LLVM 20.0.0git
HexagonHardwareLoops.cpp
Go to the documentation of this file.
1//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass identifies loops where we can generate the Hexagon hardware
10// loop instruction. The hardware loop can perform loop branches with a
11// zero-cycle overhead.
12//
13// The pattern that defines the induction variable can changed depending on
14// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15// normalizes induction variables, and the Loop Strength Reduction pass
16// run by 'llc' may also make changes to the induction variable.
17// The pattern detected by this phase is due to running Strength Reduction.
18//
19// Criteria for hardware loops:
20// - Countable loops (w/ ind. var for a trip count)
21// - Assumes loops are normalized by IndVarSimplify
22// - Try inner-most loops first
23// - No function calls in loops.
24//
25//===----------------------------------------------------------------------===//
26
27#include "HexagonInstrInfo.h"
28#include "HexagonSubtarget.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringRef.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DebugLoc.h"
48#include "llvm/Pass.h"
50#include "llvm/Support/Debug.h"
54#include <cassert>
55#include <cstdint>
56#include <cstdlib>
57#include <iterator>
58#include <map>
59#include <set>
60#include <string>
61#include <utility>
62#include <vector>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hwloops"
67
68#ifndef NDEBUG
69static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
70
71// Option to create preheader only for a specific function.
72static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73 cl::init(""));
74#endif
75
76// Option to create a preheader if one doesn't exist.
77static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
80
81// Turn it off by default. If a preheader block is not created here, the
82// software pipeliner may be unable to find a block suitable to serve as
83// a preheader. In that case SWP will not run.
84static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden,
85 cl::desc("Allow speculation of preheader "
86 "instructions"));
87
88STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
89
90namespace llvm {
91
94
95} // end namespace llvm
96
97namespace {
98
99 class CountValue;
100
101 struct HexagonHardwareLoops : public MachineFunctionPass {
102 MachineLoopInfo *MLI;
105 const HexagonInstrInfo *TII;
107#ifndef NDEBUG
108 static int Counter;
109#endif
110
111 public:
112 static char ID;
113
114 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
115
116 bool runOnMachineFunction(MachineFunction &MF) override;
117
118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
119
120 void getAnalysisUsage(AnalysisUsage &AU) const override {
124 }
125
126 private:
127 using LoopFeederMap = std::map<Register, MachineInstr *>;
128
129 /// Kinds of comparisons in the compare instructions.
130 struct Comparison {
131 enum Kind {
132 EQ = 0x01,
133 NE = 0x02,
134 L = 0x04,
135 G = 0x08,
136 U = 0x40,
137 LTs = L,
138 LEs = L | EQ,
139 GTs = G,
140 GEs = G | EQ,
141 LTu = L | U,
142 LEu = L | EQ | U,
143 GTu = G | U,
144 GEu = G | EQ | U
145 };
146
147 static Kind getSwappedComparison(Kind Cmp) {
148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
149 if ((Cmp & L) || (Cmp & G))
150 return (Kind)(Cmp ^ (L|G));
151 return Cmp;
152 }
153
154 static Kind getNegatedComparison(Kind Cmp) {
155 if ((Cmp & L) || (Cmp & G))
156 return (Kind)((Cmp ^ (L | G)) ^ EQ);
157 if ((Cmp & NE) || (Cmp & EQ))
158 return (Kind)(Cmp ^ (EQ | NE));
159 return (Kind)0;
160 }
161
162 static bool isSigned(Kind Cmp) {
163 return (Cmp & (L | G) && !(Cmp & U));
164 }
165
166 static bool isUnsigned(Kind Cmp) {
167 return (Cmp & U);
168 }
169 };
170
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
177 /// loop:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop *L, Register &Reg,
184 int64_t &IVBump, MachineInstr *&IVOp) const;
185
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind getComparisonKind(unsigned CondOpc,
188 MachineOperand *InitialValue,
189 const MachineOperand *Endvalue,
190 int64_t IVBump) const;
191
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue *getLoopTripCount(MachineLoop *L,
197
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206 const MachineOperand *End, Register IVReg,
207 int64_t IVBump, Comparison::Kind Cmp) const;
208
209 /// Return true if the instruction is not valid within a hardware
210 /// loop.
211 bool isInvalidLoopOperation(const MachineInstr *MI,
212 bool IsInnerHWLoop) const;
213
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
217
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
221
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr *MI,
224 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
225
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr *MI);
228
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
234
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
237 /// return false.
238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239 const MachineOperand *MO,
240 LoopFeederMap &LoopFeederPhi) const;
241
242 /// Return true if the Phi may generate a value that may underflow,
243 /// or may wrap.
244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
246 LoopFeederMap &LoopFeederPhi) const;
247
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251 const MachineOperand *EndVal,
253 LoopFeederMap &LoopFeederPhi) const;
254
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
259
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand &MO) const {
262 int64_t V;
263 return checkForImmediate(MO, V);
264 }
265
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand &MO) const {
268 int64_t V;
269 if (!checkForImmediate(MO, V))
270 llvm_unreachable("Invalid operand");
271 return V;
272 }
273
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand &MO, int64_t Val);
278
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281 /// |
282 /// +-> back to phi
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
286 /// like this:
287 /// phi -+-> bump ---> back to phi
288 /// |
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
292 ///
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop *L);
299
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
303 };
304
305 char HexagonHardwareLoops::ID = 0;
306#ifndef NDEBUG
307 int HexagonHardwareLoops::Counter = 0;
308#endif
309
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
313 class CountValue {
314 public:
315 enum CountValueType {
316 CV_Register,
317 CV_Immediate
318 };
319
320 private:
321 CountValueType Kind;
322 union Values {
323 Values() : R{Register(), 0} {}
324 Values(const Values&) = default;
325 struct {
327 unsigned Sub;
328 } R;
329 unsigned ImmVal;
330 } Contents;
331
332 public:
333 explicit CountValue(CountValueType t, Register v, unsigned u = 0) {
334 Kind = t;
335 if (Kind == CV_Register) {
336 Contents.R.Reg = v;
337 Contents.R.Sub = u;
338 } else {
339 Contents.ImmVal = v;
340 }
341 }
342
343 bool isReg() const { return Kind == CV_Register; }
344 bool isImm() const { return Kind == CV_Immediate; }
345
346 Register getReg() const {
347 assert(isReg() && "Wrong CountValue accessor");
348 return Contents.R.Reg;
349 }
350
351 unsigned getSubReg() const {
352 assert(isReg() && "Wrong CountValue accessor");
353 return Contents.R.Sub;
354 }
355
356 unsigned getImm() const {
357 assert(isImm() && "Wrong CountValue accessor");
358 return Contents.ImmVal;
359 }
360
361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
362 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
363 if (isImm()) { OS << Contents.ImmVal; }
364 }
365 };
366
367} // end anonymous namespace
368
369INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
370 "Hexagon Hardware Loops", false, false)
373INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
374 "Hexagon Hardware Loops", false, false)
375
377 return new HexagonHardwareLoops();
378}
379
380bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
381 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
382 if (skipFunction(MF.getFunction()))
383 return false;
384
385 bool Changed = false;
386
387 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
388 MRI = &MF.getRegInfo();
389 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
391 TII = HST.getInstrInfo();
392 TRI = HST.getRegisterInfo();
393
394 for (auto &L : *MLI)
395 if (L->isOutermost()) {
396 bool L0Used = false;
397 bool L1Used = false;
398 Changed |= convertToHardwareLoop(L, L0Used, L1Used);
399 }
400
401 return Changed;
402}
403
404bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
405 Register &Reg,
406 int64_t &IVBump,
407 MachineInstr *&IVOp
408 ) const {
409 MachineBasicBlock *Header = L->getHeader();
410 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
411 MachineBasicBlock *Latch = L->getLoopLatch();
412 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
413 if (!Header || !Preheader || !Latch || !ExitingBlock)
414 return false;
415
416 // This pair represents an induction register together with an immediate
417 // value that will be added to it in each loop iteration.
