LLVM 20.0.0git
PredicateInfo.cpp
Go to the documentation of this file.
1//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------===//
8//
9// This file implements the PredicateInfo class.
10//
11//===----------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
20#include "llvm/IR/Dominators.h"
21#include "llvm/IR/IRBuilder.h"
24#include "llvm/IR/Module.h"
27#include "llvm/Support/Debug.h"
30#define DEBUG_TYPE "predicateinfo"
31using namespace llvm;
32using namespace PatternMatch;
33
35 "verify-predicateinfo", cl::init(false), cl::Hidden,
36 cl::desc("Verify PredicateInfo in legacy printer pass."));
37DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
38 "Controls which variables are renamed with predicateinfo");
39
40// Maximum number of conditions considered for renaming for each branch/assume.
41// This limits renaming of deep and/or chains.
42static const unsigned MaxCondsPerBranch = 8;
43
44namespace {
45// Given a predicate info that is a type of branching terminator, get the
46// branching block.
47const BasicBlock *getBranchBlock(const PredicateBase *PB) {
48 assert(isa<PredicateWithEdge>(PB) &&
49 "Only branches and switches should have PHIOnly defs that "
50 "require branch blocks.");
51 return cast<PredicateWithEdge>(PB)->From;
52}
53
54// Given a predicate info that is a type of branching terminator, get the
55// branching terminator.
56static Instruction *getBranchTerminator(const PredicateBase *PB) {
57 assert(isa<PredicateWithEdge>(PB) &&
58 "Not a predicate info type we know how to get a terminator from.");
59 return cast<PredicateWithEdge>(PB)->From->getTerminator();
60}
61
62// Given a predicate info that is a type of branching terminator, get the
63// edge this predicate info represents
64std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
65 assert(isa<PredicateWithEdge>(PB) &&
66 "Not a predicate info type we know how to get an edge from.");
67 const auto *PEdge = cast<PredicateWithEdge>(PB);
68 return std::make_pair(PEdge->From, PEdge->To);
69}
70}
71
72namespace llvm {
74 // Operations that must appear first in the block.
76 // Operations that are somewhere in the middle of the block, and are sorted on
77 // demand.
79 // Operations that must appear last in a block, like successor phi node uses.
81};
82
83// Associate global and local DFS info with defs and uses, so we can sort them
84// into a global domination ordering.
85struct ValueDFS {
86 int DFSIn = 0;
87 int DFSOut = 0;
88 unsigned int LocalNum = LN_Middle;
89 // Only one of Def or Use will be set.
90 Value *Def = nullptr;
91 Use *U = nullptr;
92 // Neither PInfo nor EdgeOnly participate in the ordering
93 PredicateBase *PInfo = nullptr;
94 bool EdgeOnly = false;
95};
96
97// Perform a strict weak ordering on instructions and arguments.
98static bool valueComesBefore(const Value *A, const Value *B) {
99 auto *ArgA = dyn_cast_or_null<Argument>(A);
100 auto *ArgB = dyn_cast_or_null<Argument>(B);
101 if (ArgA && !ArgB)
102 return true;
103 if (ArgB && !ArgA)
104 return false;
105 if (ArgA && ArgB)
106 return ArgA->getArgNo() < ArgB->getArgNo();
107 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
108}
109
110// This compares ValueDFS structures. Doing so allows us to walk the minimum
111// number of instructions necessary to compute our def/use ordering.
115
116 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
117 if (&A == &B)
118 return false;
119 // The only case we can't directly compare them is when they in the same
120 // block, and both have localnum == middle. In that case, we have to use
121 // comesbefore to see what the real ordering is, because they are in the
122 // same basic block.
123
124 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
125 "Equal DFS-in numbers imply equal out numbers");
126 bool SameBlock = A.DFSIn == B.DFSIn;
127
128 // We want to put the def that will get used for a given set of phi uses,
129 // before those phi uses.
130 // So we sort by edge, then by def.
131 // Note that only phi nodes uses and defs can come last.
132 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
133 return comparePHIRelated(A, B);
134
135 bool isADef = A.Def;
136 bool isBDef = B.Def;
137 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
138 return std::tie(A.DFSIn, A.LocalNum, isADef) <
139 std::tie(B.DFSIn, B.LocalNum, isBDef);
140 return localComesBefore(A, B);
141 }
142
143 // For a phi use, or a non-materialized def, return the edge it represents.
