LLVM 22.0.0git
LoopCacheAnalysis.cpp
Go to the documentation of this file.
1//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6// See https://llvm.org/LICENSE.txt for license information.
7// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8//
9//===----------------------------------------------------------------------===//
10///
11/// \file
12/// This file defines the implementation for the loop cache analysis.
13/// The implementation is largely based on the following paper:
14///
15/// Compiler Optimizations for Improving Data Locality
16/// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17/// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
18///
19/// The general approach taken to estimate the number of cache lines used by the
20/// memory references in an inner loop is:
21/// 1. Partition memory references that exhibit temporal or spacial reuse
22/// into reference groups.
23/// 2. For each loop L in the a loop nest LN:
24/// a. Compute the cost of the reference group
25/// b. Compute the loop cost by summing up the reference groups costs
26//===----------------------------------------------------------------------===//
27
30#include "llvm/ADT/Sequence.h"
39#include "llvm/Support/Debug.h"
40
41using namespace llvm;
42
43#define DEBUG_TYPE "loop-cache-cost"
44
46 "default-trip-count", cl::init(100), cl::Hidden,
47 cl::desc("Use this to specify the default trip count of a loop"));
48
49// In this analysis two array references are considered to exhibit temporal
50// reuse if they access either the same memory location, or a memory location
51// with distance smaller than a configurable threshold.
53 "temporal-reuse-threshold", cl::init(2), cl::Hidden,
54 cl::desc("Use this to specify the max. distance between array elements "
55 "accessed in a loop so that the elements are classified to have "
56 "temporal reuse"));
57
58/// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
59/// nullptr if any loops in the loop vector supplied has more than one sibling.
60/// The loop vector is expected to contain loops collected in breadth-first
61/// order.
63 assert(!Loops.empty() && "Expecting a non-empy loop vector");
64
65 Loop *LastLoop = Loops.back();
66 Loop *ParentLoop = LastLoop->getParentLoop();
67
68 if (ParentLoop == nullptr) {
69 assert(Loops.size() == 1 && "Expecting a single loop");
70 return LastLoop;
71 }
72
73 return (llvm::is_sorted(Loops,
74 [](const Loop *L1, const Loop *L2) {
75 return L1->getLoopDepth() < L2->getLoopDepth();
76 }))
77 ? LastLoop
78 : nullptr;
79}
80
81static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
82 const Loop &L, ScalarEvolution &SE) {
83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
84 if (!AR || !AR->isAffine())
85 return false;
86
87 assert(AR->getLoop() && "AR should have a loop");
88
89 // Check that start and increment are not add recurrences.
90 const SCEV *Start = AR->getStart();
91 const SCEV *Step = AR->getStepRecurrence(SE);
92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
93 return false;
94
95 // Check that start and increment are both invariant in the loop.
96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
97 return false;
98
99 const SCEV *StepRec = AR->getStepRecurrence(SE);
100 if (StepRec && SE.isKnownNegative(StepRec))
101 StepRec = SE.getNegativeSCEV(StepRec);
102
103 return StepRec == &ElemSize;
104}
105
106/// Compute the trip count for the given loop \p L or assume a default value if
107/// it is not a compile time constant. Return the SCEV expression for the trip
108/// count.
