LLVM 19.0.0git
MachineCombiner.cpp
Go to the documentation of this file.
1//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The machine combiner pass uses machine trace metrics to ensure the combined
10// instructions do not lengthen the critical path or the resource depth.
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/Debug.h"
34
35using namespace llvm;
36
37#define DEBUG_TYPE "machine-combiner"
38
39STATISTIC(NumInstCombined, "Number of machineinst combined");
40
42inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
43 cl::desc("Incremental depth computation will be used for basic "
44 "blocks with more instructions."), cl::init(500));
45
46static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
47 cl::desc("Dump all substituted intrs"),
48 cl::init(false));
49
50#ifdef EXPENSIVE_CHECKS
52 "machine-combiner-verify-pattern-order", cl::Hidden,
54 "Verify that the generated patterns are ordered by increasing latency"),
55 cl::init(true));
56#else
58 "machine-combiner-verify-pattern-order", cl::Hidden,
60 "Verify that the generated patterns are ordered by increasing latency"),
61 cl::init(false));
62#endif
63
64namespace {
65class MachineCombiner : public MachineFunctionPass {
66 const TargetSubtargetInfo *STI = nullptr;
67 const TargetInstrInfo *TII = nullptr;
68 const TargetRegisterInfo *TRI = nullptr;
69 MCSchedModel SchedModel;
70 MachineRegisterInfo *MRI = nullptr;
71 MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo
72 MachineTraceMetrics *Traces = nullptr;
73 MachineTraceMetrics::Ensemble *TraceEnsemble = nullptr;
74 MachineBlockFrequencyInfo *MBFI = nullptr;
75 ProfileSummaryInfo *PSI = nullptr;
76 RegisterClassInfo RegClassInfo;
77
78 TargetSchedModel TSchedModel;
79
80 /// True if optimizing for code size.
81 bool OptSize = false;
82
83public:
84 static char ID;
85 MachineCombiner() : MachineFunctionPass(ID) {
87 }
88 void getAnalysisUsage(AnalysisUsage &AU) const override;
89 bool runOnMachineFunction(MachineFunction &MF) override;
90 StringRef getPassName() const override { return "Machine InstCombiner"; }
91
92private:
93 bool combineInstructions(MachineBasicBlock *);
94 MachineInstr *getOperandDef(const MachineOperand &MO);
95 bool isTransientMI(const MachineInstr *MI);
96 unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
97 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
99 const MachineBasicBlock &MBB);
100 unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
101 MachineTraceMetrics::Trace BlockTrace);
102 bool improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
106 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
107 unsigned Pattern, bool SlackIsAccurate);
108 bool reduceRegisterPressure(MachineInstr &Root, MachineBasicBlock *MBB,
111 unsigned Pattern);
112 bool preservesResourceLen(MachineBasicBlock *MBB,
116 void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
118 std::pair<unsigned, unsigned>
119 getLatenciesForInstrSequences(MachineInstr &MI,
122 MachineTraceMetrics::Trace BlockTrace);
123
124 void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
125 SmallVector<unsigned, 16> &Patterns);
126 CombinerObjective getCombinerObjective(unsigned Pattern);
127};
128}
129
130char MachineCombiner::ID = 0;
131char &llvm::MachineCombinerID = MachineCombiner::ID;
132
134 "Machine InstCombiner", false, false)
139
140void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
141 AU.setPreservesCFG();
142 AU.addPreserved<MachineDominatorTree>();
143 AU.addRequired<MachineLoopInfo>();
144 AU.addPreserved<MachineLoopInfo>();
145 AU.addRequired<MachineTraceMetrics>();
146 AU.addPreserved<MachineTraceMetrics>();
147 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
148 AU.addRequired<ProfileSummaryInfoWrapperPass>();
150}
151
153MachineCombiner::getOperandDef(const MachineOperand &MO) {
154 MachineInstr *DefInstr = nullptr;
155 // We need a virtual register definition.
156 if (MO.isReg() && MO.getReg().isVirtual())
157 DefInstr = MRI->getUniqueVRegDef(MO.getReg());
158 return DefInstr;
159}
160
161/// Return true if MI is unlikely to generate an actual target instruction.
162bool MachineCombiner::isTransientMI(const MachineInstr *MI) {
163 if (!MI->isCopy())
164 return MI->isTransient();
165
166 // If MI is a COPY, check if its src and dst registers can be coalesced.