418 using RegisterBump = std::pair<Register, int64_t>;
419
420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
421 // from an induction operation
422 // R.next = R + bump
423 // where bump is an immediate value.
424 using InductionMap = std::map<Register, RegisterBump>;
425
426 InductionMap IndMap;
427
428 using instr_iterator = MachineBasicBlock::instr_iterator;
429
430 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
431 I != E && I->isPHI(); ++I) {
432 MachineInstr *Phi = &*I;
433
434 // Have a PHI instruction. Get the operand that corresponds to the
435 // latch block, and see if is a result of an addition of form "reg+imm",
436 // where the "reg" is defined by the PHI node we are looking at.
437 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
438 if (Phi->getOperand(i+1).getMBB() != Latch)
439 continue;
440
441 Register PhiOpReg = Phi->getOperand(i).getReg();
442 MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
443
444 if (DI->getDesc().isAdd()) {
445 // If the register operand to the add is the PHI we're looking at, this
446 // meets the induction pattern.
447 Register IndReg = DI->getOperand(1).getReg();
448 MachineOperand &Opnd2 = DI->getOperand(2);
449 int64_t V;
450 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
451 Register UpdReg = DI->getOperand(0).getReg();
452 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
453 }
454 }
455 } // for (i)
456 } // for (instr)
457
459 MachineBasicBlock *TB = nullptr, *FB = nullptr;
460 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
461 if (NotAnalyzed)
462 return false;
463
464 Register PredR;
465 unsigned PredPos, PredRegFlags;
466 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
467 return false;
468
469 MachineInstr *PredI = MRI->getVRegDef(PredR);
470 if (!PredI->isCompare())
471 return false;
472
473 Register CmpReg1, CmpReg2;
474 int64_t CmpImm = 0, CmpMask = 0;
475 bool CmpAnalyzed =
476 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
477 // Fail if the compare was not analyzed, or it's not comparing a register
478 // with an immediate value. Not checking the mask here, since we handle
479 // the individual compare opcodes (including A4_cmpb*) later on.
480 if (!CmpAnalyzed)
481 return false;
482
483 // Exactly one of the input registers to the comparison should be among
484 // the induction registers.
485 InductionMap::iterator IndMapEnd = IndMap.end();
486 InductionMap::iterator F = IndMapEnd;
487 if (CmpReg1 != 0) {
488 InductionMap::iterator F1 = IndMap.find(CmpReg1);
489 if (F1 != IndMapEnd)
490 F = F1;
491 }
492 if (CmpReg2 != 0) {
493 InductionMap::iterator F2 = IndMap.find(CmpReg2);
494 if (F2 != IndMapEnd) {
495 if (F != IndMapEnd)
496 return false;
497 F = F2;
498 }
499 }
500 if (F == IndMapEnd)
501 return false;
502
503 Reg = F->second.first;
504 IVBump = F->second.second;
505 IVOp = MRI->getVRegDef(F->first);
506 return true;
507}
508
509// Return the comparison kind for the specified opcode.
510HexagonHardwareLoops::Comparison::Kind
511HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
512 MachineOperand *InitialValue,
513 const MachineOperand *EndValue,
514 int64_t IVBump) const {
515 Comparison::Kind Cmp = (Comparison::Kind)0;
516 switch (CondOpc) {
517 case Hexagon::C2_cmpeq:
518 case Hexagon::C2_cmpeqi:
519 case Hexagon::C2_cmpeqp:
520 Cmp = Comparison::EQ;
521 break;
522 case Hexagon::C4_cmpneq:
523 case Hexagon::C4_cmpneqi:
524 Cmp = Comparison::NE;
525 break;
526 case Hexagon::C2_cmplt:
527 Cmp = Comparison::LTs;
528 break;
529 case Hexagon::C2_cmpltu:
530 Cmp = Comparison::LTu;
531 break;
532 case Hexagon::C4_cmplte:
533 case Hexagon::C4_cmpltei:
534 Cmp = Comparison::LEs;
535 break;
536 case Hexagon::C4_cmplteu:
537 case Hexagon::C4_cmplteui:
538 Cmp = Comparison::LEu;
539 break;
540 case Hexagon::C2_cmpgt:
541 case Hexagon::C2_cmpgti:
542 case Hexagon::C2_cmpgtp:
543 Cmp = Comparison::GTs;
544 break;
545 case Hexagon::C2_cmpgtu:
546 case Hexagon::C2_cmpgtui:
547 case Hexagon::C2_cmpgtup:
548 Cmp = Comparison::GTu;
549 break;
550 case Hexagon::C2_cmpgei:
551 Cmp = Comparison::GEs;
552 break;
553 case Hexagon::C2_cmpgeui:
554 Cmp = Comparison::GEs;
555 break;
556 default:
557 return (Comparison::Kind)0;
558 }
559 return Cmp;
560}
561
562/// Analyze the statements in a loop to determine if the loop has
563/// a computable trip count and, if so, return a value that represents
564/// the trip count expression.
565///
566/// This function iterates over the phi nodes in the loop to check for
567/// induction variable patterns that are used in the calculation for
568/// the number of time the loop is executed.
569CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
571 MachineBasicBlock *TopMBB = L->getTopBlock();
573 assert(PI != TopMBB->pred_end() &&
574 "Loop must have more than one incoming edge!");
575 MachineBasicBlock *Backedge = *PI++;
576 if (PI == TopMBB->pred_end()) // dead loop?
577 return nullptr;
579 if (PI != TopMBB->pred_end()) // multiple backedges?
580 return nullptr;
581
582 // Make sure there is one incoming and one backedge and determine which
583 // is which.
584 if (L->contains(Incoming)) {
585 if (L->contains(Backedge))
586 return nullptr;
587 std::swap(Incoming, Backedge);
588 } else if (!L->contains(Backedge))
589 return nullptr;
590
591 // Look for the cmp instruction to determine if we can get a useful trip
592 // count. The trip count can be either a register or an immediate. The
593 // location of the value depends upon the type (reg or imm).
594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
595 if (!ExitingBlock)
596 return nullptr;
597
598 Register IVReg = 0;
599 int64_t IVBump = 0;
600 MachineInstr *IVOp;
601 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
602 if (!FoundIV)
603 return nullptr;
604
605 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
606
607 MachineOperand *InitialValue = nullptr;
608 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
609 MachineBasicBlock *Latch = L->getLoopLatch();
610 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
611 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
612 if (MBB == Preheader)
613 InitialValue = &IV_Phi->getOperand(i);
614 else if (MBB == Latch)
615 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
616 }
617 if (!InitialValue)
618 return nullptr;
619
621 MachineBasicBlock *TB = nullptr, *FB = nullptr;
622 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
623 if (NotAnalyzed)
624 return nullptr;
625
626 MachineBasicBlock *Header = L->getHeader();
627 // TB must be non-null. If FB is also non-null, one of them must be
628 // the header. Otherwise, branch to TB could be exiting the loop, and
629 // the fall through can go to the header.
630 assert (TB && "Exit block without a branch?");
631 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
632 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
634 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
635 if (NotAnalyzed)
636 return nullptr;
637 if (TB == Latch)
638 TB = (LTB == Header) ? LTB : LFB;
639 else
640 FB = (LTB == Header) ? LTB: LFB;
641 }
642 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
643 if (!TB || (FB && TB != Header && FB != Header))
644 return nullptr;
645
646 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
647 // to put imm(0), followed by P in the vector Cond.
648 // If TB is not the header, it means that the "not-taken" path must lead
649 // to the header.
