LLVM 19.0.0git
MipsBranchExpansion.cpp
Go to the documentation of this file.
1//===----------------------- MipsBranchExpansion.cpp ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This pass do two things:
11/// - it expands a branch or jump instruction into a long branch if its offset
12/// is too large to fit into its immediate field,
13/// - it inserts nops to prevent forbidden slot hazards.
14///
15/// The reason why this pass combines these two tasks is that one of these two
16/// tasks can break the result of the previous one.
17///
18/// Example of that is a situation where at first, no branch should be expanded,
19/// but after adding at least one nop somewhere in the code to prevent a
20/// forbidden slot hazard, offset of some branches may go out of range. In that
21/// case it is necessary to check again if there is some branch that needs
22/// expansion. On the other hand, expanding some branch may cause a control
23/// transfer instruction to appear in the forbidden slot, which is a hazard that
24/// should be fixed. This pass alternates between this two tasks untill no
25/// changes are made. Only then we can be sure that all branches are expanded
26/// properly, and no hazard situations exist.
27///
28/// Regarding branch expanding:
29///
30/// When branch instruction like beqzc or bnezc has offset that is too large
31/// to fit into its immediate field, it has to be expanded to another
32/// instruction or series of instructions.
33///
34/// FIXME: Fix pc-region jump instructions which cross 256MB segment boundaries.
35/// TODO: Handle out of range bc, b (pseudo) instructions.
36///
37/// Regarding compact branch hazard prevention:
38///
39/// Hazards handled: forbidden slots for MIPSR6, FPU slots for MIPS3 and below,
40/// load delay slots for MIPS1.
41///
42/// A forbidden slot hazard occurs when a compact branch instruction is executed
43/// and the adjacent instruction in memory is a control transfer instruction
44/// such as a branch or jump, ERET, ERETNC, DERET, WAIT and PAUSE.
45///
46/// For example:
47///
48/// 0x8004 bnec a1,v0,<P+0x18>
49/// 0x8008 beqc a1,a2,<P+0x54>
50///
51/// In such cases, the processor is required to signal a Reserved Instruction
52/// exception.
53///
54/// Here, if the instruction at 0x8004 is executed, the processor will raise an
55/// exception as there is a control transfer instruction at 0x8008.
56///
57/// There are two sources of forbidden slot hazards:
58///
59/// A) A previous pass has created a compact branch directly.
60/// B) Transforming a delay slot branch into compact branch. This case can be
61/// difficult to process as lookahead for hazards is insufficient, as
62/// backwards delay slot fillling can also produce hazards in previously
63/// processed instuctions.
64///
65/// In future this pass can be extended (or new pass can be created) to handle
66/// other pipeline hazards, such as various MIPS1 hazards, processor errata that
67/// require instruction reorganization, etc.
68///
69/// This pass has to run after the delay slot filler as that pass can introduce
70/// pipeline hazards such as compact branch hazard, hence the existing hazard
71/// recognizer is not suitable.
72///
73//===----------------------------------------------------------------------===//
74
79#include "Mips.h"
80#include "MipsInstrInfo.h"
81#include "MipsMachineFunction.h"
82#include "MipsSubtarget.h"
83#include "MipsTargetMachine.h"
85#include "llvm/ADT/Statistic.h"
86#include "llvm/ADT/StringRef.h"
95#include "llvm/IR/DebugLoc.h"
100#include <algorithm>
101#include <cassert>
102#include <cstdint>
103#include <iterator>
104#include <utility>
105
106using namespace llvm;
107
108#define DEBUG_TYPE "mips-branch-expansion"
109
110STATISTIC(NumInsertedNops, "Number of nops inserted");
111STATISTIC(LongBranches, "Number of long branches.");
112
113static cl::opt<bool>
114 SkipLongBranch("skip-mips-long-branch", cl::init(false),
115 cl::desc("MIPS: Skip branch expansion pass."), cl::Hidden);
116
117static cl::opt<bool>
118 ForceLongBranch("force-mips-long-branch", cl::init(false),
119 cl::desc("MIPS: Expand all branches to long format."),
120 cl::Hidden);
121
122namespace {
123
124using Iter = MachineBasicBlock::iterator;
