LLVM 20.0.0git
HexagonConstExtenders.cpp
Go to the documentation of this file.
1//===- HexagonConstExtenders.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonInstrInfo.h"
10#include "HexagonRegisterInfo.h"
11#include "HexagonSubtarget.h"
12#include "llvm/ADT/SetVector.h"
20#include "llvm/Pass.h"
23#include <map>
24#include <set>
25#include <utility>
26#include <vector>
27
28#define DEBUG_TYPE "hexagon-cext-opt"
29
30using namespace llvm;
31
33 "hexagon-cext-threshold", cl::init(3), cl::Hidden,
34 cl::desc("Minimum number of extenders to trigger replacement"));
35
37 ReplaceLimit("hexagon-cext-limit", cl::init(0), cl::Hidden,
38 cl::desc("Maximum number of replacements"));
39
40namespace llvm {
43}
44
45static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) {
47 int32_t U = (V & -A) + O;
48 return U >= V ? U : U+A;
49}
50
51static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) {
53 int32_t U = (V & -A) + O;
54 return U <= V ? U : U-A;
55}
56
57namespace {
58 struct OffsetRange {
59 // The range of values between Min and Max that are of form Align*N+Offset,
60 // for some integer N. Min and Max are required to be of that form as well,
61 // except in the case of an empty range.
62 int32_t Min = INT_MIN, Max = INT_MAX;
63 uint8_t Align = 1;
64 uint8_t Offset = 0;
65
66 OffsetRange() = default;
67 OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0)
68 : Min(L), Max(H), Align(A), Offset(O) {}
69 OffsetRange &intersect(OffsetRange A) {
70 if (Align < A.Align)
71 std::swap(*this, A);
72
73 // Align >= A.Align.
74 if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) {
75 Min = adjustUp(std::max(Min, A.Min), Align, Offset);
76 Max = adjustDown(std::min(Max, A.Max), Align, Offset);
77 } else {
78 // Make an empty range.
79 Min = 0;
80 Max = -1;
81 }
82 // Canonicalize empty ranges.
83 if (Min > Max)
84 std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
85 return *this;
86 }
87 OffsetRange &shift(int32_t S) {
88 Min += S;
89 Max += S;
90 Offset = (Offset+S) % Align;
91 return *this;
92 }
93 OffsetRange &extendBy(int32_t D) {
94 // If D < 0, extend Min, otherwise extend Max.
95 assert(D % Align == 0);
96 if (D < 0)
97 Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
98 else
99 Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
100 return *this;
101 }
102 bool empty() const {
103 return Min > Max;
104 }
105 bool contains(int32_t V) const {
106 return Min <= V && V <= Max && (V-Offset) % Align == 0;
107 }
108 bool operator==(const OffsetRange &R) const {
109 return Min == R.Min && Max == R.Max && Align == R.Align;
110 }
111 bool operator!=(const OffsetRange &R) const {
112 return !operator==(R);
113 }
114 bool operator<(const OffsetRange &R) const {
115 if (Min != R.Min)
116 return Min < R.Min;
117 if (Max != R.Max)
118 return Max < R.Max;
119 return Align < R.Align;
120 }
121 static OffsetRange zero() { return {0, 0, 1}; }
122 };
123
124 struct RangeTree {
125 struct Node {
126 Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
127 unsigned Height = 1;
128 unsigned Count = 1;
129 int32_t MaxEnd;
130 const OffsetRange &Range;
131 Node *Left = nullptr, *Right = nullptr;
132 };
133
134 Node *Root = nullptr;
135
136 void add(const OffsetRange &R) {
137 Root = add(Root, R);
138 }
139 void erase(const Node *N) {
140 Root = remove(Root, N);
141 delete N;
142 }
143 void order(SmallVectorImpl<Node*> &Seq) const {
144 order(Root, Seq);
145 }
146 SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
148 nodesWith(Root, P, CheckAlign, Nodes);
149 return Nodes;
150 }
151 void dump() const;
152 ~RangeTree() {
154 order(Nodes);
155 for (Node *N : Nodes)
156 delete N;
157 }
158
159 private:
160 void dump(const Node *N) const;
161 void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
162 void nodesWith(Node *N, int32_t P, bool CheckA,
163 SmallVectorImpl<Node*> &Seq) const;
164
165 Node *add(Node *N, const OffsetRange &R);
166 Node *remove(Node *N, const Node *D);
167 Node *rotateLeft(Node *Lower, Node *Higher);
168 Node *rotateRight(Node *Lower, Node *Higher);
169 unsigned height(Node *N) {
170 return N != nullptr ? N->Height : 0;
171 }
172 Node *update(Node *N) {
173 assert(N != nullptr);
174 N->Height = 1 + std::max(height(N->Left), height(N->Right));
175 if (N->Left)
176 N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
177 if (N->Right)
178 N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
179 return N;
180 }
181 Node *rebalance(Node *N) {
182 assert(N != nullptr);
183 int32_t Balance = height(N->Right) - height(N->Left);
184 if (Balance < -1)
185 return rotateRight(N->Left, N);
186 if (Balance > 1)
187 return rotateLeft(N->Right, N);
188 return N;
189 }
190 };
191
192 struct Loc {
193 MachineBasicBlock *Block = nullptr;
195
197 : Block(B), At(It) {
198 if (B->end() == It) {
199 Pos = -1;
200 } else {
201 assert(It->getParent() == B);
202 Pos = std::distance(B->begin(), It);
203 }
204 }
205 bool operator<(Loc A) const {
206 if (Block != A.Block)
207 return Block->getNumber() < A.Block->getNumber();
208 if (A.Pos == -1)
209 return Pos != A.Pos;
210 return Pos != -1 && Pos < A.Pos;
211 }
212 private:
213 int Pos = 0;
214 };
215
216 struct HexagonConstExtenders : public MachineFunctionPass {
217 static char ID;
218 HexagonConstExtenders() : MachineFunctionPass(ID) {}
219
220 void getAnalysisUsage(AnalysisUsage &AU) const override {
224 }
225
226 StringRef getPassName() const override {
227 return "Hexagon constant-extender optimization";
228 }
229 bool runOnMachineFunction(MachineFunction &MF) override;
230
231 private:
232 struct Register {
233 Register() = default;
234 Register(llvm::Register R, unsigned S) : Reg(R), Sub(S) {}
236 : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
237 Register &operator=(const MachineOperand &Op) {
238 if (Op.isReg()) {
239 Reg = Op.getReg();
240 Sub = Op.getSubReg();
241 } else if (Op.isFI()) {
243 }
244 return *this;
245 }
246 bool isVReg() const {
247 return Reg != 0 && !Reg.isStack() && Reg.isVirtual();
248 }
249 bool isSlot() const { return Reg != 0 && Reg.isStack(); }
250 operator MachineOperand() const {
251 if (isVReg())
252 return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
253 /*Kill*/false, /*Dead*/false, /*Undef*/false,
254 /*EarlyClobber*/false, Sub);
255 if (Reg.isStack()) {
257 return MachineOperand::CreateFI(FI);
258 }
259 llvm_unreachable("Cannot create MachineOperand");
260 }
261 bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
262 bool operator!=(Register R) const { return !operator==(R); }
263 bool operator<(Register R) const {
264 // For std::map.
265 return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
266 }
268 unsigned Sub = 0;
269 };
270
271 struct ExtExpr {
272 // A subexpression in which the extender is used. In general, this
273 // represents an expression where adding D to the extender will be
274 // equivalent to adding D to the expression as a whole. In other
275 // words, expr(add(##V,D) = add(expr(##V),D).
276
277 // The original motivation for this are the io/ur addressing modes,
278 // where the offset is extended. Consider the io example:
279 // In memw(Rs+##V), the ##V could be replaced by a register Rt to
280 // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
281 // register Rt must have exactly the value of ##V. If there was
282 // another instruction memw(Rs+##V+4), it would need a different Rt.
283 // Now, if Rt was initialized as "##V+Rs<<0", both of these
284 // instructions could use the same Rt, just with different offsets.
285 // Here it's clear that "initializer+4" should be the same as if
286 // the offset 4 was added to the ##V in the initializer.
287
288 // The only kinds of expressions that support the requirement of
289 // commuting with addition are addition and subtraction from ##V.
290 // Include shifting the Rs to account for the ur addressing mode:
291 // ##Val + Rs << S
292 // ##Val - Rs
293 Register Rs;
294 unsigned S = 0;
295 bool Neg = false;
296
297 ExtExpr() = default;
298 ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
299 // Expression is trivial if it does not modify the extender.
300 bool trivial() const {
301 return Rs.Reg == 0;
302 }
303 bool operator==(const ExtExpr &Ex) const {
304 return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
305 }
306 bool operator!=(const ExtExpr &Ex) const {
307 return !operator==(Ex);
308 }
309 bool operator<(const ExtExpr &Ex) const {
310 if (Rs != Ex.Rs)
311 return Rs < Ex.Rs;
312 if (S != Ex.S)
313 return S < Ex.S;
314 return !Neg && Ex.Neg;
315 }
316 };
317
318 struct ExtDesc {
319 MachineInstr *UseMI = nullptr;
320 unsigned OpNum = -1u;
321 // The subexpression in which the extender is used (e.g. address
322 // computation).
