LLVM 20.0.0git
X86InstCombineIntrinsic.cpp
Go to the documentation of this file.
1//===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements a TargetTransformInfo analysis pass specific to the
10/// X86 target machine. It uses the target's detailed information to provide
11/// more precise answers to certain TTI queries, while letting the target
12/// independent and default TTI implementations handle the rest.
13///
14//===----------------------------------------------------------------------===//
15
18#include "llvm/IR/IntrinsicsX86.h"
21#include <optional>
22
23using namespace llvm;
24using namespace llvm::PatternMatch;
25
26#define DEBUG_TYPE "x86tti"
27
28/// Return a constant boolean vector that has true elements in all positions
29/// where the input constant data vector has an element with the sign bit set.
31 VectorType *IntTy = VectorType::getInteger(cast<VectorType>(V->getType()));
32 V = ConstantExpr::getBitCast(V, IntTy);
34 Constant::getNullValue(IntTy), V, DL);
35 assert(V && "Vector must be foldable");
36 return V;
37}
38
39/// Convert the x86 XMM integer vector mask to a vector of bools based on
40/// each element's most significant bit (the sign bit).
41static Value *getBoolVecFromMask(Value *Mask, const DataLayout &DL) {
42 // Fold Constant Mask.
43 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask))
44 return getNegativeIsTrueBoolVec(ConstantMask, DL);
45
46 // Mask was extended from a boolean vector.
47 Value *ExtMask;
48 if (match(Mask, m_SExt(m_Value(ExtMask))) &&
49 ExtMask->getType()->isIntOrIntVectorTy(1))
50 return ExtMask;
51
52 return nullptr;
53}
54
55// TODO: If the x86 backend knew how to convert a bool vector mask back to an
56// XMM register mask efficiently, we could transform all x86 masked intrinsics
57// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
59 Value *Ptr = II.getOperand(0);
60 Value *Mask = II.getOperand(1);
61 Constant *ZeroVec = Constant::getNullValue(II.getType());
62
63 // Zero Mask - masked load instruction creates a zero vector.
64 if (isa<ConstantAggregateZero>(Mask))
65 return IC.replaceInstUsesWith(II, ZeroVec);
66
67 // The mask is constant or extended from a bool vector. Convert this x86
68 // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
69 if (Value *BoolMask = getBoolVecFromMask(Mask, IC.getDataLayout())) {
70 // The pass-through vector for an x86 masked load is a zero vector.
71 CallInst *NewMaskedLoad = IC.Builder.CreateMaskedLoad(
72 II.getType(), Ptr, Align(1), BoolMask, ZeroVec);
73 return IC.replaceInstUsesWith(II, NewMaskedLoad);
74 }
75
76 return nullptr;
77}
78
79// TODO: If the x86 backend knew how to convert a bool vector mask back to an
80// XMM register mask efficiently, we could transform all x86 masked intrinsics
81// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
83 Value *Ptr = II.getOperand(0);
84 Value *Mask = II.getOperand(1);
85 Value *Vec = II.getOperand(2);
86
87 // Zero Mask - this masked store instruction does nothing.
88 if (isa<ConstantAggregateZero>(Mask)) {
90 return true;
91 }
92
93 // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
94 // anything else at this level.
95 if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
96 return false;
97
98 // The mask is constant or extended from a bool vector. Convert this x86
99 // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
100 if (Value *BoolMask = getBoolVecFromMask(Mask, IC.getDataLayout())) {
101 unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
102 PointerType *VecPtrTy = PointerType::get(Vec->getContext(), AddrSpace);
103 Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
104
105 IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask);
106
107 // 'Replace uses' doesn't work for stores. Erase the original masked store.
109 return true;
110 }
111
112 return false;
113}
114
116 InstCombiner::BuilderTy &Builder) {
117 bool LogicalShift = false;
118 bool ShiftLeft = false;
119 bool IsImm = false;
120
121 switch (II.getIntrinsicID()) {
122 default:
123 llvm_unreachable("Unexpected intrinsic!");
124 case Intrinsic::x86_sse2_psrai_d:
125 case Intrinsic::x86_sse2_psrai_w:
126 case Intrinsic::x86_avx2_psrai_d:
127 case Intrinsic::x86_avx2_psrai_w:
128 case Intrinsic::x86_avx512_psrai_q_128:
129 case Intrinsic::x86_avx512_psrai_q_256:
130 case Intrinsic::x86_avx512_psrai_d_512:
131 case Intrinsic::x86_avx512_psrai_q_512:
132 case Intrinsic::x86_avx512_psrai_w_512:
133 IsImm = true;
134 [[fallthrough]];
135 case Intrinsic::x86_sse2_psra_d:
136 case Intrinsic::x86_sse2_psra_w:
137 case Intrinsic::x86_avx2_psra_d:
138 case Intrinsic::x86_avx2_psra_w:
139 case Intrinsic::x86_avx512_psra_q_128:
140 case Intrinsic::x86_avx512_psra_q_256:
141 case Intrinsic::x86_avx512_psra_d_512:
142 case Intrinsic::x86_avx512_psra_q_512:
143 case Intrinsic::x86_avx512_psra_w_512:
144 LogicalShift = false;
145 ShiftLeft = false;
146 break;
147 case Intrinsic::x86_sse2_psrli_d:
148 case Intrinsic::x86_sse2_psrli_q:
149 case Intrinsic::x86_sse2_psrli_w:
150 case Intrinsic::x86_avx2_psrli_d:
151 case Intrinsic::x86_avx2_psrli_q:
152 case Intrinsic::x86_avx2_psrli_w:
153 case Intrinsic::x86_avx512_psrli_d_512:
154 case Intrinsic::x86_avx512_psrli_q_512:
155 case Intrinsic::x86_avx512_psrli_w_512:
156 IsImm = true;
157 [[fallthrough]];
158 case Intrinsic::x86_sse2_psrl_d:
159 case Intrinsic::x86_sse2_psrl_q:
160 case Intrinsic::x86_sse2_psrl_w:
161 case Intrinsic::x86_avx2_psrl_d:
162 case Intrinsic::x86_avx2_psrl_q:
163 case Intrinsic::x86_avx2_psrl_w:
164 case Intrinsic::x86_avx512_psrl_d_512:
165 case Intrinsic::x86_avx512_psrl_q_512:
166 case Intrinsic::x86_avx512_psrl_w_512:
167 LogicalShift = true;
168 ShiftLeft = false;
169 break;
170 case Intrinsic::x86_sse2_pslli_d:
171 case Intrinsic::x86_sse2_pslli_q:
172 case Intrinsic::x86_sse2_pslli_w:
173 case Intrinsic::x86_avx2_pslli_d:
174 case Intrinsic::x86_avx2_pslli_q:
175 case Intrinsic::x86_avx2_pslli_w:
176 case Intrinsic::x86_avx512_pslli_d_512:
177 case Intrinsic::x86_avx512_pslli_q_512:
178 case Intrinsic::x86_avx512_pslli_w_512:
179 IsImm = true;
180 [[fallthrough]];
181 case Intrinsic::x86_sse2_psll_d:
182 case Intrinsic::x86_sse2_psll_q:
183 case Intrinsic::x86_sse2_psll_w:
184 case Intrinsic::x86_avx2_psll_d:
185 case Intrinsic::x86_avx2_psll_q:
186 case Intrinsic::x86_avx2_psll_w:
187 case Intrinsic::x86_avx512_psll_d_512:
188 case Intrinsic::x86_avx512_psll_q_512:
189 case Intrinsic::x86_avx512_psll_w_512:
190 LogicalShift = true;
191 ShiftLeft = true;
192 break;
193 }
194 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
195
196 Value *Vec = II.getArgOperand(0);
197 Value *Amt = II.getArgOperand(1);
198 auto *VT = cast<FixedVectorType>(Vec->getType());
199 Type *SVT = VT->getElementType();
200 Type *AmtVT = Amt->getType();
201 unsigned VWidth = VT->getNumElements();
202 unsigned BitWidth = SVT->getPrimitiveSizeInBits();
203
204 // If the shift amount is guaranteed to be in-range we can replace it with a
205 // generic shift. If its guaranteed to be out of range, logical shifts combine
206 // to zero and arithmetic shifts are clamped to (BitWidth - 1).
207 if (IsImm) {
208 assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type");
209 KnownBits KnownAmtBits =
210 llvm::computeKnownBits(Amt, II.getDataLayout());
211 if (KnownAmtBits.getMaxValue().ult(BitWidth)) {
212 Amt = Builder.CreateZExtOrTrunc(Amt, SVT);
213 Amt = Builder.CreateVectorSplat(VWidth, Amt);
214 return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
215 : Builder.CreateLShr(Vec, Amt))
216 : Builder.CreateAShr(Vec, Amt));
217 }
218 if (KnownAmtBits.getMinValue().uge(BitWidth)) {
219 if (LogicalShift)
221 Amt = ConstantInt::get(SVT, BitWidth - 1);
222 return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt));
223 }
224 } else {
225 // Ensure the first element has an in-range value and the rest of the
226 // elements in the bottom 64 bits are zero.