125using ReverseIter = MachineBasicBlock::reverse_iterator;
126
127struct MBBInfo {
128 uint64_t Size = 0;
129 bool HasLongBranch = false;
130 MachineInstr *Br = nullptr;
131 uint64_t Offset = 0;
132 MBBInfo() = default;
133};
134
135class MipsBranchExpansion : public MachineFunctionPass {
136public:
137 static char ID;
138
139 MipsBranchExpansion() : MachineFunctionPass(ID), ABI(MipsABIInfo::Unknown()) {
141 }
142
143 StringRef getPassName() const override {
144 return "Mips Branch Expansion Pass";
145 }
146
147 bool runOnMachineFunction(MachineFunction &F) override;
148
151 MachineFunctionProperties::Property::NoVRegs);
152 }
153
154private:
156 void initMBBInfo();
157 int64_t computeOffset(const MachineInstr *Br);
158 uint64_t computeOffsetFromTheBeginning(int MBB);
159 void replaceBranch(MachineBasicBlock &MBB, Iter Br, const DebugLoc &DL,
160 MachineBasicBlock *MBBOpnd);
161 bool buildProperJumpMI(MachineBasicBlock *MBB,
163 void expandToLongBranch(MBBInfo &Info);
164 template <typename Pred, typename Safe>
165 bool handleSlot(Pred Predicate, Safe SafeInSlot);
166 bool handleForbiddenSlot();
167 bool handleFPUDelaySlot();
168 bool handleLoadDelaySlot();
169 bool handlePossibleLongBranch();
170
171 const MipsSubtarget *STI;
172 const MipsInstrInfo *TII;
173
174 MachineFunction *MFp;
176 bool IsPIC;
178 bool ForceLongBranchFirstPass = false;
179};
180
181} // end of anonymous namespace
182
183char MipsBranchExpansion::ID = 0;
184
185INITIALIZE_PASS(MipsBranchExpansion, DEBUG_TYPE,
186 "Expand out of range branch instructions and fix forbidden"
187 " slot hazards",
188 false, false)
189
190/// Returns a pass that clears pipeline hazards.
192 return new MipsBranchExpansion();
193}
194
195// Find the next real instruction from the current position in current basic
196// block.
197static Iter getNextMachineInstrInBB(Iter Position) {
198 Iter I = Position, E = Position->getParent()->end();
199 I = std::find_if_not(I, E,
200 [](const Iter &Insn) { return Insn->isTransient(); });
201
202 return I;
203}
204
205// Find the next real instruction from the current position, looking through
206// basic block boundaries.
207static std::pair<Iter, bool> getNextMachineInstr(Iter Position,
208 MachineBasicBlock *Parent) {
209 if (Position == Parent->end()) {
210 do {
211 MachineBasicBlock *Succ = Parent->getNextNode();
212 if (Succ != nullptr && Parent->isSuccessor(Succ)) {
213 Position = Succ->begin();
214 Parent = Succ;
215 } else {
216 return std::make_pair(Position, true);
217 }
218 } while (Parent->empty());
219 }
220
221 Iter Instr = getNextMachineInstrInBB(Position);
222 if (Instr == Parent->end()) {
223 return getNextMachineInstr(Instr, Parent);
224 }
225 return std::make_pair(Instr, false);
226}
227
228/// Iterate over list of Br's operands and search for a MachineBasicBlock
229/// operand.
231 for (unsigned I = 0, E = Br.getDesc().getNumOperands(); I < E; ++I) {
232 const MachineOperand &MO = Br.getOperand(I);
233
234 if (MO.isMBB())
235 return MO.getMBB();
236 }
237
238 llvm_unreachable("This instruction does not have an MBB operand.");
239}
240
241// Traverse the list of instructions backwards until a non-debug instruction is
242// found or it reaches E.
243static ReverseIter getNonDebugInstr(ReverseIter B, const ReverseIter &E) {
244 for (; B != E; ++B)
245 if (!B->isDebugInstr())
246 return B;
247
248 return E;
249}
250
251// Split MBB if it has two direct jumps/branches.
252void MipsBranchExpansion::splitMBB(MachineBasicBlock *MBB) {
253 ReverseIter End = MBB->rend();
254 ReverseIter LastBr = getNonDebugInstr(MBB->rbegin(), End);
255
256 // Return if MBB has no branch instructions.
257 if ((LastBr == End) ||
258 (!LastBr->isConditionalBranch() && !LastBr->isUnconditionalBranch()))
259 return;
260
261 ReverseIter FirstBr = getNonDebugInstr(std::next(LastBr), End);
262
263 // MBB has only one branch instruction if FirstBr is not a branch
264 // instruction.
265 if ((FirstBr == End) ||
266 (!FirstBr->isConditionalBranch() && !FirstBr->isUnconditionalBranch()))
267 return;
268
269 assert(!FirstBr->isIndirectBranch() && "Unexpected indirect branch found.");
270
271 // Create a new MBB. Move instructions in MBB to the newly created MBB.
