LLVM 23.0.0git
SPIRVInstructionSelector.cpp
Go to the documentation of this file.
1//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the targeting of the InstructionSelector class for
10// SPIRV.
11// TODO: This should be generated by TableGen.
12//
13//===----------------------------------------------------------------------===//
14
17#include "SPIRV.h"
18#include "SPIRVGlobalRegistry.h"
19#include "SPIRVInstrInfo.h"
20#include "SPIRVRegisterInfo.h"
21#include "SPIRVTargetMachine.h"
22#include "SPIRVUtils.h"
23#include "llvm/ADT/APFloat.h"
32#include "llvm/IR/IntrinsicsSPIRV.h"
33#include "llvm/Support/Debug.h"
35
36#define DEBUG_TYPE "spirv-isel"
37
38using namespace llvm;
39namespace CL = SPIRV::OpenCLExtInst;
40namespace GL = SPIRV::GLSLExtInst;
41
43 std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44
45namespace {
46
47llvm::SPIRV::SelectionControl::SelectionControl
48getSelectionOperandForImm(int Imm) {
49 if (Imm == 2)
50 return SPIRV::SelectionControl::Flatten;
51 if (Imm == 1)
52 return SPIRV::SelectionControl::DontFlatten;
53 if (Imm == 0)
54 return SPIRV::SelectionControl::None;
55 llvm_unreachable("Invalid immediate");
56}
57
58#define GET_GLOBALISEL_PREDICATE_BITSET
59#include "SPIRVGenGlobalISel.inc"
60#undef GET_GLOBALISEL_PREDICATE_BITSET
61
62class SPIRVInstructionSelector : public InstructionSelector {
63 const SPIRVSubtarget &STI;
64 const SPIRVInstrInfo &TII;
66 const RegisterBankInfo &RBI;
69 MachineFunction *HasVRegsReset = nullptr;
70
71 /// We need to keep track of the number we give to anonymous global values to
72 /// generate the same name every time when this is needed.
73 mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
75
76public:
77 SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
78 const SPIRVSubtarget &ST,
79 const RegisterBankInfo &RBI);
80 void setupMF(MachineFunction &MF, GISelValueTracking *VT,
81 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
82 BlockFrequencyInfo *BFI) override;
83 // Common selection code. Instruction-specific selection occurs in spvSelect.
84 bool select(MachineInstr &I) override;
85 static const char *getName() { return DEBUG_TYPE; }
86
87#define GET_GLOBALISEL_PREDICATES_DECL
88#include "SPIRVGenGlobalISel.inc"
89#undef GET_GLOBALISEL_PREDICATES_DECL
90
91#define GET_GLOBALISEL_TEMPORARIES_DECL
92#include "SPIRVGenGlobalISel.inc"
93#undef GET_GLOBALISEL_TEMPORARIES_DECL
94
95private:
96 void resetVRegsType(MachineFunction &MF);
97 void removeDeadInstruction(MachineInstr &MI) const;
98 void removeOpNamesForDeadMI(MachineInstr &MI) const;
99
100 // tblgen-erated 'select' implementation, used as the initial selector for
101 // the patterns that don't require complex C++.
102 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
103
104 // All instruction-specific selection that didn't happen in "select()".
105 // Is basically a large Switch/Case delegating to all other select method.
106 bool spvSelect(Register ResVReg, const SPIRVType *ResType,
107 MachineInstr &I) const;
108
109 bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
110 MachineInstr &I, bool IsSigned) const;
111
112 bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
113 MachineInstr &I) const;
114
115 bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
116 MachineInstr &I, unsigned ExtendOpcode,
117 unsigned BitSetOpcode) const;
118
119 bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
120 MachineInstr &I, Register SrcReg,
121 unsigned BitSetOpcode) const;
122
123 bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
124 MachineInstr &I, Register SrcReg,
125 unsigned BitSetOpcode, bool SwapPrimarySide) const;
126
127 bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
128 MachineInstr &I, Register SrcReg,
129 unsigned BitSetOpcode,
130 bool SwapPrimarySide) const;
131
132 bool selectGlobalValue(Register ResVReg, MachineInstr &I,
133 const MachineInstr *Init = nullptr) const;
134
135 bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
136 MachineInstr &I, std::vector<Register> SrcRegs,
137 unsigned Opcode) const;
138
139 bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
140 unsigned Opcode) const;
141
142 bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
143 MachineInstr &I) const;
144
145 bool selectLoad(Register ResVReg, const SPIRVType *ResType,
146 MachineInstr &I) const;
147 bool selectStore(MachineInstr &I) const;
148
149 bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
150 MachineInstr &I) const;
151 bool selectStackRestore(MachineInstr &I) const;
152
153 bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
154 Register getOrCreateMemSetGlobal(MachineInstr &I) const;
155 bool selectCopyMemory(MachineInstr &I, Register SrcReg) const;
156 bool selectCopyMemorySized(MachineInstr &I, Register SrcReg) const;
157
158 bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
159 MachineInstr &I, unsigned NewOpcode,
160 unsigned NegateOpcode = 0) const;
161
162 bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
163 MachineInstr &I) const;
164
165 bool selectFence(MachineInstr &I) const;
166
167 bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
168 MachineInstr &I) const;
169
170 bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
171 MachineInstr &I, unsigned OpType) const;
172
173 bool selectAll(Register ResVReg, const SPIRVType *ResType,
174 MachineInstr &I) const;
175
176 bool selectAny(Register ResVReg, const SPIRVType *ResType,
177 MachineInstr &I) const;
178
179 bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
180 MachineInstr &I) const;
181
182 bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
183 MachineInstr &I) const;
184 bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
185 MachineInstr &I) const;
186
187 bool selectCmp(Register ResVReg, const SPIRVType *ResType,
188 unsigned comparisonOpcode, MachineInstr &I) const;
189 bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
190 MachineInstr &I) const;
191
192 bool selectICmp(Register ResVReg, const SPIRVType *ResType,
193 MachineInstr &I) const;
194 bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
195 MachineInstr &I) const;
196
197 bool selectSign(Register ResVReg, const SPIRVType *ResType,
198 MachineInstr &I) const;
199
200 bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
201 MachineInstr &I) const;
202
203 bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
204 MachineInstr &I, unsigned Opcode) const;
205 bool selectDebugTrap(Register ResVReg, const SPIRVType *ResType,
206 MachineInstr &I) const;
207
208 bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
209 MachineInstr &I, bool Signed) const;
210
211 bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
212 MachineInstr &I) const;
213
214 bool selectOpIsInf(Register ResVReg, const SPIRVType *ResType,
215 MachineInstr &I) const;
216
217 bool selectOpIsNan(Register ResVReg, const SPIRVType *ResType,
218 MachineInstr &I) const;
219
220 template <bool Signed>
221 bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
222 MachineInstr &I) const;
223 template <bool Signed>
224 bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
225 MachineInstr &I) const;
226
227 bool selectWavePrefixBitCount(Register ResVReg, const SPIRVType *ResType,
228 MachineInstr &I) const;
229
230 template <typename PickOpcodeFn>
231 bool selectWaveReduce(Register ResVReg, const SPIRVType *ResType,
232 MachineInstr &I, bool IsUnsigned,
233 PickOpcodeFn &&PickOpcode) const;
234
235 bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
236 MachineInstr &I, bool IsUnsigned) const;
237
238 bool selectWaveReduceMin(Register ResVReg, const SPIRVType *ResType,
239 MachineInstr &I, bool IsUnsigned) const;
240
241 bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
242 MachineInstr &I) const;
243
244 bool selectConst(Register ResVReg, const SPIRVType *ResType,
245 MachineInstr &I) const;
246
247 bool selectSelect(Register ResVReg, const SPIRVType *ResType,
248 MachineInstr &I) const;
249 bool selectSelectDefaultArgs(Register ResVReg, const SPIRVType *ResType,
250 MachineInstr &I, bool IsSigned) const;
251 bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
252 bool IsSigned, unsigned Opcode) const;
253 bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
254 bool IsSigned) const;
255
256 bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
257 MachineInstr &I) const;
258
259 bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
260 bool IsSigned) const;
261
262 bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
263 const SPIRVType *intTy, const SPIRVType *boolTy) const;
264
265 bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
266 MachineInstr &I) const;
267 bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
268 MachineInstr &I) const;
269 bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
270 MachineInstr &I) const;
271 bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
272 MachineInstr &I) const;
273 bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
274 MachineInstr &I) const;
275 bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
276 MachineInstr &I) const;
277 bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
278 MachineInstr &I) const;
279 bool selectGEP(Register ResVReg, const SPIRVType *ResType,
280 MachineInstr &I) const;
281
282 bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
283 MachineInstr &I) const;
284 bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
285 MachineInstr &I) const;
286
287 bool selectBranch(MachineInstr &I) const;
288 bool selectBranchCond(MachineInstr &I) const;
289
290 bool selectPhi(Register ResVReg, const SPIRVType *ResType,
291 MachineInstr &I) const;
292
293 bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
294 MachineInstr &I, GL::GLSLExtInst GLInst) const;
295 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
296 MachineInstr &I, CL::OpenCLExtInst CLInst) const;
297 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
298 MachineInstr &I, CL::OpenCLExtInst CLInst,
299 GL::GLSLExtInst GLInst) const;
300 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
301 MachineInstr &I, const ExtInstList &ExtInsts) const;
302 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
303 MachineInstr &I, CL::OpenCLExtInst CLInst,
304 GL::GLSLExtInst GLInst) const;
305 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
307 const ExtInstList &ExtInsts) const;
308
309 bool selectLog10(Register ResVReg, const SPIRVType *ResType,
310 MachineInstr &I) const;
311
312 bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
313 MachineInstr &I) const;
314
315 bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
316 MachineInstr &I, unsigned Opcode) const;
317
318 bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
319 MachineInstr &I) const;
320
322
323 bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
324 MachineInstr &I) const;
325
326 bool selectCounterHandleFromBinding(Register &ResVReg,
327 const SPIRVType *ResType,
328 MachineInstr &I) const;
329
330 bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
331 MachineInstr &I) const;
332 bool selectSampleIntrinsic(Register &ResVReg, const SPIRVType *ResType,
333 MachineInstr &I) const;
334 bool selectImageWriteIntrinsic(MachineInstr &I) const;
335 bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
336 MachineInstr &I) const;
337 bool selectPushConstantGetPointer(Register &ResVReg, const SPIRVType *ResType,
338 MachineInstr &I) const;
339 bool selectResourceNonUniformIndex(Register &ResVReg,
340 const SPIRVType *ResType,
341 MachineInstr &I) const;
342 bool selectModf(Register ResVReg, const SPIRVType *ResType,
343 MachineInstr &I) const;
344 bool selectUpdateCounter(Register &ResVReg, const SPIRVType *ResType,
345 MachineInstr &I) const;
346 bool selectFrexp(Register ResVReg, const SPIRVType *ResType,
347 MachineInstr &I) const;
348 bool selectDerivativeInst(Register ResVReg, const SPIRVType *ResType,
349 MachineInstr &I, const unsigned DPdOpCode) const;
350 // Utilities
351 std::pair<Register, bool>
352 buildI32Constant(uint32_t Val, MachineInstr &I,
353 const SPIRVType *ResType = nullptr) const;
354
355 Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
356 bool isScalarOrVectorIntConstantZero(Register Reg) const;
357 Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
358 Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
359 MachineInstr &I) const;
360 Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
361
362 bool wrapIntoSpecConstantOp(MachineInstr &I,
363 SmallVector<Register> &CompositeArgs) const;
364
365 Register getUcharPtrTypeReg(MachineInstr &I,
366 SPIRV::StorageClass::StorageClass SC) const;
367 MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
368 Register Src, Register DestType,
369 uint32_t Opcode) const;
370 MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
371 SPIRVType *SrcPtrTy) const;
372 Register buildPointerToResource(const SPIRVType *ResType,
373 SPIRV::StorageClass::StorageClass SC,
375 uint32_t ArraySize, Register IndexReg,
376 StringRef Name,
377 MachineIRBuilder MIRBuilder) const;
378 SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
379 bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
380 Register &ReadReg, MachineInstr &InsertionPoint) const;
381 bool generateImageReadOrFetch(Register &ResVReg, const SPIRVType *ResType,
382 Register ImageReg, Register IdxReg,
383 DebugLoc Loc, MachineInstr &Pos) const;
384 bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
385 bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
386 Register ResVReg, const SPIRVType *ResType,
387 MachineInstr &I) const;
388 bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
389 Register ResVReg, const SPIRVType *ResType,
390 MachineInstr &I) const;
391 bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
392 GIntrinsic &HandleDef, MachineInstr &Pos) const;
393 void decorateUsesAsNonUniform(Register &NonUniformReg) const;
394 void errorIfInstrOutsideShader(MachineInstr &I) const;
395};
396
397bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
398 const TargetExtType *TET = cast<TargetExtType>(HandleType);
399 if (TET->getTargetExtName() == "spirv.Image") {
400 return false;
401 }
402 assert(TET->getTargetExtName() == "spirv.SignedImage");
403 return TET->getTypeParameter(0)->isIntegerTy();
404}
405} // end anonymous namespace
406
407#define GET_GLOBALISEL_IMPL
408#include "SPIRVGenGlobalISel.inc"
409#undef GET_GLOBALISEL_IMPL
410
411SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
412 const SPIRVSubtarget &ST,
413 const RegisterBankInfo &RBI)
414 : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
415 TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
416 MRI(nullptr),
418#include "SPIRVGenGlobalISel.inc"
421#include "SPIRVGenGlobalISel.inc"
423{
424}
425
426void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
428 CodeGenCoverage *CoverageInfo,
430 BlockFrequencyInfo *BFI) {
431 MRI = &MF.getRegInfo();
432 GR.setCurrentFunc(MF);
433 InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
434}
435
436// Ensure that register classes correspond to pattern matching rules.
437void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
438 if (HasVRegsReset == &MF)
439 return;
440 HasVRegsReset = &MF;
441
442 MachineRegisterInfo &MRI = MF.getRegInfo();
443 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
444 Register Reg = Register::index2VirtReg(I);
445 LLT RegType = MRI.getType(Reg);
446 if (RegType.isScalar())
447 MRI.setType(Reg, LLT::scalar(64));
448 else if (RegType.isPointer())
449 MRI.setType(Reg, LLT::pointer(0, 64));
450 else if (RegType.isVector())
451 MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
452 }
453 for (const auto &MBB : MF) {
454 for (const auto &MI : MBB) {
455 if (isPreISelGenericOpcode(MI.getOpcode()))
456 GR.erase(&MI);
457 if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
458 continue;
459
460 Register DstReg = MI.getOperand(0).getReg();
461 LLT DstType = MRI.getType(DstReg);
462 Register SrcReg = MI.getOperand(1).getReg();
463 LLT SrcType = MRI.getType(SrcReg);
464 if (DstType != SrcType)
465 MRI.setType(DstReg, MRI.getType(SrcReg));
466
467 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
468 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
469 if (DstRC != SrcRC && SrcRC)
470 MRI.setRegClass(DstReg, SrcRC);
471 }
472 }
473}
474
475// Return true if the type represents a constant register
478 OpDef = passCopy(OpDef, MRI);
479
480 if (Visited.contains(OpDef))
481 return true;
482 Visited.insert(OpDef);
483
484 unsigned Opcode = OpDef->getOpcode();
485 switch (Opcode) {
486 case TargetOpcode::G_CONSTANT:
487 case TargetOpcode::G_FCONSTANT:
488 case TargetOpcode::G_IMPLICIT_DEF:
489 return true;
490 case TargetOpcode::G_INTRINSIC:
491 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
492 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
493 return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
494 Intrinsic::spv_const_composite;
495 case TargetOpcode::G_BUILD_VECTOR:
496 case TargetOpcode::G_SPLAT_VECTOR: {
497 for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
498 i++) {
499 MachineInstr *OpNestedDef =
500 OpDef->getOperand(i).isReg()
501 ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
502 : nullptr;
503 if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
504 return false;
505 }
506 return true;
507 case SPIRV::OpConstantTrue:
508 case SPIRV::OpConstantFalse:
509 case SPIRV::OpConstantI:
510 case SPIRV::OpConstantF:
511 case SPIRV::OpConstantComposite:
512 case SPIRV::OpConstantCompositeContinuedINTEL:
513 case SPIRV::OpConstantSampler:
514 case SPIRV::OpConstantNull:
515 case SPIRV::OpUndef:
516 case SPIRV::OpConstantFunctionPointerINTEL:
517 return true;
518 }
519 }
520 return false;
521}
522
523// Return true if the virtual register represents a constant
526 if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
527 return isConstReg(MRI, OpDef, Visited);
528 return false;
529}
530
531// TODO(168736): We should make this either a flag in tabelgen
532// or reduce our dependence on the global registry, so we can remove this
533// function. It can easily be missed when new intrinsics are added.
534
535// Most SPIR-V intrinsics are considered to have side-effects in their tablegen
536// definition because they are referenced in the global registry. This is a list
537// of intrinsics that have no side effects other than their references in the
538// global registry.
540 switch (ID) {
541 // This is not an exhaustive list and may need to be updated.
542 case Intrinsic::spv_all:
543 case Intrinsic::spv_alloca:
544 case Intrinsic::spv_any:
545 case Intrinsic::spv_bitcast:
546 case Intrinsic::spv_const_composite:
547 case Intrinsic::spv_cross:
548 case Intrinsic::spv_degrees:
549 case Intrinsic::spv_distance:
550 case Intrinsic::spv_extractelt:
551 case Intrinsic::spv_extractv:
552 case Intrinsic::spv_faceforward:
553 case Intrinsic::spv_fdot:
554 case Intrinsic::spv_firstbitlow:
555 case Intrinsic::spv_firstbitshigh:
556 case Intrinsic::spv_firstbituhigh:
557 case Intrinsic::spv_frac:
558 case Intrinsic::spv_gep:
559 case Intrinsic::spv_global_offset:
560 case Intrinsic::spv_global_size:
561 case Intrinsic::spv_group_id:
562 case Intrinsic::spv_insertelt:
563 case Intrinsic::spv_insertv:
564 case Intrinsic::spv_isinf:
565 case Intrinsic::spv_isnan:
566 case Intrinsic::spv_lerp:
567 case Intrinsic::spv_length:
568 case Intrinsic::spv_normalize:
569 case Intrinsic::spv_num_subgroups:
570 case Intrinsic::spv_num_workgroups:
571 case Intrinsic::spv_ptrcast:
572 case Intrinsic::spv_radians:
573 case Intrinsic::spv_reflect:
574 case Intrinsic::spv_refract:
575 case Intrinsic::spv_resource_getpointer:
576 case Intrinsic::spv_resource_handlefrombinding:
577 case Intrinsic::spv_resource_handlefromimplicitbinding:
578 case Intrinsic::spv_resource_nonuniformindex:
579 case Intrinsic::spv_resource_sample:
580 case Intrinsic::spv_rsqrt:
581 case Intrinsic::spv_saturate:
582 case Intrinsic::spv_sdot:
583 case Intrinsic::spv_sign:
584 case Intrinsic::spv_smoothstep:
585 case Intrinsic::spv_step:
586 case Intrinsic::spv_subgroup_id:
587 case Intrinsic::spv_subgroup_local_invocation_id:
588 case Intrinsic::spv_subgroup_max_size:
589 case Intrinsic::spv_subgroup_size:
590 case Intrinsic::spv_thread_id:
591 case Intrinsic::spv_thread_id_in_group:
592 case Intrinsic::spv_udot:
593 case Intrinsic::spv_undef:
594 case Intrinsic::spv_value_md:
595 case Intrinsic::spv_workgroup_size:
596 return false;
597 default:
598 return true;
599 }
600}
601
602// TODO(168736): We should make this either a flag in tabelgen
603// or reduce our dependence on the global registry, so we can remove this
604// function. It can easily be missed when new intrinsics are added.
605static bool isOpcodeWithNoSideEffects(unsigned Opcode) {
606 switch (Opcode) {
607 case SPIRV::OpTypeVoid:
608 case SPIRV::OpTypeBool:
609 case SPIRV::OpTypeInt:
610 case SPIRV::OpTypeFloat:
611 case SPIRV::OpTypeVector:
612 case SPIRV::OpTypeMatrix:
613 case SPIRV::OpTypeImage:
614 case SPIRV::OpTypeSampler:
615 case SPIRV::OpTypeSampledImage:
616 case SPIRV::OpTypeArray:
617 case SPIRV::OpTypeRuntimeArray:
618 case SPIRV::OpTypeStruct:
619 case SPIRV::OpTypeOpaque:
620 case SPIRV::OpTypePointer:
621 case SPIRV::OpTypeFunction:
622 case SPIRV::OpTypeEvent:
623 case SPIRV::OpTypeDeviceEvent:
624 case SPIRV::OpTypeReserveId:
625 case SPIRV::OpTypeQueue:
626 case SPIRV::OpTypePipe:
627 case SPIRV::OpTypeForwardPointer:
628 case SPIRV::OpTypePipeStorage:
629 case SPIRV::OpTypeNamedBarrier:
630 case SPIRV::OpTypeAccelerationStructureNV:
631 case SPIRV::OpTypeCooperativeMatrixNV:
632 case SPIRV::OpTypeCooperativeMatrixKHR:
633 return true;
634 default:
635 return false;
636 }
637}
638
640 // If there are no definitions, then assume there is some other
641 // side-effect that makes this instruction live.
642 if (MI.getNumDefs() == 0)
643 return false;
644
645 for (const auto &MO : MI.all_defs()) {
646 Register Reg = MO.getReg();
647 if (Reg.isPhysical()) {
648 LLVM_DEBUG(dbgs() << "Not dead: def of physical register " << Reg);
649 return false;
650 }
651 for (const auto &UseMI : MRI.use_nodbg_instructions(Reg)) {
652 if (UseMI.getOpcode() != SPIRV::OpName) {
653 LLVM_DEBUG(dbgs() << "Not dead: def " << MO << " has use in " << UseMI);
654 return false;
655 }
656 }
657 }
658
659 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
660 MI.isLifetimeMarker()) {
662 dbgs()
663 << "Not dead: Opcode is LOCAL_ESCAPE, fake use, or lifetime marker.\n");
664 return false;
665 }
666 if (MI.isPHI()) {
667 LLVM_DEBUG(dbgs() << "Dead: Phi instruction with no uses.\n");
668 return true;
669 }
670
671 // It is possible that the only side effect is that the instruction is
672 // referenced in the global registry. If that is the only side effect, the
673 // intrinsic is dead.
674 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
675 MI.getOpcode() == TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS) {
676 const auto &Intr = cast<GIntrinsic>(MI);
677 if (!intrinsicHasSideEffects(Intr.getIntrinsicID())) {
678 LLVM_DEBUG(dbgs() << "Dead: Intrinsic with no real side effects.\n");
679 return true;
680 }
681 }
682
683 if (MI.mayStore() || MI.isCall() ||
684 (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
685 MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo()) {
686 LLVM_DEBUG(dbgs() << "Not dead: instruction has side effects.\n");
687 return false;
688 }
689
690 if (isPreISelGenericOpcode(MI.getOpcode())) {
691 // TODO: Is there a generic way to check if the opcode has side effects?
692 LLVM_DEBUG(dbgs() << "Dead: Generic opcode with no uses.\n");
693 return true;
694 }
695
696 if (isOpcodeWithNoSideEffects(MI.getOpcode())) {
697 LLVM_DEBUG(dbgs() << "Dead: known opcode with no side effects\n");
698 return true;
699 }
700
701 return false;
702}
703
704void SPIRVInstructionSelector::removeOpNamesForDeadMI(MachineInstr &MI) const {
705 // Delete the OpName that uses the result if there is one.
706 for (const auto &MO : MI.all_defs()) {
707 Register Reg = MO.getReg();
708 if (Reg.isPhysical())
709 continue;
710 SmallVector<MachineInstr *, 4> UselessOpNames;
711 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
712 assert(UseMI.getOpcode() == SPIRV::OpName &&
713 "There is still a use of the dead function.");
714 UselessOpNames.push_back(&UseMI);
715 }
716 for (MachineInstr *OpNameMI : UselessOpNames) {
717 GR.invalidateMachineInstr(OpNameMI);
718 OpNameMI->eraseFromParent();
719 }
720 }
721}
722
723void SPIRVInstructionSelector::removeDeadInstruction(MachineInstr &MI) const {
726 removeOpNamesForDeadMI(MI);
727 MI.eraseFromParent();
728}
729
730bool SPIRVInstructionSelector::select(MachineInstr &I) {
731 resetVRegsType(*I.getParent()->getParent());
732
733 assert(I.getParent() && "Instruction should be in a basic block!");
734 assert(I.getParent()->getParent() && "Instruction should be in a function!");
735
736 LLVM_DEBUG(dbgs() << "Checking if instruction is dead: " << I;);
737 if (isDead(I, *MRI)) {
738 LLVM_DEBUG(dbgs() << "Instruction is dead.\n");
739 removeDeadInstruction(I);
740 return true;
741 }
742
743 Register Opcode = I.getOpcode();
744 // If it's not a GMIR instruction, we've selected it already.
