \p Buffer.
262  ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
263  StringTableBuilder &StrtabBuilder,
264  BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
265  const ModuleSummaryIndex *Index, bool GenerateHash,
266  ModuleHash *ModHash = nullptr)
267  : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
268  ShouldPreserveUseListOrder, Index),
269  Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
270  BitcodeStartBit(Stream.GetCurrentBitNo()) {}
271 
272  /// Emit the current module to the bitstream.
273  void write();
274 
275 private:
276  uint64_t bitcodeStartBit() { return BitcodeStartBit; }
277 
278  size_t addToStrtab(StringRef Str);
279 
280  void writeAttributeGroupTable();
281  void writeAttributeTable();
282  void writeTypeTable();
283  void writeComdats();
284  void writeValueSymbolTableForwardDecl();
285  void writeModuleInfo();
286  void writeValueAsMetadata(const ValueAsMetadata *MD,
289  unsigned Abbrev);
290  unsigned createDILocationAbbrev();
292  unsigned &Abbrev);
293  unsigned createGenericDINodeAbbrev();
294  void writeGenericDINode(const GenericDINode *N,
295  SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297  unsigned Abbrev);
298  void writeDIEnumerator(const DIEnumerator *N,
299  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301  unsigned Abbrev);
302  void writeDIDerivedType(const DIDerivedType *N,
303  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308  unsigned Abbrev);
310  unsigned Abbrev);
311  void writeDICompileUnit(const DICompileUnit *N,
312  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313  void writeDISubprogram(const DISubprogram *N,
314  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319  unsigned Abbrev);
320  void writeDICommonBlock(const DICommonBlock *N,
321  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323  unsigned Abbrev);
325  unsigned Abbrev);
327  unsigned Abbrev);
329  unsigned Abbrev);
332  unsigned Abbrev);
335  unsigned Abbrev);
338  unsigned Abbrev);
340  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
341  void writeDILabel(const DILabel *N,
342  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343  void writeDIExpression(const DIExpression *N,
344  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
347  unsigned Abbrev);
349  SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
352  unsigned Abbrev);
353  unsigned createNamedMetadataAbbrev();
354  void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
355  unsigned createMetadataStringsAbbrev();
356  void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
358  void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
360  std::vector<unsigned> *MDAbbrevs = nullptr,
361  std::vector<uint64_t> *IndexPos = nullptr);
362  void writeModuleMetadata();
363  void writeFunctionMetadata(const Function &F);
364  void writeFunctionMetadataAttachment(const Function &F);
365  void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
366  void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
367  const GlobalObject &GO);
368  void writeModuleMetadataKinds();
369  void writeOperandBundleTags();
370  void writeSyncScopeNames();
371  void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
372  void writeModuleConstants();
373  bool pushValueAndType(const Value *V, unsigned InstID,
375  void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
376  void pushValue(const Value *V, unsigned InstID,
378  void pushValueSigned(const Value *V, unsigned InstID,
380  void writeInstruction(const Instruction &I, unsigned InstID,
382  void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
383  void writeGlobalValueSymbolTable(
384  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
385  void writeUseList(UseListOrder &&Order);
386  void writeUseListBlock(const Function *F);
387  void
388  writeFunction(const Function &F,
389  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
390  void writeBlockInfo();
391  void writeModuleHash(size_t BlockStartPos);
392 
393  unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
394  return unsigned(SSID);
395  }
396 };
397 
398 /// Class to manage the bitcode writing for a combined index.
399 class IndexBitcodeWriter : public BitcodeWriterBase {
400  /// The combined index to write to bitcode.
401  const ModuleSummaryIndex &Index;
402 
403  /// When writing a subset of the index for distributed backends, client
404  /// provides a map of modules to the corresponding GUIDs/summaries to write.
405  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
406 
407  /// Map that holds the correspondence between the GUID used in the combined
408  /// index and a value id generated by this class to use in references.
409  std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
410 
411  /// Tracks the last value id recorded in the GUIDToValueMap.
412  unsigned GlobalValueId = 0;
413 
414 public:
415  /// Constructs a IndexBitcodeWriter object for the given combined index,
416  /// writing to the provided \p Buffer. When writing a subset of the index
417  /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
418  IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
419  const ModuleSummaryIndex &Index,
420  const std::map<std::string, GVSummaryMapTy>
421  *ModuleToSummariesForIndex = nullptr)
422  : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
423  ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
424  // Assign unique value ids to all summaries to be written, for use
425  // in writing out the call graph edges. Save the mapping from GUID
426  // to the new global value id to use when writing those edges, which
427  // are currently saved in the index in terms of GUID.
428  forEachSummary([&](GVInfo I, bool) {
429  GUIDToValueIdMap[I.first] = ++GlobalValueId;
430  });
431  }
432 
433  /// The below iterator returns the GUID and associated summary.
434  using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
435 
436  /// Calls the callback for each value GUID and summary to be written to
437  /// bitcode. This hides the details of whether they are being pulled from the
438  /// entire index or just those in a provided ModuleToSummariesForIndex map.
439  template<typename Functor>
440  void forEachSummary(Functor Callback) {
441  if (ModuleToSummariesForIndex) {
442  for (auto &M : *ModuleToSummariesForIndex)
443  for (auto &Summary : M.second) {
444  Callback(Summary, false);
445  // Ensure aliasee is handled, e.g. for assigning a valueId,
446  // even if we are not importing the aliasee directly (the
447  // imported alias will contain a copy of aliasee).
448  if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
449  Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
450  }
451  } else {
452  for (auto &Summaries : Index)
453  for (auto &Summary : Summaries.second.SummaryList)
454  Callback({Summaries.first, Summary.get()}, false);
455  }
456  }
457 
458  /// Calls the callback for each entry in the modulePaths StringMap that
459  /// should be written to the module path string table. This hides the details
460  /// of whether they are being pulled from the entire index or just those in a
461  /// provided ModuleToSummariesForIndex map.
462  template <typename Functor> void forEachModule(Functor Callback) {
463  if (ModuleToSummariesForIndex) {
464  for (const auto &M : *ModuleToSummariesForIndex) {
465  const auto &MPI = Index.modulePaths().find(M.first);
466  if (MPI == Index.modulePaths().end()) {
467  // This should only happen if the bitcode file was empty, in which
468  // case we shouldn't be importing (the ModuleToSummariesForIndex
469  // would only include the module we are writing and index for).
470  assert(ModuleToSummariesForIndex->size() == 1);
471  continue;
472  }
473  Callback(*MPI);
474  }
475  } else {
476  for (const auto &MPSE : Index.modulePaths())
477  Callback(MPSE);
478  }
479  }
480 
481  /// Main entry point for writing a combined index to bitcode.
482  void write();
483 
484 private:
485  void writeModStrings();
486  void writeCombinedGlobalValueSummary();
487 
488  Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
489  auto VMI = GUIDToValueIdMap.find(ValGUID);
490  if (VMI == GUIDToValueIdMap.end())
491  return None;
492  return VMI->second;
493  }
494 
495  std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
496 };
497 
498 } // end anonymous namespace
499 
500 static unsigned getEncodedCastOpcode(unsigned Opcode) {
501  switch (Opcode) {
502  default: llvm_unreachable("Unknown cast instruction!");
503  case Instruction::Trunc : return bitc::CAST_TRUNC;
504  case Instruction::ZExt : return bitc::CAST_ZEXT;
505  case Instruction::SExt : return bitc::CAST_SEXT;
506  case Instruction::FPToUI : return bitc::CAST_FPTOUI;
507  case Instruction::FPToSI : return bitc::CAST_FPTOSI;
508  case Instruction::UIToFP : return bitc::CAST_UITOFP;
509  case Instruction::SIToFP : return bitc::CAST_SITOFP;
510  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
511  case Instruction::FPExt : return bitc::CAST_FPEXT;
512  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
513  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
514  case Instruction::BitCast : return bitc::CAST_BITCAST;
515  case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
516  }
517 }
518 
519 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
520  switch (Opcode) {
521  default: llvm_unreachable("Unknown binary instruction!");
522  case Instruction::FNeg: return bitc::UNOP_NEG;
523  }
524 }
525 
526 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
527  switch (Opcode) {
528  default: llvm_unreachable("Unknown binary instruction!");
529  case Instruction::Add:
530  case Instruction::FAdd: return bitc::BINOP_ADD;
531  case Instruction::Sub:
532  case Instruction::FSub: return bitc::BINOP_SUB;
533  case Instruction::Mul:
534  case Instruction::FMul: return bitc::BINOP_MUL;
535  case Instruction::UDiv: return bitc::BINOP_UDIV;
536  case Instruction::FDiv:
537  case Instruction::SDiv: return bitc::BINOP_SDIV;
538  case Instruction::URem: return bitc::BINOP_UREM;
539  case Instruction::FRem:
540  case Instruction::SRem: return bitc::BINOP_SREM;
541  case Instruction::Shl: return bitc::BINOP_SHL;
542  case Instruction::LShr: return bitc::BINOP_LSHR;
543  case Instruction::AShr: return bitc::BINOP_ASHR;
544  case Instruction::And: return bitc::BINOP_AND;
545  case Instruction::Or: return bitc::BINOP_OR;
546  case Instruction::Xor: return bitc::BINOP_XOR;
547  }
548 }
549 
551  switch (Op) {
552  default: llvm_unreachable("Unknown RMW operation!");
553  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
554  case AtomicRMWInst::Add: return bitc::RMW_ADD;
555  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
556  case AtomicRMWInst::And: return bitc::RMW_AND;
557  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
558  case AtomicRMWInst::Or: return bitc::RMW_OR;
559  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
560  case AtomicRMWInst::Max: return bitc::RMW_MAX;
561  case AtomicRMWInst::Min: return bitc::RMW_MIN;
562  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
563  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
564  case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
565  case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
566  }
567 }
568 
569 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
570  switch (Ordering) {
578  }
579  llvm_unreachable("Invalid ordering");
580 }
581 
582 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
583  StringRef Str, unsigned AbbrevToUse) {
585 
586  // Code: [strchar x N]
587  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
588  if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
589  AbbrevToUse = 0;
590  Vals.push_back(Str[i]);
591  }
592 
593  // Emit the finished record.
594  Stream.EmitRecord(Code, Vals, AbbrevToUse);
595 }
596 
598  switch (Kind) {
599  case Attribute::Alignment:
601  case Attribute::AllocSize:
603  case Attribute::AlwaysInline:
605  case Attribute::ArgMemOnly:
607  case Attribute::Builtin:
609  case Attribute::ByVal:
610  return bitc::ATTR_KIND_BY_VAL;
613  case Attribute::InAlloca:
615  case Attribute::Cold:
616  return bitc::ATTR_KIND_COLD;
617  case Attribute::InaccessibleMemOnly:
619  case Attribute::InaccessibleMemOrArgMemOnly:
621  case Attribute::InlineHint:
623  case Attribute::InReg:
624  return bitc::ATTR_KIND_IN_REG;
627  case Attribute::MinSize:
629  case Attribute::Naked:
630  return bitc::ATTR_KIND_NAKED;
631  case Attribute::Nest:
632  return bitc::ATTR_KIND_NEST;
633  case Attribute::NoAlias:
635  case Attribute::NoBuiltin:
637  case Attribute::NoCapture:
639  case Attribute::NoDuplicate:
641  case Attribute::NoImplicitFloat:
643  case Attribute::NoInline:
645  case Attribute::NoRecurse:
647  case Attribute::NonLazyBind:
649  case Attribute::NonNull:
651  case Attribute::Dereferenceable:
653  case Attribute::DereferenceableOrNull:
655  case Attribute::NoRedZone:
657  case Attribute::NoReturn:
659  case Attribute::NoCfCheck:
661  case Attribute::NoUnwind:
663  case Attribute::OptForFuzzing:
665  case Attribute::OptimizeForSize:
667  case Attribute::OptimizeNone:
669  case Attribute::ReadNone:
671  case Attribute::ReadOnly:
673  case Attribute::Returned:
675  case Attribute::ReturnsTwice:
677  case Attribute::SExt:
678  return bitc::ATTR_KIND_S_EXT;
679  case Attribute::Speculatable:
681  case Attribute::StackAlignment:
683  case Attribute::StackProtect:
685  case Attribute::StackProtectReq:
687  case Attribute::StackProtectStrong:
689  case Attribute::SafeStack:
691  case Attribute::ShadowCallStack:
693  case Attribute::StrictFP:
695  case Attribute::StructRet:
697  case Attribute::SanitizeAddress:
699  case Attribute::SanitizeHWAddress:
701  case Attribute::SanitizeThread:
703  case Attribute::SanitizeMemory:
705  case Attribute::SpeculativeLoadHardening:
707  case Attribute::SwiftError:
709  case Attribute::SwiftSelf:
711  case Attribute::UWTable:
713  case Attribute::WriteOnly:
715  case Attribute::ZExt:
716  return bitc::ATTR_KIND_Z_EXT;
717  case Attribute::ImmArg:
718  return bitc::ATTR_KIND_IMMARG;
720  llvm_unreachable("Can not encode end-attribute kinds marker.");
721  case Attribute::None:
722  llvm_unreachable("Can not encode none-attribute.");
723  }
724 
725  llvm_unreachable("Trying to encode unknown attribute");
726 }
727 
728 void ModuleBitcodeWriter::writeAttributeGroupTable() {
729  const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
730  VE.getAttributeGroups();
731  if (AttrGrps.empty()) return;
732 
734 
736  for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
737  unsigned AttrListIndex = Pair.first;
738  AttributeSet AS = Pair.second;
739  Record.push_back(VE.getAttributeGroupID(Pair));
740  Record.push_back(AttrListIndex);
741 
742  for (Attribute Attr : AS) {
743  if (Attr.isEnumAttribute()) {
744  Record.push_back(0);
745  Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
746  } else if (Attr.isIntAttribute()) {
747  Record.push_back(1);
748  Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
749  Record.push_back(Attr.getValueAsInt());
750  } else {
751  StringRef Kind = Attr.getKindAsString();
752  StringRef Val = Attr.getValueAsString();
753 
754  Record.push_back(Val.empty() ? 3 : 4);
755  Record.append(Kind.begin(), Kind.end());
756  Record.push_back(0);
757  if (!Val.empty()) {
758  Record.append(Val.begin(), Val.end());
759  Record.push_back(0);
760  }
761  }
762  }
763 
765  Record.clear();
766  }
767 
768  Stream.ExitBlock();
769 }
770 
771 void ModuleBitcodeWriter::writeAttributeTable() {
772  const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
773  if (Attrs.empty()) return;
774 
776 
778  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
779  AttributeList AL = Attrs[i];
780  for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
781  AttributeSet AS = AL.getAttributes(i);
782  if (AS.hasAttributes())
783  Record.push_back(VE.getAttributeGroupID({i, AS}));
784  }
785 
786  Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
787  Record.clear();
788  }
789 
790  Stream.ExitBlock();
791 }
792 
793 /// WriteTypeTable - Write out the type table for a module.
794 void ModuleBitcodeWriter::writeTypeTable() {
795  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
796 
797  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
798  SmallVector<uint64_t, 64> TypeVals;
799 
800  uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
801 
802  // Abbrev for TYPE_CODE_POINTER.
803  auto Abbv = std::make_shared<BitCodeAbbrev>();
805  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
806  Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
807  unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
808 
809  // Abbrev for TYPE_CODE_FUNCTION.
810  Abbv = std::make_shared<BitCodeAbbrev>();
812  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
814  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
815  unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
816 
817  // Abbrev for TYPE_CODE_STRUCT_ANON.
818  Abbv = std::make_shared<BitCodeAbbrev>();
820  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
822  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
823  unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
824 
825  // Abbrev for TYPE_CODE_STRUCT_NAME.
826  Abbv = std::make_shared<BitCodeAbbrev>();
830  unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
831 
832  // Abbrev for TYPE_CODE_STRUCT_NAMED.
833  Abbv = std::make_shared<BitCodeAbbrev>();
835  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
837  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
838  unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
839 
840  // Abbrev for TYPE_CODE_ARRAY.
841  Abbv = std::make_shared<BitCodeAbbrev>();
843  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
844  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
845  unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
846 
847  // Emit an entry count so the reader can reserve space.
848  TypeVals.push_back(TypeList.size());
849  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
850  TypeVals.clear();
851 
852  // Loop over all of the types, emitting each in turn.