144 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
145 if (!VD.Def && VD.U) {
146 auto *PHI = cast<PHINode>(VD.U->getUser());
147 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
148 }
149 // This is really a non-materialized def.
150 return ::getBlockEdge(VD.PInfo);
151 }
152
153 // For two phi related values, return the ordering.
154 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
155 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
156 std::tie(ASrc, ADest) = getBlockEdge(A);
157 std::tie(BSrc, BDest) = getBlockEdge(B);
158
159#ifndef NDEBUG
160 // This function should only be used for values in the same BB, check that.
161 DomTreeNode *DomASrc = DT.getNode(ASrc);
162 DomTreeNode *DomBSrc = DT.getNode(BSrc);
163 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
164 "DFS numbers for A should match the ones of the source block");
165 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
166 "DFS numbers for B should match the ones of the source block");
167 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
168#endif
169 (void)ASrc;
170 (void)BSrc;
171
172 // Use DFS numbers to compare destination blocks, to guarantee a
173 // deterministic order.
174 DomTreeNode *DomADest = DT.getNode(ADest);
175 DomTreeNode *DomBDest = DT.getNode(BDest);
176 unsigned AIn = DomADest->getDFSNumIn();
177 unsigned BIn = DomBDest->getDFSNumIn();
178 bool isADef = A.Def;
179 bool isBDef = B.Def;
180 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
181 "Def and U cannot be set at the same time");
182 // Now sort by edge destination and then defs before uses.
183 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
184 }
185
186 // Get the definition of an instruction that occurs in the middle of a block.
187 Value *getMiddleDef(const ValueDFS &VD) const {
188 if (VD.Def)
189 return VD.Def;
190 // It's possible for the defs and uses to be null. For branches, the local
191 // numbering will say the placed predicaeinfos should go first (IE
192 // LN_beginning), so we won't be in this function. For assumes, we will end
193 // up here, beause we need to order the def we will place relative to the
194 // assume. So for the purpose of ordering, we pretend the def is right
195 // after the assume, because that is where we will insert the info.
196 if (!VD.U) {
197 assert(VD.PInfo &&
198 "No def, no use, and no predicateinfo should not occur");
199 assert(isa<PredicateAssume>(VD.PInfo) &&
200 "Middle of block should only occur for assumes");
201 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
202 }
203 return nullptr;
204 }
205
206 // Return either the Def, if it's not null, or the user of the Use, if the def
207 // is null.
208 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
209 if (Def)
210 return cast<Instruction>(Def);
211 return cast<Instruction>(U->getUser());
212 }
213
214 // This performs the necessary local basic block ordering checks to tell
215 // whether A comes before B, where both are in the same basic block.
216 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
217 auto *ADef = getMiddleDef(A);
218 auto *BDef = getMiddleDef(B);
219
220 // See if we have real values or uses. If we have real values, we are
221 // guaranteed they are instructions or arguments. No matter what, we are
222 // guaranteed they are in the same block if they are instructions.
223 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
224 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
225
226 if (ArgA || ArgB)
227 return valueComesBefore(ArgA, ArgB);
228
229 auto *AInst = getDefOrUser(ADef, A.U);
230 auto *BInst = getDefOrUser(BDef, B.U);
231 return valueComesBefore(AInst, BInst);
232 }
233};
234
236 // Used to store information about each value we might rename.
237 struct ValueInfo {
239 };
240
241 PredicateInfo &PI;
242 Function &F;
243 DominatorTree &DT;
244 AssumptionCache &AC;
245
246 // This stores info about each operand or comparison result we make copies
247 // of. The real ValueInfos start at index 1, index 0 is unused so that we
248 // can more easily detect invalid indexing.
250
251 // This gives the index into the ValueInfos array for a given Value. Because
252 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
253 // whether it returned a valid result.
255
256 // The set of edges along which we can only handle phi uses, due to critical
257 // edges.