745 if (!isPreISelGenericOpcode(Opcode)) {
746 if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
747 Register DstReg = I.getOperand(0).getReg();
748 Register SrcReg = I.getOperand(1).getReg();
749 auto *Def = MRI->getVRegDef(SrcReg);
750 if (isTypeFoldingSupported(Def->getOpcode()) &&
751 Def->getOpcode() != TargetOpcode::G_CONSTANT &&
752 Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
753 bool Res = false;
754 if (Def->getOpcode() == TargetOpcode::G_SELECT) {
755 Register SelectDstReg = Def->getOperand(0).getReg();
756 Res = selectSelect(SelectDstReg, GR.getSPIRVTypeForVReg(SelectDstReg),
757 *Def);
759 Def->removeFromParent();
760 MRI->replaceRegWith(DstReg, SelectDstReg);
762 I.removeFromParent();
763 } else
764 Res = selectImpl(I, *CoverageInfo);
765 LLVM_DEBUG({
766 if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
767 dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
768 I.print(dbgs());
769 }
770 });
771 assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
772 if (Res) {
773 if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
774 DeadMIs.insert(Def);
775 return Res;
776 }
777 }
778 MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
779 MRI->replaceRegWith(SrcReg, DstReg);
781 I.removeFromParent();
782 return true;
783 } else if (I.getNumDefs() == 1) {
784 // Make all vregs 64 bits (for SPIR-V IDs).
785 MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
786 }
788 }
789
790 if (DeadMIs.contains(&I)) {
791 // if the instruction has been already made dead by folding it away
792 // erase it
793 LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
794 removeDeadInstruction(I);
795 return true;
796 }
797
798 if (I.getNumOperands() != I.getNumExplicitOperands()) {
799 LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
800 return false;
801 }
802
803 // Common code for getting return reg+type, and removing selected instr
804 // from parent occurs here. Instr-specific selection happens in spvSelect().
805 bool HasDefs = I.getNumDefs() > 0;
806 Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
807 SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
808 assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
809 I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
810 if (spvSelect(ResVReg, ResType, I)) {
811 if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
812 for (unsigned i = 0; i < I.getNumDefs(); ++i)
813 MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
815 I.removeFromParent();
816 return true;
817 }
818 return false;
819}
820
821static bool mayApplyGenericSelection(unsigned Opcode) {
822 switch (Opcode) {
823 case TargetOpcode::G_CONSTANT:
824 case TargetOpcode::G_FCONSTANT:
825 return false;
826 case TargetOpcode::G_SADDO:
827 case TargetOpcode::G_SSUBO:
828 return true;
829 }
830 return isTypeFoldingSupported(Opcode);
831}
832
833bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
834 MachineInstr &I) const {
835 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
836 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
837 if (DstRC != SrcRC && SrcRC)
838 MRI->setRegClass(DestReg, SrcRC);
839 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
840 TII.get(TargetOpcode::COPY))
841 .addDef(DestReg)
842 .addUse(SrcReg)
843 .constrainAllUses(TII, TRI, RBI);
844}
845
846bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
847 const SPIRVType *ResType,
848 MachineInstr &I) const {
849 const unsigned Opcode = I.getOpcode();
850 if (mayApplyGenericSelection(Opcode))
851 return selectImpl(I, *CoverageInfo);
852 switch (Opcode) {
853 case TargetOpcode::G_CONSTANT:
854 case TargetOpcode::G_FCONSTANT:
855 return selectConst(ResVReg, ResType, I);
856 case TargetOpcode::G_GLOBAL_VALUE:
857 return selectGlobalValue(ResVReg, I);
858 case TargetOpcode::G_IMPLICIT_DEF:
859 return selectOpUndef(ResVReg, ResType, I);
860 case TargetOpcode::G_FREEZE:
861 return selectFreeze(ResVReg, ResType, I);
862
863 case TargetOpcode::G_INTRINSIC:
864 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
865 case TargetOpcode::G_INTRINSIC_CONVERGENT:
866 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
867 return selectIntrinsic(ResVReg, ResType, I);
868 case TargetOpcode::G_BITREVERSE:
869 return selectBitreverse(ResVReg, ResType, I);
870
871 case TargetOpcode::G_BUILD_VECTOR:
872 return selectBuildVector(ResVReg, ResType, I);
873 case TargetOpcode::G_SPLAT_VECTOR:
874 return selectSplatVector(ResVReg, ResType, I);
875
876 case TargetOpcode::G_SHUFFLE_VECTOR: {
877 MachineBasicBlock &BB = *I.getParent();
878 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
879 .addDef(ResVReg)
880 .addUse(GR.getSPIRVTypeID(ResType))
881 .addUse(I.getOperand(1).getReg())
882 .addUse(I.getOperand(2).getReg());
883 for (auto V : I.getOperand(3).getShuffleMask())
884 MIB.addImm(V);
885 return MIB.constrainAllUses(TII, TRI, RBI);
886 }
887 case TargetOpcode::G_MEMMOVE:
888 case TargetOpcode::G_MEMCPY:
889 case TargetOpcode::G_MEMSET:
890 return selectMemOperation(ResVReg, I);
891
892 case TargetOpcode::G_ICMP:
893 return selectICmp(ResVReg, ResType, I);
894 case TargetOpcode::G_FCMP:
895 return selectFCmp(ResVReg, ResType, I);
896
897 case TargetOpcode::G_FRAME_INDEX:
898 return selectFrameIndex(ResVReg, ResType, I);
899
900 case TargetOpcode::G_LOAD:
901 return selectLoad(ResVReg, ResType, I);
902 case TargetOpcode::G_STORE:
903 return selectStore(I);
904
905 case TargetOpcode::G_BR:
906 return selectBranch(I);
907 case TargetOpcode::G_BRCOND:
908 return selectBranchCond(I);
909
910 case TargetOpcode::G_PHI:
911 return selectPhi(ResVReg, ResType, I);
912
913 case TargetOpcode::G_FPTOSI:
914 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
915 case TargetOpcode::G_FPTOUI:
916 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
917
918 case TargetOpcode::G_FPTOSI_SAT:
919 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
920 case TargetOpcode::G_FPTOUI_SAT:
921 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
922
923 case TargetOpcode::G_SITOFP:
924 return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
925 case TargetOpcode::G_UITOFP:
926 return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
927
928 case TargetOpcode::G_CTPOP:
929 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
930 case TargetOpcode::G_SMIN:
931 return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
932 case TargetOpcode::G_UMIN:
933 return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
934
935 case TargetOpcode::G_SMAX:
936 return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
937 case TargetOpcode::G_UMAX:
938 return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
939
940 case TargetOpcode::G_SCMP:
941 return selectSUCmp(ResVReg, ResType, I, true);
942 case TargetOpcode::G_UCMP:
943 return selectSUCmp(ResVReg, ResType, I, false);
944 case TargetOpcode::G_LROUND:
945 case TargetOpcode::G_LLROUND: {
946 Register regForLround =
947 MRI->createVirtualRegister(MRI->getRegClass(ResVReg), "lround");
948 MRI->setRegClass(regForLround, &SPIRV::iIDRegClass);
949 GR.assignSPIRVTypeToVReg(GR.getSPIRVTypeForVReg(I.getOperand(1).getReg()),
950 regForLround, *(I.getParent()->getParent()));
951 selectExtInstForLRound(regForLround, GR.getSPIRVTypeForVReg(regForLround),
952 I, CL::round, GL::Round);
953 MachineBasicBlock &BB = *I.getParent();
954 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConvertFToS))
955 .addDef(ResVReg)
956 .addUse(GR.getSPIRVTypeID(ResType))
957 .addUse(regForLround);
958 return MIB.constrainAllUses(TII, TRI, RBI);
959 }
960 case TargetOpcode::G_STRICT_FMA:
961 case TargetOpcode::G_FMA: {
962 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_fma)) {
963 MachineBasicBlock &BB = *I.getParent();
964 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpFmaKHR))
965 .addDef(ResVReg)
966 .addUse(GR.getSPIRVTypeID(ResType))
967 .addUse(I.getOperand(1).getReg())
968 .addUse(I.getOperand(2).getReg())
969 .addUse(I.getOperand(3).getReg())
970 .setMIFlags(I.getFlags());
971 return MIB.constrainAllUses(TII, TRI, RBI);
972 }
973 return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
974 }
975
976 case TargetOpcode::G_STRICT_FLDEXP:
977 return selectExtInst(ResVReg, ResType, I, CL::ldexp);
978
979 case TargetOpcode::G_FPOW:
980 return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
981 case TargetOpcode::G_FPOWI:
982 return selectExtInst(ResVReg, ResType, I, CL::pown);
983
984 case TargetOpcode::G_FEXP:
985 return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
986 case TargetOpcode::G_FEXP2:
987 return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
988 case TargetOpcode::G_FMODF:
989 return selectModf(ResVReg, ResType, I);
990
991 case TargetOpcode::G_FLOG:
992 return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
993 case TargetOpcode::G_FLOG2:
994 return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
995 case TargetOpcode::G_FLOG10:
996 return selectLog10(ResVReg, ResType, I);
997
998 case TargetOpcode::G_FABS:
999 return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
1000 case TargetOpcode::G_ABS:
1001 return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
1002
1003 case TargetOpcode::G_FMINNUM:
1004 case TargetOpcode::G_FMINIMUM:
1005 return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
1006 case TargetOpcode::G_FMAXNUM:
1007 case TargetOpcode::G_FMAXIMUM:
1008 return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
1009
1010 case TargetOpcode::G_FCOPYSIGN:
1011 return selectExtInst(ResVReg, ResType, I, CL::copysign);
1012
1013 case TargetOpcode::G_FCEIL:
1014 return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
1015 case TargetOpcode::G_FFLOOR:
1016 return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
1017
1018 case TargetOpcode::G_FCOS:
1019 return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
1020 case TargetOpcode::G_FSIN:
1021 return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
1022 case TargetOpcode::G_FTAN:
1023 return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
1024 case TargetOpcode::G_FACOS:
1025 return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
1026 case TargetOpcode::G_FASIN:
1027 return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
1028 case TargetOpcode::G_FATAN:
1029 return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
1030 case TargetOpcode::G_FATAN2:
1031 return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
1032 case TargetOpcode::G_FCOSH:
1033 return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
1034 case TargetOpcode::G_FSINH:
1035 return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
1036 case TargetOpcode::G_FTANH:
1037 return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
1038
1039 case TargetOpcode::G_STRICT_FSQRT:
1040 case TargetOpcode::G_FSQRT:
1041 return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
1042
1043 case TargetOpcode::G_CTTZ:
1044 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1045 return selectExtInst(ResVReg, ResType, I, CL::ctz);
1046 case TargetOpcode::G_CTLZ:
1047 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1048 return selectExtInst(ResVReg, ResType, I, CL::clz);
1049
1050 case TargetOpcode::G_INTRINSIC_ROUND:
1051 return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
1052 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
1053 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
1054 case TargetOpcode::G_INTRINSIC_TRUNC:
1055 return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
1056 case TargetOpcode::G_FRINT:
1057 case TargetOpcode::G_FNEARBYINT:
1058 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
1059
1060 case TargetOpcode::G_SMULH:
1061 return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
1062 case TargetOpcode::G_UMULH:
1063 return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
1064
1065 case TargetOpcode::G_SADDSAT:
1066 return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
1067 case TargetOpcode::G_UADDSAT:
1068 return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
1069 case TargetOpcode::G_SSUBSAT:
1070 return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
1071 case TargetOpcode::G_USUBSAT:
1072 return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
1073
1074 case TargetOpcode::G_FFREXP:
1075 return selectFrexp(ResVReg, ResType, I);
1076
1077 case TargetOpcode::G_UADDO:
1078 return selectOverflowArith(ResVReg, ResType, I,
1079 ResType->getOpcode() == SPIRV::OpTypeVector
1080 ? SPIRV::OpIAddCarryV
1081 : SPIRV::OpIAddCarryS);
1082 case TargetOpcode::G_USUBO:
1083 return selectOverflowArith(ResVReg, ResType, I,
1084 ResType->getOpcode() == SPIRV::OpTypeVector
1085 ? SPIRV::OpISubBorrowV
1086 : SPIRV::OpISubBorrowS);
1087 case TargetOpcode::G_UMULO:
1088 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
1089 case TargetOpcode::G_SMULO:
1090 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
1091
1092 case TargetOpcode::G_SEXT:
1093 return selectExt(ResVReg, ResType, I, true);
1094 case TargetOpcode::G_ANYEXT:
1095 case TargetOpcode::G_ZEXT:
1096 return selectExt(ResVReg, ResType, I, false);
1097 case TargetOpcode::G_TRUNC:
1098 return selectTrunc(ResVReg, ResType, I);
1099 case TargetOpcode::G_FPTRUNC:
1100 case TargetOpcode::G_FPEXT:
1101 return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
1102
1103 case TargetOpcode::G_PTRTOINT:
1104 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
1105 case TargetOpcode::G_INTTOPTR:
1106 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
1107 case TargetOpcode::G_BITCAST:
1108 return selectBitcast(ResVReg, ResType, I);
1109 case TargetOpcode::G_ADDRSPACE_CAST:
1110 return selectAddrSpaceCast(ResVReg, ResType, I);
1111 case TargetOpcode::G_PTR_ADD: {
1112 // Currently, we get G_PTR_ADD only applied to global variables.
1113 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1114 Register GV = I.getOperand(1).getReg();
1115 MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
1116 (void)II;
1117 assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1118 (*II).getOpcode() == TargetOpcode::COPY ||
1119 (*II).getOpcode() == SPIRV::OpVariable) &&
1120 getImm(I.getOperand(2), MRI));
1121 // It may be the initialization of a global variable.
1122 bool IsGVInit = false;
1124 UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
1125 UseEnd = MRI->use_instr_end();
1126 UseIt != UseEnd; UseIt = std::next(UseIt)) {
1127 if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1128 (*UseIt).getOpcode() == SPIRV::OpSpecConstantOp ||
1129 (*UseIt).getOpcode() == SPIRV::OpVariable) {
1130 IsGVInit = true;
1131 break;
1132 }
1133 }
1134 MachineBasicBlock &BB = *I.getParent();
1135 if (!IsGVInit) {
1136 SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
1137 SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
1138 SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
1139 if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
1140 // Build a new virtual register that is associated with the required
1141 // data type.
1142 Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
1143 MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
1144 // Having a correctly typed base we are ready to build the actually
1145 // required GEP. It may not be a constant though, because all Operands
1146 // of OpSpecConstantOp is to originate from other const instructions,
1147 // and only the AccessChain named opcodes accept a global OpVariable
1148 // instruction. We can't use an AccessChain opcode because of the type
1149 // mismatch between result and base types.
1150 if (!GR.isBitcastCompatible(ResType, GVType))
1152 "incompatible result and operand types in a bitcast");
1153 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
1154 MachineInstrBuilder MIB =
1155 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
1156 .addDef(NewVReg)
1157 .addUse(ResTypeReg)
1158 .addUse(GV);
1159 return MIB.constrainAllUses(TII, TRI, RBI) &&
1160 BuildMI(BB, I, I.getDebugLoc(),
1161 TII.get(STI.isLogicalSPIRV()
1162 ? SPIRV::OpInBoundsAccessChain
1163 : SPIRV::OpInBoundsPtrAccessChain))
1164 .addDef(ResVReg)
1165 .addUse(ResTypeReg)
1166 .addUse(NewVReg)
1167 .addUse(I.getOperand(2).getReg())
1168 .constrainAllUses(TII, TRI, RBI);
1169 } else {
1170 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
1171 .addDef(ResVReg)
1172 .addUse(GR.getSPIRVTypeID(ResType))
1173 .addImm(
1174 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
1175 .addUse(GV)
1176 .addUse(I.getOperand(2).getReg())
1177 .constrainAllUses(TII, TRI, RBI);
1178 }
1179 }
1180 // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
1181 // initialize a global variable with a constant expression (e.g., the test
1182 // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
1183 Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
1184 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
1185 .addDef(ResVReg)
1186 .addUse(GR.getSPIRVTypeID(ResType))
1187 .addImm(static_cast<uint32_t>(
1188 SPIRV::Opcode::InBoundsPtrAccessChain))
1189 .addUse(GV)
1190 .addUse(Idx)
1191 .addUse(I.getOperand(2).getReg());
1192 return MIB.constrainAllUses(TII, TRI, RBI);
1193 }
1194
1195 case TargetOpcode::G_ATOMICRMW_OR:
1196 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
1197 case TargetOpcode::G_ATOMICRMW_ADD:
1198 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
1199 case TargetOpcode::G_ATOMICRMW_AND:
1200 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
1201 case TargetOpcode::G_ATOMICRMW_MAX:
1202 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
1203 case TargetOpcode::G_ATOMICRMW_MIN:
1204 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
1205 case TargetOpcode::G_ATOMICRMW_SUB:
1206 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
1207 case TargetOpcode::G_ATOMICRMW_XOR:
1208 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
1209 case TargetOpcode::G_ATOMICRMW_UMAX:
1210 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
1211 case TargetOpcode::G_ATOMICRMW_UMIN:
1212 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
1213 case TargetOpcode::G_ATOMICRMW_XCHG:
1214 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
1215 case TargetOpcode::G_ATOMIC_CMPXCHG:
1216 return selectAtomicCmpXchg(ResVReg, ResType, I);
1217
1218 case TargetOpcode::G_ATOMICRMW_FADD:
1219 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
1220 case TargetOpcode::G_ATOMICRMW_FSUB:
1221 // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
1222 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
1223 ResType->getOpcode() == SPIRV::OpTypeVector
1224 ? SPIRV::OpFNegateV
1225 : SPIRV::OpFNegate);
1226 case TargetOpcode::G_ATOMICRMW_FMIN:
1227 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
1228 case TargetOpcode::G_ATOMICRMW_FMAX:
1229 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
1230
1231 case TargetOpcode::G_FENCE:
1232 return selectFence(I);
1233
1234 case TargetOpcode::G_STACKSAVE:
1235 return selectStackSave(ResVReg, ResType, I);
1236 case TargetOpcode::G_STACKRESTORE:
1237 return selectStackRestore(I);
1238
1239 case TargetOpcode::G_UNMERGE_VALUES:
1240 return selectUnmergeValues(I);
1241
1242 // Discard gen opcodes for intrinsics which we do not expect to actually
1243 // represent code after lowering or intrinsics which are not implemented but
1244 // should not crash when found in a customer's LLVM IR input.
1245 case TargetOpcode::G_TRAP:
1246 case TargetOpcode::G_UBSANTRAP:
1247 case TargetOpcode::DBG_LABEL:
1248 return true;
1249 case TargetOpcode::G_DEBUGTRAP:
1250 return selectDebugTrap(ResVReg, ResType, I);
1251
1252 default:
1253 return false;
1254 }
1255}
1256
1257bool SPIRVInstructionSelector::selectDebugTrap(Register ResVReg,
1258 const SPIRVType *ResType,
1259 MachineInstr &I) const {
1260 unsigned Opcode = SPIRV::OpNop;
1261 MachineBasicBlock &BB = *I.getParent();
1262 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
1263 .constrainAllUses(TII, TRI, RBI);
1264}
1265
1266bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1267 const SPIRVType *ResType,
1268 MachineInstr &I,
1269 GL::GLSLExtInst GLInst) const {
1270 if (!STI.canUseExtInstSet(
1271 SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
1272 std::string DiagMsg;
1273 raw_string_ostream OS(DiagMsg);
1274 I.print(OS, true, false, false, false);
1275 DiagMsg += " is only supported with the GLSL extended instruction set.\n";
1276 report_fatal_error(DiagMsg.c_str(), false);
1277 }
1278 return selectExtInst(ResVReg, ResType, I,
1279 {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
1280}
1281
1282bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1283 const SPIRVType *ResType,
1284 MachineInstr &I,
1285 CL::OpenCLExtInst CLInst) const {
1286 return selectExtInst(ResVReg, ResType, I,
1287 {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
1288}
1289
1290bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1291 const SPIRVType *ResType,
1292 MachineInstr &I,
1293 CL::OpenCLExtInst CLInst,
1294 GL::GLSLExtInst GLInst) const {
1295 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1296 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1297 return selectExtInst(ResVReg, ResType, I, ExtInsts);
1298}
1299
1300bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1301 const SPIRVType *ResType,
1302 MachineInstr &I,
1303 const ExtInstList &Insts) const {
1304
1305 for (const auto &Ex : Insts) {
1306 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1307 uint32_t Opcode = Ex.second;
1308 if (STI.canUseExtInstSet(Set)) {
1309 MachineBasicBlock &BB = *I.getParent();
1310 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1311 .addDef(ResVReg)
1312 .addUse(GR.getSPIRVTypeID(ResType))
1313 .addImm(static_cast<uint32_t>(Set))
1314 .addImm(Opcode)
1315 .setMIFlags(I.getFlags());
1316 const unsigned NumOps = I.getNumOperands();
1317 unsigned Index = 1;
1318 if (Index < NumOps &&
1319 I.getOperand(Index).getType() ==
1320 MachineOperand::MachineOperandType::MO_IntrinsicID)
1321 Index = 2;
1322 for (; Index < NumOps; ++Index)
1323 MIB.add(I.getOperand(Index));
1324 return MIB.constrainAllUses(TII, TRI, RBI);
1325 }
1326 }
1327 return false;
1328}
1329bool SPIRVInstructionSelector::selectExtInstForLRound(
1330 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1331 CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const {
1332 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1333 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1334 return selectExtInstForLRound(ResVReg, ResType, I, ExtInsts);
1335}
1336
1337bool SPIRVInstructionSelector::selectExtInstForLRound(
1338 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1339 const ExtInstList &Insts) const {
1340 for (const auto &Ex : Insts) {
1341 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1342 uint32_t Opcode = Ex.second;
1343 if (STI.canUseExtInstSet(Set)) {
1344 MachineBasicBlock &BB = *I.getParent();
1345 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1346 .addDef(ResVReg)
1347 .addUse(GR.getSPIRVTypeID(ResType))
1348 .addImm(static_cast<uint32_t>(Set))
1349 .addImm(Opcode);
1350 const unsigned NumOps = I.getNumOperands();
1351 unsigned Index = 1;
1352 if (Index < NumOps &&
1353 I.getOperand(Index).getType() ==
1354 MachineOperand::MachineOperandType::MO_IntrinsicID)
1355 Index = 2;
1356 for (; Index < NumOps; ++Index)
1357 MIB.add(I.getOperand(Index));
1358 MIB.constrainAllUses(TII, TRI, RBI);
1359 return true;
1360 }
1361 }
1362 return false;
1363}
1364
1365bool SPIRVInstructionSelector::selectFrexp(Register ResVReg,
1366 const SPIRVType *ResType,
1367 MachineInstr &I) const {
1368 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CL::frexp},
1369 {SPIRV::InstructionSet::GLSL_std_450, GL::Frexp}};
1370 for (const auto &Ex : ExtInsts) {
1371 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1372 uint32_t Opcode = Ex.second;
1373 if (!STI.canUseExtInstSet(Set))
1374 continue;
1375
1376 MachineIRBuilder MIRBuilder(I);
1377 SPIRVType *PointeeTy = GR.getSPIRVTypeForVReg(I.getOperand(1).getReg());
1379 PointeeTy, MIRBuilder, SPIRV::StorageClass::Function);
1380 Register PointerVReg =
1381 createVirtualRegister(PointerType, &GR, MRI, MRI->getMF());
1382
1383 auto It = getOpVariableMBBIt(I);
1384 auto MIB = BuildMI(*It->getParent(), It, It->getDebugLoc(),
1385 TII.get(SPIRV::OpVariable))
1386 .addDef(PointerVReg)
1387 .addUse(GR.getSPIRVTypeID(PointerType))
1388 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
1389 .constrainAllUses(TII, TRI, RBI);
1390
1391 MIB = MIB &
1392 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1393 .addDef(ResVReg)
1394 .addUse(GR.getSPIRVTypeID(ResType))
1395 .addImm(static_cast<uint32_t>(Ex.first))
1396 .addImm(Opcode)
1397 .add(I.getOperand(2))
1398 .addUse(PointerVReg)
1399 .constrainAllUses(TII, TRI, RBI);
1400
1401 MIB = MIB &
1402 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1403 .addDef(I.getOperand(1).getReg())
1404 .addUse(GR.getSPIRVTypeID(PointeeTy))
1405 .addUse(PointerVReg)
1406 .constrainAllUses(TII, TRI, RBI);
1407 return MIB;
1408 }
1409 return false;
1410}
1411
1412bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
1413 const SPIRVType *ResType,
1414 MachineInstr &I,
1415 std::vector<Register> Srcs,
1416 unsigned Opcode) const {
1417 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
1418 .addDef(ResVReg)
1419 .addUse(GR.getSPIRVTypeID(ResType));
1420 for (Register SReg : Srcs) {
1421 MIB.addUse(SReg);
1422 }
1423 return MIB.constrainAllUses(TII, TRI, RBI);
1424}
1425
1426bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
1427 const SPIRVType *ResType,
1428 MachineInstr &I,
1429 unsigned Opcode) const {
1430 if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
1431 Register SrcReg = I.getOperand(1).getReg();
1432 bool IsGV = false;
1434 MRI->def_instr_begin(SrcReg);
1435 DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
1436 unsigned DefOpCode = DefIt->getOpcode();
1437 if (DefOpCode == SPIRV::ASSIGN_TYPE || DefOpCode == TargetOpcode::COPY) {
1438 // We need special handling to look through the type assignment or the
1439 // COPY pseudo-op and see if this is a constant or a global.