853  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
854  Type *T = TypeList[i];
855  int AbbrevToUse = 0;
856  unsigned Code = 0;
857 
858  switch (T->getTypeID()) {
859  case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
860  case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
861  case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
862  case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
863  case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
864  case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
866  case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
867  case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
868  case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
869  case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
870  case Type::IntegerTyID:
871  // INTEGER: [width]
873  TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
874  break;
875  case Type::PointerTyID: {
876  PointerType *PTy = cast<PointerType>(T);
877  // POINTER: [pointee type, address space]
879  TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
880  unsigned AddressSpace = PTy->getAddressSpace();
881  TypeVals.push_back(AddressSpace);
882  if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
883  break;
884  }
885  case Type::FunctionTyID: {
886  FunctionType *FT = cast<FunctionType>(T);
887  // FUNCTION: [isvararg, retty, paramty x N]
889  TypeVals.push_back(FT->isVarArg());
890  TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
891  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
892  TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
893  AbbrevToUse = FunctionAbbrev;
894  break;
895  }
896  case Type::StructTyID: {
897  StructType *ST = cast<StructType>(T);
898  // STRUCT: [ispacked, eltty x N]
899  TypeVals.push_back(ST->isPacked());
900  // Output all of the element types.
902  E = ST->element_end(); I != E; ++I)
903  TypeVals.push_back(VE.getTypeID(*I));
904 
905  if (ST->isLiteral()) {
907  AbbrevToUse = StructAnonAbbrev;
908  } else {
909  if (ST->isOpaque()) {
910  Code = bitc::TYPE_CODE_OPAQUE;
911  } else {
913  AbbrevToUse = StructNamedAbbrev;
914  }
915 
916  // Emit the name if it is present.
917  if (!ST->getName().empty())
919  StructNameAbbrev);
920  }
921  break;
922  }
923  case Type::ArrayTyID: {
924  ArrayType *AT = cast<ArrayType>(T);
925  // ARRAY: [numelts, eltty]
926  Code = bitc::TYPE_CODE_ARRAY;
927  TypeVals.push_back(AT->getNumElements());
928  TypeVals.push_back(VE.getTypeID(AT->getElementType()));
929  AbbrevToUse = ArrayAbbrev;
930  break;
931  }
932  case Type::VectorTyID: {
933  VectorType *VT = cast<VectorType>(T);
934  // VECTOR [numelts, eltty]
935  Code = bitc::TYPE_CODE_VECTOR;
936  TypeVals.push_back(VT->getNumElements());
937  TypeVals.push_back(VE.getTypeID(VT->getElementType()));
938  break;
939  }
940  }
941 
942  // Emit the finished record.
943  Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
944  TypeVals.clear();
945  }
946 
947  Stream.ExitBlock();
948 }
949 
950 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
951  switch (Linkage) {
953  return 0;
955  return 16;
957  return 2;
959  return 3;
961  return 18;
963  return 7;
965  return 8;
967  return 9;
969  return 17;
971  return 19;
973  return 12;
974  }
975  llvm_unreachable("Invalid linkage");
976 }
977 
978 static unsigned getEncodedLinkage(const GlobalValue &GV) {
979  return getEncodedLinkage(GV.getLinkage());
980 }
981 
983  uint64_t RawFlags = 0;
984  RawFlags |= Flags.ReadNone;
985  RawFlags |= (Flags.ReadOnly << 1);
986  RawFlags |= (Flags.NoRecurse << 2);
987  RawFlags |= (Flags.ReturnDoesNotAlias << 3);
988  RawFlags |= (Flags.NoInline << 4);
989  return RawFlags;
990 }
991 
992 // Decode the flags for GlobalValue in the summary
994  uint64_t RawFlags = 0;
995 
996  RawFlags |= Flags.NotEligibleToImport; // bool
997  RawFlags |= (Flags.Live << 1);
998  RawFlags |= (Flags.DSOLocal << 2);
999  RawFlags |= (Flags.CanAutoHide << 3);
1000 
1001  // Linkage don't need to be remapped at that time for the summary. Any future
1002  // change to the getEncodedLinkage() function will need to be taken into
1003  // account here as well.
1004  RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1005 
1006  return RawFlags;
1007 }
1008 
1010  uint64_t RawFlags = Flags.ReadOnly;
1011  return RawFlags;
1012 }
1013 
1014 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1015  switch (GV.getVisibility()) {
1016  case GlobalValue::DefaultVisibility: return 0;
1017  case GlobalValue::HiddenVisibility: return 1;
1018  case GlobalValue::ProtectedVisibility: return 2;
1019  }
1020  llvm_unreachable("Invalid visibility");
1021 }
1022 
1023 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1024  switch (GV.getDLLStorageClass()) {
1025  case GlobalValue::DefaultStorageClass: return 0;
1026  case GlobalValue::DLLImportStorageClass: return 1;
1027  case GlobalValue::DLLExportStorageClass: return 2;
1028  }
1029  llvm_unreachable("Invalid DLL storage class");
1030 }
1031 
1032 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1033  switch (GV.getThreadLocalMode()) {
1034  case GlobalVariable::NotThreadLocal: return 0;
1036  case GlobalVariable::LocalDynamicTLSModel: return 2;
1037  case GlobalVariable::InitialExecTLSModel: return 3;
1038  case GlobalVariable::LocalExecTLSModel: return 4;
1039  }
1040  llvm_unreachable("Invalid TLS model");
1041 }
1042 
1043 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1044  switch (C.getSelectionKind()) {
1045  case Comdat::Any:
1047  case Comdat::ExactMatch:
1049  case Comdat::Largest:
1051  case Comdat::NoDuplicates:
1053  case Comdat::SameSize:
1055  }
1056  llvm_unreachable("Invalid selection kind");
1057 }
1058 
1059 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1060  switch (GV.getUnnamedAddr()) {
1061  case GlobalValue::UnnamedAddr::None: return 0;
1062  case GlobalValue::UnnamedAddr::Local: return 2;
1063  case GlobalValue::UnnamedAddr::Global: return 1;
1064  }
1065  llvm_unreachable("Invalid unnamed_addr");
1066 }
1067 
1068 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1069  if (GenerateHash)
1070  Hasher.update(Str);
1071  return StrtabBuilder.add(Str);
1072 }
1073 
1074 void ModuleBitcodeWriter::writeComdats() {
1076  for (const Comdat *C : VE.getComdats()) {
1077  // COMDAT: [strtab offset, strtab size, selection_kind]
1078  Vals.push_back(addToStrtab(C->getName()));
1079  Vals.push_back(C->getName().size());
1081  Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1082  Vals.clear();
1083  }
1084 }
1085 
1086 /// Write a record that will eventually hold the word offset of the
1087 /// module-level VST. For now the offset is 0, which will be backpatched
1088 /// after the real VST is written. Saves the bit offset to backpatch.
1089 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1090  // Write a placeholder value in for the offset of the real VST,
1091  // which is written after the function blocks so that it can include
1092  // the offset of each function. The placeholder offset will be
1093  // updated when the real VST is written.
1094  auto Abbv = std::make_shared<BitCodeAbbrev>();
1096  // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1097  // hold the real VST offset. Must use fixed instead of VBR as we don't
1098  // know how many VBR chunks to reserve ahead of time.
1099  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1100  unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1101 
1102  // Emit the placeholder
1103  uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1104  Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1105 
1106  // Compute and save the bit offset to the placeholder, which will be
1107  // patched when the real VST is written. We can simply subtract the 32-bit
1108  // fixed size from the current bit number to get the location to backpatch.
1109  VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1110 }
1111 
1113 
1114 /// Determine the encoding to use for the given string name and length.
1116  bool isChar6 = true;
1117  for (char C : Str) {
1118  if (isChar6)
1119  isChar6 = BitCodeAbbrevOp::isChar6(C);
1120  if ((unsigned char)C & 128)
1121  // don't bother scanning the rest.
1122  return SE_Fixed8;
1123  }
1124  if (isChar6)
1125  return SE_Char6;
1126  return SE_Fixed7;
1127 }
1128 
1129 /// Emit top-level description of module, including target triple, inline asm,
1130 /// descriptors for global variables, and function prototype info.
1131 /// Returns the bit offset to backpatch with the location of the real VST.
1132 void ModuleBitcodeWriter::writeModuleInfo() {
1133  // Emit various pieces of data attached to a module.
1134  if (!M.getTargetTriple().empty())
1136  0 /*TODO*/);
1137  const std::string &DL = M.getDataLayoutStr();
1138  if (!DL.empty())
1139  writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1140  if (!M.getModuleInlineAsm().empty())
1142  0 /*TODO*/);
1143 
1144  // Emit information about sections and GC, computing how many there are. Also
1145  // compute the maximum alignment value.
1146  std::map<std::string, unsigned> SectionMap;
1147  std::map<std::string, unsigned> GCMap;
1148  unsigned MaxAlignment = 0;
1149  unsigned MaxGlobalType = 0;
1150  for (const GlobalValue &GV : M.globals()) {
1151  MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1152  MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1153  if (GV.hasSection()) {
1154  // Give section names unique ID's.
1155  unsigned &Entry = SectionMap[GV.getSection()];
1156  if (!Entry) {
1157  writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1158  0 /*TODO*/);
1159  Entry = SectionMap.size();
1160  }
1161  }
1162  }
1163  for (const Function &F : M) {
1164  MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1165  if (F.hasSection()) {
1166  // Give section names unique ID's.
1167  unsigned &Entry = SectionMap[F.getSection()];
1168  if (!Entry) {
1169  writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1170  0 /*TODO*/);
1171  Entry = SectionMap.size();
1172  }
1173  }
1174  if (F.hasGC()) {
1175  // Same for GC names.
1176  unsigned &Entry = GCMap[F.getGC()];
1177  if (!Entry) {
1178  writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1179  0 /*TODO*/);
1180  Entry = GCMap.size();
1181  }
1182  }
1183  }
1184 
1185  // Emit abbrev for globals, now that we know # sections and max alignment.
1186  unsigned SimpleGVarAbbrev = 0;
1187  if (!M.global_empty()) {
1188  // Add an abbrev for common globals with no visibility or thread localness.
1189  auto Abbv = std::make_shared<BitCodeAbbrev>();
1191  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1192  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1194  Log2_32_Ceil(MaxGlobalType+1)));
1195  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1196  //| explicitType << 1
1197  //| constant
1198  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1199  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1200  if (MaxAlignment == 0) // Alignment.
1201  Abbv->Add(BitCodeAbbrevOp(0));
1202  else {
1203  unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1205  Log2_32_Ceil(MaxEncAlignment+1)));
1206  }
1207  if (SectionMap.empty()) // Section.
1208  Abbv->Add(BitCodeAbbrevOp(0));
1209  else
1211  Log2_32_Ceil(SectionMap.size()+1)));
1212  // Don't bother emitting vis + thread local.
1213  SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1214  }
1215 
1217  // Emit the module's source file name.
1218  {
1219  StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1221  if (Bits == SE_Char6)
1222  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1223  else if (Bits == SE_Fixed7)
1224  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1225 
1226  // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1227  auto Abbv = std::make_shared<BitCodeAbbrev>();
1230  Abbv->Add(AbbrevOpToUse);
1231  unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1232 
1233  for (const auto P : M.getSourceFileName())
1234  Vals.push_back((unsigned char)P);
1235 
1236  // Emit the finished record.
1237  Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1238  Vals.clear();
1239  }
1240 
1241  // Emit the global variable information.
1242  for (const GlobalVariable &GV : M.globals()) {
1243  unsigned AbbrevToUse = 0;
1244 
1245  // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1246  // linkage, alignment, section, visibility, threadlocal,
1247  // unnamed_addr, externally_initialized, dllstorageclass,
1248  // comdat, attributes, DSO_Local]
1249  Vals.push_back(addToStrtab(GV.getName()));
1250  Vals.push_back(GV.getName().size());
1251  Vals.push_back(VE.getTypeID(GV.getValueType()));
1252  Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1253  Vals.push_back(GV.isDeclaration() ? 0 :
1254  (VE.getValueID(GV.getInitializer()) + 1));
1255  Vals.push_back(getEncodedLinkage(GV));
1256  Vals.push_back(Log2_32(GV.getAlignment())+1);
1257  Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1258  if (GV.isThreadLocal() ||
1259  GV.getVisibility() != GlobalValue::DefaultVisibility ||
1260  GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1261  GV.isExternallyInitialized() ||
1262  GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1263  GV.hasComdat() ||
1264  GV.hasAttributes() ||
1265  GV.isDSOLocal()) {
1266  Vals.push_back(getEncodedVisibility(GV));
1268  Vals.push_back(getEncodedUnnamedAddr(GV));
1269  Vals.push_back(GV.isExternallyInitialized());
1271  Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1272 
1273  auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1274  Vals.push_back(VE.getAttributeListID(AL));
1275 
1276  Vals.push_back(GV.isDSOLocal());
1277  } else {
1278  AbbrevToUse = SimpleGVarAbbrev;
1279  }
1280 
1281  Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1282  Vals.clear();
1283  }
1284 
1285  // Emit the function proto information.
1286  for (const Function &F : M) {
1287  // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1288  // linkage, paramattrs, alignment, section, visibility, gc,
1289  // unnamed_addr, prologuedata, dllstorageclass, comdat,
1290  // prefixdata, personalityfn, DSO_Local, addrspace]
1291  Vals.push_back(addToStrtab(F.getName()));
1292  Vals.push_back(F.getName().size());
1293  Vals.push_back(VE.getTypeID(F.getFunctionType()));
1294  Vals.push_back(F.getCallingConv());
1295  Vals.push_back(F.isDeclaration());
1296  Vals.push_back(getEncodedLinkage(F));
1297  Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1298  Vals.push_back(Log2_32(F.getAlignment())+1);
1299  Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1301  Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1303  Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1304  : 0);
1306  Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1307  Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1308  : 0);
1309  Vals.push_back(
1310  F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1311 
1312  Vals.push_back(F.isDSOLocal());
1313  Vals.push_back(F.getAddressSpace());
1314 
1315  unsigned AbbrevToUse = 0;
1316  Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1317  Vals.clear();
1318  }
1319 
1320  // Emit the alias information.
1321  for (const GlobalAlias &A : M.aliases()) {
1322  // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1323  // visibility, dllstorageclass, threadlocal, unnamed_addr,
1324  // DSO_Local]
1325  Vals.push_back(addToStrtab(A.getName()));
1326  Vals.push_back(A.getName().size());
1327  Vals.push_back(VE.getTypeID(A.getValueType()));
1328  Vals.push_back(A.getType()->getAddressSpace());
1329  Vals.push_back(VE.getValueID(A.getAliasee()));
1330  Vals.push_back(getEncodedLinkage(A));
1335  Vals.push_back(A.isDSOLocal());
1336 
1337  unsigned AbbrevToUse = 0;
1338  Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1339  Vals.clear();
1340  }
1341 
1342  // Emit the ifunc information.
1343  for (const GlobalIFunc &I : M.ifuncs()) {
1344  // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1345  // val#, linkage, visibility, DSO_Local]
1346  Vals.push_back(addToStrtab(I.getName()));
1347  Vals.push_back(I.getName().size());
1348  Vals.push_back(VE.getTypeID(I.getValueType()));
1349  Vals.push_back(I.getType()->getAddressSpace());
1350  Vals.push_back(VE.getValueID(I.getResolver()));
1351  Vals.push_back(getEncodedLinkage(I));
1353  Vals.push_back(I.isDSOLocal());
1354  Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1355  Vals.clear();
1356  }
1357 
1358  writeValueSymbolTableForwardDecl();
1359 }
1360 
1361 static uint64_t getOptimizationFlags(const Value *V) {
1362  uint64_t Flags = 0;
1363 
1364  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1365  if (OBO->hasNoSignedWrap())
1366  Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1367  if (OBO->hasNoUnsignedWrap())
1368  Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1369  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1370  if (PEO->isExact())
1371  Flags |= 1 << bitc::PEO_EXACT;
1372  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1373  if (FPMO->hasAllowReassoc())
1374  Flags |= bitc::AllowReassoc;
1375  if (FPMO->hasNoNaNs())
1376  Flags |= bitc::NoNaNs;
1377  if (FPMO->hasNoInfs())
1378  Flags |= bitc::NoInfs;
1379  if (FPMO->hasNoSignedZeros())
1380  Flags |= bitc::NoSignedZeros;
1381  if (FPMO->hasAllowReciprocal())
1382  Flags |= bitc::AllowReciprocal;
1383  if (FPMO->hasAllowContract())
1384  Flags |= bitc::AllowContract;
1385  if (FPMO->hasApproxFunc())
1386  Flags |= bitc::ApproxFunc;
1387  }
1388 
1389  return Flags;
1390 }
1391 
1392 void ModuleBitcodeWriter::writeValueAsMetadata(
1394  // Mimic an MDNode with a value as one operand.
