LLVM 22.0.0git
Execution.cpp
Go to the documentation of this file.
1//===-- Execution.cpp - Implement code to simulate the program ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the actual instruction interpreter.
10//
11//===----------------------------------------------------------------------===//
12
13#include "Interpreter.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/Statistic.h"
17#include "llvm/IR/Constants.h"
22#include "llvm/Support/Debug.h"
26#include <algorithm>
27#include <cmath>
28using namespace llvm;
29
30#define DEBUG_TYPE "interpreter"
31
32STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
33
34static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35 cl::desc("make the interpreter print every volatile load and store"));
36
37//===----------------------------------------------------------------------===//
38// Various Helper Functions
39//===----------------------------------------------------------------------===//
40
41static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42 SF.Values[V] = Val;
43}
44
45//===----------------------------------------------------------------------===//
46// Unary Instruction Implementations
47//===----------------------------------------------------------------------===//
48
49static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50 switch (Ty->getTypeID()) {
51 case Type::FloatTyID:
52 Dest.FloatVal = -Src.FloatVal;
53 break;
55 Dest.DoubleVal = -Src.DoubleVal;
56 break;
57 default:
58 llvm_unreachable("Unhandled type for FNeg instruction");
59 }
60}
61
63 ExecutionContext &SF = ECStack.back();
64 Type *Ty = I.getOperand(0)->getType();
65 GenericValue Src = getOperandValue(I.getOperand(0), SF);
66 GenericValue R; // Result
67
68 // First process vector operation
69 if (Ty->isVectorTy()) {
70 R.AggregateVal.resize(Src.AggregateVal.size());
71
72 switch(I.getOpcode()) {
73 default:
74 llvm_unreachable("Don't know how to handle this unary operator");
75 break;
76 case Instruction::FNeg:
77 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79 R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80 } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82 R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83 } else {
84 llvm_unreachable("Unhandled type for FNeg instruction");
85 }
86 break;
87 }
88 } else {
89 switch (I.getOpcode()) {
90 default:
91 llvm_unreachable("Don't know how to handle this unary operator");
92 break;
93 case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
94 }
95 }
96 SetValue(&I, R, SF);
97}
98
99//===----------------------------------------------------------------------===//
100// Binary Instruction Implementations
101//===----------------------------------------------------------------------===//
102
103#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104 case Type::TY##TyID: \
105 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106 break
107
109 GenericValue Src2, Type *Ty) {
110 switch (Ty->getTypeID()) {
112 IMPLEMENT_BINARY_OPERATOR(+, Double);
113 default:
114 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115 llvm_unreachable(nullptr);
116 }
117}
118
120 GenericValue Src2, Type *Ty) {
121 switch (Ty->getTypeID()) {
123 IMPLEMENT_BINARY_OPERATOR(-, Double);
124 default:
125 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126 llvm_unreachable(nullptr);
127 }
128}
129
131 GenericValue Src2, Type *Ty) {
132 switch (Ty->getTypeID()) {
134 IMPLEMENT_BINARY_OPERATOR(*, Double);
135 default:
136 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137 llvm_unreachable(nullptr);
138 }
139}
140
142 GenericValue Src2, Type *Ty) {
143 switch (Ty->getTypeID()) {
145 IMPLEMENT_BINARY_OPERATOR(/, Double);
146 default:
147 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148 llvm_unreachable(nullptr);
149 }
150}
151
153 GenericValue Src2, Type *Ty) {
154 switch (Ty->getTypeID()) {
155 case Type::FloatTyID:
156 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157 break;
158 case Type::DoubleTyID:
159 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160 break;
161 default:
162 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163 llvm_unreachable(nullptr);
164 }
165}
166
167#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168 case Type::IntegerTyID: \
169 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170 break;
171
172#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
173 case Type::FixedVectorTyID: \
174 case Type::ScalableVectorTyID: { \
175 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
176 Dest.AggregateVal.resize(Src1.AggregateVal.size()); \
177 for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
178 Dest.AggregateVal[_i].IntVal = APInt( \
179 1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \
180 } break;
181
182// Handle pointers specially because they must be compared with only as much
183// width as the host has. We _do not_ want to be comparing 64 bit values when
184// running on a 32-bit target, otherwise the upper 32 bits might mess up
185// comparisons if they contain garbage.
186#define IMPLEMENT_POINTER_ICMP(OP) \
187 case Type::PointerTyID: \
188 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
189 (void*)(intptr_t)Src2.PointerVal); \
190 break;
191
193 Type *Ty) {
194 GenericValue Dest;
195 switch (Ty->getTypeID()) {
199 default:
200 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
201 llvm_unreachable(nullptr);
202 }
203 return Dest;
204}
205
207 Type *Ty) {
208 GenericValue Dest;
209 switch (Ty->getTypeID()) {
213 default:
214 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
215 llvm_unreachable(nullptr);
216 }
217 return Dest;
218}
219
221 Type *Ty) {
222 GenericValue Dest;
223 switch (Ty->getTypeID()) {
227 default:
228 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
229 llvm_unreachable(nullptr);
230 }
231 return Dest;
232}
233
235 Type *Ty) {
236 GenericValue Dest;
237 switch (Ty->getTypeID()) {
241 default:
242 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
243 llvm_unreachable(nullptr);
244 }
245 return Dest;
246}
247
249 Type *Ty) {
250 GenericValue Dest;
251 switch (Ty->getTypeID()) {
255 default:
256 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
257 llvm_unreachable(nullptr);
258 }
259 return Dest;
260}
261
263 Type *Ty) {
264 GenericValue Dest;
265 switch (Ty->getTypeID()) {
269 default:
270 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
271 llvm_unreachable(nullptr);
272 }
273 return Dest;
274}
275
277 Type *Ty) {
278 GenericValue Dest;
279 switch (Ty->getTypeID()) {
283 default:
284 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
285 llvm_unreachable(nullptr);
286 }
287 return Dest;
288}
289
291 Type *Ty) {
292 GenericValue Dest;
293 switch (Ty->getTypeID()) {
297 default:
298 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
299 llvm_unreachable(nullptr);
300 }
301 return Dest;
302}
303
305 Type *Ty) {
306 GenericValue Dest;
307 switch (Ty->getTypeID()) {
311 default:
312 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
313 llvm_unreachable(nullptr);
314 }
315 return Dest;
316}
317
319 Type *Ty) {
320 GenericValue Dest;
321 switch (Ty->getTypeID()) {
325 default:
326 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
327 llvm_unreachable(nullptr);
328 }
329 return Dest;
330}
331
333 ExecutionContext &SF = ECStack.back();
334 Type *Ty = I.getOperand(0)->getType();
335 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
336 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
337 GenericValue R; // Result
338
339 switch (I.getPredicate()) {
340 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
341 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
342 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
343 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
344 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
345 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
346 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
347 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
348 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
349 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
350 default:
351 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
352 llvm_unreachable(nullptr);
353 }
354
355 SetValue(&I, R, SF);
356}
357
358#define IMPLEMENT_FCMP(OP, TY) \
359 case Type::TY##TyID: \
360 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
361 break
362
363#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
364 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
365 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
366 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
367 Dest.AggregateVal[_i].IntVal = APInt(1, \
368 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
369 break;
370
371#define IMPLEMENT_VECTOR_FCMP(OP) \
372 case Type::FixedVectorTyID: \
373 case Type::ScalableVectorTyID: \
374 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
375 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
376 } else { \
377 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
378 }
379
381 Type *Ty) {
382 GenericValue Dest;
383 switch (Ty->getTypeID()) {
385 IMPLEMENT_FCMP(==, Double);
387 default:
388 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
389 llvm_unreachable(nullptr);
390 }
391 return Dest;
392}
393
394#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