1440 if (auto *VRD = getVRegDef(*MRI, DefIt->getOperand(1).getReg()))
1441 DefOpCode = VRD->getOpcode();
1442 }
1443 if (DefOpCode == TargetOpcode::G_GLOBAL_VALUE ||
1444 DefOpCode == TargetOpcode::G_CONSTANT ||
1445 DefOpCode == SPIRV::OpVariable || DefOpCode == SPIRV::OpConstantI) {
1446 IsGV = true;
1447 break;
1448 }
1449 }
1450 if (IsGV) {
1451 uint32_t SpecOpcode = 0;
1452 switch (Opcode) {
1453 case SPIRV::OpConvertPtrToU:
1454 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
1455 break;
1456 case SPIRV::OpConvertUToPtr:
1457 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
1458 break;
1459 }
1460 if (SpecOpcode)
1461 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1462 TII.get(SPIRV::OpSpecConstantOp))
1463 .addDef(ResVReg)
1464 .addUse(GR.getSPIRVTypeID(ResType))
1465 .addImm(SpecOpcode)
1466 .addUse(SrcReg)
1467 .constrainAllUses(TII, TRI, RBI);
1468 }
1469 }
1470 return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
1471 Opcode);
1472}
1473
1474bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
1475 const SPIRVType *ResType,
1476 MachineInstr &I) const {
1477 Register OpReg = I.getOperand(1).getReg();
1478 SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
1479 if (!GR.isBitcastCompatible(ResType, OpType))
1480 report_fatal_error("incompatible result and operand types in a bitcast");
1481 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
1482}
1483
1486 MachineIRBuilder &MIRBuilder,
1487 SPIRVGlobalRegistry &GR) {
1488 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1489 if (MemOp->isVolatile())
1490 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1491 if (MemOp->isNonTemporal())
1492 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1493 if (MemOp->getAlign().value())
1494 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
1495
1496 [[maybe_unused]] MachineInstr *AliasList = nullptr;
1497 [[maybe_unused]] MachineInstr *NoAliasList = nullptr;
1498 const SPIRVSubtarget *ST =
1499 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1500 if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
1501 if (auto *MD = MemOp->getAAInfo().Scope) {
1502 AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1503 if (AliasList)
1504 SpvMemOp |=
1505 static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
1506 }
1507 if (auto *MD = MemOp->getAAInfo().NoAlias) {
1508 NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1509 if (NoAliasList)
1510 SpvMemOp |=
1511 static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
1512 }
1513 }
1514
1515 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
1516 MIB.addImm(SpvMemOp);
1517 if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
1518 MIB.addImm(MemOp->getAlign().value());
1519 if (AliasList)
1520 MIB.addUse(AliasList->getOperand(0).getReg());
1521 if (NoAliasList)
1522 MIB.addUse(NoAliasList->getOperand(0).getReg());
1523 }
1524}
1525
1527 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1529 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1531 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1532
1533 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
1534 MIB.addImm(SpvMemOp);
1535}
1536
1537bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
1538 const SPIRVType *ResType,
1539 MachineInstr &I) const {
1540 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1541 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1542
1543 auto *PtrDef = getVRegDef(*MRI, Ptr);
1544 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1545 if (IntPtrDef &&
1546 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1547 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1548 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1549 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1550 Register NewHandleReg =
1551 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1552 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1553 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1554 return false;
1555 }
1556
1557 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1558 return generateImageReadOrFetch(ResVReg, ResType, NewHandleReg, IdxReg,
1559 I.getDebugLoc(), I);
1560 }
1561 }
1562
1563 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1564 .addDef(ResVReg)
1565 .addUse(GR.getSPIRVTypeID(ResType))
1566 .addUse(Ptr);
1567 if (!I.getNumMemOperands()) {
1568 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1569 I.getOpcode() ==
1570 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1571 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1572 } else {
1573 MachineIRBuilder MIRBuilder(I);
1574 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1575 }
1576 return MIB.constrainAllUses(TII, TRI, RBI);
1577}
1578
1579bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
1580 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1581 Register StoreVal = I.getOperand(0 + OpOffset).getReg();
1582 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1583
1584 auto *PtrDef = getVRegDef(*MRI, Ptr);
1585 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1586 if (IntPtrDef &&
1587 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1588 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1589 Register NewHandleReg =
1590 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1591 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1592 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1593 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1594 return false;
1595 }
1596
1597 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1598 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1599 auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
1600 TII.get(SPIRV::OpImageWrite))
1601 .addUse(NewHandleReg)
1602 .addUse(IdxReg)
1603 .addUse(StoreVal);
1604
1605 const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
1606 if (sampledTypeIsSignedInteger(LLVMHandleType))
1607 BMI.addImm(0x1000); // SignExtend
1608
1609 return BMI.constrainAllUses(TII, TRI, RBI);
1610 }
1611 }
1612
1613 MachineBasicBlock &BB = *I.getParent();
1614 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
1615 .addUse(Ptr)
1616 .addUse(StoreVal);
1617 if (!I.getNumMemOperands()) {
1618 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1619 I.getOpcode() ==
1620 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1621 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1622 } else {
1623 MachineIRBuilder MIRBuilder(I);
1624 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1625 }
1626 return MIB.constrainAllUses(TII, TRI, RBI);
1627}
1628
1629bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
1630 const SPIRVType *ResType,
1631 MachineInstr &I) const {
1632 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1634 "llvm.stacksave intrinsic: this instruction requires the following "
1635 "SPIR-V extension: SPV_INTEL_variable_length_array",
1636 false);
1637 MachineBasicBlock &BB = *I.getParent();
1638 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1639 .addDef(ResVReg)
1640 .addUse(GR.getSPIRVTypeID(ResType))
1641 .constrainAllUses(TII, TRI, RBI);
1642}
1643
1644bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1645 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1647 "llvm.stackrestore intrinsic: this instruction requires the following "
1648 "SPIR-V extension: SPV_INTEL_variable_length_array",
1649 false);
1650 if (!I.getOperand(0).isReg())
1651 return false;
1652 MachineBasicBlock &BB = *I.getParent();
1653 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1654 .addUse(I.getOperand(0).getReg())
1655 .constrainAllUses(TII, TRI, RBI);
1656}
1657
1659SPIRVInstructionSelector::getOrCreateMemSetGlobal(MachineInstr &I) const {
1660 MachineIRBuilder MIRBuilder(I);
1661 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1662
1663 // TODO: check if we have such GV, add init, use buildGlobalVariable.
1664 unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1665 Function &CurFunction = GR.CurMF->getFunction();
1666 Type *LLVMArrTy =
1667 ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1668 GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1670 Constant::getNullValue(LLVMArrTy));
1671
1672 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1673 Type *ArrTy = ArrayType::get(ValTy, Num);
1675 ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
1676
1677 SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
1678 ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
1679
1680 unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1681 Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
1682
1683 Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1684 auto MIBVar =
1685 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1686 .addDef(VarReg)
1687 .addUse(GR.getSPIRVTypeID(VarTy))
1688 .addImm(SPIRV::StorageClass::UniformConstant)
1689 .addUse(Const);
1690 if (!MIBVar.constrainAllUses(TII, TRI, RBI))
1691 return Register();
1692
1693 GR.add(GV, MIBVar);
1694 GR.addGlobalObject(GV, GR.CurMF, VarReg);
1695
1696 buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1697 return VarReg;
1698}
1699
1700bool SPIRVInstructionSelector::selectCopyMemory(MachineInstr &I,
1701 Register SrcReg) const {
1702 MachineBasicBlock &BB = *I.getParent();
1703 Register DstReg = I.getOperand(0).getReg();
1704 SPIRVType *DstTy = GR.getSPIRVTypeForVReg(DstReg);
1705 SPIRVType *SrcTy = GR.getSPIRVTypeForVReg(SrcReg);
1706 if (GR.getPointeeType(DstTy) != GR.getPointeeType(SrcTy))
1707 report_fatal_error("OpCopyMemory requires operands to have the same type");
1708 uint64_t CopySize = getIConstVal(I.getOperand(2).getReg(), MRI);
1709 SPIRVType *PointeeTy = GR.getPointeeType(DstTy);
1710 const Type *LLVMPointeeTy = GR.getTypeForSPIRVType(PointeeTy);
1711 if (!LLVMPointeeTy)
1713 "Unable to determine pointee type size for OpCopyMemory");
1714 const DataLayout &DL = I.getMF()->getFunction().getDataLayout();
1715 if (CopySize != DL.getTypeStoreSize(const_cast<Type *>(LLVMPointeeTy)))
1717 "OpCopyMemory requires the size to match the pointee type size");
1718 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemory))
1719 .addUse(DstReg)
1720 .addUse(SrcReg);
1721 if (I.getNumMemOperands()) {
1722 MachineIRBuilder MIRBuilder(I);
1723 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1724 }
1725 return MIB.constrainAllUses(TII, TRI, RBI);
1726}
1727
1728bool SPIRVInstructionSelector::selectCopyMemorySized(MachineInstr &I,
1729 Register SrcReg) const {
1730 MachineBasicBlock &BB = *I.getParent();
1731 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1732 .addUse(I.getOperand(0).getReg())
1733 .addUse(SrcReg)
1734 .addUse(I.getOperand(2).getReg());
1735 if (I.getNumMemOperands()) {
1736 MachineIRBuilder MIRBuilder(I);
1737 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1738 }
1739 return MIB.constrainAllUses(TII, TRI, RBI);
1740}
1741
1742bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1743 MachineInstr &I) const {
1744 Register SrcReg = I.getOperand(1).getReg();
1745 bool Result = true;
1746 if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1747 Register VarReg = getOrCreateMemSetGlobal(I);
1748 if (!VarReg.isValid())
1749 return false;
1750 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1752 ValTy, I, SPIRV::StorageClass::UniformConstant);
1753 SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1754 Result &= selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
1755 }
1756 if (STI.isLogicalSPIRV()) {
1757 Result &= selectCopyMemory(I, SrcReg);
1758 } else {
1759 Result &= selectCopyMemorySized(I, SrcReg);
1760 }
1761 if (ResVReg.isValid() && ResVReg != I.getOperand(0).getReg())
1762 Result &= BuildCOPY(ResVReg, I.getOperand(0).getReg(), I);
1763 return Result;
1764}
1765
1766bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1767 const SPIRVType *ResType,
1768 MachineInstr &I,
1769 unsigned NewOpcode,
1770 unsigned NegateOpcode) const {
1771 bool Result = true;
1772 assert(I.hasOneMemOperand());
1773 const MachineMemOperand *MemOp = *I.memoperands_begin();
1774 uint32_t Scope = static_cast<uint32_t>(getMemScope(
1775 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1776 auto ScopeConstant = buildI32Constant(Scope, I);
1777 Register ScopeReg = ScopeConstant.first;
1778 Result &= ScopeConstant.second;
1779
1780 Register Ptr = I.getOperand(1).getReg();
1781 // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1782 // auto ScSem =
1783 // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1784 AtomicOrdering AO = MemOp->getSuccessOrdering();
1785 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1786 auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
1787 Register MemSemReg = MemSemConstant.first;
1788 Result &= MemSemConstant.second;
1789
1790 Register ValueReg = I.getOperand(2).getReg();
1791 if (NegateOpcode != 0) {
1792 // Translation with negative value operand is requested
1793 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
1794 Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
1795 ValueReg = TmpReg;
1796 }
1797
1798 return Result &&
1799 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1800 .addDef(ResVReg)
1801 .addUse(GR.getSPIRVTypeID(ResType))
1802 .addUse(Ptr)
1803 .addUse(ScopeReg)
1804 .addUse(MemSemReg)
1805 .addUse(ValueReg)
1806 .constrainAllUses(TII, TRI, RBI);
1807}
1808
1809bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1810 unsigned ArgI = I.getNumOperands() - 1;
1811 Register SrcReg =
1812 I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1813 SPIRVType *SrcType =
1814 SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1815 if (!SrcType || SrcType->getOpcode() != SPIRV::OpTypeVector)
1817 "cannot select G_UNMERGE_VALUES with a non-vector argument");
1818
1819 SPIRVType *ScalarType =
1820 GR.getSPIRVTypeForVReg(SrcType->getOperand(1).getReg());
1821 MachineBasicBlock &BB = *I.getParent();
1822 bool Res = false;
1823 unsigned CurrentIndex = 0;
1824 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1825 Register ResVReg = I.getOperand(i).getReg();
1826 SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1827 if (!ResType) {
1828 LLT ResLLT = MRI->getType(ResVReg);
1829 assert(ResLLT.isValid());
1830 if (ResLLT.isVector()) {
1831 ResType = GR.getOrCreateSPIRVVectorType(
1832 ScalarType, ResLLT.getNumElements(), I, TII);
1833 } else {
1834 ResType = ScalarType;
1835 }
1836 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1837 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1838 }
1839
1840 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
1841 Register UndefReg = GR.getOrCreateUndef(I, SrcType, TII);
1842 auto MIB =
1843 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
1844 .addDef(ResVReg)
1845 .addUse(GR.getSPIRVTypeID(ResType))
1846 .addUse(SrcReg)
1847 .addUse(UndefReg);
1848 unsigned NumElements = GR.getScalarOrVectorComponentCount(ResType);
1849 for (unsigned j = 0; j < NumElements; ++j) {
1850 MIB.addImm(CurrentIndex + j);
1851 }
1852 CurrentIndex += NumElements;
1853 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1854 } else {
1855 auto MIB =
1856 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1857 .addDef(ResVReg)
1858 .addUse(GR.getSPIRVTypeID(ResType))
1859 .addUse(SrcReg)
1860 .addImm(CurrentIndex);
1861 CurrentIndex++;
1862 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1863 }
1864 }
1865 return Res;
1866}
1867
1868bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1869 AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1870 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1871 auto MemSemConstant = buildI32Constant(MemSem, I);
1872 Register MemSemReg = MemSemConstant.first;
1873 bool Result = MemSemConstant.second;
1874 SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1875 uint32_t Scope = static_cast<uint32_t>(
1876 getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1877 auto ScopeConstant = buildI32Constant(Scope, I);
1878 Register ScopeReg = ScopeConstant.first;
1879 Result &= ScopeConstant.second;
1880 MachineBasicBlock &BB = *I.getParent();
1881 return Result &&
1882 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1883 .addUse(ScopeReg)
1884 .addUse(MemSemReg)
1885 .constrainAllUses(TII, TRI, RBI);
1886}
1887
1888bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1889 const SPIRVType *ResType,
1890 MachineInstr &I,
1891 unsigned Opcode) const {
1892 Type *ResTy = nullptr;
1893 StringRef ResName;
1894 if (!GR.findValueAttrs(&I, ResTy, ResName))
1896 "Not enough info to select the arithmetic with overflow instruction");
1897 if (!ResTy || !ResTy->isStructTy())
1898 report_fatal_error("Expect struct type result for the arithmetic "
1899 "with overflow instruction");
1900 // "Result Type must be from OpTypeStruct. The struct must have two members,
1901 // and the two members must be the same type."
1902 Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1903 ResTy = StructType::get(ResElemTy, ResElemTy);
1904 // Build SPIR-V types and constant(s) if needed.
1905 MachineIRBuilder MIRBuilder(I);
1906 SPIRVType *StructType = GR.getOrCreateSPIRVType(
1907 ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1908 assert(I.getNumDefs() > 1 && "Not enought operands");
1909 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1910 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1911 if (N > 1)
1912 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1913 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1914 Register ZeroReg = buildZerosVal(ResType, I);
1915 // A new virtual register to store the result struct.
1916 Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1917 MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1918 // Build the result name if needed.
1919 if (ResName.size() > 0)
1920 buildOpName(StructVReg, ResName, MIRBuilder);
1921 // Build the arithmetic with overflow instruction.
1922 MachineBasicBlock &BB = *I.getParent();
1923 auto MIB =
1924 BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1925 .addDef(StructVReg)
1926 .addUse(GR.getSPIRVTypeID(StructType));
1927 for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1928 MIB.addUse(I.getOperand(i).getReg());
1929 bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1930 // Build instructions to extract fields of the instruction's result.
1931 // A new virtual register to store the higher part of the result struct.
1932 Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1933 MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1934 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1935 auto MIB =
1936 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1937 .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1938 .addUse(GR.getSPIRVTypeID(ResType))
1939 .addUse(StructVReg)
1940 .addImm(i);
1941 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1942 }
1943 // Build boolean value from the higher part.
1944 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1945 .addDef(I.getOperand(1).getReg())
1946 .addUse(BoolTypeReg)
1947 .addUse(HigherVReg)
1948 .addUse(ZeroReg)
1949 .constrainAllUses(TII, TRI, RBI);
1950}
1951
1952bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1953 const SPIRVType *ResType,
1954 MachineInstr &I) const {
1955 bool Result = true;
1956 Register ScopeReg;
1957 Register MemSemEqReg;
1958 Register MemSemNeqReg;
1959 Register Ptr = I.getOperand(2).getReg();
1960 if (!isa<GIntrinsic>(I)) {
1961 assert(I.hasOneMemOperand());
1962 const MachineMemOperand *MemOp = *I.memoperands_begin();
1963 unsigned Scope = static_cast<uint32_t>(getMemScope(
1964 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1965 auto ScopeConstant = buildI32Constant(Scope, I);
1966 ScopeReg = ScopeConstant.first;
1967 Result &= ScopeConstant.second;
1968
1969 unsigned ScSem = static_cast<uint32_t>(
1971 AtomicOrdering AO = MemOp->getSuccessOrdering();
1972 unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1973 auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
1974 MemSemEqReg = MemSemEqConstant.first;
1975 Result &= MemSemEqConstant.second;
1976 AtomicOrdering FO = MemOp->getFailureOrdering();
1977 unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1978 if (MemSemEq == MemSemNeq)
1979 MemSemNeqReg = MemSemEqReg;
1980 else {
1981 auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
1982 MemSemNeqReg = MemSemNeqConstant.first;
1983 Result &= MemSemNeqConstant.second;
1984 }
1985 } else {
1986 ScopeReg = I.getOperand(5).getReg();
1987 MemSemEqReg = I.getOperand(6).getReg();
1988 MemSemNeqReg = I.getOperand(7).getReg();
1989 }
1990
1991 Register Cmp = I.getOperand(3).getReg();
1992 Register Val = I.getOperand(4).getReg();
1993 SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1994 Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
1995 const DebugLoc &DL = I.getDebugLoc();
1996 Result &=
1997 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1998 .addDef(ACmpRes)
1999 .addUse(GR.getSPIRVTypeID(SpvValTy))
2000 .addUse(Ptr)
2001 .addUse(ScopeReg)
2002 .addUse(MemSemEqReg)
2003 .addUse(MemSemNeqReg)
2004 .addUse(Val)
2005 .addUse(Cmp)
2006 .constrainAllUses(TII, TRI, RBI);
2007 SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
2008 Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
2009 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
2010 .addDef(CmpSuccReg)
2011 .addUse(GR.getSPIRVTypeID(BoolTy))
2012 .addUse(ACmpRes)
2013 .addUse(Cmp)
2014 .constrainAllUses(TII, TRI, RBI);
2015 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
2016 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
2017 .addDef(TmpReg)
2018 .addUse(GR.getSPIRVTypeID(ResType))
2019 .addUse(ACmpRes)
2020 .addUse(GR.getOrCreateUndef(I, ResType, TII))
2021 .addImm(0)
2022 .constrainAllUses(TII, TRI, RBI);
2023 return Result &&
2024 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
2025 .addDef(ResVReg)
2026 .addUse(GR.getSPIRVTypeID(ResType))
2027 .addUse(CmpSuccReg)
2028 .addUse(TmpReg)
2029 .addImm(1)
2030 .constrainAllUses(TII, TRI, RBI);
2031}
2032
2033static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
2034 switch (SC) {
2035 case SPIRV::StorageClass::DeviceOnlyINTEL:
2036 case SPIRV::StorageClass::HostOnlyINTEL:
2037 return true;
2038 default:
2039 return false;
2040 }
2041}
2042
2043// Returns true ResVReg is referred only from global vars and OpName's.
2045 bool IsGRef = false;
2046 bool IsAllowedRefs =
2047 llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
2048 unsigned Opcode = It.getOpcode();
2049 if (Opcode == SPIRV::OpConstantComposite ||
2050 Opcode == SPIRV::OpVariable ||
2051 isSpvIntrinsic(It, Intrinsic::spv_init_global))
2052 return IsGRef = true;
2053 return Opcode == SPIRV::OpName;
2054 });
2055 return IsAllowedRefs && IsGRef;
2056}
2057
2058Register SPIRVInstructionSelector::getUcharPtrTypeReg(
2059 MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
2061 Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
2062}
2063
2064MachineInstrBuilder
2065SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
2066 Register Src, Register DestType,
2067 uint32_t Opcode) const {
2068 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
2069 TII.get(SPIRV::OpSpecConstantOp))
2070 .addDef(Dest)
2071 .addUse(DestType)
2072 .addImm(Opcode)
2073 .addUse(Src);
2074}
2075
2076MachineInstrBuilder
2077SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
2078 SPIRVType *SrcPtrTy) const {
2079 SPIRVType *GenericPtrTy =
2080 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
2081 Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
2083 SPIRV::StorageClass::Generic),
2084 GR.getPointerSize()));
2085 MachineFunction *MF = I.getParent()->getParent();
2086 GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
2087 MachineInstrBuilder MIB = buildSpecConstantOp(
2088 I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
2089 static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
2090 GR.add(MIB.getInstr(), MIB);
2091 return MIB;
2092}
2093
2094// In SPIR-V address space casting can only happen to and from the Generic
2095// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
2096// pointers to and from Generic pointers. As such, we can convert e.g. from
2097// Workgroup to Function by going via a Generic pointer as an intermediary. All
2098// other combinations can only be done by a bitcast, and are probably not safe.
2099bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
2100 const SPIRVType *ResType,
2101 MachineInstr &I) const {
2102 MachineBasicBlock &BB = *I.getParent();
2103 const DebugLoc &DL = I.getDebugLoc();
2104
2105 Register SrcPtr = I.getOperand(1).getReg();
2106 SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
2107
2108 // don't generate a cast for a null that may be represented by OpTypeInt
2109 if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
2110 ResType->getOpcode() != SPIRV::OpTypePointer)
2111 return BuildCOPY(ResVReg, SrcPtr, I);
2112
2113 SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
2114 SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
2115
2116 if (isASCastInGVar(MRI, ResVReg)) {
2117 // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
2118 // are expressed by OpSpecConstantOp with an Opcode.
2119 // TODO: maybe insert a check whether the Kernel capability was declared and
2120 // so PtrCastToGeneric/GenericCastToPtr are available.