1395  Value *V = MD->getValue();
1396  Record.push_back(VE.getTypeID(V->getType()));
1397  Record.push_back(VE.getValueID(V));
1398  Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1399  Record.clear();
1400 }
1401 
1403  SmallVectorImpl<uint64_t> &Record,
1404  unsigned Abbrev) {
1405  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1406  Metadata *MD = N->getOperand(i);
1407  assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1408  "Unexpected function-local metadata");
1409  Record.push_back(VE.getMetadataOrNullID(MD));
1410  }
1413  Record, Abbrev);
1414  Record.clear();
1415 }
1416 
1417 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1418  // Assume the column is usually under 128, and always output the inlined-at
1419  // location (it's never more expensive than building an array size 1).
1420  auto Abbv = std::make_shared<BitCodeAbbrev>();
1422  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1423  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1424  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1425  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1426  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1427  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1428  return Stream.EmitAbbrev(std::move(Abbv));
1429 }
1430 
1432  SmallVectorImpl<uint64_t> &Record,
1433  unsigned &Abbrev) {
1434  if (!Abbrev)
1435  Abbrev = createDILocationAbbrev();
1436 
1437  Record.push_back(N->isDistinct());
1438  Record.push_back(N->getLine());
1439  Record.push_back(N->getColumn());
1440  Record.push_back(VE.getMetadataID(N->getScope()));
1441  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1442  Record.push_back(N->isImplicitCode());
1443 
1444  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1445  Record.clear();
1446 }
1447 
1448 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1449  // Assume the column is usually under 128, and always output the inlined-at
1450  // location (it's never more expensive than building an array size 1).
1451  auto Abbv = std::make_shared<BitCodeAbbrev>();
1453  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1454  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1455  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1456  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1458  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1459  return Stream.EmitAbbrev(std::move(Abbv));
1460 }
1461 
1463  SmallVectorImpl<uint64_t> &Record,
1464  unsigned &Abbrev) {
1465  if (!Abbrev)
1466  Abbrev = createGenericDINodeAbbrev();
1467 
1468  Record.push_back(N->isDistinct());
1469  Record.push_back(N->getTag());
1470  Record.push_back(0); // Per-tag version field; unused for now.
1471 
1472  for (auto &I : N->operands())
1473  Record.push_back(VE.getMetadataOrNullID(I));
1474 
1475  Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1476  Record.clear();
1477 }
1478 
1479 static uint64_t rotateSign(int64_t I) {
1480  uint64_t U = I;
1481  return I < 0 ? ~(U << 1) : U << 1;
1482 }
1483 
1485  SmallVectorImpl<uint64_t> &Record,
1486  unsigned Abbrev) {
1487  const uint64_t Version = 1 << 1;
1488  Record.push_back((uint64_t)N->isDistinct() | Version);
1489  Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1490  Record.push_back(rotateSign(N->getLowerBound()));
1491 
1492  Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1493  Record.clear();
1494 }
1495 
1497  SmallVectorImpl<uint64_t> &Record,
1498  unsigned Abbrev) {
1499  Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1500  Record.push_back(rotateSign(N->getValue()));
1501  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1502 
1503  Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1504  Record.clear();
1505 }
1506 
1508  SmallVectorImpl<uint64_t> &Record,
1509  unsigned Abbrev) {
1510  Record.push_back(N->isDistinct());
1511  Record.push_back(N->getTag());
1512  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1513  Record.push_back(N->getSizeInBits());
1514  Record.push_back(N->getAlignInBits());
1515  Record.push_back(N->getEncoding());
1516  Record.push_back(N->getFlags());
1517 
1518  Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1519  Record.clear();
1520 }
1521 
1523  SmallVectorImpl<uint64_t> &Record,
1524  unsigned Abbrev) {
1525  Record.push_back(N->isDistinct());
1526  Record.push_back(N->getTag());
1527  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1528  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1529  Record.push_back(N->getLine());
1530  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1531  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1532  Record.push_back(N->getSizeInBits());
1533  Record.push_back(N->getAlignInBits());
1534  Record.push_back(N->getOffsetInBits());
1535  Record.push_back(N->getFlags());
1536  Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1537 
1538  // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1539  // that there is no DWARF address space associated with DIDerivedType.
1540  if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1541  Record.push_back(*DWARFAddressSpace + 1);
1542  else
1543  Record.push_back(0);
1544 
1545  Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1546  Record.clear();
1547 }
1548 
1550  const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1551  unsigned Abbrev) {
1552  const unsigned IsNotUsedInOldTypeRef = 0x2;
1553  Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1554  Record.push_back(N->getTag());
1555  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1556  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1557  Record.push_back(N->getLine());
1558  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1559  Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1560  Record.push_back(N->getSizeInBits());
1561  Record.push_back(N->getAlignInBits());
1562  Record.push_back(N->getOffsetInBits());
1563  Record.push_back(N->getFlags());
1564  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1565  Record.push_back(N->getRuntimeLang());
1567  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1570 
1571  Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1572  Record.clear();
1573 }
1574 
1576  const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1577  unsigned Abbrev) {
1578  const unsigned HasNoOldTypeRefs = 0x2;
1579  Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1580  Record.push_back(N->getFlags());
1581  Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1582  Record.push_back(N->getCC());
1583 
1584  Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1585  Record.clear();
1586 }
1587 
1589  SmallVectorImpl<uint64_t> &Record,
1590  unsigned Abbrev) {
1591  Record.push_back(N->isDistinct());
1592  Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1593  Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1594  if (N->getRawChecksum()) {
1595  Record.push_back(N->getRawChecksum()->Kind);
1596  Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1597  } else {
1598  // Maintain backwards compatibility with the old internal representation of
1599  // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1600  Record.push_back(0);
1601  Record.push_back(VE.getMetadataOrNullID(nullptr));
1602  }
1603  auto Source = N->getRawSource();
1604  if (Source)
1605  Record.push_back(VE.getMetadataOrNullID(*Source));
1606 
1607  Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1608  Record.clear();
1609 }
1610 
1612  SmallVectorImpl<uint64_t> &Record,
1613  unsigned Abbrev) {
1614  assert(N->isDistinct() && "Expected distinct compile units");
1615  Record.push_back(/* IsDistinct */ true);
1616  Record.push_back(N->getSourceLanguage());
1617  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1618  Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1619  Record.push_back(N->isOptimized());
1620  Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1621  Record.push_back(N->getRuntimeVersion());
1623  Record.push_back(N->getEmissionKind());
1624  Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1625  Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1626  Record.push_back(/* subprograms */ 0);
1627  Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1628  Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1629  Record.push_back(N->getDWOId());
1630  Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1631  Record.push_back(N->getSplitDebugInlining());
1632  Record.push_back(N->getDebugInfoForProfiling());
1633  Record.push_back((unsigned)N->getNameTableKind());
1634 
1635  Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1636  Record.clear();
1637 }
1638 
1640  SmallVectorImpl<uint64_t> &Record,
1641  unsigned Abbrev) {
1642  const uint64_t HasUnitFlag = 1 << 1;
1643  const uint64_t HasSPFlagsFlag = 1 << 2;
1644  Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1645  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1646  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1647  Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1648  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1649  Record.push_back(N->getLine());
1650  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1651  Record.push_back(N->getScopeLine());
1652  Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1653  Record.push_back(N->getSPFlags());
1654  Record.push_back(N->getVirtualIndex());
1655  Record.push_back(N->getFlags());
1656  Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1657  Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1658  Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1659  Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1660  Record.push_back(N->getThisAdjustment());
1661  Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1662 
1663  Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1664  Record.clear();
1665 }
1666 
1668  SmallVectorImpl<uint64_t> &Record,
1669  unsigned Abbrev) {
1670  Record.push_back(N->isDistinct());
1671  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1672  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1673  Record.push_back(N->getLine());
1674  Record.push_back(N->getColumn());
1675 
1676  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1677  Record.clear();
1678 }
1679 
1682  unsigned Abbrev) {
1683  Record.push_back(N->isDistinct());
1684  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1685  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1686  Record.push_back(N->getDiscriminator());
1687 
1688  Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1689  Record.clear();
1690 }
1691 
1693  SmallVectorImpl<uint64_t> &Record,
1694  unsigned Abbrev) {
1695  Record.push_back(N->isDistinct());
1696  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1697  Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1698  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1699  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1700  Record.push_back(N->getLineNo());
1701 
1702  Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1703  Record.clear();
1704 }
1705 
1707  SmallVectorImpl<uint64_t> &Record,
1708  unsigned Abbrev) {
1709  Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1710  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1711  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1712 
1713  Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1714  Record.clear();
1715 }
1716 
1718  SmallVectorImpl<uint64_t> &Record,
1719  unsigned Abbrev) {
1720  Record.push_back(N->isDistinct());
1721  Record.push_back(N->getMacinfoType());
1722  Record.push_back(N->getLine());
1723  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1724  Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1725 
1726  Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1727  Record.clear();
1728 }
1729 
1731  SmallVectorImpl<uint64_t> &Record,
1732  unsigned Abbrev) {
1733  Record.push_back(N->isDistinct());
1734  Record.push_back(N->getMacinfoType());
1735  Record.push_back(N->getLine());
1736  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1737  Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1738 
1739  Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1740  Record.clear();
1741 }
1742 
1744  SmallVectorImpl<uint64_t> &Record,
1745  unsigned Abbrev) {
1746  Record.push_back(N->isDistinct());
1747  for (auto &I : N->operands())
1748  Record.push_back(VE.getMetadataOrNullID(I));
1749 
1750  Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1751  Record.clear();
1752 }
1753 
1756  unsigned Abbrev) {
1757  Record.push_back(N->isDistinct());
1758  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1759  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1760 
1761  Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1762  Record.clear();
1763 }
1764 
1767  unsigned Abbrev) {
1768  Record.push_back(N->isDistinct());
1769  Record.push_back(N->getTag());
1770  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1771  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1772  Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1773 
1774  Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1775  Record.clear();
1776 }
1777 
1779  const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1780  unsigned Abbrev) {
1781  const uint64_t Version = 2 << 1;
1782  Record.push_back((uint64_t)N->isDistinct() | Version);
1783  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1784  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1786  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1787  Record.push_back(N->getLine());
1788  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1789  Record.push_back(N->isLocalToUnit());
1790  Record.push_back(N->isDefinition());
1793  Record.push_back(N->getAlignInBits());
1794 
1795  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1796  Record.clear();
1797 }
1798 
1800  const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1801  unsigned Abbrev) {
1802  // In order to support all possible bitcode formats in BitcodeReader we need
1803  // to distinguish the following cases:
1804  // 1) Record has no artificial tag (Record[1]),
1805  // has no obsolete inlinedAt field (Record[9]).
1806  // In this case Record size will be 8, HasAlignment flag is false.
1807  // 2) Record has artificial tag (Record[1]),
1808  // has no obsolete inlignedAt field (Record[9]).
1809  // In this case Record size will be 9, HasAlignment flag is false.
1810  // 3) Record has both artificial tag (Record[1]) and
1811  // obsolete inlignedAt field (Record[9]).
1812  // In this case Record size will be 10, HasAlignment flag is false.
1813  // 4) Record has neither artificial tag, nor inlignedAt field, but
1814  // HasAlignment flag is true and Record[8] contains alignment value.
1815  const uint64_t HasAlignmentFlag = 1 << 1;
1816  Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1817  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1818  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1819  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1820  Record.push_back(N->getLine());
1821  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1822  Record.push_back(N->getArg());
1823  Record.push_back(N->getFlags());
1824  Record.push_back(N->getAlignInBits());
1825 
1826  Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1827  Record.clear();
1828 }
1829 
1831  const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1832  unsigned Abbrev) {
1833  Record.push_back((uint64_t)N->isDistinct());
1834  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1835  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1836  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1837  Record.push_back(N->getLine());
1838 
1839  Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1840  Record.clear();
1841 }
1842 
1844  SmallVectorImpl<uint64_t> &Record,
1845  unsigned Abbrev) {
1846  Record.reserve(N->getElements().size() + 1);
1847  const uint64_t Version = 3 << 1;
1848  Record.push_back((uint64_t)N->isDistinct() | Version);
1849  Record.append(N->elements_begin(), N->elements_end());
1850 
1851  Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1852  Record.clear();
1853 }
1854 
1857  unsigned Abbrev) {
1858  Record.push_back(N->isDistinct());
1859  Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1860  Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1861 
1862  Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1863  Record.clear();
1864 }
1865 
1867  SmallVectorImpl<uint64_t> &Record,
1868  unsigned Abbrev) {
1869  Record.push_back(N->isDistinct());
1870  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1871  Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1872  Record.push_back(N->getLine());
1875  Record.push_back(N->getAttributes());
1876  Record.push_back(VE.getMetadataOrNullID(N->getType()));
1877 
1878  Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1879  Record.clear();
1880 }
1881 
1883  const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1884  unsigned Abbrev) {
1885  Record.push_back(N->isDistinct());
1886  Record.push_back(N->getTag());
1887  Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1888  Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1889  Record.push_back(N->getLine());
1890  Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1891  Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1892 
1893  Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1894  Record.clear();
1895 }
1896 
1897 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1898  auto Abbv = std::make_shared<BitCodeAbbrev>();
1901  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1902  return Stream.EmitAbbrev(std::move(Abbv));
1903 }
1904 
1905 void ModuleBitcodeWriter::writeNamedMetadata(
1906  SmallVectorImpl<uint64_t> &Record) {
1907  if (M.named_metadata_empty())
1908  return;
1909 
1910  unsigned Abbrev = createNamedMetadataAbbrev();
1911  for (const NamedMDNode &NMD : M.named_metadata()) {
1912  // Write name.
1913  StringRef Str = NMD.getName();
1914  Record.append(Str.bytes_begin(), Str.bytes_end());
1915  Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1916  Record.clear();
1917 
1918  // Write named metadata operands.
1919  for (const MDNode *N : NMD.operands())
1920  Record.push_back(VE.getMetadataID(N));
1921  Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1922  Record.clear();
1923  }
1924 }
1925 
1926 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1927  auto Abbv = std::make_shared<BitCodeAbbrev>();
1929  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1930  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1932  return Stream.EmitAbbrev(std::move(Abbv));
1933 }
1934 
1935 /// Write out a record for MDString.
1936 ///
1937 /// All the metadata strings in a metadata block are emitted in a single
1938 /// record. The sizes and strings themselves are shoved into a blob.
1939 void ModuleBitcodeWriter::writeMetadataStrings(
1941  if (Strings.empty())
1942  return;
1943 
1944  // Start the record with the number of strings.
1946  Record.push_back(Strings.size());
1947 
1948  // Emit the sizes of the strings in the blob.
1949  SmallString<256> Blob;
1950  {
1951  BitstreamWriter W(Blob);
1952  for (const Metadata *MD : Strings)
1953  W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1954  W.FlushToWord();
1955  }
1956 
1957  // Add the offset to the strings to the record.
1958  Record.push_back(Blob.size());
1959 
1960  // Add the strings to the blob.
1961  for (const Metadata *MD : Strings)
1962  Blob.append(cast<MDString>(MD)->getString());
1963 
1964  // Emit the final record.
1965  Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1966  Record.clear();
1967 }
1968 
1969 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1970 enum MetadataAbbrev : unsigned {
1971 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1972 #include "llvm/IR/Metadata.def"
1974 };
1975 
1976 void ModuleBitcodeWriter::writeMetadataRecords(
1978  std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
1979  if (MDs.empty())
1980  return;
1981 
1982  // Initialize MDNode abbreviations.