167 Register Dst = MI->getOperand(0).getReg();
168 Register Src = MI->getOperand(1).getReg();
169
170 if (!MI->isFullCopy()) {
171 // If src RC contains super registers of dst RC, it can also be coalesced.
172 if (MI->getOperand(0).getSubReg() || Src.isPhysical() || Dst.isPhysical())
173 return false;
174
175 auto SrcSub = MI->getOperand(1).getSubReg();
176 auto SrcRC = MRI->getRegClass(Src);
177 auto DstRC = MRI->getRegClass(Dst);
178 return TRI->getMatchingSuperRegClass(SrcRC, DstRC, SrcSub) != nullptr;
179 }
180
181 if (Src.isPhysical() && Dst.isPhysical())
182 return Src == Dst;
183
184 if (Src.isVirtual() && Dst.isVirtual()) {
185 auto SrcRC = MRI->getRegClass(Src);
186 auto DstRC = MRI->getRegClass(Dst);
187 return SrcRC->hasSuperClassEq(DstRC) || SrcRC->hasSubClassEq(DstRC);
188 }
189
190 if (Src.isVirtual())
191 std::swap(Src, Dst);
192
193 // Now Src is physical register, Dst is virtual register.
194 auto DstRC = MRI->getRegClass(Dst);
195 return DstRC->contains(Src);
196}
197
198/// Computes depth of instructions in vector \InsInstr.
199///
200/// \param InsInstrs is a vector of machine instructions
201/// \param InstrIdxForVirtReg is a dense map of virtual register to index
202/// of defining machine instruction in \p InsInstrs
203/// \param BlockTrace is a trace of machine instructions
204///
205/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
206unsigned
207MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
208 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
210 const MachineBasicBlock &MBB) {
211 SmallVector<unsigned, 16> InstrDepth;
212 // For each instruction in the new sequence compute the depth based on the
213 // operands. Use the trace information when possible. For new operands which
214 // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
215 for (auto *InstrPtr : InsInstrs) { // for each Use
216 unsigned IDepth = 0;
217 for (const MachineOperand &MO : InstrPtr->all_uses()) {
218 // Check for virtual register operand.
219 if (!MO.getReg().isVirtual())
220 continue;
221 unsigned DepthOp = 0;
222 unsigned LatencyOp = 0;
224 InstrIdxForVirtReg.find(MO.getReg());
225 if (II != InstrIdxForVirtReg.end()) {
226 // Operand is new virtual register not in trace
227 assert(II->second < InstrDepth.size() && "Bad Index");
228 MachineInstr *DefInstr = InsInstrs[II->second];
229 assert(DefInstr &&
230 "There must be a definition for a new virtual register");
231 DepthOp = InstrDepth[II->second];
232 int DefIdx =
233 DefInstr->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr);
234 int UseIdx =
235 InstrPtr->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr);
236 LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
237 InstrPtr, UseIdx);
238 } else {
239 MachineInstr *DefInstr = getOperandDef(MO);
240 if (DefInstr && (TII->getMachineCombinerTraceStrategy() !=
241 MachineTraceStrategy::TS_Local ||
242 DefInstr->getParent() == &MBB)) {
243 DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
244 if (!isTransientMI(DefInstr))
245 LatencyOp = TSchedModel.computeOperandLatency(
246 DefInstr,
247 DefInstr->findRegisterDefOperandIdx(MO.getReg(),
248 /*TRI=*/nullptr),
249 InstrPtr,
250 InstrPtr->findRegisterUseOperandIdx(MO.getReg(),
251 /*TRI=*/nullptr));
252 }
253 }
254 IDepth = std::max(IDepth, DepthOp + LatencyOp);
255 }
256 InstrDepth.push_back(IDepth);
257 }
258 unsigned NewRootIdx = InsInstrs.size() - 1;
259 return InstrDepth[NewRootIdx];
260}
261
262/// Computes instruction latency as max of latency of defined operands.
263///
264/// \param Root is a machine instruction that could be replaced by NewRoot.