2121 unsigned SpecOpcode =
2122 DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
2123 ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
2124 : (SrcSC == SPIRV::StorageClass::Generic &&
2126 ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
2127 : 0);
2128 // TODO: OpConstantComposite expects i8*, so we are forced to forget a
2129 // correct value of ResType and use general i8* instead. Maybe this should
2130 // be addressed in the emit-intrinsic step to infer a correct
2131 // OpConstantComposite type.
2132 if (SpecOpcode) {
2133 return buildSpecConstantOp(I, ResVReg, SrcPtr,
2134 getUcharPtrTypeReg(I, DstSC), SpecOpcode)
2135 .constrainAllUses(TII, TRI, RBI);
2136 } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
2137 MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
2138 return MIB.constrainAllUses(TII, TRI, RBI) &&
2139 buildSpecConstantOp(
2140 I, ResVReg, MIB->getOperand(0).getReg(),
2141 getUcharPtrTypeReg(I, DstSC),
2142 static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
2143 .constrainAllUses(TII, TRI, RBI);
2144 }
2145 }
2146
2147 // don't generate a cast between identical storage classes
2148 if (SrcSC == DstSC)
2149 return BuildCOPY(ResVReg, SrcPtr, I);
2150
2151 if ((SrcSC == SPIRV::StorageClass::Function &&
2152 DstSC == SPIRV::StorageClass::Private) ||
2153 (DstSC == SPIRV::StorageClass::Function &&
2154 SrcSC == SPIRV::StorageClass::Private))
2155 return BuildCOPY(ResVReg, SrcPtr, I);
2156
2157 // Casting from an eligible pointer to Generic.
2158 if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
2159 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
2160 // Casting from Generic to an eligible pointer.
2161 if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
2162 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
2163 // Casting between 2 eligible pointers using Generic as an intermediary.
2164 if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
2165 SPIRVType *GenericPtrTy =
2166 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
2167 Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
2168 bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
2169 .addDef(Tmp)
2170 .addUse(GR.getSPIRVTypeID(GenericPtrTy))
2171 .addUse(SrcPtr)
2172 .constrainAllUses(TII, TRI, RBI);
2173 return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
2174 .addDef(ResVReg)
2175 .addUse(GR.getSPIRVTypeID(ResType))
2176 .addUse(Tmp)
2177 .constrainAllUses(TII, TRI, RBI);
2178 }
2179
2180 // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
2181 // be applied
2182 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
2183 return selectUnOp(ResVReg, ResType, I,
2184 SPIRV::OpPtrCastToCrossWorkgroupINTEL);
2185 if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
2186 return selectUnOp(ResVReg, ResType, I,
2187 SPIRV::OpCrossWorkgroupCastToPtrINTEL);
2188 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
2189 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
2190 if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
2191 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
2192
2193 // Bitcast for pointers requires that the address spaces must match
2194 return false;
2195}
2196
2197static unsigned getFCmpOpcode(unsigned PredNum) {
2198 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
2199 switch (Pred) {
2200 case CmpInst::FCMP_OEQ:
2201 return SPIRV::OpFOrdEqual;
2202 case CmpInst::FCMP_OGE:
2203 return SPIRV::OpFOrdGreaterThanEqual;
2204 case CmpInst::FCMP_OGT:
2205 return SPIRV::OpFOrdGreaterThan;
2206 case CmpInst::FCMP_OLE:
2207 return SPIRV::OpFOrdLessThanEqual;
2208 case CmpInst::FCMP_OLT:
2209 return SPIRV::OpFOrdLessThan;
2210 case CmpInst::FCMP_ONE:
2211 return SPIRV::OpFOrdNotEqual;
2212 case CmpInst::FCMP_ORD:
2213 return SPIRV::OpOrdered;
2214 case CmpInst::FCMP_UEQ:
2215 return SPIRV::OpFUnordEqual;
2216 case CmpInst::FCMP_UGE:
2217 return SPIRV::OpFUnordGreaterThanEqual;
2218 case CmpInst::FCMP_UGT:
2219 return SPIRV::OpFUnordGreaterThan;
2220 case CmpInst::FCMP_ULE:
2221 return SPIRV::OpFUnordLessThanEqual;
2222 case CmpInst::FCMP_ULT:
2223 return SPIRV::OpFUnordLessThan;
2224 case CmpInst::FCMP_UNE:
2225 return SPIRV::OpFUnordNotEqual;
2226 case CmpInst::FCMP_UNO:
2227 return SPIRV::OpUnordered;
2228 default:
2229 llvm_unreachable("Unknown predicate type for FCmp");
2230 }
2231}
2232
2233static unsigned getICmpOpcode(unsigned PredNum) {
2234 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
2235 switch (Pred) {
2236 case CmpInst::ICMP_EQ:
2237 return SPIRV::OpIEqual;
2238 case CmpInst::ICMP_NE:
2239 return SPIRV::OpINotEqual;
2240 case CmpInst::ICMP_SGE:
2241 return SPIRV::OpSGreaterThanEqual;
2242 case CmpInst::ICMP_SGT:
2243 return SPIRV::OpSGreaterThan;
2244 case CmpInst::ICMP_SLE:
2245 return SPIRV::OpSLessThanEqual;
2246 case CmpInst::ICMP_SLT:
2247 return SPIRV::OpSLessThan;
2248 case CmpInst::ICMP_UGE:
2249 return SPIRV::OpUGreaterThanEqual;
2250 case CmpInst::ICMP_UGT:
2251 return SPIRV::OpUGreaterThan;
2252 case CmpInst::ICMP_ULE:
2253 return SPIRV::OpULessThanEqual;
2254 case CmpInst::ICMP_ULT:
2255 return SPIRV::OpULessThan;
2256 default:
2257 llvm_unreachable("Unknown predicate type for ICmp");
2258 }
2259}
2260
2261static unsigned getPtrCmpOpcode(unsigned Pred) {
2262 switch (static_cast<CmpInst::Predicate>(Pred)) {
2263 case CmpInst::ICMP_EQ:
2264 return SPIRV::OpPtrEqual;
2265 case CmpInst::ICMP_NE:
2266 return SPIRV::OpPtrNotEqual;
2267 default:
2268 llvm_unreachable("Unknown predicate type for pointer comparison");
2269 }
2270}
2271
2272// Return the logical operation, or abort if none exists.
2273static unsigned getBoolCmpOpcode(unsigned PredNum) {
2274 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
2275 switch (Pred) {
2276 case CmpInst::ICMP_EQ:
2277 return SPIRV::OpLogicalEqual;
2278 case CmpInst::ICMP_NE:
2279 return SPIRV::OpLogicalNotEqual;
2280 default:
2281 llvm_unreachable("Unknown predicate type for Bool comparison");
2282 }
2283}
2284
2285static APFloat getZeroFP(const Type *LLVMFloatTy) {
2286 if (!LLVMFloatTy)
2288 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
2289 case Type::HalfTyID:
2291 default:
2292 case Type::FloatTyID:
2294 case Type::DoubleTyID:
2296 }
2297}
2298
2299static APFloat getOneFP(const Type *LLVMFloatTy) {
2300 if (!LLVMFloatTy)
2302 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
2303 case Type::HalfTyID:
2305 default:
2306 case Type::FloatTyID:
2308 case Type::DoubleTyID:
2310 }
2311}
2312
2313bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
2314 const SPIRVType *ResType,
2315 MachineInstr &I,
2316 unsigned OpAnyOrAll) const {
2317 assert(I.getNumOperands() == 3);
2318 assert(I.getOperand(2).isReg());
2319 MachineBasicBlock &BB = *I.getParent();
2320 Register InputRegister = I.getOperand(2).getReg();
2321 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2322
2323 if (!InputType)
2324 report_fatal_error("Input Type could not be determined.");
2325
2326 bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
2327 bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
2328 if (IsBoolTy && !IsVectorTy) {
2329 assert(ResVReg == I.getOperand(0).getReg());
2330 return BuildCOPY(ResVReg, InputRegister, I);
2331 }
2332
2333 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2334 unsigned SpirvNotEqualId =
2335 IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
2336 SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
2337 SPIRVType *SpvBoolTy = SpvBoolScalarTy;
2338 Register NotEqualReg = ResVReg;
2339
2340 if (IsVectorTy) {
2341 NotEqualReg =
2342 IsBoolTy ? InputRegister
2343 : createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
2344 const unsigned NumElts = InputType->getOperand(2).getImm();
2345 SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
2346 }
2347
2348 bool Result = true;
2349 if (!IsBoolTy) {
2350 Register ConstZeroReg =
2351 IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
2352
2353 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
2354 .addDef(NotEqualReg)
2355 .addUse(GR.getSPIRVTypeID(SpvBoolTy))
2356 .addUse(InputRegister)
2357 .addUse(ConstZeroReg)
2358 .constrainAllUses(TII, TRI, RBI);
2359 }
2360
2361 if (!IsVectorTy)
2362 return Result;
2363
2364 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
2365 .addDef(ResVReg)
2366 .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
2367 .addUse(NotEqualReg)
2368 .constrainAllUses(TII, TRI, RBI);
2369}
2370
2371bool SPIRVInstructionSelector::selectAll(Register ResVReg,
2372 const SPIRVType *ResType,
2373 MachineInstr &I) const {
2374 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
2375}
2376
2377bool SPIRVInstructionSelector::selectAny(Register ResVReg,
2378 const SPIRVType *ResType,
2379 MachineInstr &I) const {
2380 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
2381}
2382
2383// Select the OpDot instruction for the given float dot
2384bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
2385 const SPIRVType *ResType,
2386 MachineInstr &I) const {
2387 assert(I.getNumOperands() == 4);
2388 assert(I.getOperand(2).isReg());
2389 assert(I.getOperand(3).isReg());
2390
2391 [[maybe_unused]] SPIRVType *VecType =
2392 GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
2393
2394 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2395 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2396 "dot product requires a vector of at least 2 components");
2397
2398 [[maybe_unused]] SPIRVType *EltType =
2399 GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
2400
2401 assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
2402
2403 MachineBasicBlock &BB = *I.getParent();
2404 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
2405 .addDef(ResVReg)
2406 .addUse(GR.getSPIRVTypeID(ResType))
2407 .addUse(I.getOperand(2).getReg())
2408 .addUse(I.getOperand(3).getReg())
2409 .constrainAllUses(TII, TRI, RBI);
2410}
2411
2412bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
2413 const SPIRVType *ResType,
2414 MachineInstr &I,
2415 bool Signed) const {
2416 assert(I.getNumOperands() == 4);
2417 assert(I.getOperand(2).isReg());
2418 assert(I.getOperand(3).isReg());
2419 MachineBasicBlock &BB = *I.getParent();
2420
2421 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2422 return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2423 .addDef(ResVReg)
2424 .addUse(GR.getSPIRVTypeID(ResType))
2425 .addUse(I.getOperand(2).getReg())
2426 .addUse(I.getOperand(3).getReg())
2427 .constrainAllUses(TII, TRI, RBI);
2428}
2429
2430// Since pre-1.6 SPIRV has no integer dot implementation,
2431// expand by piecewise multiplying and adding the results
2432bool SPIRVInstructionSelector::selectIntegerDotExpansion(
2433 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2434 assert(I.getNumOperands() == 4);
2435 assert(I.getOperand(2).isReg());
2436 assert(I.getOperand(3).isReg());
2437 MachineBasicBlock &BB = *I.getParent();
2438
2439 // Multiply the vectors, then sum the results
2440 Register Vec0 = I.getOperand(2).getReg();
2441 Register Vec1 = I.getOperand(3).getReg();
2442 Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
2443 SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
2444
2445 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
2446 .addDef(TmpVec)
2447 .addUse(GR.getSPIRVTypeID(VecType))
2448 .addUse(Vec0)
2449 .addUse(Vec1)
2450 .constrainAllUses(TII, TRI, RBI);
2451
2452 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2453 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2454 "dot product requires a vector of at least 2 components");
2455
2456 Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
2457 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2458 .addDef(Res)
2459 .addUse(GR.getSPIRVTypeID(ResType))
2460 .addUse(TmpVec)
2461 .addImm(0)
2462 .constrainAllUses(TII, TRI, RBI);
2463
2464 for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
2465 Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
2466
2467 Result &=
2468 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2469 .addDef(Elt)
2470 .addUse(GR.getSPIRVTypeID(ResType))
2471 .addUse(TmpVec)
2472 .addImm(i)
2473 .constrainAllUses(TII, TRI, RBI);
2474
2475 Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
2476 ? MRI->createVirtualRegister(GR.getRegClass(ResType))
2477 : ResVReg;
2478
2479 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2480 .addDef(Sum)
2481 .addUse(GR.getSPIRVTypeID(ResType))
2482 .addUse(Res)
2483 .addUse(Elt)
2484 .constrainAllUses(TII, TRI, RBI);
2485 Res = Sum;
2486 }
2487
2488 return Result;
2489}
2490
2491bool SPIRVInstructionSelector::selectOpIsInf(Register ResVReg,
2492 const SPIRVType *ResType,
2493 MachineInstr &I) const {
2494 MachineBasicBlock &BB = *I.getParent();
2495 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsInf))
2496 .addDef(ResVReg)
2497 .addUse(GR.getSPIRVTypeID(ResType))
2498 .addUse(I.getOperand(2).getReg())
2499 .constrainAllUses(TII, TRI, RBI);
2500}
2501
2502bool SPIRVInstructionSelector::selectOpIsNan(Register ResVReg,
2503 const SPIRVType *ResType,
2504 MachineInstr &I) const {
2505 MachineBasicBlock &BB = *I.getParent();
2506 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsNan))
2507 .addDef(ResVReg)
2508 .addUse(GR.getSPIRVTypeID(ResType))
2509 .addUse(I.getOperand(2).getReg())
2510 .constrainAllUses(TII, TRI, RBI);
2511}
2512
2513template <bool Signed>
2514bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
2515 const SPIRVType *ResType,
2516 MachineInstr &I) const {
2517 assert(I.getNumOperands() == 5);
2518 assert(I.getOperand(2).isReg());
2519 assert(I.getOperand(3).isReg());
2520 assert(I.getOperand(4).isReg());
2521 MachineBasicBlock &BB = *I.getParent();
2522
2523 Register Acc = I.getOperand(2).getReg();
2524 Register X = I.getOperand(3).getReg();
2525 Register Y = I.getOperand(4).getReg();
2526
2527 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2528 Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
2529 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2530 .addDef(Dot)
2531 .addUse(GR.getSPIRVTypeID(ResType))
2532 .addUse(X)
2533 .addUse(Y)
2534 .constrainAllUses(TII, TRI, RBI);
2535
2536 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2537 .addDef(ResVReg)
2538 .addUse(GR.getSPIRVTypeID(ResType))
2539 .addUse(Dot)
2540 .addUse(Acc)
2541 .constrainAllUses(TII, TRI, RBI);
2542}
2543
2544// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
2545// extract the elements of the packed inputs, multiply them and add the result
2546// to the accumulator.
2547template <bool Signed>
2548bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
2549 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2550 assert(I.getNumOperands() == 5);
2551 assert(I.getOperand(2).isReg());
2552 assert(I.getOperand(3).isReg());
2553 assert(I.getOperand(4).isReg());
2554 MachineBasicBlock &BB = *I.getParent();
2555
2556 bool Result = true;
2557
2558 Register Acc = I.getOperand(2).getReg();
2559 Register X = I.getOperand(3).getReg();
2560 Register Y = I.getOperand(4).getReg();
2561
2562 SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
2563 auto ExtractOp =
2564 Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
2565
2566 bool ZeroAsNull = !STI.isShader();
2567 // Extract the i8 element, multiply and add it to the accumulator
2568 for (unsigned i = 0; i < 4; i++) {
2569 // A[i]
2570 Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2571 Result &=
2572 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2573 .addDef(AElt)
2574 .addUse(GR.getSPIRVTypeID(ResType))
2575 .addUse(X)
2576 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2577 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2578 .constrainAllUses(TII, TRI, RBI);
2579
2580 // B[i]
2581 Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2582 Result &=
2583 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2584 .addDef(BElt)
2585 .addUse(GR.getSPIRVTypeID(ResType))
2586 .addUse(Y)
2587 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2588 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2589 .constrainAllUses(TII, TRI, RBI);
2590
2591 // A[i] * B[i]
2592 Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2593 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
2594 .addDef(Mul)
2595 .addUse(GR.getSPIRVTypeID(ResType))
2596 .addUse(AElt)
2597 .addUse(BElt)
2598 .constrainAllUses(TII, TRI, RBI);
2599
2600 // Discard 24 highest-bits so that stored i32 register is i8 equivalent
2601 Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2602 Result &=
2603 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2604 .addDef(MaskMul)
2605 .addUse(GR.getSPIRVTypeID(ResType))
2606 .addUse(Mul)
2607 .addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
2608 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2609 .constrainAllUses(TII, TRI, RBI);
2610
2611 // Acc = Acc + A[i] * B[i]
2612 Register Sum =
2613 i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
2614 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2615 .addDef(Sum)
2616 .addUse(GR.getSPIRVTypeID(ResType))
2617 .addUse(Acc)
2618 .addUse(MaskMul)
2619 .constrainAllUses(TII, TRI, RBI);
2620
2621 Acc = Sum;
2622 }
2623
2624 return Result;
2625}
2626
2627/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
2628/// does not have a saturate builtin.
2629bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
2630 const SPIRVType *ResType,
2631 MachineInstr &I) const {
2632 assert(I.getNumOperands() == 3);
2633 assert(I.getOperand(2).isReg());
2634 MachineBasicBlock &BB = *I.getParent();
2635 Register VZero = buildZerosValF(ResType, I);
2636 Register VOne = buildOnesValF(ResType, I);
2637
2638 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2639 .addDef(ResVReg)
2640 .addUse(GR.getSPIRVTypeID(ResType))
2641 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2642 .addImm(GL::FClamp)
2643 .addUse(I.getOperand(2).getReg())
2644 .addUse(VZero)
2645 .addUse(VOne)
2646 .constrainAllUses(TII, TRI, RBI);
2647}
2648
2649bool SPIRVInstructionSelector::selectSign(Register ResVReg,
2650 const SPIRVType *ResType,
2651 MachineInstr &I) const {
2652 assert(I.getNumOperands() == 3);
2653 assert(I.getOperand(2).isReg());
2654 MachineBasicBlock &BB = *I.getParent();
2655 Register InputRegister = I.getOperand(2).getReg();
2656 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2657 auto &DL = I.getDebugLoc();
2658
2659 if (!InputType)
2660 report_fatal_error("Input Type could not be determined.");
2661
2662 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2663
2664 unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
2665 unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
2666
2667 bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
2668
2669 auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
2670 Register SignReg = NeedsConversion
2671 ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
2672 : ResVReg;
2673
2674 bool Result =
2675 BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
2676 .addDef(SignReg)
2677 .addUse(GR.getSPIRVTypeID(InputType))
2678 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2679 .addImm(SignOpcode)
2680 .addUse(InputRegister)
2681 .constrainAllUses(TII, TRI, RBI);
2682
2683 if (NeedsConversion) {
2684 auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
2685 Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
2686 .addDef(ResVReg)
2687 .addUse(GR.getSPIRVTypeID(ResType))
2688 .addUse(SignReg)
2689 .constrainAllUses(TII, TRI, RBI);
2690 }
2691
2692 return Result;
2693}
2694
2695bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
2696 const SPIRVType *ResType,
2697 MachineInstr &I,
2698 unsigned Opcode) const {
2699 MachineBasicBlock &BB = *I.getParent();
2700 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2701
2702 auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2703 .addDef(ResVReg)
2704 .addUse(GR.getSPIRVTypeID(ResType))
2705 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
2706 IntTy, TII, !STI.isShader()));
2707
2708 for (unsigned J = 2; J < I.getNumOperands(); J++) {
2709 BMI.addUse(I.getOperand(J).getReg());
2710 }
2711
2712 return BMI.constrainAllUses(TII, TRI, RBI);
2713}
2714
2715bool SPIRVInstructionSelector::selectWaveActiveCountBits(
2716 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2717
2718 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2719 SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
2720 Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
2721 bool Result = selectWaveOpInst(BallotReg, BallotType, I,
2722 SPIRV::OpGroupNonUniformBallot);
2723
2724 MachineBasicBlock &BB = *I.getParent();
2725 Result &= BuildMI(BB, I, I.getDebugLoc(),
2726 TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2727 .addDef(ResVReg)
2728 .addUse(GR.getSPIRVTypeID(ResType))
2729 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
2730 TII, !STI.isShader()))
2731 .addImm(SPIRV::GroupOperation::Reduce)
2732 .addUse(BallotReg)
2733 .constrainAllUses(TII, TRI, RBI);
2734
2735 return Result;
2736}
2737
2738bool SPIRVInstructionSelector::selectWavePrefixBitCount(
2739 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2740
2741 assert(I.getNumOperands() == 3);
2742
2743 auto Op = I.getOperand(2);
2744 assert(Op.isReg());
2745
2746 MachineBasicBlock &BB = *I.getParent();
2747 DebugLoc DL = I.getDebugLoc();
2748
2749 Register InputRegister = Op.getReg();
2750 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2751
2752 if (!InputType)
2753 report_fatal_error("Input Type could not be determined.");
2754
2755 if (InputType->getOpcode() != SPIRV::OpTypeBool)
2756 report_fatal_error("WavePrefixBitCount requires boolean input");
2757
2758 // Types
2760
2761 // Ballot result type: vector<uint32>
2762 // Match DXC: %v4uint for Subgroup size
2763 SPIRVType *BallotTy = GR.getOrCreateSPIRVVectorType(Int32Ty, 4, I, TII);
2764
2765 // Create a vreg for the ballot result
2766 Register BallotVReg = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2767
2768 // 1. OpGroupNonUniformBallot
2769 BuildMI(BB, I, DL, TII.get(SPIRV::OpGroupNonUniformBallot))
2770 .addDef(BallotVReg)
2771 .addUse(GR.getSPIRVTypeID(BallotTy))
2772 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, Int32Ty, TII))
2773 .addUse(InputRegister)
2774 .constrainAllUses(TII, TRI, RBI);
2775
2776 // 2. OpGroupNonUniformBallotBitCount
2777 BuildMI(BB, I, DL, TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2778 .addDef(ResVReg)
2779 .addUse(GR.getSPIRVTypeID(ResType))
2780 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, Int32Ty, TII))
2781 .addImm(SPIRV::GroupOperation::ExclusiveScan)
2782 .addUse(BallotVReg)
2783 .constrainAllUses(TII, TRI, RBI);
2784
2785 return true;
2786}
2787
2788bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
2789 const SPIRVType *ResType,
2790 MachineInstr &I,
2791 bool IsUnsigned) const {
2792 return selectWaveReduce(
2793 ResVReg, ResType, I, IsUnsigned,
2794 [&](Register InputRegister, bool IsUnsigned) {
2795 const bool IsFloatTy =
2796 GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2797 const unsigned IntOp = IsUnsigned ? SPIRV::OpGroupNonUniformUMax
2798 : SPIRV::OpGroupNonUniformSMax;
2799 return IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntOp;
2800 });
2801}
2802
2803bool SPIRVInstructionSelector::selectWaveReduceMin(Register ResVReg,
2804 const SPIRVType *ResType,
2805 MachineInstr &I,
2806 bool IsUnsigned) const {
2807 return selectWaveReduce(
2808 ResVReg, ResType, I, IsUnsigned,
2809 [&](Register InputRegister, bool IsUnsigned) {
2810 const bool IsFloatTy =
2811 GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2812 const unsigned IntOp = IsUnsigned ? SPIRV::OpGroupNonUniformUMin
2813 : SPIRV::OpGroupNonUniformSMin;
2814 return IsFloatTy ? SPIRV::OpGroupNonUniformFMin : IntOp;
2815 });
2816}
2817
2818bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
2819 const SPIRVType *ResType,
2820 MachineInstr &I) const {
2821 return selectWaveReduce(ResVReg, ResType, I, /*IsUnsigned*/ false,
2822 [&](Register InputRegister, bool IsUnsigned) {
2823 bool IsFloatTy = GR.isScalarOrVectorOfType(
2824 InputRegister, SPIRV::OpTypeFloat);
2825 return IsFloatTy ? SPIRV::OpGroupNonUniformFAdd
2826 : SPIRV::OpGroupNonUniformIAdd;
2827 });
2828}
2829
2830template <typename PickOpcodeFn>
2831bool SPIRVInstructionSelector::selectWaveReduce(
2832 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
2833 bool IsUnsigned, PickOpcodeFn &&PickOpcode) const {
2834 assert(I.getNumOperands() == 3);
2835 assert(I.getOperand(2).isReg());
2836 MachineBasicBlock &BB = *I.getParent();
2837 Register InputRegister = I.getOperand(2).getReg();
2838 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2839
2840 if (!InputType)
2841 report_fatal_error("Input Type could not be determined.");
2842
2843 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2844 const unsigned Opcode = PickOpcode(InputRegister, IsUnsigned);
2845 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2846 .addDef(ResVReg)
2847 .addUse(GR.getSPIRVTypeID(ResType))
2848 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2849 !STI.isShader()))
2850 .addImm(SPIRV::GroupOperation::Reduce)
2851 .addUse(I.getOperand(2).getReg())
2852 .constrainAllUses(TII, TRI, RBI);
2853}
2854
2855bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
2856 const SPIRVType *ResType,
2857 MachineInstr &I) const {
2858 MachineBasicBlock &BB = *I.getParent();
2859 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
2860 .addDef(ResVReg)
2861 .addUse(GR.getSPIRVTypeID(ResType))
2862 .addUse(I.getOperand(1).getReg())
2863 .constrainAllUses(TII, TRI, RBI);
2864}
2865
2866bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
2867 const SPIRVType *ResType,
2868 MachineInstr &I) const {
2869 // There is no way to implement `freeze` correctly without support on SPIR-V
2870 // standard side, but we may at least address a simple (static) case when
2871 // undef/poison value presence is obvious. The main benefit of even
2872 // incomplete `freeze` support is preventing of translation from crashing due
2873 // to lack of support on legalization and instruction selection steps.