272 MachineBasicBlock *NewMBB =
273 MFp->CreateMachineBasicBlock(MBB->getBasicBlock());
274
275 // Insert NewMBB and fix control flow.
276 MachineBasicBlock *Tgt = getTargetMBB(*FirstBr);
277 NewMBB->transferSuccessors(MBB);
278 if (Tgt != getTargetMBB(*LastBr))
279 NewMBB->removeSuccessor(Tgt, true);
280 MBB->addSuccessor(NewMBB);
281 MBB->addSuccessor(Tgt);
282 MFp->insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
283
284 NewMBB->splice(NewMBB->end(), MBB, LastBr.getReverse(), MBB->end());
285}
286
287// Fill MBBInfos.
288void MipsBranchExpansion::initMBBInfo() {
289 // Split the MBBs if they have two branches. Each basic block should have at
290 // most one branch after this loop is executed.
291 for (auto &MBB : *MFp)
292 splitMBB(&MBB);
293
294 MFp->RenumberBlocks();
295 MBBInfos.clear();
296 MBBInfos.resize(MFp->size());
297
298 for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
299 MachineBasicBlock *MBB = MFp->getBlockNumbered(I);
300
301 // Compute size of MBB.
302 for (MachineInstr &MI : MBB->instrs())
303 MBBInfos[I].Size += TII->getInstSizeInBytes(MI);
304 }
305}
306
307// Compute offset of branch in number of bytes.
308int64_t MipsBranchExpansion::computeOffset(const MachineInstr *Br) {
309 int64_t Offset = 0;
310 int ThisMBB = Br->getParent()->getNumber();
311 int TargetMBB = getTargetMBB(*Br)->getNumber();
312
313 // Compute offset of a forward branch.
314 if (ThisMBB < TargetMBB) {
315 for (int N = ThisMBB + 1; N < TargetMBB; ++N)
316 Offset += MBBInfos[N].Size;
317
318 return Offset + 4;
319 }
320
321 // Compute offset of a backward branch.
322 for (int N = ThisMBB; N >= TargetMBB; --N)
323 Offset += MBBInfos[N].Size;
324
325 return -Offset + 4;
326}
327
328// Returns the distance in bytes up until MBB
329uint64_t MipsBranchExpansion::computeOffsetFromTheBeginning(int MBB) {
330 uint64_t Offset = 0;
331 for (int N = 0; N < MBB; ++N)
332 Offset += MBBInfos[N].Size;
333 return Offset;
334}
335
336// Replace Br with a branch which has the opposite condition code and a
337// MachineBasicBlock operand MBBOpnd.
338void MipsBranchExpansion::replaceBranch(MachineBasicBlock &MBB, Iter Br,
339 const DebugLoc &DL,
340 MachineBasicBlock *MBBOpnd) {
341 unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode());
342 const MCInstrDesc &NewDesc = TII->get(NewOpc);
343
344 MachineInstrBuilder MIB = BuildMI(MBB, Br, DL, NewDesc);
345
346 for (unsigned I = 0, E = Br->getDesc().getNumOperands(); I < E; ++I) {
347 MachineOperand &MO = Br->getOperand(I);
348
349 switch (MO.getType()) {
351 MIB.addReg(MO.getReg());
352 break;
354 // Octeon BBIT family of branch has an immediate operand
355 // (e.g. BBIT0 $v0, 3, %bb.1).
356 if (!TII->isBranchWithImm(Br->getOpcode()))
357 llvm_unreachable("Unexpected immediate in branch instruction");
358 MIB.addImm(MO.getImm());
359 break;
361 MIB.addMBB(MBBOpnd);
362 break;
363 default:
364 llvm_unreachable("Unexpected operand type in branch instruction");
365 }
366 }
367
368 if (Br->hasDelaySlot()) {
369 // Bundle the instruction in the delay slot to the newly created branch
370 // and erase the original branch.