323 ExtExpr Expr;
324 // Optional register that is assigned the value of Expr.
325 Register Rd;
326 // Def means that the output of the instruction may differ from the
327 // original by a constant c, and that the difference can be corrected
328 // by adding/subtracting c in all users of the defined register.
329 bool IsDef = false;
330
331 MachineOperand &getOp() {
332 return UseMI->getOperand(OpNum);
333 }
334 const MachineOperand &getOp() const {
335 return UseMI->getOperand(OpNum);
336 }
337 };
338
339 struct ExtRoot {
340 union {
341 const ConstantFP *CFP; // MO_FPImmediate
342 const char *SymbolName; // MO_ExternalSymbol
343 const GlobalValue *GV; // MO_GlobalAddress
344 const BlockAddress *BA; // MO_BlockAddress
345 int64_t ImmVal; // MO_Immediate, MO_TargetIndex,
346 // and MO_ConstantPoolIndex
347 } V;
348 unsigned Kind; // Same as in MachineOperand.
349 unsigned char TF; // TargetFlags.
350
351 ExtRoot(const MachineOperand &Op);
352 bool operator==(const ExtRoot &ER) const {
353 return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
354 }
355 bool operator!=(const ExtRoot &ER) const {
356 return !operator==(ER);
357 }
358 bool operator<(const ExtRoot &ER) const;
359 };
360
361 struct ExtValue : public ExtRoot {
362 int32_t Offset;
363
364 ExtValue(const MachineOperand &Op);
365 ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
366 ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
367 bool operator<(const ExtValue &EV) const;
368 bool operator==(const ExtValue &EV) const {
369 return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
370 }
371 bool operator!=(const ExtValue &EV) const {
372 return !operator==(EV);
373 }
374 explicit operator MachineOperand() const;
375 };
376
377 using IndexList = SetVector<unsigned>;
378 using ExtenderInit = std::pair<ExtValue, ExtExpr>;
379 using AssignmentMap = std::map<ExtenderInit, IndexList>;
380 using LocDefList = std::vector<std::pair<Loc, IndexList>>;
381
382 const HexagonSubtarget *HST = nullptr;
383 const HexagonInstrInfo *HII = nullptr;
384 const HexagonRegisterInfo *HRI = nullptr;
385 MachineDominatorTree *MDT = nullptr;
386 MachineRegisterInfo *MRI = nullptr;
387 std::vector<ExtDesc> Extenders;
388 std::vector<unsigned> NewRegs;
389
390 bool isStoreImmediate(unsigned Opc) const;
391 bool isRegOffOpcode(unsigned ExtOpc) const ;
392 unsigned getRegOffOpcode(unsigned ExtOpc) const;
393 unsigned getDirectRegReplacement(unsigned ExtOpc) const;
394 OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
395 OffsetRange getOffsetRange(const ExtDesc &ED) const;
396 OffsetRange getOffsetRange(Register Rd) const;
397
398 void recordExtender(MachineInstr &MI, unsigned OpNum);
399 void collectInstr(MachineInstr &MI);
400 void collect(MachineFunction &MF);
401 void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
402 AssignmentMap &IMap);
403 void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
404 LocDefList &Defs);
405 Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
406 bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
407 bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
408 Register ExtR, int32_t &Diff);
409 bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
410 bool replaceExtenders(const AssignmentMap &IMap);
411
412 unsigned getOperandIndex(const MachineInstr &MI,
413 const MachineOperand &Op) const;
414 const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
415 const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
416 const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
417
418 friend struct PrintRegister;
419 friend struct PrintExpr;
420 friend struct PrintInit;
421 friend struct PrintIMap;
423 const struct PrintRegister &P);
424 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
425 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
426 friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
427 friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
428 friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
429 friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
430 friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
431 };
432
433 using HCE = HexagonConstExtenders;
434
436 raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
437 if (OR.Min > OR.Max)
438 OS << '!';
439 OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align)
440 << '+' << unsigned(OR.Offset);
441 return OS;
442 }
443
444 struct PrintRegister {
445 PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
446 : Rs(R), HRI(I) {}
447 HCE::Register Rs;
448 const HexagonRegisterInfo &HRI;
449 };
450
452 raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
453 if (P.Rs.Reg != 0)
454 OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
455 else
456 OS << "noreg";
457 return OS;
458 }
459
460 struct PrintExpr {
461 PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
462 : Ex(E), HRI(I) {}
463 const HCE::ExtExpr &Ex;
464 const HexagonRegisterInfo &HRI;
465 };
466
468 raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
469 OS << "## " << (P.Ex.Neg ? "- " : "+ ");
470 if (P.Ex.Rs.Reg != 0)
471 OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
472 else
473 OS << "__";
474 OS << " << " << P.Ex.S;
475 return OS;
476 }
477
478 struct PrintInit {
479 PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
480 : ExtI(EI), HRI(I) {}
481 const HCE::ExtenderInit &ExtI;
482 const HexagonRegisterInfo &HRI;
483 };
484
486 raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
487 OS << '[' << P.ExtI.first << ", "
488 << PrintExpr(P.ExtI.second, P.HRI) << ']';
489 return OS;
490 }
491
493 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
494 assert(ED.OpNum != -1u);
495 const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
496 const MachineFunction &MF = *MBB.getParent();
497 const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
498 OS << "bb#" << MBB.getNumber() << ": ";
499 if (ED.Rd.Reg != 0)
500 OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
501 else
502 OS << "__";
503 OS << " = " << PrintExpr(ED.Expr, HRI);
504 if (ED.IsDef)
505 OS << ", def";
506 return OS;
507 }
508
510 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
511 switch (ER.Kind) {
513 OS << "imm:" << ER.V.ImmVal;
514 break;
516 OS << "fpi:" << *ER.V.CFP;
517 break;
519 OS << "sym:" << *ER.V.SymbolName;
520 break;
522 OS << "gad:" << ER.V.GV->getName();
523 break;
525 OS << "blk:" << *ER.V.BA;
526 break;
528 OS << "tgi:" << ER.V.ImmVal;
529 break;
531 OS << "cpi:" << ER.V.ImmVal;
532 break;
534 OS << "jti:" << ER.V.ImmVal;
535 break;
536 default:
537 OS << "???:" << ER.V.ImmVal;
538 break;
539 }
540 return OS;
541 }
542
544 raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
545 OS << HCE::ExtRoot(EV) << " off:" << EV.Offset;
546 return OS;
547 }
548
549 struct PrintIMap {
550 PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
551 : IMap(M), HRI(I) {}
552 const HCE::AssignmentMap &IMap;
553 const HexagonRegisterInfo &HRI;
554 };
555
557 raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
558 OS << "{\n";
559 for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) {
560 OS << " " << PrintInit(Q.first, P.HRI) << " -> {";
561 for (unsigned I : Q.second)
562 OS << ' ' << I;
563 OS << " }\n";
564 }
565 OS << "}\n";
566 return OS;
567 }
568}
569
570INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
571 "Hexagon constant-extender optimization", false, false)
573INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
574 "Hexagon constant-extender optimization", false, false)
575
576static unsigned ReplaceCounter = 0;
577
578char HCE::ID = 0;
579
580#ifndef NDEBUG
581LLVM_DUMP_METHOD void RangeTree::dump() const {
582 dbgs() << "Root: " << Root << '\n';
583 if (Root)
584 dump(Root);
585}
586
587LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const {
588 dbgs() << "Node: " << N << '\n';
589 dbgs() << " Height: " << N->Height << '\n';
590 dbgs() << " Count: " << N->Count << '\n';
591 dbgs() << " MaxEnd: " << N->MaxEnd << '\n';
592 dbgs() << " Range: " << N->Range << '\n';
593 dbgs() << " Left: " << N->Left << '\n';
594 dbgs() << " Right: " << N->Right << "\n\n";
595
596 if (N->Left)
597 dump(N->Left);
598 if (N->Right)
599 dump(N->Right);
600}
601#endif
602
603void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
604 if (N == nullptr)
605 return;
606 order(N->Left, Seq);
607 Seq.push_back(N);
608 order(N->Right, Seq);
609}
610
611void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
612 SmallVectorImpl<Node*> &Seq) const {
613 if (N == nullptr || N->MaxEnd < P)
614 return;
615 nodesWith(N->Left, P, CheckA, Seq);
616 if (N->Range.Min <= P) {
617 if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
618 Seq.push_back(N);
619 nodesWith(N->Right, P, CheckA, Seq);
620 }
621}
622
623RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
624 if (N == nullptr)
625 return new Node(R);
626
627 if (N->Range == R) {
628 N->Count++;
629 return N;
630 }
631
632 if (R < N->Range)
633 N->Left = add(N->Left, R);
634 else
635 N->Right = add(N->Right, R);
636 return rebalance(update(N));
637}
638
639RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
640 assert(N != nullptr);
641
642 if (N != D) {
643 assert(N->Range != D->Range && "N and D should not be equal");
644 if (D->Range < N->Range)
645 N->Left = remove(N->Left, D);
646 else
647 N->Right = remove(N->Right, D);
648 return rebalance(update(N));
649 }
650
651 // We got to the node we need to remove. If any of its children are
652 // missing, simply replace it with the other child.