2874 if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
2875 return false;
2876 Register OpReg = I.getOperand(1).getReg();
2877 if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
2878 if (Def->getOpcode() == TargetOpcode::COPY)
2879 Def = MRI->getVRegDef(Def->getOperand(1).getReg());
2880 Register Reg;
2881 switch (Def->getOpcode()) {
2882 case SPIRV::ASSIGN_TYPE:
2883 if (MachineInstr *AssignToDef =
2884 MRI->getVRegDef(Def->getOperand(1).getReg())) {
2885 if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2886 Reg = Def->getOperand(2).getReg();
2887 }
2888 break;
2889 case SPIRV::OpUndef:
2890 Reg = Def->getOperand(1).getReg();
2891 break;
2892 }
2893 unsigned DestOpCode;
2894 if (Reg.isValid()) {
2895 DestOpCode = SPIRV::OpConstantNull;
2896 } else {
2897 DestOpCode = TargetOpcode::COPY;
2898 Reg = OpReg;
2899 }
2900 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2901 .addDef(I.getOperand(0).getReg())
2902 .addUse(Reg)
2903 .constrainAllUses(TII, TRI, RBI);
2904 }
2905 return false;
2906}
2907
2908bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2909 const SPIRVType *ResType,
2910 MachineInstr &I) const {
2911 unsigned N = 0;
2912 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2913 N = GR.getScalarOrVectorComponentCount(ResType);
2914 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2915 N = getArrayComponentCount(MRI, ResType);
2916 else
2917 report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2918 if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2919 report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2920
2921 // check if we may construct a constant vector
2922 bool IsConst = true;
2923 for (unsigned i = I.getNumExplicitDefs();
2924 i < I.getNumExplicitOperands() && IsConst; ++i)
2925 if (!isConstReg(MRI, I.getOperand(i).getReg()))
2926 IsConst = false;
2927
2928 if (!IsConst && N < 2)
2930 "There must be at least two constituent operands in a vector");
2931
2932 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2933 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2934 TII.get(IsConst ? SPIRV::OpConstantComposite
2935 : SPIRV::OpCompositeConstruct))
2936 .addDef(ResVReg)
2937 .addUse(GR.getSPIRVTypeID(ResType));
2938 for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2939 MIB.addUse(I.getOperand(i).getReg());
2940 return MIB.constrainAllUses(TII, TRI, RBI);
2941}
2942
2943bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2944 const SPIRVType *ResType,
2945 MachineInstr &I) const {
2946 unsigned N = 0;
2947 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2948 N = GR.getScalarOrVectorComponentCount(ResType);
2949 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2950 N = getArrayComponentCount(MRI, ResType);
2951 else
2952 report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2953
2954 unsigned OpIdx = I.getNumExplicitDefs();
2955 if (!I.getOperand(OpIdx).isReg())
2956 report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2957
2958 // check if we may construct a constant vector
2959 Register OpReg = I.getOperand(OpIdx).getReg();
2960 bool IsConst = isConstReg(MRI, OpReg);
2961
2962 if (!IsConst && N < 2)
2964 "There must be at least two constituent operands in a vector");
2965
2966 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2967 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2968 TII.get(IsConst ? SPIRV::OpConstantComposite
2969 : SPIRV::OpCompositeConstruct))
2970 .addDef(ResVReg)
2971 .addUse(GR.getSPIRVTypeID(ResType));
2972 for (unsigned i = 0; i < N; ++i)
2973 MIB.addUse(OpReg);
2974 return MIB.constrainAllUses(TII, TRI, RBI);
2975}
2976
2977bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
2978 const SPIRVType *ResType,
2979 MachineInstr &I) const {
2980
2981 unsigned Opcode;
2982
2983 if (STI.canUseExtension(
2984 SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
2985 STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
2986 Opcode = SPIRV::OpDemoteToHelperInvocation;
2987 } else {
2988 Opcode = SPIRV::OpKill;
2989 // OpKill must be the last operation of any basic block.
2990 if (MachineInstr *NextI = I.getNextNode()) {
2991 GR.invalidateMachineInstr(NextI);
2992 NextI->removeFromParent();
2993 }
2994 }
2995
2996 MachineBasicBlock &BB = *I.getParent();
2997 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2998 .constrainAllUses(TII, TRI, RBI);
2999}
3000
3001bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
3002 const SPIRVType *ResType,
3003 unsigned CmpOpc,
3004 MachineInstr &I) const {
3005 Register Cmp0 = I.getOperand(2).getReg();
3006 Register Cmp1 = I.getOperand(3).getReg();
3007 assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
3008 GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
3009 "CMP operands should have the same type");
3010 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
3011 .addDef(ResVReg)
3012 .addUse(GR.getSPIRVTypeID(ResType))
3013 .addUse(Cmp0)
3014 .addUse(Cmp1)
3015 .setMIFlags(I.getFlags())
3016 .constrainAllUses(TII, TRI, RBI);
3017}
3018
3019bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
3020 const SPIRVType *ResType,
3021 MachineInstr &I) const {
3022 auto Pred = I.getOperand(1).getPredicate();
3023 unsigned CmpOpc;
3024
3025 Register CmpOperand = I.getOperand(2).getReg();
3026 if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
3027 CmpOpc = getPtrCmpOpcode(Pred);
3028 else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
3029 CmpOpc = getBoolCmpOpcode(Pred);
3030 else
3031 CmpOpc = getICmpOpcode(Pred);
3032 return selectCmp(ResVReg, ResType, CmpOpc, I);
3033}
3034
3035std::pair<Register, bool>
3036SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
3037 const SPIRVType *ResType) const {
3038 Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
3039 const SPIRVType *SpvI32Ty =
3040 ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
3041 // Find a constant in DT or build a new one.
3042 auto ConstInt = ConstantInt::get(LLVMTy, Val);
3043 Register NewReg = GR.find(ConstInt, GR.CurMF);
3044 bool Result = true;
3045 if (!NewReg.isValid()) {
3046 NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
3047 MachineBasicBlock &BB = *I.getParent();
3048 MachineInstr *MI =
3049 Val == 0
3050 ? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3051 .addDef(NewReg)
3052 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
3053 : BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
3054 .addDef(NewReg)
3055 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
3056 .addImm(APInt(32, Val).getZExtValue());
3058 GR.add(ConstInt, MI);
3059 }
3060 return {NewReg, Result};
3061}
3062
3063bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
3064 const SPIRVType *ResType,
3065 MachineInstr &I) const {
3066 unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
3067 return selectCmp(ResVReg, ResType, CmpOp, I);
3068}
3069
3070Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
3071 MachineInstr &I) const {
3072 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
3073 bool ZeroAsNull = !STI.isShader();
3074 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3075 return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
3076 return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
3077}
3078
3079bool SPIRVInstructionSelector::isScalarOrVectorIntConstantZero(
3080 Register Reg) const {
3082 if (!Type)
3083 return false;
3085 if (!CompType || CompType->getOpcode() != SPIRV::OpTypeInt)
3086 return false;
3087
3088 auto IsZero = [this](Register Reg) {
3089 MachineInstr *Def = getDefInstrMaybeConstant(Reg, MRI);
3090 if (!Def)
3091 return false;
3092
3093 if (Def->getOpcode() == SPIRV::OpConstantNull)
3094 return true;
3095
3096 if (Def->getOpcode() == TargetOpcode::G_CONSTANT ||
3097 Def->getOpcode() == SPIRV::OpConstantI)
3098 return getIConstVal(Reg, MRI) == 0;
3099
3100 return false;
3101 };
3102
3103 if (IsZero(Reg))
3104 return true;
3105
3106 MachineInstr *Def = MRI->getVRegDef(Reg);
3107 if (!Def)
3108 return false;
3109
3110 if (Def->getOpcode() == TargetOpcode::G_BUILD_VECTOR ||
3111 (Def->getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS &&
3112 cast<GIntrinsic>(Def)->getIntrinsicID() ==
3113 Intrinsic::spv_const_composite)) {
3114 unsigned StartOp = Def->getOpcode() == TargetOpcode::G_BUILD_VECTOR ? 1 : 2;
3115 for (unsigned i = StartOp; i < Def->getNumOperands(); ++i) {
3116 if (!IsZero(Def->getOperand(i).getReg()))
3117 return false;
3118 }
3119 return true;
3120 }
3121
3122 return false;
3123}
3124
3125Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
3126 MachineInstr &I) const {
3127 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
3128 bool ZeroAsNull = !STI.isShader();
3129 APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
3130 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3131 return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
3132 return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
3133}
3134
3135Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
3136 MachineInstr &I) const {
3137 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
3138 bool ZeroAsNull = !STI.isShader();
3139 APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
3140 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3141 return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
3142 return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
3143}
3144
3145Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
3146 const SPIRVType *ResType,
3147 MachineInstr &I) const {
3148 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
3149 APInt One =
3150 AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
3151 if (ResType->getOpcode() == SPIRV::OpTypeVector)
3152 return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
3153 return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
3154}
3155
3156bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
3157 const SPIRVType *ResType,
3158 MachineInstr &I) const {
3159 Register SelectFirstArg = I.getOperand(2).getReg();
3160 Register SelectSecondArg = I.getOperand(3).getReg();
3161 assert(ResType == GR.getSPIRVTypeForVReg(SelectFirstArg) &&
3162 ResType == GR.getSPIRVTypeForVReg(SelectSecondArg));
3163
3164 bool IsFloatTy =
3165 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypeFloat);
3166 bool IsPtrTy =
3167 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypePointer);
3168 bool IsVectorTy = GR.getSPIRVTypeForVReg(SelectFirstArg)->getOpcode() ==
3169 SPIRV::OpTypeVector;
3170
3171 bool IsScalarBool =
3172 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
3173 unsigned Opcode;
3174 if (IsVectorTy) {
3175 if (IsFloatTy) {
3176 Opcode = IsScalarBool ? SPIRV::OpSelectVFSCond : SPIRV::OpSelectVFVCond;
3177 } else if (IsPtrTy) {
3178 Opcode = IsScalarBool ? SPIRV::OpSelectVPSCond : SPIRV::OpSelectVPVCond;
3179 } else {
3180 Opcode = IsScalarBool ? SPIRV::OpSelectVISCond : SPIRV::OpSelectVIVCond;
3181 }
3182 } else {
3183 if (IsFloatTy) {
3184 Opcode = IsScalarBool ? SPIRV::OpSelectSFSCond : SPIRV::OpSelectVFVCond;
3185 } else if (IsPtrTy) {
3186 Opcode = IsScalarBool ? SPIRV::OpSelectSPSCond : SPIRV::OpSelectVPVCond;
3187 } else {
3188 Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
3189 }
3190 }
3191 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3192 .addDef(ResVReg)
3193 .addUse(GR.getSPIRVTypeID(ResType))
3194 .addUse(I.getOperand(1).getReg())
3195 .addUse(SelectFirstArg)
3196 .addUse(SelectSecondArg)
3197 .constrainAllUses(TII, TRI, RBI);
3198}
3199
3200bool SPIRVInstructionSelector::selectSelectDefaultArgs(Register ResVReg,
3201 const SPIRVType *ResType,
3202 MachineInstr &I,
3203 bool IsSigned) const {
3204 // To extend a bool, we need to use OpSelect between constants.
3205 Register ZeroReg = buildZerosVal(ResType, I);
3206 Register OneReg = buildOnesVal(IsSigned, ResType, I);
3207 bool IsScalarBool =
3208 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
3209 unsigned Opcode =
3210 IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
3211 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3212 .addDef(ResVReg)
3213 .addUse(GR.getSPIRVTypeID(ResType))
3214 .addUse(I.getOperand(1).getReg())
3215 .addUse(OneReg)
3216 .addUse(ZeroReg)
3217 .constrainAllUses(TII, TRI, RBI);
3218}
3219
3220bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
3221 const SPIRVType *ResType,
3222 MachineInstr &I, bool IsSigned,
3223 unsigned Opcode) const {
3224 Register SrcReg = I.getOperand(1).getReg();
3225 // We can convert bool value directly to float type without OpConvert*ToF,
3226 // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
3227 if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
3228 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
3230 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
3231 const unsigned NumElts = ResType->getOperand(2).getImm();
3232 TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
3233 }
3234 SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
3235 selectSelectDefaultArgs(SrcReg, TmpType, I, false);
3236 }
3237 return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
3238}
3239
3240bool SPIRVInstructionSelector::selectExt(Register ResVReg,
3241 const SPIRVType *ResType,
3242 MachineInstr &I, bool IsSigned) const {
3243 Register SrcReg = I.getOperand(1).getReg();
3244 if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
3245 return selectSelectDefaultArgs(ResVReg, ResType, I, IsSigned);
3246
3247 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
3248 if (SrcType == ResType)
3249 return BuildCOPY(ResVReg, SrcReg, I);
3250
3251 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3252 return selectUnOp(ResVReg, ResType, I, Opcode);
3253}
3254
3255bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
3256 const SPIRVType *ResType,
3257 MachineInstr &I,
3258 bool IsSigned) const {
3259 MachineIRBuilder MIRBuilder(I);
3260 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
3261 MachineBasicBlock &BB = *I.getParent();
3262 // Ensure we have bool.
3263 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
3264 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
3265 if (N > 1)
3266 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
3267 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
3268 // Build less-than-equal and less-than.
3269 // TODO: replace with one-liner createVirtualRegister() from
3270 // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
3271 Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3272 MRI->setType(IsLessEqReg, LLT::scalar(64));
3273 GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
3274 bool Result = BuildMI(BB, I, I.getDebugLoc(),
3275 TII.get(IsSigned ? SPIRV::OpSLessThanEqual
3276 : SPIRV::OpULessThanEqual))
3277 .addDef(IsLessEqReg)
3278 .addUse(BoolTypeReg)
3279 .addUse(I.getOperand(1).getReg())
3280 .addUse(I.getOperand(2).getReg())
3281 .constrainAllUses(TII, TRI, RBI);
3282 Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3283 MRI->setType(IsLessReg, LLT::scalar(64));
3284 GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
3285 Result &= BuildMI(BB, I, I.getDebugLoc(),
3286 TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
3287 .addDef(IsLessReg)
3288 .addUse(BoolTypeReg)
3289 .addUse(I.getOperand(1).getReg())
3290 .addUse(I.getOperand(2).getReg())
3291 .constrainAllUses(TII, TRI, RBI);
3292 // Build selects.
3293 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
3294 Register NegOneOrZeroReg =
3295 MRI->createVirtualRegister(GR.getRegClass(ResType));
3296 MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
3297 GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
3298 unsigned SelectOpcode =
3299 N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
3300 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
3301 .addDef(NegOneOrZeroReg)
3302 .addUse(ResTypeReg)
3303 .addUse(IsLessReg)
3304 .addUse(buildOnesVal(true, ResType, I)) // -1
3305 .addUse(buildZerosVal(ResType, I))
3306 .constrainAllUses(TII, TRI, RBI);
3307 return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
3308 .addDef(ResVReg)
3309 .addUse(ResTypeReg)
3310 .addUse(IsLessEqReg)
3311 .addUse(NegOneOrZeroReg) // -1 or 0
3312 .addUse(buildOnesVal(false, ResType, I))
3313 .constrainAllUses(TII, TRI, RBI);
3314}
3315
3316bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
3317 Register ResVReg,
3318 MachineInstr &I,
3319 const SPIRVType *IntTy,
3320 const SPIRVType *BoolTy) const {
3321 // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
3322 Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
3323 bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
3324 unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
3325 Register Zero = buildZerosVal(IntTy, I);
3326 Register One = buildOnesVal(false, IntTy, I);
3327 MachineBasicBlock &BB = *I.getParent();
3328 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
3329 .addDef(BitIntReg)
3330 .addUse(GR.getSPIRVTypeID(IntTy))
3331 .addUse(IntReg)
3332 .addUse(One)
3333 .constrainAllUses(TII, TRI, RBI);
3334 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
3335 .addDef(ResVReg)
3336 .addUse(GR.getSPIRVTypeID(BoolTy))
3337 .addUse(BitIntReg)
3338 .addUse(Zero)
3339 .constrainAllUses(TII, TRI, RBI);
3340}
3341
3342bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
3343 const SPIRVType *ResType,
3344 MachineInstr &I) const {
3345 Register IntReg = I.getOperand(1).getReg();
3346 const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
3347 if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
3348 return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
3349 if (ArgType == ResType)
3350 return BuildCOPY(ResVReg, IntReg, I);
3351 bool IsSigned = GR.isScalarOrVectorSigned(ResType);
3352 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
3353 return selectUnOp(ResVReg, ResType, I, Opcode);
3354}
3355
3356bool SPIRVInstructionSelector::selectConst(Register ResVReg,
3357 const SPIRVType *ResType,
3358 MachineInstr &I) const {
3359 unsigned Opcode = I.getOpcode();
3360 unsigned TpOpcode = ResType->getOpcode();
3361 Register Reg;
3362 if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
3363 assert(Opcode == TargetOpcode::G_CONSTANT &&
3364 I.getOperand(1).getCImm()->isZero());
3365 MachineBasicBlock &DepMBB = I.getMF()->front();
3366 MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
3367 Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
3368 } else if (Opcode == TargetOpcode::G_FCONSTANT) {
3369 Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
3370 ResType, TII, !STI.isShader());
3371 } else {
3372 Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
3373 ResType, TII, !STI.isShader());
3374 }
3375 return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
3376}
3377
3378bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
3379 const SPIRVType *ResType,
3380 MachineInstr &I) const {
3381 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3382 .addDef(ResVReg)
3383 .addUse(GR.getSPIRVTypeID(ResType))
3384 .constrainAllUses(TII, TRI, RBI);
3385}
3386
3387bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
3388 const SPIRVType *ResType,
3389 MachineInstr &I) const {
3390 MachineBasicBlock &BB = *I.getParent();
3391 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
3392 .addDef(ResVReg)
3393 .addUse(GR.getSPIRVTypeID(ResType))
3394 // object to insert
3395 .addUse(I.getOperand(3).getReg())
3396 // composite to insert into
3397 .addUse(I.getOperand(2).getReg());
3398 for (unsigned i = 4; i < I.getNumOperands(); i++)
3399 MIB.addImm(foldImm(I.getOperand(i), MRI));
3400 return MIB.constrainAllUses(TII, TRI, RBI);
3401}
3402
3403bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
3404 const SPIRVType *ResType,
3405 MachineInstr &I) const {
3406 Type *MaybeResTy = nullptr;
3407 StringRef ResName;
3408 if (GR.findValueAttrs(&I, MaybeResTy, ResName) &&
3409 MaybeResTy != GR.getTypeForSPIRVType(ResType)) {
3410 assert(!MaybeResTy ||
3411 MaybeResTy->isAggregateType() &&
3412 "Expected aggregate type for extractv instruction");
3413 ResType = GR.getOrCreateSPIRVType(MaybeResTy, I,
3414 SPIRV::AccessQualifier::ReadWrite, false);
3415 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *I.getMF());
3416 }
3417 MachineBasicBlock &BB = *I.getParent();
3418 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
3419 .addDef(ResVReg)
3420 .addUse(GR.getSPIRVTypeID(ResType))
3421 .addUse(I.getOperand(2).getReg());
3422 for (unsigned i = 3; i < I.getNumOperands(); i++)
3423 MIB.addImm(foldImm(I.getOperand(i), MRI));
3424 return MIB.constrainAllUses(TII, TRI, RBI);
3425}
3426
3427bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
3428 const SPIRVType *ResType,
3429 MachineInstr &I) const {
3430 if (getImm(I.getOperand(4), MRI))
3431 return selectInsertVal(ResVReg, ResType, I);
3432 MachineBasicBlock &BB = *I.getParent();
3433 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
3434 .addDef(ResVReg)
3435 .addUse(GR.getSPIRVTypeID(ResType))
3436 .addUse(I.getOperand(2).getReg())
3437 .addUse(I.getOperand(3).getReg())
3438 .addUse(I.getOperand(4).getReg())
3439 .constrainAllUses(TII, TRI, RBI);
3440}
3441
3442bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
3443 const SPIRVType *ResType,
3444 MachineInstr &I) const {
3445 if (getImm(I.getOperand(3), MRI))
3446 return selectExtractVal(ResVReg, ResType, I);
3447 MachineBasicBlock &BB = *I.getParent();
3448 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
3449 .addDef(ResVReg)
3450 .addUse(GR.getSPIRVTypeID(ResType))
3451 .addUse(I.getOperand(2).getReg())
3452 .addUse(I.getOperand(3).getReg())
3453 .constrainAllUses(TII, TRI, RBI);
3454}
3455
3456bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
3457 const SPIRVType *ResType,
3458 MachineInstr &I) const {
3459 const bool IsGEPInBounds = I.getOperand(2).getImm();
3460
3461 // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
3462 // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
3463 // we have to use Op[InBounds]AccessChain.
3464 const unsigned Opcode = STI.isLogicalSPIRV()
3465 ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
3466 : SPIRV::OpAccessChain)
3467 : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
3468 : SPIRV::OpPtrAccessChain);
3469
3470 auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3471 .addDef(ResVReg)
3472 .addUse(GR.getSPIRVTypeID(ResType))
3473 // Object to get a pointer to.
3474 .addUse(I.getOperand(3).getReg());
3475 assert(
3476 (Opcode == SPIRV::OpPtrAccessChain ||
3477 Opcode == SPIRV::OpInBoundsPtrAccessChain ||
3478 (getImm(I.getOperand(4), MRI) && foldImm(I.getOperand(4), MRI) == 0)) &&
3479 "Cannot translate GEP to OpAccessChain. First index must be 0.");
3480
3481 // Adding indices.
3482 const unsigned StartingIndex =
3483 (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
3484 ? 5
3485 : 4;
3486 for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
3487 Res.addUse(I.getOperand(i).getReg());
3488 return Res.constrainAllUses(TII, TRI, RBI);
3489}
3490
3491// Maybe wrap a value into OpSpecConstantOp
3492bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
3493 MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
3494 bool Result = true;
3495 unsigned Lim = I.getNumExplicitOperands();
3496 for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
3497 Register OpReg = I.getOperand(i).getReg();
3498 MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
3499 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3500 SmallPtrSet<SPIRVType *, 4> Visited;
3501 if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
3502 OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
3503 OpDefine->getOpcode() == TargetOpcode::G_INTTOPTR ||
3504 GR.isAggregateType(OpType)) {
3505 // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
3506 // by selectAddrSpaceCast(), and G_INTTOPTR is processed by selectUnOp()
3507 CompositeArgs.push_back(OpReg);
3508 continue;
3509 }
3510 MachineFunction *MF = I.getMF();
3511 Register WrapReg = GR.find(OpDefine, MF);
3512 if (WrapReg.isValid()) {
3513 CompositeArgs.push_back(WrapReg);
3514 continue;
3515 }
3516 // Create a new register for the wrapper
3517 WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
3518 CompositeArgs.push_back(WrapReg);
3519 // Decorate the wrapper register and generate a new instruction
3520 MRI->setType(WrapReg, LLT::pointer(0, 64));
3521 GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
3522 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3523 TII.get(SPIRV::OpSpecConstantOp))
3524 .addDef(WrapReg)
3525 .addUse(GR.getSPIRVTypeID(OpType))
3526 .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
3527 .addUse(OpReg);
3528 GR.add(OpDefine, MIB);
3529 Result = MIB.constrainAllUses(TII, TRI, RBI);
3530 if (!Result)
3531 break;
3532 }
3533 return Result;
3534}
3535
3536bool SPIRVInstructionSelector::selectDerivativeInst(
3537 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3538 const unsigned DPdOpCode) const {
3539 // TODO: This should check specifically for Fragment Execution Model, but STI
3540 // doesn't provide that information yet. See #167562
3541 errorIfInstrOutsideShader(I);
3542
3543 // If the arg/result types are half then we need to wrap the instr in
3544 // conversions to float
3545 // This case occurs because a half arg/result is legal in HLSL but not spirv.