109static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize,
110 ScalarEvolution &SE) {
111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
112 const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
113 isa<SCEVConstant>(BackedgeTakenCount))
114 ? SE.getTripCountFromExitCount(BackedgeTakenCount)
115 : nullptr;
116
117 if (!TripCount) {
118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
119 << " could not be computed, using DefaultTripCount\n");
120 TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount);
121 }
122
123 return TripCount;
124}
125
126//===----------------------------------------------------------------------===//
127// IndexedReference implementation
128//
130 if (!R.IsValid) {
131 OS << R.StoreOrLoadInst;
132 OS << ", IsValid=false.";
133 return OS;
134 }
135
136 OS << *R.BasePointer;
137 for (const SCEV *Subscript : R.Subscripts)
138 OS << "[" << *Subscript << "]";
139
140 OS << ", Sizes: ";
141 for (const SCEV *Size : R.Sizes)
142 OS << "[" << *Size << "]";
143
144 return OS;
145}
146
148 const LoopInfo &LI, ScalarEvolution &SE)
149 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
150 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
151 "Expecting a load or store instruction");
152
153 IsValid = delinearize(LI);
154 if (IsValid)
155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
156 << "\n");
157}
158
159std::optional<bool>
161 AAResults &AA) const {
162 assert(IsValid && "Expecting a valid reference");
163
164 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
166 << "No spacial reuse: different base pointers\n");
167 return false;
168 }
169
170 unsigned NumSubscripts = getNumSubscripts();
171 if (NumSubscripts != Other.getNumSubscripts()) {
173 << "No spacial reuse: different number of subscripts\n");
174 return false;
175 }
176
177 // all subscripts must be equal, except the leftmost one (the last one).
178 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
179 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
181 << "\n\t" << *getSubscript(SubNum) << "\n\t"
182 << *Other.getSubscript(SubNum) << "\n");
183 return false;
184 }
185 }
186
187 // the difference between the last subscripts must be less than the cache line
188 // size.
189 const SCEV *LastSubscript = getLastSubscript();
190 const SCEV *OtherLastSubscript = Other.getLastSubscript();
192 SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
193
194 if (Diff == nullptr) {
196 << "No spacial reuse, difference between subscript:\n\t"
197 << *LastSubscript << "\n\t" << OtherLastSubscript
198 << "\nis not constant.\n");
199 return std::nullopt;
200 }
201
202 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
203
204 LLVM_DEBUG({
205 if (InSameCacheLine)
206 dbgs().indent(2) << "Found spacial reuse.\n";
207 else
208 dbgs().indent(2) << "No spacial reuse.\n";
209 });
210
211 return InSameCacheLine;
212}
213
214std::optional<bool>
216 unsigned MaxDistance, const Loop &L,
217 DependenceInfo &DI, AAResults &AA) const {
218 assert(IsValid && "Expecting a valid reference");
219
220 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
222 << "No temporal reuse: different base pointer\n");
223 return false;
224 }
225
226 std::unique_ptr<Dependence> D =
227 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst);
228
229 if (D == nullptr) {
230 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
231 return false;
232 }
233
234 if (D->isLoopIndependent()) {
235 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
236 return true;
237 }
238
239 // Check the dependence distance at every loop level. There is temporal reuse
240 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
241 // it is zero at every other loop level.
242 int LoopDepth = L.getLoopDepth();
243 int Levels = D->getLevels();
244 for (int Level = 1; Level <= Levels; ++Level) {
245 const SCEV *Distance = D->getDistance(Level);
246 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
247
248 if (SCEVConst == nullptr) {
249 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
250 return std::nullopt;
251 }
252
253 const ConstantInt &CI = *SCEVConst->getValue();
254 if (Level != LoopDepth && !CI.isZero()) {
256 << "No temporal reuse: distance is not zero at depth=" << Level
257 << "\n");
258 return false;
259 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
261 dbgs().indent(2)
262 << "No temporal reuse: distance is greater than MaxDistance at depth="
263 << Level << "\n");
264 return false;
265 }
266 }
267
268 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
269 return true;
270}
271
273 unsigned CLS) const {
274 assert(IsValid && "Expecting a valid reference");
275 LLVM_DEBUG({
276 dbgs().indent(2) << "Computing cache cost for:\n";
277 dbgs().indent(4) << *this << "\n";
278 });
279
280 // If the indexed reference is loop invariant the cost is one.
281 if (isLoopInvariant(L)) {
282 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
283 return 1;
284 }
285
286 const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE);
287 assert(TripCount && "Expecting valid TripCount");
288 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
289
290 const SCEV *RefCost = nullptr;
291 const SCEV *Stride = nullptr;
292 if (isConsecutive(L, Stride, CLS)) {
293 // If the indexed reference is 'consecutive' the cost is
294 // (TripCount*Stride)/CLS.