227 assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
228 cast<VectorType>(AmtVT)->getElementType() == SVT &&
229 "Unexpected shift-by-scalar type");
230 unsigned NumAmtElts = cast<FixedVectorType>(AmtVT)->getNumElements();
231 APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0);
232 APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2);
233 KnownBits KnownLowerBits = llvm::computeKnownBits(
234 Amt, DemandedLower, II.getDataLayout());
235 KnownBits KnownUpperBits = llvm::computeKnownBits(
236 Amt, DemandedUpper, II.getDataLayout());
237 if (KnownLowerBits.getMaxValue().ult(BitWidth) &&
238 (DemandedUpper.isZero() || KnownUpperBits.isZero())) {
239 SmallVector<int, 16> ZeroSplat(VWidth, 0);
240 Amt = Builder.CreateShuffleVector(Amt, ZeroSplat);
241 return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
242 : Builder.CreateLShr(Vec, Amt))
243 : Builder.CreateAShr(Vec, Amt));
244 }
245 }
246
247 // Simplify if count is constant vector.
248 auto *CDV = dyn_cast<ConstantDataVector>(Amt);
249 if (!CDV)
250 return nullptr;
251
252 // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
253 // operand to compute the shift amount.
254 assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
255 cast<VectorType>(AmtVT)->getElementType() == SVT &&
256 "Unexpected shift-by-scalar type");
257
258 // Concatenate the sub-elements to create the 64-bit value.
259 APInt Count(64, 0);
260 for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) {
261 unsigned SubEltIdx = (NumSubElts - 1) - i;
262 auto *SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
263 Count <<= BitWidth;
264 Count |= SubElt->getValue().zextOrTrunc(64);
265 }
266
267 // If shift-by-zero then just return the original value.
268 if (Count.isZero())
269 return Vec;
270
271 // Handle cases when Shift >= BitWidth.
272 if (Count.uge(BitWidth)) {
273 // If LogicalShift - just return zero.
274 if (LogicalShift)
276
277 // If ArithmeticShift - clamp Shift to (BitWidth - 1).
278 Count = APInt(64, BitWidth - 1);
279 }
280
281 // Get a constant vector of the same type as the first operand.
282 auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
283 auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
284
285 if (ShiftLeft)
286 return Builder.CreateShl(Vec, ShiftVec);
287
288 if (LogicalShift)
289 return Builder.CreateLShr(Vec, ShiftVec);
290
291 return Builder.CreateAShr(Vec, ShiftVec);
292}
293
294// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
295// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
296// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
298 InstCombiner::BuilderTy &Builder) {
299 bool LogicalShift = false;
300 bool ShiftLeft = false;
301
302 switch (II.getIntrinsicID()) {
303 default:
304 llvm_unreachable("Unexpected intrinsic!");
305 case Intrinsic::x86_avx2_psrav_d:
306 case Intrinsic::x86_avx2_psrav_d_256:
307 case Intrinsic::x86_avx512_psrav_q_128:
308 case Intrinsic::x86_avx512_psrav_q_256:
309 case Intrinsic::x86_avx512_psrav_d_512:
310 case Intrinsic::x86_avx512_psrav_q_512:
311 case Intrinsic::x86_avx512_psrav_w_128:
312 case Intrinsic::x86_avx512_psrav_w_256:
313 case Intrinsic::x86_avx512_psrav_w_512:
314 LogicalShift = false;
315 ShiftLeft = false;
316 break;
317 case Intrinsic::x86_avx2_psrlv_d:
318 case Intrinsic::x86_avx2_psrlv_d_256:
319 case Intrinsic::x86_avx2_psrlv_q:
320 case Intrinsic::x86_avx2_psrlv_q_256:
321 case Intrinsic::x86_avx512_psrlv_d_512:
322 case Intrinsic::x86_avx512_psrlv_q_512:
323 case Intrinsic::x86_avx512_psrlv_w_128:
324 case Intrinsic::x86_avx512_psrlv_w_256:
325 case Intrinsic::x86_avx512_psrlv_w_512:
326 LogicalShift = true;
327 ShiftLeft = false;
328 break;
329 case Intrinsic::x86_avx2_psllv_d:
330 case Intrinsic::x86_avx2_psllv_d_256:
331 case Intrinsic::x86_avx2_psllv_q:
332 case Intrinsic::x86_avx2_psllv_q_256:
333 case Intrinsic::x86_avx512_psllv_d_512:
334 case Intrinsic::x86_avx512_psllv_q_512:
335 case Intrinsic::x86_avx512_psllv_w_128:
336 case Intrinsic::x86_avx512_psllv_w_256:
337 case Intrinsic::x86_avx512_psllv_w_512:
338 LogicalShift = true;
339 ShiftLeft = true;
340 break;
341 }
342 assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
343
344 Value *Vec = II.getArgOperand(0);
345 Value *Amt = II.getArgOperand(1);
346 auto *VT = cast<FixedVectorType>(II.getType());
347 Type *SVT = VT->getElementType();
348 int NumElts = VT->getNumElements();
349 int BitWidth = SVT->getIntegerBitWidth();
350
351 // If the shift amount is guaranteed to be in-range we can replace it with a
352 // generic shift.
353 KnownBits KnownAmt =
354 llvm::computeKnownBits(Amt, II.getDataLayout());
355 if (KnownAmt.getMaxValue().ult(BitWidth)) {
356 return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
357 : Builder.CreateLShr(Vec, Amt))
358 : Builder.CreateAShr(Vec, Amt));
359 }
360
361 // Simplify if all shift amounts are constant/undef.
362 auto *CShift = dyn_cast<Constant>(Amt);
363 if (!CShift)
364 return nullptr;
365
366 // Collect each element's shift amount.
367 // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
368 bool AnyOutOfRange = false;
369 SmallVector<int, 8> ShiftAmts;
370 for (int I = 0; I < NumElts; ++I) {
371 auto *CElt = CShift->getAggregateElement(I);
372 if (isa_and_nonnull<UndefValue>(CElt)) {
373 ShiftAmts.push_back(-1);
374 continue;
375 }
376
377 auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
378 if (!COp)
379 return nullptr;
380
381 // Handle out of range shifts.
382 // If LogicalShift - set to BitWidth (special case).
383 // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
384 APInt ShiftVal = COp->getValue();
385 if (ShiftVal.uge(BitWidth)) {
386 AnyOutOfRange = LogicalShift;
387 ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
388 continue;
389 }
390
391 ShiftAmts.push_back((int)ShiftVal.getZExtValue());
392 }
393
394 // If all elements out of range or UNDEF, return vector of zeros/undefs.
395 // ArithmeticShift should only hit this if they are all UNDEF.
396 auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
397 if (llvm::all_of(ShiftAmts, OutOfRange)) {
398 SmallVector<Constant *, 8> ConstantVec;
399 for (int Idx : ShiftAmts) {
400 if (Idx < 0) {
401 ConstantVec.push_back(UndefValue::get(SVT));
402 } else {
403 assert(LogicalShift && "Logical shift expected");
404 ConstantVec.push_back(ConstantInt::getNullValue(SVT));
405 }
406 }
407 return ConstantVector::get(ConstantVec);
408 }
409
410 // We can't handle only some out of range values with generic logical shifts.
411 if (AnyOutOfRange)
412 return nullptr;
413
414 // Build the shift amount constant vector.
415 SmallVector<Constant *, 8> ShiftVecAmts;
416 for (int Idx : ShiftAmts) {
417 if (Idx < 0)
418 ShiftVecAmts.push_back(UndefValue::get(SVT));
419 else
420 ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
421 }
422 auto ShiftVec = ConstantVector::get(ShiftVecAmts);
423
424 if (ShiftLeft)
425 return Builder.CreateShl(Vec, ShiftVec);
426
427 if (LogicalShift)
428 return Builder.CreateLShr(Vec, ShiftVec);
429
430 return Builder.CreateAShr(Vec, ShiftVec);
431}
432
434 InstCombiner::BuilderTy &Builder, bool IsSigned) {
435 Value *Arg0 = II.getArgOperand(0);
436 Value *Arg1 = II.getArgOperand(1);
437 Type *ResTy = II.getType();
438
439 // Fast all undef handling.
440 if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
441 return UndefValue::get(ResTy);
442
443 auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
444 unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
445 unsigned NumSrcElts = ArgTy->getNumElements();
446 assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) &&
447 "Unexpected packing types");
448
449 unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
450 unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
451 unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
452 assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
453 "Unexpected packing types");
454
455 // Constant folding.
456 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
457 return nullptr;
458
459 // Clamp Values - signed/unsigned both use signed clamp values, but they
460 // differ on the min/max values.
461 APInt MinValue, MaxValue;
462 if (IsSigned) {
463 // PACKSS: Truncate signed value with signed saturation.
464 // Source values less than dst minint are saturated to minint.
465 // Source values greater than dst maxint are saturated to maxint.
466 MinValue =
467 APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
468 MaxValue =
469 APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
470 } else {
471 // PACKUS: Truncate signed value with unsigned saturation.
472 // Source values less than zero are saturated to zero.
473 // Source values greater than dst maxuint are saturated to maxuint.
474 MinValue = APInt::getZero(SrcScalarSizeInBits);
475 MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
476 }
477
478 auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
479 auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
480 Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
481 Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
482 Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
483 Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
484
485 // Shuffle clamped args together at the lane level.
486 SmallVector<int, 32> PackMask;
487 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
488 for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
489 PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
490 for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
491 PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
492 }
493 auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
494
495 // Truncate to dst size.
496 return Builder.CreateTrunc(Shuffle, ResTy);
497}
498
500 InstCombiner::BuilderTy &Builder, bool IsSigned,
501 bool IsRounding) {
502 Value *Arg0 = II.getArgOperand(0);
503 Value *Arg1 = II.getArgOperand(1);
504 auto *ResTy = cast<FixedVectorType>(II.getType());
505 auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
506 assert(ArgTy == ResTy && ResTy->getScalarSizeInBits() == 16 &&
507 "Unexpected PMULH types");
508 assert((!IsRounding || IsSigned) && "PMULHRS instruction must be signed");
509
510 // Multiply by undef -> zero (NOT undef!) as other arg could still be zero.