3546 Register SrcReg = I.getOperand(2).getReg();
3547 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
3548 unsigned BitWidth = std::min(GR.getScalarOrVectorBitWidth(SrcType),
3549 GR.getScalarOrVectorBitWidth(ResType));
3550 if (BitWidth == 32)
3551 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DPdOpCode))
3552 .addDef(ResVReg)
3553 .addUse(GR.getSPIRVTypeID(ResType))
3554 .addUse(I.getOperand(2).getReg());
3555
3556 MachineIRBuilder MIRBuilder(I);
3557 unsigned componentCount = GR.getScalarOrVectorComponentCount(SrcType);
3558 SPIRVType *F32ConvertTy = GR.getOrCreateSPIRVFloatType(32, I, TII);
3559 if (componentCount != 1)
3560 F32ConvertTy = GR.getOrCreateSPIRVVectorType(F32ConvertTy, componentCount,
3561 MIRBuilder, false);
3562
3563 const TargetRegisterClass *RegClass = GR.getRegClass(SrcType);
3564 Register ConvertToVReg = MRI->createVirtualRegister(RegClass);
3565 Register DpdOpVReg = MRI->createVirtualRegister(RegClass);
3566
3567 bool Result =
3568 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpFConvert))
3569 .addDef(ConvertToVReg)
3570 .addUse(GR.getSPIRVTypeID(F32ConvertTy))
3571 .addUse(SrcReg)
3572 .constrainAllUses(TII, TRI, RBI);
3573 Result &= BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DPdOpCode))
3574 .addDef(DpdOpVReg)
3575 .addUse(GR.getSPIRVTypeID(F32ConvertTy))
3576 .addUse(ConvertToVReg)
3577 .constrainAllUses(TII, TRI, RBI);
3578 Result &=
3579 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpFConvert))
3580 .addDef(ResVReg)
3581 .addUse(GR.getSPIRVTypeID(ResType))
3582 .addUse(DpdOpVReg)
3583 .constrainAllUses(TII, TRI, RBI);
3584 return Result;
3585}
3586
3587bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
3588 const SPIRVType *ResType,
3589 MachineInstr &I) const {
3590 MachineBasicBlock &BB = *I.getParent();
3591 Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
3592 switch (IID) {
3593 case Intrinsic::spv_load:
3594 return selectLoad(ResVReg, ResType, I);
3595 case Intrinsic::spv_store:
3596 return selectStore(I);
3597 case Intrinsic::spv_extractv:
3598 return selectExtractVal(ResVReg, ResType, I);
3599 case Intrinsic::spv_insertv:
3600 return selectInsertVal(ResVReg, ResType, I);
3601 case Intrinsic::spv_extractelt:
3602 return selectExtractElt(ResVReg, ResType, I);
3603 case Intrinsic::spv_insertelt:
3604 return selectInsertElt(ResVReg, ResType, I);
3605 case Intrinsic::spv_gep:
3606 return selectGEP(ResVReg, ResType, I);
3607 case Intrinsic::spv_bitcast: {
3608 Register OpReg = I.getOperand(2).getReg();
3609 SPIRVType *OpType =
3610 OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
3611 if (!GR.isBitcastCompatible(ResType, OpType))
3612 report_fatal_error("incompatible result and operand types in a bitcast");
3613 return selectOpWithSrcs(ResVReg, ResType, I, {OpReg}, SPIRV::OpBitcast);
3614 }
3615 case Intrinsic::spv_unref_global:
3616 case Intrinsic::spv_init_global: {
3617 MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
3618 MachineInstr *Init = I.getNumExplicitOperands() > 2
3619 ? MRI->getVRegDef(I.getOperand(2).getReg())
3620 : nullptr;
3621 assert(MI);
3622 Register GVarVReg = MI->getOperand(0).getReg();
3623 bool Res = selectGlobalValue(GVarVReg, *MI, Init);
3624 // We violate SSA form by inserting OpVariable and still having a gMIR
3625 // instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
3626 // the duplicated definition.
3627 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
3629 MI->removeFromParent();
3630 }
3631 return Res;
3632 }
3633 case Intrinsic::spv_undef: {
3634 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3635 .addDef(ResVReg)
3636 .addUse(GR.getSPIRVTypeID(ResType));
3637 return MIB.constrainAllUses(TII, TRI, RBI);
3638 }
3639 case Intrinsic::spv_const_composite: {
3640 // If no values are attached, the composite is null constant.
3641 bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
3642 SmallVector<Register> CompositeArgs;
3643 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
3644
3645 // skip type MD node we already used when generated assign.type for this
3646 if (!IsNull) {
3647 if (!wrapIntoSpecConstantOp(I, CompositeArgs))
3648 return false;
3649 MachineIRBuilder MIR(I);
3650 SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
3651 MIR, SPIRV::OpConstantComposite, 3,
3652 SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
3653 GR.getSPIRVTypeID(ResType));
3654 for (auto *Instr : Instructions) {
3655 Instr->setDebugLoc(I.getDebugLoc());
3656 if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
3657 return false;
3658 }
3659 return true;
3660 } else {
3661 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3662 .addDef(ResVReg)
3663 .addUse(GR.getSPIRVTypeID(ResType));
3664 return MIB.constrainAllUses(TII, TRI, RBI);
3665 }
3666 }
3667 case Intrinsic::spv_assign_name: {
3668 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
3669 MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
3670 for (unsigned i = I.getNumExplicitDefs() + 2;
3671 i < I.getNumExplicitOperands(); ++i) {
3672 MIB.addImm(I.getOperand(i).getImm());
3673 }
3674 return MIB.constrainAllUses(TII, TRI, RBI);
3675 }
3676 case Intrinsic::spv_switch: {
3677 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
3678 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3679 if (I.getOperand(i).isReg())
3680 MIB.addReg(I.getOperand(i).getReg());
3681 else if (I.getOperand(i).isCImm())
3682 addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
3683 else if (I.getOperand(i).isMBB())
3684 MIB.addMBB(I.getOperand(i).getMBB());
3685 else
3686 llvm_unreachable("Unexpected OpSwitch operand");
3687 }
3688 return MIB.constrainAllUses(TII, TRI, RBI);
3689 }
3690 case Intrinsic::spv_loop_merge: {
3691 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
3692 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3693 if (I.getOperand(i).isMBB())
3694 MIB.addMBB(I.getOperand(i).getMBB());
3695 else
3696 MIB.addImm(foldImm(I.getOperand(i), MRI));
3697 }
3698 return MIB.constrainAllUses(TII, TRI, RBI);
3699 }
3700 case Intrinsic::spv_selection_merge: {
3701 auto MIB =
3702 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
3703 assert(I.getOperand(1).isMBB() &&
3704 "operand 1 to spv_selection_merge must be a basic block");
3705 MIB.addMBB(I.getOperand(1).getMBB());
3706 MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
3707 return MIB.constrainAllUses(TII, TRI, RBI);
3708 }
3709 case Intrinsic::spv_cmpxchg:
3710 return selectAtomicCmpXchg(ResVReg, ResType, I);
3711 case Intrinsic::spv_unreachable:
3712 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
3713 .constrainAllUses(TII, TRI, RBI);
3714 case Intrinsic::spv_alloca:
3715 return selectFrameIndex(ResVReg, ResType, I);
3716 case Intrinsic::spv_alloca_array:
3717 return selectAllocaArray(ResVReg, ResType, I);
3718 case Intrinsic::spv_assume:
3719 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3720 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
3721 .addUse(I.getOperand(1).getReg())
3722 .constrainAllUses(TII, TRI, RBI);
3723 break;
3724 case Intrinsic::spv_expect:
3725 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3726 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
3727 .addDef(ResVReg)
3728 .addUse(GR.getSPIRVTypeID(ResType))
3729 .addUse(I.getOperand(2).getReg())
3730 .addUse(I.getOperand(3).getReg())
3731 .constrainAllUses(TII, TRI, RBI);
3732 break;
3733 case Intrinsic::arithmetic_fence:
3734 if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
3735 return BuildMI(BB, I, I.getDebugLoc(),
3736 TII.get(SPIRV::OpArithmeticFenceEXT))
3737 .addDef(ResVReg)
3738 .addUse(GR.getSPIRVTypeID(ResType))
3739 .addUse(I.getOperand(2).getReg())
3740 .constrainAllUses(TII, TRI, RBI);
3741 else
3742 return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
3743 break;
3744 case Intrinsic::spv_thread_id:
3745 // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
3746 // intrinsic in LLVM IR for SPIR-V backend.
3747 //
3748 // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
3749 // `GlobalInvocationId` builtin variable
3750 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
3751 ResType, I);
3752 case Intrinsic::spv_thread_id_in_group:
3753 // The HLSL SV_GroupThreadId semantic is lowered to
3754 // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
3755 //
3756 // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
3757 // translated to a `LocalInvocationId` builtin variable
3758 return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
3759 ResType, I);
3760 case Intrinsic::spv_group_id:
3761 // The HLSL SV_GroupId semantic is lowered to
3762 // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
3763 //
3764 // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
3765 // builtin variable
3766 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
3767 I);
3768 case Intrinsic::spv_flattened_thread_id_in_group:
3769 // The HLSL SV_GroupIndex semantic is lowered to
3770 // llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
3771 // backend.
3772 //
3773 // In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
3774 // a `LocalInvocationIndex` builtin variable
3775 return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
3776 ResType, I);
3777 case Intrinsic::spv_workgroup_size:
3778 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
3779 ResType, I);
3780 case Intrinsic::spv_global_size:
3781 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
3782 I);
3783 case Intrinsic::spv_global_offset:
3784 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
3785 ResType, I);
3786 case Intrinsic::spv_num_workgroups:
3787 return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
3788 ResType, I);
3789 case Intrinsic::spv_subgroup_size:
3790 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
3791 I);
3792 case Intrinsic::spv_num_subgroups:
3793 return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
3794 I);
3795 case Intrinsic::spv_subgroup_id:
3796 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
3797 case Intrinsic::spv_subgroup_local_invocation_id:
3798 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
3799 ResVReg, ResType, I);
3800 case Intrinsic::spv_subgroup_max_size:
3801 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
3802 I);
3803 case Intrinsic::spv_fdot:
3804 return selectFloatDot(ResVReg, ResType, I);
3805 case Intrinsic::spv_udot:
3806 case Intrinsic::spv_sdot:
3807 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3808 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3809 return selectIntegerDot(ResVReg, ResType, I,
3810 /*Signed=*/IID == Intrinsic::spv_sdot);
3811 return selectIntegerDotExpansion(ResVReg, ResType, I);
3812 case Intrinsic::spv_dot4add_i8packed:
3813 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3814 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3815 return selectDot4AddPacked<true>(ResVReg, ResType, I);
3816 return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
3817 case Intrinsic::spv_dot4add_u8packed:
3818 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3819 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3820 return selectDot4AddPacked<false>(ResVReg, ResType, I);
3821 return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
3822 case Intrinsic::spv_all:
3823 return selectAll(ResVReg, ResType, I);
3824 case Intrinsic::spv_any:
3825 return selectAny(ResVReg, ResType, I);
3826 case Intrinsic::spv_cross:
3827 return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
3828 case Intrinsic::spv_distance:
3829 return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
3830 case Intrinsic::spv_lerp:
3831 return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
3832 case Intrinsic::spv_length:
3833 return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
3834 case Intrinsic::spv_degrees:
3835 return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
3836 case Intrinsic::spv_faceforward:
3837 return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
3838 case Intrinsic::spv_frac:
3839 return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
3840 case Intrinsic::spv_isinf:
3841 return selectOpIsInf(ResVReg, ResType, I);
3842 case Intrinsic::spv_isnan:
3843 return selectOpIsNan(ResVReg, ResType, I);
3844 case Intrinsic::spv_normalize:
3845 return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
3846 case Intrinsic::spv_refract:
3847 return selectExtInst(ResVReg, ResType, I, GL::Refract);
3848 case Intrinsic::spv_reflect:
3849 return selectExtInst(ResVReg, ResType, I, GL::Reflect);
3850 case Intrinsic::spv_rsqrt:
3851 return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
3852 case Intrinsic::spv_sign:
3853 return selectSign(ResVReg, ResType, I);
3854 case Intrinsic::spv_smoothstep:
3855 return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
3856 case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
3857 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
3858 case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
3859 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
3860 case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
3861 return selectFirstBitLow(ResVReg, ResType, I);
3862 case Intrinsic::spv_group_memory_barrier_with_group_sync: {
3863 bool Result = true;
3864 auto MemSemConstant =
3865 buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
3866 Register MemSemReg = MemSemConstant.first;
3867 Result &= MemSemConstant.second;
3868 auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
3869 Register ScopeReg = ScopeConstant.first;
3870 Result &= ScopeConstant.second;
3871 MachineBasicBlock &BB = *I.getParent();
3872 return Result &&
3873 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
3874 .addUse(ScopeReg)
3875 .addUse(ScopeReg)
3876 .addUse(MemSemReg)
3877 .constrainAllUses(TII, TRI, RBI);
3878 }
3879 case Intrinsic::spv_generic_cast_to_ptr_explicit: {
3880 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
3881 SPIRV::StorageClass::StorageClass ResSC =
3882 GR.getPointerStorageClass(ResType);
3883 if (!isGenericCastablePtr(ResSC))
3884 report_fatal_error("The target storage class is not castable from the "
3885 "Generic storage class");
3886 return BuildMI(BB, I, I.getDebugLoc(),
3887 TII.get(SPIRV::OpGenericCastToPtrExplicit))
3888 .addDef(ResVReg)
3889 .addUse(GR.getSPIRVTypeID(ResType))
3890 .addUse(PtrReg)
3891 .addImm(ResSC)
3892 .constrainAllUses(TII, TRI, RBI);
3893 }
3894 case Intrinsic::spv_lifetime_start:
3895 case Intrinsic::spv_lifetime_end: {
3896 unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
3897 : SPIRV::OpLifetimeStop;
3898 int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
3899 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
3900 if (Size == -1)
3901 Size = 0;
3902 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
3903 .addUse(PtrReg)
3904 .addImm(Size)
3905 .constrainAllUses(TII, TRI, RBI);
3906 }
3907 case Intrinsic::spv_saturate:
3908 return selectSaturate(ResVReg, ResType, I);
3909 case Intrinsic::spv_nclamp:
3910 return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
3911 case Intrinsic::spv_uclamp:
3912 return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
3913 case Intrinsic::spv_sclamp:
3914 return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
3915 case Intrinsic::spv_subgroup_prefix_bit_count:
3916 return selectWavePrefixBitCount(ResVReg, ResType, I);
3917 case Intrinsic::spv_wave_active_countbits:
3918 return selectWaveActiveCountBits(ResVReg, ResType, I);
3919 case Intrinsic::spv_wave_all:
3920 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
3921 case Intrinsic::spv_wave_any:
3922 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
3923 case Intrinsic::spv_subgroup_ballot:
3924 return selectWaveOpInst(ResVReg, ResType, I,
3925 SPIRV::OpGroupNonUniformBallot);
3926 case Intrinsic::spv_wave_is_first_lane:
3927 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
3928 case Intrinsic::spv_wave_reduce_umax:
3929 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
3930 case Intrinsic::spv_wave_reduce_max:
3931 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
3932 case Intrinsic::spv_wave_reduce_umin:
3933 return selectWaveReduceMin(ResVReg, ResType, I, /*IsUnsigned*/ true);
3934 case Intrinsic::spv_wave_reduce_min:
3935 return selectWaveReduceMin(ResVReg, ResType, I, /*IsUnsigned*/ false);
3936 case Intrinsic::spv_wave_reduce_sum:
3937 return selectWaveReduceSum(ResVReg, ResType, I);
3938 case Intrinsic::spv_wave_readlane:
3939 return selectWaveOpInst(ResVReg, ResType, I,
3940 SPIRV::OpGroupNonUniformShuffle);
3941 case Intrinsic::spv_step:
3942 return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
3943 case Intrinsic::spv_radians:
3944 return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
3945 // Discard intrinsics which we do not expect to actually represent code after
3946 // lowering or intrinsics which are not implemented but should not crash when
3947 // found in a customer's LLVM IR input.
3948 case Intrinsic::instrprof_increment:
3949 case Intrinsic::instrprof_increment_step:
3950 case Intrinsic::instrprof_value_profile:
3951 break;
3952 // Discard internal intrinsics.
3953 case Intrinsic::spv_value_md:
3954 break;
3955 case Intrinsic::spv_resource_handlefrombinding: {
3956 return selectHandleFromBinding(ResVReg, ResType, I);
3957 }
3958 case Intrinsic::spv_resource_counterhandlefrombinding:
3959 return selectCounterHandleFromBinding(ResVReg, ResType, I);
3960 case Intrinsic::spv_resource_updatecounter:
3961 return selectUpdateCounter(ResVReg, ResType, I);
3962 case Intrinsic::spv_resource_store_typedbuffer: {
3963 return selectImageWriteIntrinsic(I);
3964 }
3965 case Intrinsic::spv_resource_load_typedbuffer: {
3966 return selectReadImageIntrinsic(ResVReg, ResType, I);
3967 }
3968 case Intrinsic::spv_resource_sample:
3969 case Intrinsic::spv_resource_sample_clamp: {
3970 return selectSampleIntrinsic(ResVReg, ResType, I);
3971 }
3972 case Intrinsic::spv_resource_getpointer: {
3973 return selectResourceGetPointer(ResVReg, ResType, I);
3974 }
3975 case Intrinsic::spv_pushconstant_getpointer: {
3976 return selectPushConstantGetPointer(ResVReg, ResType, I);
3977 }
3978 case Intrinsic::spv_discard: {
3979 return selectDiscard(ResVReg, ResType, I);
3980 }
3981 case Intrinsic::spv_resource_nonuniformindex: {
3982 return selectResourceNonUniformIndex(ResVReg, ResType, I);
3983 }
3984 case Intrinsic::spv_unpackhalf2x16: {
3985 return selectExtInst(ResVReg, ResType, I, GL::UnpackHalf2x16);
3986 }
3987 case Intrinsic::spv_packhalf2x16: {
3988 return selectExtInst(ResVReg, ResType, I, GL::PackHalf2x16);
3989 }
3990 case Intrinsic::spv_ddx:
3991 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdx);
3992 case Intrinsic::spv_ddy:
3993 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdy);
3994 case Intrinsic::spv_ddx_coarse:
3995 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdxCoarse);
3996 case Intrinsic::spv_ddy_coarse:
3997 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdyCoarse);
3998 case Intrinsic::spv_ddx_fine:
3999 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdxFine);
4000 case Intrinsic::spv_ddy_fine:
4001 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpDPdyFine);
4002 case Intrinsic::spv_fwidth:
4003 return selectDerivativeInst(ResVReg, ResType, I, SPIRV::OpFwidth);
4004 default: {
4005 std::string DiagMsg;
4006 raw_string_ostream OS(DiagMsg);
4007 I.print(OS);
4008 DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
4009 report_fatal_error(DiagMsg.c_str(), false);
4010 }
4011 }
4012 return true;
4013}
4014
4015bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
4016 const SPIRVType *ResType,
4017 MachineInstr &I) const {
4018 // The images need to be loaded in the same basic block as their use. We defer
4019 // loading the image to the intrinsic that uses it.
4020 if (ResType->getOpcode() == SPIRV::OpTypeImage)
4021 return true;
4022
4023 return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
4024 *cast<GIntrinsic>(&I), I);
4025}
4026
4027bool SPIRVInstructionSelector::selectCounterHandleFromBinding(
4028 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4029 auto &Intr = cast<GIntrinsic>(I);
4030 assert(Intr.getIntrinsicID() ==
4031 Intrinsic::spv_resource_counterhandlefrombinding);
4032
4033 // Extract information from the intrinsic call.
4034 Register MainHandleReg = Intr.getOperand(2).getReg();
4035 auto *MainHandleDef = cast<GIntrinsic>(getVRegDef(*MRI, MainHandleReg));
4036 assert(MainHandleDef->getIntrinsicID() ==
4037 Intrinsic::spv_resource_handlefrombinding);
4038
4039 uint32_t Set = getIConstVal(Intr.getOperand(4).getReg(), MRI);
4040 uint32_t Binding = getIConstVal(Intr.getOperand(3).getReg(), MRI);
4041 uint32_t ArraySize = getIConstVal(MainHandleDef->getOperand(4).getReg(), MRI);
4042 Register IndexReg = MainHandleDef->getOperand(5).getReg();
4043 std::string CounterName =
4044 getStringValueFromReg(MainHandleDef->getOperand(6).getReg(), *MRI) +
4045 ".counter";
4046
4047 // Create the counter variable.
4048 MachineIRBuilder MIRBuilder(I);
4049 Register CounterVarReg = buildPointerToResource(
4050 GR.getPointeeType(ResType), GR.getPointerStorageClass(ResType), Set,
4051 Binding, ArraySize, IndexReg, CounterName, MIRBuilder);
4052
4053 return BuildCOPY(ResVReg, CounterVarReg, I);
4054}
4055
4056bool SPIRVInstructionSelector::selectUpdateCounter(Register &ResVReg,
4057 const SPIRVType *ResType,
4058 MachineInstr &I) const {
4059 auto &Intr = cast<GIntrinsic>(I);
4060 assert(Intr.getIntrinsicID() == Intrinsic::spv_resource_updatecounter);
4061
4062 Register CounterHandleReg = Intr.getOperand(2).getReg();
4063 Register IncrReg = Intr.getOperand(3).getReg();
4064
4065 // The counter handle is a pointer to the counter variable (which is a struct
4066 // containing an i32). We need to get a pointer to that i32 member to do the
4067 // atomic operation.
4068#ifndef NDEBUG
4069 SPIRVType *CounterVarType = GR.getSPIRVTypeForVReg(CounterHandleReg);
4070 SPIRVType *CounterVarPointeeType = GR.getPointeeType(CounterVarType);
4071 assert(CounterVarPointeeType &&
4072 CounterVarPointeeType->getOpcode() == SPIRV::OpTypeStruct &&
4073 "Counter variable must be a struct");
4074 assert(GR.getPointerStorageClass(CounterVarType) ==
4075 SPIRV::StorageClass::StorageBuffer &&
4076 "Counter variable must be in the storage buffer storage class");
4077 assert(CounterVarPointeeType->getNumOperands() == 2 &&
4078 "Counter variable must have exactly 1 member in the struct");
4079 const SPIRVType *MemberType =
4080 GR.getSPIRVTypeForVReg(CounterVarPointeeType->getOperand(1).getReg());
4081 assert(MemberType->getOpcode() == SPIRV::OpTypeInt &&
4082 "Counter variable struct must have a single i32 member");
4083#endif
4084
4085 // The struct has a single i32 member.
4086 MachineIRBuilder MIRBuilder(I);
4087 const Type *LLVMIntType =
4088 Type::getInt32Ty(I.getMF()->getFunction().getContext());
4089
4090 SPIRVType *IntPtrType = GR.getOrCreateSPIRVPointerType(
4091 LLVMIntType, MIRBuilder, SPIRV::StorageClass::StorageBuffer);
4092
4093 auto Zero = buildI32Constant(0, I);
4094 if (!Zero.second)
4095 return false;
4096
4097 Register PtrToCounter =
4098 MRI->createVirtualRegister(GR.getRegClass(IntPtrType));
4099 if (!BuildMI(*I.getParent(), I, I.getDebugLoc(),
4100 TII.get(SPIRV::OpAccessChain))
4101 .addDef(PtrToCounter)
4102 .addUse(GR.getSPIRVTypeID(IntPtrType))
4103 .addUse(CounterHandleReg)
4104 .addUse(Zero.first)
4105 .constrainAllUses(TII, TRI, RBI)) {
4106 return false;
4107 }
4108
4109 // For UAV/SSBO counters, the scope is Device. The counter variable is not
4110 // used as a flag. So the memory semantics can be None.