1983 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1984 #include "llvm/IR/Metadata.def"
1985 
1986  for (const Metadata *MD : MDs) {
1987  if (IndexPos)
1988  IndexPos->push_back(Stream.GetCurrentBitNo());
1989  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1990  assert(N->isResolved() && "Expected forward references to be resolved");
1991 
1992  switch (N->getMetadataID()) {
1993  default:
1994  llvm_unreachable("Invalid MDNode subclass");
1995 #define HANDLE_MDNODE_LEAF(CLASS) \
1996  case Metadata::CLASS##Kind: \
1997  if (MDAbbrevs) \
1998  write##CLASS(cast<CLASS>(N), Record, \
1999  (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2000  else \
2001  write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2002  continue;
2003 #include "llvm/IR/Metadata.def"
2004  }
2005  }
2006  writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2007  }
2008 }
2009 
2010 void ModuleBitcodeWriter::writeModuleMetadata() {
2011  if (!VE.hasMDs() && M.named_metadata_empty())
2012  return;
2013 
2016 
2017  // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2018  // block and load any metadata.
2019  std::vector<unsigned> MDAbbrevs;
2020 
2022  MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2023  MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2024  createGenericDINodeAbbrev();
2025 
2026  auto Abbv = std::make_shared<BitCodeAbbrev>();
2028  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2029  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2030  unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2031 
2032  Abbv = std::make_shared<BitCodeAbbrev>();
2035  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2036  unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2037 
2038  // Emit MDStrings together upfront.
2039  writeMetadataStrings(VE.getMDStrings(), Record);
2040 
2041  // We only emit an index for the metadata record if we have more than a given
2042  // (naive) threshold of metadatas, otherwise it is not worth it.
2043  if (VE.getNonMDStrings().size() > IndexThreshold) {
2044  // Write a placeholder value in for the offset of the metadata index,
2045  // which is written after the records, so that it can include
2046  // the offset of each entry. The placeholder offset will be
2047  // updated after all records are emitted.
2048  uint64_t Vals[] = {0, 0};
2049  Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2050  }
2051 
2052  // Compute and save the bit offset to the current position, which will be
2053  // patched when we emit the index later. We can simply subtract the 64-bit
2054  // fixed size from the current bit number to get the location to backpatch.
2055  uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2056 
2057  // This index will contain the bitpos for each individual record.
2058  std::vector<uint64_t> IndexPos;
2059  IndexPos.reserve(VE.getNonMDStrings().size());
2060 
2061  // Write all the records
2062  writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2063 
2064  if (VE.getNonMDStrings().size() > IndexThreshold) {
2065  // Now that we have emitted all the records we will emit the index. But
2066  // first
2067  // backpatch the forward reference so that the reader can skip the records
2068  // efficiently.
2069  Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2070  Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2071 
2072  // Delta encode the index.
2073  uint64_t PreviousValue = IndexOffsetRecordBitPos;
2074  for (auto &Elt : IndexPos) {
2075  auto EltDelta = Elt - PreviousValue;
2076  PreviousValue = Elt;
2077  Elt = EltDelta;
2078  }
2079  // Emit the index record.
2080  Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2081  IndexPos.clear();
2082  }
2083 
2084  // Write the named metadata now.
2085  writeNamedMetadata(Record);
2086 
2087  auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2088  SmallVector<uint64_t, 4> Record;
2089  Record.push_back(VE.getValueID(&GO));
2090  pushGlobalMetadataAttachment(Record, GO);
2092  };
2093  for (const Function &F : M)
2094  if (F.isDeclaration() && F.hasMetadata())
2095  AddDeclAttachedMetadata(F);
2096  // FIXME: Only store metadata for declarations here, and move data for global
2097  // variable definitions to a separate block (PR28134).
2098  for (const GlobalVariable &GV : M.globals())
2099  if (GV.hasMetadata())
2100  AddDeclAttachedMetadata(GV);
2101 
2102  Stream.ExitBlock();
2103 }
2104 
2105 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2106  if (!VE.hasMDs())
2107  return;
2108 
2111  writeMetadataStrings(VE.getMDStrings(), Record);
2112  writeMetadataRecords(VE.getNonMDStrings(), Record);
2113  Stream.ExitBlock();
2114 }
2115 
2116 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2117  SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2118  // [n x [id, mdnode]]
2120  GO.getAllMetadata(MDs);
2121  for (const auto &I : MDs) {
2122  Record.push_back(I.first);
2123  Record.push_back(VE.getMetadataID(I.second));
2124  }
2125 }
2126 
2127 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2129 
2131 
2132  if (F.hasMetadata()) {
2133  pushGlobalMetadataAttachment(Record, F);
2134  Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2135  Record.clear();
2136  }
2137 
2138  // Write metadata attachments
2139  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2141  for (const BasicBlock &BB : F)
2142  for (const Instruction &I : BB) {
2143  MDs.clear();
2144  I.getAllMetadataOtherThanDebugLoc(MDs);
2145 
2146  // If no metadata, ignore instruction.
2147  if (MDs.empty()) continue;
2148 
2149  Record.push_back(VE.getInstructionID(&I));
2150 
2151  for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2152  Record.push_back(MDs[i].first);
2153  Record.push_back(VE.getMetadataID(MDs[i].second));
2154  }
2155  Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2156  Record.clear();
2157  }
2158 
2159  Stream.ExitBlock();
2160 }
2161 
2162 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2164 
2165  // Write metadata kinds
2166  // METADATA_KIND - [n x [id, name]]
2168  M.getMDKindNames(Names);
2169 
2170  if (Names.empty()) return;
2171 
2173 
2174  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2175  Record.push_back(MDKindID);
2176  StringRef KName = Names[MDKindID];
2177  Record.append(KName.begin(), KName.end());
2178 
2179  Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2180  Record.clear();
2181  }
2182 
2183  Stream.ExitBlock();
2184 }
2185 
2186 void ModuleBitcodeWriter::writeOperandBundleTags() {
2187  // Write metadata kinds
2188  //
2189  // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2190  //
2191  // OPERAND_BUNDLE_TAG - [strchr x N]
2192 
2194  M.getOperandBundleTags(Tags);
2195 
2196  if (Tags.empty())
2197  return;
2198 
2200 
2202 
2203  for (auto Tag : Tags) {
2204  Record.append(Tag.begin(), Tag.end());
2205 
2206  Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2207  Record.clear();
2208  }
2209 
2210  Stream.ExitBlock();
2211 }
2212 
2213 void ModuleBitcodeWriter::writeSyncScopeNames() {
2215  M.getContext().getSyncScopeNames(SSNs);
2216  if (SSNs.empty())
2217  return;
2218 
2220 
2222  for (auto SSN : SSNs) {
2223  Record.append(SSN.begin(), SSN.end());
2224  Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2225  Record.clear();
2226  }
2227 
2228  Stream.ExitBlock();
2229 }
2230 
2231 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2232  if ((int64_t)V >= 0)
2233  Vals.push_back(V << 1);
2234  else
2235  Vals.push_back((-V << 1) | 1);
2236 }
2237 
2238 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2239  bool isGlobal) {
2240  if (FirstVal == LastVal) return;
2241 
2243 
2244  unsigned AggregateAbbrev = 0;
2245  unsigned String8Abbrev = 0;
2246  unsigned CString7Abbrev = 0;
2247  unsigned CString6Abbrev = 0;
2248  // If this is a constant pool for the module, emit module-specific abbrevs.
2249  if (isGlobal) {
2250  // Abbrev for CST_CODE_AGGREGATE.
2251  auto Abbv = std::make_shared<BitCodeAbbrev>();
2254  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2255  AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2256 
2257  // Abbrev for CST_CODE_STRING.
2258  Abbv = std::make_shared<BitCodeAbbrev>();
2261  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2262  String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2263  // Abbrev for CST_CODE_CSTRING.
2264  Abbv = std::make_shared<BitCodeAbbrev>();
2267  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2268  CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2269  // Abbrev for CST_CODE_CSTRING.
2270  Abbv = std::make_shared<BitCodeAbbrev>();
2274  CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2275  }
2276 
2278 
2279  const ValueEnumerator::ValueList &Vals = VE.getValues();
2280  Type *LastTy = nullptr;
2281  for (unsigned i = FirstVal; i != LastVal; ++i) {
2282  const Value *V = Vals[i].first;
2283  // If we need to switch types, do so now.
2284  if (V->getType() != LastTy) {
2285  LastTy = V->getType();
2286  Record.push_back(VE.getTypeID(LastTy));
2287  Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2288  CONSTANTS_SETTYPE_ABBREV);
2289  Record.clear();
2290  }
2291 
2292  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2293  Record.push_back(unsigned(IA->hasSideEffects()) |
2294  unsigned(IA->isAlignStack()) << 1 |
2295  unsigned(IA->getDialect()&1) << 2);
2296 
2297  // Add the asm string.
2298  const std::string &AsmStr = IA->getAsmString();
2299  Record.push_back(AsmStr.size());
2300  Record.append(AsmStr.begin(), AsmStr.end());
2301 
2302  // Add the constraint string.
2303  const std::string &ConstraintStr = IA->getConstraintString();
2304  Record.push_back(ConstraintStr.size());
2305  Record.append(ConstraintStr.begin(), ConstraintStr.end());
2306  Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2307  Record.clear();
2308  continue;
2309  }
2310  const Constant *C = cast<Constant>(V);
2311  unsigned Code = -1U;
2312  unsigned AbbrevToUse = 0;
2313  if (C->isNullValue()) {
2314  Code = bitc::CST_CODE_NULL;
2315  } else if (isa<UndefValue>(C)) {
2316  Code = bitc::CST_CODE_UNDEF;
2317  } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2318  if (IV->getBitWidth() <= 64) {
2319  uint64_t V = IV->getSExtValue();
2320  emitSignedInt64(Record, V);
2321  Code = bitc::CST_CODE_INTEGER;
2322  AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2323  } else { // Wide integers, > 64 bits in size.
2324  // We have an arbitrary precision integer value to write whose
2325  // bit width is > 64. However, in canonical unsigned integer
2326  // format it is likely that the high bits are going to be zero.
2327  // So, we only write the number of active words.
2328  unsigned NWords = IV->getValue().getActiveWords();
2329  const uint64_t *RawWords = IV->getValue().getRawData();
2330  for (unsigned i = 0; i != NWords; ++i) {
2331  emitSignedInt64(Record, RawWords[i]);
2332  }
2334  }
2335  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2336  Code = bitc::CST_CODE_FLOAT;
2337  Type *Ty = CFP->getType();
2338  if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2339  Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2340  } else if (Ty->isX86_FP80Ty()) {
2341  // api needed to prevent premature destruction
2342  // bits are not in the same order as a normal i80 APInt, compensate.
2343  APInt api = CFP->getValueAPF().bitcastToAPInt();
2344  const uint64_t *p = api.getRawData();
2345  Record.push_back((p[1] << 48) | (p[0] >> 16));
2346  Record.push_back(p[0] & 0xffffLL);
2347  } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2348  APInt api = CFP->getValueAPF().bitcastToAPInt();
2349  const uint64_t *p = api.getRawData();
2350  Record.push_back(p[0]);
2351  Record.push_back(p[1]);
2352  } else {
2353  assert(0 && "Unknown FP type!");
2354  }
2355  } else if (isa<ConstantDataSequential>(C) &&
2356  cast<ConstantDataSequential>(C)->isString()) {
2357  const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2358  // Emit constant strings specially.
2359  unsigned NumElts = Str->getNumElements();
2360  // If this is a null-terminated string, use the denser CSTRING encoding.
2361  if (Str->isCString()) {
2362  Code = bitc::CST_CODE_CSTRING;
2363  --NumElts; // Don't encode the null, which isn't allowed by char6.
2364  } else {
2365  Code = bitc::CST_CODE_STRING;
2366  AbbrevToUse = String8Abbrev;
2367  }
2368  bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2369  bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2370  for (unsigned i = 0; i != NumElts; ++i) {
2371  unsigned char V = Str->getElementAsInteger(i);
2372  Record.push_back(V);
2373  isCStr7 &= (V & 128) == 0;
2374  if (isCStrChar6)
2375  isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2376  }
2377 
2378  if (isCStrChar6)
2379  AbbrevToUse = CString6Abbrev;
2380  else if (isCStr7)
2381  AbbrevToUse = CString7Abbrev;
2382  } else if (const ConstantDataSequential *CDS =
2383  dyn_cast<ConstantDataSequential>(C)) {
2384  Code = bitc::CST_CODE_DATA;
2385  Type *EltTy = CDS->getType()->getElementType();
2386  if (isa<IntegerType>(EltTy)) {
2387  for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2388  Record.push_back(CDS->getElementAsInteger(i));
2389  } else {
2390  for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2391  Record.push_back(
2392  CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2393  }
2394  } else if (isa<ConstantAggregate>(C)) {
2395  Code = bitc::CST_CODE_AGGREGATE;
2396  for (const Value *Op : C->operands())
2397  Record.push_back(VE.getValueID(Op));
2398  AbbrevToUse = AggregateAbbrev;
2399  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2400  switch (CE->getOpcode()) {
2401  default:
2402  if (Instruction::isCast(CE->getOpcode())) {
2403  Code = bitc::CST_CODE_CE_CAST;
2404  Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2405  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2406  Record.push_back(VE.getValueID(C->getOperand(0)));
2407  AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2408  } else {
2409  assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2410  Code = bitc::CST_CODE_CE_BINOP;
2411  Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2412  Record.push_back(VE.getValueID(C->getOperand(0)));
2413  Record.push_back(VE.getValueID(C->getOperand(1)));
2414  uint64_t Flags = getOptimizationFlags(CE);
2415  if (Flags != 0)
2416  Record.push_back(Flags);
2417  }
2418  break;
2419  case Instruction::FNeg: {
2420  assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2421  Code = bitc::CST_CODE_CE_UNOP;
2422  Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2423  Record.push_back(VE.getValueID(C->getOperand(0)));
2424  uint64_t Flags = getOptimizationFlags(CE);
2425  if (Flags != 0)
2426  Record.push_back(Flags);
2427  break;
2428  }
2429  case Instruction::GetElementPtr: {
2430  Code = bitc::CST_CODE_CE_GEP;
2431  const auto *GO = cast<GEPOperator>(C);
2432  Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2433  if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2435  Record.push_back((*Idx << 1) | GO->isInBounds());
2436  } else if (GO->isInBounds())
2438  for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2439  Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2440  Record.push_back(VE.getValueID(C->getOperand(i)));
2441  }
2442  break;
2443  }
2444  case Instruction::Select:
2445  Code = bitc::CST_CODE_CE_SELECT;
2446  Record.push_back(VE.getValueID(C->getOperand(0)));
2447  Record.push_back(VE.getValueID(C->getOperand(1)));
2448  Record.push_back(VE.getValueID(C->getOperand(2)));
2449  break;
2450  case Instruction::ExtractElement:
2452  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2453  Record.push_back(VE.getValueID(C->getOperand(0)));
2454  Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2455  Record.push_back(VE.getValueID(C->getOperand(1)));
2456  break;
2457  case Instruction::InsertElement:
2459  Record.push_back(VE.getValueID(C->getOperand(0)));
2460  Record.push_back(VE.getValueID(C->getOperand(1)));
2461  Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2462  Record.push_back(VE.getValueID(C->getOperand(2)));
2463  break;
2464  case Instruction::ShuffleVector:
2465  // If the return type and argument types are the same, this is a
2466  // standard shufflevector instruction. If the types are different,
2467  // then the shuffle is widening or truncating the input vectors, and
2468  // the argument type must also be encoded.
2469  if (C->getType() == C->getOperand(0)->getType()) {
2471  } else {
2473  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2474  }
2475  Record.push_back(VE.getValueID(C->getOperand(0)));
2476  Record.push_back(VE.getValueID(C->getOperand(1)));
2477  Record.push_back(VE.getValueID(C->getOperand(2)));
2478  break;
2479  case Instruction::ICmp:
2480  case Instruction::FCmp:
2481  Code = bitc::CST_CODE_CE_CMP;
2482  Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2483  Record.push_back(VE.getValueID(C->getOperand(0)));
2484  Record.push_back(VE.getValueID(C->getOperand(1)));
2485  Record.push_back(CE->getPredicate());
2486  break;
2487  }
2488  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2490  Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2491  Record.push_back(VE.getValueID(BA->getFunction()));
2492  Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2493  } else {
2494 #ifndef NDEBUG
2495  C->dump();
2496 #endif
2497  llvm_unreachable("Unknown constant!");
2498  }
2499  Stream.EmitRecord(Code, Record, AbbrevToUse);
2500  Record.clear();
2501  }
2502 
2503  Stream.ExitBlock();
2504 }
2505 
2506 void ModuleBitcodeWriter::writeModuleConstants() {
2507  const ValueEnumerator::ValueList &Vals = VE.getValues();
2508 
2509  // Find the first constant to emit, which is the first non-globalvalue value.