395 if (TY->isFloatTy()) { \
396 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
397 Dest.IntVal = APInt(1,false); \
398 return Dest; \
399 } \
400 } else { \
401 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
402 Dest.IntVal = APInt(1,false); \
403 return Dest; \
404 } \
405 }
406
407#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
408 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
409 Dest.AggregateVal.resize( X.AggregateVal.size() ); \
410 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
411 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
412 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
413 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
414 else { \
415 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
416 } \
417 }
418
419#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
420 if (TY->isVectorTy()) { \
421 if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
422 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
423 } else { \
424 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
425 } \
426 } \
427
428
429
431 Type *Ty)
432{
433 GenericValue Dest;
434 // if input is scalar value and Src1 or Src2 is NaN return false
435 IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
436 // if vector input detect NaNs and fill mask
437 MASK_VECTOR_NANS(Ty, Src1, Src2, false)
438 GenericValue DestMask = Dest;
439 switch (Ty->getTypeID()) {
441 IMPLEMENT_FCMP(!=, Double);
443 default:
444 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
445 llvm_unreachable(nullptr);
446 }
447 // in vector case mask out NaN elements
448 if (Ty->isVectorTy())
449 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
450 if (DestMask.AggregateVal[_i].IntVal == false)
451 Dest.AggregateVal[_i].IntVal = APInt(1,false);
452
453 return Dest;
454}
455
457 Type *Ty) {
458 GenericValue Dest;
459 switch (Ty->getTypeID()) {
461 IMPLEMENT_FCMP(<=, Double);
463 default:
464 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
465 llvm_unreachable(nullptr);
466 }
467 return Dest;
468}
469
471 Type *Ty) {
472 GenericValue Dest;
473 switch (Ty->getTypeID()) {
475 IMPLEMENT_FCMP(>=, Double);
477 default:
478 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
479 llvm_unreachable(nullptr);
480 }
481 return Dest;
482}
483
485 Type *Ty) {
486 GenericValue Dest;
487 switch (Ty->getTypeID()) {
489 IMPLEMENT_FCMP(<, Double);
491 default:
492 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
493 llvm_unreachable(nullptr);
494 }
495 return Dest;
496}
497
499 Type *Ty) {
500 GenericValue Dest;
501 switch (Ty->getTypeID()) {
503 IMPLEMENT_FCMP(>, Double);
505 default:
506 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
507 llvm_unreachable(nullptr);
508 }
509 return Dest;
510}
511
512#define IMPLEMENT_UNORDERED(TY, X,Y) \
513 if (TY->isFloatTy()) { \
514 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
515 Dest.IntVal = APInt(1,true); \
516 return Dest; \
517 } \
518 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
519 Dest.IntVal = APInt(1,true); \
520 return Dest; \
521 }
522
523#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
524 if (TY->isVectorTy()) { \
525 GenericValue DestMask = Dest; \
526 Dest = FUNC(Src1, Src2, Ty); \
527 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
528 if (DestMask.AggregateVal[_i].IntVal == true) \
529 Dest.AggregateVal[_i].IntVal = APInt(1, true); \
530 return Dest; \
531 }
532
534 Type *Ty) {
535 GenericValue Dest;
536 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
537 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
539 return executeFCMP_OEQ(Src1, Src2, Ty);
540
541}
542
544 Type *Ty) {
545 GenericValue Dest;
546 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
547 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
549 return executeFCMP_ONE(Src1, Src2, Ty);
550}
551
553 Type *Ty) {
554 GenericValue Dest;
555 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
556 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
558 return executeFCMP_OLE(Src1, Src2, Ty);
559}
560
562 Type *Ty) {
563 GenericValue Dest;
564 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
565 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
567 return executeFCMP_OGE(Src1, Src2, Ty);
568}
569
571 Type *Ty) {
572 GenericValue Dest;
573 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
574 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
576 return executeFCMP_OLT(Src1, Src2, Ty);
577}
578
580 Type *Ty) {
581 GenericValue Dest;
582 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
583 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
585 return executeFCMP_OGT(Src1, Src2, Ty);
586}
587
589 Type *Ty) {
590 GenericValue Dest;
591 if(Ty->isVectorTy()) {
592 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
593 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
594 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
595 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
596 Dest.AggregateVal[_i].IntVal = APInt(1,
597 ( (Src1.AggregateVal[_i].FloatVal ==
598 Src1.AggregateVal[_i].FloatVal) &&
599 (Src2.AggregateVal[_i].FloatVal ==
600 Src2.AggregateVal[_i].FloatVal)));
601 } else {
602 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
603 Dest.AggregateVal[_i].IntVal = APInt(1,
604 ( (Src1.AggregateVal[_i].DoubleVal ==
605 Src1.AggregateVal[_i].DoubleVal) &&
606 (Src2.AggregateVal[_i].DoubleVal ==
607 Src2.AggregateVal[_i].DoubleVal)));
608 }
609 } else if (Ty->isFloatTy())
610 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
611 Src2.FloatVal == Src2.FloatVal));
612 else {
613 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
614 Src2.DoubleVal == Src2.DoubleVal));
615 }
616 return Dest;
617}
618
620 Type *Ty) {
621 GenericValue Dest;
622 if(Ty->isVectorTy()) {
623 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
624 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
625 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
626 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
627 Dest.AggregateVal[_i].IntVal = APInt(1,
628 ( (Src1.AggregateVal[_i].FloatVal !=
629 Src1.AggregateVal[_i].FloatVal) ||
630 (Src2.AggregateVal[_i].FloatVal !=
631 Src2.AggregateVal[_i].FloatVal)));
632 } else {
633 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
634 Dest.AggregateVal[_i].IntVal = APInt(1,
635 ( (Src1.AggregateVal[_i].DoubleVal !=
636 Src1.AggregateVal[_i].DoubleVal) ||
637 (Src2.AggregateVal[_i].DoubleVal !=
638 Src2.AggregateVal[_i].DoubleVal)));
639 }
640 } else if (Ty->isFloatTy())
641 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
642 Src2.FloatVal != Src2.FloatVal));
643 else {
644 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
645 Src2.DoubleVal != Src2.DoubleVal));
646 }
647 return Dest;
648}
649
651 Type *Ty, const bool val) {
652 GenericValue Dest;
653 if(Ty->isVectorTy()) {
654 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
655 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
656 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
657 Dest.AggregateVal[_i].IntVal = APInt(1,val);
658 } else {
659 Dest.IntVal = APInt(1, val);
660 }
661
662 return Dest;
663}
664
666 ExecutionContext &SF = ECStack.back();
667 Type *Ty = I.getOperand(0)->getType();
668 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
669 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
670 GenericValue R; // Result
671
672 switch (I.getPredicate()) {
673 default:
674 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
675 llvm_unreachable(nullptr);
676 break;
677 case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
678 break;
679 case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
680 break;
681 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
682 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
683 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
684 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
685 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
686 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
687 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
688 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
689 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
690 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
691 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
692 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
693 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
694 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
695 }
696
697 SetValue(&I, R, SF);
698}
699
701 ExecutionContext &SF = ECStack.back();
702 Type *Ty = I.getOperand(0)->getType();
703 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
704 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
705 GenericValue R; // Result
706
707 // First process vector operation
708 if (Ty->isVectorTy()) {
709 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
710 R.AggregateVal.resize(Src1.AggregateVal.size());
711
712 // Macros to execute binary operation 'OP' over integer vectors
713#define INTEGER_VECTOR_OPERATION(OP) \
714 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
715 R.AggregateVal[i].IntVal = \
716 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
717
718 // Additional macros to execute binary operations udiv/sdiv/urem/srem since
719 // they have different notation.