4111 auto Scope = buildI32Constant(SPIRV::Scope::Device, I);
4112 if (!Scope.second)
4113 return false;
4114 auto Semantics = buildI32Constant(SPIRV::MemorySemantics::None, I);
4115 if (!Semantics.second)
4116 return false;
4117
4118 int64_t IncrVal = getIConstValSext(IncrReg, MRI);
4119 auto Incr = buildI32Constant(static_cast<uint32_t>(IncrVal), I);
4120 if (!Incr.second)
4121 return false;
4122
4123 Register AtomicRes = MRI->createVirtualRegister(GR.getRegClass(ResType));
4124 if (!BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpAtomicIAdd))
4125 .addDef(AtomicRes)
4126 .addUse(GR.getSPIRVTypeID(ResType))
4127 .addUse(PtrToCounter)
4128 .addUse(Scope.first)
4129 .addUse(Semantics.first)
4130 .addUse(Incr.first)
4131 .constrainAllUses(TII, TRI, RBI)) {
4132 return false;
4133 }
4134 if (IncrVal >= 0) {
4135 return BuildCOPY(ResVReg, AtomicRes, I);
4136 }
4137
4138 // In HLSL, IncrementCounter returns the value *before* the increment, while
4139 // DecrementCounter returns the value *after* the decrement. Both are lowered
4140 // to the same atomic intrinsic which returns the value *before* the
4141 // operation. So for decrements (negative IncrVal), we must subtract the
4142 // increment value from the result to get the post-decrement value.
4143 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
4144 .addDef(ResVReg)
4145 .addUse(GR.getSPIRVTypeID(ResType))
4146 .addUse(AtomicRes)
4147 .addUse(Incr.first)
4148 .constrainAllUses(TII, TRI, RBI);
4149}
4150bool SPIRVInstructionSelector::selectReadImageIntrinsic(
4151 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4152
4153 // If the load of the image is in a different basic block, then
4154 // this will generate invalid code. A proper solution is to move
4155 // the OpLoad from selectHandleFromBinding here. However, to do
4156 // that we will need to change the return type of the intrinsic.
4157 // We will do that when we can, but for now trying to move forward with other
4158 // issues.
4159 Register ImageReg = I.getOperand(2).getReg();
4160 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
4161 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
4162 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
4163 *ImageDef, I)) {
4164 return false;
4165 }
4166
4167 Register IdxReg = I.getOperand(3).getReg();
4168 DebugLoc Loc = I.getDebugLoc();
4169 MachineInstr &Pos = I;
4170
4171 return generateImageReadOrFetch(ResVReg, ResType, NewImageReg, IdxReg, Loc,
4172 Pos);
4173}
4174
4175bool SPIRVInstructionSelector::selectSampleIntrinsic(Register &ResVReg,
4176 const SPIRVType *ResType,
4177 MachineInstr &I) const {
4178 Register ImageReg = I.getOperand(2).getReg();
4179 Register SamplerReg = I.getOperand(3).getReg();
4180 Register CoordinateReg = I.getOperand(4).getReg();
4181 std::optional<Register> OffsetReg;
4182 std::optional<Register> ClampReg;
4183
4184 if (I.getNumOperands() > 5)
4185 OffsetReg = I.getOperand(5).getReg();
4186 if (I.getNumOperands() > 6)
4187 ClampReg = I.getOperand(6).getReg();
4188
4189 DebugLoc Loc = I.getDebugLoc();
4190
4191 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
4192 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
4193 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
4194 *ImageDef, I)) {
4195 return false;
4196 }
4197
4198 auto *SamplerDef = cast<GIntrinsic>(getVRegDef(*MRI, SamplerReg));
4199 Register NewSamplerReg =
4200 MRI->createVirtualRegister(MRI->getRegClass(SamplerReg));
4201 if (!loadHandleBeforePosition(
4202 NewSamplerReg, GR.getSPIRVTypeForVReg(SamplerReg), *SamplerDef, I)) {
4203 return false;
4204 }
4205
4206 MachineIRBuilder MIRBuilder(I);
4207 SPIRVType *SampledImageType = GR.getOrCreateOpTypeSampledImage(
4208 GR.getSPIRVTypeForVReg(ImageReg), MIRBuilder);
4209
4210 Register SampledImageReg =
4211 MRI->createVirtualRegister(GR.getRegClass(SampledImageType));
4212 bool Succeed = BuildMI(*I.getParent(), I, Loc, TII.get(SPIRV::OpSampledImage))
4213 .addDef(SampledImageReg)
4214 .addUse(GR.getSPIRVTypeID(SampledImageType))
4215 .addUse(NewImageReg)
4216 .addUse(NewSamplerReg)
4217 .constrainAllUses(TII, TRI, RBI);
4218 if (!Succeed)
4219 return false;
4220
4221 auto MIB =
4222 BuildMI(*I.getParent(), I, Loc, TII.get(SPIRV::OpImageSampleImplicitLod))
4223 .addDef(ResVReg)
4224 .addUse(GR.getSPIRVTypeID(ResType))
4225 .addUse(SampledImageReg)
4226 .addUse(CoordinateReg);
4227
4228 uint32_t ImageOperands = 0;
4229 if (OffsetReg && !isScalarOrVectorIntConstantZero(*OffsetReg)) {
4230 ImageOperands |= 0x8; // ConstOffset
4231 }
4232
4233 if (ClampReg) {
4234 ImageOperands |= 0x80; // MinLod
4235 }
4236
4237 if (ImageOperands != 0) {
4238 MIB.addImm(ImageOperands);
4239 if (ImageOperands & 0x8)
4240 MIB.addUse(*OffsetReg);
4241 if (ImageOperands & 0x80)
4242 MIB.addUse(*ClampReg);
4243 }
4244
4245 return MIB.constrainAllUses(TII, TRI, RBI);
4246}
4247
4248bool SPIRVInstructionSelector::generateImageReadOrFetch(
4249 Register &ResVReg, const SPIRVType *ResType, Register ImageReg,
4250 Register IdxReg, DebugLoc Loc, MachineInstr &Pos) const {
4251 SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
4252 assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
4253 "ImageReg is not an image type.");
4254
4255 bool IsSignedInteger =
4256 sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
4257 // Check if the "sampled" operand of the image type is 1.
4258 // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpImageFetch
4259 auto SampledOp = ImageType->getOperand(6);
4260 bool IsFetch = (SampledOp.getImm() == 1);
4261
4262 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
4263 if (ResultSize == 4) {
4264 auto BMI =
4265 BuildMI(*Pos.getParent(), Pos, Loc,
4266 TII.get(IsFetch ? SPIRV::OpImageFetch : SPIRV::OpImageRead))
4267 .addDef(ResVReg)
4268 .addUse(GR.getSPIRVTypeID(ResType))
4269 .addUse(ImageReg)
4270 .addUse(IdxReg);
4271
4272 if (IsSignedInteger)
4273 BMI.addImm(0x1000); // SignExtend
4274 return BMI.constrainAllUses(TII, TRI, RBI);
4275 }
4276
4277 SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
4278 Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
4279 auto BMI =
4280 BuildMI(*Pos.getParent(), Pos, Loc,
4281 TII.get(IsFetch ? SPIRV::OpImageFetch : SPIRV::OpImageRead))
4282 .addDef(ReadReg)
4283 .addUse(GR.getSPIRVTypeID(ReadType))
4284 .addUse(ImageReg)
4285 .addUse(IdxReg);
4286 if (IsSignedInteger)
4287 BMI.addImm(0x1000); // SignExtend
4288 bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
4289 if (!Succeed)
4290 return false;
4291
4292 if (ResultSize == 1) {
4293 return BuildMI(*Pos.getParent(), Pos, Loc,
4294 TII.get(SPIRV::OpCompositeExtract))
4295 .addDef(ResVReg)
4296 .addUse(GR.getSPIRVTypeID(ResType))
4297 .addUse(ReadReg)
4298 .addImm(0)
4299 .constrainAllUses(TII, TRI, RBI);
4300 }
4301 return extractSubvector(ResVReg, ResType, ReadReg, Pos);
4302}
4303
4304bool SPIRVInstructionSelector::selectResourceGetPointer(
4305 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4306 Register ResourcePtr = I.getOperand(2).getReg();
4307 SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
4308 if (RegType->getOpcode() == SPIRV::OpTypeImage) {
4309 // For texel buffers, the index into the image is part of the OpImageRead or
4310 // OpImageWrite instructions. So we will do nothing in this case. This
4311 // intrinsic will be combined with the load or store when selecting the load
4312 // or store.
4313 return true;
4314 }
4315
4316 assert(ResType->getOpcode() == SPIRV::OpTypePointer);
4317 MachineIRBuilder MIRBuilder(I);
4318
4319 Register IndexReg = I.getOperand(3).getReg();
4320 Register ZeroReg =
4321 buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
4322 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
4323 TII.get(SPIRV::OpAccessChain))
4324 .addDef(ResVReg)
4325 .addUse(GR.getSPIRVTypeID(ResType))
4326 .addUse(ResourcePtr)
4327 .addUse(ZeroReg)
4328 .addUse(IndexReg)
4329 .constrainAllUses(TII, TRI, RBI);
4330}
4331
4332bool SPIRVInstructionSelector::selectPushConstantGetPointer(
4333 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4334 MRI->replaceRegWith(ResVReg, I.getOperand(2).getReg());
4335 return true;
4336}
4337
4338bool SPIRVInstructionSelector::selectResourceNonUniformIndex(
4339 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
4340 Register ObjReg = I.getOperand(2).getReg();
4341 if (!BuildCOPY(ResVReg, ObjReg, I))
4342 return false;
4343
4344 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::NonUniformEXT, {});
4345 // Check for the registers that use the index marked as non-uniform
4346 // and recursively mark them as non-uniform.
4347 // Per the spec, it's necessary that the final argument used for
4348 // load/store/sample/atomic must be decorated, so we need to propagate the
4349 // decoration through access chains and copies.
4350 // https://docs.vulkan.org/samples/latest/samples/extensions/descriptor_indexing/README.html#_when_to_use_non_uniform_indexing_qualifier
4351 decorateUsesAsNonUniform(ResVReg);
4352 return true;
4353}
4354
4355void SPIRVInstructionSelector::decorateUsesAsNonUniform(
4356 Register &NonUniformReg) const {
4357 llvm::SmallVector<Register> WorkList = {NonUniformReg};
4358 while (WorkList.size() > 0) {
4359 Register CurrentReg = WorkList.back();
4360 WorkList.pop_back();
4361
4362 bool IsDecorated = false;
4363 for (MachineInstr &Use : MRI->use_instructions(CurrentReg)) {
4364 if (Use.getOpcode() == SPIRV::OpDecorate &&
4365 Use.getOperand(1).getImm() == SPIRV::Decoration::NonUniformEXT) {
4366 IsDecorated = true;
4367 continue;
4368 }
4369 // Check if the instruction has the result register and add it to the
4370 // worklist.
4371 if (Use.getOperand(0).isReg() && Use.getOperand(0).isDef()) {
4372 Register ResultReg = Use.getOperand(0).getReg();
4373 if (ResultReg == CurrentReg)
4374 continue;
4375 WorkList.push_back(ResultReg);
4376 }
4377 }
4378
4379 if (!IsDecorated) {
4380 buildOpDecorate(CurrentReg, *MRI->getVRegDef(CurrentReg), TII,
4381 SPIRV::Decoration::NonUniformEXT, {});
4382 }
4383 }
4384}
4385
4386bool SPIRVInstructionSelector::extractSubvector(
4387 Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
4388 MachineInstr &InsertionPoint) const {
4389 SPIRVType *InputType = GR.getResultType(ReadReg);
4390 [[maybe_unused]] uint64_t InputSize =
4391 GR.getScalarOrVectorComponentCount(InputType);
4392 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
4393 assert(InputSize > 1 && "The input must be a vector.");
4394 assert(ResultSize > 1 && "The result must be a vector.");
4395 assert(ResultSize < InputSize &&
4396 "Cannot extract more element than there are in the input.");
4397 SmallVector<Register> ComponentRegisters;
4398 SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
4399 const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
4400 for (uint64_t I = 0; I < ResultSize; I++) {
4401 Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
4402 bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
4403 InsertionPoint.getDebugLoc(),
4404 TII.get(SPIRV::OpCompositeExtract))
4405 .addDef(ComponentReg)
4406 .addUse(ScalarType->getOperand(0).getReg())
4407 .addUse(ReadReg)
4408 .addImm(I)
4409 .constrainAllUses(TII, TRI, RBI);
4410 if (!Succeed)
4411 return false;
4412 ComponentRegisters.emplace_back(ComponentReg);
4413 }
4414
4415 MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
4416 InsertionPoint.getDebugLoc(),
4417 TII.get(SPIRV::OpCompositeConstruct))
4418 .addDef(ResVReg)
4419 .addUse(GR.getSPIRVTypeID(ResType));
4420
4421 for (Register ComponentReg : ComponentRegisters)
4422 MIB.addUse(ComponentReg);
4423 return MIB.constrainAllUses(TII, TRI, RBI);
4424}
4425
4426bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
4427 MachineInstr &I) const {
4428 // If the load of the image is in a different basic block, then
4429 // this will generate invalid code. A proper solution is to move
4430 // the OpLoad from selectHandleFromBinding here. However, to do
4431 // that we will need to change the return type of the intrinsic.
4432 // We will do that when we can, but for now trying to move forward with other
4433 // issues.
4434 Register ImageReg = I.getOperand(1).getReg();
4435 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
4436 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
4437 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
4438 *ImageDef, I)) {
4439 return false;
4440 }
4441
4442 Register CoordinateReg = I.getOperand(2).getReg();
4443 Register DataReg = I.getOperand(3).getReg();
4444 assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
4446 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
4447 TII.get(SPIRV::OpImageWrite))
4448 .addUse(NewImageReg)
4449 .addUse(CoordinateReg)
4450 .addUse(DataReg)
4451 .constrainAllUses(TII, TRI, RBI);
4452}
4453
4454Register SPIRVInstructionSelector::buildPointerToResource(
4455 const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
4456 uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
4457 StringRef Name, MachineIRBuilder MIRBuilder) const {
4458 const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
4459 if (ArraySize == 1) {
4460 SPIRVType *PtrType =
4461 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
4462 assert(GR.getPointeeType(PtrType) == SpirvResType &&
4463 "SpirvResType did not have an explicit layout.");
4464 return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
4465 MIRBuilder);
4466 }
4467
4468 const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
4469 SPIRVType *VarPointerType =
4470 GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
4472 VarPointerType, Set, Binding, Name, MIRBuilder);
4473
4474 SPIRVType *ResPointerType =
4475 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
4476 Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
4477
4478 MIRBuilder.buildInstr(SPIRV::OpAccessChain)
4479 .addDef(AcReg)
4480 .addUse(GR.getSPIRVTypeID(ResPointerType))
4481 .addUse(VarReg)
4482 .addUse(IndexReg);
4483
4484 return AcReg;
4485}
4486
4487bool SPIRVInstructionSelector::selectFirstBitSet16(
4488 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4489 unsigned ExtendOpcode, unsigned BitSetOpcode) const {
4490 Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4491 bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
4492 ExtendOpcode);
4493
4494 return Result &&
4495 selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
4496}
4497
4498bool SPIRVInstructionSelector::selectFirstBitSet32(
4499 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4500 Register SrcReg, unsigned BitSetOpcode) const {
4501 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4502 .addDef(ResVReg)
4503 .addUse(GR.getSPIRVTypeID(ResType))
4504 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4505 .addImm(BitSetOpcode)
4506 .addUse(SrcReg)
4507 .constrainAllUses(TII, TRI, RBI);
4508}
4509
4510bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
4511 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4512 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
4513
4514 // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
4515 // requires creating a param register and return register with an invalid
4516 // vector size. If that is resolved, then this function can be used for
4517 // vectors of any component size.
4518 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
4519 assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
4520
4521 MachineIRBuilder MIRBuilder(I);
4523 SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
4524 SPIRVType *I64x2Type =
4525 GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
4526 SPIRVType *Vec2ResType =
4527 GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
4528
4529 std::vector<Register> PartialRegs;
4530
4531 // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
4532 unsigned CurrentComponent = 0;
4533 for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
4534 // This register holds the firstbitX result for each of the i64x2 vectors
4535 // extracted from SrcReg
4536 Register BitSetResult =
4537 MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
4538
4539 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
4540 TII.get(SPIRV::OpVectorShuffle))
4541 .addDef(BitSetResult)
4542 .addUse(GR.getSPIRVTypeID(I64x2Type))
4543 .addUse(SrcReg)
4544 .addUse(SrcReg)
4545 .addImm(CurrentComponent)
4546 .addImm(CurrentComponent + 1);
4547
4548 if (!MIB.constrainAllUses(TII, TRI, RBI))
4549 return false;
4550
4551 Register SubVecBitSetReg =
4552 MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
4553
4554 if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
4555 BitSetOpcode, SwapPrimarySide))
4556 return false;
4557
4558 PartialRegs.push_back(SubVecBitSetReg);
4559 }
4560
4561 // On odd component counts we need to handle one more component
4562 if (CurrentComponent != ComponentCount) {
4563 bool ZeroAsNull = !STI.isShader();
4564 Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
4565 Register ConstIntLastIdx = GR.getOrCreateConstInt(
4566 ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
4567
4568 if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
4569 SPIRV::OpVectorExtractDynamic))
4570 return false;
4571
4572 Register FinalElemBitSetReg =
4573 MRI->createVirtualRegister(GR.getRegClass(BaseType));
4574
4575 if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
4576 BitSetOpcode, SwapPrimarySide))
4577 return false;
4578
4579 PartialRegs.push_back(FinalElemBitSetReg);
4580 }
4581
4582 // Join all the resulting registers back into the return type in order
4583 // (ie i32x2, i32x2, i32x1 -> i32x5)
4584 return selectOpWithSrcs(ResVReg, ResType, I, std::move(PartialRegs),
4585 SPIRV::OpCompositeConstruct);
4586}
4587
4588bool SPIRVInstructionSelector::selectFirstBitSet64(
4589 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
4590 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
4591 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
4593 bool ZeroAsNull = !STI.isShader();
4594 Register ConstIntZero =
4595 GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
4596 Register ConstIntOne =
4597 GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
4598
4599 // SPIRV doesn't support vectors with more than 4 components. Since the
4600 // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
4601 // operate on vectors with 2 or less components. When largers vectors are
4602 // seen. Split them, recurse, then recombine them.
4603 if (ComponentCount > 2) {
4604 return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
4605 BitSetOpcode, SwapPrimarySide);
4606 }
4607
4608 // 1. Split int64 into 2 pieces using a bitcast
4609 MachineIRBuilder MIRBuilder(I);
4610 SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
4611 BaseType, 2 * ComponentCount, MIRBuilder, false);
4612 Register BitcastReg =
4613 MRI->createVirtualRegister(GR.getRegClass(PostCastType));
4614
4615 if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
4616 SPIRV::OpBitcast))
4617 return false;
4618
4619 // 2. Find the first set bit from the primary side for all the pieces in #1
4620 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
4621 if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
4622 return false;
4623
4624 // 3. Split result vector into high bits and low bits
4625 Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4626 Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4627
4628 bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
4629 if (IsScalarRes) {
4630 // if scalar do a vector extract
4631 if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
4632 SPIRV::OpVectorExtractDynamic))
4633 return false;
4634 if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
4635 SPIRV::OpVectorExtractDynamic))
4636 return false;
4637 } else {
4638 // if vector do a shufflevector
4639 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
4640 TII.get(SPIRV::OpVectorShuffle))
4641 .addDef(HighReg)
4642 .addUse(GR.getSPIRVTypeID(ResType))
4643 .addUse(FBSReg)
4644 // Per the spec, repeat the vector if only one vec is needed
4645 .addUse(FBSReg);
4646
4647 // high bits are stored in even indexes. Extract them from FBSReg
4648 for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
4649 MIB.addImm(J);
4650 }
4651
4652 if (!MIB.constrainAllUses(TII, TRI, RBI))
4653 return false;
4654
4655 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
4656 TII.get(SPIRV::OpVectorShuffle))
4657 .addDef(LowReg)
4658 .addUse(GR.getSPIRVTypeID(ResType))
4659 .addUse(FBSReg)
4660 // Per the spec, repeat the vector if only one vec is needed
4661 .addUse(FBSReg);
4662
4663 // low bits are stored in odd indexes. Extract them from FBSReg
4664 for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
4665 MIB.addImm(J);
4666 }
4667 if (!MIB.constrainAllUses(TII, TRI, RBI))
4668 return false;
4669 }
4670
4671 // 4. Check the result. When primary bits == -1 use secondary, otherwise use
4672 // primary
4673 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
4674 Register NegOneReg;
4675 Register Reg0;
4676 Register Reg32;
4677 unsigned SelectOp;
4678 unsigned AddOp;
4679
4680 if (IsScalarRes) {
4681 NegOneReg =
4682 GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
4683 Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
4684 Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
4685 SelectOp = SPIRV::OpSelectSISCond;
4686 AddOp = SPIRV::OpIAddS;
4687 } else {
4688 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
4689 MIRBuilder, false);
4690 NegOneReg =
4691 GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
4692 Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
4693 Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
4694 SelectOp = SPIRV::OpSelectVIVCond;
4695 AddOp = SPIRV::OpIAddV;
4696 }
4697
4698 Register PrimaryReg = HighReg;
4699 Register SecondaryReg = LowReg;
4700 Register PrimaryShiftReg = Reg32;
4701 Register SecondaryShiftReg = Reg0;
4702
4703 // By default the emitted opcodes check for the set bit from the MSB side.
4704 // Setting SwapPrimarySide checks the set bit from the LSB side
4705 if (SwapPrimarySide) {
4706 PrimaryReg = LowReg;
4707 SecondaryReg = HighReg;
4708 PrimaryShiftReg = Reg0;
4709 SecondaryShiftReg = Reg32;
4710 }
4711
4712 // Check if the primary bits are == -1
4713 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
4714 if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
4715 SPIRV::OpIEqual))
4716 return false;
4717
4718 // Select secondary bits if true in BReg, otherwise primary bits
4719 Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4720 if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
4721 SelectOp))
4722 return false;
4723
4724 // 5. Add 32 when high bits are used, otherwise 0 for low bits
4725 Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4726 if (!selectOpWithSrcs(ValReg, ResType, I,
4727 {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
4728 return false;
4729
4730 return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
4731}
4732
4733bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
4734 const SPIRVType *ResType,
4735 MachineInstr &I,
4736 bool IsSigned) const {
4737 // FindUMsb and FindSMsb intrinsics only support 32 bit integers
4738 Register OpReg = I.getOperand(2).getReg();
4739 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
4740 // zero or sign extend
4741 unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
4742 unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
4743
4744 switch (GR.getScalarOrVectorBitWidth(OpType)) {
4745 case 16:
4746 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
4747 case 32:
4748 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
4749 case 64:
4750 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
4751 /*SwapPrimarySide=*/false);
4752 default:
4754 "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
4755 }
4756}
4757
4758bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
4759 const SPIRVType *ResType,
4760 MachineInstr &I) const {
4761 // FindILsb intrinsic only supports 32 bit integers
4762 Register OpReg = I.getOperand(2).getReg();
4763 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
4764 // OpUConvert treats the operand bits as an unsigned i16 and zero extends it
4765 // to an unsigned i32. As this leaves all the least significant bits unchanged
4766 // so the first set bit from the LSB side doesn't change.