650 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
651 Register PredReg;
652 unsigned PredPos, PredRegFlags;
653 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
654 return nullptr;
655 MachineInstr *CondI = MRI->getVRegDef(PredReg);
656 unsigned CondOpc = CondI->getOpcode();
657
658 Register CmpReg1, CmpReg2;
659 int64_t Mask = 0, ImmValue = 0;
660 bool AnalyzedCmp =
661 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
662 if (!AnalyzedCmp)
663 return nullptr;
664
665 // The comparison operator type determines how we compute the loop
666 // trip count.
667 OldInsts.push_back(CondI);
668 OldInsts.push_back(IVOp);
669
670 // Sadly, the following code gets information based on the position
671 // of the operands in the compare instruction. This has to be done
672 // this way, because the comparisons check for a specific relationship
673 // between the operands (e.g. is-less-than), rather than to find out
674 // what relationship the operands are in (as on PPC).
675 Comparison::Kind Cmp;
676 bool isSwapped = false;
677 const MachineOperand &Op1 = CondI->getOperand(1);
678 const MachineOperand &Op2 = CondI->getOperand(2);
679 const MachineOperand *EndValue = nullptr;
680
681 if (Op1.isReg()) {
682 if (Op2.isImm() || Op1.getReg() == IVReg)
683 EndValue = &Op2;
684 else {
685 EndValue = &Op1;
686 isSwapped = true;
687 }
688 }
689
690 if (!EndValue)
691 return nullptr;
692
693 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
694 if (!Cmp)
695 return nullptr;
696 if (Negated)
697 Cmp = Comparison::getNegatedComparison(Cmp);
698 if (isSwapped)
699 Cmp = Comparison::getSwappedComparison(Cmp);
700
701 if (InitialValue->isReg()) {
702 Register R = InitialValue->getReg();
703 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
704 if (!MDT->properlyDominates(DefBB, Header)) {
705 int64_t V;
706 if (!checkForImmediate(*InitialValue, V))
707 return nullptr;
708 }
709 OldInsts.push_back(MRI->getVRegDef(R));
710 }
711 if (EndValue->isReg()) {
712 Register R = EndValue->getReg();
713 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
714 if (!MDT->properlyDominates(DefBB, Header)) {
715 int64_t V;
716 if (!checkForImmediate(*EndValue, V))
717 return nullptr;
718 }
719 OldInsts.push_back(MRI->getVRegDef(R));
720 }
721
722 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
723}
724
725/// Helper function that returns the expression that represents the
726/// number of times a loop iterates. The function takes the operands that
727/// represent the loop start value, loop end value, and induction value.
728/// Based upon these operands, the function attempts to compute the trip count.
729CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
730 const MachineOperand *Start,
731 const MachineOperand *End,
732 Register IVReg,
733 int64_t IVBump,
734 Comparison::Kind Cmp) const {
735 // Cannot handle comparison EQ, i.e. while (A == B).
736 if (Cmp == Comparison::EQ)
737 return nullptr;
738
739 // Check if either the start or end values are an assignment of an immediate.
740 // If so, use the immediate value rather than the register.
741 if (Start->isReg()) {
742 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
743 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
744 StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
745 Start = &StartValInstr->getOperand(1);
746 }
747 if (End->isReg()) {
748 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
749 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
750 EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
751 End = &EndValInstr->getOperand(1);
752 }
753
754 if (!Start->isReg() && !Start->isImm())
755 return nullptr;
756 if (!End->isReg() && !End->isImm())
757 return nullptr;
758
759 bool CmpLess = Cmp & Comparison::L;
760 bool CmpGreater = Cmp & Comparison::G;
761 bool CmpHasEqual = Cmp & Comparison::EQ;
762
763 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
764 if (CmpLess && IVBump < 0)
765 // Loop going while iv is "less" with the iv value going down. Must wrap.
766 return nullptr;
767
768 if (CmpGreater && IVBump > 0)
769 // Loop going while iv is "greater" with the iv value going up. Must wrap.
770 return nullptr;
771
772 // Phis that may feed into the loop.
773 LoopFeederMap LoopFeederPhi;
774
775 // Check if the initial value may be zero and can be decremented in the first
776 // iteration. If the value is zero, the endloop instruction will not decrement
777 // the loop counter, so we shouldn't generate a hardware loop in this case.
778 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
779 LoopFeederPhi))
780 return nullptr;
781
782 if (Start->isImm() && End->isImm()) {
783 // Both, start and end are immediates.
784 int64_t StartV = Start->getImm();
785 int64_t EndV = End->getImm();
786 int64_t Dist = EndV - StartV;
787 if (Dist == 0)
788 return nullptr;
789
790 bool Exact = (Dist % IVBump) == 0;
791
792 if (Cmp == Comparison::NE) {
793 if (!Exact)
794 return nullptr;
795 if ((Dist < 0) ^ (IVBump < 0))
796 return nullptr;
797 }
798
799 // For comparisons that include the final value (i.e. include equality
800 // with the final value), we need to increase the distance by 1.
801 if (CmpHasEqual)
802 Dist = Dist > 0 ? Dist+1 : Dist-1;
803
804 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
805 // CmpGreater should imply Dist < 0. These conditions could actually
806 // fail, for example, in unreachable code (which may still appear to be
807 // reachable in the CFG).
808 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
809 return nullptr;
810
811 // "Normalized" distance, i.e. with the bump set to +-1.
812 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
813 : (-Dist + (-IVBump - 1)) / (-IVBump);
814 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
815
816 uint64_t Count = Dist1;
817
818 if (Count > 0xFFFFFFFFULL)
819 return nullptr;
820
821 return new CountValue(CountValue::CV_Immediate, Count);
822 }
823
824 // A general case: Start and End are some values, but the actual
825 // iteration count may not be available. If it is not, insert
826 // a computation of it into the preheader.
827
828 // If the induction variable bump is not a power of 2, quit.
829 // Othwerise we'd need a general integer division.
830 if (!isPowerOf2_64(std::abs(IVBump)))
831 return nullptr;
832
833 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
834 assert (PH && "Should have a preheader by now");
836 DebugLoc DL;
837 if (InsertPos != PH->end())
838 DL = InsertPos->getDebugLoc();
839
840 // If Start is an immediate and End is a register, the trip count
841 // will be "reg - imm". Hexagon's "subtract immediate" instruction
842 // is actually "reg + -imm".
843
844 // If the loop IV is going downwards, i.e. if the bump is negative,
845 // then the iteration count (computed as End-Start) will need to be
846 // negated. To avoid the negation, just swap Start and End.
847 if (IVBump < 0) {
848 std::swap(Start, End);
849 IVBump = -IVBump;
850 }
851 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
852 // Signedness, and "including equality" are preserved.
853
854 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
855 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
856
857 int64_t StartV = 0, EndV = 0;
858 if (Start->isImm())
859 StartV = Start->getImm();
860 if (End->isImm())
861 EndV = End->getImm();
862
863 int64_t AdjV = 0;
864 // To compute the iteration count, we would need this computation:
865 // Count = (End - Start + (IVBump-1)) / IVBump
866 // or, when CmpHasEqual:
867 // Count = (End - Start + (IVBump-1)+1) / IVBump
868 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
869 // generating an instruction specifically to add it if we can adjust
870 // the immediate values for Start or End.
871
872 if (CmpHasEqual) {
873 // Need to add 1 to the total iteration count.
874 if (Start->isImm())
875 StartV--;
876 else if (End->isImm())
877 EndV++;
878 else
879 AdjV += 1;
880 }
881
882 if (Cmp != Comparison::NE) {
883 if (Start->isImm())
884 StartV -= (IVBump-1);
885 else if (End->isImm())
886 EndV += (IVBump-1);
887 else
888 AdjV += (IVBump-1);
889 }
890
891 Register R = 0;
892 unsigned SR = 0;
893 if (Start->isReg()) {
894 R = Start->getReg();
895 SR = Start->getSubReg();
896 } else {
897 R = End->getReg();
898 SR = End->getSubReg();
899 }
900 const TargetRegisterClass *RC = MRI->getRegClass(R);
901 // Hardware loops cannot handle 64-bit registers. If it's a double
902 // register, it has to have a subregister.