295 assert(Stride != nullptr &&
296 "Stride should not be null for consecutive access!");
297 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
298 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS);
299 Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
300 TripCount = SE.getNoopOrZeroExtend(TripCount, WiderType);
301 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
302 // Round the fractional cost up to the nearest integer number.
303 // The impact is the most significant when cost is calculated
304 // to be a number less than one, because it makes more sense
305 // to say one cache line is used rather than zero cache line
306 // is used.
307 RefCost = SE.getUDivCeilSCEV(Numerator, CacheLineSize);
308
310 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
311 << *RefCost << "\n");
312 } else {
313 // If the indexed reference is not 'consecutive' the cost is proportional to
314 // the trip count and the depth of the dimension which the subject loop
315 // subscript is accessing. We try to estimate this by multiplying the cost
316 // by the trip counts of loops corresponding to the inner dimensions. For
317 // example, given the indexed reference 'A[i][j][k]', and assuming the
318 // i-loop is in the innermost position, the cost would be equal to the
319 // iterations of the i-loop multiplied by iterations of the j-loop.
320 RefCost = TripCount;
321
322 int Index = getSubscriptIndex(L);
323 assert(Index >= 0 && "Could not locate a valid Index");
324
325 for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) {
327 assert(AR && AR->getLoop() && "Expecting valid loop");
328 const SCEV *TripCount =
329 computeTripCount(*AR->getLoop(), *Sizes.back(), SE);
330 Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType());
331 // For the multiplication result to fit, request a type twice as wide.
332 WiderType = WiderType->getExtendedType();
333 RefCost = SE.getMulExpr(SE.getNoopOrZeroExtend(RefCost, WiderType),
334 SE.getNoopOrZeroExtend(TripCount, WiderType));
335 }
336
338 << "Access is not consecutive: RefCost=" << *RefCost << "\n");
339 }
340 assert(RefCost && "Expecting a valid RefCost");
341
342 // Attempt to fold RefCost into a constant.
343 // CacheCostTy is a signed integer, but the tripcount value can be large
344 // and may not fit, so saturate/limit the value to the maximum signed
345 // integer value.
346 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
347 return ConstantCost->getValue()->getLimitedValue(
348 std::numeric_limits<int64_t>::max());
349
351 << "RefCost is not a constant! Setting to RefCost=InvalidCost "
352 "(invalid value).\n");
353
355}
356
357bool IndexedReference::tryDelinearizeFixedSize(
358 const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts,
359 const SCEV *ElementSize) {
360 const SCEV *Offset = SE.removePointerBase(AccessFn);
361 if (!delinearizeFixedSizeArray(SE, Offset, Subscripts, Sizes, ElementSize)) {
362 Sizes.clear();
363 return false;
364 }
365
366 // We expect Sizes and Subscipts have the same number of elements, and the
367 // last element of Sizes is ElementSize. It is for ensuring consistency with
368 // the load/store instruction being analyzed. It is not needed for further
369 // analysis.
370 // TODO: Maybe this property should be enforced in delinearizeFixedSizeArray.
371#ifndef NDEBUG
372 assert(!Sizes.empty() && Subscripts.size() == Sizes.size() &&
373 "Inconsistent length of Sizes and Subscripts");
374 Type *WideTy =
375 SE.getWiderType(ElementSize->getType(), Sizes.back()->getType());
376 const SCEV *ElemSizeExt = SE.getNoopOrZeroExtend(ElementSize, WideTy);
377 const SCEV *LastSizeExt = SE.getNoopOrZeroExtend(Sizes.back(), WideTy);
378 assert(ElemSizeExt == LastSizeExt && "Unexpected last element of Sizes");
379#endif
380
381 Sizes.pop_back();
382 return true;
383}
384
385bool IndexedReference::delinearize(const LoopInfo &LI) {
386 assert(Subscripts.empty() && "Subscripts should be empty");
387 assert(Sizes.empty() && "Sizes should be empty");
388 assert(!IsValid && "Should be called once from the constructor");
389 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
390
391 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
392 const BasicBlock *BB = StoreOrLoadInst.getParent();
393
394 if (Loop *L = LI.getLoopFor(BB)) {
395 const SCEV *AccessFn =
396 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
397
398 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
399 if (BasePointer == nullptr) {
401 dbgs().indent(2)
402 << "ERROR: failed to delinearize, can't identify base pointer\n");
403 return false;
404 }
405
406 bool IsFixedSize = false;
407 // Try to delinearize fixed-size arrays.