2510  // We know globalvalues have been emitted by WriteModuleInfo.
2511  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2512  if (!isa<GlobalValue>(Vals[i].first)) {
2513  writeConstants(i, Vals.size(), true);
2514  return;
2515  }
2516  }
2517 }
2518 
2519 /// pushValueAndType - The file has to encode both the value and type id for
2520 /// many values, because we need to know what type to create for forward
2521 /// references. However, most operands are not forward references, so this type
2522 /// field is not needed.
2523 ///
2524 /// This function adds V's value ID to Vals. If the value ID is higher than the
2525 /// instruction ID, then it is a forward reference, and it also includes the
2526 /// type ID. The value ID that is written is encoded relative to the InstID.
2527 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2528  SmallVectorImpl<unsigned> &Vals) {
2529  unsigned ValID = VE.getValueID(V);
2530  // Make encoding relative to the InstID.
2531  Vals.push_back(InstID - ValID);
2532  if (ValID >= InstID) {
2533  Vals.push_back(VE.getTypeID(V->getType()));
2534  return true;
2535  }
2536  return false;
2537 }
2538 
2539 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2540  unsigned InstID) {
2543 
2544  for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2545  const auto &Bundle = CS.getOperandBundleAt(i);
2546  Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2547 
2548  for (auto &Input : Bundle.Inputs)
2549  pushValueAndType(Input, InstID, Record);
2550 
2552  Record.clear();
2553  }
2554 }
2555 
2556 /// pushValue - Like pushValueAndType, but where the type of the value is
2557 /// omitted (perhaps it was already encoded in an earlier operand).
2558 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2559  SmallVectorImpl<unsigned> &Vals) {
2560  unsigned ValID = VE.getValueID(V);
2561  Vals.push_back(InstID - ValID);
2562 }
2563 
2564 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2565  SmallVectorImpl<uint64_t> &Vals) {
2566  unsigned ValID = VE.getValueID(V);
2567  int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2568  emitSignedInt64(Vals, diff);
2569 }
2570 
2571 /// WriteInstruction - Emit an instruction to the specified stream.
2572 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2573  unsigned InstID,
2574  SmallVectorImpl<unsigned> &Vals) {
2575  unsigned Code = 0;
2576  unsigned AbbrevToUse = 0;
2577  VE.setInstructionID(&I);
2578  switch (I.getOpcode()) {
2579  default:
2580  if (Instruction::isCast(I.getOpcode())) {
2582  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2583  AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2584  Vals.push_back(VE.getTypeID(I.getType()));
2586  } else {
2587  assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2589  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2590  AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2591  pushValue(I.getOperand(1), InstID, Vals);
2593  uint64_t Flags = getOptimizationFlags(&I);
2594  if (Flags != 0) {
2595  if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2596  AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2597  Vals.push_back(Flags);
2598  }
2599  }
2600  break;
2601  case Instruction::FNeg: {
2603  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2604  AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2606  uint64_t Flags = getOptimizationFlags(&I);
2607  if (Flags != 0) {
2608  if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2609  AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2610  Vals.push_back(Flags);
2611  }
2612  break;
2613  }
2614  case Instruction::GetElementPtr: {
2615  Code = bitc::FUNC_CODE_INST_GEP;
2616  AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2617  auto &GEPInst = cast<GetElementPtrInst>(I);
2618  Vals.push_back(GEPInst.isInBounds());
2619  Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2620  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2621  pushValueAndType(I.getOperand(i), InstID, Vals);
2622  break;
2623  }
2624  case Instruction::ExtractValue: {
2626  pushValueAndType(I.getOperand(0), InstID, Vals);
2627  const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2628  Vals.append(EVI->idx_begin(), EVI->idx_end());
2629  break;
2630  }
2631  case Instruction::InsertValue: {
2633  pushValueAndType(I.getOperand(0), InstID, Vals);
2634  pushValueAndType(I.getOperand(1), InstID, Vals);
2635  const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2636  Vals.append(IVI->idx_begin(), IVI->idx_end());
2637  break;
2638  }
2639  case Instruction::Select: {
2641  pushValueAndType(I.getOperand(1), InstID, Vals);
2642  pushValue(I.getOperand(2), InstID, Vals);
2643  pushValueAndType(I.getOperand(0), InstID, Vals);
2644  uint64_t Flags = getOptimizationFlags(&I);
2645  if (Flags != 0)
2646  Vals.push_back(Flags);
2647  break;
2648  }
2649  case Instruction::ExtractElement:
2651  pushValueAndType(I.getOperand(0), InstID, Vals);
2652  pushValueAndType(I.getOperand(1), InstID, Vals);
2653  break;
2654  case Instruction::InsertElement:
2656  pushValueAndType(I.getOperand(0), InstID, Vals);
2657  pushValue(I.getOperand(1), InstID, Vals);
2658  pushValueAndType(I.getOperand(2), InstID, Vals);
2659  break;
2660  case Instruction::ShuffleVector:
2662  pushValueAndType(I.getOperand(0), InstID, Vals);
2663  pushValue(I.getOperand(1), InstID, Vals);
2664  pushValue(I.getOperand(2), InstID, Vals);
2665  break;
2666  case Instruction::ICmp:
2667  case Instruction::FCmp: {
2668  // compare returning Int1Ty or vector of Int1Ty
2670  pushValueAndType(I.getOperand(0), InstID, Vals);
2671  pushValue(I.getOperand(1), InstID, Vals);
2672  Vals.push_back(cast<CmpInst>(I).getPredicate());
2673  uint64_t Flags = getOptimizationFlags(&I);
2674  if (Flags != 0)
2675  Vals.push_back(Flags);
2676  break;
2677  }
2678 
2679  case Instruction::Ret:
2680  {
2681  Code = bitc::FUNC_CODE_INST_RET;
2682  unsigned NumOperands = I.getNumOperands();
2683  if (NumOperands == 0)
2684  AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2685  else if (NumOperands == 1) {
2686  if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2687  AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2688  } else {
2689  for (unsigned i = 0, e = NumOperands; i != e; ++i)
2690  pushValueAndType(I.getOperand(i), InstID, Vals);
2691  }
2692  }
2693  break;
2694  case Instruction::Br:
2695  {
2696  Code = bitc::FUNC_CODE_INST_BR;
2697  const BranchInst &II = cast<BranchInst>(I);
2698  Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2699  if (II.isConditional()) {
2700  Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2701  pushValue(II.getCondition(), InstID, Vals);
2702  }
2703  }
2704  break;
2705  case Instruction::Switch:
2706  {
2708  const SwitchInst &SI = cast<SwitchInst>(I);
2709  Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2710  pushValue(SI.getCondition(), InstID, Vals);
2711  Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2712  for (auto Case : SI.cases()) {
2713  Vals.push_back(VE.getValueID(Case.getCaseValue()));
2714  Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2715  }
2716  }
2717  break;
2718  case Instruction::IndirectBr:
2720  Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2721  // Encode the address operand as relative, but not the basic blocks.
2722  pushValue(I.getOperand(0), InstID, Vals);
2723  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2724  Vals.push_back(VE.getValueID(I.getOperand(i)));
2725  break;
2726 
2727  case Instruction::Invoke: {
2728  const InvokeInst *II = cast<InvokeInst>(&I);
2729  const Value *Callee = II->getCalledValue();
2730  FunctionType *FTy = II->getFunctionType();
2731 
2732  if (II->hasOperandBundles())
2733  writeOperandBundles(II, InstID);
2734 
2736 
2737  Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2738  Vals.push_back(II->getCallingConv() | 1 << 13);
2739  Vals.push_back(VE.getValueID(II->getNormalDest()));
2740  Vals.push_back(VE.getValueID(II->getUnwindDest()));
2741  Vals.push_back(VE.getTypeID(FTy));
2742  pushValueAndType(Callee, InstID, Vals);
2743 
2744  // Emit value #'s for the fixed parameters.
2745  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2746  pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2747 
2748  // Emit type/value pairs for varargs params.
2749  if (FTy->isVarArg()) {
2750  for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2751  i != e; ++i)
2752  pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2753  }
2754  break;
2755  }
2756  case Instruction::Resume:
2758  pushValueAndType(I.getOperand(0), InstID, Vals);
2759  break;
2760  case Instruction::CleanupRet: {
2762  const auto &CRI = cast<CleanupReturnInst>(I);
2763  pushValue(CRI.getCleanupPad(), InstID, Vals);
2764  if (CRI.hasUnwindDest())
2765  Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2766  break;
2767  }
2768  case Instruction::CatchRet: {
2770  const auto &CRI = cast<CatchReturnInst>(I);
2771  pushValue(CRI.getCatchPad(), InstID, Vals);
2772  Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2773  break;
2774  }
2775  case Instruction::CleanupPad:
2776  case Instruction::CatchPad: {
2777  const auto &FuncletPad = cast<FuncletPadInst>(I);
2778  Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2780  pushValue(FuncletPad.getParentPad(), InstID, Vals);
2781 
2782  unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2783  Vals.push_back(NumArgOperands);
2784  for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2785  pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2786  break;
2787  }
2788  case Instruction::CatchSwitch: {
2790  const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2791 
2792  pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2793 
2794  unsigned NumHandlers = CatchSwitch.getNumHandlers();
2795  Vals.push_back(NumHandlers);
2796  for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2797  Vals.push_back(VE.getValueID(CatchPadBB));
2798 
2799  if (CatchSwitch.hasUnwindDest())
2800  Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2801  break;
2802  }
2803  case Instruction::CallBr: {
2804  const CallBrInst *CBI = cast<CallBrInst>(&I);
2805  const Value *Callee = CBI->getCalledValue();
2806  FunctionType *FTy = CBI->getFunctionType();
2807 
2808  if (CBI->hasOperandBundles())
2809  writeOperandBundles(CBI, InstID);
2810 
2812 
2813  Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2814 
2815  Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2817 
2818  Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2819  Vals.push_back(CBI->getNumIndirectDests());
2820  for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2821  Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2822 
2823  Vals.push_back(VE.getTypeID(FTy));
2824  pushValueAndType(Callee, InstID, Vals);
2825 
2826  // Emit value #'s for the fixed parameters.
2827  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2828  pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2829 
2830  // Emit type/value pairs for varargs params.
2831  if (FTy->isVarArg()) {
2832  for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2833  i != e; ++i)
2834  pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2835  }
2836  break;
2837  }
2838  case Instruction::Unreachable:
2840  AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2841  break;
2842 
2843  case Instruction::PHI: {
2844  const PHINode &PN = cast<PHINode>(I);
2845  Code = bitc::FUNC_CODE_INST_PHI;
2846  // With the newer instruction encoding, forward references could give
2847  // negative valued IDs. This is most common for PHIs, so we use
2848  // signed VBRs.
2850  Vals64.push_back(VE.getTypeID(PN.getType()));
2851  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2852  pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2853  Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2854  }
2855  // Emit a Vals64 vector and exit.
2856  Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2857  Vals64.clear();
2858  return;
2859  }
2860 
2861  case Instruction::LandingPad: {
2862  const LandingPadInst &LP = cast<LandingPadInst>(I);
2864  Vals.push_back(VE.getTypeID(LP.getType()));
2865  Vals.push_back(LP.isCleanup());
2866  Vals.push_back(LP.getNumClauses());
2867  for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2868  if (LP.isCatch(I))
2870  else
2872  pushValueAndType(LP.getClause(I), InstID, Vals);
2873  }
2874  break;
2875  }
2876 
2877  case Instruction::Alloca: {
2879  const AllocaInst &AI = cast<AllocaInst>(I);
2880  Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2881  Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2882  Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2883  unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2884  assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2885  "not enough bits for maximum alignment");
2886  assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2887  AlignRecord |= AI.isUsedWithInAlloca() << 5;
2888  AlignRecord |= 1 << 6;
2889  AlignRecord |= AI.isSwiftError() << 7;
2890  Vals.push_back(AlignRecord);
2891  break;
2892  }
2893 
2894  case Instruction::Load:
2895  if (cast<LoadInst>(I).isAtomic()) {
2897  pushValueAndType(I.getOperand(0), InstID, Vals);
2898  } else {
2900  if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2901  AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2902  }
2903  Vals.push_back(VE.getTypeID(I.getType()));
2904  Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2905  Vals.push_back(cast<LoadInst>(I).isVolatile());
2906  if (cast<LoadInst>(I).isAtomic()) {
2907  Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2908  Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2909  }
2910  break;
2911  case Instruction::Store:
2912  if (cast<StoreInst>(I).isAtomic())
2914  else
2916  pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2917  pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2918  Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2919  Vals.push_back(cast<StoreInst>(I).isVolatile());
2920  if (cast<StoreInst>(I).isAtomic()) {
2921  Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2922  Vals.push_back(
2923  getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2924  }
2925  break;
2926  case Instruction::AtomicCmpXchg:
2928  pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2929  pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2930  pushValue(I.getOperand(2), InstID, Vals); // newval.
2931  Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2932  Vals.push_back(
2933  getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2934  Vals.push_back(
2935  getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2936  Vals.push_back(
2937  getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2938  Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2939  break;
2940  case Instruction::AtomicRMW:
2942  pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2943  pushValue(I.getOperand(1), InstID, Vals); // val.
2944  Vals.push_back(
2945  getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2946  Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2947  Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2948  Vals.push_back(
2949  getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2950  break;
2951  case Instruction::Fence:
2953  Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2954  Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2955  break;
2956  case Instruction::Call: {
2957  const CallInst &CI = cast<CallInst>(I);
2958  FunctionType *FTy = CI.getFunctionType();
2959 
2960  if (CI.hasOperandBundles())
2961  writeOperandBundles(&CI, InstID);
2962 
2964 
2966 
2967  unsigned Flags = getOptimizationFlags(&I);
2970  unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2972  unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2973  unsigned(Flags != 0) << bitc::CALL_FMF);
2974  if (Flags != 0)
2975  Vals.push_back(Flags);
2976 
2977  Vals.push_back(VE.getTypeID(FTy));
2978  pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2979 
2980  // Emit value #'s for the fixed parameters.
2981  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2982  // Check for labels (can happen with asm labels).
2983  if (FTy->getParamType(i)->isLabelTy())
2984  Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2985  else
2986  pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2987  }
2988 
2989  // Emit type/value pairs for varargs params.
2990  if (FTy->isVarArg()) {
2991  for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2992  i != e; ++i)
2993  pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2994  }
2995  break;
2996  }
2997  case Instruction::VAArg:
2999  Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3000  pushValue(I.getOperand(0), InstID, Vals); // valist.
3001  Vals.push_back(VE.getTypeID(I.getType())); // restype.
3002  break;
3003  }
3004 
3005  Stream.EmitRecord(Code, Vals, AbbrevToUse);
3006  Vals.clear();
3007 }
3008 
3009 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3010 /// to allow clients to efficiently find the function body.
3011 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3012  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3013  // Get the offset of the VST we are writing, and backpatch it into
3014  // the VST forward declaration record.
3015  uint64_t VSTOffset = Stream.GetCurrentBitNo();
3016  // The BitcodeStartBit was the stream offset of the identification block.
3017  VSTOffset -= bitcodeStartBit();
3018  assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3019  // Note that we add 1 here because the offset is relative to one word
3020  // before the start of the identification block, which was historically
3021  // always the start of the regular bitcode header.
3022  Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3023 
3025 
3026  auto Abbv = std::make_shared<BitCodeAbbrev>();
3028  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3029  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3030  unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3031 
3032  for (const Function &F : M) {
3033  uint64_t Record[2];
3034 
3035  if (F.isDeclaration())
3036  continue;
3037 
3038  Record[0] = VE.getValueID(&F);
3039 
3040  // Save the word offset of the function (from the start of the
3041  // actual bitcode written to the stream).
3042  uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3043  assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3044  // Note that we add 1 here because the offset is relative to one word
3045  // before the start of the identification block, which was historically
3046  // always the start of the regular bitcode header.
3047  Record[1] = BitcodeIndex / 32 + 1;
3048 
3049  Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3050  }
3051 
3052  Stream.ExitBlock();
3053 }
3054 
3055 /// Emit names for arguments, instructions and basic blocks in a function.
3056 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3057  const ValueSymbolTable &VST) {
3058  if (VST.empty())
3059  return;
3060 
3062 
3063  // FIXME: Set up the abbrev, we know how many values there are!