720#define INTEGER_VECTOR_FUNCTION(OP) \
721 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
722 R.AggregateVal[i].IntVal = \
723 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
724
725 // Macros to execute binary operation 'OP' over floating point type TY
726 // (float or double) vectors
727#define FLOAT_VECTOR_FUNCTION(OP, TY) \
728 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
729 R.AggregateVal[i].TY = \
730 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
731
732 // Macros to choose appropriate TY: float or double and run operation
733 // execution
734#define FLOAT_VECTOR_OP(OP) { \
735 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
736 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
737 else { \
738 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
739 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
740 else { \
741 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
742 llvm_unreachable(0); \
743 } \
744 } \
745}
746
747 switch(I.getOpcode()){
748 default:
749 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
750 llvm_unreachable(nullptr);
751 break;
752 case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
753 case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
754 case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
755 case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
756 case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
757 case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
758 case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
759 case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
760 case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
761 case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
762 case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
763 case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
764 case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
765 case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
766 case Instruction::FRem:
767 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
768 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
769 R.AggregateVal[i].FloatVal =
770 fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
771 else {
772 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
773 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
774 R.AggregateVal[i].DoubleVal =
775 fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
776 else {
777 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
778 llvm_unreachable(nullptr);
779 }
780 }
781 break;
782 }
783 } else {
784 switch (I.getOpcode()) {
785 default:
786 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
787 llvm_unreachable(nullptr);
788 break;
789 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
790 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
791 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
792 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
793 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
794 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
795 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
796 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
797 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
798 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
799 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
800 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
801 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
802 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
803 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
804 }
805 }
806 SetValue(&I, R, SF);
807}
808
810 GenericValue Src3, Type *Ty) {
811 GenericValue Dest;
812 if(Ty->isVectorTy()) {
813 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
814 assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
815 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
816 for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
817 Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
818 Src3.AggregateVal[i] : Src2.AggregateVal[i];
819 } else {
820 Dest = (Src1.IntVal == 0) ? Src3 : Src2;
821 }
822 return Dest;
823}
824
826 ExecutionContext &SF = ECStack.back();
827 Type * Ty = I.getOperand(0)->getType();
828 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
829 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
830 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
831 GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
832 SetValue(&I, R, SF);
833}
834
835//===----------------------------------------------------------------------===//
836// Terminator Instruction Implementations
837//===----------------------------------------------------------------------===//
838
840 // runAtExitHandlers() assumes there are no stack frames, but
841 // if exit() was called, then it had a stack frame. Blow away
842 // the stack before interpreting atexit handlers.
843 ECStack.clear();
845 exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
846}
847
848/// Pop the last stack frame off of ECStack and then copy the result
849/// back into the result variable if we are not returning void. The
850/// result variable may be the ExitValue, or the Value of the calling
851/// CallInst if there was a previous stack frame. This method may
852/// invalidate any ECStack iterators you have. This method also takes
853/// care of switching to the normal destination BB, if we are returning
854/// from an invoke.
855///
856void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
857 GenericValue Result) {
858 // Pop the current stack frame.
859 ECStack.pop_back();
860
861 if (ECStack.empty()) { // Finished main. Put result into exit code...
862 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
863 ExitValue = Result; // Capture the exit value of the program
864 } else {
865 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
866 }
867 } else {
868 // If we have a previous stack frame, and we have a previous call,
869 // fill in the return value...
870 ExecutionContext &CallingSF = ECStack.back();
871 if (CallingSF.Caller) {
872 // Save result...
873 if (!CallingSF.Caller->getType()->isVoidTy())
874 SetValue(CallingSF.Caller, Result, CallingSF);
875 if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller))
876 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
877 CallingSF.Caller = nullptr; // We returned from the call...
878 }
879 }
880}
881
883 ExecutionContext &SF = ECStack.back();
884 Type *RetTy = Type::getVoidTy(I.getContext());
885 GenericValue Result;
886
887 // Save away the return value... (if we are not 'ret void')
888 if (I.getNumOperands()) {
889 RetTy = I.getReturnValue()->getType();
890 Result = getOperandValue(I.getReturnValue(), SF);
891 }
892
893 popStackAndReturnValueToCaller(RetTy, Result);
894}
895
897 report_fatal_error("Program executed an 'unreachable' instruction!");
898}
899
901 ExecutionContext &SF = ECStack.back();
902 BasicBlock *Dest;
903
904 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
905 if (!I.isUnconditional()) {
906 Value *Cond = I.getCondition();
907 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
908 Dest = I.getSuccessor(1);
909 }
910 SwitchToNewBasicBlock(Dest, SF);
911}
912
914 ExecutionContext &SF = ECStack.back();
915 Value* Cond = I.getCondition();
916 Type *ElTy = Cond->getType();
917 GenericValue CondVal = getOperandValue(Cond, SF);
918
919 // Check to see if any of the cases match...
920 BasicBlock *Dest = nullptr;
921 for (auto Case : I.cases()) {
922 GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
923 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
924 Dest = cast<BasicBlock>(Case.getCaseSuccessor());
925 break;
926 }
927 }
928 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
929 SwitchToNewBasicBlock(Dest, SF);
930}
931
933 ExecutionContext &SF = ECStack.back();
934 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
935 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
936}
937
938
939// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
940// This function handles the actual updating of block and instruction iterators
941// as well as execution of all of the PHI nodes in the destination block.
942//
943// This method does this because all of the PHI nodes must be executed
944// atomically, reading their inputs before any of the results are updated. Not
945// doing this can cause problems if the PHI nodes depend on other PHI nodes for
946// their inputs. If the input PHI node is updated before it is read, incorrect
947// results can happen. Thus we use a two phase approach.
948//
949void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
950 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
951 SF.CurBB = Dest; // Update CurBB to branch destination
952 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
953
954 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
955
956 // Loop over all of the PHI nodes in the current block, reading their inputs.
957 std::vector<GenericValue> ResultValues;
958
959 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
960 // Search for the value corresponding to this previous bb...
961 int i = PN->getBasicBlockIndex(PrevBB);
962 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
963 Value *IncomingValue = PN->getIncomingValue(i);
964
965 // Save the incoming value for this PHI node...
966 ResultValues.push_back(getOperandValue(IncomingValue, SF));
967 }
968
969 // Now loop over all of the PHI nodes setting their values...
970 SF.CurInst = SF.CurBB->begin();
971 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
972 PHINode *PN = cast<PHINode>(SF.CurInst);
973 SetValue(PN, ResultValues[i], SF);
974 }
975}
976
977//===----------------------------------------------------------------------===//
978// Memory Instruction Implementations
979//===----------------------------------------------------------------------===//
980
982 ExecutionContext &SF = ECStack.back();
983
984 Type *Ty = I.getAllocatedType(); // Type to be allocated
985
986 // Get the number of elements being allocated by the array...
987 unsigned NumElements =
988 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
989
990 unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
991
992 // Avoid malloc-ing zero bytes, use max()...
993 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
994
995 // Allocate enough memory to hold the type...
996 void *Memory = safe_malloc(MemToAlloc);
997
998 LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
999 << " bytes) x " << NumElements << " (Total: " << MemToAlloc
1000 << ") at " << uintptr_t(Memory) << '\n');
1001
1002 GenericValue Result = PTOGV(Memory);
1003 assert(Result.PointerVal && "Null pointer returned by malloc!");
1004 SetValue(&I, Result, SF);
1005
1006 if (I.getOpcode() == Instruction::Alloca)
1007 ECStack.back().Allocas.add(Memory);
1008}
1009
1010// getElementOffset - The workhorse for getelementptr.
1011//
1012GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1014 ExecutionContext &SF) {
1015 assert(Ptr->getType()->isPointerTy() &&
1016 "Cannot getElementOffset of a nonpointer type!");
1017
1018 uint64_t Total = 0;
1019
1020 for (; I != E; ++I) {
1021 if (StructType *STy = I.getStructTypeOrNull()) {
1022 const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1023
1024 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1025 unsigned Index = unsigned(CPU->getZExtValue());
1026
1027 Total += SLO->getElementOffset(Index);
1028 } else {
1029 // Get the index number for the array... which must be long type...