371 assert(Br->isBundledWithSucc());
372 MachineBasicBlock::instr_iterator II = Br.getInstrIterator();
373 MIBundleBuilder(&*MIB).append((++II)->removeFromBundle());
374 }
375 Br->eraseFromParent();
376}
377
378bool MipsBranchExpansion::buildProperJumpMI(MachineBasicBlock *MBB,
380 DebugLoc DL) {
381 bool HasR6 = ABI.IsN64() ? STI->hasMips64r6() : STI->hasMips32r6();
382 bool AddImm = HasR6 && !STI->useIndirectJumpsHazard();
383
384 unsigned JR = ABI.IsN64() ? Mips::JR64 : Mips::JR;
385 unsigned JIC = ABI.IsN64() ? Mips::JIC64 : Mips::JIC;
386 unsigned JR_HB = ABI.IsN64() ? Mips::JR_HB64 : Mips::JR_HB;
387 unsigned JR_HB_R6 = ABI.IsN64() ? Mips::JR_HB64_R6 : Mips::JR_HB_R6;
388
389 unsigned JumpOp;
390 if (STI->useIndirectJumpsHazard())
391 JumpOp = HasR6 ? JR_HB_R6 : JR_HB;
392 else
393 JumpOp = HasR6 ? JIC : JR;
394
395 if (JumpOp == Mips::JIC && STI->inMicroMipsMode())
396 JumpOp = Mips::JIC_MMR6;
397
398 unsigned ATReg = ABI.IsN64() ? Mips::AT_64 : Mips::AT;
400 BuildMI(*MBB, Pos, DL, TII->get(JumpOp)).addReg(ATReg);
401 if (AddImm)
402 Instr.addImm(0);
403
404 return !AddImm;
405}
406
407// Expand branch instructions to long branches.
408// TODO: This function has to be fixed for beqz16 and bnez16, because it
409// currently assumes that all branches have 16-bit offsets, and will produce
410// wrong code if branches whose allowed offsets are [-128, -126, ..., 126]
411// are present.
412void MipsBranchExpansion::expandToLongBranch(MBBInfo &I) {
414 MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br);
415 DebugLoc DL = I.Br->getDebugLoc();
416 const BasicBlock *BB = MBB->getBasicBlock();
418 MachineBasicBlock *LongBrMBB = MFp->CreateMachineBasicBlock(BB);
419
420 MFp->insert(FallThroughMBB, LongBrMBB);
421 MBB->replaceSuccessor(TgtMBB, LongBrMBB);
422
423 if (IsPIC) {
424 MachineBasicBlock *BalTgtMBB = MFp->CreateMachineBasicBlock(BB);
425 MFp->insert(FallThroughMBB, BalTgtMBB);
426 LongBrMBB->addSuccessor(BalTgtMBB);
427 BalTgtMBB->addSuccessor(TgtMBB);
428
429 // We must select between the MIPS32r6/MIPS64r6 BALC (which is a normal
430 // instruction) and the pre-MIPS32r6/MIPS64r6 definition (which is an
431 // pseudo-instruction wrapping BGEZAL).
432 const unsigned BalOp =
433 STI->hasMips32r6()
434 ? STI->inMicroMipsMode() ? Mips::BALC_MMR6 : Mips::BALC
435 : STI->inMicroMipsMode() ? Mips::BAL_BR_MM : Mips::BAL_BR;
436
437 if (!ABI.IsN64()) {
438 // Pre R6:
439 // $longbr:
440 // addiu $sp, $sp, -8
441 // sw $ra, 0($sp)
442 // lui $at, %hi($tgt - $baltgt)
443 // bal $baltgt
444 // addiu $at, $at, %lo($tgt - $baltgt)
445 // $baltgt:
446 // addu $at, $ra, $at
447 // lw $ra, 0($sp)
448 // jr $at
449 // addiu $sp, $sp, 8
450 // $fallthrough:
451 //
452
453 // R6:
454 // $longbr:
455 // addiu $sp, $sp, -8
456 // sw $ra, 0($sp)
457 // lui $at, %hi($tgt - $baltgt)
458 // addiu $at, $at, %lo($tgt - $baltgt)
459 // balc $baltgt
460 // $baltgt:
461 // addu $at, $ra, $at
462 // lw $ra, 0($sp)
463 // addiu $sp, $sp, 8
464 // jic $at, 0
465 // $fallthrough:
466
467 Pos = LongBrMBB->begin();
468
469 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
470 .addReg(Mips::SP)
471 .addImm(-8);
472 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW))
473 .addReg(Mips::RA)
474 .addReg(Mips::SP)
475 .addImm(0);
476
477 // LUi and ADDiu instructions create 32-bit offset of the target basic
478 // block from the target of BAL(C) instruction. We cannot use immediate
479 // value for this offset because it cannot be determined accurately when
480 // the program has inline assembly statements. We therefore use the
481 // relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which
482 // are resolved during the fixup, so the values will always be correct.
483 //
484 // Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt)
485 // expressions at this point (it is possible only at the MC layer),
486 // we replace LUi and ADDiu with pseudo instructions
487 // LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic
488 // blocks as operands to these instructions. When lowering these pseudo
489 // instructions to LUi and ADDiu in the MC layer, we will create
490 // %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as
491 // operands to lowered instructions.