3064  // FIXME: We know if the type names can use 7-bit ascii.
3065  SmallVector<uint64_t, 64> NameVals;
3066 
3067  for (const ValueName &Name : VST) {
3068  // Figure out the encoding to use for the name.
3070 
3071  unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3072  NameVals.push_back(VE.getValueID(Name.getValue()));
3073 
3074  // VST_CODE_ENTRY: [valueid, namechar x N]
3075  // VST_CODE_BBENTRY: [bbid, namechar x N]
3076  unsigned Code;
3077  if (isa<BasicBlock>(Name.getValue())) {
3078  Code = bitc::VST_CODE_BBENTRY;
3079  if (Bits == SE_Char6)
3080  AbbrevToUse = VST_BBENTRY_6_ABBREV;
3081  } else {
3082  Code = bitc::VST_CODE_ENTRY;
3083  if (Bits == SE_Char6)
3084  AbbrevToUse = VST_ENTRY_6_ABBREV;
3085  else if (Bits == SE_Fixed7)
3086  AbbrevToUse = VST_ENTRY_7_ABBREV;
3087  }
3088 
3089  for (const auto P : Name.getKey())
3090  NameVals.push_back((unsigned char)P);
3091 
3092  // Emit the finished record.
3093  Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3094  NameVals.clear();
3095  }
3096 
3097  Stream.ExitBlock();
3098 }
3099 
3100 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3101  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3102  unsigned Code;
3103  if (isa<BasicBlock>(Order.V))
3104  Code = bitc::USELIST_CODE_BB;
3105  else
3107 
3108  SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3109  Record.push_back(VE.getValueID(Order.V));
3110  Stream.EmitRecord(Code, Record);
3111 }
3112 
3113 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3115  "Expected to be preserving use-list order");
3116 
3117  auto hasMore = [&]() {
3118  return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3119  };
3120  if (!hasMore())
3121  // Nothing to do.
3122  return;
3123 
3125  while (hasMore()) {
3126  writeUseList(std::move(VE.UseListOrders.back()));
3127  VE.UseListOrders.pop_back();
3128  }
3129  Stream.ExitBlock();
3130 }
3131 
3132 /// Emit a function body to the module stream.
3133 void ModuleBitcodeWriter::writeFunction(
3134  const Function &F,
3135  DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3136  // Save the bitcode index of the start of this function block for recording
3137  // in the VST.
3138  FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3139 
3141  VE.incorporateFunction(F);
3142 
3144 
3145  // Emit the number of basic blocks, so the reader can create them ahead of
3146  // time.
3147  Vals.push_back(VE.getBasicBlocks().size());
3149  Vals.clear();
3150 
3151  // If there are function-local constants, emit them now.
3152  unsigned CstStart, CstEnd;
3153  VE.getFunctionConstantRange(CstStart, CstEnd);
3154  writeConstants(CstStart, CstEnd, false);
3155 
3156  // If there is function-local metadata, emit it now.
3157  writeFunctionMetadata(F);
3158 
3159  // Keep a running idea of what the instruction ID is.
3160  unsigned InstID = CstEnd;
3161 
3162  bool NeedsMetadataAttachment = F.hasMetadata();
3163 
3164  DILocation *LastDL = nullptr;
3165  // Finally, emit all the instructions, in order.
3166  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3167  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3168  I != E; ++I) {
3169  writeInstruction(*I, InstID, Vals);
3170 
3171  if (!I->getType()->isVoidTy())
3172  ++InstID;
3173 
3174  // If the instruction has metadata, write a metadata attachment later.
3175  NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3176 
3177  // If the instruction has a debug location, emit it.
3178  DILocation *DL = I->getDebugLoc();
3179  if (!DL)
3180  continue;
3181 
3182  if (DL == LastDL) {
3183  // Just repeat the same debug loc as last time.
3185  continue;
3186  }
3187 
3188  Vals.push_back(DL->getLine());
3189  Vals.push_back(DL->getColumn());
3190  Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3191  Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3192  Vals.push_back(DL->isImplicitCode());
3193  Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3194  Vals.clear();
3195 
3196  LastDL = DL;
3197  }
3198 
3199  // Emit names for all the instructions etc.
3200  if (auto *Symtab = F.getValueSymbolTable())
3201  writeFunctionLevelValueSymbolTable(*Symtab);
3202 
3203  if (NeedsMetadataAttachment)
3204  writeFunctionMetadataAttachment(F);
3205  if (VE.shouldPreserveUseListOrder())
3206  writeUseListBlock(&F);
3207  VE.purgeFunction();
3208  Stream.ExitBlock();
3209 }
3210 
3211 // Emit blockinfo, which defines the standard abbreviations etc.
3212 void ModuleBitcodeWriter::writeBlockInfo() {
3213  // We only want to emit block info records for blocks that have multiple
3214  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3215  // Other blocks can define their abbrevs inline.
3216  Stream.EnterBlockInfoBlock();
3217 
3218  { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3219  auto Abbv = std::make_shared<BitCodeAbbrev>();
3220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3223  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3225  VST_ENTRY_8_ABBREV)
3226  llvm_unreachable("Unexpected abbrev ordering!");
3227  }
3228 
3229  { // 7-bit fixed width VST_CODE_ENTRY strings.
3230  auto Abbv = std::make_shared<BitCodeAbbrev>();
3232  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3234  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3236  VST_ENTRY_7_ABBREV)
3237  llvm_unreachable("Unexpected abbrev ordering!");
3238  }
3239  { // 6-bit char6 VST_CODE_ENTRY strings.
3240  auto Abbv = std::make_shared<BitCodeAbbrev>();
3242  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3246  VST_ENTRY_6_ABBREV)
3247  llvm_unreachable("Unexpected abbrev ordering!");
3248  }
3249  { // 6-bit char6 VST_CODE_BBENTRY strings.
3250  auto Abbv = std::make_shared<BitCodeAbbrev>();
3252  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3256  VST_BBENTRY_6_ABBREV)
3257  llvm_unreachable("Unexpected abbrev ordering!");
3258  }
3259 
3260  { // SETTYPE abbrev for CONSTANTS_BLOCK.
3261  auto Abbv = std::make_shared<BitCodeAbbrev>();
3265  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3266  CONSTANTS_SETTYPE_ABBREV)
3267  llvm_unreachable("Unexpected abbrev ordering!");
3268  }
3269 
3270  { // INTEGER abbrev for CONSTANTS_BLOCK.
3271  auto Abbv = std::make_shared<BitCodeAbbrev>();
3273  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3274  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3275  CONSTANTS_INTEGER_ABBREV)
3276  llvm_unreachable("Unexpected abbrev ordering!");
3277  }
3278 
3279  { // CE_CAST abbrev for CONSTANTS_BLOCK.
3280  auto Abbv = std::make_shared<BitCodeAbbrev>();
3282  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3283  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3285  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3286 
3287  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3288  CONSTANTS_CE_CAST_Abbrev)
3289  llvm_unreachable("Unexpected abbrev ordering!");
3290  }
3291  { // NULL abbrev for CONSTANTS_BLOCK.
3292  auto Abbv = std::make_shared<BitCodeAbbrev>();
3294  if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3295  CONSTANTS_NULL_Abbrev)
3296  llvm_unreachable("Unexpected abbrev ordering!");
3297  }
3298 
3299  // FIXME: This should only use space for first class types!
3300 
3301  { // INST_LOAD abbrev for FUNCTION_BLOCK.
3302  auto Abbv = std::make_shared<BitCodeAbbrev>();
3304  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3305  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3307  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3308  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3309  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3310  FUNCTION_INST_LOAD_ABBREV)
3311  llvm_unreachable("Unexpected abbrev ordering!");
3312  }
3313  { // INST_UNOP abbrev for FUNCTION_BLOCK.
3314  auto Abbv = std::make_shared<BitCodeAbbrev>();
3316  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3317  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3318  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3319  FUNCTION_INST_UNOP_ABBREV)
3320  llvm_unreachable("Unexpected abbrev ordering!");
3321  }
3322  { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3323  auto Abbv = std::make_shared<BitCodeAbbrev>();
3325  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3326  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3327  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3328  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3329  FUNCTION_INST_UNOP_FLAGS_ABBREV)
3330  llvm_unreachable("Unexpected abbrev ordering!");
3331  }
3332  { // INST_BINOP abbrev for FUNCTION_BLOCK.
3333  auto Abbv = std::make_shared<BitCodeAbbrev>();
3335  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3336  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3337  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3338  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3339  FUNCTION_INST_BINOP_ABBREV)
3340  llvm_unreachable("Unexpected abbrev ordering!");
3341  }
3342  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3343  auto Abbv = std::make_shared<BitCodeAbbrev>();
3345  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3346  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3347  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3348  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3349  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3350  FUNCTION_INST_BINOP_FLAGS_ABBREV)
3351  llvm_unreachable("Unexpected abbrev ordering!");
3352  }
3353  { // INST_CAST abbrev for FUNCTION_BLOCK.
3354  auto Abbv = std::make_shared<BitCodeAbbrev>();
3356  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3357  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3359  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3360  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3361  FUNCTION_INST_CAST_ABBREV)
3362  llvm_unreachable("Unexpected abbrev ordering!");
3363  }
3364 
3365  { // INST_RET abbrev for FUNCTION_BLOCK.
3366  auto Abbv = std::make_shared<BitCodeAbbrev>();
3368  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3369  FUNCTION_INST_RET_VOID_ABBREV)
3370  llvm_unreachable("Unexpected abbrev ordering!");
3371  }
3372  { // INST_RET abbrev for FUNCTION_BLOCK.
3373  auto Abbv = std::make_shared<BitCodeAbbrev>();
3375  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3376  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3377  FUNCTION_INST_RET_VAL_ABBREV)
3378  llvm_unreachable("Unexpected abbrev ordering!");
3379  }
3380  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3381  auto Abbv = std::make_shared<BitCodeAbbrev>();
3383  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3384  FUNCTION_INST_UNREACHABLE_ABBREV)
3385  llvm_unreachable("Unexpected abbrev ordering!");
3386  }
3387  {
3388  auto Abbv = std::make_shared<BitCodeAbbrev>();
3390  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3391  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3392  Log2_32_Ceil(VE.getTypes().size() + 1)));
3394  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3395  if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3396  FUNCTION_INST_GEP_ABBREV)
3397  llvm_unreachable("Unexpected abbrev ordering!");
3398  }
3399 
3400  Stream.ExitBlock();
3401 }
3402 
3403 /// Write the module path strings, currently only used when generating
3404 /// a combined index file.
3405 void IndexBitcodeWriter::writeModStrings() {
3407 
3408  // TODO: See which abbrev sizes we actually need to emit
3409 
3410  // 8-bit fixed-width MST_ENTRY strings.
3411  auto Abbv = std::make_shared<BitCodeAbbrev>();
3413  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3415  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3416  unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3417 
3418  // 7-bit fixed width MST_ENTRY strings.
3419  Abbv = std::make_shared<BitCodeAbbrev>();
3421  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3423  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3424  unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3425 
3426  // 6-bit char6 MST_ENTRY strings.
3427  Abbv = std::make_shared<BitCodeAbbrev>();
3429  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3432  unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3433 
3434  // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3435  Abbv = std::make_shared<BitCodeAbbrev>();
3437  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3438  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3439  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3440  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3441  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3442  unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3443 
3445  forEachModule(
3446  [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3447  StringRef Key = MPSE.getKey();
3448  const auto &Value = MPSE.getValue();
3450  unsigned AbbrevToUse = Abbrev8Bit;
3451  if (Bits == SE_Char6)
3452  AbbrevToUse = Abbrev6Bit;
3453  else if (Bits == SE_Fixed7)
3454  AbbrevToUse = Abbrev7Bit;
3455 
3456  Vals.push_back(Value.first);
3457  Vals.append(Key.begin(), Key.end());
3458 
3459  // Emit the finished record.
3460  Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3461 
3462  // Emit an optional hash for the module now
3463  const auto &Hash = Value.second;
3464  if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3465  Vals.assign(Hash.begin(), Hash.end());
3466  // Emit the hash record.
3467  Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3468  }
3469 
3470  Vals.clear();
3471  });
3472  Stream.ExitBlock();
3473 }
3474 
3475 /// Write the function type metadata related records that need to appear before
3476 /// a function summary entry (whether per-module or combined).
3478  FunctionSummary *FS) {
3479  if (!FS->type_tests().empty())
3480  Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3481 
3483 
3484  auto WriteVFuncIdVec = [&](uint64_t Ty,
3486  if (VFs.empty())
3487  return;
3488  Record.clear();
3489  for (auto &VF : VFs) {
3490  Record.push_back(VF.GUID);
3491  Record.push_back(VF.Offset);
3492  }
3493  Stream.EmitRecord(Ty, Record);
3494  };
3495 
3496  WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3497  FS->type_test_assume_vcalls());
3498  WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3499  FS->type_checked_load_vcalls());
3500 
3501  auto WriteConstVCallVec = [&](uint64_t Ty,
3503  for (auto &VC : VCs) {
3504  Record.clear();
3505  Record.push_back(VC.VFunc.GUID);
3506  Record.push_back(VC.VFunc.Offset);
3507  Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3508  Stream.EmitRecord(Ty, Record);
3509  }
3510  };
3511 
3512  WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3514  WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3516 }
3517 
3518 /// Collect type IDs from type tests used by function.
3519 static void
3521  std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3522  if (!FS->type_tests().empty())
3523  for (auto &TT : FS->type_tests())
3524  ReferencedTypeIds.insert(TT);
3525 
3526  auto GetReferencedTypesFromVFuncIdVec =
3528  for (auto &VF : VFs)
3529  ReferencedTypeIds.insert(VF.GUID);
3530  };
3531 
3532  GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3533  GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3534 
3535  auto GetReferencedTypesFromConstVCallVec =
3537  for (auto &VC : VCs)
3538  ReferencedTypeIds.insert(VC.VFunc.GUID);
3539  };
3540 
3541  GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3542  GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3543 }
3544 
3546  SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3547  const WholeProgramDevirtResolution::ByArg &ByArg) {
3548  NameVals.push_back(args.size());
3549  NameVals.insert(NameVals.end(), args.begin(), args.end());
3550 
3551  NameVals.push_back(ByArg.TheKind);
3552  NameVals.push_back(ByArg.Info);
3553  NameVals.push_back(ByArg.Byte);
3554  NameVals.push_back(ByArg.Bit);
3555 }
3556 
3558  SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3559  uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3560  NameVals.push_back(Id);
3561 
3562  NameVals.push_back(Wpd.TheKind);
3563  NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3564  NameVals.push_back(Wpd.SingleImplName.size());
3565 
3566  NameVals.push_back(Wpd.ResByArg.size());
3567  for (auto &A : Wpd.ResByArg)
3568  writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3569 }
3570 
3572  StringTableBuilder &StrtabBuilder,
3573  const std::string &Id,
3574  const TypeIdSummary &Summary) {
3575  NameVals.push_back(StrtabBuilder.add(Id));
3576  NameVals.push_back(Id.size());
3577 
3578  NameVals.push_back(Summary.TTRes.TheKind);
3579  NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3580  NameVals.push_back(Summary.TTRes.AlignLog2);
3581  NameVals.push_back(Summary.TTRes.SizeM1);
3582  NameVals.push_back(Summary.TTRes.BitMask);
3583  NameVals.push_back(Summary.TTRes.InlineBits);
3584 
3585  for (auto &W : Summary.WPDRes)
3586  writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3587  W.second);
3588 }
3589 
3590 // Helper to emit a single function summary record.
3591 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3592  SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3593  unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3594  const Function &F) {
3595  NameVals.push_back(ValueID);
3596 
3597  FunctionSummary *FS = cast<FunctionSummary>(Summary);
3599 
3600  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3601  NameVals.push_back(FS->instCount());
3602  NameVals.push_back(getEncodedFFlags(FS->fflags()));
3603  NameVals.push_back(FS->refs().size());
3604  NameVals.push_back(FS->immutableRefCount());
3605 
3606  for (auto &RI : FS->refs())
3607  NameVals.push_back(VE.getValueID(RI.getValue()));
3608 
3609  bool HasProfileData =
3610  F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3611  for (auto &ECI : FS->calls()) {
3612  NameVals.push_back(getValueId(ECI.first));
3613  if (HasProfileData)
3614  NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3615  else if (WriteRelBFToSummary)
3616  NameVals.push_back(ECI.second.RelBlockFreq);
3617  }
3618 
3619  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3620  unsigned Code =
3621  (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3623  : bitc::FS_PERMODULE));
3624 
3625  // Emit the finished record.