511 if (isa<UndefValue>(Arg0) || isa<UndefValue>(Arg1))
512 return ConstantAggregateZero::get(ResTy);
513
514 // Multiply by zero.
515 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1))
516 return ConstantAggregateZero::get(ResTy);
517
518 // Multiply by one.
519 if (!IsRounding) {
520 if (match(Arg0, m_One()))
521 return IsSigned ? Builder.CreateAShr(Arg1, 15)
523 if (match(Arg1, m_One()))
524 return IsSigned ? Builder.CreateAShr(Arg0, 15)
526 }
527
528 // Constant folding.
529 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
530 return nullptr;
531
532 // Extend to twice the width and multiply.
533 auto Cast =
534 IsSigned ? Instruction::CastOps::SExt : Instruction::CastOps::ZExt;
536 Value *LHS = Builder.CreateCast(Cast, Arg0, ExtTy);
537 Value *RHS = Builder.CreateCast(Cast, Arg1, ExtTy);
538 Value *Mul = Builder.CreateMul(LHS, RHS);
539
540 if (IsRounding) {
541 // PMULHRSW: truncate to vXi18 of the most significant bits, add one and
542 // extract bits[16:1].
543 auto *RndEltTy = IntegerType::get(ExtTy->getContext(), 18);
544 auto *RndTy = FixedVectorType::get(RndEltTy, ExtTy);
545 Mul = Builder.CreateLShr(Mul, 14);
546 Mul = Builder.CreateTrunc(Mul, RndTy);
547 Mul = Builder.CreateAdd(Mul, ConstantInt::get(RndTy, 1));
548 Mul = Builder.CreateLShr(Mul, 1);
549 } else {
550 // PMULH/PMULHU: extract the vXi16 most significant bits.
551 Mul = Builder.CreateLShr(Mul, 16);
552 }
553
554 return Builder.CreateTrunc(Mul, ResTy);
555}
556
559 bool IsPMADDWD) {
560 Value *Arg0 = II.getArgOperand(0);
561 Value *Arg1 = II.getArgOperand(1);
562 auto *ResTy = cast<FixedVectorType>(II.getType());
563 [[maybe_unused]] auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
564
565 unsigned NumDstElts = ResTy->getNumElements();
566 assert(ArgTy->getNumElements() == (2 * NumDstElts) &&
567 ResTy->getScalarSizeInBits() == (2 * ArgTy->getScalarSizeInBits()) &&
568 "Unexpected PMADD types");
569
570 // Multiply by undef -> zero (NOT undef!) as other arg could still be zero.
571 if (isa<UndefValue>(Arg0) || isa<UndefValue>(Arg1))
572 return ConstantAggregateZero::get(ResTy);
573
574 // Multiply by zero.
575 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1))
576 return ConstantAggregateZero::get(ResTy);
577
578 // Constant folding.
579 if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
580 return nullptr;
581
582 // Split Lo/Hi elements pairs, extend and add together.
583 // PMADDWD(X,Y) =
584 // add(mul(sext(lhs[0]),sext(rhs[0])),mul(sext(lhs[1]),sext(rhs[1])))
585 // PMADDUBSW(X,Y) =
586 // sadd_sat(mul(zext(lhs[0]),sext(rhs[0])),mul(zext(lhs[1]),sext(rhs[1])))
587 SmallVector<int> LoMask, HiMask;
588 for (unsigned I = 0; I != NumDstElts; ++I) {
589 LoMask.push_back(2 * I + 0);
590 HiMask.push_back(2 * I + 1);
591 }
592
593 auto *LHSLo = Builder.CreateShuffleVector(Arg0, LoMask);
594 auto *LHSHi = Builder.CreateShuffleVector(Arg0, HiMask);
595 auto *RHSLo = Builder.CreateShuffleVector(Arg1, LoMask);
596 auto *RHSHi = Builder.CreateShuffleVector(Arg1, HiMask);
597
598 auto LHSCast =
599 IsPMADDWD ? Instruction::CastOps::SExt : Instruction::CastOps::ZExt;
600 LHSLo = Builder.CreateCast(LHSCast, LHSLo, ResTy);
601 LHSHi = Builder.CreateCast(LHSCast, LHSHi, ResTy);
602 RHSLo = Builder.CreateCast(Instruction::CastOps::SExt, RHSLo, ResTy);
603 RHSHi = Builder.CreateCast(Instruction::CastOps::SExt, RHSHi, ResTy);
604 Value *Lo = Builder.CreateMul(LHSLo, RHSLo);
605 Value *Hi = Builder.CreateMul(LHSHi, RHSHi);
606 return IsPMADDWD
607 ? Builder.CreateAdd(Lo, Hi)
608 : Builder.CreateIntrinsic(ResTy, Intrinsic::sadd_sat, {Lo, Hi});
609}
610
612 InstCombiner::BuilderTy &Builder) {
613 Value *Arg = II.getArgOperand(0);
614 Type *ResTy = II.getType();
615
616 // movmsk(undef) -> zero as we must ensure the upper bits are zero.
617 if (isa<UndefValue>(Arg))
618 return Constant::getNullValue(ResTy);
619
620 // Preserve previous behavior and give up.
621 // TODO: treat as <8 x i8>.
622 if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb)
623 return nullptr;
624
625 auto *ArgTy = cast<FixedVectorType>(Arg->getType());
626
627 // Expand MOVMSK to compare/bitcast/zext:
628 // e.g. PMOVMSKB(v16i8 x):
629 // %cmp = icmp slt <16 x i8> %x, zeroinitializer
630 // %int = bitcast <16 x i1> %cmp to i16
631 // %res = zext i16 %int to i32
632 unsigned NumElts = ArgTy->getNumElements();
633 Type *IntegerTy = Builder.getIntNTy(NumElts);
634
635 Value *Res = Builder.CreateBitCast(Arg, VectorType::getInteger(ArgTy));
636 Res = Builder.CreateIsNeg(Res);
637 Res = Builder.CreateBitCast(Res, IntegerTy);
638 Res = Builder.CreateZExtOrTrunc(Res, ResTy);
639 return Res;
640}
641
643 InstCombiner::BuilderTy &Builder) {
644 Value *CarryIn = II.getArgOperand(0);
645 Value *Op1 = II.getArgOperand(1);
646 Value *Op2 = II.getArgOperand(2);
647 Type *RetTy = II.getType();
648 Type *OpTy = Op1->getType();
649 assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
650 RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
651 "Unexpected types for x86 addcarry");
652
653 // If carry-in is zero, this is just an unsigned add with overflow.
654 if (match(CarryIn, m_ZeroInt())) {
655 Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
656 {Op1, Op2});
657 // The types have to be adjusted to match the x86 call types.
658 Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
659 Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
660 Builder.getInt8Ty());
662 Res = Builder.CreateInsertValue(Res, UAddOV, 0);
663 return Builder.CreateInsertValue(Res, UAddResult, 1);
664 }
665
666 return nullptr;
667}
668
670 InstCombiner::BuilderTy &Builder) {
671
672 auto *ArgImm = dyn_cast<ConstantInt>(II.getArgOperand(3));
673 if (!ArgImm || ArgImm->getValue().uge(256))
674 return nullptr;
675
676 Value *ArgA = II.getArgOperand(0);
677 Value *ArgB = II.getArgOperand(1);
678 Value *ArgC = II.getArgOperand(2);
679
680 Type *Ty = II.getType();
681
682 auto Or = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> {
683 return {Builder.CreateOr(Lhs.first, Rhs.first), Lhs.second | Rhs.second};
684 };
685 auto Xor = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> {
686 return {Builder.CreateXor(Lhs.first, Rhs.first), Lhs.second ^ Rhs.second};
687 };
688 auto And = [&](auto Lhs, auto Rhs) -> std::pair<Value *, uint8_t> {
689 return {Builder.CreateAnd(Lhs.first, Rhs.first), Lhs.second & Rhs.second};
690 };
691 auto Not = [&](auto V) -> std::pair<Value *, uint8_t> {
692 return {Builder.CreateNot(V.first), ~V.second};
693 };
694 auto Nor = [&](auto Lhs, auto Rhs) { return Not(Or(Lhs, Rhs)); };
695 auto Xnor = [&](auto Lhs, auto Rhs) { return Not(Xor(Lhs, Rhs)); };
696 auto Nand = [&](auto Lhs, auto Rhs) { return Not(And(Lhs, Rhs)); };
697
698 bool AIsConst = match(ArgA, m_ImmConstant());
699 bool BIsConst = match(ArgB, m_ImmConstant());
700 bool CIsConst = match(ArgC, m_ImmConstant());
701
702 bool ABIsConst = AIsConst && BIsConst;
703 bool ACIsConst = AIsConst && CIsConst;
704 bool BCIsConst = BIsConst && CIsConst;
705 bool ABCIsConst = AIsConst && BIsConst && CIsConst;
706
707 // Use for verification. Its a big table. Its difficult to go from Imm ->
708 // logic ops, but easy to verify that a set of logic ops is correct. We track
709 // the logic ops through the second value in the pair. At the end it should
710 // equal Imm.