492
493 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi), Mips::AT)
494 .addMBB(TgtMBB, MipsII::MO_ABS_HI)
495 .addMBB(BalTgtMBB);
496
497 MachineInstrBuilder BalInstr =
498 BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB);
499 MachineInstrBuilder ADDiuInstr =
500 BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_ADDiu), Mips::AT)
501 .addReg(Mips::AT)
502 .addMBB(TgtMBB, MipsII::MO_ABS_LO)
503 .addMBB(BalTgtMBB);
504 if (STI->hasMips32r6()) {
505 LongBrMBB->insert(Pos, ADDiuInstr);
506 LongBrMBB->insert(Pos, BalInstr);
507 } else {
508 LongBrMBB->insert(Pos, BalInstr);
509 LongBrMBB->insert(Pos, ADDiuInstr);
510 LongBrMBB->rbegin()->bundleWithPred();
511 }
512
513 Pos = BalTgtMBB->begin();
514
515 BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT)
516 .addReg(Mips::RA)
517 .addReg(Mips::AT);
518 BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA)
519 .addReg(Mips::SP)
520 .addImm(0);
521 if (STI->isTargetNaCl())
522 // Bundle-align the target of indirect branch JR.
523 TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
524
525 // In NaCl, modifying the sp is not allowed in branch delay slot.
526 // For MIPS32R6, we can skip using a delay slot branch.
527 bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL);
528
529 if (STI->isTargetNaCl() || !hasDelaySlot) {
530 BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::ADDiu), Mips::SP)
531 .addReg(Mips::SP)
532 .addImm(8);
533 }
534 if (hasDelaySlot) {
535 if (STI->isTargetNaCl()) {
536 TII->insertNop(*BalTgtMBB, Pos, DL);
537 } else {
538 BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
539 .addReg(Mips::SP)
540 .addImm(8);
541 }
542 BalTgtMBB->rbegin()->bundleWithPred();
543 }
544 } else {
545 // Pre R6:
546 // $longbr:
547 // daddiu $sp, $sp, -16
548 // sd $ra, 0($sp)
549 // daddiu $at, $zero, %hi($tgt - $baltgt)
550 // dsll $at, $at, 16
551 // bal $baltgt
552 // daddiu $at, $at, %lo($tgt - $baltgt)
553 // $baltgt:
554 // daddu $at, $ra, $at
555 // ld $ra, 0($sp)
556 // jr64 $at
557 // daddiu $sp, $sp, 16
558 // $fallthrough:
559
560 // R6:
561 // $longbr:
562 // daddiu $sp, $sp, -16
563 // sd $ra, 0($sp)
564 // daddiu $at, $zero, %hi($tgt - $baltgt)
565 // dsll $at, $at, 16
566 // daddiu $at, $at, %lo($tgt - $baltgt)
567 // balc $baltgt
568 // $baltgt:
569 // daddu $at, $ra, $at
570 // ld $ra, 0($sp)
571 // daddiu $sp, $sp, 16
572 // jic $at, 0
573 // $fallthrough:
574
575 // We assume the branch is within-function, and that offset is within
576 // +/- 2GB. High 32 bits will therefore always be zero.
577
578 // Note that this will work even if the offset is negative, because
579 // of the +1 modification that's added in that case. For example, if the
580 // offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is
581 //
582 // 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000
583 //
584 // and the bits [47:32] are zero. For %highest
585 //
586 // 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000
587 //
588 // and the bits [63:48] are zero.