4767 unsigned ExtendOpcode = SPIRV::OpUConvert;
4768 unsigned BitSetOpcode = GL::FindILsb;
4769
4770 switch (GR.getScalarOrVectorBitWidth(OpType)) {
4771 case 16:
4772 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
4773 case 32:
4774 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
4775 case 64:
4776 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
4777 /*SwapPrimarySide=*/true);
4778 default:
4779 report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
4780 }
4781}
4782
4783bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
4784 const SPIRVType *ResType,
4785 MachineInstr &I) const {
4786 // there was an allocation size parameter to the allocation instruction
4787 // that is not 1
4788 MachineBasicBlock &BB = *I.getParent();
4789 bool Res = BuildMI(BB, I, I.getDebugLoc(),
4790 TII.get(SPIRV::OpVariableLengthArrayINTEL))
4791 .addDef(ResVReg)
4792 .addUse(GR.getSPIRVTypeID(ResType))
4793 .addUse(I.getOperand(2).getReg())
4794 .constrainAllUses(TII, TRI, RBI);
4795 if (!STI.isShader()) {
4796 unsigned Alignment = I.getOperand(3).getImm();
4797 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
4798 }
4799 return Res;
4800}
4801
4802bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
4803 const SPIRVType *ResType,
4804 MachineInstr &I) const {
4805 // Change order of instructions if needed: all OpVariable instructions in a
4806 // function must be the first instructions in the first block
4807 auto It = getOpVariableMBBIt(I);
4808 bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
4809 TII.get(SPIRV::OpVariable))
4810 .addDef(ResVReg)
4811 .addUse(GR.getSPIRVTypeID(ResType))
4812 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
4813 .constrainAllUses(TII, TRI, RBI);
4814 if (!STI.isShader()) {
4815 unsigned Alignment = I.getOperand(2).getImm();
4816 buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
4817 {Alignment});
4818 }
4819 return Res;
4820}
4821
4822bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
4823 // InstructionSelector walks backwards through the instructions. We can use
4824 // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
4825 // first, so can generate an OpBranchConditional here. If there is no
4826 // G_BRCOND, we just use OpBranch for a regular unconditional branch.
4827 const MachineInstr *PrevI = I.getPrevNode();
4828 MachineBasicBlock &MBB = *I.getParent();
4829 if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
4830 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4831 .addUse(PrevI->getOperand(0).getReg())
4832 .addMBB(PrevI->getOperand(1).getMBB())
4833 .addMBB(I.getOperand(0).getMBB())
4834 .constrainAllUses(TII, TRI, RBI);
4835 }
4836 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
4837 .addMBB(I.getOperand(0).getMBB())
4838 .constrainAllUses(TII, TRI, RBI);
4839}
4840
4841bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
4842 // InstructionSelector walks backwards through the instructions. For an
4843 // explicit conditional branch with no fallthrough, we use both a G_BR and a
4844 // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
4845 // generate the OpBranchConditional in selectBranch above.
4846 //
4847 // If an OpBranchConditional has been generated, we simply return, as the work
4848 // is alread done. If there is no OpBranchConditional, LLVM must be relying on
4849 // implicit fallthrough to the next basic block, so we need to create an
4850 // OpBranchConditional with an explicit "false" argument pointing to the next
4851 // basic block that LLVM would fall through to.
4852 const MachineInstr *NextI = I.getNextNode();
4853 // Check if this has already been successfully selected.
4854 if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
4855 return true;
4856 // Must be relying on implicit block fallthrough, so generate an
4857 // OpBranchConditional with the "next" basic block as the "false" target.
4858 MachineBasicBlock &MBB = *I.getParent();
4859 unsigned NextMBBNum = MBB.getNextNode()->getNumber();
4860 MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
4861 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4862 .addUse(I.getOperand(0).getReg())
4863 .addMBB(I.getOperand(1).getMBB())
4864 .addMBB(NextMBB)
4865 .constrainAllUses(TII, TRI, RBI);
4866}
4867
4868bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
4869 const SPIRVType *ResType,
4870 MachineInstr &I) const {
4871 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
4872 .addDef(ResVReg)
4873 .addUse(GR.getSPIRVTypeID(ResType));
4874 const unsigned NumOps = I.getNumOperands();
4875 for (unsigned i = 1; i < NumOps; i += 2) {
4876 MIB.addUse(I.getOperand(i + 0).getReg());
4877 MIB.addMBB(I.getOperand(i + 1).getMBB());
4878 }
4879 bool Res = MIB.constrainAllUses(TII, TRI, RBI);
4880 MIB->setDesc(TII.get(TargetOpcode::PHI));
4881 MIB->removeOperand(1);
4882 return Res;
4883}
4884
4885bool SPIRVInstructionSelector::selectGlobalValue(
4886 Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
4887 // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
4888 MachineIRBuilder MIRBuilder(I);
4889 const GlobalValue *GV = I.getOperand(1).getGlobal();
4891
4892 std::string GlobalIdent;
4893 if (!GV->hasName()) {
4894 unsigned &ID = UnnamedGlobalIDs[GV];
4895 if (ID == 0)
4896 ID = UnnamedGlobalIDs.size();
4897 GlobalIdent = "__unnamed_" + Twine(ID).str();
4898 } else {
4899 GlobalIdent = GV->getName();
4900 }
4901
4902 // Behaviour of functions as operands depends on availability of the
4903 // corresponding extension (SPV_INTEL_function_pointers):
4904 // - If there is an extension to operate with functions as operands:
4905 // We create a proper constant operand and evaluate a correct type for a
4906 // function pointer.
4907 // - Without the required extension:
4908 // We have functions as operands in tests with blocks of instruction e.g. in
4909 // transcoding/global_block.ll. These operands are not used and should be
4910 // substituted by zero constants. Their type is expected to be always
4911 // OpTypePointer Function %uchar.
4912 if (isa<Function>(GV)) {
4913 const Constant *ConstVal = GV;
4914 MachineBasicBlock &BB = *I.getParent();
4915 Register NewReg = GR.find(ConstVal, GR.CurMF);
4916 if (!NewReg.isValid()) {
4917 Register NewReg = ResVReg;
4918 const Function *GVFun =
4919 STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
4920 ? dyn_cast<Function>(GV)
4921 : nullptr;
4923 GVType, I,
4924 GVFun ? SPIRV::StorageClass::CodeSectionINTEL
4926 if (GVFun) {
4927 // References to a function via function pointers generate virtual
4928 // registers without a definition. We will resolve it later, during
4929 // module analysis stage.
4930 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
4931 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4932 Register FuncVReg =
4933 MRI->createGenericVirtualRegister(GR.getRegType(ResType));
4934 MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
4935 MachineInstrBuilder MIB1 =
4936 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
4937 .addDef(FuncVReg)
4938 .addUse(ResTypeReg);
4939 MachineInstrBuilder MIB2 =
4940 BuildMI(BB, I, I.getDebugLoc(),
4941 TII.get(SPIRV::OpConstantFunctionPointerINTEL))
4942 .addDef(NewReg)
4943 .addUse(ResTypeReg)
4944 .addUse(FuncVReg);
4945 GR.add(ConstVal, MIB2);
4946 // mapping the function pointer to the used Function
4947 GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
4948 return MIB1.constrainAllUses(TII, TRI, RBI) &&
4949 MIB2.constrainAllUses(TII, TRI, RBI);
4950 }
4951 MachineInstrBuilder MIB3 =
4952 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
4953 .addDef(NewReg)
4954 .addUse(GR.getSPIRVTypeID(ResType));
4955 GR.add(ConstVal, MIB3);
4956 return MIB3.constrainAllUses(TII, TRI, RBI);
4957 }
4958 assert(NewReg != ResVReg);
4959 return BuildCOPY(ResVReg, NewReg, I);
4960 }
4962 assert(GlobalVar->getName() != "llvm.global.annotations");
4963
4964 // Skip empty declaration for GVs with initializers till we get the decl with
4965 // passed initializer.
4966 if (hasInitializer(GlobalVar) && !Init)
4967 return true;
4968
4969 const std::optional<SPIRV::LinkageType::LinkageType> LnkType =
4970 getSpirvLinkageTypeFor(STI, *GV);
4971
4972 const unsigned AddrSpace = GV->getAddressSpace();
4973 SPIRV::StorageClass::StorageClass StorageClass =
4974 addressSpaceToStorageClass(AddrSpace, STI);
4975 SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
4977 ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
4978 GlobalVar->isConstant(), LnkType, MIRBuilder, true);
4979 // TODO: For AMDGCN, we pipe externally_initialized through via
4980 // HostAccessINTEL, with ReadWrite (3) access, which is we then handle during
4981 // reverse translation. We should remove this once SPIR-V gains the ability to
4982 // express the concept.
4983 if (GlobalVar->isExternallyInitialized() &&
4984 STI.getTargetTriple().getVendor() == Triple::AMD) {
4985 constexpr unsigned ReadWriteINTEL = 3u;
4986 buildOpDecorate(Reg, MIRBuilder, SPIRV::Decoration::HostAccessINTEL,
4987 {ReadWriteINTEL});
4988 MachineInstrBuilder MIB(*MF, --MIRBuilder.getInsertPt());
4989 addStringImm(GV->getName(), MIB);
4990 }
4991 return Reg.isValid();
4992}
4993
4994bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
4995 const SPIRVType *ResType,
4996 MachineInstr &I) const {
4997 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4998 return selectExtInst(ResVReg, ResType, I, CL::log10);
4999 }
5000
5001 // There is no log10 instruction in the GLSL Extended Instruction set, so it
5002 // is implemented as:
5003 // log10(x) = log2(x) * (1 / log2(10))
5004 // = log2(x) * 0.30103
5005
5006 MachineIRBuilder MIRBuilder(I);
5007 MachineBasicBlock &BB = *I.getParent();
5008
5009 // Build log2(x).
5010 Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
5011 bool Result =
5012 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
5013 .addDef(VarReg)
5014 .addUse(GR.getSPIRVTypeID(ResType))
5015 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
5016 .addImm(GL::Log2)
5017 .add(I.getOperand(1))
5018 .constrainAllUses(TII, TRI, RBI);
5019
5020 // Build 0.30103.
5021 assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
5022 ResType->getOpcode() == SPIRV::OpTypeFloat);
5023 // TODO: Add matrix implementation once supported by the HLSL frontend.
5024 const SPIRVType *SpirvScalarType =
5025 ResType->getOpcode() == SPIRV::OpTypeVector
5026 ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
5027 : ResType;
5028 Register ScaleReg =
5029 GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
5030
5031 // Multiply log2(x) by 0.30103 to get log10(x) result.
5032 auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
5033 ? SPIRV::OpVectorTimesScalar
5034 : SPIRV::OpFMulS;
5035 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
5036 .addDef(ResVReg)
5037 .addUse(GR.getSPIRVTypeID(ResType))
5038 .addUse(VarReg)
5039 .addUse(ScaleReg)
5040 .constrainAllUses(TII, TRI, RBI);
5041}
5042
5043bool SPIRVInstructionSelector::selectModf(Register ResVReg,
5044 const SPIRVType *ResType,
5045 MachineInstr &I) const {
5046 // llvm.modf has a single arg --the number to be decomposed-- and returns a
5047 // struct { restype, restype }, while OpenCLLIB::modf has two args --the
5048 // number to be decomposed and a pointer--, returns the fractional part and
5049 // the integral part is stored in the pointer argument. Therefore, we can't
5050 // use directly the OpenCLLIB::modf intrinsic. However, we can do some
5051 // scaffolding to make it work. The idea is to create an alloca instruction
5052 // to get a ptr, pass this ptr to OpenCL::modf, and then load the value
5053 // from this ptr to place it in the struct. llvm.modf returns the fractional
5054 // part as the first element of the result, and the integral part as the
5055 // second element of the result.
5056
5057 // At this point, the return type is not a struct anymore, but rather two
5058 // independent elements of SPIRVResType. We can get each independent element
5059 // from I.getDefs() or I.getOperands().
5060 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
5061 MachineIRBuilder MIRBuilder(I);
5062 // Get pointer type for alloca variable.
5063 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
5064 ResType, MIRBuilder, SPIRV::StorageClass::Function);
5065 // Create new register for the pointer type of alloca variable.
5066 Register PtrTyReg =
5067 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
5068 MIRBuilder.getMRI()->setType(
5069 PtrTyReg,
5070 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
5071 GR.getPointerSize()));
5072
5073 // Assign SPIR-V type of the pointer type of the alloca variable to the
5074 // new register.
5075 GR.assignSPIRVTypeToVReg(PtrType, PtrTyReg, MIRBuilder.getMF());
5076 MachineBasicBlock &EntryBB = I.getMF()->front();
5079 auto AllocaMIB =
5080 BuildMI(EntryBB, VarPos, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
5081 .addDef(PtrTyReg)
5082 .addUse(GR.getSPIRVTypeID(PtrType))
5083 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function));
5084 Register Variable = AllocaMIB->getOperand(0).getReg();
5085
5086 MachineBasicBlock &BB = *I.getParent();
5087 // Create the OpenCLLIB::modf instruction.
5088 auto MIB =
5089 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
5090 .addDef(ResVReg)
5091 .addUse(GR.getSPIRVTypeID(ResType))
5092 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
5093 .addImm(CL::modf)
5094 .setMIFlags(I.getFlags())
5095 .add(I.getOperand(I.getNumExplicitDefs())) // Floating point value.
5096 .addUse(Variable); // Pointer to integral part.
5097 // Assign the integral part stored in the ptr to the second element of the
5098 // result.
5099 Register IntegralPartReg = I.getOperand(1).getReg();
5100 if (IntegralPartReg.isValid()) {
5101 // Load the value from the pointer to integral part.
5102 auto LoadMIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
5103 .addDef(IntegralPartReg)
5104 .addUse(GR.getSPIRVTypeID(ResType))
5105 .addUse(Variable);
5106 return LoadMIB.constrainAllUses(TII, TRI, RBI);
5107 }
5108
5109 return MIB.constrainAllUses(TII, TRI, RBI);
5110 } else if (STI.canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450)) {
5111 assert(false && "GLSL::Modf is deprecated.");
5112 // FIXME: GL::Modf is deprecated, use Modfstruct instead.
5113 return false;
5114 }
5115 return false;
5116}
5117
5118// Generate the instructions to load 3-element vector builtin input
5119// IDs/Indices.
5120// Like: GlobalInvocationId, LocalInvocationId, etc....
5121
5122bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
5123 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
5124 const SPIRVType *ResType, MachineInstr &I) const {
5125 MachineIRBuilder MIRBuilder(I);
5126 const SPIRVType *Vec3Ty =
5127 GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
5128 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
5129 Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
5130
5131 // Create new register for the input ID builtin variable.
5132 Register NewRegister =
5133 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
5134 MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
5135 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
5136
5137 // Build global variable with the necessary decorations for the input ID
5138 // builtin variable.
5140 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
5141 SPIRV::StorageClass::Input, nullptr, true, std::nullopt, MIRBuilder,
5142 false);
5143
5144 // Create new register for loading value.
5145 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
5146 Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
5147 MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
5148 GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
5149
5150 // Load v3uint value from the global variable.
5151 bool Result =
5152 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
5153 .addDef(LoadedRegister)
5154 .addUse(GR.getSPIRVTypeID(Vec3Ty))
5155 .addUse(Variable);
5156
5157 // Get the input ID index. Expecting operand is a constant immediate value,
5158 // wrapped in a type assignment.
5159 assert(I.getOperand(2).isReg());
5160 const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
5161
5162 // Extract the input ID from the loaded vector value.
5163 MachineBasicBlock &BB = *I.getParent();
5164 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
5165 .addDef(ResVReg)
5166 .addUse(GR.getSPIRVTypeID(ResType))
5167 .addUse(LoadedRegister)
5168 .addImm(ThreadId);
5169 return Result && MIB.constrainAllUses(TII, TRI, RBI);
5170}
5171
5172// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
5173// Like LocalInvocationIndex
5174bool SPIRVInstructionSelector::loadBuiltinInputID(
5175 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
5176 const SPIRVType *ResType, MachineInstr &I) const {
5177 MachineIRBuilder MIRBuilder(I);
5178 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
5179 ResType, MIRBuilder, SPIRV::StorageClass::Input);
5180
5181 // Create new register for the input ID builtin variable.
5182 Register NewRegister =
5183 MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
5184 MIRBuilder.getMRI()->setType(
5185 NewRegister,
5186 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
5187 GR.getPointerSize()));
5188 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
5189
5190 // Build global variable with the necessary decorations for the input ID
5191 // builtin variable.
5193 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
5194 SPIRV::StorageClass::Input, nullptr, true, std::nullopt, MIRBuilder,
5195 false);
5196
5197 // Load uint value from the global variable.
5198 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
5199 .addDef(ResVReg)
5200 .addUse(GR.getSPIRVTypeID(ResType))
5201 .addUse(Variable);
5202
5203 return MIB.constrainAllUses(TII, TRI, RBI);
5204}
5205
5206SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
5207 MachineInstr &I) const {
5208 MachineIRBuilder MIRBuilder(I);
5209 if (Type->getOpcode() != SPIRV::OpTypeVector)
5210 return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
5211
5212 uint64_t VectorSize = Type->getOperand(2).getImm();
5213 if (VectorSize == 4)
5214 return Type;
5215
5216 Register ScalarTypeReg = Type->getOperand(1).getReg();
5217 const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
5218 return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
5219}
5220
5221bool SPIRVInstructionSelector::loadHandleBeforePosition(
5222 Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
5223 MachineInstr &Pos) const {
5224
5225 assert(HandleDef.getIntrinsicID() ==
5226 Intrinsic::spv_resource_handlefrombinding);
5227 uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
5228 uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
5229 uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
5230 Register IndexReg = HandleDef.getOperand(5).getReg();
5231 std::string Name =
5232 getStringValueFromReg(HandleDef.getOperand(6).getReg(), *MRI);
5233
5234 bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
5235 MachineIRBuilder MIRBuilder(HandleDef);
5236 SPIRVType *VarType = ResType;
5237 SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
5238
5239 if (IsStructuredBuffer) {
5240 VarType = GR.getPointeeType(ResType);
5241 SC = GR.getPointerStorageClass(ResType);
5242 }
5243
5244 Register VarReg = buildPointerToResource(VarType, SC, Set, Binding, ArraySize,
5245 IndexReg, Name, MIRBuilder);
5246
5247 // The handle for the buffer is the pointer to the resource. For an image, the
5248 // handle is the image object. So images get an extra load.
5249 uint32_t LoadOpcode =
5250 IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
5251 GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
5252 return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
5253 TII.get(LoadOpcode))
5254 .addDef(HandleReg)
5255 .addUse(GR.getSPIRVTypeID(ResType))
5256 .addUse(VarReg)
5257 .constrainAllUses(TII, TRI, RBI);
5258}
5259
5260void SPIRVInstructionSelector::errorIfInstrOutsideShader(
5261 MachineInstr &I) const {
5262 if (!STI.isShader()) {
5263 std::string DiagMsg;
5264 raw_string_ostream OS(DiagMsg);
5265 I.print(OS, true, false, false, false);
5266 DiagMsg += " is only supported in shaders.\n";
5267 report_fatal_error(DiagMsg.c_str(), false);
5268 }
5269}
5270
5271namespace llvm {
5272InstructionSelector *
5274 const SPIRVSubtarget &Subtarget,
5275 const RegisterBankInfo &RBI) {
5276 return new SPIRVInstructionSelector(TM, Subtarget, RBI);
5277}
5278} // namespace llvm
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
#define GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
@ Generic
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
DXIL Resource Implicit Binding
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
LLVMTypeRef LLVMIntType(unsigned NumBits)
Definition Core.cpp:701
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:57
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static StringRef getName(Value *V)
static unsigned getFCmpOpcode(CmpInst::Predicate Pred, unsigned Size)
static APFloat getOneFP(const Type *LLVMFloatTy)
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC)
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg)
static bool mayApplyGenericSelection(unsigned Opcode)
static APFloat getZeroFP(const Type *LLVMFloatTy)
std::vector< std::pair< SPIRV::InstructionSet::InstructionSet, uint32_t > > ExtInstList
static bool intrinsicHasSideEffects(Intrinsic::ID ID)
static unsigned getBoolCmpOpcode(unsigned PredNum)
static unsigned getICmpOpcode(unsigned PredNum)
static bool isOpcodeWithNoSideEffects(unsigned Opcode)
static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry &GR)
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef, SmallPtrSet< SPIRVType *, 4 > &Visited)
static unsigned getPtrCmpOpcode(unsigned Pred)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
BinaryOperator * Mul
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1151
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1142
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1555
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:679
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:691
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:690
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:684
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:688
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:685
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:692
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:689
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:686
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A debug info location.
Definition DebugLoc.h:123
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:358
Represents a call to an intrinsic.
Intrinsic::ID getIntrinsicID() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isValid() const
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addUse(Register RegNo, RegState Flags={}, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addReg(Register RegNo, RegState Flags={}, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addDef(Register RegNo, RegState Flags={}, unsigned SubReg=0) const
Add a virtual register definition operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MONonTemporal
The memory access is non-temporal.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, false, false, true > use_instr_iterator
use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the specified register,...
defusechain_instr_iterator< false, true, false, true > def_instr_iterator
def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the specified register,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
Analysis providing profile information.
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isValid() const
Definition Register.h:112
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getResultType(Register VReg, MachineFunction *MF=nullptr)
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
MachineInstr * getOrAddMemAliasingINTELInst(MachineIRBuilder &MIRBuilder, const MDNode *AliasingListMD)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, const std::optional< SPIRV::LinkageType::LinkageType > &LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
SPIRVType * changePointerStorageClass(SPIRVType *PtrType, SPIRV::StorageClass::StorageClass SC, MachineInstr &I)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
bool isBitcastCompatible(const SPIRVType *Type1, const SPIRVType *Type2) const
unsigned getScalarOrVectorComponentCount(Register VReg) const
SPIRVType * getOrCreateSPIRVFloatType(unsigned BitWidth, MachineInstr &I, const SPIRVInstrInfo &TII)
bool isScalarOrVectorSigned(const SPIRVType *Type) const
Register getOrCreateGlobalVariableWithBinding(const SPIRVType *VarType, uint32_t Set, uint32_t Binding, StringRef Name, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
void invalidateMachineInstr(MachineInstr *MI)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
bool findValueAttrs(const MachineInstr *Key, Type *&Ty, StringRef &Name)
SPIRVType * getOrCreateOpTypeSampledImage(SPIRVType *ImageType, MachineIRBuilder &MIRBuilder)
void addGlobalObject(const Value *V, const MachineFunction *MF, Register R)
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
void recordFunctionPointer(const MachineOperand *MO, const Function *F)
bool isAggregateType(SPIRVType *Type) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
MachineFunction * setCurrentFunc(MachineFunction &MF)
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Type * getDeducedGlobalValueType(const GlobalValue *Global)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
const SPIRVType * retrieveScalarOrVectorIntType(const SPIRVType *Type) const
bool erase(const MachineInstr *MI)
bool add(SPIRV::IRHandle Handle, const MachineInstr *MI)
Register find(SPIRV::IRHandle Handle, const MachineFunction *MF)
bool isPhysicalSPIRV() const
bool isAtLeastSPIRVVer(VersionTuple VerToCompareTo) const
bool canUseExtInstSet(SPIRV::InstructionSet::InstructionSet E) const
bool isLogicalSPIRV() const
bool canUseExtension(SPIRV::Extension::Extension E) const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:413
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition Type.h:304
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Value * getOperand(unsigned i) const
Definition User.h:207
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
int64_t getIConstValSext(Register ConstReg, const MachineRegisterInfo *MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isTypeFoldingSupported(unsigned Opcode)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
Definition InstrProf.h:296
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1731
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, const MachineInstr *ResType)
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:244
MachineBasicBlock::iterator getFirstValidInstructionInsertPoint(MachineBasicBlock &BB)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Type * toTypedPointer(Type *Ty)
Definition SPIRVUtils.h:458
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
const MachineInstr SPIRVType
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:229
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MachineInstr * passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
std::optional< SPIRV::LinkageType::LinkageType > getSpirvLinkageTypeFor(const SPIRVSubtarget &ST, const GlobalValue &GV)
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
SPIRV::StorageClass::StorageClass addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI)
AtomicOrdering
Atomic ordering for LLVM's memory model.
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id)
InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI)
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI)
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
DWARFExpression::Operation Op
MachineInstr * getDefInstrMaybeConstant(Register &ConstReg, const MachineRegisterInfo *MRI)
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
bool hasInitializer(const GlobalVariable *GV)
Definition SPIRVUtils.h:346
void addStringImm(const StringRef &Str, MCInst &Inst)
MachineInstr * getVRegDef(MachineRegisterInfo &MRI, Register Reg)
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord)
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
LLVM_ABI bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition Utils.cpp:222
#define N