903 if (!SR && RC == &Hexagon::DoubleRegsRegClass)
904 return nullptr;
905 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
906
907 // Compute DistR (register with the distance between Start and End).
908 Register DistR;
909 unsigned DistSR;
910
911 // Avoid special case, where the start value is an imm(0).
912 if (Start->isImm() && StartV == 0) {
913 DistR = End->getReg();
914 DistSR = End->getSubReg();
915 } else {
916 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
917 (RegToImm ? TII->get(Hexagon::A2_subri) :
918 TII->get(Hexagon::A2_addi));
919 if (RegToReg || RegToImm) {
920 Register SubR = MRI->createVirtualRegister(IntRC);
921 MachineInstrBuilder SubIB =
922 BuildMI(*PH, InsertPos, DL, SubD, SubR);
923
924 if (RegToReg)
925 SubIB.addReg(End->getReg(), 0, End->getSubReg())
926 .addReg(Start->getReg(), 0, Start->getSubReg());
927 else
928 SubIB.addImm(EndV)
929 .addReg(Start->getReg(), 0, Start->getSubReg());
930 DistR = SubR;
931 } else {
932 // If the loop has been unrolled, we should use the original loop count
933 // instead of recalculating the value. This will avoid additional
934 // 'Add' instruction.
935 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
936 if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
937 EndValInstr->getOperand(1).getSubReg() == 0 &&
938 EndValInstr->getOperand(2).getImm() == StartV) {
939 DistR = EndValInstr->getOperand(1).getReg();
940 } else {
941 Register SubR = MRI->createVirtualRegister(IntRC);
942 MachineInstrBuilder SubIB =
943 BuildMI(*PH, InsertPos, DL, SubD, SubR);
944 SubIB.addReg(End->getReg(), 0, End->getSubReg())
945 .addImm(-StartV);
946 DistR = SubR;
947 }
948 }
949 DistSR = 0;
950 }
951
952 // From DistR, compute AdjR (register with the adjusted distance).
953 Register AdjR;
954 unsigned AdjSR;
955
956 if (AdjV == 0) {
957 AdjR = DistR;
958 AdjSR = DistSR;
959 } else {
960 // Generate CountR = ADD DistR, AdjVal
961 Register AddR = MRI->createVirtualRegister(IntRC);
962 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
963 BuildMI(*PH, InsertPos, DL, AddD, AddR)
964 .addReg(DistR, 0, DistSR)
965 .addImm(AdjV);
966
967 AdjR = AddR;
968 AdjSR = 0;
969 }
970
971 // From AdjR, compute CountR (register with the final count).
972 Register CountR;
973 unsigned CountSR;
974
975 if (IVBump == 1) {
976 CountR = AdjR;
977 CountSR = AdjSR;
978 } else {
979 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
980 unsigned Shift = Log2_32(IVBump);
981
982 // Generate NormR = LSR DistR, Shift.
983 Register LsrR = MRI->createVirtualRegister(IntRC);
984 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
985 BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
986 .addReg(AdjR, 0, AdjSR)
987 .addImm(Shift);
988
989 CountR = LsrR;
990 CountSR = 0;
991 }
992
993 return new CountValue(CountValue::CV_Register, CountR, CountSR);
994}
995
996/// Return true if the operation is invalid within hardware loop.
997bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
998 bool IsInnerHWLoop) const {
999 // Call is not allowed because the callee may use a hardware loop except for
1000 // the case when the call never returns.
1001 if (MI->getDesc().isCall())
1002 return !TII->doesNotReturn(*MI);
1003
1004 // Check if the instruction defines a hardware loop register.
1005 using namespace Hexagon;
1006
1007 static const Register Regs01[] = { LC0, SA0, LC1, SA1 };
1008 static const Register Regs1[] = { LC1, SA1 };
1009 auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1);
1010 for (Register R : CheckRegs)
1011 if (MI->modifiesRegister(R, TRI))
1012 return true;
1013
1014 return false;
1015}
1016
1017/// Return true if the loop contains an instruction that inhibits
1018/// the use of the hardware loop instruction.
1019bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
1020 bool IsInnerHWLoop) const {
1021 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1022 << printMBBReference(**L->block_begin()));
1023 for (MachineBasicBlock *MBB : L->getBlocks()) {
1024 for (const MachineInstr &MI : *MBB) {
1025 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) {
1026 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1027 MI.dump(););
1028 return true;
1029 }
1030 }
1031 }
1032 return false;
1033}
1034
1035/// Returns true if the instruction is dead. This was essentially
1036/// copied from DeadMachineInstructionElim::isDead, but with special cases
1037/// for inline asm, physical registers and instructions with side effects
1038/// removed.
1039bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1040 SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1041 // Examine each operand.
1042 for (const MachineOperand &MO : MI->operands()) {
1043 if (!MO.isReg() || !MO.isDef())
1044 continue;
1045
1046 Register Reg = MO.getReg();
1047 if (MRI->use_nodbg_empty(Reg))
1048 continue;
1049
1050 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1051
1052 // This instruction has users, but if the only user is the phi node for the
1053 // parent block, and the only use of that phi node is this instruction, then
1054 // this instruction is dead: both it (and the phi node) can be removed.
1055 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1056 use_nodbg_iterator End = MRI->use_nodbg_end();
1057 if (std::next(I) != End || !I->getParent()->isPHI())
1058 return false;
1059
1060 MachineInstr *OnePhi = I->getParent();
1061 for (const MachineOperand &OPO : OnePhi->operands()) {
1062 if (!OPO.isReg() || !OPO.isDef())
1063 continue;
1064
1065 Register OPReg = OPO.getReg();
1066 use_nodbg_iterator nextJ;
1067 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1068 J != End; J = nextJ) {
1069 nextJ = std::next(J);
1070 MachineOperand &Use = *J;
1071 MachineInstr *UseMI = Use.getParent();
1072
1073 // If the phi node has a user that is not MI, bail.
1074 if (MI != UseMI)
1075 return false;
1076 }
1077 }
1078 DeadPhis.push_back(OnePhi);
1079 }
1080
1081 // If there are no defs with uses, the instruction is dead.
1082 return true;
1083}
1084
1085void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1086 // This procedure was essentially copied from DeadMachineInstructionElim.
1087
1089 if (isDead(MI, DeadPhis)) {
1090 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);
1091
1092 // It is possible that some DBG_VALUE instructions refer to this
1093 // instruction. Examine each def operand for such references;
1094 // if found, mark the DBG_VALUE as undef (but don't delete it).
1095 for (const MachineOperand &MO : MI->operands()) {
1096 if (!MO.isReg() || !MO.isDef())
1097 continue;
1098 Register Reg = MO.getReg();
1099 // We use make_early_inc_range here because setReg below invalidates the
1100 // iterator.
1101 for (MachineOperand &MO :
1102 llvm::make_early_inc_range(MRI->use_operands(Reg))) {
1104 if (UseMI == MI)
1105 continue;
1106 if (MO.isDebug())
1107 MO.setReg(0U);
1108 }
1109 }
1110
1111 MI->eraseFromParent();
1112 for (unsigned i = 0; i < DeadPhis.size(); ++i)
1113 DeadPhis[i]->eraseFromParent();
1114 }
1115}
1116
1117/// Check if the loop is a candidate for converting to a hardware
1118/// loop. If so, then perform the transformation.
1119///
1120/// This function works on innermost loops first. A loop can be converted
1121/// if it is a counting loop; either a register value or an immediate.
1122///
1123/// The code makes several assumptions about the representation of the loop
1124/// in llvm.
1125bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1126 bool &RecL0used,
1127 bool &RecL1used) {
1128 // This is just to confirm basic correctness.
1129 assert(L->getHeader() && "Loop without a header?");
1130
1131 bool Changed = false;
1132 bool L0Used = false;
1133 bool L1Used = false;
1134
1135 // Process nested loops first.