259
260 ValueInfo &getOrCreateValueInfo(Value *);
261 const ValueInfo &getValueInfo(Value *) const;
262
263 void processAssume(IntrinsicInst *, BasicBlock *,
264 SmallVectorImpl<Value *> &OpsToRename);
265 void processBranch(BranchInst *, BasicBlock *,
266 SmallVectorImpl<Value *> &OpsToRename);
267 void processSwitch(SwitchInst *, BasicBlock *,
268 SmallVectorImpl<Value *> &OpsToRename);
269 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
270 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
272
274 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
275 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
276 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
277 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
278
279public:
281 AssumptionCache &AC)
282 : PI(PI), F(F), DT(DT), AC(AC) {
283 // Push an empty operand info so that we can detect 0 as not finding one
284 ValueInfos.resize(1);
285 }
286
287 void buildPredicateInfo();
288};
289
290bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
291 const ValueDFS &VDUse) const {
292 if (Stack.empty())
293 return false;
294 // If it's a phi only use, make sure it's for this phi node edge, and that the
295 // use is in a phi node. If it's anything else, and the top of the stack is
296 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
297 // the defs they must go with so that we can know it's time to pop the stack
298 // when we hit the end of the phi uses for a given def.
299 if (Stack.back().EdgeOnly) {
300 if (!VDUse.U)
301 return false;
302 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
303 if (!PHI)
304 return false;
305 // Check edge
306 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
307 if (EdgePred != getBranchBlock(Stack.back().PInfo))
308 return false;
309
310 // Use dominates, which knows how to handle edge dominance.
311 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
312 }
313
314 return (VDUse.DFSIn >= Stack.back().DFSIn &&
315 VDUse.DFSOut <= Stack.back().DFSOut);
316}
317
318void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
319 const ValueDFS &VD) {
320 while (!Stack.empty() && !stackIsInScope(Stack, VD))
321 Stack.pop_back();
322}
323
324// Convert the uses of Op into a vector of uses, associating global and local
325// DFS info with each one.
326void PredicateInfoBuilder::convertUsesToDFSOrdered(
327 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
328 for (auto &U : Op->uses()) {
329 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
330 ValueDFS VD;
331 // Put the phi node uses in the incoming block.
332 BasicBlock *IBlock;
333 if (auto *PN = dyn_cast<PHINode>(I)) {
334 IBlock = PN->getIncomingBlock(U);
335 // Make phi node users appear last in the incoming block
336 // they are from.
337 VD.LocalNum = LN_Last;
338 } else {
339 // If it's not a phi node use, it is somewhere in the middle of the
340 // block.
341 IBlock = I->getParent();
342 VD.LocalNum = LN_Middle;
343 }
344 DomTreeNode *DomNode = DT.getNode(IBlock);
345 // It's possible our use is in an unreachable block. Skip it if so.
346 if (!DomNode)
347 continue;
348 VD.DFSIn = DomNode->getDFSNumIn();
349 VD.DFSOut = DomNode->getDFSNumOut();
350 VD.U = &U;
351 DFSOrderedSet.push_back(VD);
352 }
353 }
354}
355
357 // Only want real values, not constants. Additionally, operands with one use
358 // are only being used in the comparison, which means they will not be useful
359 // for us to consider for predicateinfo.
360 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
361}
362
363// Collect relevant operations from Comparison that we may want to insert copies
364// for.
365void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
366 auto *Op0 = Comparison->getOperand(0);
367 auto *Op1 = Comparison->getOperand(1);
368 if (Op0 == Op1)
369 return;
370
371 CmpOperands.push_back(Op0);
372 CmpOperands.push_back(Op1);
373}
374
375// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
376void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
378 auto &OperandInfo = getOrCreateValueInfo(Op);
379 if (OperandInfo.Infos.empty())
380 OpsToRename.push_back(Op);
381 PI.AllInfos.push_back(PB);
382 OperandInfo.Infos.push_back(PB);
383}
384
385// Process an assume instruction and place relevant operations we want to rename
386// into OpsToRename.