3626  Stream.EmitRecord(Code, NameVals, FSAbbrev);
3627  NameVals.clear();
3628 }
3629 
3630 // Collect the global value references in the given variable's initializer,
3631 // and emit them in a summary record.
3632 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3633  const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3634  unsigned FSModRefsAbbrev) {
3635  auto VI = Index->getValueInfo(V.getGUID());
3636  if (!VI || VI.getSummaryList().empty()) {
3637  // Only declarations should not have a summary (a declaration might however
3638  // have a summary if the def was in module level asm).
3639  assert(V.isDeclaration());
3640  return;
3641  }
3642  auto *Summary = VI.getSummaryList()[0].get();
3643  NameVals.push_back(VE.getValueID(&V));
3644  GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3645  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3646  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3647 
3648  unsigned SizeBeforeRefs = NameVals.size();
3649  for (auto &RI : VS->refs())
3650  NameVals.push_back(VE.getValueID(RI.getValue()));
3651  // Sort the refs for determinism output, the vector returned by FS->refs() has
3652  // been initialized from a DenseSet.
3653  llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3654 
3656  FSModRefsAbbrev);
3657  NameVals.clear();
3658 }
3659 
3660 // Current version for the summary.
3661 // This is bumped whenever we introduce changes in the way some record are
3662 // interpreted, like flags for instance.
3663 static const uint64_t INDEX_VERSION = 6;
3664 
3665 /// Emit the per-module summary section alongside the rest of
3666 /// the module's bitcode.
3667 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3668  // By default we compile with ThinLTO if the module has a summary, but the
3669  // client can request full LTO with a module flag.
3670  bool IsThinLTO = true;
3671  if (auto *MD =
3672  mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3673  IsThinLTO = MD->getZExtValue();
3676  4);
3677 
3678  Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3679 
3680  // Write the index flags.
3681  uint64_t Flags = 0;
3682  // Bits 1-3 are set only in the combined index, skip them.
3683  if (Index->enableSplitLTOUnit())
3684  Flags |= 0x8;
3686 
3687  if (Index->begin() == Index->end()) {
3688  Stream.ExitBlock();
3689  return;
3690  }
3691 
3692  for (const auto &GVI : valueIds()) {
3694  ArrayRef<uint64_t>{GVI.second, GVI.first});
3695  }
3696 
3697  // Abbrev for FS_PERMODULE_PROFILE.
3698  auto Abbv = std::make_shared<BitCodeAbbrev>();
3700  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3701  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3702  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3703  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3704  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3705  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3706  // numrefs x valueid, n x (valueid, hotness)
3708  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3709  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3710 
3711  // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3712  Abbv = std::make_shared<BitCodeAbbrev>();
3713  if (WriteRelBFToSummary)
3715  else
3716  Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3717  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3718  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3719  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3720  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3721  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3722  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3723  // numrefs x valueid, n x (valueid [, rel_block_freq])
3725  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3726  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3727 
3728  // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3729  Abbv = std::make_shared<BitCodeAbbrev>();
3731  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3732  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3733  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3734  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3735  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3736 
3737  // Abbrev for FS_ALIAS.
3738  Abbv = std::make_shared<BitCodeAbbrev>();
3739  Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3740  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3741  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3742  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3743  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3744 
3745  SmallVector<uint64_t, 64> NameVals;
3746  // Iterate over the list of functions instead of the Index to
3747  // ensure the ordering is stable.
3748  for (const Function &F : M) {
3749  // Summary emission does not support anonymous functions, they have to
3750  // renamed using the anonymous function renaming pass.
3751  if (!F.hasName())
3752  report_fatal_error("Unexpected anonymous function when writing summary");
3753 
3754  ValueInfo VI = Index->getValueInfo(F.getGUID());
3755  if (!VI || VI.getSummaryList().empty()) {
3756  // Only declarations should not have a summary (a declaration might
3757  // however have a summary if the def was in module level asm).
3758  assert(F.isDeclaration());
3759  continue;
3760  }
3761  auto *Summary = VI.getSummaryList()[0].get();
3762  writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3763  FSCallsAbbrev, FSCallsProfileAbbrev, F);
3764  }
3765 
3766  // Capture references from GlobalVariable initializers, which are outside
3767  // of a function scope.
3768  for (const GlobalVariable &G : M.globals())
3769  writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3770 
3771  for (const GlobalAlias &A : M.aliases()) {
3772  auto *Aliasee = A.getBaseObject();
3773  if (!Aliasee->hasName())
3774  // Nameless function don't have an entry in the summary, skip it.
3775  continue;
3776  auto AliasId = VE.getValueID(&A);
3777  auto AliaseeId = VE.getValueID(Aliasee);
3778  NameVals.push_back(AliasId);
3779  auto *Summary = Index->getGlobalValueSummary(A);
3780  AliasSummary *AS = cast<AliasSummary>(Summary);
3781  NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3782  NameVals.push_back(AliaseeId);
3783  Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3784  NameVals.clear();
3785  }
3786 
3787  Stream.ExitBlock();
3788 }
3789 
3790 /// Emit the combined summary section into the combined index file.
3791 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3793  Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3794 
3795  // Write the index flags.
3796  uint64_t Flags = 0;
3797  if (Index.withGlobalValueDeadStripping())
3798  Flags |= 0x1;
3799  if (Index.skipModuleByDistributedBackend())
3800  Flags |= 0x2;
3801  if (Index.hasSyntheticEntryCounts())
3802  Flags |= 0x4;
3803  if (Index.enableSplitLTOUnit())
3804  Flags |= 0x8;
3805  if (Index.partiallySplitLTOUnits())
3806  Flags |= 0x10;
3808 
3809  for (const auto &GVI : valueIds()) {
3811  ArrayRef<uint64_t>{GVI.second, GVI.first});
3812  }
3813 
3814  // Abbrev for FS_COMBINED.
3815  auto Abbv = std::make_shared<BitCodeAbbrev>();
3816  Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3817  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3818  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3819  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3820  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3821  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3822  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3823  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3824  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3825  // numrefs x valueid, n x (valueid)
3827  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3828  unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3829 
3830  // Abbrev for FS_COMBINED_PROFILE.
3831  Abbv = std::make_shared<BitCodeAbbrev>();
3833  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3834  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3835  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3836  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3837  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3838  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3839  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt
3840  // numrefs x valueid, n x (valueid, hotness)
3842  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3843  unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3844 
3845  // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3846  Abbv = std::make_shared<BitCodeAbbrev>();
3848  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3849  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3850  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3851  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3852  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3853  unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3854 
3855  // Abbrev for FS_COMBINED_ALIAS.
3856  Abbv = std::make_shared<BitCodeAbbrev>();
3858  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3859  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3860  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3861  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3862  unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3863 
3864  // The aliases are emitted as a post-pass, and will point to the value
3865  // id of the aliasee. Save them in a vector for post-processing.
3867 
3868  // Save the value id for each summary for alias emission.
3870 
3871  SmallVector<uint64_t, 64> NameVals;
3872 
3873  // Set that will be populated during call to writeFunctionTypeMetadataRecords
3874  // with the type ids referenced by this index file.
3875  std::set<GlobalValue::GUID> ReferencedTypeIds;
3876 
3877  // For local linkage, we also emit the original name separately
3878  // immediately after the record.
3879  auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3880  if (!GlobalValue::isLocalLinkage(S.linkage()))
3881  return;
3882  NameVals.push_back(S.getOriginalName());
3883  Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3884  NameVals.clear();
3885  };
3886 
3887  forEachSummary([&](GVInfo I, bool IsAliasee) {
3888  GlobalValueSummary *S = I.second;
3889  assert(S);
3890 
3891  auto ValueId = getValueId(I.first);
3892  assert(ValueId);
3893  SummaryToValueIdMap[S] = *ValueId;
3894 
3895  // If this is invoked for an aliasee, we want to record the above
3896  // mapping, but then not emit a summary entry (if the aliasee is
3897  // to be imported, we will invoke this separately with IsAliasee=false).
3898  if (IsAliasee)
3899  return;
3900 
3901  if (auto *AS = dyn_cast<AliasSummary>(S)) {
3902  // Will process aliases as a post-pass because the reader wants all
3903  // global to be loaded first.
3904  Aliases.push_back(AS);
3905  return;
3906  }
3907 
3908  if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3909  NameVals.push_back(*ValueId);
3910  NameVals.push_back(Index.getModuleId(VS->modulePath()));
3911  NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3912  NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3913  for (auto &RI : VS->refs()) {
3914  auto RefValueId = getValueId(RI.getGUID());
3915  if (!RefValueId)
3916  continue;
3917  NameVals.push_back(*RefValueId);
3918  }
3919 
3920  // Emit the finished record.
3922  FSModRefsAbbrev);
3923  NameVals.clear();
3924  MaybeEmitOriginalName(*S);
3925  return;
3926  }
3927 
3928  auto *FS = cast<FunctionSummary>(S);
3930  getReferencedTypeIds(FS, ReferencedTypeIds);
3931 
3932  NameVals.push_back(*ValueId);
3933  NameVals.push_back(Index.getModuleId(FS->modulePath()));
3934  NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3935  NameVals.push_back(FS->instCount());
3936  NameVals.push_back(getEncodedFFlags(FS->fflags()));
3937  NameVals.push_back(FS->entryCount());
3938 
3939  // Fill in below
3940  NameVals.push_back(0); // numrefs
3941  NameVals.push_back(0); // immutablerefcnt
3942 
3943  unsigned Count = 0, ImmutableRefCnt = 0;
3944  for (auto &RI : FS->refs()) {
3945  auto RefValueId = getValueId(RI.getGUID());
3946  if (!RefValueId)
3947  continue;
3948  NameVals.push_back(*RefValueId);
3949  if (RI.isReadOnly())
3950  ImmutableRefCnt++;
3951  Count++;
3952  }
3953  NameVals[6] = Count;
3954  NameVals[7] = ImmutableRefCnt;
3955 
3956  bool HasProfileData = false;
3957  for (auto &EI : FS->calls()) {
3958  HasProfileData |=
3959  EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
3960  if (HasProfileData)
3961  break;
3962  }
3963 
3964  for (auto &EI : FS->calls()) {
3965  // If this GUID doesn't have a value id, it doesn't have a function
3966  // summary and we don't need to record any calls to it.
3967  GlobalValue::GUID GUID = EI.first.getGUID();
3968  auto CallValueId = getValueId(GUID);
3969  if (!CallValueId) {
3970  // For SamplePGO, the indirect call targets for local functions will
3971  // have its original name annotated in profile. We try to find the
3972  // corresponding PGOFuncName as the GUID.
3973  GUID = Index.getGUIDFromOriginalID(GUID);
3974  if (GUID == 0)
3975  continue;
3976  CallValueId = getValueId(GUID);
3977  if (!CallValueId)
3978  continue;
3979  // The mapping from OriginalId to GUID may return a GUID
3980  // that corresponds to a static variable. Filter it out here.
3981  // This can happen when
3982  // 1) There is a call to a library function which does not have
3983  // a CallValidId;
3984  // 2) There is a static variable with the OriginalGUID identical
3985  // to the GUID of the library function in 1);
3986  // When this happens, the logic for SamplePGO kicks in and
3987  // the static variable in 2) will be found, which needs to be
3988  // filtered out.
3989  auto *GVSum = Index.getGlobalValueSummary(GUID, false);
3990  if (GVSum &&
3991  GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
3992  continue;
3993  }
3994  NameVals.push_back(*CallValueId);
3995  if (HasProfileData)
3996  NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
3997  }
3998 
3999  unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4000  unsigned Code =
4001  (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4002 
4003  // Emit the finished record.
4004  Stream.EmitRecord(Code, NameVals, FSAbbrev);
4005  NameVals.clear();
4006  MaybeEmitOriginalName(*S);
4007  });
4008 
4009  for (auto *AS : Aliases) {
4010  auto AliasValueId = SummaryToValueIdMap[AS];
4011  assert(AliasValueId);
4012  NameVals.push_back(AliasValueId);
4013  NameVals.push_back(Index.getModuleId(AS->modulePath()));
4014  NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4015  auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4016  assert(AliaseeValueId);
4017  NameVals.push_back(AliaseeValueId);
4018 
4019  // Emit the finished record.
4020  Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4021  NameVals.clear();
4022  MaybeEmitOriginalName(*AS);
4023 
4024  if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4025  getReferencedTypeIds(FS, ReferencedTypeIds);
4026  }
4027 
4028  if (!Index.cfiFunctionDefs().empty()) {
4029  for (auto &S : Index.cfiFunctionDefs()) {
4030  NameVals.push_back(StrtabBuilder.add(S));
4031  NameVals.push_back(S.size());
4032  }
4033  Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4034  NameVals.clear();
4035  }
4036 
4037  if (!Index.cfiFunctionDecls().empty()) {
4038  for (auto &S : Index.cfiFunctionDecls()) {
4039  NameVals.push_back(StrtabBuilder.add(S));
4040  NameVals.push_back(S.size());
4041  }
4042  Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4043  NameVals.clear();
4044  }
4045 
4046  // Walk the GUIDs that were referenced, and write the
4047  // corresponding type id records.
4048  for (auto &T : ReferencedTypeIds) {
4049  auto TidIter = Index.typeIds().equal_range(T);
4050  for (auto It = TidIter.first; It != TidIter.second; ++It) {
4051  writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4052  It->second.second);
4053  Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4054  NameVals.clear();
4055  }
4056  }
4057 
4058  Stream.ExitBlock();
4059 }
4060 
4061 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4062 /// current llvm version, and a record for the epoch number.
4065 
4066  // Write the "user readable" string identifying the bitcode producer
4067  auto Abbv = std::make_shared<BitCodeAbbrev>();
4071  auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4073  "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4074 
4075  // Write the epoch version
4076  Abbv = std::make_shared<BitCodeAbbrev>();
4078  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4079  auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4081  Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4082  Stream.ExitBlock();
4083 }
4084 
4085 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4086  // Emit the module's hash.
4087  // MODULE_CODE_HASH: [5*i32]
4088  if (GenerateHash) {
4089  uint32_t Vals[5];
4090  Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4091  Buffer.size() - BlockStartPos));
4092  StringRef Hash = Hasher.result();
4093  for (int Pos = 0; Pos < 20; Pos += 4) {
4094  Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4095  }
4096 
4097  // Emit the finished record.
4098  Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4099 
4100  if (ModHash)
4101  // Save the written hash value.
4102  llvm::copy(Vals, std::begin(*ModHash));
4103  }
4104 }
4105 
4107  writeIdentificationBlock(Stream);
4108 
4110  size_t BlockStartPos = Buffer.size();
4111 
4112  writeModuleVersion();
4113 
4114  // Emit blockinfo, which defines the standard abbreviations etc.
4115  writeBlockInfo();
4116 
4117  // Emit information about attribute groups.
4118  writeAttributeGroupTable();
4119 
4120  // Emit information about parameter attributes.
4121  writeAttributeTable();
4122 
4123  // Emit information describing all of the types in the module.
4124  writeTypeTable();
4125 
4126  writeComdats();
4127 
4128  // Emit top-level description of module, including target triple, inline asm,
4129  // descriptors for global variables, and function prototype info.
4130  writeModuleInfo();
4131 
4132  // Emit constants.
4133  writeModuleConstants();
4134 
4135  // Emit metadata kind names.
4136  writeModuleMetadataKinds();
4137 
4138  // Emit metadata.
4139  writeModuleMetadata();
4140 
4141  // Emit module-level use-lists.
4142  if (VE.shouldPreserveUseListOrder())
4143  writeUseListBlock(nullptr);
4144 
4145  writeOperandBundleTags();
4146  writeSyncScopeNames();
4147 
4148  // Emit function bodies.
4149  DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4150  for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4151  if (!F->isDeclaration())
4152  writeFunction(*F, FunctionToBitcodeIndex);
4153 
4154  // Need to write after the above call to WriteFunction which populates
4155  // the summary information in the index.