1030 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1031
1032 int64_t Idx;
1033 unsigned BitWidth =
1034 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1035 if (BitWidth == 32)
1036 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1037 else {
1038 assert(BitWidth == 64 && "Invalid index type for getelementptr");
1039 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1040 }
1041 Total += I.getSequentialElementStride(getDataLayout()) * Idx;
1042 }
1043 }
1044
1045 GenericValue Result;
1046 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1047 LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1048 return Result;
1049}
1050
1052 ExecutionContext &SF = ECStack.back();
1053 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1054 gep_type_begin(I), gep_type_end(I), SF), SF);
1055}
1056
1058 ExecutionContext &SF = ECStack.back();
1059 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1061 GenericValue Result;
1062 LoadValueFromMemory(Result, Ptr, I.getType());
1063 SetValue(&I, Result, SF);
1064 if (I.isVolatile() && PrintVolatile)
1065 dbgs() << "Volatile load " << I;
1066}
1067
1069 ExecutionContext &SF = ECStack.back();
1070 GenericValue Val = getOperandValue(I.getOperand(0), SF);
1071 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1073 I.getOperand(0)->getType());
1074 if (I.isVolatile() && PrintVolatile)
1075 dbgs() << "Volatile store: " << I;
1076}
1077
1078//===----------------------------------------------------------------------===//
1079// Miscellaneous Instruction Implementations
1080//===----------------------------------------------------------------------===//
1081
1083 ExecutionContext &SF = ECStack.back();
1084 GenericValue ArgIndex;
1085 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1086 ArgIndex.UIntPairVal.second = 0;
1087 SetValue(&I, ArgIndex, SF);
1088}
1089
1091 // va_end is a noop for the interpreter
1092}
1093
1095 ExecutionContext &SF = ECStack.back();
1096 SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);
1097}
1098
1100 ExecutionContext &SF = ECStack.back();
1101
1102 // If it is an unknown intrinsic function, use the intrinsic lowering
1103 // class to transform it into hopefully tasty LLVM code.
1104 //
1106 BasicBlock *Parent = I.getParent();
1107 bool atBegin(Parent->begin() == Me);
1108 if (!atBegin)
1109 --Me;
1110 IL->LowerIntrinsicCall(&I);
1111
1112 // Restore the CurInst pointer to the first instruction newly inserted, if
1113 // any.
1114 if (atBegin) {
1115 SF.CurInst = Parent->begin();
1116 } else {
1117 SF.CurInst = Me;
1118 ++SF.CurInst;
1119 }
1120}
1121
1123 ExecutionContext &SF = ECStack.back();
1124
1125 SF.Caller = &I;
1126 std::vector<GenericValue> ArgVals;
1127 const unsigned NumArgs = SF.Caller->arg_size();
1128 ArgVals.reserve(NumArgs);
1129 for (Value *V : SF.Caller->args())
1130 ArgVals.push_back(getOperandValue(V, SF));
1131
1132 // To handle indirect calls, we must get the pointer value from the argument
1133 // and treat it as a function pointer.
1134 GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF);
1135 callFunction((Function*)GVTOP(SRC), ArgVals);
1136}
1137
1138// auxiliary function for shift operations
1139static unsigned getShiftAmount(uint64_t orgShiftAmount,
1140 llvm::APInt valueToShift) {
1141 unsigned valueWidth = valueToShift.getBitWidth();
1142 if (orgShiftAmount < (uint64_t)valueWidth)
1143 return orgShiftAmount;
1144 // according to the llvm documentation, if orgShiftAmount > valueWidth,
1145 // the result is undfeined. but we do shift by this rule:
1146 return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1147}
1148
1149
1151 ExecutionContext &SF = ECStack.back();
1152 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1153 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1154 GenericValue Dest;
1155 Type *Ty = I.getType();
1156
1157 if (Ty->isVectorTy()) {
1158 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1159 assert(src1Size == Src2.AggregateVal.size());
1160 for (unsigned i = 0; i < src1Size; i++) {
1161 GenericValue Result;
1162 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1163 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1164 Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1165 Dest.AggregateVal.push_back(Result);
1166 }
1167 } else {
1168 // scalar
1169 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1170 llvm::APInt valueToShift = Src1.IntVal;
1171 Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1172 }
1173
1174 SetValue(&I, Dest, SF);
1175}
1176
1178 ExecutionContext &SF = ECStack.back();
1179 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1180 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1181 GenericValue Dest;
1182 Type *Ty = I.getType();
1183
1184 if (Ty->isVectorTy()) {
1185 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1186 assert(src1Size == Src2.AggregateVal.size());
1187 for (unsigned i = 0; i < src1Size; i++) {
1188 GenericValue Result;
1189 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1190 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1191 Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1192 Dest.AggregateVal.push_back(Result);
1193 }
1194 } else {
1195 // scalar
1196 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1197 llvm::APInt valueToShift = Src1.IntVal;
1198 Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1199 }
1200
1201 SetValue(&I, Dest, SF);
1202}
1203
1205 ExecutionContext &SF = ECStack.back();
1206 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1207 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1208 GenericValue Dest;
1209 Type *Ty = I.getType();
1210
1211 if (Ty->isVectorTy()) {
1212 size_t src1Size = Src1.AggregateVal.size();
1213 assert(src1Size == Src2.AggregateVal.size());
1214 for (unsigned i = 0; i < src1Size; i++) {
1215 GenericValue Result;
1216 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1217 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1218 Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1219 Dest.AggregateVal.push_back(Result);
1220 }
1221 } else {
1222 // scalar
1223 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1224 llvm::APInt valueToShift = Src1.IntVal;
1225 Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1226 }
1227
1228 SetValue(&I, Dest, SF);
1229}
1230
1231GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1232 ExecutionContext &SF) {
1233 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1234 Type *SrcTy = SrcVal->getType();
1235 if (SrcTy->isVectorTy()) {
1236 Type *DstVecTy = DstTy->getScalarType();
1237 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1238 unsigned NumElts = Src.AggregateVal.size();
1239 // the sizes of src and dst vectors must be equal
1240 Dest.AggregateVal.resize(NumElts);
1241 for (unsigned i = 0; i < NumElts; i++)
1242 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1243 } else {
1244 IntegerType *DITy = cast<IntegerType>(DstTy);
1245 unsigned DBitWidth = DITy->getBitWidth();
1246 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1247 }
1248 return Dest;
1249}
1250
1251GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1252 ExecutionContext &SF) {
1253 Type *SrcTy = SrcVal->getType();
1254 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1255 if (SrcTy->isVectorTy()) {
1256 Type *DstVecTy = DstTy->getScalarType();
1257 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1258 unsigned size = Src.AggregateVal.size();
1259 // the sizes of src and dst vectors must be equal.
1260 Dest.AggregateVal.resize(size);
1261 for (unsigned i = 0; i < size; i++)
1262 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1263 } else {
1264 auto *DITy = cast<IntegerType>(DstTy);
1265 unsigned DBitWidth = DITy->getBitWidth();
1266 Dest.IntVal = Src.IntVal.sext(DBitWidth);
1267 }
1268 return Dest;
1269}
1270
1271GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1272 ExecutionContext &SF) {
1273 Type *SrcTy = SrcVal->getType();
1274 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1275 if (SrcTy->isVectorTy()) {
1276 Type *DstVecTy = DstTy->getScalarType();
1277 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1278
1279 unsigned size = Src.AggregateVal.size();
1280 // the sizes of src and dst vectors must be equal.