589
590 Pos = LongBrMBB->begin();
591
592 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
593 .addReg(Mips::SP_64)
594 .addImm(-16);
595 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD))
596 .addReg(Mips::RA_64)
597 .addReg(Mips::SP_64)
598 .addImm(0);
599 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu),
600 Mips::AT_64)
601 .addReg(Mips::ZERO_64)
602 .addMBB(TgtMBB, MipsII::MO_ABS_HI)
603 .addMBB(BalTgtMBB);
604 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
605 .addReg(Mips::AT_64)
606 .addImm(16);
607
608 MachineInstrBuilder BalInstr =
609 BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB);
610 MachineInstrBuilder DADDiuInstr =
611 BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64)
612 .addReg(Mips::AT_64)
613 .addMBB(TgtMBB, MipsII::MO_ABS_LO)
614 .addMBB(BalTgtMBB);
615 if (STI->hasMips32r6()) {
616 LongBrMBB->insert(Pos, DADDiuInstr);
617 LongBrMBB->insert(Pos, BalInstr);
618 } else {
619 LongBrMBB->insert(Pos, BalInstr);
620 LongBrMBB->insert(Pos, DADDiuInstr);
621 LongBrMBB->rbegin()->bundleWithPred();
622 }
623
624 Pos = BalTgtMBB->begin();
625
626 BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64)
627 .addReg(Mips::RA_64)
628 .addReg(Mips::AT_64);
629 BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64)
630 .addReg(Mips::SP_64)
631 .addImm(0);
632
633 bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL);
634 // If there is no delay slot, Insert stack adjustment before
635 if (!hasDelaySlot) {
636 BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::DADDiu),
637 Mips::SP_64)
638 .addReg(Mips::SP_64)
639 .addImm(16);
640 } else {
641 BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
642 .addReg(Mips::SP_64)
643 .addImm(16);
644 BalTgtMBB->rbegin()->bundleWithPred();
645 }
646 }
647 } else { // Not PIC
648 Pos = LongBrMBB->begin();
649 LongBrMBB->addSuccessor(TgtMBB);
650
651 // Compute the position of the potentiall jump instruction (basic blocks
652 // before + 4 for the instruction)
653 uint64_t JOffset = computeOffsetFromTheBeginning(MBB->getNumber()) +
654 MBBInfos[MBB->getNumber()].Size + 4;
655 uint64_t TgtMBBOffset = computeOffsetFromTheBeginning(TgtMBB->getNumber());
656 // If it's a forward jump, then TgtMBBOffset will be shifted by two
657 // instructions
658 if (JOffset < TgtMBBOffset)
659 TgtMBBOffset += 2 * 4;
660 // Compare 4 upper bits to check if it's the same segment
661 bool SameSegmentJump = JOffset >> 28 == TgtMBBOffset >> 28;
662
663 if (STI->hasMips32r6() && TII->isBranchOffsetInRange(Mips::BC, I.Offset)) {
664 // R6:
665 // $longbr:
666 // bc $tgt
667 // $fallthrough:
668 //
669 BuildMI(*LongBrMBB, Pos, DL,
670 TII->get(STI->inMicroMipsMode() ? Mips::BC_MMR6 : Mips::BC))
671 .addMBB(TgtMBB);
672 } else if (SameSegmentJump) {
673 // Pre R6:
674 // $longbr:
675 // j $tgt
676 // nop
677 // $fallthrough:
678 //
679 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::J)).addMBB(TgtMBB);
680 TII->insertNop(*LongBrMBB, Pos, DL)->bundleWithPred();
681 } else {
682 // At this point, offset where we need to branch does not fit into
683 // immediate field of the branch instruction and is not in the same
684 // segment as jump instruction. Therefore we will break it into couple
685 // instructions, where we first load the offset into register, and then we
686 // do branch register.
687 if (ABI.IsN64()) {
688 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op_64),
689 Mips::AT_64)
690 .addMBB(TgtMBB, MipsII::MO_HIGHEST);
691 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
692 Mips::AT_64)
693 .addReg(Mips::AT_64)
694 .addMBB(TgtMBB, MipsII::MO_HIGHER);
695 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
696 .addReg(Mips::AT_64)
697 .addImm(16);
698 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
699 Mips::AT_64)
700 .addReg(Mips::AT_64)
701 .addMBB(TgtMBB, MipsII::MO_ABS_HI);
702 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
703 .addReg(Mips::AT_64)
704 .addImm(16);
705 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
706 Mips::AT_64)
707 .addReg(Mips::AT_64)
708 .addMBB(TgtMBB, MipsII::MO_ABS_LO);
709 } else {
710 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op),
711 Mips::AT)
712 .addMBB(TgtMBB, MipsII::MO_ABS_HI);
713 BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_ADDiu2Op),
714 Mips::AT)
715 .addReg(Mips::AT)
716 .addMBB(TgtMBB, MipsII::MO_ABS_LO);
717 }
718 buildProperJumpMI(LongBrMBB, Pos, DL);
719 }
720 }
721
722 if (I.Br->isUnconditionalBranch()) {
723 // Change branch destination.
724 assert(I.Br->getDesc().getNumOperands() == 1);
725 I.Br->removeOperand(0);
726 I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB));
727 } else
728 // Change branch destination and reverse condition.