387void PredicateInfoBuilder::processAssume(
388 IntrinsicInst *II, BasicBlock *AssumeBB,
389 SmallVectorImpl<Value *> &OpsToRename) {
392 Worklist.push_back(II->getOperand(0));
393 while (!Worklist.empty()) {
394 Value *Cond = Worklist.pop_back_val();
395 if (!Visited.insert(Cond).second)
396 continue;
397 if (Visited.size() > MaxCondsPerBranch)
398 break;
399
400 Value *Op0, *Op1;
401 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
402 Worklist.push_back(Op1);
403 Worklist.push_back(Op0);
404 }
405
407 Values.push_back(Cond);
408 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
409 collectCmpOps(Cmp, Values);
410
411 for (Value *V : Values) {
412 if (shouldRename(V)) {
413 auto *PA = new PredicateAssume(V, II, Cond);
414 addInfoFor(OpsToRename, V, PA);
415 }
416 }
417 }
418}
419
420// Process a block terminating branch, and place relevant operations to be
421// renamed into OpsToRename.
422void PredicateInfoBuilder::processBranch(
423 BranchInst *BI, BasicBlock *BranchBB,
424 SmallVectorImpl<Value *> &OpsToRename) {
425 BasicBlock *FirstBB = BI->getSuccessor(0);
426 BasicBlock *SecondBB = BI->getSuccessor(1);
427
428 for (BasicBlock *Succ : {FirstBB, SecondBB}) {
429 bool TakenEdge = Succ == FirstBB;
430 // Don't try to insert on a self-edge. This is mainly because we will
431 // eliminate during renaming anyway.
432 if (Succ == BranchBB)
433 continue;
434
437 Worklist.push_back(BI->getCondition());
438 while (!Worklist.empty()) {
439 Value *Cond = Worklist.pop_back_val();
440 if (!Visited.insert(Cond).second)
441 continue;
442 if (Visited.size() > MaxCondsPerBranch)
443 break;
444
445 Value *Op0, *Op1;
446 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
447 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
448 Worklist.push_back(Op1);
449 Worklist.push_back(Op0);
450 }
451
453 Values.push_back(Cond);
454 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
455 collectCmpOps(Cmp, Values);
456
457 for (Value *V : Values) {
458 if (shouldRename(V)) {
460 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
461 addInfoFor(OpsToRename, V, PB);
462 if (!Succ->getSinglePredecessor())
463 EdgeUsesOnly.insert({BranchBB, Succ});
464 }
465 }
466 }
467 }
468}
469// Process a block terminating switch, and place relevant operations to be
470// renamed into OpsToRename.
471void PredicateInfoBuilder::processSwitch(
472 SwitchInst *SI, BasicBlock *BranchBB,
473 SmallVectorImpl<Value *> &OpsToRename) {
474 Value *Op = SI->getCondition();
475 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
476 return;
477
478 // Remember how many outgoing edges there are to every successor.
480 for (BasicBlock *TargetBlock : successors(BranchBB))
481 ++SwitchEdges[TargetBlock];
482
483 // Now propagate info for each case value
484 for (auto C : SI->cases()) {
485 BasicBlock *TargetBlock = C.getCaseSuccessor();
486 if (SwitchEdges.lookup(TargetBlock) == 1) {
488 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
489 addInfoFor(OpsToRename, Op, PS);
490 if (!TargetBlock->getSinglePredecessor())
491 EdgeUsesOnly.insert({BranchBB, TargetBlock});
492 }
493 }
494}
495
496// Build predicate info for our function
498 DT.updateDFSNumbers();
499 // Collect operands to rename from all conditional branch terminators, as well
500 // as assume statements.
501 SmallVector<Value *, 8> OpsToRename;
502 for (auto *DTN : depth_first(DT.getRootNode())) {
503 BasicBlock *BranchBB = DTN->getBlock();
504 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
505 if (!BI->isConditional())
506 continue;
507 // Can't insert conditional information if they all go to the same place.
508 if (BI->getSuccessor(0) == BI->getSuccessor(1))
509 continue;
510 processBranch(BI, BranchBB, OpsToRename);
511 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
512 processSwitch(SI, BranchBB, OpsToRename);
513 }
514 }
515 for (auto &Assume : AC.assumptions()) {
516 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
517 if (DT.isReachableFromEntry(II->getParent()))
518 processAssume(II, II->getParent(), OpsToRename);
519 }
520 // Now rename all our operations.
521 renameUses(OpsToRename);
522}
523
524// Given the renaming stack, make all the operands currently on the stack real
525// by inserting them into the IR. Return the last operation's value.
526Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
527 ValueDFSStack &RenameStack,
528 Value *OrigOp) {
529 // Find the first thing we have to materialize
530 auto RevIter = RenameStack.rbegin();
531 for (; RevIter != RenameStack.rend(); ++RevIter)
532 if (RevIter->Def)
533 break;
534
535 size_t Start = RevIter - RenameStack.rbegin();
536 // The maximum number of things we should be trying to materialize at once
537 // right now is 4, depending on if we had an assume, a branch, and both used
538 // and of conditions.
539 for (auto RenameIter = RenameStack.end() - Start;
540 RenameIter != RenameStack.end(); ++RenameIter) {
541 auto *Op =
542 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
543 ValueDFS &Result = *RenameIter;
544 auto *ValInfo = Result.PInfo;
545 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
546 ? OrigOp
547 : (RenameStack.end() - Start - 1)->Def;
548 // For edge predicates, we can just place the operand in the block before
549 // the terminator. For assume, we have to place it right before the assume
550 // to ensure we dominate all of our uses. Always insert right before the
551 // relevant instruction (terminator, assume), so that we insert in proper
552 // order in the case of multiple predicateinfo in the same block.
553 // The number of named values is used to detect if a new declaration was
554 // added. If so, that declaration is tracked so that it can be removed when
555 // the analysis is done. The corner case were a new declaration results in
556 // a name clash and the old name being renamed is not considered as that
557 // represents an invalid module.
558 if (isa<PredicateWithEdge>(ValInfo)) {
559 IRBuilder<> B(getBranchTerminator(ValInfo));
560 auto NumDecls = F.getParent()->getNumNamedValues();
562 F.getParent(), Intrinsic::ssa_copy, Op->getType());
563 if (NumDecls != F.getParent()->getNumNamedValues())
564 PI.CreatedDeclarations.insert(IF);
565 CallInst *PIC =
566 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
567 PI.PredicateMap.insert({PIC, ValInfo});
568 Result.Def = PIC;
569 } else {
570 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
571 assert(PAssume &&
572 "Should not have gotten here without it being an assume");
573 // Insert the predicate directly after the assume. While it also holds
574 // directly before it, assume(i1 true) is not a useful fact.
575 IRBuilder<> B(PAssume->AssumeInst->getNextNode());
576 auto NumDecls = F.getParent()->getNumNamedValues();
578 F.getParent(), Intrinsic::ssa_copy, Op->getType());
579 if (NumDecls != F.getParent()->getNumNamedValues())
580 PI.CreatedDeclarations.insert(IF);
581 CallInst *PIC = B.CreateCall(IF, Op);
582 PI.PredicateMap.insert({PIC, ValInfo});
583 Result.Def = PIC;
584 }
585 }
586 return RenameStack.back().Def;
587}
588
589// Instead of the standard SSA renaming algorithm, which is O(Number of
590// instructions), and walks the entire dominator tree, we walk only the defs +
591// uses. The standard SSA renaming algorithm does not really rely on the
592// dominator tree except to order the stack push/pops of the renaming stacks, so
593// that defs end up getting pushed before hitting the correct uses. This does
594// not require the dominator tree, only the *order* of the dominator tree. The
595// complete and correct ordering of the defs and uses, in dominator tree is
596// contained in the DFS numbering of the dominator tree. So we sort the defs and
597// uses into the DFS ordering, and then just use the renaming stack as per
598// normal, pushing when we hit a def (which is a predicateinfo instruction),
599// popping when we are out of the dfs scope for that def, and replacing any uses
600// with top of stack if it exists. In order to handle liveness without
601// propagating liveness info, we don't actually insert the predicateinfo
602// instruction def until we see a use that it would dominate. Once we see such
603// a use, we materialize the predicateinfo instruction in the right place and
604// use it.
605//
606// TODO: Use this algorithm to perform fast single-variable renaming in
607// promotememtoreg and memoryssa.
608void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
610 // Compute liveness, and rename in O(uses) per Op.
611 for (auto *Op : OpsToRename) {
612 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
613 unsigned Counter = 0;
614 SmallVector<ValueDFS, 16> OrderedUses;
615 const auto &ValueInfo = getValueInfo(Op);
616 // Insert the possible copies into the def/use list.