265/// It is used to compute a more accurate latency information for NewRoot in
266/// case there is a dependent instruction in the same trace (\p BlockTrace)
267/// \param NewRoot is the instruction for which the latency is computed
268/// \param BlockTrace is a trace of machine instructions
269///
270/// \returns Latency of \p NewRoot
271unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
272 MachineTraceMetrics::Trace BlockTrace) {
273 // Check each definition in NewRoot and compute the latency
274 unsigned NewRootLatency = 0;
275
276 for (const MachineOperand &MO : NewRoot->all_defs()) {
277 // Check for virtual register operand.
278 if (!MO.getReg().isVirtual())
279 continue;
280 // Get the first instruction that uses MO
281 MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
282 RI++;
283 if (RI == MRI->reg_end())
284 continue;
285 MachineInstr *UseMO = RI->getParent();
286 unsigned LatencyOp = 0;
287 if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
288 LatencyOp = TSchedModel.computeOperandLatency(
289 NewRoot,
290 NewRoot->findRegisterDefOperandIdx(MO.getReg(), /*TRI=*/nullptr),
291 UseMO,
292 UseMO->findRegisterUseOperandIdx(MO.getReg(), /*TRI=*/nullptr));
293 } else {
294 LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
295 }
296 NewRootLatency = std::max(NewRootLatency, LatencyOp);
297 }
298 return NewRootLatency;
299}
300
301CombinerObjective MachineCombiner::getCombinerObjective(unsigned Pattern) {
302 // TODO: If C++ ever gets a real enum class, make this part of the
303 // MachineCombinerPattern class.
304 switch (Pattern) {
305 case MachineCombinerPattern::REASSOC_AX_BY:
306 case MachineCombinerPattern::REASSOC_AX_YB:
307 case MachineCombinerPattern::REASSOC_XA_BY:
308 case MachineCombinerPattern::REASSOC_XA_YB:
309 return CombinerObjective::MustReduceDepth;
310 default:
311 return TII->getCombinerObjective(Pattern);
312 }
313}
314
315/// Estimate the latency of the new and original instruction sequence by summing
316/// up the latencies of the inserted and deleted instructions. This assumes
317/// that the inserted and deleted instructions are dependent instruction chains,
318/// which might not hold in all cases.
319std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
322 MachineTraceMetrics::Trace BlockTrace) {
323 assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
324 unsigned NewRootLatency = 0;
325 // NewRoot is the last instruction in the \p InsInstrs vector.
326 MachineInstr *NewRoot = InsInstrs.back();
327 for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
328 NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
329 NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
330
331 unsigned RootLatency = 0;
332 for (auto *I : DelInstrs)
333 RootLatency += TSchedModel.computeInstrLatency(I);
334
335 return {NewRootLatency, RootLatency};
336}
337
338bool MachineCombiner::reduceRegisterPressure(
341 SmallVectorImpl<MachineInstr *> &DelInstrs, unsigned Pattern) {
342 // FIXME: for now, we don't do any check for the register pressure patterns.
343 // We treat them as always profitable. But we can do better if we make
344 // RegPressureTracker class be aware of TIE attribute. Then we can get an
345 // accurate compare of register pressure with DelInstrs or InsInstrs.
346 return true;
347}
348
349/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
350/// The new code sequence ends in MI NewRoot. A necessary condition for the new
351/// sequence to replace the old sequence is that it cannot lengthen the critical
352/// path. The definition of "improve" may be restricted by specifying that the
353/// new path improves the data dependency chain (MustReduceDepth).
354bool MachineCombiner::improvesCriticalPathLen(
359 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg, unsigned Pattern,
360 bool SlackIsAccurate) {
361 // Get depth and latency of NewRoot and Root.
362 unsigned NewRootDepth =
363 getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace, *MBB);
364 unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
365
366 LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: "
367 << NewRootDepth << "\tRootDepth: " << RootDepth);
368
369 // For a transform such as reassociation, the cost equation is
370 // conservatively calculated so that we must improve the depth (data
371 // dependency cycles) in the critical path to proceed with the transform.
372 // Being conservative also protects against inaccuracies in the underlying
373 // machine trace metrics and CPU models.
374 if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
375 LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
376 LLVM_DEBUG(NewRootDepth < RootDepth
377 ? dbgs() << "\t and it does it\n"
378 : dbgs() << "\t but it does NOT do it\n");
379 return NewRootDepth < RootDepth;
380 }
381
382 // A more flexible cost calculation for the critical path includes the slack
383 // of the original code sequence. This may allow the transform to proceed
384 // even if the instruction depths (data dependency cycles) become worse.