408 if (tryDelinearizeFixedSize(AccessFn, Subscripts, ElemSize)) {
409 IsFixedSize = true;
410 // The last element of Sizes is the element size.
411 Sizes.push_back(ElemSize);
412 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
413 << "', AccessFn: " << *AccessFn << "\n");
414 }
415
416 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
417
418 // Try to delinearize parametric-size arrays.
419 if (!IsFixedSize) {
420 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
421 << "', AccessFn: " << *AccessFn << "\n");
422 llvm::delinearize(SE, AccessFn, Subscripts, Sizes,
423 SE.getElementSize(&StoreOrLoadInst));
424 }
425
426 if (Subscripts.empty() || Sizes.empty() ||
427 Subscripts.size() != Sizes.size()) {
428 // Attempt to determine whether we have a single dimensional array access.
429 // before giving up.
430 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
431 LLVM_DEBUG(dbgs().indent(2)
432 << "ERROR: failed to delinearize reference\n");
433 Subscripts.clear();
434 Sizes.clear();
435 return false;
436 }
437
438 // The array may be accessed in reverse, for example:
439 // for (i = N; i > 0; i--)
440 // A[i] = 0;
441 // In this case, reconstruct the access function using the absolute value
442 // of the step recurrence.
443 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
444 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
445
446 if (StepRec && SE.isKnownNegative(StepRec))
447 AccessFn = SE.getAddRecExpr(
448 AccessFnAR->getStart(), SE.getNegativeSCEV(StepRec),
450 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
451 Subscripts.push_back(Div);
452 Sizes.push_back(ElemSize);
453 }
454
455 return all_of(Subscripts, [&](const SCEV *Subscript) {
456 return isSimpleAddRecurrence(*Subscript, *L);
457 });
458 }
459
460 return false;
461}
462
463bool IndexedReference::isLoopInvariant(const Loop &L) const {
464 Value *Addr = getPointerOperand(&StoreOrLoadInst);
465 assert(Addr != nullptr && "Expecting either a load or a store instruction");
466 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
467
468 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
469 return true;
470
471 // The indexed reference is loop invariant if none of the coefficients use
472 // the loop induction variable.
473 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
474 return isCoeffForLoopZeroOrInvariant(*Subscript, L);
475 });
476
477 return allCoeffForLoopAreZero;
478}
479
480bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride,
481 unsigned CLS) const {
482 // The indexed reference is 'consecutive' if the only coefficient that uses
483 // the loop induction variable is the last one...
484 const SCEV *LastSubscript = Subscripts.back();
485 for (const SCEV *Subscript : Subscripts) {
486 if (Subscript == LastSubscript)
487 continue;
488 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
489 return false;
490 }
491
492 // ...and the access stride is less than the cache line size.
493 const SCEV *Coeff = getLastCoefficient();
494 const SCEV *ElemSize = Sizes.back();
495 Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType());
496 // FIXME: This assumes that all values are signed integers which may
497 // be incorrect in unusual codes and incorrectly use sext instead of zext.
498 // for (uint32_t i = 0; i < 512; ++i) {
499 // uint8_t trunc = i;
500 // A[trunc] = 42;
501 // }
502 // This consecutively iterates twice over A. If `trunc` is sign-extended,
503 // we would conclude that this may iterate backwards over the array.