653 if (N->Left == nullptr || N->Right == nullptr)
654 return (N->Left == nullptr) ? N->Right : N->Left;
655
656 // Find the rightmost child of N->Left, remove it and plug it in place
657 // of N.
658 Node *M = N->Left;
659 while (M->Right)
660 M = M->Right;
661 M->Left = remove(N->Left, M);
662 M->Right = N->Right;
663 return rebalance(update(M));
664}
665
666RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
667 assert(Higher->Right == Lower);
668 // The Lower node is on the right from Higher. Make sure that Lower's
669 // balance is greater to the right. Otherwise the rotation will create
670 // an unbalanced tree again.
671 if (height(Lower->Left) > height(Lower->Right))
672 Lower = rotateRight(Lower->Left, Lower);
673 assert(height(Lower->Left) <= height(Lower->Right));
674 Higher->Right = Lower->Left;
675 update(Higher);
676 Lower->Left = Higher;
677 update(Lower);
678 return Lower;
679}
680
681RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
682 assert(Higher->Left == Lower);
683 // The Lower node is on the left from Higher. Make sure that Lower's
684 // balance is greater to the left. Otherwise the rotation will create
685 // an unbalanced tree again.
686 if (height(Lower->Left) < height(Lower->Right))
687 Lower = rotateLeft(Lower->Right, Lower);
688 assert(height(Lower->Left) >= height(Lower->Right));
689 Higher->Left = Lower->Right;
690 update(Higher);
691 Lower->Right = Higher;
692 update(Lower);
693 return Lower;
694}
695
696
697HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
698 // Always store ImmVal, since it's the field used for comparisons.
699 V.ImmVal = 0;
700 if (Op.isImm())
701 ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
702 else if (Op.isFPImm())
703 V.CFP = Op.getFPImm();
704 else if (Op.isSymbol())
705 V.SymbolName = Op.getSymbolName();
706 else if (Op.isGlobal())
707 V.GV = Op.getGlobal();
708 else if (Op.isBlockAddress())
709 V.BA = Op.getBlockAddress();
710 else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
711 V.ImmVal = Op.getIndex();
712 else
713 llvm_unreachable("Unexpected operand type");
714
715 Kind = Op.getType();
716 TF = Op.getTargetFlags();
717}
718
719bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
720 if (Kind != ER.Kind)
721 return Kind < ER.Kind;
722 switch (Kind) {
727 return V.ImmVal < ER.V.ImmVal;
729 const APFloat &ThisF = V.CFP->getValueAPF();
730 const APFloat &OtherF = ER.V.CFP->getValueAPF();
731 return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
732 }
734 return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
736 // Do not use GUIDs, since they depend on the source path. Moving the
737 // source file to a different directory could cause different GUID
738 // values for a pair of given symbols. These symbols could then compare
739 // "less" in one directory, but "greater" in another.
740 assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty());
741 return V.GV->getName() < ER.V.GV->getName();
743 const BasicBlock *ThisB = V.BA->getBasicBlock();
744 const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
745 assert(ThisB->getParent() == OtherB->getParent());
746 const Function &F = *ThisB->getParent();
747 return std::distance(F.begin(), ThisB->getIterator()) <
748 std::distance(F.begin(), OtherB->getIterator());
749 }
750 }
751 return V.ImmVal < ER.V.ImmVal;
752}
753
754HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
755 if (Op.isImm())
756 Offset = Op.getImm();
757 else if (Op.isFPImm() || Op.isJTI())
758 Offset = 0;
759 else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
760 Op.isCPI() || Op.isTargetIndex())
761 Offset = Op.getOffset();
762 else
763 llvm_unreachable("Unexpected operand type");
764}
765
766bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
767 const ExtRoot &ER = *this;
768 if (!(ER == ExtRoot(EV)))
769 return ER < EV;
770 return Offset < EV.Offset;
771}
772
773HCE::ExtValue::operator MachineOperand() const {
774 switch (Kind) {
776 return MachineOperand::CreateImm(V.ImmVal + Offset);
778 assert(Offset == 0);
779 return MachineOperand::CreateFPImm(V.CFP);
781 assert(Offset == 0);
782 return MachineOperand::CreateES(V.SymbolName, TF);
784 return MachineOperand::CreateGA(V.GV, Offset, TF);
786 return MachineOperand::CreateBA(V.BA, Offset, TF);
788 return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
790 return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
792 assert(Offset == 0);
793 return MachineOperand::CreateJTI(V.ImmVal, TF);
794 default:
795 llvm_unreachable("Unhandled kind");
796 }
797}
798
799bool HCE::isStoreImmediate(unsigned Opc) const {
800 switch (Opc) {
801 case Hexagon::S4_storeirbt_io:
802 case Hexagon::S4_storeirbf_io:
803 case Hexagon::S4_storeirht_io:
804 case Hexagon::S4_storeirhf_io:
805 case Hexagon::S4_storeirit_io:
806 case Hexagon::S4_storeirif_io:
807 case Hexagon::S4_storeirb_io:
808 case Hexagon::S4_storeirh_io:
809 case Hexagon::S4_storeiri_io:
810 return true;
811 default:
812 break;
813 }
814 return false;
815}
816
817bool HCE::isRegOffOpcode(unsigned Opc) const {
818 switch (Opc) {
819 case Hexagon::L2_loadrub_io:
820 case Hexagon::L2_loadrb_io:
821 case Hexagon::L2_loadruh_io:
822 case Hexagon::L2_loadrh_io:
823 case Hexagon::L2_loadri_io:
824 case Hexagon::L2_loadrd_io:
825 case Hexagon::L2_loadbzw2_io:
826 case Hexagon::L2_loadbzw4_io:
827 case Hexagon::L2_loadbsw2_io:
828 case Hexagon::L2_loadbsw4_io:
829 case Hexagon::L2_loadalignh_io:
830 case Hexagon::L2_loadalignb_io:
831 case Hexagon::L2_ploadrubt_io:
832 case Hexagon::L2_ploadrubf_io:
833 case Hexagon::L2_ploadrbt_io:
834 case Hexagon::L2_ploadrbf_io:
835 case Hexagon::L2_ploadruht_io:
836 case Hexagon::L2_ploadruhf_io:
837 case Hexagon::L2_ploadrht_io:
838 case Hexagon::L2_ploadrhf_io:
839 case Hexagon::L2_ploadrit_io:
840 case Hexagon::L2_ploadrif_io:
841 case Hexagon::L2_ploadrdt_io:
842 case Hexagon::L2_ploadrdf_io:
843 case Hexagon::S2_storerb_io:
844 case Hexagon::S2_storerh_io:
845 case Hexagon::S2_storerf_io:
846 case Hexagon::S2_storeri_io:
847 case Hexagon::S2_storerd_io:
848 case Hexagon::S2_pstorerbt_io:
849 case Hexagon::S2_pstorerbf_io:
850 case Hexagon::S2_pstorerht_io:
851 case Hexagon::S2_pstorerhf_io:
852 case Hexagon::S2_pstorerft_io:
853 case Hexagon::S2_pstorerff_io:
854 case Hexagon::S2_pstorerit_io:
855 case Hexagon::S2_pstorerif_io:
856 case Hexagon::S2_pstorerdt_io:
857 case Hexagon::S2_pstorerdf_io:
858 case Hexagon::A2_addi:
859 return true;
860 default:
861 break;
862 }
863 return false;
864}
865
866unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
867 // If there exists an instruction that takes a register and offset,
868 // that corresponds to the ExtOpc, return it, otherwise return 0.