1136 for (MachineLoop *I : *L) {
1137 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used);
1138 L0Used |= RecL0used;
1139 L1Used |= RecL1used;
1140 }
1141
1142 // If a nested loop has been converted, then we can't convert this loop.
1143 if (Changed && L0Used && L1Used)
1144 return Changed;
1145
1146 unsigned LOOP_i;
1147 unsigned LOOP_r;
1148 unsigned ENDLOOP;
1149
1150 // Flag used to track loopN instruction:
1151 // 1 - Hardware loop is being generated for the inner most loop.
1152 // 0 - Hardware loop is being generated for the outer loop.
1153 unsigned IsInnerHWLoop = 1;
1154
1155 if (L0Used) {
1156 LOOP_i = Hexagon::J2_loop1i;
1157 LOOP_r = Hexagon::J2_loop1r;
1158 ENDLOOP = Hexagon::ENDLOOP1;
1159 IsInnerHWLoop = 0;
1160 } else {
1161 LOOP_i = Hexagon::J2_loop0i;
1162 LOOP_r = Hexagon::J2_loop0r;
1163 ENDLOOP = Hexagon::ENDLOOP0;
1164 }
1165
1166#ifndef NDEBUG
1167 // Stop trying after reaching the limit (if any).
1168 int Limit = HWLoopLimit;
1169 if (Limit >= 0) {
1170 if (Counter >= HWLoopLimit)
1171 return false;
1172 Counter++;
1173 }
1174#endif
1175
1176 // Does the loop contain any invalid instructions?
1177 if (containsInvalidInstruction(L, IsInnerHWLoop))
1178 return false;
1179
1180 MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1181 // Don't generate hw loop if the loop has more than one exit.
1182 if (!LastMBB)
1183 return false;
1184
1186 if (LastI == LastMBB->end())
1187 return false;
1188
1189 // Is the induction variable bump feeding the latch condition?
1190 if (!fixupInductionVariable(L))
1191 return false;
1192
1193 // Ensure the loop has a preheader: the loop instruction will be
1194 // placed there.
1195 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1196 if (!Preheader) {
1197 Preheader = createPreheaderForLoop(L);
1198 if (!Preheader)
1199 return false;
1200 }
1201
1202 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1203
1205 // Are we able to determine the trip count for the loop?
1206 CountValue *TripCount = getLoopTripCount(L, OldInsts);
1207 if (!TripCount)
1208 return false;
1209
1210 // Is the trip count available in the preheader?
1211 if (TripCount->isReg()) {
1212 // There will be a use of the register inserted into the preheader,
1213 // so make sure that the register is actually defined at that point.
1214 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1215 MachineBasicBlock *BBDef = TCDef->getParent();
1216 if (!MDT->dominates(BBDef, Preheader))
1217 return false;
1218 }
1219
1220 // Determine the loop start.
1221 MachineBasicBlock *TopBlock = L->getTopBlock();
1222 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1223 MachineBasicBlock *LoopStart = nullptr;
1224 if (ExitingBlock != L->getLoopLatch()) {
1225 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1227
1228 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1229 return false;
1230
1231 if (L->contains(TB))
1232 LoopStart = TB;
1233 else if (L->contains(FB))
1234 LoopStart = FB;
1235 else
1236 return false;
1237 }
1238 else
1239 LoopStart = TopBlock;
1240
1241 // Convert the loop to a hardware loop.
1242 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1243 DebugLoc DL;
1244 if (InsertPos != Preheader->end())
1245 DL = InsertPos->getDebugLoc();
1246
1247 if (TripCount->isReg()) {
1248 // Create a copy of the loop count register.
1249 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1250 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1251 .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1252 // Add the Loop instruction to the beginning of the loop.
1253 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1254 .addReg(CountReg);
1255 } else {
1256 assert(TripCount->isImm() && "Expecting immediate value for trip count");
1257 // Add the Loop immediate instruction to the beginning of the loop,
1258 // if the immediate fits in the instructions. Otherwise, we need to
1259 // create a new virtual register.
1260 int64_t CountImm = TripCount->getImm();
1261 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1262 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1263 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1264 .addImm(CountImm);
1265 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1266 .addMBB(LoopStart).addReg(CountReg);
1267 } else
1268 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1269 .addMBB(LoopStart).addImm(CountImm);
1270 }
1271
1272 // Make sure the loop start always has a reference in the CFG.
1273 LoopStart->setMachineBlockAddressTaken();
1274
1275 // Replace the loop branch with an endloop instruction.
1276 DebugLoc LastIDL = LastI->getDebugLoc();
1277 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1278
1279 // The loop ends with either:
1280 // - a conditional branch followed by an unconditional branch, or
1281 // - a conditional branch to the loop start.
1282 if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1283 LastI->getOpcode() == Hexagon::J2_jumpf) {
1284 // Delete one and change/add an uncond. branch to out of the loop.
1285 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1286 LastI = LastMBB->erase(LastI);
1287 if (!L->contains(BranchTarget)) {
1288 if (LastI != LastMBB->end())
1289 LastI = LastMBB->erase(LastI);
1291 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1292 }
1293 } else {
1294 // Conditional branch to loop start; just delete it.
1295 LastMBB->erase(LastI);
1296 }
1297 delete TripCount;
1298
1299 // The induction operation and the comparison may now be
1300 // unneeded. If these are unneeded, then remove them.
1301 for (unsigned i = 0; i < OldInsts.size(); ++i)
1302 removeIfDead(OldInsts[i]);
1303
1304 ++NumHWLoops;
1305
1306 // Set RecL1used and RecL0used only after hardware loop has been
1307 // successfully generated. Doing it earlier can cause wrong loop instruction
1308 // to be used.
1309 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1310 RecL1used = true;
1311 else
1312 RecL0used = true;
1313
1314 return true;
1315}
1316
1317bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1318 MachineInstr *CmpI) {
1319 assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1320
1321 MachineBasicBlock *BB = BumpI->getParent();
1322 if (CmpI->getParent() != BB)
1323 return false;
1324
1325 using instr_iterator = MachineBasicBlock::instr_iterator;
1326
1327 // Check if things are in order to begin with.
1328 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1329 if (&*I == CmpI)
1330 return true;
1331
1332 // Out of order.
1333 Register PredR = CmpI->getOperand(0).getReg();
1334 bool FoundBump = false;
1335 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1336 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1337 MachineInstr *In = &*I;
1338 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1339 MachineOperand &MO = In->getOperand(i);
1340 if (MO.isReg() && MO.isUse()) {
1341 if (MO.getReg() == PredR) // Found an intervening use of PredR.
1342 return false;
1343 }
1344 }
1345
1346 if (In == BumpI) {
1347 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1348 FoundBump = true;
1349 break;
1350 }
1351 }
1352 assert (FoundBump && "Cannot determine instruction order");
1353 return FoundBump;
1354}
1355
1356/// This function is required to break recursion. Visiting phis in a loop may
1357/// result in recursion during compilation. We break the recursion by making
1358/// sure that we visit a MachineOperand and its definition in a
1359/// MachineInstruction only once. If we attempt to visit more than once, then
1360/// there is recursion, and will return false.
1361bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1363 const MachineOperand *MO,
1364 LoopFeederMap &LoopFeederPhi) const {
1365 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1366 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1367 << printMBBReference(**L->block_begin()));
1368 // Ignore all BBs that form Loop.
1369 if (llvm::is_contained(L->getBlocks(), A))
1370 return false;
1371 MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1372 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1373 return true;
1374 } else
1375 // Already visited node.
1376 return false;
1377}
1378
1379/// Return true if a Phi may generate a value that can underflow.
1380/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1381bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1382 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1383 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1384 assert(Phi->isPHI() && "Expecting a Phi.");
1385 // Walk through each Phi, and its used operands. Make sure that
1386 // if there is recursion in Phi, we won't generate hardware loops.