729 replaceBranch(*MBB, I.Br, DL, &*FallThroughMBB);
730}
731
733 MachineBasicBlock &MBB = F.front();
736 BuildMI(MBB, I, DL, TII->get(Mips::LUi), Mips::V0)
738 BuildMI(MBB, I, DL, TII->get(Mips::ADDiu), Mips::V0)
739 .addReg(Mips::V0)
741 MBB.removeLiveIn(Mips::V0);
742}
743
744template <typename Pred, typename Safe>
745bool MipsBranchExpansion::handleSlot(Pred Predicate, Safe SafeInSlot) {
746 bool Changed = false;
747
748 for (MachineFunction::iterator FI = MFp->begin(); FI != MFp->end(); ++FI) {
749 for (Iter I = FI->begin(); I != FI->end(); ++I) {
750
751 // Delay slot hazard handling. Use lookahead over state.
752 if (!Predicate(*I))
753 continue;
754
755 Iter IInSlot;
756 bool LastInstInFunction =
757 std::next(I) == FI->end() && std::next(FI) == MFp->end();
758 if (!LastInstInFunction) {
759 std::pair<Iter, bool> Res = getNextMachineInstr(std::next(I), &*FI);
760 LastInstInFunction |= Res.second;
761 IInSlot = Res.first;
762 }
763
764 if (LastInstInFunction || !SafeInSlot(*IInSlot, *I)) {
765 MachineBasicBlock::instr_iterator Iit = I->getIterator();
766 if (std::next(Iit) == FI->end() ||
767 std::next(Iit)->getOpcode() != Mips::NOP) {
768 Changed = true;
769 TII->insertNop(*(I->getParent()), std::next(I), I->getDebugLoc())
770 ->bundleWithPred();
771 NumInsertedNops++;
772 }
773 }
774 }
775 }
776
777 return Changed;
778}
779
780bool MipsBranchExpansion::handleForbiddenSlot() {
781 // Forbidden slot hazards are only defined for MIPSR6 but not microMIPSR6.
782 if (!STI->hasMips32r6() || STI->inMicroMipsMode())
783 return false;
784
785 return handleSlot(
786 [this](auto &I) -> bool { return TII->HasForbiddenSlot(I); },
787 [this](auto &IInSlot, auto &I) -> bool {
788 return TII->SafeInForbiddenSlot(IInSlot);
789 });
790}
791
792bool MipsBranchExpansion::handleFPUDelaySlot() {
793 // FPU delay slots are only defined for MIPS3 and below.
794 if (STI->hasMips32() || STI->hasMips4())
795 return false;
796
797 return handleSlot([this](auto &I) -> bool { return TII->HasFPUDelaySlot(I); },
798 [this](auto &IInSlot, auto &I) -> bool {
799 return TII->SafeInFPUDelaySlot(IInSlot, I);
800 });
801}
802
803bool MipsBranchExpansion::handleLoadDelaySlot() {
804 // Load delay slot hazards are only for MIPS1.
805 if (STI->hasMips2())
806 return false;
807
808 return handleSlot(
809 [this](auto &I) -> bool { return TII->HasLoadDelaySlot(I); },
810 [this](auto &IInSlot, auto &I) -> bool {
811 return TII->SafeInLoadDelaySlot(IInSlot, I);
812 });
813}
814
815bool MipsBranchExpansion::handlePossibleLongBranch() {
816 if (STI->inMips16Mode() || !STI->enableLongBranchPass())
817 return false;
818
819 if (SkipLongBranch)
820 return false;
821
822 bool EverMadeChange = false, MadeChange = true;
823
824 while (MadeChange) {
825 MadeChange = false;
826
827 initMBBInfo();
828
829 for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
830 MachineBasicBlock *MBB = MFp->getBlockNumbered(I);
831 // Search for MBB's branch instruction.
832 ReverseIter End = MBB->rend();
833 ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End);
834
835 if ((Br != End) && Br->isBranch() && !Br->isIndirectBranch() &&
836 (Br->isConditionalBranch() ||
837 (Br->isUnconditionalBranch() && IsPIC))) {
838 int64_t Offset = computeOffset(&*Br);
839
840 if (STI->isTargetNaCl()) {
841 // The offset calculation does not include sandboxing instructions
842 // that will be added later in the MC layer. Since at this point we
843 // don't know the exact amount of code that "sandboxing" will add, we
844 // conservatively estimate that code will not grow more than 100%.
845 Offset *= 2;
846 }
847
848 if (ForceLongBranchFirstPass ||
849 !TII->isBranchOffsetInRange(Br->getOpcode(), Offset)) {
850 MBBInfos[I].Offset = Offset;
851 MBBInfos[I].Br = &*Br;
852 }
853 }
854 } // End for
855
856 ForceLongBranchFirstPass = false;
857
858 SmallVectorImpl<MBBInfo>::iterator I, E = MBBInfos.end();
859
860 for (I = MBBInfos.begin(); I != E; ++I) {
861 // Skip if this MBB doesn't have a branch or the branch has already been
862 // converted to a long branch.