869 using namespace Hexagon;
870 switch (ExtOpc) {
871 case A2_tfrsi: return A2_addi;
872 default:
873 break;
874 }
875 const MCInstrDesc &D = HII->get(ExtOpc);
876 if (D.mayLoad() || D.mayStore()) {
877 uint64_t F = D.TSFlags;
879 switch (AM) {
883 switch (ExtOpc) {
884 case PS_loadrubabs:
885 case L4_loadrub_ap:
886 case L4_loadrub_ur: return L2_loadrub_io;
887 case PS_loadrbabs:
888 case L4_loadrb_ap:
889 case L4_loadrb_ur: return L2_loadrb_io;
890 case PS_loadruhabs:
891 case L4_loadruh_ap:
892 case L4_loadruh_ur: return L2_loadruh_io;
893 case PS_loadrhabs:
894 case L4_loadrh_ap:
895 case L4_loadrh_ur: return L2_loadrh_io;
896 case PS_loadriabs:
897 case L4_loadri_ap:
898 case L4_loadri_ur: return L2_loadri_io;
899 case PS_loadrdabs:
900 case L4_loadrd_ap:
901 case L4_loadrd_ur: return L2_loadrd_io;
902 case L4_loadbzw2_ap:
903 case L4_loadbzw2_ur: return L2_loadbzw2_io;
904 case L4_loadbzw4_ap:
905 case L4_loadbzw4_ur: return L2_loadbzw4_io;
906 case L4_loadbsw2_ap:
907 case L4_loadbsw2_ur: return L2_loadbsw2_io;
908 case L4_loadbsw4_ap:
909 case L4_loadbsw4_ur: return L2_loadbsw4_io;
910 case L4_loadalignh_ap:
911 case L4_loadalignh_ur: return L2_loadalignh_io;
912 case L4_loadalignb_ap:
913 case L4_loadalignb_ur: return L2_loadalignb_io;
914 case L4_ploadrubt_abs: return L2_ploadrubt_io;
915 case L4_ploadrubf_abs: return L2_ploadrubf_io;
916 case L4_ploadrbt_abs: return L2_ploadrbt_io;
917 case L4_ploadrbf_abs: return L2_ploadrbf_io;
918 case L4_ploadruht_abs: return L2_ploadruht_io;
919 case L4_ploadruhf_abs: return L2_ploadruhf_io;
920 case L4_ploadrht_abs: return L2_ploadrht_io;
921 case L4_ploadrhf_abs: return L2_ploadrhf_io;
922 case L4_ploadrit_abs: return L2_ploadrit_io;
923 case L4_ploadrif_abs: return L2_ploadrif_io;
924 case L4_ploadrdt_abs: return L2_ploadrdt_io;
925 case L4_ploadrdf_abs: return L2_ploadrdf_io;
926 case PS_storerbabs:
927 case S4_storerb_ap:
928 case S4_storerb_ur: return S2_storerb_io;
929 case PS_storerhabs:
930 case S4_storerh_ap:
931 case S4_storerh_ur: return S2_storerh_io;
932 case PS_storerfabs:
933 case S4_storerf_ap:
934 case S4_storerf_ur: return S2_storerf_io;
935 case PS_storeriabs:
936 case S4_storeri_ap:
937 case S4_storeri_ur: return S2_storeri_io;
938 case PS_storerdabs:
939 case S4_storerd_ap:
940 case S4_storerd_ur: return S2_storerd_io;
941 case S4_pstorerbt_abs: return S2_pstorerbt_io;
942 case S4_pstorerbf_abs: return S2_pstorerbf_io;
943 case S4_pstorerht_abs: return S2_pstorerht_io;
944 case S4_pstorerhf_abs: return S2_pstorerhf_io;
945 case S4_pstorerft_abs: return S2_pstorerft_io;
946 case S4_pstorerff_abs: return S2_pstorerff_io;
947 case S4_pstorerit_abs: return S2_pstorerit_io;
948 case S4_pstorerif_abs: return S2_pstorerif_io;
949 case S4_pstorerdt_abs: return S2_pstorerdt_io;
950 case S4_pstorerdf_abs: return S2_pstorerdf_io;
951 default:
952 break;
953 }
954 break;
956 if (!isStoreImmediate(ExtOpc))
957 return ExtOpc;
958 break;
959 default:
960 break;
961 }
962 }
963 return 0;
964}
965
966unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
967 switch (ExtOpc) {
968 case Hexagon::A2_addi: return Hexagon::A2_add;
969 case Hexagon::A2_andir: return Hexagon::A2_and;
970 case Hexagon::A2_combineii: return Hexagon::A4_combineri;
971 case Hexagon::A2_orir: return Hexagon::A2_or;
972 case Hexagon::A2_paddif: return Hexagon::A2_paddf;
973 case Hexagon::A2_paddit: return Hexagon::A2_paddt;
974 case Hexagon::A2_subri: return Hexagon::A2_sub;
975 case Hexagon::A2_tfrsi: return TargetOpcode::COPY;
976 case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq;
977 case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt;
978 case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu;
979 case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq;
980 case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt;
981 case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu;
982 case Hexagon::A4_combineii: return Hexagon::A4_combineir;
983 case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE;
984 case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE;
985 case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq;
986 case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq;
987 case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf;
988 case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt;
989 case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq;
990 case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt;
991 case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu;
992 case Hexagon::C2_muxii: return Hexagon::C2_muxir;
993 case Hexagon::C2_muxir: return Hexagon::C2_mux;
994 case Hexagon::C2_muxri: return Hexagon::C2_mux;
995 case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte;
996 case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu;
997 case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq;
998 case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T
999 /* No M2_macsin */
1000 case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T
1001 case Hexagon::M2_mpysin: return Hexagon::M2_mpyi;
1002 case Hexagon::M2_mpysip: return Hexagon::M2_mpyi;
1003 case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi;
1004 case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T
1005 case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr;
1006 case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T
1007 case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T
1008 case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T
1009 case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T
1010 case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T
1011 case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T
1012 case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T
1013 case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T
1014 case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T
1015 case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T
1016 case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T
1017 case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T
1018
1019 // Store-immediates:
1020 case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io;
1021 case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io;
1022 case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io;
1023 case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io;
1024 case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io;
1025 case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io;
1026 case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io;
1027 case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io;
1028 case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io;
1029
1030 default:
1031 break;
1032 }
1033 return 0;
1034}
1035
1036// Return the allowable deviation from the current value of Rb (i.e. the
1037// range of values that can be added to the current value) which the
1038// instruction MI can accommodate.
1039// The instruction MI is a user of register Rb, which is defined via an
1040// extender. It may be possible for MI to be tweaked to work for a register
1041// defined with a slightly different value. For example
1042// ... = L2_loadrub_io Rb, 1
1043// can be modifed to be
1044// ... = L2_loadrub_io Rb', 0
1045// if Rb' = Rb+1.
1046// The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range
1047// for L2_loadrub with offset 0. That means that Rb could be replaced with
1048// Rc, where Rc-Rb belongs to [Min+1, Max+1].
1049OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
1050 unsigned Opc = MI.getOpcode();
1051 // Instructions that are constant-extended may be replaced with something
1052 // else that no longer offers the same range as the original.
1053 if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
1054 return OffsetRange::zero();
1055
1056 if (Opc == Hexagon::A2_addi) {
1057 const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
1058 if (Rb != Register(Op1) || !Op2.isImm())
1059 return OffsetRange::zero();
1060 OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
1061 return R.shift(Op2.getImm());
1062 }
1063
1064 // HII::getBaseAndOffsetPosition returns the increment position as "offset".
1065 if (HII->isPostIncrement(MI))
1066 return OffsetRange::zero();
1067
1068 const MCInstrDesc &D = HII->get(Opc);
1069 assert(D.mayLoad() || D.mayStore());
1070
1071 unsigned BaseP, OffP;
1072 if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
1073 Rb != Register(MI.getOperand(BaseP)) ||
1074 !MI.getOperand(OffP).isImm())
1075 return OffsetRange::zero();
1076
1077 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1080 unsigned L = Log2_32(A);
1081 unsigned S = 10+L; // sint11_L
1082 int32_t Min = -alignDown((1<<S)-1, A);
1083
1084 // The range will be shifted by Off. To prefer non-negative offsets,
1085 // adjust Max accordingly.
1086 int32_t Off = MI.getOperand(OffP).getImm();
1087 int32_t Max = Off >= 0 ? 0 : -Off;
1088
1089 OffsetRange R = { Min, Max, A };
1090 return R.shift(Off);
1091}
1092
1093// Return the allowable deviation from the current value of the extender ED,
1094// for which the instruction corresponding to ED can be modified without
1095// using an extender.
1096// The instruction uses the extender directly. It will be replaced with
1097// another instruction, say MJ, where the extender will be replaced with a
1098// register. MJ can allow some variability with respect to the value of
1099// that register, as is the case with indexed memory instructions.
1100OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
1101 // The only way that there can be a non-zero range available is if
1102 // the instruction using ED will be converted to an indexed memory
1103 // instruction.
1104 unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
1105 switch (IdxOpc) {
1106 case 0:
1107 return OffsetRange::zero();
1108 case Hexagon::A2_addi: // s16
1109 return { -32767, 32767, 1 };
1110 case Hexagon::A2_subri: // s10
1111 return { -511, 511, 1 };
1112 }
1113
1114 if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
1115 return OffsetRange::zero();
1116 const MCInstrDesc &D = HII->get(IdxOpc);
1117 uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1120 unsigned L = Log2_32(A);
1121 unsigned S = 10+L; // sint11_L
1122 int32_t Min = -alignDown((1<<S)-1, A);
1123 int32_t Max = 0; // Force non-negative offsets.
1124 return { Min, Max, A };
1125}
1126
1127// Get the allowable deviation from the current value of Rd by checking
1128// all uses of Rd.
1129OffsetRange HCE::getOffsetRange(Register Rd) const {
1130 OffsetRange Range;
1131 for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
1132 // Make sure that the register being used by this operand is identical
1133 // to the register that was defined: using a different subregister
1134 // precludes any non-trivial range.