385
386 // Account for the latency of the inserted and deleted instructions by
387 unsigned NewRootLatency, RootLatency;
388 if (TII->accumulateInstrSeqToRootLatency(*Root)) {
389 std::tie(NewRootLatency, RootLatency) =
390 getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
391 } else {
392 NewRootLatency = TSchedModel.computeInstrLatency(InsInstrs.back());
393 RootLatency = TSchedModel.computeInstrLatency(Root);
394 }
395
396 unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
397 unsigned NewCycleCount = NewRootDepth + NewRootLatency;
398 unsigned OldCycleCount =
399 RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
400 LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
401 << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
402 << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
403 << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
404 << "\n\tRootDepth + RootLatency + RootSlack = "
405 << OldCycleCount;);
406 LLVM_DEBUG(NewCycleCount <= OldCycleCount
407 ? dbgs() << "\n\t It IMPROVES PathLen because"
408 : dbgs() << "\n\t It DOES NOT improve PathLen because");
409 LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
410 << ", OldCycleCount = " << OldCycleCount << "\n");
411
412 return NewCycleCount <= OldCycleCount;
413}
414
415/// helper routine to convert instructions into SC
416void MachineCombiner::instr2instrSC(
419 for (auto *InstrPtr : Instrs) {
420 unsigned Opc = InstrPtr->getOpcode();
421 unsigned Idx = TII->get(Opc).getSchedClass();
422 const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
423 InstrsSC.push_back(SC);
424 }
425}
426
427/// True when the new instructions do not increase resource length
428bool MachineCombiner::preservesResourceLen(
432 if (!TSchedModel.hasInstrSchedModel())
433 return true;
434
435 // Compute current resource length
436
437 //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
438 SmallVector <const MachineBasicBlock *, 1> MBBarr;
439 MBBarr.push_back(MBB);
440 unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
441
442 // Deal with SC rather than Instructions.
445
446 instr2instrSC(InsInstrs, InsInstrsSC);
447 instr2instrSC(DelInstrs, DelInstrsSC);
448
449 ArrayRef<const MCSchedClassDesc *> MSCInsArr{InsInstrsSC};
450 ArrayRef<const MCSchedClassDesc *> MSCDelArr{DelInstrsSC};
451
452 // Compute new resource length.
453 unsigned ResLenAfterCombine =
454 BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
455
456 LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
457 << ResLenBeforeCombine
458 << " and after: " << ResLenAfterCombine << "\n";);
460 ResLenAfterCombine <=
461 ResLenBeforeCombine + TII->getExtendResourceLenLimit()
462 ? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n"
463 : dbgs() << "\t\t As result it DOES NOT improve/preserve Resource "
464 "Length\n");
465
466 return ResLenAfterCombine <=
467 ResLenBeforeCombine + TII->getExtendResourceLenLimit();
468}
469
470/// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
471/// depths if requested.
472///
473/// \param MBB basic block to insert instructions in
474/// \param MI current machine instruction
475/// \param InsInstrs new instructions to insert in \p MBB
476/// \param DelInstrs instruction to delete from \p MBB
477/// \param TraceEnsemble is a pointer to the machine trace information
478/// \param RegUnits set of live registers, needed to compute instruction depths
479/// \param TII is target instruction info, used to call target hook
480/// \param Pattern is used to call target hook finalizeInsInstrs
481/// \param IncrementalUpdate if true, compute instruction depths incrementally,
482/// otherwise invalidate the trace
483static void
487 MachineTraceMetrics::Ensemble *TraceEnsemble,
488 SparseSet<LiveRegUnit> &RegUnits,
489 const TargetInstrInfo *TII, unsigned Pattern,
490 bool IncrementalUpdate) {
491 // If we want to fix up some placeholder for some target, do it now.
492 // We need this because in genAlternativeCodeSequence, we have not decided the
493 // better pattern InsInstrs or DelInstrs, so we don't want generate some
494 // sideeffect to the function. For example we need to delay the constant pool
495 // entry creation here after InsInstrs is selected as better pattern.
496 // Otherwise the constant pool entry created for InsInstrs will not be deleted
497 // even if InsInstrs is not the better pattern.