1281 Dest.AggregateVal.resize(size);
1282 for (unsigned i = 0; i < size; i++)
1283 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1284 } else {
1285 auto *DITy = cast<IntegerType>(DstTy);
1286 unsigned DBitWidth = DITy->getBitWidth();
1287 Dest.IntVal = Src.IntVal.zext(DBitWidth);
1288 }
1289 return Dest;
1290}
1291
1292GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1293 ExecutionContext &SF) {
1294 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1295
1296 if (isa<VectorType>(SrcVal->getType())) {
1297 assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1298 DstTy->getScalarType()->isFloatTy() &&
1299 "Invalid FPTrunc instruction");
1300
1301 unsigned size = Src.AggregateVal.size();
1302 // the sizes of src and dst vectors must be equal.
1303 Dest.AggregateVal.resize(size);
1304 for (unsigned i = 0; i < size; i++)
1305 Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1306 } else {
1307 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1308 "Invalid FPTrunc instruction");
1309 Dest.FloatVal = (float)Src.DoubleVal;
1310 }
1311
1312 return Dest;
1313}
1314
1315GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1316 ExecutionContext &SF) {
1317 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1318
1319 if (isa<VectorType>(SrcVal->getType())) {
1320 assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1321 DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1322
1323 unsigned size = Src.AggregateVal.size();
1324 // the sizes of src and dst vectors must be equal.
1325 Dest.AggregateVal.resize(size);
1326 for (unsigned i = 0; i < size; i++)
1327 Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1328 } else {
1329 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1330 "Invalid FPExt instruction");
1331 Dest.DoubleVal = (double)Src.FloatVal;
1332 }
1333
1334 return Dest;
1335}
1336
1337GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1338 ExecutionContext &SF) {
1339 Type *SrcTy = SrcVal->getType();
1340 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1341
1342 if (isa<VectorType>(SrcTy)) {
1343 Type *DstVecTy = DstTy->getScalarType();
1344 Type *SrcVecTy = SrcTy->getScalarType();
1345 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1346 unsigned size = Src.AggregateVal.size();
1347 // the sizes of src and dst vectors must be equal.
1348 Dest.AggregateVal.resize(size);
1349
1350 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1351 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1352 for (unsigned i = 0; i < size; i++)
1354 Src.AggregateVal[i].FloatVal, DBitWidth);
1355 } else {
1356 for (unsigned i = 0; i < size; i++)
1358 Src.AggregateVal[i].DoubleVal, DBitWidth);
1359 }
1360 } else {
1361 // scalar
1362 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1363 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1364
1365 if (SrcTy->getTypeID() == Type::FloatTyID)
1366 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1367 else {
1368 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1369 }
1370 }
1371
1372 return Dest;
1373}
1374
1375GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1376 ExecutionContext &SF) {
1377 Type *SrcTy = SrcVal->getType();
1378 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1379
1380 if (isa<VectorType>(SrcTy)) {
1381 Type *DstVecTy = DstTy->getScalarType();
1382 Type *SrcVecTy = SrcTy->getScalarType();
1383 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1384 unsigned size = Src.AggregateVal.size();
1385 // the sizes of src and dst vectors must be equal
1386 Dest.AggregateVal.resize(size);
1387
1388 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1389 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1390 for (unsigned i = 0; i < size; i++)
1392 Src.AggregateVal[i].FloatVal, DBitWidth);
1393 } else {
1394 for (unsigned i = 0; i < size; i++)
1396 Src.AggregateVal[i].DoubleVal, DBitWidth);
1397 }
1398 } else {
1399 // scalar
1400 unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1401 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1402
1403 if (SrcTy->getTypeID() == Type::FloatTyID)
1404 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1405 else {
1406 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1407 }
1408 }
1409 return Dest;
1410}
1411
1412GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1413 ExecutionContext &SF) {
1414 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1415
1416 if (isa<VectorType>(SrcVal->getType())) {
1417 Type *DstVecTy = DstTy->getScalarType();
1418 unsigned size = Src.AggregateVal.size();
1419 // the sizes of src and dst vectors must be equal
1420 Dest.AggregateVal.resize(size);
1421
1422 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1423 assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1424 for (unsigned i = 0; i < size; i++)
1425 Dest.AggregateVal[i].FloatVal =
1426 APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1427 } else {
1428 for (unsigned i = 0; i < size; i++)
1429 Dest.AggregateVal[i].DoubleVal =
1430 APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1431 }
1432 } else {
1433 // scalar
1434 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1435 if (DstTy->getTypeID() == Type::FloatTyID)
1436 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1437 else {
1438 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1439 }
1440 }
1441 return Dest;
1442}
1443
1444GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1445 ExecutionContext &SF) {
1446 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1447
1448 if (isa<VectorType>(SrcVal->getType())) {
1449 Type *DstVecTy = DstTy->getScalarType();
1450 unsigned size = Src.AggregateVal.size();
1451 // the sizes of src and dst vectors must be equal
1452 Dest.AggregateVal.resize(size);
1453
1454 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1455 assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1456 for (unsigned i = 0; i < size; i++)
1457 Dest.AggregateVal[i].FloatVal =
1458 APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1459 } else {
1460 for (unsigned i = 0; i < size; i++)
1461 Dest.AggregateVal[i].DoubleVal =
1462 APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1463 }
1464 } else {
1465 // scalar
1466 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1467
1468 if (DstTy->getTypeID() == Type::FloatTyID)
1470 else {
1472 }
1473 }
1474
1475 return Dest;
1476}
1477
1478GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1479 ExecutionContext &SF) {
1480 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1481 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1482 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1483
1484 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1485 return Dest;
1486}
1487
1488GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1489 ExecutionContext &SF) {
1490 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1491 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1492
1493 uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1494 if (PtrSize != Src.IntVal.getBitWidth())
1495 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1496
1497 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1498 return Dest;
1499}
1500
1501GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1502 ExecutionContext &SF) {
1503
1504 // This instruction supports bitwise conversion of vectors to integers and
1505 // to vectors of other types (as long as they have the same size)
1506 Type *SrcTy = SrcVal->getType();
1507 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1508
1509 if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) {
1510 // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1511 // scalar src bitcast to vector dst
1512 bool isLittleEndian = getDataLayout().isLittleEndian();
1513 GenericValue TempDst, TempSrc, SrcVec;
1514 Type *SrcElemTy;
1515 Type *DstElemTy;
1516 unsigned SrcBitSize;
1517 unsigned DstBitSize;
1518 unsigned SrcNum;
1519 unsigned DstNum;
1520
1521 if (isa<VectorType>(SrcTy)) {
1522 SrcElemTy = SrcTy->getScalarType();
1523 SrcBitSize = SrcTy->getScalarSizeInBits();
1524 SrcNum = Src.AggregateVal.size();
1525 SrcVec = Src;
1526 } else {
1527 // if src is scalar value, make it vector <1 x type>
1528 SrcElemTy = SrcTy;
1529 SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1530 SrcNum = 1;
1531 SrcVec.AggregateVal.push_back(Src);
1532 }
1533
1534 if (isa<VectorType>(DstTy)) {
1535 DstElemTy = DstTy->getScalarType();
1536 DstBitSize = DstTy->getScalarSizeInBits();
1537 DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1538 } else {
1539 DstElemTy = DstTy;
1540 DstBitSize = DstTy->getPrimitiveSizeInBits();
1541 DstNum = 1;
1542 }
1543
1544 if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1545 llvm_unreachable("Invalid BitCast");
1546
1547 // If src is floating point, cast to integer first.