1135 if (Rd != Register(Op))
1136 return OffsetRange::zero();
1137 Range.intersect(getOffsetRange(Rd, *Op.getParent()));
1138 }
1139 return Range;
1140}
1141
1142void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
1143 unsigned Opc = MI.getOpcode();
1144 ExtDesc ED;
1145 ED.OpNum = OpNum;
1146
1147 bool IsLoad = MI.mayLoad();
1148 bool IsStore = MI.mayStore();
1149
1150 // Fixed stack slots have negative indexes, and they cannot be used
1151 // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat
1152 // unfortunate, but should not be a frequent thing.
1153 for (MachineOperand &Op : MI.operands())
1154 if (Op.isFI() && Op.getIndex() < 0)
1155 return;
1156
1157 if (IsLoad || IsStore) {
1158 unsigned AM = HII->getAddrMode(MI);
1159 switch (AM) {
1160 // (Re: ##Off + Rb<<S) = Rd: ##Val
1161 case HexagonII::Absolute: // (__: ## + __<<_)
1162 break;
1163 case HexagonII::AbsoluteSet: // (Rd: ## + __<<_)
1164 ED.Rd = MI.getOperand(OpNum-1);
1165 ED.IsDef = true;
1166 break;
1167 case HexagonII::BaseImmOffset: // (__: ## + Rs<<0)
1168 // Store-immediates are treated as non-memory operations, since
1169 // it's the value being stored that is extended (as opposed to
1170 // a part of the address).
1171 if (!isStoreImmediate(Opc))
1172 ED.Expr.Rs = MI.getOperand(OpNum-1);
1173 break;
1174 case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
1175 ED.Expr.Rs = MI.getOperand(OpNum-2);
1176 ED.Expr.S = MI.getOperand(OpNum-1).getImm();
1177 break;
1178 default:
1179 llvm_unreachable("Unhandled memory instruction");
1180 }
1181 } else {
1182 switch (Opc) {
1183 case Hexagon::A2_tfrsi: // (Rd: ## + __<<_)
1184 ED.Rd = MI.getOperand(0);
1185 ED.IsDef = true;
1186 break;
1187 case Hexagon::A2_combineii: // (Rd: ## + __<<_)
1188 case Hexagon::A4_combineir:
1189 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
1190 ED.IsDef = true;
1191 break;
1192 case Hexagon::A4_combineri: // (Rd: ## + __<<_)
1193 ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
1194 ED.IsDef = true;
1195 break;
1196 case Hexagon::A2_addi: // (Rd: ## + Rs<<0)
1197 ED.Rd = MI.getOperand(0);
1198 ED.Expr.Rs = MI.getOperand(OpNum-1);
1199 break;
1200 case Hexagon::M2_accii: // (__: ## + Rs<<0)
1201 case Hexagon::M2_naccii:
1202 case Hexagon::S4_addaddi:
1203 ED.Expr.Rs = MI.getOperand(OpNum-1);
1204 break;
1205 case Hexagon::A2_subri: // (Rd: ## - Rs<<0)
1206 ED.Rd = MI.getOperand(0);
1207 ED.Expr.Rs = MI.getOperand(OpNum+1);
1208 ED.Expr.Neg = true;
1209 break;
1210 case Hexagon::S4_subaddi: // (__: ## - Rs<<0)
1211 ED.Expr.Rs = MI.getOperand(OpNum+1);
1212 ED.Expr.Neg = true;
1213 break;
1214 default: // (__: ## + __<<_)
1215 break;
1216 }
1217 }
1218
1219 ED.UseMI = &MI;
1220
1221 // Ignore unnamed globals.
1222 ExtRoot ER(ED.getOp());
1223 if (ER.Kind == MachineOperand::MO_GlobalAddress)
1224 if (ER.V.GV->getName().empty())
1225 return;
1226 // Ignore block address that points to block in another function
1227 if (ER.Kind == MachineOperand::MO_BlockAddress)
1228 if (ER.V.BA->getFunction() != &(MI.getMF()->getFunction()))
1229 return;
1230 Extenders.push_back(ED);
1231}
1232
1233void HCE::collectInstr(MachineInstr &MI) {
1234 if (!HII->isConstExtended(MI))
1235 return;
1236
1237 // Skip some non-convertible instructions.
1238 unsigned Opc = MI.getOpcode();
1239 switch (Opc) {
1240 case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt).
1241 case Hexagon::C4_addipc:
1242 case Hexagon::S4_or_andi:
1243 case Hexagon::S4_or_andix:
1244 case Hexagon::S4_or_ori:
1245 return;
1246 }
1247 recordExtender(MI, HII->getCExtOpNum(MI));
1248}
1249
1250void HCE::collect(MachineFunction &MF) {
1251 Extenders.clear();
1252 for (MachineBasicBlock &MBB : MF) {
1253 // Skip unreachable blocks.
1254 if (MBB.getNumber() == -1)
1255 continue;
1256 for (MachineInstr &MI : MBB)
1257 collectInstr(MI);
1258 }
1259}
1260
1261void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
1262 AssignmentMap &IMap) {
1263 // Basic correctness: make sure that all extenders in the range [Begin..End)
1264 // share the same root ER.
1265 for (unsigned I = Begin; I != End; ++I)
1266 assert(ER == ExtRoot(Extenders[I].getOp()));
1267
1268 // Construct the list of ranges, such that for each P in Ranges[I],
1269 // a register Reg = ER+P can be used in place of Extender[I]. If the
1270 // instruction allows, uses in the form of Reg+Off are considered
1271 // (here, Off = required_value - P).
1272 std::vector<OffsetRange> Ranges(End-Begin);
1273
1274 // For each extender that is a def, visit all uses of the defined register,
1275 // and produce an offset range that works for all uses. The def doesn't
1276 // have to be checked, because it can become dead if all uses can be updated
1277 // to use a different reg/offset.
1278 for (unsigned I = Begin; I != End; ++I) {
1279 const ExtDesc &ED = Extenders[I];
1280 if (!ED.IsDef)
1281 continue;
1282 ExtValue EV(ED);
1283 LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n');
1284 assert(ED.Rd.Reg != 0);
1285 Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
1286 // A2_tfrsi is a special case: it will be replaced with A2_addi, which
1287 // has a 16-bit signed offset. This means that A2_tfrsi not only has a
1288 // range coming from its uses, but also from the fact that its replacement
1289 // has a range as well.
1290 if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
1291 int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
1292 Ranges[I-Begin].extendBy(-D).extendBy(D);
1293 }
1294 }
1295
1296 // Visit all non-def extenders. For each one, determine the offset range
1297 // available for it.
1298 for (unsigned I = Begin; I != End; ++I) {
1299 const ExtDesc &ED = Extenders[I];
1300 if (ED.IsDef)
1301 continue;
1302 ExtValue EV(ED);
1303 LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n');
1304 OffsetRange Dev = getOffsetRange(ED);
1305 Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
1306 }
1307
1308 // Here for each I there is a corresponding Range[I]. Construct the
1309 // inverse map, that to each range will assign the set of indexes in
1310 // [Begin..End) that this range corresponds to.
1311 std::map<OffsetRange, IndexList> RangeMap;
1312 for (unsigned I = Begin; I != End; ++I)
1313 RangeMap[Ranges[I-Begin]].insert(I);
1314
1315 LLVM_DEBUG({
1316 dbgs() << "Ranges\n";
1317 for (unsigned I = Begin; I != End; ++I)
1318 dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n';
1319 dbgs() << "RangeMap\n";
1320 for (auto &P : RangeMap) {
1321 dbgs() << " " << P.first << " ->";
1322 for (unsigned I : P.second)
1323 dbgs() << ' ' << I;
1324 dbgs() << '\n';
1325 }
1326 });
1327
1328 // Select the definition points, and generate the assignment between
1329 // these points and the uses.
1330
1331 // For each candidate offset, keep a pair CandData consisting of
1332 // the total number of ranges containing that candidate, and the
1333 // vector of corresponding RangeTree nodes.
1334 using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
1335 std::map<int32_t, CandData> CandMap;
1336
1337 RangeTree Tree;
1338 for (const OffsetRange &R : Ranges)
1339 Tree.add(R);
1341 Tree.order(Nodes);
1342
1343 auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes,
1344 uint8_t Align, uint8_t Offset) {
1345 for (RangeTree::Node *N : Nodes) {
1346 if (N->Range.Align <= Align || N->Range.Offset < Offset)
1347 continue;
1348 if ((N->Range.Offset - Offset) % Align != 0)
1349 continue;
1350 Align = N->Range.Align;
1351 Offset = N->Range.Offset;
1352 }
1353 return std::make_pair(Align, Offset);
1354 };
1355
1356 // Construct the set of all potential definition points from the endpoints
1357 // of the ranges. If a given endpoint also belongs to a different range,
1358 // but with a higher alignment, also consider the more-highly-aligned
1359 // value of this endpoint.
1360 std::set<int32_t> CandSet;
1361 for (RangeTree::Node *N : Nodes) {
1362 const OffsetRange &R = N->Range;
1363 auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset);
1364 CandSet.insert(R.Min);
1365 if (R.Align < P0.first)
1366 CandSet.insert(adjustUp(R.Min, P0.first, P0.second));
1367 auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset);
1368 CandSet.insert(R.Max);
1369 if (R.Align < P1.first)
1370 CandSet.insert(adjustDown(R.Max, P1.first, P1.second));
1371 }
1372
1373 // Build the assignment map: candidate C -> { list of extender indexes }.