498 TII->finalizeInsInstrs(MI, Pattern, InsInstrs);
499
500 for (auto *InstrPtr : InsInstrs)
502
503 for (auto *InstrPtr : DelInstrs) {
504 InstrPtr->eraseFromParent();
505 // Erase all LiveRegs defined by the removed instruction
506 for (auto *I = RegUnits.begin(); I != RegUnits.end();) {
507 if (I->MI == InstrPtr)
508 I = RegUnits.erase(I);
509 else
510 I++;
511 }
512 }
513
514 if (IncrementalUpdate)
515 for (auto *InstrPtr : InsInstrs)
516 TraceEnsemble->updateDepth(MBB, *InstrPtr, RegUnits);
517 else
518 TraceEnsemble->invalidate(MBB);
519
520 NumInstCombined++;
521}
522
523// Check that the difference between original and new latency is decreasing for
524// later patterns. This helps to discover sub-optimal pattern orderings.
525void MachineCombiner::verifyPatternOrder(MachineBasicBlock *MBB,
526 MachineInstr &Root,
527 SmallVector<unsigned, 16> &Patterns) {
528 long PrevLatencyDiff = std::numeric_limits<long>::max();
529 (void)PrevLatencyDiff; // Variable is used in assert only.
530 for (auto P : Patterns) {
533 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
534 TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
535 InstrIdxForVirtReg);
536 // Found pattern, but did not generate alternative sequence.
537 // This can happen e.g. when an immediate could not be materialized
538 // in a single instruction.
539 if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
540 continue;
541
542 unsigned NewRootLatency, RootLatency;
543 std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
544 Root, InsInstrs, DelInstrs, TraceEnsemble->getTrace(MBB));
545 long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
546 assert(CurrentLatencyDiff <= PrevLatencyDiff &&
547 "Current pattern is better than previous pattern.");
548 PrevLatencyDiff = CurrentLatencyDiff;
549 }
550}
551
552/// Substitute a slow code sequence with a faster one by
553/// evaluating instruction combining pattern.
554/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
555/// combining based on machine trace metrics. Only combine a sequence of
556/// instructions when this neither lengthens the critical path nor increases
557/// resource pressure. When optimizing for codesize always combine when the new
558/// sequence is shorter.
559bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
560 bool Changed = false;
561 LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
562
563 bool IncrementalUpdate = false;
564 auto BlockIter = MBB->begin();
565 decltype(BlockIter) LastUpdate;
566 // Check if the block is in a loop.
567 const MachineLoop *ML = MLI->getLoopFor(MBB);
568 if (!TraceEnsemble)
569 TraceEnsemble = Traces->getEnsemble(TII->getMachineCombinerTraceStrategy());
570
571 SparseSet<LiveRegUnit> RegUnits;
572 RegUnits.setUniverse(TRI->getNumRegUnits());
573
574 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
575
576 bool DoRegPressureReduce =
577 TII->shouldReduceRegisterPressure(MBB, &RegClassInfo);
578
579 while (BlockIter != MBB->end()) {
580 auto &MI = *BlockIter++;
582 // The motivating example is:
583 //
584 // MUL Other MUL_op1 MUL_op2 Other
585 // \ / \ | /
586 // ADD/SUB => MADD/MSUB
587 // (=Root) (=NewRoot)
588
589 // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
590 // usually beneficial for code size it unfortunately can hurt performance
591 // when the ADD is on the critical path, but the MUL is not. With the
592 // substitution the MUL becomes part of the critical path (in form of the
593 // MADD) and can lengthen it on architectures where the MADD latency is
594 // longer than the ADD latency.
595 //
596 // For each instruction we check if it can be the root of a combiner
597 // pattern. Then for each pattern the new code sequence in form of MI is
598 // generated and evaluated. When the efficiency criteria (don't lengthen
599 // critical path, don't use more resources) is met the new sequence gets
600 // hooked up into the basic block before the old sequence is removed.
601 //
602 // The algorithm does not try to evaluate all patterns and pick the best.
603 // This is only an artificial restriction though. In practice there is
604 // mostly one pattern, and getMachineCombinerPatterns() can order patterns
605 // based on an internal cost heuristic. If
606 // machine-combiner-verify-pattern-order is enabled, all patterns are
607 // checked to ensure later patterns do not provide better latency savings.