504 // However, LoopCacheAnalysis is heuristic anyway and transformations must
505 // not result in wrong optimizations if the heuristic was incorrect.
506 Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType),
507 SE.getNoopOrSignExtend(ElemSize, WiderType));
508 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
509
510 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
511 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
512}
513
514int IndexedReference::getSubscriptIndex(const Loop &L) const {
515 for (auto Idx : seq<int>(0, getNumSubscripts())) {
516 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx));
517 if (AR && AR->getLoop() == &L) {
518 return Idx;
519 }
520 }
521 return -1;
522}
523
524const SCEV *IndexedReference::getLastCoefficient() const {
525 const SCEV *LastSubscript = getLastSubscript();
526 auto *AR = cast<SCEVAddRecExpr>(LastSubscript);
527 return AR->getStepRecurrence(SE);
528}
529
530bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
531 const Loop &L) const {
532 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
533 return (AR != nullptr) ? AR->getLoop() != &L
534 : SE.isLoopInvariant(&Subscript, &L);
535}
536
537bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
538 const Loop &L) const {
539 if (!isa<SCEVAddRecExpr>(Subscript))
540 return false;
541
542 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
543 assert(AR->getLoop() && "AR should have a loop");
544
545 if (!AR->isAffine())
546 return false;
547
548 const SCEV *Start = AR->getStart();
549 const SCEV *Step = AR->getStepRecurrence(SE);
550
551 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
552 return false;
553
554 return true;
555}
556
557bool IndexedReference::isAliased(const IndexedReference &Other,
558 AAResults &AA) const {
559 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
560 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
561 return AA.isMustAlias(Loc1, Loc2);
562}
563
564//===----------------------------------------------------------------------===//
565// CacheCost implementation
566//
568 for (const auto &LC : CC.LoopCosts) {
569 const Loop *L = LC.first;
570 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
571 }
572 return OS;
573}
574
577 AAResults &AA, DependenceInfo &DI,
578 std::optional<unsigned> TRT)
579 : Loops(Loops), TRT(TRT.value_or(TemporalReuseThreshold)), LI(LI), SE(SE),
580 TTI(TTI), AA(AA), DI(DI) {
581 assert(!Loops.empty() && "Expecting a non-empty loop vector.");
582
583 for (const Loop *L : Loops) {
584 unsigned TripCount = SE.getSmallConstantTripCount(L);
585 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
586 TripCounts.push_back({L, TripCount});
587 }
588
589 calculateCacheFootprint();
590}
591
592std::unique_ptr<CacheCost>
594 DependenceInfo &DI, std::optional<unsigned> TRT) {
595 if (!Root.isOutermost()) {
596 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
597 return nullptr;
598 }
599
600 LoopVectorTy Loops;
601 append_range(Loops, breadth_first(&Root));
602
603 if (!getInnerMostLoop(Loops)) {
604 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
605 "than one innermost loop\n");
606 return nullptr;
607 }
608
609 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
610}
611
612void CacheCost::calculateCacheFootprint() {
613 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
614 ReferenceGroupsTy RefGroups;
615 if (!populateReferenceGroups(RefGroups))
616 return;
617
618 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
619 for (const Loop *L : Loops) {
621 LoopCosts,
622 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) &&
623 "Should not add duplicate element");
624 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
625 LoopCosts.push_back(std::make_pair(L, LoopCost));
626 }
627
628 sortLoopCosts();
629 RefGroups.clear();
630}
631
632bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
633 assert(RefGroups.empty() && "Reference groups should be empty");
634
635 unsigned CLS = TTI.getCacheLineSize();
636 Loop *InnerMostLoop = getInnerMostLoop(Loops);
637 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
638
639 for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
640 for (Instruction &I : *BB) {
641 if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
642 continue;
643
644 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
645 if (!R->isValid())
646 continue;
647
648 bool Added = false;
649 for (ReferenceGroupTy &RefGroup : RefGroups) {
650 const IndexedReference &Representative = *RefGroup.front();