1374 // This has to be done iteratively:
1375 // - pick the candidate that covers the maximum number of extenders,
1376 // - add the candidate to the map,
1377 // - remove the extenders from the pool.
1378 while (true) {
1379 using CMap = std::map<int32_t,unsigned>;
1380 CMap Counts;
1381 for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
1382 auto &&V = Tree.nodesWith(*It);
1383 unsigned N = std::accumulate(V.begin(), V.end(), 0u,
1384 [](unsigned Acc, const RangeTree::Node *N) {
1385 return Acc + N->Count;
1386 });
1387 if (N != 0)
1388 Counts.insert({*It, N});
1389 It = (N != 0) ? std::next(It) : CandSet.erase(It);
1390 }
1391 if (Counts.empty())
1392 break;
1393
1394 // Find the best candidate with respect to the number of extenders covered.
1395 auto BestIt = llvm::max_element(
1396 Counts, [](const CMap::value_type &A, const CMap::value_type &B) {
1397 return A.second < B.second || (A.second == B.second && A < B);
1398 });
1399 int32_t Best = BestIt->first;
1400 ExtValue BestV(ER, Best);
1401 for (RangeTree::Node *N : Tree.nodesWith(Best)) {
1402 for (unsigned I : RangeMap[N->Range])
1403 IMap[{BestV,Extenders[I].Expr}].insert(I);
1404 Tree.erase(N);
1405 }
1406 }
1407
1408 LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));
1409
1410 // There is some ambiguity in what initializer should be used, if the
1411 // descriptor's subexpression is non-trivial: it can be the entire
1412 // subexpression (which is what has been done so far), or it can be
1413 // the extender's value itself, if all corresponding extenders have the
1414 // exact value of the initializer (i.e. require offset of 0).
1415
1416 // To reduce the number of initializers, merge such special cases.
1417 for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
1418 // Skip trivial initializers.
1419 if (P.first.second.trivial())
1420 continue;
1421 // If the corresponding trivial initializer does not exist, skip this
1422 // entry.
1423 const ExtValue &EV = P.first.first;
1424 AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
1425 if (F == IMap.end())
1426 continue;
1427
1428 // Finally, check if all extenders have the same value as the initializer.
1429 // Make sure that extenders that are a part of a stack address are not
1430 // merged with those that aren't. Stack addresses need an offset field
1431 // (to be used by frame index elimination), while non-stack expressions
1432 // can be replaced with forms (such as rr) that do not have such a field.
1433 // Example:
1434 //
1435 // Collected 3 extenders
1436 // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def
1437 // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0
1438 // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0
1439 // Ranges
1440 // 0. [-756,267]a1+0
1441 // 1. [-756,267]a1+0
1442 // 2. [201,65735]a1+0
1443 // RangeMap
1444 // [-756,267]a1+0 -> 0 1
1445 // [201,65735]a1+0 -> 2
1446 // IMap (before fixup) = {
1447 // [imm:0 off:267, ## + __ << 0] -> { 2 }
1448 // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 }
1449 // }
1450 // IMap (after fixup) = {
1451 // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 }
1452 // [imm:0 off:267, ## + SS#1 << 0] -> { }
1453 // }
1454 // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0]
1455 // %12:intregs = A2_tfrsi 267
1456 //
1457 // The result was
1458 // %12:intregs = A2_tfrsi 267
1459 // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4
1460 // Which became
1461 // r0 = #267
1462 // if (p0.new) memb(r0+r29<<#4) = r2
1463
1464 bool IsStack = any_of(F->second, [this](unsigned I) {
1465 return Extenders[I].Expr.Rs.isSlot();
1466 });
1467 auto SameValue = [&EV,this,IsStack](unsigned I) {
1468 const ExtDesc &ED = Extenders[I];
1469 return ED.Expr.Rs.isSlot() == IsStack &&
1470 ExtValue(ED).Offset == EV.Offset;
1471 };
1472 if (all_of(P.second, SameValue)) {
1473 F->second.insert(P.second.begin(), P.second.end());
1474 P.second.clear();
1475 }
1476 }
1477
1478 LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
1479}
1480
1481void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
1482 LocDefList &Defs) {
1483 if (Refs.empty())
1484 return;
1485
1486 // The placement calculation is somewhat simple right now: it finds a
1487 // single location for the def that dominates all refs. Since this may
1488 // place the def far from the uses, producing several locations for
1489 // defs that collectively dominate all refs could be better.
1490 // For now only do the single one.
1493 const ExtDesc &ED0 = Extenders[Refs[0]];
1494 MachineBasicBlock *DomB = ED0.UseMI->getParent();
1495 RefMIs.insert(ED0.UseMI);
1496 Blocks.insert(DomB);
1497 for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
1498 const ExtDesc &ED = Extenders[Refs[i]];
1499 MachineBasicBlock *MBB = ED.UseMI->getParent();
1500 RefMIs.insert(ED.UseMI);
1501 DomB = MDT->findNearestCommonDominator(DomB, MBB);
1502 Blocks.insert(MBB);
1503 }
1504
1505#ifndef NDEBUG
1506 // The block DomB should be dominated by the def of each register used
1507 // in the initializer.
1508 Register Rs = ExtI.second.Rs; // Only one reg allowed now.
1509 const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;
1510
1511 // This should be guaranteed given that the entire expression is used
1512 // at each instruction in Refs. Add an assertion just in case.
1513 assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
1514#endif
1515
1517 if (Blocks.count(DomB)) {
1518 // Try to find the latest possible location for the def.
1520 for (It = DomB->begin(); It != End; ++It)
1521 if (RefMIs.count(&*It))
1522 break;
1523 assert(It != End && "Should have found a ref in DomB");
1524 } else {
1525 // DomB does not contain any refs.
1526 It = DomB->getFirstTerminator();
1527 }
1528 Loc DefLoc(DomB, It);
1529 Defs.emplace_back(DefLoc, Refs);
1530}
1531
1532HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
1533 llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1534 MachineBasicBlock &MBB = *DefL.Block;
1535 MachineBasicBlock::iterator At = DefL.At;
1536 DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
1537 const ExtValue &EV = ExtI.first;
1538 MachineOperand ExtOp(EV);
1539
1540 const ExtExpr &Ex = ExtI.second;
1541 const MachineInstr *InitI = nullptr;
1542
1543 if (Ex.Rs.isSlot()) {
1544 assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
1545 assert(!Ex.Neg && "Cannot subtract a stack slot");
1546 // DefR = PS_fi Rb,##EV
1547 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
1548 .add(MachineOperand(Ex.Rs))
1549 .add(ExtOp);
1550 } else {
1551 assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register");
1552 if (Ex.trivial()) {
1553 // DefR = ##EV
1554 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
1555 .add(ExtOp);
1556 } else if (Ex.S == 0) {
1557 if (Ex.Neg) {
1558 // DefR = sub(##EV,Rb)
1559 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1560 .add(ExtOp)
1561 .add(MachineOperand(Ex.Rs));
1562 } else {
1563 // DefR = add(Rb,##EV)
1564 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1565 .add(MachineOperand(Ex.Rs))
1566 .add(ExtOp);
1567 }
1568 } else {
1569 if (HST->useCompound()) {
1570 unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
1571 : Hexagon::S4_addi_asl_ri;
1572 // DefR = add(##EV,asl(Rb,S))
1573 InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
1574 .add(ExtOp)
1575 .add(MachineOperand(Ex.Rs))
1576 .addImm(Ex.S);
1577 } else {
1578 // No compounds are available. It is not clear whether we should
1579 // even process such extenders where the initializer cannot be
1580 // a single instruction, but do it for now.
1581 llvm::Register TmpR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1582 BuildMI(MBB, At, dl, HII->get(Hexagon::S2_asl_i_r), TmpR)
1583 .add(MachineOperand(Ex.Rs))
1584 .addImm(Ex.S);
1585 if (Ex.Neg)
1586 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1587 .add(ExtOp)
1588 .add(MachineOperand(Register(TmpR, 0)));
1589 else
1590 InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1591 .add(MachineOperand(Register(TmpR, 0)))
1592 .add(ExtOp);
1593 }
1594 }
1595 }
1596
1597 assert(InitI);
1598 (void)InitI;
1599 LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
1600 << " for initializer: " << PrintInit(ExtI, *HRI) << "\n "
1601 << *InitI);
1602 return { DefR, 0 };
1603}
1604
1605// Replace the extender at index Idx with the register ExtR.
1606bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
1607 MachineInstr &MI = *ED.UseMI;
1608 MachineBasicBlock &MBB = *MI.getParent();
1609 MachineBasicBlock::iterator At = MI.getIterator();
1610 DebugLoc dl = MI.getDebugLoc();
1611 unsigned ExtOpc = MI.getOpcode();
1612
1613 // With a few exceptions, direct replacement amounts to creating an
1614 // instruction with a corresponding register opcode, with all operands
1615 // the same, except for the register used in place of the extender.