1548 TempSrc.AggregateVal.resize(SrcNum);
1549 if (SrcElemTy->isFloatTy()) {
1550 for (unsigned i = 0; i < SrcNum; i++)
1551 TempSrc.AggregateVal[i].IntVal =
1552 APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1553
1554 } else if (SrcElemTy->isDoubleTy()) {
1555 for (unsigned i = 0; i < SrcNum; i++)
1556 TempSrc.AggregateVal[i].IntVal =
1557 APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1558 } else if (SrcElemTy->isIntegerTy()) {
1559 for (unsigned i = 0; i < SrcNum; i++)
1560 TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1561 } else {
1562 // Pointers are not allowed as the element type of vector.
1563 llvm_unreachable("Invalid Bitcast");
1564 }
1565
1566 // now TempSrc is integer type vector
1567 if (DstNum < SrcNum) {
1568 // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1569 unsigned Ratio = SrcNum / DstNum;
1570 unsigned SrcElt = 0;
1571 for (unsigned i = 0; i < DstNum; i++) {
1572 GenericValue Elt;
1573 Elt.IntVal = 0;
1574 Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1575 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1576 for (unsigned j = 0; j < Ratio; j++) {
1577 APInt Tmp;
1578 Tmp = Tmp.zext(SrcBitSize);
1579 Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1580 Tmp = Tmp.zext(DstBitSize);
1581 Tmp <<= ShiftAmt;
1582 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1583 Elt.IntVal |= Tmp;
1584 }
1585 TempDst.AggregateVal.push_back(Elt);
1586 }
1587 } else {
1588 // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1589 unsigned Ratio = DstNum / SrcNum;
1590 for (unsigned i = 0; i < SrcNum; i++) {
1591 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1592 for (unsigned j = 0; j < Ratio; j++) {
1593 GenericValue Elt;
1594 Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1595 Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1596 Elt.IntVal.lshrInPlace(ShiftAmt);
1597 // it could be DstBitSize == SrcBitSize, so check it
1598 if (DstBitSize < SrcBitSize)
1599 Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1600 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1601 TempDst.AggregateVal.push_back(Elt);
1602 }
1603 }
1604 }
1605
1606 // convert result from integer to specified type
1607 if (isa<VectorType>(DstTy)) {
1608 if (DstElemTy->isDoubleTy()) {
1609 Dest.AggregateVal.resize(DstNum);
1610 for (unsigned i = 0; i < DstNum; i++)
1611 Dest.AggregateVal[i].DoubleVal =
1612 TempDst.AggregateVal[i].IntVal.bitsToDouble();
1613 } else if (DstElemTy->isFloatTy()) {
1614 Dest.AggregateVal.resize(DstNum);
1615 for (unsigned i = 0; i < DstNum; i++)
1616 Dest.AggregateVal[i].FloatVal =
1617 TempDst.AggregateVal[i].IntVal.bitsToFloat();
1618 } else {
1619 Dest = TempDst;
1620 }
1621 } else {
1622 if (DstElemTy->isDoubleTy())
1623 Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1624 else if (DstElemTy->isFloatTy()) {
1625 Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1626 } else {
1627 Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1628 }
1629 }
1630 } else { // if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy))
1631
1632 // scalar src bitcast to scalar dst
1633 if (DstTy->isPointerTy()) {
1634 assert(SrcTy->isPointerTy() && "Invalid BitCast");
1635 Dest.PointerVal = Src.PointerVal;
1636 } else if (DstTy->isIntegerTy()) {
1637 if (SrcTy->isFloatTy())
1638 Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1639 else if (SrcTy->isDoubleTy()) {
1640 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1641 } else if (SrcTy->isIntegerTy()) {
1642 Dest.IntVal = Src.IntVal;
1643 } else {
1644 llvm_unreachable("Invalid BitCast");
1645 }
1646 } else if (DstTy->isFloatTy()) {
1647 if (SrcTy->isIntegerTy())
1648 Dest.FloatVal = Src.IntVal.bitsToFloat();
1649 else {
1650 Dest.FloatVal = Src.FloatVal;
1651 }
1652 } else if (DstTy->isDoubleTy()) {
1653 if (SrcTy->isIntegerTy())
1654 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1655 else {
1656 Dest.DoubleVal = Src.DoubleVal;
1657 }
1658 } else {
1659 llvm_unreachable("Invalid Bitcast");
1660 }
1661 }
1662
1663 return Dest;
1664}
1665
1667 ExecutionContext &SF = ECStack.back();
1668 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1669}
1670
1672 ExecutionContext &SF = ECStack.back();
1673 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1674}
1675
1677 ExecutionContext &SF = ECStack.back();
1678 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1679}
1680
1682 ExecutionContext &SF = ECStack.back();
1683 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1684}
1685
1687 ExecutionContext &SF = ECStack.back();
1688 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1689}
1690
1692 ExecutionContext &SF = ECStack.back();
1693 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1694}
1695
1697 ExecutionContext &SF = ECStack.back();
1698 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1699}
1700
1702 ExecutionContext &SF = ECStack.back();
1703 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1704}
1705
1707 ExecutionContext &SF = ECStack.back();
1708 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1709}
1710
1712 ExecutionContext &SF = ECStack.back();
1713 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1714}
1715
1717 ExecutionContext &SF = ECStack.back();
1718 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1719}
1720
1722 ExecutionContext &SF = ECStack.back();
1723 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1724}
1725
1726#define IMPLEMENT_VAARG(TY) \
1727 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1728
1730 ExecutionContext &SF = ECStack.back();
1731
1732 // Get the incoming valist parameter. LLI treats the valist as a
1733 // (ec-stack-depth var-arg-index) pair.
1734 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1735 GenericValue Dest;
1736 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1737 .VarArgs[VAList.UIntPairVal.second];
1738 Type *Ty = I.getType();
1739 switch (Ty->getTypeID()) {
1740 case Type::IntegerTyID:
1741 Dest.IntVal = Src.IntVal;
1742 break;
1743 IMPLEMENT_VAARG(Pointer);
1745 IMPLEMENT_VAARG(Double);
1746 default:
1747 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1748 llvm_unreachable(nullptr);
1749 }
1750
1751 // Set the Value of this Instruction.
1752 SetValue(&I, Dest, SF);
1753
1754 // Move the pointer to the next vararg.
1755 ++VAList.UIntPairVal.second;
1756}
1757
1759 ExecutionContext &SF = ECStack.back();
1760 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1761 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1762 GenericValue Dest;
1763
1764 Type *Ty = I.getType();
1765 const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1766
1767 if(Src1.AggregateVal.size() > indx) {
1768 switch (Ty->getTypeID()) {
1769 default:
1770 dbgs() << "Unhandled destination type for extractelement instruction: "
1771 << *Ty << "\n";
1772 llvm_unreachable(nullptr);
1773 break;
1774 case Type::IntegerTyID:
1775 Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1776 break;
1777 case Type::FloatTyID:
1778 Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1779 break;
1780 case Type::DoubleTyID:
1781 Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1782 break;
1783 }
1784 } else {
1785 dbgs() << "Invalid index in extractelement instruction\n";
1786 }
1787
1788 SetValue(&I, Dest, SF);
1789}
1790
1792 ExecutionContext &SF = ECStack.back();
1793 VectorType *Ty = cast<VectorType>(I.getType());
1794
1795 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1796 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1797 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1798 GenericValue Dest;
1799
1800 Type *TyContained = Ty->getElementType();
1801
1802 const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1803 Dest.AggregateVal = Src1.AggregateVal;
1804
1805 if(Src1.AggregateVal.size() <= indx)
1806 llvm_unreachable("Invalid index in insertelement instruction");
1807 switch (TyContained->getTypeID()) {
1808 default:
1809 llvm_unreachable("Unhandled dest type for insertelement instruction");
1810 case Type::IntegerTyID:
1811 Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1812 break;
1813 case Type::FloatTyID:
1814 Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1815 break;
1816 case Type::DoubleTyID:
1817 Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1818 break;
1819 }
1820 SetValue(&I, Dest, SF);
1821}
1822
1824 ExecutionContext &SF = ECStack.back();
1825
1826 VectorType *Ty = cast<VectorType>(I.getType());
1827
1828 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1829 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1830 GenericValue Dest;
1831
1832 // There is no need to check types of src1 and src2, because the compiled
1833 // bytecode can't contain different types for src1 and src2 for a
1834 // shufflevector instruction.