608
609 if (!TII->getMachineCombinerPatterns(MI, Patterns, DoRegPressureReduce))
610 continue;
611
613 verifyPatternOrder(MBB, MI, Patterns);
614
615 for (const auto P : Patterns) {
618 DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
619 TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
620 InstrIdxForVirtReg);
621 // Found pattern, but did not generate alternative sequence.
622 // This can happen e.g. when an immediate could not be materialized
623 // in a single instruction.
624 if (InsInstrs.empty())
625 continue;
626
628 dbgs() << "\tFor the Pattern (" << (int)P
629 << ") these instructions could be removed\n";
630 for (auto const *InstrPtr : DelInstrs)
631 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
632 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
633 dbgs() << "\tThese instructions could replace the removed ones\n";
634 for (auto const *InstrPtr : InsInstrs)
635 InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
636 /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
637 });
638
639 if (IncrementalUpdate && LastUpdate != BlockIter) {
640 // Update depths since the last incremental update.
641 TraceEnsemble->updateDepths(LastUpdate, BlockIter, RegUnits);
642 LastUpdate = BlockIter;
643 }
644
645 if (DoRegPressureReduce &&
646 getCombinerObjective(P) ==
647 CombinerObjective::MustReduceRegisterPressure) {
648 if (MBB->size() > inc_threshold) {
649 // Use incremental depth updates for basic blocks above threshold
650 IncrementalUpdate = true;
651 LastUpdate = BlockIter;
652 }
653 if (reduceRegisterPressure(MI, MBB, InsInstrs, DelInstrs, P)) {
654 // Replace DelInstrs with InsInstrs.
655 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
656 RegUnits, TII, P, IncrementalUpdate);
657 Changed |= true;
658
659 // Go back to previous instruction as it may have ILP reassociation
660 // opportunity.
661 BlockIter--;
662 break;
663 }
664 }
665
666 if (ML && TII->isThroughputPattern(P)) {
667 LLVM_DEBUG(dbgs() << "\t Replacing due to throughput pattern in loop\n");
668 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
669 RegUnits, TII, P, IncrementalUpdate);
670 // Eagerly stop after the first pattern fires.
671 Changed = true;
672 break;
673 } else if (OptForSize && InsInstrs.size() < DelInstrs.size()) {
674 LLVM_DEBUG(dbgs() << "\t Replacing due to OptForSize ("
675 << InsInstrs.size() << " < "
676 << DelInstrs.size() << ")\n");
677 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
678 RegUnits, TII, P, IncrementalUpdate);
679 // Eagerly stop after the first pattern fires.
680 Changed = true;
681 break;
682 } else {
683 // For big basic blocks, we only compute the full trace the first time
684 // we hit this. We do not invalidate the trace, but instead update the
685 // instruction depths incrementally.
686 // NOTE: Only the instruction depths up to MI are accurate. All other
687 // trace information is not updated.
688 MachineTraceMetrics::Trace BlockTrace = TraceEnsemble->getTrace(MBB);
689 Traces->verifyAnalysis();
690 if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
691 InstrIdxForVirtReg, P,
692 !IncrementalUpdate) &&
693 preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
694 if (MBB->size() > inc_threshold) {
695 // Use incremental depth updates for basic blocks above treshold
696 IncrementalUpdate = true;
697 LastUpdate = BlockIter;
698 }
699
700 insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, TraceEnsemble,
701 RegUnits, TII, P, IncrementalUpdate);
702
703 // Eagerly stop after the first pattern fires.
704 Changed = true;
705 break;
706 }
707 // Cleanup instructions of the alternative code sequence. There is no
708 // use for them.
710 for (auto *InstrPtr : InsInstrs)
711 MF->deleteMachineInstr(InstrPtr);
712 }
713 InstrIdxForVirtReg.clear();
714 }
715 }
716
717 if (Changed && IncrementalUpdate)
718 Traces->invalidate(MBB);
719 return Changed;
720}
721
722bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
723 STI = &MF.getSubtarget();
724 TII = STI->getInstrInfo();
725 TRI = STI->getRegisterInfo();
726 SchedModel = STI->getSchedModel();
727 TSchedModel.init(STI);
728 MRI = &MF.getRegInfo();
729 MLI = &getAnalysis<MachineLoopInfo>();
730 Traces = &getAnalysis<MachineTraceMetrics>();
731 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
732 MBFI = (PSI && PSI->hasProfileSummary()) ?
733 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
734 nullptr;
735 TraceEnsemble = nullptr;
736 OptSize = MF.getFunction().hasOptSize();
737 RegClassInfo.runOnMachineFunction(MF);
738
739 LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
740 if (!TII->useMachineCombiner()) {
742 dbgs()
743 << " Skipping pass: Target does not support machine combiner\n");
744 return false;
745 }
746
747 bool Changed = false;
748
749 // Try to combine instructions.