1616 unsigned RegOpc = getDirectRegReplacement(ExtOpc);
1617
1618 if (RegOpc == TargetOpcode::REG_SEQUENCE) {
1619 if (ExtOpc == Hexagon::A4_combineri)
1620 BuildMI(MBB, At, dl, HII->get(RegOpc))
1621 .add(MI.getOperand(0))
1622 .add(MI.getOperand(1))
1623 .addImm(Hexagon::isub_hi)
1624 .add(MachineOperand(ExtR))
1625 .addImm(Hexagon::isub_lo);
1626 else if (ExtOpc == Hexagon::A4_combineir)
1627 BuildMI(MBB, At, dl, HII->get(RegOpc))
1628 .add(MI.getOperand(0))
1629 .add(MachineOperand(ExtR))
1630 .addImm(Hexagon::isub_hi)
1631 .add(MI.getOperand(2))
1632 .addImm(Hexagon::isub_lo);
1633 else
1634 llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
1635 MBB.erase(MI);
1636 return true;
1637 }
1638 if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
1639 unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
1640 : Hexagon::C2_cmpltu;
1641 BuildMI(MBB, At, dl, HII->get(NewOpc))
1642 .add(MI.getOperand(0))
1643 .add(MachineOperand(ExtR))
1644 .add(MI.getOperand(1));
1645 MBB.erase(MI);
1646 return true;
1647 }
1648
1649 if (RegOpc != 0) {
1650 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1651 unsigned RegN = ED.OpNum;
1652 // Copy all operands except the one that has the extender.
1653 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1654 if (i != RegN)
1655 MIB.add(MI.getOperand(i));
1656 else
1657 MIB.add(MachineOperand(ExtR));
1658 }
1659 MIB.cloneMemRefs(MI);
1660 MBB.erase(MI);
1661 return true;
1662 }
1663
1664 if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) {
1665 // For memory instructions, there is an asymmetry in the addressing
1666 // modes. Addressing modes allowing extenders can be replaced with
1667 // addressing modes that use registers, but the order of operands
1668 // (or even their number) may be different.
1669 // Replacements:
1670 // BaseImmOffset (io) -> BaseRegOffset (rr)
1671 // BaseLongOffset (ur) -> BaseRegOffset (rr)
1672 unsigned RegOpc, Shift;
1673 unsigned AM = HII->getAddrMode(MI);
1674 if (AM == HexagonII::BaseImmOffset) {
1675 RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
1676 Shift = 0;
1677 } else if (AM == HexagonII::BaseLongOffset) {
1678 // Loads: Rd = L4_loadri_ur Rs, S, ##
1679 // Stores: S4_storeri_ur Rs, S, ##, Rt
1680 RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
1681 Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
1682 } else {
1683 llvm_unreachable("Unexpected addressing mode");
1684 }
1685#ifndef NDEBUG
1686 if (RegOpc == -1u) {
1687 dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
1688 llvm_unreachable("No corresponding rr instruction");
1689 }
1690#endif
1691
1692 unsigned BaseP, OffP;
1693 HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
1694
1695 // Build an rr instruction: (RegOff + RegBase<<0)
1696 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1697 // First, add the def for loads.
1698 if (MI.mayLoad())
1699 MIB.add(getLoadResultOp(MI));
1700 // Handle possible predication.
1701 if (HII->isPredicated(MI))
1702 MIB.add(getPredicateOp(MI));
1703 // Build the address.
1704 MIB.add(MachineOperand(ExtR)); // RegOff
1705 MIB.add(MI.getOperand(BaseP)); // RegBase
1706 MIB.addImm(Shift); // << Shift
1707 // Add the stored value for stores.
1708 if (MI.mayStore())
1709 MIB.add(getStoredValueOp(MI));
1710 MIB.cloneMemRefs(MI);
1711 MBB.erase(MI);
1712 return true;
1713 }
1714
1715#ifndef NDEBUG
1716 dbgs() << '\n' << MI;
1717#endif
1718 llvm_unreachable("Unhandled exact replacement");
1719 return false;
1720}
1721
1722// Replace the extender ED with a form corresponding to the initializer ExtI.
1723bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
1724 Register ExtR, int32_t &Diff) {
1725 MachineInstr &MI = *ED.UseMI;
1726 MachineBasicBlock &MBB = *MI.getParent();
1727 MachineBasicBlock::iterator At = MI.getIterator();
1728 DebugLoc dl = MI.getDebugLoc();
1729 unsigned ExtOpc = MI.getOpcode();
1730
1731 if (ExtOpc == Hexagon::A2_tfrsi) {
1732 // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
1733 // another range. One range is the one that's common to all tfrsi's uses,
1734 // this one is the range of immediates in A2_addi. When calculating ranges,
1735 // the addi's 16-bit argument was included, so now we need to make it such
1736 // that the produced value is in the range for the uses alone.
1737 // Most of the time, simply adding Diff will make the addi produce exact
1738 // result, but if Diff is outside of the 16-bit range, some adjustment
1739 // will be needed.
1740 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1741 assert(IdxOpc == Hexagon::A2_addi);
1742
1743 // Clamp Diff to the 16 bit range.
1744 int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768);
1745 if (Diff > 32767) {
1746 // Split Diff into two values: one that is close to min/max int16,
1747 // and the other being the rest, and such that both have the same
1748 // "alignment" as Diff.
1749 uint32_t UD = Diff;
1750 OffsetRange R = getOffsetRange(MI.getOperand(0));
1751 uint32_t A = std::min<uint32_t>(R.Align, 1u << llvm::countr_zero(UD));
1752 D &= ~(A-1);
1753 }
1754 BuildMI(MBB, At, dl, HII->get(IdxOpc))
1755 .add(MI.getOperand(0))
1756 .add(MachineOperand(ExtR))
1757 .addImm(D);
1758 Diff -= D;
1759#ifndef NDEBUG
1760 // Make sure the output is within allowable range for uses.
1761 // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV,
1762 // not DefV - Ext, as the getOffsetRange would calculate.
1763 OffsetRange Uses = getOffsetRange(MI.getOperand(0));
1764 if (!Uses.contains(-Diff))
1765 dbgs() << "Diff: " << -Diff << " out of range " << Uses
1766 << " for " << MI;
1767 assert(Uses.contains(-Diff));
1768#endif
1769 MBB.erase(MI);
1770 return true;
1771 }
1772
1773 const ExtValue &EV = ExtI.first; (void)EV;
1774 const ExtExpr &Ex = ExtI.second; (void)Ex;
1775
1776 if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
1777 // If addi/subri are replaced with the exactly matching initializer,
1778 // they amount to COPY.
1779 // Check that the initializer is an exact match (for simplicity).
1780#ifndef NDEBUG
1781 bool IsAddi = ExtOpc == Hexagon::A2_addi;
1782 const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
1783 const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
1784 assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
1785 "Initializer mismatch");
1786#endif
1787 BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
1788 .add(MI.getOperand(0))
1789 .add(MachineOperand(ExtR));
1790 Diff = 0;
1791 MBB.erase(MI);
1792 return true;
1793 }
1794 if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
1795 ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
1796 // M2_accii: add(Rt,add(Rs,V)) (tied)
1797 // M2_naccii: sub(Rt,add(Rs,V))
1798 // S4_addaddi: add(Rt,add(Rs,V))
1799 // S4_subaddi: add(Rt,sub(V,Rs))
1800 // Check that Rs and V match the initializer expression. The Rs+V is the
1801 // combination that is considered "subexpression" for V, although Rx+V
1802 // would also be valid.
1803#ifndef NDEBUG
1804 bool IsSub = ExtOpc == Hexagon::S4_subaddi;
1805 Register Rs = MI.getOperand(IsSub ? 3 : 2);
1806 ExtValue V = MI.getOperand(IsSub ? 2 : 3);
1807 assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch");
1808#endif
1809 unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
1810 : Hexagon::A2_add;
1811 BuildMI(MBB, At, dl, HII->get(NewOpc))
1812 .add(MI.getOperand(0))
1813 .add(MI.getOperand(1))
1814 .add(MachineOperand(ExtR));
1815 MBB.erase(MI);
1816 return true;
1817 }
1818
1819 if (MI.mayLoadOrStore()) {
1820 unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1821 assert(IdxOpc && "Expecting indexed opcode");
1822 MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
1823 // Construct the new indexed instruction.
1824 // First, add the def for loads.
1825 if (MI.mayLoad())
1826 MIB.add(getLoadResultOp(MI));
1827 // Handle possible predication.
1828 if (HII->isPredicated(MI))
1829 MIB.add(getPredicateOp(MI));
1830 // Build the address.
1831 MIB.add(MachineOperand(ExtR));
1832 MIB.addImm(Diff);
1833 // Add the stored value for stores.