617 // They will become real copies if we find a real use for them, and never
618 // created otherwise.
619 for (const auto &PossibleCopy : ValueInfo.Infos) {
620 ValueDFS VD;
621 // Determine where we are going to place the copy by the copy type.
622 // The predicate info for branches always come first, they will get
623 // materialized in the split block at the top of the block.
624 // The predicate info for assumes will be somewhere in the middle,
625 // it will get materialized in front of the assume.
626 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
627 VD.LocalNum = LN_Middle;
628 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
629 if (!DomNode)
630 continue;
631 VD.DFSIn = DomNode->getDFSNumIn();
632 VD.DFSOut = DomNode->getDFSNumOut();
633 VD.PInfo = PossibleCopy;
634 OrderedUses.push_back(VD);
635 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
636 // If we can only do phi uses, we treat it like it's in the branch
637 // block, and handle it specially. We know that it goes last, and only
638 // dominate phi uses.
639 auto BlockEdge = getBlockEdge(PossibleCopy);
640 if (EdgeUsesOnly.count(BlockEdge)) {
641 VD.LocalNum = LN_Last;
642 auto *DomNode = DT.getNode(BlockEdge.first);
643 if (DomNode) {
644 VD.DFSIn = DomNode->getDFSNumIn();
645 VD.DFSOut = DomNode->getDFSNumOut();
646 VD.PInfo = PossibleCopy;
647 VD.EdgeOnly = true;
648 OrderedUses.push_back(VD);
649 }
650 } else {
651 // Otherwise, we are in the split block (even though we perform
652 // insertion in the branch block).
653 // Insert a possible copy at the split block and before the branch.
654 VD.LocalNum = LN_First;
655 auto *DomNode = DT.getNode(BlockEdge.second);
656 if (DomNode) {
657 VD.DFSIn = DomNode->getDFSNumIn();
658 VD.DFSOut = DomNode->getDFSNumOut();
659 VD.PInfo = PossibleCopy;
660 OrderedUses.push_back(VD);
661 }
662 }
663 }
664 }
665
666 convertUsesToDFSOrdered(Op, OrderedUses);
667 // Here we require a stable sort because we do not bother to try to
668 // assign an order to the operands the uses represent. Thus, two
669 // uses in the same instruction do not have a strict sort order
670 // currently and will be considered equal. We could get rid of the
671 // stable sort by creating one if we wanted.
672 llvm::stable_sort(OrderedUses, Compare);
673 SmallVector<ValueDFS, 8> RenameStack;
674 // For each use, sorted into dfs order, push values and replaces uses with
675 // top of stack, which will represent the reaching def.
676 for (auto &VD : OrderedUses) {
677 // We currently do not materialize copy over copy, but we should decide if
678 // we want to.
679 bool PossibleCopy = VD.PInfo != nullptr;
680 if (RenameStack.empty()) {
681 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
682 } else {
683 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
684 << RenameStack.back().DFSIn << ","
685 << RenameStack.back().DFSOut << ")\n");
686 }
687
688 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
689 << VD.DFSOut << ")\n");
690
691 bool ShouldPush = (VD.Def || PossibleCopy);
692 bool OutOfScope = !stackIsInScope(RenameStack, VD);
693 if (OutOfScope || ShouldPush) {
694 // Sync to our current scope.
695 popStackUntilDFSScope(RenameStack, VD);
696 if (ShouldPush) {
697 RenameStack.push_back(VD);
698 }
699 }
700 // If we get to this point, and the stack is empty we must have a use
701 // with no renaming needed, just skip it.
702 if (RenameStack.empty())
703 continue;
704 // Skip values, only want to rename the uses
705 if (VD.Def || PossibleCopy)
706 continue;
707 if (!DebugCounter::shouldExecute(RenameCounter)) {
708 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
709 continue;
710 }
711 ValueDFS &Result = RenameStack.back();
712
713 // If the possible copy dominates something, materialize our stack up to
714 // this point. This ensures every comparison that affects our operation
715 // ends up with predicateinfo.