4156  if (Index)
4157  writePerModuleGlobalValueSummary();
4158 
4159  writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4160 
4161  writeModuleHash(BlockStartPos);
4162 
4163  Stream.ExitBlock();
4164 }
4165 
4167  uint32_t &Position) {
4168  support::endian::write32le(&Buffer[Position], Value);
4169  Position += 4;
4170 }
4171 
4172 /// If generating a bc file on darwin, we have to emit a
4173 /// header and trailer to make it compatible with the system archiver. To do
4174 /// this we emit the following header, and then emit a trailer that pads the
4175 /// file out to be a multiple of 16 bytes.
4176 ///
4177 /// struct bc_header {
4178 /// uint32_t Magic; // 0x0B17C0DE
4179 /// uint32_t Version; // Version, currently always 0.
4180 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4181 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4182 /// uint32_t CPUType; // CPU specifier.
4183 /// ... potentially more later ...
4184 /// };
4186  const Triple &TT) {
4187  unsigned CPUType = ~0U;
4188 
4189  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4190  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4191  // number from /usr/include/mach/machine.h. It is ok to reproduce the
4192  // specific constants here because they are implicitly part of the Darwin ABI.
4193  enum {
4194  DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4195  DARWIN_CPU_TYPE_X86 = 7,
4196  DARWIN_CPU_TYPE_ARM = 12,
4197  DARWIN_CPU_TYPE_POWERPC = 18
4198  };
4199 
4200  Triple::ArchType Arch = TT.getArch();
4201  if (Arch == Triple::x86_64)
4202  CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4203  else if (Arch == Triple::x86)
4204  CPUType = DARWIN_CPU_TYPE_X86;
4205  else if (Arch == Triple::ppc)
4206  CPUType = DARWIN_CPU_TYPE_POWERPC;
4207  else if (Arch == Triple::ppc64)
4208  CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4209  else if (Arch == Triple::arm || Arch == Triple::thumb)
4210  CPUType = DARWIN_CPU_TYPE_ARM;
4211 
4212  // Traditional Bitcode starts after header.
4213  assert(Buffer.size() >= BWH_HeaderSize &&
4214  "Expected header size to be reserved");
4215  unsigned BCOffset = BWH_HeaderSize;
4216  unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4217 
4218  // Write the magic and version.
4219  unsigned Position = 0;
4220  writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4221  writeInt32ToBuffer(0, Buffer, Position); // Version.
4222  writeInt32ToBuffer(BCOffset, Buffer, Position);
4223  writeInt32ToBuffer(BCSize, Buffer, Position);
4224  writeInt32ToBuffer(CPUType, Buffer, Position);
4225 
4226  // If the file is not a multiple of 16 bytes, insert dummy padding.
4227  while (Buffer.size() & 15)
4228  Buffer.push_back(0);
4229 }
4230 
4231 /// Helper to write the header common to all bitcode files.
4232 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4233  // Emit the file header.
4234  Stream.Emit((unsigned)'B', 8);
4235  Stream.Emit((unsigned)'C', 8);
4236  Stream.Emit(0x0, 4);
4237  Stream.Emit(0xC, 4);
4238  Stream.Emit(0xE, 4);
4239  Stream.Emit(0xD, 4);
4240 }
4241 
4243  : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4244  writeBitcodeHeader(*Stream);
4245 }
4246 
4248 
4249 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4250  Stream->EnterSubblock(Block, 3);
4251 
4252  auto Abbv = std::make_shared<BitCodeAbbrev>();
4253  Abbv->Add(BitCodeAbbrevOp(Record));
4255  auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4256 
4257  Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4258 
4259  Stream->ExitBlock();
4260 }
4261 
4263  assert(!WroteStrtab && !WroteSymtab);
4264 
4265  // If any module has module-level inline asm, we will require a registered asm
4266  // parser for the target so that we can create an accurate symbol table for
4267  // the module.
4268  for (Module *M : Mods) {
4269  if (M->getModuleInlineAsm().empty())
4270  continue;
4271 
4272  std::string Err;
4273  const Triple TT(M->getTargetTriple());
4274  const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4275  if (!T || !T->hasMCAsmParser())
4276  return;
4277  }
4278 
4279  WroteSymtab = true;
4280  SmallVector<char, 0> Symtab;
4281  // The irsymtab::build function may be unable to create a symbol table if the
4282  // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4283  // table is not required for correctness, but we still want to be able to
4284  // write malformed modules to bitcode files, so swallow the error.
4285  if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4286  consumeError(std::move(E));
4287  return;
4288  }
4289 
4291  {Symtab.data(), Symtab.size()});
4292 }
4293 
4295  assert(!WroteStrtab);
4296 
4297  std::vector<char> Strtab;
4298  StrtabBuilder.finalizeInOrder();
4299  Strtab.resize(StrtabBuilder.getSize());
4300  StrtabBuilder.write((uint8_t *)Strtab.data());
4301 
4303  {Strtab.data(), Strtab.size()});
4304 
4305  WroteStrtab = true;
4306 }
4307 
4309  writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4310  WroteStrtab = true;
4311 }
4312 
4314  bool ShouldPreserveUseListOrder,
4315  const ModuleSummaryIndex *Index,
4316  bool GenerateHash, ModuleHash *ModHash) {
4317  assert(!WroteStrtab);
4318 
4319  // The Mods vector is used by irsymtab::build, which requires non-const
4320  // Modules in case it needs to materialize metadata. But the bitcode writer
4321  // requires that the module is materialized, so we can cast to non-const here,
4322  // after checking that it is in fact materialized.
4323  assert(M.isMaterialized());
4324  Mods.push_back(const_cast<Module *>(&M));
4325 
4326  ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4327  ShouldPreserveUseListOrder, Index,
4328  GenerateHash, ModHash);
4329  ModuleWriter.write();
4330 }
4331 
4333  const ModuleSummaryIndex *Index,
4334  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4335  IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4336  ModuleToSummariesForIndex);
4337  IndexWriter.write();
4338 }
4339 
4340 /// Write the specified module to the specified output stream.
4342  bool ShouldPreserveUseListOrder,
4343  const ModuleSummaryIndex *Index,
4344  bool GenerateHash, ModuleHash *ModHash) {
4345  SmallVector<char, 0> Buffer;
4346  Buffer.reserve(256*1024);
4347 
4348  // If this is darwin or another generic macho target, reserve space for the
4349  // header.
4350  Triple TT(M.getTargetTriple());
4351  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4352  Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4353 
4354  BitcodeWriter Writer(Buffer);
4355  Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4356  ModHash);
4357  Writer.writeSymtab();
4358  Writer.writeStrtab();
4359 
4360  if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4361  emitDarwinBCHeaderAndTrailer(Buffer, TT);
4362 
4363  // Write the generated bitstream to "Out".
4364  Out.write((char*)&Buffer.front(), Buffer.size());
4365 }
4366 
4369 
4370  writeModuleVersion();
4371 
4372  // Write the module paths in the combined index.
4373  writeModStrings();
4374 
4375  // Write the summary combined index records.
4376  writeCombinedGlobalValueSummary();
4377 
4378  Stream.ExitBlock();
4379 }
4380 
4381 // Write the specified module summary index to the given raw output stream,
4382 // where it will be written in a new bitcode block. This is used when
4383 // writing the combined index file for ThinLTO. When writing a subset of the
4384 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4386  const ModuleSummaryIndex &Index, raw_ostream &Out,
4387  const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4388  SmallVector<char, 0> Buffer;
4389  Buffer.reserve(256 * 1024);
4390 
4391  BitcodeWriter Writer(Buffer);
4392  Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4393  Writer.writeStrtab();
4394 
4395  Out.write((char *)&Buffer.front(), Buffer.size());
4396 }
4397 
4398 namespace {
4399 
4400 /// Class to manage the bitcode writing for a thin link bitcode file.
4401 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4402  /// ModHash is for use in ThinLTO incremental build, generated while writing
4403  /// the module bitcode file.
4404  const ModuleHash *ModHash;
4405 
4406 public:
4407  ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4408  BitstreamWriter &Stream,
4409  const ModuleSummaryIndex &Index,
4410  const ModuleHash &ModHash)
4411  : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4412  /*ShouldPreserveUseListOrder=*/false, &Index),
4413  ModHash(&ModHash) {}
4414 
4415  void write();
4416 
4417 private:
4418  void writeSimplifiedModuleInfo();
4419 };
4420 
4421 } // end anonymous namespace
4422 
4423 // This function writes a simpilified module info for thin link bitcode file.
4424 // It only contains the source file name along with the name(the offset and
4425 // size in strtab) and linkage for global values. For the global value info
4426 // entry, in order to keep linkage at offset 5, there are three zeros used
4427 // as padding.
4428 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4430  // Emit the module's source file name.
4431  {
4434  if (Bits == SE_Char6)
4435  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4436  else if (Bits == SE_Fixed7)
4437  AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4438 
4439  // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4440  auto Abbv = std::make_shared<BitCodeAbbrev>();
4443  Abbv->Add(AbbrevOpToUse);
4444  unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4445 
4446  for (const auto P : M.getSourceFileName())
4447  Vals.push_back((unsigned char)P);
4448 
4449  Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4450  Vals.clear();
4451  }
4452 
4453  // Emit the global variable information.
4454  for (const GlobalVariable &GV : M.globals()) {
4455  // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4456  Vals.push_back(StrtabBuilder.add(GV.getName()));
4457  Vals.push_back(GV.getName().size());
4458  Vals.push_back(0);
4459  Vals.push_back(0);
4460  Vals.push_back(0);
4461  Vals.push_back(getEncodedLinkage(GV));
4462 
4464  Vals.clear();
4465  }
4466 
4467  // Emit the function proto information.
4468  for (const Function &F : M) {
4469  // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4470  Vals.push_back(StrtabBuilder.add(F.getName()));
4471  Vals.push_back(F.getName().size());
4472  Vals.push_back(0);
4473  Vals.push_back(0);
4474  Vals.push_back(0);
4475  Vals.push_back(getEncodedLinkage(F));
4476 
4477  Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4478  Vals.clear();
4479  }
4480 
4481  // Emit the alias information.
4482  for (const GlobalAlias &A : M.aliases()) {
4483  // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4484  Vals.push_back(StrtabBuilder.add(A.getName()));
4485  Vals.push_back(A.getName().size());
4486  Vals.push_back(0);
4487  Vals.push_back(0);
4488  Vals.push_back(0);
4489  Vals.push_back(getEncodedLinkage(A));
4490 
4491  Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4492  Vals.clear();
4493  }
4494 
4495  // Emit the ifunc information.
4496  for (const GlobalIFunc &I : M.ifuncs()) {
4497  // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4498  Vals.push_back(StrtabBuilder.add(I.getName()));
4499  Vals.push_back(I.getName().size());
4500  Vals.push_back(0);
4501  Vals.push_back(0);
4502  Vals.push_back(0);
4503  Vals.push_back(getEncodedLinkage(I));
4504 
4505  Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4506  Vals.clear();
4507  }
4508 }
4509 
4512 
4513  writeModuleVersion();
4514 
4515  writeSimplifiedModuleInfo();
4516 
4517  writePerModuleGlobalValueSummary();
4518 
4519  // Write module hash.
4521 
4522  Stream.ExitBlock();
4523 }
4524 
4526  const ModuleSummaryIndex &Index,
4527  const ModuleHash &ModHash) {
4528  assert(!WroteStrtab);
4529 
4530  // The Mods vector is used by irsymtab::build, which requires non-const
4531  // Modules in case it needs to materialize metadata. But the bitcode writer
4532  // requires that the module is materialized, so we can cast to non-const here,
4533  // after checking that it is in fact materialized.
4534  assert(M.isMaterialized());
4535  Mods.push_back(const_cast<Module *>(&M));
4536 
4537  ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4538  ModHash);
4539  ThinLinkWriter.write();
4540 }
4541 
4542 // Write the specified thin link bitcode file to the given raw output stream,
4543 // where it will be written in a new bitcode block. This is used when
4544 // writing the per-module index file for ThinLTO.
4546  const ModuleSummaryIndex &Index,
4547  const ModuleHash &ModHash) {
4548  SmallVector<char, 0> Buffer;
4549  Buffer.reserve(256 * 1024);
4550 
4551  BitcodeWriter Writer(Buffer);
4552  Writer.writeThinLinkBitcode(M, Index, ModHash);
4553  Writer.writeSymtab();
4554  Writer.writeStrtab();
4555 
4556  Out.write((char *)&Buffer.front(), Buffer.size());
4557 }
DIFlags getFlags() const
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
uint64_t CallInst * C
bool hasOperandBundles() const
Return true if this User has any operand bundles.
Definition: InstrTypes.h:1704
MDString * getRawName() const
7: Labels
Definition: Type.h:63
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:551
void writeIndex(const ModuleSummaryIndex *Index, const std::map< std::string, GVSummaryMapTy > *ModuleToSummariesForIndex)
const std::string & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition: Module.h:240
ThreadLocalMode getThreadLocalMode() const
Definition: GlobalValue.h:254
ArrayRef< uint64_t > getElements() const
This class provides a symbol table of name/value pairs.
uint64_t getOffsetInBits() const
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
static cl::opt< unsigned > IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), cl::desc("Number of metadatas above which we emit an index " "to enable lazy-loading"))
bool isDistinct() const
Definition: Metadata.h:942
This instruction extracts a struct member or array element value from an aggregate value...
Special purpose, only applies to global arrays.
Definition: GlobalValue.h:54
unsigned getLine() const
*p = old <signed v ? old : v
Definition: Instructions.h:721
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
bool haveGVs() const
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:224
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, TypePrinting *, SlotTracker *, const Module *)
Definition: AsmWriter.cpp:1820
static uint64_t getOptimizationFlags(const Value *V)
unsigned getMetadataOrNullID(const Metadata *MD) const
Atomic ordering constants.
unsigned getValueID(const Value *V) const
const ValueList & getValues() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
Definition: GlobalValue.h:492
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:139
This class represents lattice values for constants.
Definition: AllocatorList.h:23
static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags)
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:134
const unsigned char * bytes_end() const
Definition: StringRef.h:108
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:125
unsigned getRuntimeVersion() const
unsigned Linkage
The linkage type of the associated global value.
bool hasMetadataOtherThanDebugLoc() const
Return true if this instruction has metadata attached to it other than a debug location.
Definition: Instruction.h:228
MDString * getRawName() const
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:65
static void getReferencedTypeIds(FunctionSummary *FS, std::set< GlobalValue::GUID > &ReferencedTypeIds)
Collect type IDs from type tests used by function.
2: 32-bit floating point type
Definition: Type.h:58
MDString * getRawName() const
iterator end()
Definition: Function.h:663
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:53
amdgpu Simplify well known AMD library false FunctionCallee Value const Twine & Name
const GlobalValue * getValue() const
ArrayRef< VFuncId > type_test_assume_vcalls() const
Returns the list of virtual calls made by this function using llvm.assume(llvm.type.test) intrinsics that do not have all constant integer arguments.
Metadata * getRawFile() const
Global variable summary information to aid decisions and implementation of importing.
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV)
std::pair< unsigned, AttributeSet > IndexAndAttrSet
Attribute groups as encoded in bitcode are almost AttributeSets, but they include the AttributeList i...
Available for inspection, not emission.
Definition: GlobalValue.h:49
DIFile * getFile() const
ArrayRef< ValueInfo > refs() const
Return the list of values referenced by this global value definition.
unsigned getDiscriminator() const
bool isFP128Ty() const
Return true if this is &#39;fp128&#39;.
Definition: Type.h:155
MDString * getRawValue() const
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
void setInstructionID(const Instruction *I)
Value * getCondition() const
The two locations do not alias at all.
Definition: AliasAnalysis.h:84
bool shouldPreserveUseListOrder() const
StringEncoding
*p = old <unsigned v ? old : v
Definition: Instructions.h:725
void writeSymtab()
Attempt to write a symbol table to the bitcode file.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:135
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM...
uint64_t Info
Additional information for the resolution:
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:56
*p = old >unsigned v ? old : v
Definition: Instructions.h:723
Externally visible function.
Definition: GlobalValue.h:48
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:709
The data referenced by the COMDAT must be the same size.
Definition: Comdat.h:38
DICompositeTypeArray getEnumTypes() const
const std::string & getDataLayoutStr() const
Get the data layout string for the module&#39;s target platform.
Definition: Module.h:231