750 for (auto &MBB : MF)
751 Changed |= combineInstructions(&MBB);
752
753 return Changed;
754}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:371
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
static int getLatency(LLVMDisasmContext *DC, const MCInst &Inst)
Gets latency information for Inst, based on DC information.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
===- LazyMachineBlockFrequencyInfo.h - Lazy Block Frequency -*- C++ -*–===//
#define I(x, y, z)
Definition: MD5.cpp:58
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, MachineTraceMetrics::Ensemble *TraceEnsemble, SparseSet< LiveRegUnit > &RegUnits, const TargetInstrInfo *TII, unsigned Pattern, bool IncrementalUpdate)
Inserts InsInstrs and deletes DelInstrs.
static cl::opt< bool > VerifyPatternOrder("machine-combiner-verify-pattern-order", cl::Hidden, cl::desc("Verify that the generated patterns are ordered by increasing latency"), cl::init(false))
static cl::opt< unsigned > inc_threshold("machine-combiner-inc-threshold", cl::Hidden, cl::desc("Incremental depth computation will be used for basic " "blocks with more instructions."), cl::init(500))
static cl::opt< bool > dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden, cl::desc("Dump all substituted intrs"), cl::init(false))
#define DEBUG_TYPE
unsigned const TargetRegisterInfo * TRI
#define P(N)
if(VerifyEach)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
iterator end()
Definition: DenseMap.h:84
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:685
The core instruction combiner logic.
Definition: InstCombiner.h:47
This is an alternative analysis pass to MachineBlockFrequencyInfo.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
void deleteMachineInstr(MachineInstr *MI)
DeleteMachineInstr - Delete the given MachineInstr.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:341
int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isKill=false) const
Returns the operand index that is a use of the specific register or -1 if it is not found.
iterator_range< filtered_mop_iterator > all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
Definition: MachineInstr.h:745
int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false) const
Returns the operand index that is a def of the specified register or -1 if it is not found.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
Register getReg() const
getReg - Returns the register number.
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A trace ensemble is a collection of traces selected using the same strategy, for example 'minimum res...
void invalidate(const MachineBasicBlock *MBB)
Invalidate traces through BadMBB.
void updateDepth(TraceBlockInfo &TBI, const MachineInstr &, SparseSet< LiveRegUnit > &RegUnits)
Updates the depth of an machine instruction, given RegUnits.
A trace represents a plausible sequence of executed basic blocks that passes through the current basi...
InstrCycles getInstrCycles(const MachineInstr &MI) const
Return the depth and height of MI.
unsigned getInstrSlack(const MachineInstr &MI) const
Return the slack of MI.
bool isDepInTrace(const MachineInstr &DefMI, const MachineInstr &UseMI) const
A dependence is useful if the basic block of the defining instruction is part of the trace of the use...
unsigned getResourceLength(ArrayRef< const MachineBasicBlock * > Extrablocks=std::nullopt, ArrayRef< const MCSchedClassDesc * > ExtraInstrs=std::nullopt, ArrayRef< const MCSchedClassDesc * > RemoveInstrs=std::nullopt) const
Return the resource length of the trace.
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
SparseSet - Fast set implementation for objects that can be identified by small unsigned keys.
Definition: SparseSet.h:124
iterator erase(iterator I)
erase - Erases an existing element identified by a valid iterator.
Definition: SparseSet.h:289
const_iterator begin() const
Definition: SparseSet.h:174
const_iterator end() const
Definition: SparseSet.h:175
void setUniverse(unsigned U)
setUniverse - Set the universe size which determines the largest key the set can hold.
Definition: SparseSet.h:155
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
char & MachineCombinerID
This pass performs instruction combining using trace metrics to estimate critical-path and resource d...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
void initializeMachineCombinerPass(PassRegistry &)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Definition: MCSchedule.h:118
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:253
unsigned Depth
Earliest issue cycle as determined by data dependencies and instruction latencies from the beginning ...