716 if (!Result.Def)
717 Result.Def = materializeStack(Counter, RenameStack, Op);
718
719 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
720 << *VD.U->get() << " in " << *(VD.U->getUser())
721 << "\n");
722 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
723 "Predicateinfo def should have dominated this use");
724 VD.U->set(Result.Def);
725 }
726 }
727}
728
729PredicateInfoBuilder::ValueInfo &
730PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
731 auto OIN = ValueInfoNums.find(Operand);
732 if (OIN == ValueInfoNums.end()) {
733 // This will grow it
734 ValueInfos.resize(ValueInfos.size() + 1);
735 // This will use the new size and give us a 0 based number of the info
736 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
737 assert(InsertResult.second && "Value info number already existed?");
738 return ValueInfos[InsertResult.first->second];
739 }
740 return ValueInfos[OIN->second];
741}
742
743const PredicateInfoBuilder::ValueInfo &
744PredicateInfoBuilder::getValueInfo(Value *Operand) const {
745 auto OINI = ValueInfoNums.lookup(Operand);
746 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
747 assert(OINI < ValueInfos.size() &&
748 "Value Info Number greater than size of Value Info Table");
749 return ValueInfos[OINI];
750}
751
753 AssumptionCache &AC)
754 : F(F) {
755 PredicateInfoBuilder Builder(*this, F, DT, AC);
756 Builder.buildPredicateInfo();
757}
758
759// Remove all declarations we created . The PredicateInfo consumers are
760// responsible for remove the ssa_copy calls created.
762 // Collect function pointers in set first, as SmallSet uses a SmallVector
763 // internally and we have to remove the asserting value handles first.
764 SmallPtrSet<Function *, 20> FunctionPtrs;
765 for (const auto &F : CreatedDeclarations)
766 FunctionPtrs.insert(&*F);
767 CreatedDeclarations.clear();
768
769 for (Function *F : FunctionPtrs) {
770 assert(F->user_begin() == F->user_end() &&
771 "PredicateInfo consumer did not remove all SSA copies.");
772 F->eraseFromParent();
773 }
774}
775
776std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
777 switch (Type) {
778 case PT_Assume:
779 case PT_Branch: {
780 bool TrueEdge = true;
781 if (auto *PBranch = dyn_cast<PredicateBranch>(this))
782 TrueEdge = PBranch->TrueEdge;
783
784 if (Condition == RenamedOp) {
785 return {{CmpInst::ICMP_EQ,
788 }
789
790 CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
791 if (!Cmp) {
792 // TODO: Make this an assertion once RenamedOp is fully accurate.
793 return std::nullopt;
794 }
795
797 Value *OtherOp;
798 if (Cmp->getOperand(0) == RenamedOp) {
799 Pred = Cmp->getPredicate();
800 OtherOp = Cmp->getOperand(1);
801 } else if (Cmp->getOperand(1) == RenamedOp) {
802 Pred = Cmp->getSwappedPredicate();
803 OtherOp = Cmp->getOperand(0);
804 } else {
805 // TODO: Make this an assertion once RenamedOp is fully accurate.
806 return std::nullopt;
807 }
808
809 // Invert predicate along false edge.
810 if (!TrueEdge)
811 Pred = CmpInst::getInversePredicate(Pred);
812
813 return {{Pred, OtherOp}};
814 }
815 case PT_Switch:
816 if (Condition != RenamedOp) {
817 // TODO: Make this an assertion once RenamedOp is fully accurate.
818 return std::nullopt;
819 }
820
821 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
822 }
823 llvm_unreachable("Unknown predicate type");
824}
825
827
828// Replace ssa_copy calls created by PredicateInfo with their operand.
831 const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
832 auto *II = dyn_cast<IntrinsicInst>(&Inst);
833 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
834 continue;
835
836 Inst.replaceAllUsesWith(II->getOperand(0));
837 Inst.eraseFromParent();
838 }
839}
840
843 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
844 auto &AC = AM.getResult<AssumptionAnalysis>(F);
845 OS << "PredicateInfo for function: " << F.getName() << "\n";
846 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
847 PredInfo->print(OS);
848
849 replaceCreatedSSACopys(*PredInfo, F);
850 return PreservedAnalyses::all();
851}
852
853/// An assembly annotator class to print PredicateInfo information in
854/// comments.