1387 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1388 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1389 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1390 Phi->getParent(), L, LoopFeederPhi))
1391 return true;
1392 return false;
1393}
1394
1395/// Return true if the induction variable can underflow in the first iteration.
1396/// An example, is an initial unsigned value that is 0 and is decrement in the
1397/// first itertion of a do-while loop. In this case, we cannot generate a
1398/// hardware loop because the endloop instruction does not decrement the loop
1399/// counter if it is <= 1. We only need to perform this analysis if the
1400/// initial value is a register.
1401///
1402/// This function assumes the initial value may underfow unless proven
1403/// otherwise. If the type is signed, then we don't care because signed
1404/// underflow is undefined. We attempt to prove the initial value is not
1405/// zero by perfoming a crude analysis of the loop counter. This function
1406/// checks if the initial value is used in any comparison prior to the loop
1407/// and, if so, assumes the comparison is a range check. This is inexact,
1408/// but will catch the simple cases.
1409bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1410 const MachineOperand *InitVal, const MachineOperand *EndVal,
1412 LoopFeederMap &LoopFeederPhi) const {
1413 // Only check register values since they are unknown.
1414 if (!InitVal->isReg())
1415 return false;
1416
1417 if (!EndVal->isImm())
1418 return false;
1419
1420 // A register value that is assigned an immediate is a known value, and it
1421 // won't underflow in the first iteration.
1422 int64_t Imm;
1423 if (checkForImmediate(*InitVal, Imm))
1424 return (EndVal->getImm() == Imm);
1425
1426 Register Reg = InitVal->getReg();
1427
1428 // We don't know the value of a physical register.
1429 if (!Reg.isVirtual())
1430 return true;
1431
1432 MachineInstr *Def = MRI->getVRegDef(Reg);
1433 if (!Def)
1434 return true;
1435
1436 // If the initial value is a Phi or copy and the operands may not underflow,
1437 // then the definition cannot be underflow either.
1438 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1439 L, LoopFeederPhi))
1440 return false;
1441 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1442 EndVal, Def->getParent(),
1443 L, LoopFeederPhi))
1444 return false;
1445
1446 // Iterate over the uses of the initial value. If the initial value is used
1447 // in a compare, then we assume this is a range check that ensures the loop
1448 // doesn't underflow. This is not an exact test and should be improved.
1449 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1450 E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1451 MachineInstr *MI = &*I;
1452 Register CmpReg1, CmpReg2;
1453 int64_t CmpMask = 0, CmpValue = 0;
1454
1455 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1456 continue;
1457
1458 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1460 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1461 continue;
1462
1463 Comparison::Kind Cmp =
1464 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1465 if (Cmp == 0)
1466 continue;
1467 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1468 Cmp = Comparison::getNegatedComparison(Cmp);
1469 if (CmpReg2 != 0 && CmpReg2 == Reg)
1470 Cmp = Comparison::getSwappedComparison(Cmp);
1471
1472 // Signed underflow is undefined.
1473 if (Comparison::isSigned(Cmp))
1474 return false;
1475
1476 // Check if there is a comparison of the initial value. If the initial value
1477 // is greater than or not equal to another value, then assume this is a
1478 // range check.
1479 if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1480 return false;
1481 }
1482
1483 // OK - this is a hack that needs to be improved. We really need to analyze
1484 // the instructions performed on the initial value. This works on the simplest
1485 // cases only.
1486 if (!Def->isCopy() && !Def->isPHI())
1487 return false;
1488
1489 return true;
1490}
1491
1492bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1493 int64_t &Val) const {
1494 if (MO.isImm()) {
1495 Val = MO.getImm();
1496 return true;
1497 }
1498 if (!MO.isReg())
1499 return false;
1500
1501 // MO is a register. Check whether it is defined as an immediate value,
1502 // and if so, get the value of it in TV. That value will then need to be
1503 // processed to handle potential subregisters in MO.
1504 int64_t TV;
1505
1506 Register R = MO.getReg();
1507 if (!R.isVirtual())
1508 return false;
1509 MachineInstr *DI = MRI->getVRegDef(R);
1510 unsigned DOpc = DI->getOpcode();
1511 switch (DOpc) {
1512 case TargetOpcode::COPY:
1513 case Hexagon::A2_tfrsi:
1514 case Hexagon::A2_tfrpi:
1515 case Hexagon::CONST32:
1516 case Hexagon::CONST64:
1517 // Call recursively to avoid an extra check whether operand(1) is
1518 // indeed an immediate (it could be a global address, for example),
1519 // plus we can handle COPY at the same time.
1520 if (!checkForImmediate(DI->getOperand(1), TV))
1521 return false;
1522 break;
1523 case Hexagon::A2_combineii:
1524 case Hexagon::A4_combineir:
1525 case Hexagon::A4_combineii:
1526 case Hexagon::A4_combineri:
1527 case Hexagon::A2_combinew: {
1528 const MachineOperand &S1 = DI->getOperand(1);
1529 const MachineOperand &S2 = DI->getOperand(2);
1530 int64_t V1, V2;
1531 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1532 return false;
1533 TV = V2 | (static_cast<uint64_t>(V1) << 32);
1534 break;
1535 }
1536 case TargetOpcode::REG_SEQUENCE: {
1537 const MachineOperand &S1 = DI->getOperand(1);
1538 const MachineOperand &S3 = DI->getOperand(3);
1539 int64_t V1, V3;
1540 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1541 return false;
1542 unsigned Sub2 = DI->getOperand(2).getImm();
1543 unsigned Sub4 = DI->getOperand(4).getImm();
1544 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1545 TV = V1 | (V3 << 32);
1546 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1547 TV = V3 | (V1 << 32);
1548 else
1549 llvm_unreachable("Unexpected form of REG_SEQUENCE");
1550 break;
1551 }
1552
1553 default:
1554 return false;
1555 }
1556
1557 // By now, we should have successfully obtained the immediate value defining
1558 // the register referenced in MO. Handle a potential use of a subregister.
1559 switch (MO.getSubReg()) {
1560 case Hexagon::isub_lo:
1561 Val = TV & 0xFFFFFFFFULL;
1562 break;
1563 case Hexagon::isub_hi:
1564 Val = (TV >> 32) & 0xFFFFFFFFULL;
1565 break;
1566 default:
1567 Val = TV;
1568 break;
1569 }
1570 return true;
1571}
1572
1573void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1574 if (MO.isImm()) {
1575 MO.setImm(Val);
1576 return;
1577 }
1578
1579 assert(MO.isReg());
1580 Register R = MO.getReg();
1581 MachineInstr *DI = MRI->getVRegDef(R);
1582
1583 const TargetRegisterClass *RC = MRI->getRegClass(R);
1584 Register NewR = MRI->createVirtualRegister(RC);
1585 MachineBasicBlock &B = *DI->getParent();
1586 DebugLoc DL = DI->getDebugLoc();
1587 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1588 MO.setReg(NewR);
1589}
1590
1591bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1592 MachineBasicBlock *Header = L->getHeader();
1593 MachineBasicBlock *Latch = L->getLoopLatch();
1594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1595
1596 if (!(Header && Latch && ExitingBlock))
1597 return false;
1598
1599 // These data structures follow the same concept as the corresponding
1600 // ones in findInductionRegister (where some comments are).
1601 using RegisterBump = std::pair<Register, int64_t>;
1602 using RegisterInduction = std::pair<Register, RegisterBump>;
1603 using RegisterInductionSet = std::set<RegisterInduction>;
1604
1605 // Register candidates for induction variables, with their associated bumps.
1606 RegisterInductionSet IndRegs;
1607
1608 // Look for induction patterns:
1609 // %1 = PHI ..., [ latch, %2 ]
1610 // %2 = ADD %1, imm
1611 using instr_iterator = MachineBasicBlock::instr_iterator;
1612
1613 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1614 I != E && I->isPHI(); ++I) {
1615 MachineInstr *Phi = &*I;
1616
1617 // Have a PHI instruction.