1834 if (MI.mayStore())
1835 MIB.add(getStoredValueOp(MI));
1836 MIB.cloneMemRefs(MI);
1837 MBB.erase(MI);
1838 return true;
1839 }
1840
1841#ifndef NDEBUG
1842 dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI;
1843#endif
1844 llvm_unreachable("Unhandled expr replacement");
1845 return false;
1846}
1847
1848bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
1849 if (ReplaceLimit.getNumOccurrences()) {
1851 return false;
1853 }
1854 const ExtDesc &ED = Extenders[Idx];
1855 assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
1856 const ExtValue &DefV = ExtI.first;
1857 assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch");
1858 const ExtExpr &DefEx = ExtI.second;
1859
1860 ExtValue EV(ED);
1861 int32_t Diff = EV.Offset - DefV.Offset;
1862 const MachineInstr &MI = *ED.UseMI;
1863 LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
1864 << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');
1865
1866 // These two addressing modes must be converted into indexed forms
1867 // regardless of what the initializer looks like.
1868 bool IsAbs = false, IsAbsSet = false;
1869 if (MI.mayLoadOrStore()) {
1870 unsigned AM = HII->getAddrMode(MI);
1871 IsAbs = AM == HexagonII::Absolute;
1872 IsAbsSet = AM == HexagonII::AbsoluteSet;
1873 }
1874
1875 // If it's a def, remember all operands that need to be updated.
1876 // If ED is a def, and Diff is not 0, then all uses of the register Rd
1877 // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
1878 // must follow the Rd in the operand list.
1879 std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
1880 if (ED.IsDef && Diff != 0) {
1881 for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
1882 MachineInstr &UI = *Op.getParent();
1883 RegOps.push_back({&UI, getOperandIndex(UI, Op)});
1884 }
1885 }
1886
1887 // Replace the instruction.
1888 bool Replaced = false;
1889 if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
1890 Replaced = replaceInstrExact(ED, ExtR);
1891 else
1892 Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
1893
1894 if (Diff != 0 && Replaced && ED.IsDef) {
1895 // Update offsets of the def's uses.
1896 for (std::pair<MachineInstr*,unsigned> P : RegOps) {
1897 unsigned J = P.second;
1898 assert(P.first->getNumOperands() > J+1 &&
1899 P.first->getOperand(J+1).isImm());
1900 MachineOperand &ImmOp = P.first->getOperand(J+1);
1901 ImmOp.setImm(ImmOp.getImm() + Diff);
1902 }
1903 // If it was an absolute-set instruction, the "set" part has been removed.
1904 // ExtR will now be the register with the extended value, and since all
1905 // users of Rd have been updated, all that needs to be done is to replace
1906 // Rd with ExtR.
1907 if (IsAbsSet) {
1908 assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
1909 MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
1910 }
1911 }
1912
1913 return Replaced;
1914}
1915
1916bool HCE::replaceExtenders(const AssignmentMap &IMap) {
1917 LocDefList Defs;
1918 bool Changed = false;
1919
1920 for (const std::pair<const ExtenderInit, IndexList> &P : IMap) {
1921 const IndexList &Idxs = P.second;
1922 if (Idxs.size() < CountThreshold)
1923 continue;
1924
1925 Defs.clear();
1926 calculatePlacement(P.first, Idxs, Defs);
1927 for (const std::pair<Loc,IndexList> &Q : Defs) {
1928 Register DefR = insertInitializer(Q.first, P.first);
1929 NewRegs.push_back(DefR.Reg);
1930 for (unsigned I : Q.second)
1931 Changed |= replaceInstr(I, DefR, P.first);
1932 }
1933 }
1934 return Changed;
1935}
1936
1937unsigned HCE::getOperandIndex(const MachineInstr &MI,
1938 const MachineOperand &Op) const {
1939 for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
1940 if (&MI.getOperand(i) == &Op)
1941 return i;
1942 llvm_unreachable("Not an operand of MI");
1943}
1944
1945const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
1946 assert(HII->isPredicated(MI));
1947 for (const MachineOperand &Op : MI.operands()) {
1948 if (!Op.isReg() || !Op.isUse() ||
1949 MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
1950 continue;
1951 assert(Op.getSubReg() == 0 && "Predicate register with a subregister");
1952 return Op;
1953 }
1954 llvm_unreachable("Predicate operand not found");
1955}
1956
1957const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
1958 assert(MI.mayLoad());
1959 return MI.getOperand(0);
1960}
1961
1962const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
1963 assert(MI.mayStore());
1964 return MI.getOperand(MI.getNumExplicitOperands()-1);
1965}
1966
1967bool HCE::runOnMachineFunction(MachineFunction &MF) {
1968 if (skipFunction(MF.getFunction()))
1969 return false;
1970 if (MF.getFunction().hasPersonalityFn()) {
1971 LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName()
1972 << " due to exception handling\n");
1973 return false;
1974 }
1975 LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));
1976
1977 HST = &MF.getSubtarget<HexagonSubtarget>();
1978 HII = HST->getInstrInfo();
1979 HRI = HST->getRegisterInfo();
1980 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1981 MRI = &MF.getRegInfo();
1982 AssignmentMap IMap;
1983
1984 collect(MF);
1985 llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) {
1986 ExtValue VA(A), VB(B);
1987 if (VA != VB)
1988 return VA < VB;
1989 const MachineInstr *MA = A.UseMI;
1990 const MachineInstr *MB = B.UseMI;
1991 if (MA == MB) {
1992 // If it's the same instruction, compare operand numbers.
1993 return A.OpNum < B.OpNum;
1994 }
1995
1996 const MachineBasicBlock *BA = MA->getParent();
1997 const MachineBasicBlock *BB = MB->getParent();
1998 assert(BA->getNumber() != -1 && BB->getNumber() != -1);
1999 if (BA != BB)
2000 return BA->getNumber() < BB->getNumber();
2001 return MDT->dominates(MA, MB);
2002 });
2003
2004 bool Changed = false;
2005 LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
2006 for (unsigned I = 0, E = Extenders.size(); I != E; ) {
2007 unsigned B = I;
2008 const ExtRoot &T = Extenders[B].getOp();
2009 while (I != E && ExtRoot(Extenders[I].getOp()) == T)
2010 ++I;
2011
2012 IMap.clear();
2013 assignInits(T, B, I, IMap);
2014 Changed |= replaceExtenders(IMap);
2015 }
2016
2017 LLVM_DEBUG({
2018 if (Changed)
2019 MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
2020 else
2021 dbgs() << "No changes\n";
2022 });
2023 return Changed;
2024}
2025
2027 return new HexagonConstExtenders();
2028}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:533
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:199
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
static void zero(T &Obj)
Definition: ELFEmitter.cpp:343
bool End
Definition: ELF_riscv.cpp:480
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
Rewrite Partial Register Uses
static cl::opt< unsigned > CountThreshold("hexagon-cext-threshold", cl::init(3), cl::Hidden, cl::desc("Minimum number of extenders to trigger replacement"))
hexagon cext Hexagon constant extender static false unsigned ReplaceCounter
static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O)
hexagon cext opt
hexagon cext Hexagon constant extender optimization
static cl::opt< unsigned > ReplaceLimit("hexagon-cext-limit", cl::init(0), cl::Hidden, cl::desc("Maximum number of replacements"))
static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O)
IRTranslator LLVM IR MI
static ValueLatticeElement intersect(const ValueLatticeElement &A, const ValueLatticeElement &B)
Combine two sets of facts about the same value into a single set of facts.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
APInt bitcastToAPInt() const
Definition: APFloat.h:1266
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1089
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
The address of a basic block.
Definition: Constants.h:890
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:269
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:903
const HexagonInstrInfo * getInstrInfo() const override
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
void print(raw_ostream &OS, const SlotIndexes *=nullptr) const
print - Print out the MachineFunction in a format suitable for debugging to the specified stream.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:346
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
MachineOperand class - Representation of each machine instruction operand.
static MachineOperand CreateES(const char *SymName, unsigned TargetFlags=0)
static MachineOperand CreateFPImm(const ConstantFP *CFP)
void setImm(int64_t immVal)
int64_t getImm() const
static MachineOperand CreateImm(int64_t Val)
static MachineOperand CreateJTI(unsigned Idx, unsigned TargetFlags=0)
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags=0)
@ MO_Immediate
Immediate operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_GlobalAddress
Address of a global value.
@ MO_BlockAddress
Address of a basic block.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_JumpTableIndex
Address of indexed Jump Table for switch.
@ MO_TargetIndex
Target-dependent index+offset operand.
@ MO_FPImmediate
Floating-point immediate operand.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:37
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static int stackSlot2Index(Register Reg)
Compute the frame index from a register value representing a stack slot.
Definition: Register.h:52
static Register index2StackSlot(int FI)
Convert a non-negative frame index to a stack slot register value.
Definition: Register.h:58
A vector that has set insertion semantics.
Definition: SetVector.h:57
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
static LLVM_ATTRIBUTE_UNUSED unsigned getMemAccessSizeInBytes(MemAccessSize S)
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
std::error_code remove(const Twine &path, bool IgnoreNonExisting=true)
Remove path.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Offset
Definition: DWP.cpp:480
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:361
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2060
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition: MathExtras.h:555
FunctionPass * createHexagonConstExtenders()
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition: STLExtras.h:2090
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:340
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1997
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:292
void initializeHexagonConstExtendersPass(PassRegistry &)
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39