711 std::pair<Value *, uint8_t> A = {ArgA, 0xf0};
712 std::pair<Value *, uint8_t> B = {ArgB, 0xcc};
713 std::pair<Value *, uint8_t> C = {ArgC, 0xaa};
714 std::pair<Value *, uint8_t> Res = {nullptr, 0};
715
716 // Currently we only handle cases that convert directly to another instruction
717 // or cases where all the ops are constant. This is because we don't properly
718 // handle creating ternary ops in the backend, so splitting them here may
719 // cause regressions. As the backend improves, uncomment more cases.
720
721 uint8_t Imm = ArgImm->getValue().getZExtValue();
722 switch (Imm) {
723 case 0x0:
724 Res = {Constant::getNullValue(Ty), 0};
725 break;
726 case 0x1:
727 if (ABCIsConst)
728 Res = Nor(Or(A, B), C);
729 break;
730 case 0x2:
731 if (ABCIsConst)
732 Res = And(Nor(A, B), C);
733 break;
734 case 0x3:
735 if (ABIsConst)
736 Res = Nor(A, B);
737 break;
738 case 0x4:
739 if (ABCIsConst)
740 Res = And(Nor(A, C), B);
741 break;
742 case 0x5:
743 if (ACIsConst)
744 Res = Nor(A, C);
745 break;
746 case 0x6:
747 if (ABCIsConst)
748 Res = Nor(A, Xnor(B, C));
749 break;
750 case 0x7:
751 if (ABCIsConst)
752 Res = Nor(A, And(B, C));
753 break;
754 case 0x8:
755 if (ABCIsConst)
756 Res = Nor(A, Nand(B, C));
757 break;
758 case 0x9:
759 if (ABCIsConst)
760 Res = Nor(A, Xor(B, C));
761 break;
762 case 0xa:
763 if (ACIsConst)
764 Res = Nor(A, Not(C));
765 break;
766 case 0xb:
767 if (ABCIsConst)
768 Res = Nor(A, Nor(C, Not(B)));
769 break;
770 case 0xc:
771 if (ABIsConst)
772 Res = Nor(A, Not(B));
773 break;
774 case 0xd:
775 if (ABCIsConst)
776 Res = Nor(A, Nor(B, Not(C)));
777 break;
778 case 0xe:
779 if (ABCIsConst)
780 Res = Nor(A, Nor(B, C));
781 break;
782 case 0xf:
783 Res = Not(A);
784 break;
785 case 0x10:
786 if (ABCIsConst)
787 Res = And(A, Nor(B, C));
788 break;
789 case 0x11:
790 if (BCIsConst)
791 Res = Nor(B, C);
792 break;
793 case 0x12:
794 if (ABCIsConst)
795 Res = Nor(Xnor(A, C), B);
796 break;
797 case 0x13:
798 if (ABCIsConst)
799 Res = Nor(And(A, C), B);
800 break;
801 case 0x14:
802 if (ABCIsConst)
803 Res = Nor(Xnor(A, B), C);
804 break;
805 case 0x15:
806 if (ABCIsConst)
807 Res = Nor(And(A, B), C);
808 break;
809 case 0x16:
810 if (ABCIsConst)
811 Res = Xor(Xor(A, B), And(Nand(A, B), C));
812 break;
813 case 0x17:
814 if (ABCIsConst)
815 Res = Xor(Or(A, B), Or(Xnor(A, B), C));
816 break;
817 case 0x18:
818 if (ABCIsConst)
819 Res = Nor(Xnor(A, B), Xnor(A, C));
820 break;
821 case 0x19:
822 if (ABCIsConst)
823 Res = And(Nand(A, B), Xnor(B, C));
824 break;
825 case 0x1a:
826 if (ABCIsConst)
827 Res = Xor(A, Or(And(A, B), C));
828 break;
829 case 0x1b:
830 if (ABCIsConst)
831 Res = Xor(A, Or(Xnor(A, B), C));
832 break;
833 case 0x1c:
834 if (ABCIsConst)
835 Res = Xor(A, Or(And(A, C), B));
836 break;
837 case 0x1d:
838 if (ABCIsConst)
839 Res = Xor(A, Or(Xnor(A, C), B));
840 break;
841 case 0x1e:
842 if (ABCIsConst)
843 Res = Xor(A, Or(B, C));
844 break;
845 case 0x1f:
846 if (ABCIsConst)
847 Res = Nand(A, Or(B, C));
848 break;
849 case 0x20:
850 if (ABCIsConst)
851 Res = Nor(Nand(A, C), B);
852 break;
853 case 0x21:
854 if (ABCIsConst)
855 Res = Nor(Xor(A, C), B);
856 break;
857 case 0x22:
858 if (BCIsConst)
859 Res = Nor(B, Not(C));
860 break;
861 case 0x23:
862 if (ABCIsConst)
863 Res = Nor(B, Nor(C, Not(A)));
864 break;
865 case 0x24:
866 if (ABCIsConst)
867 Res = Nor(Xnor(A, B), Xor(A, C));
868 break;
869 case 0x25:
870 if (ABCIsConst)
871 Res = Xor(A, Nand(Nand(A, B), C));
872 break;
873 case 0x26:
874 if (ABCIsConst)
875 Res = And(Nand(A, B), Xor(B, C));
876 break;
877 case 0x27:
878 if (ABCIsConst)
879 Res = Xor(Or(Xnor(A, B), C), B);
880 break;
881 case 0x28:
882 if (ABCIsConst)
883 Res = And(Xor(A, B), C);
884 break;
885 case 0x29:
886 if (ABCIsConst)
887 Res = Xor(Xor(A, B), Nor(And(A, B), C));
888 break;
889 case 0x2a:
890 if (ABCIsConst)
891 Res = And(Nand(A, B), C);
892 break;
893 case 0x2b:
894 if (ABCIsConst)
895 Res = Xor(Or(Xnor(A, B), Xor(A, C)), A);
896 break;
897 case 0x2c:
898 if (ABCIsConst)
899 Res = Nor(Xnor(A, B), Nor(B, C));
900 break;
901 case 0x2d:
902 if (ABCIsConst)
903 Res = Xor(A, Or(B, Not(C)));
904 break;
905 case 0x2e:
906 if (ABCIsConst)
907 Res = Xor(A, Or(Xor(A, C), B));
908 break;
909 case 0x2f:
910 if (ABCIsConst)
911 Res = Nand(A, Or(B, Not(C)));
912 break;
913 case 0x30:
914 if (ABIsConst)
915 Res = Nor(B, Not(A));
916 break;
917 case 0x31:
918 if (ABCIsConst)
919 Res = Nor(Nor(A, Not(C)), B);
920 break;
921 case 0x32:
922 if (ABCIsConst)
923 Res = Nor(Nor(A, C), B);
924 break;
925 case 0x33:
926 Res = Not(B);
927 break;
928 case 0x34:
929 if (ABCIsConst)
930 Res = And(Xor(A, B), Nand(B, C));
931 break;
932 case 0x35:
933 if (ABCIsConst)
934 Res = Xor(B, Or(A, Xnor(B, C)));
935 break;
936 case 0x36:
937 if (ABCIsConst)
938 Res = Xor(Or(A, C), B);
939 break;
940 case 0x37:
941 if (ABCIsConst)
942 Res = Nand(Or(A, C), B);
943 break;
944 case 0x38:
945 if (ABCIsConst)
946 Res = Nor(Xnor(A, B), Nor(A, C));
947 break;
948 case 0x39:
949 if (ABCIsConst)
950 Res = Xor(Or(A, Not(C)), B);
951 break;
952 case 0x3a:
953 if (ABCIsConst)
954 Res = Xor(B, Or(A, Xor(B, C)));
955 break;
956 case 0x3b:
957 if (ABCIsConst)
958 Res = Nand(Or(A, Not(C)), B);
959 break;
960 case 0x3c:
961 Res = Xor(A, B);
962 break;
963 case 0x3d:
964 if (ABCIsConst)
965 Res = Xor(A, Or(Nor(A, C), B));
966 break;
967 case 0x3e:
968 if (ABCIsConst)
969 Res = Xor(A, Or(Nor(A, Not(C)), B));
970 break;
971 case 0x3f:
972 if (ABIsConst)
973 Res = Nand(A, B);
974 break;
975 case 0x40:
976 if (ABCIsConst)
977 Res = Nor(Nand(A, B), C);
978 break;
979 case 0x41:
980 if (ABCIsConst)
981 Res = Nor(Xor(A, B), C);
982 break;
983 case 0x42:
984 if (ABCIsConst)
985 Res = Nor(Xor(A, B), Xnor(A, C));
986 break;
987 case 0x43:
988 if (ABCIsConst)
989 Res = Xor(A, Nand(Nand(A, C), B));
990 break;
991 case 0x44:
992 if (BCIsConst)
993 Res = Nor(C, Not(B));
994 break;
995 case 0x45:
996 if (ABCIsConst)
997 Res = Nor(Nor(B, Not(A)), C);
998 break;
999 case 0x46:
1000 if (ABCIsConst)
1001 Res = Xor(Or(And(A, C), B), C);
1002 break;
1003 case 0x47:
1004 if (ABCIsConst)
1005 Res = Xor(Or(Xnor(A, C), B), C);
1006 break;
1007 case 0x48:
1008 if (ABCIsConst)
1009 Res = And(Xor(A, C), B);
1010 break;
1011 case 0x49:
1012 if (ABCIsConst)
1013 Res = Xor(Or(Xnor(A, B), And(A, C)), C);