1618 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1619 if (Phi->getOperand(i+1).getMBB() != Latch)
1620 continue;
1621
1622 Register PhiReg = Phi->getOperand(i).getReg();
1623 MachineInstr *DI = MRI->getVRegDef(PhiReg);
1624
1625 if (DI->getDesc().isAdd()) {
1626 // If the register operand to the add/sub is the PHI we are looking
1627 // at, this meets the induction pattern.
1628 Register IndReg = DI->getOperand(1).getReg();
1629 MachineOperand &Opnd2 = DI->getOperand(2);
1630 int64_t V;
1631 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1632 Register UpdReg = DI->getOperand(0).getReg();
1633 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1634 }
1635 }
1636 } // for (i)
1637 } // for (instr)
1638
1639 if (IndRegs.empty())
1640 return false;
1641
1642 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1644 // analyzeBranch returns true if it fails to analyze branch.
1645 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1646 if (NotAnalyzed || Cond.empty())
1647 return false;
1648
1649 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1650 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1652 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1653 if (NotAnalyzed)
1654 return false;
1655
1656 // Since latch is not the exiting block, the latch branch should be an
1657 // unconditional branch to the loop header.
1658 if (TB == Latch)
1659 TB = (LTB == Header) ? LTB : LFB;
1660 else
1661 FB = (LTB == Header) ? LTB : LFB;
1662 }
1663 if (TB != Header) {
1664 if (FB != Header) {
1665 // The latch/exit block does not go back to the header.
1666 return false;
1667 }
1668 // FB is the header (i.e., uncond. jump to branch header)
1669 // In this case, the LoopBody -> TB should not be a back edge otherwise
1670 // it could result in an infinite loop after conversion to hw_loop.
1671 // This case can happen when the Latch has two jumps like this:
1672 // Jmp_c OuterLoopHeader <-- TB
1673 // Jmp InnerLoopHeader <-- FB
1674 if (MDT->dominates(TB, FB))
1675 return false;
1676 }
1677
1678 // Expecting a predicate register as a condition. It won't be a hardware
1679 // predicate register at this point yet, just a vreg.
1680 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1681 // into Cond, followed by the predicate register. For non-negated branches
1682 // it's just the register.
1683 unsigned CSz = Cond.size();
1684 if (CSz != 1 && CSz != 2)
1685 return false;
1686
1687 if (!Cond[CSz-1].isReg())
1688 return false;
1689
1690 Register P = Cond[CSz - 1].getReg();
1691 MachineInstr *PredDef = MRI->getVRegDef(P);
1692
1693 if (!PredDef->isCompare())
1694 return false;
1695
1696 SmallSet<Register,2> CmpRegs;
1697 MachineOperand *CmpImmOp = nullptr;
1698
1699 // Go over all operands to the compare and look for immediate and register
1700 // operands. Assume that if the compare has a single register use and a
1701 // single immediate operand, then the register is being compared with the
1702 // immediate value.
1703 for (MachineOperand &MO : PredDef->operands()) {
1704 if (MO.isReg()) {
1705 // Skip all implicit references. In one case there was:
1706 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1707 if (MO.isImplicit())
1708 continue;
1709 if (MO.isUse()) {
1710 if (!isImmediate(MO)) {
1711 CmpRegs.insert(MO.getReg());
1712 continue;
1713 }
1714 // Consider the register to be the "immediate" operand.
1715 if (CmpImmOp)
1716 return false;
1717 CmpImmOp = &MO;
1718 }
1719 } else if (MO.isImm()) {
1720 if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
1721 return false;
1722 CmpImmOp = &MO;
1723 }
1724 }
1725
1726 if (CmpRegs.empty())
1727 return false;
1728
1729 // Check if the compared register follows the order we want. Fix if needed.
1730 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1731 I != E; ++I) {
1732 // This is a success. If the register used in the comparison is one that
1733 // we have identified as a bumped (updated) induction register, there is
1734 // nothing to do.
1735 if (CmpRegs.count(I->first))
1736 return true;
1737
1738 // Otherwise, if the register being compared comes out of a PHI node,
1739 // and has been recognized as following the induction pattern, and is
1740 // compared against an immediate, we can fix it.
1741 const RegisterBump &RB = I->second;
1742 if (CmpRegs.count(RB.first)) {
1743 if (!CmpImmOp) {
1744 // If both operands to the compare instruction are registers, see if
1745 // it can be changed to use induction register as one of the operands.
1746 MachineInstr *IndI = nullptr;
1747 MachineInstr *nonIndI = nullptr;
1748 MachineOperand *IndMO = nullptr;
1749 MachineOperand *nonIndMO = nullptr;
1750
1751 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1752 MachineOperand &MO = PredDef->getOperand(i);
1753 if (MO.isReg() && MO.getReg() == RB.first) {
1754 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1755 << ") = " << *(MRI->getVRegDef(I->first)));
1756 if (IndI)
1757 return false;
1758
1759 IndI = MRI->getVRegDef(I->first);
1760 IndMO = &MO;
1761 } else if (MO.isReg()) {
1762 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1763 << ") = " << *(MRI->getVRegDef(MO.getReg())));
1764 if (nonIndI)
1765 return false;
1766
1767 nonIndI = MRI->getVRegDef(MO.getReg());
1768 nonIndMO = &MO;
1769 }
1770 }
1771 if (IndI && nonIndI &&
1772 nonIndI->getOpcode() == Hexagon::A2_addi &&
1773 nonIndI->getOperand(2).isImm() &&
1774 nonIndI->getOperand(2).getImm() == - RB.second) {
1775 bool Order = orderBumpCompare(IndI, PredDef);
1776 if (Order) {
1777 IndMO->setReg(I->first);
1778 nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1779 return true;
1780 }
1781 }
1782 return false;
1783 }
1784
1785 // It is not valid to do this transformation on an unsigned comparison
1786 // because it may underflow.
1787 Comparison::Kind Cmp =
1788 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1789 if (!Cmp || Comparison::isUnsigned(Cmp))
1790 return false;
1791
1792 // If the register is being compared against an immediate, try changing
1793 // the compare instruction to use induction register and adjust the
1794 // immediate operand.
1795 int64_t CmpImm = getImmediate(*CmpImmOp);
1796 int64_t V = RB.second;
1797 // Handle Overflow (64-bit).
1798 if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
1799 ((V < 0) && (CmpImm < INT64_MIN - V)))
1800 return false;
1801 CmpImm += V;
1802 // Most comparisons of register against an immediate value allow
1803 // the immediate to be constant-extended. There are some exceptions
1804 // though. Make sure the new combination will work.
1805 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) &&
1806 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false))
1807 return false;
1808
1809 // Make sure that the compare happens after the bump. Otherwise,
1810 // after the fixup, the compare would use a yet-undefined register.
1811 MachineInstr *BumpI = MRI->getVRegDef(I->first);
1812 bool Order = orderBumpCompare(BumpI, PredDef);
1813 if (!Order)
1814 return false;
1815
1816 // Finally, fix the compare instruction.
1817 setImmediate(*CmpImmOp, CmpImm);
1818 for (MachineOperand &MO : PredDef->operands()) {
1819 if (MO.isReg() && MO.getReg() == RB.first) {
1820 MO.setReg(I->first);
1821 return true;
1822 }
1823 }
1824 }
1825 }
1826
1827 return false;
1828}
1829
1830/// createPreheaderForLoop - Create a preheader for a given loop.