651 LLVM_DEBUG({
652 dbgs() << "References:\n";
653 dbgs().indent(2) << *R << "\n";
654 dbgs().indent(2) << Representative << "\n";
655 });
656
657
658 // FIXME: Both positive and negative access functions will be placed
659 // into the same reference group, resulting in a bi-directional array
660 // access such as:
661 // for (i = N; i > 0; i--)
662 // A[i] = A[N - i];
663 // having the same cost calculation as a single dimention access pattern
664 // for (i = 0; i < N; i++)
665 // A[i] = A[i];
666 // when in actuality, depending on the array size, the first example
667 // should have a cost closer to 2x the second due to the two cache
668 // access per iteration from opposite ends of the array
669 std::optional<bool> HasTemporalReuse =
670 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
671 std::optional<bool> HasSpacialReuse =
672 R->hasSpacialReuse(Representative, CLS, AA);
673
674 if ((HasTemporalReuse && *HasTemporalReuse) ||
675 (HasSpacialReuse && *HasSpacialReuse)) {
676 RefGroup.push_back(std::move(R));
677 Added = true;
678 break;
679 }
680 }
681
682 if (!Added) {
684 RG.push_back(std::move(R));
685 RefGroups.push_back(std::move(RG));
686 }
687 }
688 }
689
690 if (RefGroups.empty())
691 return false;
692
693 LLVM_DEBUG({
694 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
695 int n = 1;
696 for (const ReferenceGroupTy &RG : RefGroups) {
697 dbgs().indent(2) << "RefGroup " << n << ":\n";
698 for (const auto &IR : RG)
699 dbgs().indent(4) << *IR << "\n";
700 n++;
701 }
702 dbgs() << "\n";
703 });
704
705 return true;
706}
707
709CacheCost::computeLoopCacheCost(const Loop &L,
710 const ReferenceGroupsTy &RefGroups) const {
711 if (!L.isLoopSimplifyForm())
713
714 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
715 << "' as innermost loop.\n");
716
717 // Compute the product of the trip counts of each other loop in the nest.
718 CacheCostTy TripCountsProduct = 1;
719 for (const auto &TC : TripCounts) {
720 if (TC.first == &L)
721 continue;
722 TripCountsProduct *= TC.second;
723 }
724
725 CacheCostTy LoopCost = 0;
726 for (const ReferenceGroupTy &RG : RefGroups) {
727 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
728 LoopCost += RefGroupCost * TripCountsProduct;
729 }
730
731 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
732 << "' has cost=" << LoopCost << "\n");
733
734 return LoopCost;
735}
736
737CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
738 const Loop &L) const {
739 assert(!RG.empty() && "Reference group should have at least one member.");
740
741 const IndexedReference *Representative = RG.front().get();
742 return Representative->computeRefCost(L, TTI.getCacheLineSize());
743}
744
745//===----------------------------------------------------------------------===//
746// LoopCachePrinterPass implementation
747//
750 LPMUpdater &U) {
751 Function *F = L.getHeader()->getParent();
752 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
753
754 if (auto CC = CacheCost::getCacheCost(L, AR, DI))
755 OS << *CC;
756
757 return PreservedAnalyses::all();
758}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file builds on the ADT/GraphTraits.h file to build a generic breadth first graph iterator.
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Hexagon Hardware Loops
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, const Loop &L, ScalarEvolution &SE)
static cl::opt< unsigned > TemporalReuseThreshold("temporal-reuse-threshold", cl::init(2), cl::Hidden, cl::desc("Use this to specify the max. distance between array elements " "accessed in a loop so that the elements are classified to have " "temporal reuse"))
static const SCEV * computeTripCount(const Loop &L, const SCEV &ElemSize, ScalarEvolution &SE)
Compute the trip count for the given loop L or assume a default value if it is not a compile time con...
static Loop * getInnerMostLoop(const LoopVectorTy &Loops)
Retrieve the innermost loop in the given loop nest Loops.
static cl::opt< unsigned > DefaultTripCount("default-trip-count", cl::init(100), cl::Hidden, cl::desc("Use this to specify the default trip count of a loop"))
This file defines the interface for the loop cache analysis.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Provides some synthesis utilities to produce sequences of values.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static cl::opt< unsigned > CacheLineSize("cache-line-size", cl::init(0), cl::Hidden, cl::desc("Use this to override the target cache line size when " "specified by the user."))