1014 break;
1015 case 0x4a:
1016 if (ABCIsConst)
1017 Res = Nor(Xnor(A, C), Nor(B, C));
1018 break;
1019 case 0x4b:
1020 if (ABCIsConst)
1021 Res = Xor(A, Or(C, Not(B)));
1022 break;
1023 case 0x4c:
1024 if (ABCIsConst)
1025 Res = And(Nand(A, C), B);
1026 break;
1027 case 0x4d:
1028 if (ABCIsConst)
1029 Res = Xor(Or(Xor(A, B), Xnor(A, C)), A);
1030 break;
1031 case 0x4e:
1032 if (ABCIsConst)
1033 Res = Xor(A, Or(Xor(A, B), C));
1034 break;
1035 case 0x4f:
1036 if (ABCIsConst)
1037 Res = Nand(A, Nand(B, Not(C)));
1038 break;
1039 case 0x50:
1040 if (ACIsConst)
1041 Res = Nor(C, Not(A));
1042 break;
1043 case 0x51:
1044 if (ABCIsConst)
1045 Res = Nor(Nor(A, Not(B)), C);
1046 break;
1047 case 0x52:
1048 if (ABCIsConst)
1049 Res = And(Xor(A, C), Nand(B, C));
1050 break;
1051 case 0x53:
1052 if (ABCIsConst)
1053 Res = Xor(Or(Xnor(B, C), A), C);
1054 break;
1055 case 0x54:
1056 if (ABCIsConst)
1057 Res = Nor(Nor(A, B), C);
1058 break;
1059 case 0x55:
1060 Res = Not(C);
1061 break;
1062 case 0x56:
1063 if (ABCIsConst)
1064 Res = Xor(Or(A, B), C);
1065 break;
1066 case 0x57:
1067 if (ABCIsConst)
1068 Res = Nand(Or(A, B), C);
1069 break;
1070 case 0x58:
1071 if (ABCIsConst)
1072 Res = Nor(Nor(A, B), Xnor(A, C));
1073 break;
1074 case 0x59:
1075 if (ABCIsConst)
1076 Res = Xor(Or(A, Not(B)), C);
1077 break;
1078 case 0x5a:
1079 Res = Xor(A, C);
1080 break;
1081 case 0x5b:
1082 if (ABCIsConst)
1083 Res = Xor(A, Or(Nor(A, B), C));
1084 break;
1085 case 0x5c:
1086 if (ABCIsConst)
1087 Res = Xor(Or(Xor(B, C), A), C);
1088 break;
1089 case 0x5d:
1090 if (ABCIsConst)
1091 Res = Nand(Or(A, Not(B)), C);
1092 break;
1093 case 0x5e:
1094 if (ABCIsConst)
1095 Res = Xor(A, Or(Nor(A, Not(B)), C));
1096 break;
1097 case 0x5f:
1098 if (ACIsConst)
1099 Res = Nand(A, C);
1100 break;
1101 case 0x60:
1102 if (ABCIsConst)
1103 Res = And(A, Xor(B, C));
1104 break;
1105 case 0x61:
1106 if (ABCIsConst)
1107 Res = Xor(Or(Xnor(A, B), And(B, C)), C);
1108 break;
1109 case 0x62:
1110 if (ABCIsConst)
1111 Res = Nor(Nor(A, C), Xnor(B, C));
1112 break;
1113 case 0x63:
1114 if (ABCIsConst)
1115 Res = Xor(B, Or(C, Not(A)));
1116 break;
1117 case 0x64:
1118 if (ABCIsConst)
1119 Res = Nor(Nor(A, B), Xnor(B, C));
1120 break;
1121 case 0x65:
1122 if (ABCIsConst)
1123 Res = Xor(Or(B, Not(A)), C);
1124 break;
1125 case 0x66:
1126 Res = Xor(B, C);
1127 break;
1128 case 0x67:
1129 if (ABCIsConst)
1130 Res = Or(Nor(A, B), Xor(B, C));
1131 break;
1132 case 0x68:
1133 if (ABCIsConst)
1134 Res = Xor(Xor(A, B), Nor(Nor(A, B), C));
1135 break;
1136 case 0x69:
1137 if (ABCIsConst)
1138 Res = Xor(Xnor(A, B), C);
1139 break;
1140 case 0x6a:
1141 if (ABCIsConst)
1142 Res = Xor(And(A, B), C);
1143 break;
1144 case 0x6b:
1145 if (ABCIsConst)
1146 Res = Or(Nor(A, B), Xor(Xnor(A, B), C));
1147 break;
1148 case 0x6c:
1149 if (ABCIsConst)
1150 Res = Xor(And(A, C), B);
1151 break;
1152 case 0x6d:
1153 if (ABCIsConst)
1154 Res = Xor(Or(Xnor(A, B), Nor(A, C)), C);
1155 break;
1156 case 0x6e:
1157 if (ABCIsConst)
1158 Res = Or(Nor(A, Not(B)), Xor(B, C));
1159 break;
1160 case 0x6f:
1161 if (ABCIsConst)
1162 Res = Nand(A, Xnor(B, C));
1163 break;
1164 case 0x70:
1165 if (ABCIsConst)
1166 Res = And(A, Nand(B, C));
1167 break;
1168 case 0x71:
1169 if (ABCIsConst)
1170 Res = Xor(Nor(Xor(A, B), Xor(A, C)), A);
1171 break;
1172 case 0x72:
1173 if (ABCIsConst)
1174 Res = Xor(Or(Xor(A, B), C), B);
1175 break;
1176 case 0x73:
1177 if (ABCIsConst)
1178 Res = Nand(Nand(A, Not(C)), B);
1179 break;
1180 case 0x74:
1181 if (ABCIsConst)
1182 Res = Xor(Or(Xor(A, C), B), C);
1183 break;
1184 case 0x75:
1185 if (ABCIsConst)
1186 Res = Nand(Nand(A, Not(B)), C);
1187 break;
1188 case 0x76:
1189 if (ABCIsConst)
1190 Res = Xor(B, Or(Nor(B, Not(A)), C));
1191 break;
1192 case 0x77:
1193 if (BCIsConst)
1194 Res = Nand(B, C);
1195 break;
1196 case 0x78:
1197 if (ABCIsConst)
1198 Res = Xor(A, And(B, C));
1199 break;
1200 case 0x79:
1201 if (ABCIsConst)
1202 Res = Xor(Or(Xnor(A, B), Nor(B, C)), C);
1203 break;
1204 case 0x7a:
1205 if (ABCIsConst)
1206 Res = Or(Xor(A, C), Nor(B, Not(A)));
1207 break;
1208 case 0x7b:
1209 if (ABCIsConst)
1210 Res = Nand(Xnor(A, C), B);
1211 break;
1212 case 0x7c:
1213 if (ABCIsConst)
1214 Res = Or(Xor(A, B), Nor(C, Not(A)));
1215 break;
1216 case 0x7d:
1217 if (ABCIsConst)
1218 Res = Nand(Xnor(A, B), C);
1219 break;
1220 case 0x7e:
1221 if (ABCIsConst)
1222 Res = Or(Xor(A, B), Xor(A, C));
1223 break;
1224 case 0x7f:
1225 if (ABCIsConst)
1226 Res = Nand(And(A, B), C);
1227 break;
1228 case 0x80:
1229 if (ABCIsConst)
1230 Res = And(And(A, B), C);
1231 break;
1232 case 0x81:
1233 if (ABCIsConst)
1234 Res = Nor(Xor(A, B), Xor(A, C));
1235 break;
1236 case 0x82:
1237 if (ABCIsConst)
1238 Res = And(Xnor(A, B), C);
1239 break;
1240 case 0x83:
1241 if (ABCIsConst)
1242 Res = Nor(Xor(A, B), Nor(C, Not(A)));
1243 break;
1244 case 0x84:
1245 if (ABCIsConst)
1246 Res = And(Xnor(A, C), B);
1247 break;
1248 case 0x85:
1249 if (ABCIsConst)
1250 Res = Nor(Xor(A, C), Nor(B, Not(A)));
1251 break;
1252 case 0x86:
1253 if (ABCIsConst)
1254 Res = Xor(Nor(Xnor(A, B), Nor(B, C)), C);
1255 break;
1256 case 0x87:
1257 if (ABCIsConst)
1258 Res = Xor(A, Nand(B, C));
1259 break;
1260 case 0x88:
1261 Res = And(B, C);
1262 break;
1263 case 0x89:
1264 if (ABCIsConst)
1265 Res = Xor(B, Nor(Nor(B, Not(A)), C));
1266 break;
1267 case 0x8a:
1268 if (ABCIsConst)
1269 Res = And(Nand(A, Not(B)), C);
1270 break;
1271 case 0x8b:
1272 if (ABCIsConst)
1273 Res = Xor(Nor(Xor(A, C), B), C);
1274 break;
1275 case 0x8c:
1276 if (ABCIsConst)
1277 Res = And(Nand(A, Not(C)), B);
1278 break;
1279 case 0x8d:
1280 if (ABCIsConst)
1281 Res = Xor(Nor(Xor(A, B), C), B);
1282 break;
1283 case 0x8e:
1284 if (ABCIsConst)
1285 Res = Xor(Or(Xor(A, B), Xor(A, C)), A);
1286 break;
1287 case 0x8f:
1288 if (ABCIsConst)
1289 Res = Nand(A, Nand(B, C));
1290 break;
1291 case 0x90:
1292 if (ABCIsConst)
1293 Res = And(A, Xnor(B, C));
1294 break;
1295 case 0x91:
1296 if (ABCIsConst)
1297 Res = Nor(Nor(A, Not(B)), Xor(B, C));
1298 break;
1299 case 0x92:
1300 if (ABCIsConst)
1301 Res = Xor(Nor(Xnor(A, B), Nor(A, C)), C);
1302 break;
1303 case 0x93:
1304 if (ABCIsConst)
1305 Res = Xor(Nand(A, C), B);
1306 break;
1307 case 0x94:
1308 if (ABCIsConst)
1309 Res = Nor(Nor(A, B), Xor(Xnor(A, B), C));
1310 break;
1311 case 0x95:
1312 if (ABCIsConst)
1313 Res = Xor(Nand(A, B), C);
1314 break;
1315 case 0x96:
1316 if (ABCIsConst)
1317 Res = Xor(Xor(A, B), C);
1318 break;
1319 case 0x97:
1320 if (ABCIsConst)
1321 Res = Xor(Xor(A, B), Or(Nor(A, B), C));
1322 break;
1323 case 0x98:
1324 if (ABCIsConst)
1325 Res = Nor(Nor(A, B), Xor(B, C));
1326 break;
1327 case 0x99:
1328 if (BCIsConst)
1329 Res = Xnor(B, C);
1330 break;
1331 case 0x9a:
1332 if (ABCIsConst)
1333 Res = Xor(Nor(B, Not(A)), C);
1334 break;
1335 case 0x9b:
1336 if (ABCIsConst)
1337 Res = Or(Nor(A, B), Xnor(B, C));
1338 break;
1339 case 0x9c:
1340 if (ABCIsConst)
1341 Res = Xor(B, Nor(C, Not(A)));
1342 break;
1343 case 0x9d:
1344 if (ABCIsConst)
1345 Res = Or(Nor(A, C), Xnor(B, C));
1346 break;
1347 case 0x9e:
1348 if (ABCIsConst)
1349 Res = Xor(And(Xor(A, B), Nand(B, C)), C);
1350 break;
1351 case 0x9f:
1352 if (ABCIsConst)
1353 Res = Nand(A, Xor(B, C));
1354 break;
1355 case 0xa0:
1356 Res = And(A, C);
1357 break;
1358 case 0xa1:
1359 if (ABCIsConst)
1360 Res = Xor(A, Nor(Nor(A, Not(B)), C));
1361 break;
1362 case 0xa2:
1363 if (ABCIsConst)
1364 Res = And(Or(A, Not(B)), C);
1365 break;
1366 case 0xa3:
1367 if (ABCIsConst)
1368 Res = Xor(Nor(Xor(B, C), A), C);
1369 break;
1370 case 0xa4:
1371 if (ABCIsConst)
1372 Res = Xor(A, Nor(Nor(A, B), C));
1373 break;
1374 case 0xa5:
1375 if (ACIsConst)
1376 Res = Xnor(A, C);
1377 break;
1378 case 0xa6:
1379 if (ABCIsConst)
1380 Res = Xor(Nor(A, Not(B)), C);
1381 break;
1382 case 0xa7:
1383 if (ABCIsConst)
1384 Res = Or(Nor(A, B), Xnor(A, C));
1385 break;
1386 case 0xa8:
1387 if (ABCIsConst)
1388 Res = And(Or(A, B), C);
1389 break;
1390 case 0xa9:
1391 if (ABCIsConst)
1392 Res = Xor(Nor(A, B), C);
1393 break;
1394 case 0xaa:
1395 Res = C;
1396 break;
1397 case 0xab:
1398 if (ABCIsConst)
1399 Res = Or(Nor(A, B), C);
1400 break;
1401 case 0xac:
1402 if (ABCIsConst)
1403 Res = Xor(Nor(Xnor(B, C), A), C);
1404 break;
1405 case 0xad:
1406 if (ABCIsConst)
1407 Res = Or(Xnor(A, C), And(B, C));
1408 break;
1409 case 0xae:
1410 if (ABCIsConst)
1411 Res = Or(Nor(A, Not(B)), C);
1412 break;
1413 case 0xaf:
1414 if (ACIsConst)
1415 Res = Or(C, Not(A));
1416 break;
1417 case 0xb0:
1418 if (ABCIsConst)
1419 Res = And(A, Nand(B, Not(C)));
1420 break;
1421 case 0xb1:
1422 if (ABCIsConst)
1423 Res = Xor(A, Nor(Xor(A, B), C));
1424 break;
1425 case 0xb2:
1426 if (ABCIsConst)
1427 Res = Xor(Nor(Xor(A, B), Xnor(A, C)), A);
1428 break;
1429 case 0xb3:
1430 if (ABCIsConst)
1431 Res = Nand(Nand(A, C), B);
1432 break;
1433 case 0xb4:
1434 if (ABCIsConst)
1435 Res = Xor(A, Nor(C, Not(B)));
1436 break;
1437 case 0xb5:
1438 if (ABCIsConst)
1439 Res = Or(Xnor(A, C), Nor(B, C));
1440 break;
1441 case 0xb6:
1442 if (ABCIsConst)
1443 Res = Xor(And(Xor(A, B), Nand(A, C)), C);
1444 break;
1445 case 0xb7:
1446 if (ABCIsConst)
1447 Res = Nand(Xor(A, C), B);
1448 break;
1449 case 0xb8:
1450 if (ABCIsConst)
1451 Res = Xor(Nor(Xnor(A, C), B), C);
1452 break;
1453 case 0xb9:
1454 if (ABCIsConst)
1455 Res = Xor(Nor(And(A, C), B), C);
1456 break;
1457 case 0xba:
1458 if (ABCIsConst)
1459 Res = Or(Nor(B, Not(A)), C);
1460 break;
1461 case 0xbb:
1462 if (BCIsConst)
1463 Res = Or(C, Not(B));
1464 break;
1465 case 0xbc:
1466 if (ABCIsConst)
1467 Res = Xor(A, And(Nand(A, C), B));
1468 break;
1469 case 0xbd:
1470 if (ABCIsConst)
1471 Res = Or(Xor(A, B), Xnor(A, C));
1472 break;
1473 case 0xbe:
1474 if (ABCIsConst)
1475 Res = Or(Xor(A, B), C);
1476 break;
1477 case 0xbf:
1478 if (ABCIsConst)
1479 Res = Or(Nand(A, B), C);
1480 break;
1481 case 0xc0:
1482 Res = And(A, B);
1483 break;
1484 case 0xc1:
1485 if (ABCIsConst)
1486 Res = Xor(A, Nor(Nor(A, Not(C)), B));
1487 break;
1488 case 0xc2:
1489 if (ABCIsConst)
1490 Res = Xor(A, Nor(Nor(A, C), B));
1491 break;
1492 case 0xc3:
1493 if (ABIsConst)
1494 Res = Xnor(A, B);
1495 break;
1496 case 0xc4:
1497 if (ABCIsConst)
1498 Res = And(Or(A, Not(C)), B);
1499 break;
1500 case 0xc5:
1501 if (ABCIsConst)
1502 Res = Xor(B, Nor(A, Xor(B, C)));
1503 break;
1504 case 0xc6:
1505 if (ABCIsConst)
1506 Res = Xor(Nor(A, Not(C)), B);
1507 break;
1508 case 0xc7:
1509 if (ABCIsConst)
1510 Res = Or(Xnor(A, B), Nor(A, C));
1511 break;
1512 case 0xc8:
1513 if (ABCIsConst)
1514 Res = And(Or(A, C), B);
1515 break;
1516 case 0xc9:
1517 if (ABCIsConst)
1518 Res = Xor(Nor(A, C), B);
1519 break;
1520 case 0xca:
1521 if (ABCIsConst)
1522 Res = Xor(B, Nor(A, Xnor(B, C)));
1523 break;
1524 case 0xcb:
1525 if (ABCIsConst)
1526 Res = Or(Xnor(A, B), And(B, C));
1527 break;
1528 case 0xcc:
1529 Res = B;
1530 break;
1531 case 0xcd:
1532 if (ABCIsConst)
1533 Res = Or(Nor(A, C), B);
1534 break;
1535 case 0xce:
1536 if (ABCIsConst)
1537 Res = Or(Nor(A, Not(C)), B);
1538 break;
1539 case 0xcf:
1540 if (ABIsConst)
1541 Res = Or(B, Not(A));
1542 break;
1543 case 0xd0:
1544 if (ABCIsConst)
1545 Res = And(A, Or(B, Not(C)));
1546 break;
1547 case 0xd1:
1548 if (ABCIsConst)
1549 Res = Xor(A, Nor(Xor(A, C), B));
1550 break;
1551 case 0xd2:
1552 if (ABCIsConst)
1553 Res = Xor(A, Nor(B, Not(C)));
1554 break;
1555 case 0xd3:
1556 if (ABCIsConst)
1557 Res = Or(Xnor(A, B), Nor(B, C));
1558 break;
1559 case 0xd4:
1560 if (ABCIsConst)
1561 Res = Xor(Nor(Xnor(A, B), Xor(A, C)), A);
1562 break;
1563 case 0xd5:
1564 if (ABCIsConst)
1565 Res = Nand(Nand(A, B), C);
1566 break;
1567 case 0xd6:
1568 if (ABCIsConst)
1569 Res = Xor(Xor(A, B), Or(And(A, B), C));
1570 break;
1571 case 0xd7:
1572 if (ABCIsConst)
1573 Res = Nand(Xor(A, B), C);
1574 break;
1575 case 0xd8:
1576 if (ABCIsConst)
1577 Res = Xor(Nor(Xnor(A, B), C), B);
1578 break;
1579 case 0xd9:
1580 if (ABCIsConst)
1581 Res = Or(And(A, B), Xnor(B, C));
1582 break;
1583 case 0xda:
1584 if (ABCIsConst)
1585 Res = Xor(A, And(Nand(A, B), C));
1586 break;
1587 case 0xdb:
1588 if (ABCIsConst)
1589 Res = Or(Xnor(A, B), Xor(A, C));
1590 break;
1591 case 0xdc:
1592 if (ABCIsConst)
1593 Res = Or(B, Nor(C, Not(A)));
1594 break;
1595 case 0xdd:
1596 if (BCIsConst)
1597 Res = Or(B, Not(C));
1598 break;
1599 case 0xde:
1600 if (ABCIsConst)
1601 Res = Or(Xor(A, C), B);
1602 break;
1603 case 0xdf:
1604 if (ABCIsConst)
1605 Res = Or(Nand(A, C), B);
1606 break;
1607 case 0xe0:
1608 if (ABCIsConst)
1609 Res = And(A, Or(B, C));
1610 break;
1611 case 0xe1:
1612 if (ABCIsConst)
1613 Res = Xor(A, Nor(B, C));
1614 break;
1615 case 0xe2:
1616 if (ABCIsConst)
1617 Res = Xor(A, Nor(Xnor(A, C), B));
1618 break;
1619 case 0xe3:
1620 if (ABCIsConst)
1621 Res = Xor(A, Nor(And(A, C), B));
1622 break;
1623 case 0xe4:
1624 if (ABCIsConst)
1625 Res = Xor(A, Nor(Xnor(A, B), C));
1626 break;
1627 case 0xe5:
1628 if (ABCIsConst)
1629 Res = Xor(A, Nor(And(A, B), C));
1630 break;
1631 case 0xe6:
1632 if (ABCIsConst)
1633 Res = Or(And(A, B), Xor(B, C));
1634 break;
1635 case 0xe7:
1636 if (ABCIsConst)
1637 Res = Or(Xnor(A, B), Xnor(A, C));
1638 break;
1639 case 0xe8:
1640 if (ABCIsConst)
1641 Res = Xor(Or(A, B), Nor(Xnor(A, B), C));
1642 break;
1643 case 0xe9:
1644 if (ABCIsConst)
1645 Res = Xor(Xor(A, B), Nand(Nand(A, B), C));
1646 break;
1647 case 0xea:
1648 if (ABCIsConst)
1649 Res = Or(And(A, B), C);
1650 break;
1651 case 0xeb:
1652 if (ABCIsConst)
1653 Res = Or(Xnor(A, B), C);
1654 break;
1655 case 0xec:
1656 if (ABCIsConst)
1657 Res = Or(And(A, C), B);
1658 break;
1659 case 0xed:
1660 if (ABCIsConst)
1661 Res = Or(Xnor(A, C), B);
1662 break;
1663 case 0xee:
1664 Res = Or(B, C);
1665 break;
1666 case 0xef:
1667 if (ABCIsConst)
1668 Res = Nand(A, Nor(B, C));
1669 break;
1670 case 0xf0:
1671 Res = A;
1672 break;
1673 case 0xf1:
1674 if (ABCIsConst)
1675 Res = Or(A, Nor(B, C));
1676 break;
1677 case 0xf2:
1678 if (ABCIsConst)
1679 Res = Or(A, Nor(B, Not(C)));
1680 break;
1681 case 0xf3:
1682 if (ABIsConst)
1683 Res = Or(A, Not(B));
1684 break;
1685 case 0xf4:
1686 if (ABCIsConst)
1687 Res = Or(A, Nor(C, Not(B)));
1688 break;
1689 case 0xf5:
1690 if (ACIsConst)
1691 Res = Or(A, Not(C));
1692 break;
1693 case 0xf6:
1694 if (ABCIsConst)
1695 Res = Or(A, Xor(B, C));
1696 break;
1697 case 0xf7:
1698 if (ABCIsConst)
1699 Res = Or(A, Nand(B, C));
1700 break;
1701 case 0xf8:
1702 if (ABCIsConst)
1703 Res = Or(A, And(B, C));
1704 break;
1705 case 0xf9:
1706 if (ABCIsConst)
1707 Res = Or(A, Xnor(B, C));
1708 break;
1709 case 0xfa:
1710 Res = Or(A, C);
1711 break;
1712 case 0xfb:
1713 if (ABCIsConst)
1714 Res = Nand(Nor(A, C), B);
1715 break;
1716 case 0xfc:
1717 Res = Or(A, B);
1718 break;
1719 case 0xfd:
1720 if (ABCIsConst)
1721 Res = Nand(Nor(A, B), C);
1722 break;
1723 case 0xfe:
1724 if (ABCIsConst)
1725 Res = Or(Or(A, B), C);
1726 break;
1727 case 0xff:
1728 Res = {Constant::getAllOnesValue(Ty), 0xff};
1729 break;
1730 }
1731
1732 assert((Res.first == nullptr || Res.second == Imm) &&
1733 "Simplification of ternary logic does not verify!");
1734 return Res.first;
1735}
1736
1738 InstCombiner::BuilderTy &Builder) {
1739 auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
1740 if (!CInt)
1741 return nullptr;
1742
1743 auto *VecTy = cast<FixedVectorType>(II.getType());
1744 assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
1745
1746 // The immediate permute control byte looks like this:
1747 // [3:0] - zero mask for each 32-bit lane
1748 // [5:4] - select one 32-bit destination lane
1749 // [7:6] - select one 32-bit source lane
1750
1751 uint8_t Imm = CInt->getZExtValue();
1752 uint8_t ZMask = Imm & 0xf;
1753 uint8_t DestLane = (Imm >> 4) & 0x3;
1754 uint8_t SourceLane = (Imm >> 6) & 0x3;
1755
1757
1758 // If all zero mask bits are set, this was just a weird way to
1759 // generate a zero vector.
1760 if (ZMask == 0xf)
1761 return ZeroVector;
1762
1763 // Initialize by passing all of the first source bits through.
1764 int ShuffleMask[4] = {0, 1, 2, 3};
1765
1766 // We may replace the second operand with the zero vector.
1767 Value *V1 = II.getArgOperand(1);
1768
1769 if (ZMask) {
1770 // If the zero mask is being used with a single input or the zero mask
1771 // overrides the destination lane, this is a shuffle with the zero vector.
1772 if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
1773 (ZMask & (1 << DestLane))) {
1774 V1 = ZeroVector;
1775 // We may still move 32-bits of the first source vector from one lane
1776 // to another.
1777 ShuffleMask[DestLane] = SourceLane;
1778 // The zero mask may override the previous insert operation.
1779 for (unsigned i = 0; i < 4; ++i)
1780 if ((ZMask >> i) & 0x1)
1781 ShuffleMask[i] = i + 4;
1782 } else {
1783 // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
1784 return nullptr;
1785 }
1786 } else {
1787 // Replace the selected destination lane with the selected source lane.
1788 ShuffleMask[DestLane] = SourceLane + 4;
1789 }
1790
1791 return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
1792}
1793
1794/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
1795/// or conversion to a shuffle vector.
1797 ConstantInt *CILength, ConstantInt *CIIndex,
1798 InstCombiner::BuilderTy &Builder) {
1799 auto LowConstantHighUndef = [&](uint64_t Val) {
1800 Type *IntTy64 = Type::getInt64Ty(II.getContext());
1801 Constant *Args[] = {ConstantInt::get(IntTy64, Val),
1802 UndefValue::get(IntTy64)};
1803 return ConstantVector::get(Args);
1804 };
1805
1806 // See if we're dealing with constant values.
1807 auto *C0 = dyn_cast<Constant>(Op0);
1808 auto *CI0 =
1809 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
1810 : nullptr;
1811
1812 // Attempt to constant fold.
1813 if (CILength && CIIndex) {
1814 // From AMD documentation: "The bit index and field length are each six
1815 // bits in length other bits of the field are ignored."
1816 APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
1817 APInt APLength = CILength->getValue().zextOrTrunc(6);
1818
1819 unsigned Index = APIndex.getZExtValue();
1820
1821 // From AMD documentation: "a value of zero in the field length is
1822 // defined as length of 64".
1823 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
1824
1825 // From AMD documentation: "If the sum of the bit index + length field
1826 // is greater than 64, the results are undefined".
1827 unsigned End = Index + Length;
1828
1829 // Note that both field index and field length are 8-bit quantities.
1830 // Since variables 'Index' and 'Length' are unsigned values
1831 // obtained from zero-extending field index and field length
1832 // respectively, their sum should never wrap around.
1833 if (End > 64)
1834 return UndefValue::get(II.getType());
1835
1836 // If we are inserting whole bytes, we can convert this to a shuffle.
1837 // Lowering can recognize EXTRQI shuffle masks.
1838 if ((Length % 8) == 0 && (Index % 8) == 0) {
1839 // Convert bit indices to byte indices.