1831MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1832 MachineLoop *L) {
1833 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1834 return TmpPH;
1835 if (!HWCreatePreheader)
1836 return nullptr;
1837
1838 MachineBasicBlock *Header = L->getHeader();
1839 MachineBasicBlock *Latch = L->getLoopLatch();
1840 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1841 MachineFunction *MF = Header->getParent();
1842 DebugLoc DL;
1843
1844#ifndef NDEBUG
1845 if ((!PHFn.empty()) && (PHFn != MF->getName()))
1846 return nullptr;
1847#endif
1848
1849 if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1850 return nullptr;
1851
1852 using instr_iterator = MachineBasicBlock::instr_iterator;
1853
1854 // Verify that all existing predecessors have analyzable branches
1855 // (or no branches at all).
1856 using MBBVector = std::vector<MachineBasicBlock *>;
1857
1858 MBBVector Preds(Header->pred_begin(), Header->pred_end());
1860 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1861
1862 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1863 return nullptr;
1864
1865 for (MachineBasicBlock *PB : Preds) {
1866 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1867 if (NotAnalyzed)
1868 return nullptr;
1869 }
1870
1872 MF->insert(Header->getIterator(), NewPH);
1873
1874 if (Header->pred_size() > 2) {
1875 // Ensure that the header has only two predecessors: the preheader and
1876 // the loop latch. Any additional predecessors of the header should
1877 // join at the newly created preheader. Inspect all PHI nodes from the
1878 // header and create appropriate corresponding PHI nodes in the preheader.
1879
1880 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1881 I != E && I->isPHI(); ++I) {
1882 MachineInstr *PN = &*I;
1883
1884 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1885 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1886 NewPH->insert(NewPH->end(), NewPN);
1887
1888 Register PR = PN->getOperand(0).getReg();
1889 const TargetRegisterClass *RC = MRI->getRegClass(PR);
1890 Register NewPR = MRI->createVirtualRegister(RC);
1891 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1892
1893 // Copy all non-latch operands of a header's PHI node to the newly
1894 // created PHI node in the preheader.
1895 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1896 Register PredR = PN->getOperand(i).getReg();
1897 unsigned PredRSub = PN->getOperand(i).getSubReg();
1898 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1899 if (PredB == Latch)
1900 continue;
1901
1902 MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1903 MO.setSubReg(PredRSub);
1904 NewPN->addOperand(MO);
1906 }
1907
1908 // Remove copied operands from the old PHI node and add the value
1909 // coming from the preheader's PHI.
1910 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1911 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1912 if (PredB != Latch) {
1913 PN->removeOperand(i+1);
1914 PN->removeOperand(i);
1915 }
1916 }
1917 PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1919 }
1920 } else {
1921 assert(Header->pred_size() == 2);
1922
1923 // The header has only two predecessors, but the non-latch predecessor
1924 // is not a preheader (e.g. it has other successors, etc.)
1925 // In such a case we don't need any extra PHI nodes in the new preheader,
1926 // all we need is to adjust existing PHIs in the header to now refer to
1927 // the new preheader.
1928 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1929 I != E && I->isPHI(); ++I) {
1930 MachineInstr *PN = &*I;
1931 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1932 MachineOperand &MO = PN->getOperand(i+1);
1933 if (MO.getMBB() != Latch)
1934 MO.setMBB(NewPH);
1935 }
1936 }
1937 }
1938
1939 // "Reroute" the CFG edges to link in the new preheader.
1940 // If any of the predecessors falls through to the header, insert a branch
1941 // to the new preheader in that place.
1944
1945 TB = FB = nullptr;
1946
1947 for (MachineBasicBlock *PB : Preds) {
1948 if (PB != Latch) {
1949 Tmp2.clear();
1950 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1951 (void)NotAnalyzed; // suppress compiler warning
1952 assert (!NotAnalyzed && "Should be analyzable!");
1953 if (TB != Header && (Tmp2.empty() || FB != Header))
1954 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1955 PB->ReplaceUsesOfBlockWith(Header, NewPH);
1956 }
1957 }
1958
1959 // It can happen that the latch block will fall through into the header.
1960 // Insert an unconditional branch to the header.
1961 TB = FB = nullptr;
1962 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1963 (void)LatchNotAnalyzed; // suppress compiler warning
1964 assert (!LatchNotAnalyzed && "Should be analyzable!");
1965 if (!TB && !FB)
1966 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1967
1968 // Finally, the branch from the preheader to the header.
1969 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1970 NewPH->addSuccessor(Header);
1971
1972 MachineLoop *ParentLoop = L->getParentLoop();
1973 if (ParentLoop)
1974 ParentLoop->addBasicBlockToLoop(NewPH, *MLI);
1975
1976 // Update the dominator information with the new preheader.
1977 if (MDT) {
1978 if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1979 if (MachineDomTreeNode *DHN = HN->getIDom()) {
1980 MDT->addNewBlock(NewPH, DHN->getBlock());
1981 MDT->changeImmediateDominator(Header, NewPH);
1982 }
1983 }
1984 }
1985
1986 return NewPH;
1987}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
static const LLT S1
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(X)
Definition: Debug.h:101
bool End
Definition: ELF_riscv.cpp:480
static bool isSigned(unsigned int Opcode)
const HexagonInstrInfo * TII
static cl::opt< bool > HWCreatePreheader("hexagon-hwloop-preheader", cl::Hidden, cl::init(true), cl::desc("Add a preheader to a hardware loop if one doesn't exist"))
static cl::opt< bool > SpecPreheader("hwloop-spec-preheader", cl::Hidden, cl::desc("Allow speculation of preheader " "instructions"))
static cl::opt< std::string > PHFn("hexagon-hwloop-phfn", cl::Hidden, cl::init(""))
Hexagon Hardware Loops
static cl::opt< int > HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1))
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
unsigned const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static bool isReg(const MCInst &MI, unsigned OpNo)
#define P(N)
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A debug info location.
Definition: DebugLoc.h:33
Base class for the actual dominator tree node.
DomTreeNodeBase * getIDom() const
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
bool doesNotReturn(const MachineInstr &CallMI) const
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
bool getPredReg(ArrayRef< MachineOperand > Cond, Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const
bool isValidOffset(unsigned Opcode, int Offset, const TargetRegisterInfo *TRI, bool Extend=true) const
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
Insert branch code into the end of the specified MachineBasicBlock.
bool predOpcodeHasNot(ArrayRef< MachineOperand > Cond) const
bool isExtendable(const MachineInstr &MI) const
const HexagonInstrInfo * getInstrInfo() const override
const HexagonRegisterInfo * getRegisterInfo() const override
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
bool isAdd() const
Return true if the instruction is an add instruction.
Definition: MCInstrDesc.h:279
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator pred_iterator
Instructions::iterator instr_iterator
instr_iterator instr_end()
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineDomTreeNode * addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB)
addNewBlock - Add a new node to the dominator tree information.
MachineDomTreeNode * getNode(MachineBasicBlock *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool dominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const
bool properlyDominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const
void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:569
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:346
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:572
void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
bool isCompare(QueryType Type=IgnoreBundle) const
Return true if this instruction is a comparison.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:566
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:685
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:498
void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setImm(int64_t immVal)
int64_t getImm() const
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
void setMBB(MachineBasicBlock *MBB)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0)
defusechain_iterator - This class provides iterator support for machine operands in the function that...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_iterator< true, false, true, true, false, false > use_nodbg_iterator
use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the specified register,...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:37
void dump() const
Definition: Pass.cpp:136
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:166
bool empty() const
Definition: SmallSet.h:159
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define INT64_MIN
Definition: DataTypes.h:74
#define INT64_MAX
Definition: DataTypes.h:71
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:121
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Reg
All possible values of the reg field in the ModR/M byte.
@ TB
TB - TwoByte - Set if this instruction has a two byte opcode, which starts with a 0x0F byte before th...
Definition: X86BaseInfo.h:735
@ PD
PD - Prefix code for packed double precision vector floating point operations performed in the SSE re...
Definition: X86BaseInfo.h:721
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:340
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1886
FunctionPass * createHexagonHardwareLoops()
void initializeHexagonHardwareLoopsPass(PassRegistry &)
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define EQ(a, b)
Definition: regexec.c:112
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...