1835
1836 Type *TyContained = Ty->getElementType();
1837 unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1838 unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1839 unsigned src3Size = I.getShuffleMask().size();
1840
1841 Dest.AggregateVal.resize(src3Size);
1842
1843 switch (TyContained->getTypeID()) {
1844 default:
1845 llvm_unreachable("Unhandled dest type for insertelement instruction");
1846 break;
1847 case Type::IntegerTyID:
1848 for( unsigned i=0; i<src3Size; i++) {
1849 unsigned j = std::max(0, I.getMaskValue(i));
1850 if(j < src1Size)
1851 Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1852 else if(j < src1Size + src2Size)
1853 Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1854 else
1855 // The selector may not be greater than sum of lengths of first and
1856 // second operands and llasm should not allow situation like
1857 // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1858 // <2 x i32> < i32 0, i32 5 >,
1859 // where i32 5 is invalid, but let it be additional check here:
1860 llvm_unreachable("Invalid mask in shufflevector instruction");
1861 }
1862 break;
1863 case Type::FloatTyID:
1864 for( unsigned i=0; i<src3Size; i++) {
1865 unsigned j = std::max(0, I.getMaskValue(i));
1866 if(j < src1Size)
1867 Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1868 else if(j < src1Size + src2Size)
1869 Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1870 else
1871 llvm_unreachable("Invalid mask in shufflevector instruction");
1872 }
1873 break;
1874 case Type::DoubleTyID:
1875 for( unsigned i=0; i<src3Size; i++) {
1876 unsigned j = std::max(0, I.getMaskValue(i));
1877 if(j < src1Size)
1878 Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1879 else if(j < src1Size + src2Size)
1880 Dest.AggregateVal[i].DoubleVal =
1881 Src2.AggregateVal[j-src1Size].DoubleVal;
1882 else
1883 llvm_unreachable("Invalid mask in shufflevector instruction");
1884 }
1885 break;
1886 }
1887 SetValue(&I, Dest, SF);
1888}
1889
1891 ExecutionContext &SF = ECStack.back();
1892 Value *Agg = I.getAggregateOperand();
1893 GenericValue Dest;
1894 GenericValue Src = getOperandValue(Agg, SF);
1895
1896 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1897 unsigned Num = I.getNumIndices();
1898 GenericValue *pSrc = &Src;
1899
1900 for (unsigned i = 0 ; i < Num; ++i) {
1901 pSrc = &pSrc->AggregateVal[*IdxBegin];
1902 ++IdxBegin;
1903 }
1904
1905 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1906 switch (IndexedType->getTypeID()) {
1907 default:
1908 llvm_unreachable("Unhandled dest type for extractelement instruction");
1909 break;
1910 case Type::IntegerTyID:
1911 Dest.IntVal = pSrc->IntVal;
1912 break;
1913 case Type::FloatTyID:
1914 Dest.FloatVal = pSrc->FloatVal;
1915 break;
1916 case Type::DoubleTyID:
1917 Dest.DoubleVal = pSrc->DoubleVal;
1918 break;
1919 case Type::ArrayTyID:
1920 case Type::StructTyID:
1923 Dest.AggregateVal = pSrc->AggregateVal;
1924 break;
1925 case Type::PointerTyID:
1926 Dest.PointerVal = pSrc->PointerVal;
1927 break;
1928 }
1929
1930 SetValue(&I, Dest, SF);
1931}
1932
1934
1935 ExecutionContext &SF = ECStack.back();
1936 Value *Agg = I.getAggregateOperand();
1937
1938 GenericValue Src1 = getOperandValue(Agg, SF);
1939 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1940 GenericValue Dest = Src1; // Dest is a slightly changed Src1
1941
1942 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1943 unsigned Num = I.getNumIndices();
1944
1945 GenericValue *pDest = &Dest;
1946 for (unsigned i = 0 ; i < Num; ++i) {
1947 pDest = &pDest->AggregateVal[*IdxBegin];
1948 ++IdxBegin;
1949 }
1950 // pDest points to the target value in the Dest now
1951
1952 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1953
1954 switch (IndexedType->getTypeID()) {
1955 default:
1956 llvm_unreachable("Unhandled dest type for insertelement instruction");
1957 break;
1958 case Type::IntegerTyID:
1959 pDest->IntVal = Src2.IntVal;
1960 break;
1961 case Type::FloatTyID:
1962 pDest->FloatVal = Src2.FloatVal;
1963 break;
1964 case Type::DoubleTyID:
1965 pDest->DoubleVal = Src2.DoubleVal;
1966 break;
1967 case Type::ArrayTyID:
1968 case Type::StructTyID:
1971 pDest->AggregateVal = Src2.AggregateVal;
1972 break;
1973 case Type::PointerTyID:
1974 pDest->PointerVal = Src2.PointerVal;
1975 break;
1976 }
1977
1978 SetValue(&I, Dest, SF);
1979}
1980
1981GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1982 ExecutionContext &SF) {
1983 switch (CE->getOpcode()) {
1984 case Instruction::Trunc:
1985 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1986 case Instruction::PtrToInt:
1987 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1988 case Instruction::IntToPtr:
1989 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1990 case Instruction::BitCast:
1991 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1992 case Instruction::GetElementPtr:
1993 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1994 gep_type_end(CE), SF);
1995 break;
1996 }
1997
1998 // The cases below here require a GenericValue parameter for the result
1999 // so we initialize one, compute it and then return it.
2000 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2001 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2002 GenericValue Dest;
2003 switch (CE->getOpcode()) {
2004 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2005 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2006 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2007 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2008 case Instruction::Shl:
2009 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2010 break;
2011 default:
2012 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2013 llvm_unreachable("Unhandled ConstantExpr");
2014 }
2015 return Dest;
2016}
2017
2018GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2019 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2020 return getConstantExprValue(CE, SF);
2021 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2022 return getConstantValue(CPV);
2023 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2024 return PTOGV(getPointerToGlobal(GV));
2025 } else {
2026 return SF.Values[V];
2027 }
2028}
2029
2030//===----------------------------------------------------------------------===//
2031// Dispatch and Execution Code
2032//===----------------------------------------------------------------------===//
2033
2034//===----------------------------------------------------------------------===//
2035// callFunction - Execute the specified function...
2036//
2038 assert((ECStack.empty() || !ECStack.back().Caller ||
2039 ECStack.back().Caller->arg_size() == ArgVals.size()) &&
2040 "Incorrect number of arguments passed into function call!");
2041 // Make a new stack frame... and fill it in.
2042 ECStack.emplace_back();
2043 ExecutionContext &StackFrame = ECStack.back();
2044 StackFrame.CurFunction = F;
2045
2046 // Special handling for external functions.
2047 if (F->isDeclaration()) {
2048 GenericValue Result = callExternalFunction (F, ArgVals);
2049 // Simulate a 'ret' instruction of the appropriate type.
2050 popStackAndReturnValueToCaller (F->getReturnType (), Result);
2051 return;
2052 }
2053
2054 // Get pointers to first LLVM BB & Instruction in function.
2055 StackFrame.CurBB = &F->front();
2056 StackFrame.CurInst = StackFrame.CurBB->begin();
2057
2058 // Run through the function arguments and initialize their values...
2059 assert((ArgVals.size() == F->arg_size() ||
2060 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2061 "Invalid number of values passed to function invocation!");
2062
2063 // Handle non-varargs arguments...
2064 unsigned i = 0;
2065 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2066 AI != E; ++AI, ++i)
2067 SetValue(&*AI, ArgVals[i], StackFrame);
2068
2069 // Handle varargs arguments...