This pass exposes codegen information to IR-level passes.
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
A trivial helper function to check to see if the specified pointers are must-alias.
CacheCost represents the estimated cost of a inner loop as the number of cache lines used by the memo...
CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, ScalarEvolution &SE, TargetTransformInfo &TTI, AAResults &AA, DependenceInfo &DI, std::optional< unsigned > TRT=std::nullopt)
Construct a CacheCost object for the loop nest described by Loops.
static std::unique_ptr< CacheCost > getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, DependenceInfo &DI, std::optional< unsigned > TRT=std::nullopt)
Create a CacheCost for the loop nest rooted by Root.
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
This is the shared class of boolean and integer constants.
Definition Constants.h:87
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:214
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
DependenceInfo - This class is the main dependence-analysis driver.
LLVM_ABI std::unique_ptr< Dependence > depends(Instruction *Src, Instruction *Dst, bool UnderRuntimeAssumptions=false)
depends - Tests for a dependence between the Src and Dst instructions.
Represents a memory reference as a base pointer and a set of indexing operations.
CacheCostTy computeRefCost(const Loop &L, unsigned CLS) const
Compute the cost of the reference w.r.t.
const SCEV * getSubscript(unsigned SubNum) const
std::optional< bool > hasSpacialReuse(const IndexedReference &Other, unsigned CLS, AAResults &AA) const
Return true/false if the current object and the indexed reference Other are/aren't in the same cache ...
std::optional< bool > hasTemporalReuse(const IndexedReference &Other, unsigned MaxDistance, const Loop &L, DependenceInfo &DI, AAResults &AA) const
Return true if the current object and the indexed reference Other have distance smaller than MaxDista...
IndexedReference(Instruction &StoreOrLoadInst, const LoopInfo &LI, ScalarEvolution &SE)
Construct an indexed reference given a StoreOrLoadInst instruction.
const SCEV * getLastSubscript() const
size_t getNumSubscripts() const
static InstructionCost getInvalid(CostType Val=0)
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
bool isOutermost() const
Return true if the loop does not have a parent (natural) loop.
unsigned getLoopDepth() const
Return the nesting level of this loop.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
This class represents a constant integer value.
ConstantInt * getValue() const
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
InstructionCost CacheCostTy
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
SmallVector< std::unique_ptr< IndexedReference >, 8 > ReferenceGroupTy
A reference group represents a set of memory references that exhibit temporal or spacial reuse.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
AnalysisManager< Loop, LoopStandardAnalysisResults & > LoopAnalysisManager
The loop analysis manager.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool delinearizeFixedSizeArray(ScalarEvolution &SE, const SCEV *Expr, SmallVectorImpl< const SCEV * > &Subscripts, SmallVectorImpl< const SCEV * > &Sizes, const SCEV *ElementSize)
Split this SCEVAddRecExpr into two vectors of SCEVs representing the subscripts and sizes of an acces...
SmallVector< Loop *, 8 > LoopVectorTy
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition STLExtras.h:1920
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
iterator_range< bf_iterator< T > > breadth_first(const T &G)
@ Other
Any other memory.
Definition ModRef.h:68
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
void delinearize(ScalarEvolution &SE, const SCEV *Expr, SmallVectorImpl< const SCEV * > &Subscripts, SmallVectorImpl< const SCEV * > &Sizes, const SCEV *ElementSize)
Split this SCEVAddRecExpr into two vectors of SCEVs representing the subscripts and sizes of an array...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
SmallVector< ReferenceGroupTy, 8 > ReferenceGroupsTy
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...