863 if (!I->Br)
864 continue;
865
866 expandToLongBranch(*I);
867 ++LongBranches;
868 EverMadeChange = MadeChange = true;
869 }
870
871 MFp->RenumberBlocks();
872 }
873
874 return EverMadeChange;
875}
876
877bool MipsBranchExpansion::runOnMachineFunction(MachineFunction &MF) {
878 const TargetMachine &TM = MF.getTarget();
879 IsPIC = TM.isPositionIndependent();
880 ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
881 STI = &MF.getSubtarget<MipsSubtarget>();
882 TII = static_cast<const MipsInstrInfo *>(STI->getInstrInfo());
883
884 if (IsPIC && ABI.IsO32() &&
885 MF.getInfo<MipsFunctionInfo>()->globalBaseRegSet())
886 emitGPDisp(MF, TII);
887
888 MFp = &MF;
889
890 ForceLongBranchFirstPass = ForceLongBranch;
891 // Run these at least once.
892 bool longBranchChanged = handlePossibleLongBranch();
893 bool forbiddenSlotChanged = handleForbiddenSlot();
894 bool fpuDelaySlotChanged = handleFPUDelaySlot();
895 bool loadDelaySlotChanged = handleLoadDelaySlot();
896
897 bool Changed = longBranchChanged || forbiddenSlotChanged ||
898 fpuDelaySlotChanged || loadDelaySlotChanged;
899
900 // Then run them alternatively while there are changes.
901 while (forbiddenSlotChanged) {
902 longBranchChanged = handlePossibleLongBranch();
903 fpuDelaySlotChanged = handleFPUDelaySlot();
904 loadDelaySlotChanged = handleLoadDelaySlot();
905 if (!longBranchChanged && !fpuDelaySlotChanged && !loadDelaySlotChanged)
906 break;
907 forbiddenSlotChanged = handleForbiddenSlot();
908 }
909
910 return Changed;
911}
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static std::pair< Iter, bool > getNextMachineInstr(Iter Position, MachineBasicBlock *Parent)
static cl::opt< bool > ForceLongBranch("force-mips-long-branch", cl::init(false), cl::desc("MIPS: Expand all branches to long format."), cl::Hidden)
static cl::opt< bool > SkipLongBranch("skip-mips-long-branch", cl::init(false), cl::desc("MIPS: Skip branch expansion pass."), cl::Hidden)
static MachineBasicBlock * getTargetMBB(const MachineInstr &Br)
Iterate over list of Br's operands and search for a MachineBasicBlock operand.
#define DEBUG_TYPE
static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII)
static ReverseIter getNonDebugInstr(ReverseIter B, const ReverseIter &E)
static Iter getNextMachineInstrInBB(Iter Position)
static bool splitMBB(BlockSplitInfo &BSI)
Splits a MachineBasicBlock to branch before SplitBefore.
const char LLVMTargetMachineRef TM
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
Helper class for constructing bundles of MachineInstrs.
MIBundleBuilder & append(MachineInstr *MI)
Insert MI into MBB by appending it to the instructions in the bundle.
reverse_iterator rend()
void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New)
Replace successor OLD with NEW and update probability info.
void transferSuccessors(MachineBasicBlock *FromMBB)
Transfers all the successors from MBB to this machine basic block (i.e., copies all the successors Fr...
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs=false)
Remove successor from the successors list of this MachineBasicBlock.
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
Instructions::iterator instr_iterator
MachineInstrBundleIterator< MachineInstr, true > reverse_iterator
reverse_iterator rbegin()
bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
void removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Remove the specified register from the live in set.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:327
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:541
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:554
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
MachineBasicBlock * getMBB() const
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
Register getReg() const
getReg - Returns the register number.
@ MO_Immediate
Immediate operand.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_Register
Register operand.
static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0)
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MipsFunctionInfo - This class is derived from MachineFunction private Mips target-specific informatio...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
typename SuperClass::iterator iterator
Definition: SmallVector.h:590
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:316
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ MO_ABS_HI
MO_ABS_HI/LO - Represents the hi or low part of an absolute symbol address.
Definition: MipsBaseInfo.h:52
@ MO_HIGHER
MO_HIGHER/HIGHEST - Represents the highest or higher half word of a 64-bit symbol address.
Definition: MipsBaseInfo.h:85
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
void initializeMipsBranchExpansionPass(PassRegistry &)
FunctionPass * createMipsBranchExpansion()
static const Align MIPS_NACL_BUNDLE_ALIGN
Definition: MipsMCNaCl.h:18
#define N