2070 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2071}
2072
2073
2075 while (!ECStack.empty()) {
2076 // Interpret a single instruction & increment the "PC".
2077 ExecutionContext &SF = ECStack.back(); // Current stack frame
2078 Instruction &I = *SF.CurInst++; // Increment before execute
2079
2080 // Track the number of dynamic instructions executed.
2081 ++NumDynamicInsts;
2082
2083 LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2084 visit(I); // Dispatch to one of the visit* methods...
2085 }
2086}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
static void executeFSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
#define FLOAT_VECTOR_OP(OP)
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, Type *Ty)
static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, Type *Ty)
#define INTEGER_VECTOR_OPERATION(OP)
#define IMPLEMENT_BINARY_OPERATOR(OP, TY)
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty)
#define IMPLEMENT_SCALAR_NANS(TY, X, Y)
static void executeFAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3, Type *Ty)
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, Type *Ty)
static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty)
Definition Execution.cpp:49
static cl::opt< bool > PrintVolatile("interpreter-print-volatile", cl::Hidden, cl::desc("make the interpreter print every volatile load and store"))
#define INTEGER_VECTOR_FUNCTION(OP)
#define MASK_VECTOR_NANS(TY, X, Y, FLAG)
#define IMPLEMENT_VECTOR_FCMP(OP)
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, Type *Ty)
#define IMPLEMENT_POINTER_ICMP(OP)
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty)
#define IMPLEMENT_UNORDERED(TY, X, Y)
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, Type *Ty, const bool val)
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF)
Definition Execution.cpp:41
#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)
#define IMPLEMENT_VAARG(TY)
static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift)
#define IMPLEMENT_INTEGER_ICMP(OP, TY)
#define IMPLEMENT_FCMP(OP, TY)
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
static void executeFMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition APInt.h:1752
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition APInt.h:1744
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:858
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
iterator end() const
Definition ArrayRef.h:136
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
iterator begin() const
Definition ArrayRef.h:135
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
This class represents a no-op cast from one type to another.
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Value * getCalledOperand() const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition InstrTypes.h:695
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:691
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition InstrTypes.h:680
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1120
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
Definition DataLayout.h:388
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:198
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)
StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
GenericValue getConstantValue(const Constant *C)
Converts a Constant* into a GenericValue, including handling of ConstantExpr values.
const DataLayout & getDataLayout() const
void * getPointerToGlobal(const GlobalValue *GV)
getPointerToGlobal - This returns the address of the specified global value.
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)
FIXME: document.
This instruction extracts a single (scalar) element from a VectorType value.
This instruction extracts a struct member or array element value from an aggregate value.
static LLVM_ABI Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
const unsigned * idx_iterator
This instruction compares its operands according to the predicate given to the constructor.
This class represents an extension of floating point types.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
Argument * arg_iterator
Definition Function.h:72
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a single (scalar) element into a VectorType value.
This instruction inserts a struct field of array element value into an aggregate value.
void visit(Iterator Start, Iterator End)
Definition InstVisitor.h:87
This class represents a cast from an integer to a pointer.
Class to represent integer types.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
void visitSIToFPInst(SIToFPInst &I)
void visitFCmpInst(FCmpInst &I)
void visitPtrToIntInst(PtrToIntInst &I)
void visitShuffleVectorInst(ShuffleVectorInst &I)
void visitCallBase(CallBase &I)
void visitAllocaInst(AllocaInst &I)
void visitSelectInst(SelectInst &I)
void exitCalled(GenericValue GV)
void visitReturnInst(ReturnInst &I)
void visitIntToPtrInst(IntToPtrInst &I)
void visitUnreachableInst(UnreachableInst &I)
void visitICmpInst(ICmpInst &I)
void visitLShr(BinaryOperator &I)
void visitUIToFPInst(UIToFPInst &I)
void visitIndirectBrInst(IndirectBrInst &I)
void visitInsertValueInst(InsertValueInst &I)
void runAtExitHandlers()
runAtExitHandlers - Run any functions registered by the program's calls to atexit(3),...
void visitBranchInst(BranchInst &I)
void visitVAArgInst(VAArgInst &I)
void visitStoreInst(StoreInst &I)
void visitExtractValueInst(ExtractValueInst &I)
void visitSwitchInst(SwitchInst &I)
void visitExtractElementInst(ExtractElementInst &I)
void visitVACopyInst(VACopyInst &I)
void visitVAEndInst(VAEndInst &I)
void visitTruncInst(TruncInst &I)
void visitFPToUIInst(FPToUIInst &I)
void visitLoadInst(LoadInst &I)
void visitGetElementPtrInst(GetElementPtrInst &I)
void callFunction(Function *F, ArrayRef< GenericValue > ArgVals)
void visitInsertElementInst(InsertElementInst &I)
void visitUnaryOperator(UnaryOperator &I)
Definition Execution.cpp:62
void visitFPExtInst(FPExtInst &I)
void visitVAStartInst(VAStartInst &I)
void visitBitCastInst(BitCastInst &I)
void visitSExtInst(SExtInst &I)
void visitAShr(BinaryOperator &I)
GenericValue callExternalFunction(Function *F, ArrayRef< GenericValue > ArgVals)
void visitFPTruncInst(FPTruncInst &I)
void visitBinaryOperator(BinaryOperator &I)
void visitShl(BinaryOperator &I)
void visitZExtInst(ZExtInst &I)
void visitFPToSIInst(FPToSIInst &I)
void visitIntrinsicInst(IntrinsicInst &I)
A wrapper class for inspecting calls to intrinsic functions.
An instruction for reading from memory.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
This class represents a cast from a pointer to an integer.
Return a value (possibly void), from a function.
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
This class represents the LLVM 'select' instruction.
This instruction constructs a fixed permutation of two input vectors.
An instruction for storing to memory.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:621
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:652
Class to represent struct types.
Multiway switch.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
@ ArrayTyID
Arrays.
Definition Type.h:74
@ ScalableVectorTyID
Scalable SIMD vector type.
Definition Type.h:76
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ StructTyID
Structures.
Definition Type.h:73
@ IntegerTyID
Arbitrary bit width integers.
Definition Type.h:70
@ FixedVectorTyID
Fixed width SIMD vector type.
Definition Type.h:75
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
@ PointerTyID
Pointers.
Definition Type.h:72
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This class represents a cast unsigned integer to floating point.
This function has undefined behavior.
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
This represents the llvm.va_copy intrinsic.
This represents the llvm.va_end intrinsic.
This represents the llvm.va_start intrinsic.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Base class of all SIMD vector types.
This class represents zero extension of integer types.
This class provides various memory handling functions that manipulate MemoryBlock instances.
Definition Memory.h:54
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition APInt.h:2330
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition APInt.h:2318
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition APInt.h:2349
LLVM_ABI APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition APInt.cpp:841
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition APInt.h:2325
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition APInt.h:2337
This is an optimization pass for GlobalISel generic memory operations.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1657
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
void * PointerTy
gep_type_iterator gep_type_end(const User *GEP)
GenericValue PTOGV(void *P)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
generic_gep_type_iterator<> gep_type_iterator
LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_malloc(size_t Sz)
Definition MemAlloc.h:25
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
constexpr unsigned BitWidth
void * GVTOP(const GenericValue &GV)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
gep_type_iterator gep_type_begin(const User *GEP)
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
BasicBlock::iterator CurInst
Definition Interpreter.h:62
std::map< Value *, GenericValue > Values
Definition Interpreter.h:65
std::vector< GenericValue > VarArgs
Definition Interpreter.h:66
unsigned char Untyped[8]
struct IntPair UIntPairVal
std::vector< GenericValue > AggregateVal