856 friend class PredicateInfo;
857 const PredicateInfo *PredInfo;
858
859public:
861
863 formatted_raw_ostream &OS) override {}
864
866 formatted_raw_ostream &OS) override {
867 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
868 OS << "; Has predicate info\n";
869 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
870 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
871 << " Comparison:" << *PB->Condition << " Edge: [";
872 PB->From->printAsOperand(OS);
873 OS << ",";
874 PB->To->printAsOperand(OS);
875 OS << "]";
876 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
877 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
878 << " Switch:" << *PS->Switch << " Edge: [";
879 PS->From->printAsOperand(OS);
880 OS << ",";
881 PS->To->printAsOperand(OS);
882 OS << "]";
883 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
884 OS << "; assume predicate info {"
885 << " Comparison:" << *PA->Condition;
886 }
887 OS << ", RenamedOp: ";
888 PI->RenamedOp->printAsOperand(OS, false);
889 OS << " }\n";
890 }
891 }
892};
893
895 PredicateInfoAnnotatedWriter Writer(this);
896 F.print(OS, &Writer);
897}
898
900 PredicateInfoAnnotatedWriter Writer(this);
901 F.print(dbgs(), &Writer);
902}
903
906 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
907 auto &AC = AM.getResult<AssumptionAnalysis>(F);
908 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
909
910 return PreservedAnalyses::all();
911}
912}
Rewrite undef for PHI
Expand Atomic instructions
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:190
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
PassInstrumentationCallbacks PIC
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
static cl::opt< bool > VerifyPredicateInfo("verify-predicateinfo", cl::init(false), cl::Hidden, cl::desc("Verify PredicateInfo in legacy printer pass."))
static const unsigned MaxCondsPerBranch
This file implements the PredicateInfo analysis, which creates an Extended SSA form for operations us...
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallPtrSet class.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptions()
Access the list of assumption handles currently tracked for this function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:459
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
Conditional or Unconditional Branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:787
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:873
This class represents an Operation in the Expression.
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:87
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
unsigned getDFSNumIn() const
getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes in the dominator tree.
unsigned getDFSNumOut() const
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
void updateDFSNumbers() const
updateDFSNumbers - Assign In and Out numbers to the nodes while walking dominator tree in dfs order.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
void eraseFromParent()
eraseFromParent - This method unlinks 'this' from the containing module and deletes it.
Definition: Function.cpp:458
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
unsigned getNumNamedValues() const
Return the number of global values in the module.
Definition: Module.cpp:174
std::optional< PredicateConstraint > getConstraint() const
Fetch condition in the form of PredicateConstraint, if possible.
An assembly annotator class to print PredicateInfo information in comments.
PredicateInfoAnnotatedWriter(const PredicateInfo *M)
void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) override
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS) override
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, AssumptionCache &AC)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Encapsulates PredicateInfo, including all data associated with memory accesses.
void verifyPredicateInfo() const
PredicateInfo(Function &, DominatorTree &, AssumptionCache &)
void print(raw_ostream &) const
const PredicateBase * getPredicateInfoFor(const Value *V) const
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
size_type size() const
Definition: SmallPtrSet.h:94
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Multiway switch.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
user_iterator user_begin()
Definition: Value.h:397
user_iterator user_end()
Definition: Value.h:405
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:731
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool valueComesBefore(const Value *A, const Value *B)
void stable_sort(R &&Range)
Definition: STLExtras.h:2037
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl< Value * > &CmpOperands)
auto successors(const MachineBasicBlock *BB)
static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
bool shouldRename(Value *V)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ PT_Switch
Definition: PredicateInfo.h:70
@ PT_Assume
Definition: PredicateInfo.h:70
@ PT_Branch
Definition: PredicateInfo.h:70
iterator_range< df_iterator< T > > depth_first(const T &G)
Represents the EMUL and EEW of a MachineOperand.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
std::pair< BasicBlock *, BasicBlock * > getBlockEdge(const ValueDFS &VD) const
bool operator()(const ValueDFS &A, const ValueDFS &B) const
bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const
ValueDFS_Compare(DominatorTree &DT)
const Instruction * getDefOrUser(const Value *Def, const Use *U) const
bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const
Value * getMiddleDef(const ValueDFS &VD) const
PredicateBase * PInfo
unsigned int LocalNum
Struct that holds a reference to a particular GUID in a global value summary.