1840 Length /= 8;
1841 Index /= 8;
1842
1843 Type *IntTy8 = Type::getInt8Ty(II.getContext());
1844 auto *ShufTy = FixedVectorType::get(IntTy8, 16);
1845
1846 SmallVector<int, 16> ShuffleMask;
1847 for (int i = 0; i != (int)Length; ++i)
1848 ShuffleMask.push_back(i + Index);
1849 for (int i = Length; i != 8; ++i)
1850 ShuffleMask.push_back(i + 16);
1851 for (int i = 8; i != 16; ++i)
1852 ShuffleMask.push_back(-1);
1853
1854 Value *SV = Builder.CreateShuffleVector(
1855 Builder.CreateBitCast(Op0, ShufTy),
1856 ConstantAggregateZero::get(ShufTy), ShuffleMask);
1857 return Builder.CreateBitCast(SV, II.getType());
1858 }
1859
1860 // Constant Fold - shift Index'th bit to lowest position and mask off
1861 // Length bits.
1862 if (CI0) {
1863 APInt Elt = CI0->getValue();
1864 Elt.lshrInPlace(Index);
1865 Elt = Elt.zextOrTrunc(Length);
1866 return LowConstantHighUndef(Elt.getZExtValue());
1867 }
1868
1869 // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
1870 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
1871 Value *Args[] = {Op0, CILength, CIIndex};
1872 return Builder.CreateIntrinsic(Intrinsic::x86_sse4a_extrqi, {}, Args);
1873 }
1874 }
1875
1876 // Constant Fold - extraction from zero is always {zero, undef}.
1877 if (CI0 && CI0->isZero())
1878 return LowConstantHighUndef(0);
1879
1880 return nullptr;
1881}
1882
1883/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
1884/// folding or conversion to a shuffle vector.
1886 APInt APLength, APInt APIndex,
1887 InstCombiner::BuilderTy &Builder) {
1888 // From AMD documentation: "The bit index and field length are each six bits
1889 // in length other bits of the field are ignored."
1890 APIndex = APIndex.zextOrTrunc(6);
1891 APLength = APLength.zextOrTrunc(6);
1892
1893 // Attempt to constant fold.
1894 unsigned Index = APIndex.getZExtValue();
1895
1896 // From AMD documentation: "a value of zero in the field length is
1897 // defined as length of 64".
1898 unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
1899
1900 // From AMD documentation: "If the sum of the bit index + length field
1901 // is greater than 64, the results are undefined".
1902 unsigned End = Index + Length;
1903
1904 // Note that both field index and field length are 8-bit quantities.
1905 // Since variables 'Index' and 'Length' are unsigned values
1906 // obtained from zero-extending field index and field length
1907 // respectively, their sum should never wrap around.
1908 if (End > 64)
1909 return UndefValue::get(II.getType());
1910
1911 // If we are inserting whole bytes, we can convert this to a shuffle.
1912 // Lowering can recognize INSERTQI shuffle masks.
1913 if ((Length % 8) == 0 && (Index % 8) == 0) {
1914 // Convert bit indices to byte indices.
1915 Length /= 8;
1916 Index /= 8;
1917
1918 Type *IntTy8 = Type::getInt8Ty(II.getContext());
1919 auto *ShufTy = FixedVectorType::get(IntTy8, 16);
1920
1921 SmallVector<int, 16> ShuffleMask;
1922 for (int i = 0; i != (int)Index; ++i)
1923 ShuffleMask.push_back(i);
1924 for (int i = 0; i != (int)Length; ++i)
1925 ShuffleMask.push_back(i + 16);
1926 for (int i = Index + Length; i != 8; ++i)
1927 ShuffleMask.push_back(i);
1928 for (int i = 8; i != 16; ++i)
1929 ShuffleMask.push_back(-1);
1930
1931 Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
1932 Builder.CreateBitCast(Op1, ShufTy),
1933 ShuffleMask);
1934 return Builder.CreateBitCast(SV, II.getType());
1935 }
1936
1937 // See if we're dealing with constant values.
1938 auto *C0 = dyn_cast<Constant>(Op0);
1939 auto *C1 = dyn_cast<Constant>(Op1);
1940 auto *CI00 =
1941 C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
1942 : nullptr;
1943 auto *CI10 =
1944 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
1945 : nullptr;
1946
1947 // Constant Fold - insert bottom Length bits starting at the Index'th bit.
1948 if (CI00 && CI10) {
1949 APInt V00 = CI00->getValue();
1950 APInt V10 = CI10->getValue();
1951 APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
1952 V00 = V00 & ~Mask;
1953 V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
1954 APInt Val = V00 | V10;
1955 Type *IntTy64 = Type::getInt64Ty(II.getContext());
1956 Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
1957 UndefValue::get(IntTy64)};
1958 return ConstantVector::get(Args);
1959 }
1960
1961 // If we were an INSERTQ call, we'll save demanded elements if we convert to
1962 // INSERTQI.
1963 if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
1964 Type *IntTy8 = Type::getInt8Ty(II.getContext());
1965 Constant *CILength = ConstantInt::get(IntTy8, Length, false);
1966 Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
1967
1968 Value *Args[] = {Op0, Op1, CILength, CIIndex};
1969 return Builder.CreateIntrinsic(Intrinsic::x86_sse4a_insertqi, {}, Args);
1970 }
1971
1972 return nullptr;
1973}
1974
1975/// Attempt to convert pshufb* to shufflevector if the mask is constant.
1977 InstCombiner::BuilderTy &Builder) {
1978 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1979 if (!V)
1980 return nullptr;
1981
1982 auto *VecTy = cast<FixedVectorType>(II.getType());
1983 unsigned NumElts = VecTy->getNumElements();
1984 assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
1985 "Unexpected number of elements in shuffle mask!");
1986
1987 // Construct a shuffle mask from constant integers or UNDEFs.
1988 int Indexes[64];
1989
1990 // Each byte in the shuffle control mask forms an index to permute the
1991 // corresponding byte in the destination operand.
1992 for (unsigned I = 0; I < NumElts; ++I) {
1993 Constant *COp = V->getAggregateElement(I);
1994 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1995 return nullptr;
1996
1997 if (isa<UndefValue>(COp)) {
1998 Indexes[I] = -1;
1999 continue;
2000 }
2001
2002 int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
2003
2004 // If the most significant bit (bit[7]) of each byte of the shuffle
2005 // control mask is set, then zero is written in the result byte.
2006 // The zero vector is in the right-hand side of the resulting
2007 // shufflevector.
2008
2009 // The value of each index for the high 128-bit lane is the least
2010 // significant 4 bits of the respective shuffle control byte.
2011 Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
2012 Indexes[I] = Index;
2013 }
2014
2015 auto V1 = II.getArgOperand(0);
2016 auto V2 = Constant::getNullValue(VecTy);
2017 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes, NumElts));
2018}
2019
2020/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
2022 InstCombiner::BuilderTy &Builder) {
2023 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
2024 if (!V)
2025 return nullptr;
2026
2027 auto *VecTy = cast<FixedVectorType>(II.getType());
2028 unsigned NumElts = VecTy->getNumElements();
2029 bool IsPD = VecTy->getScalarType()->isDoubleTy();
2030 unsigned NumLaneElts = IsPD ? 2 : 4;
2031 assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
2032
2033 // Construct a shuffle mask from constant integers or UNDEFs.
2034 int Indexes[16];
2035
2036 // The intrinsics only read one or two bits, clear the rest.
2037 for (unsigned I = 0; I < NumElts; ++I) {
2038 Constant *COp = V->getAggregateElement(I);
2039 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
2040 return nullptr;
2041
2042 if (isa<UndefValue>(COp)) {
2043 Indexes[I] = -1;
2044 continue;
2045 }
2046
2047 APInt Index = cast<ConstantInt>(COp)->getValue();
2048 Index = Index.zextOrTrunc(32).getLoBits(2);
2049
2050 // The PD variants uses bit 1 to select per-lane element index, so
2051 // shift down to convert to generic shuffle mask index.
2052 if (IsPD)
2053 Index.lshrInPlace(1);
2054
2055 // The _256 variants are a bit trickier since the mask bits always index
2056 // into the corresponding 128 half. In order to convert to a generic
2057 // shuffle, we have to make that explicit.
2058 Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
2059
2060 Indexes[I] = Index.getZExtValue();
2061 }
2062
2063 auto V1 = II.getArgOperand(0);
2064 return Builder.CreateShuffleVector(V1, ArrayRef(Indexes, NumElts));
2065}
2066
2067/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
2069 InstCombiner::BuilderTy &Builder) {
2070 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
2071 if (!V)
2072 return nullptr;
2073
2074 auto *VecTy = cast<FixedVectorType>(II.getType());
2075 unsigned Size = VecTy->getNumElements();
2076 assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
2077 "Unexpected shuffle mask size");
2078
2079 // Construct a shuffle mask from constant integers or UNDEFs.
2080 int Indexes[64];
2081
2082 for (unsigned I = 0; I < Size; ++I) {
2083 Constant *COp = V->getAggregateElement(I);
2084 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
2085 return nullptr;
2086
2087 if (isa<UndefValue>(COp)) {
2088 Indexes[I] = -1;
2089 continue;
2090 }
2091
2092 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
2093 Index &= Size - 1;
2094 Indexes[I] = Index;
2095 }
2096
2097 auto V1 = II.getArgOperand(0);
2098 return Builder.CreateShuffleVector(V1, ArrayRef(Indexes, Size));
2099}
2100
2101/// Attempt to convert vpermi2/vpermt2 to shufflevector if the mask is constant.
2103 InstCombiner::BuilderTy &Builder) {
2104 auto *V = dyn_cast<Constant>(II.getArgOperand(1));
2105 if (!V)
2106 return nullptr;
2107
2108 auto *VecTy = cast<FixedVectorType>(II.getType());
2109 unsigned Size = VecTy->getNumElements();
2110 assert((Size == 2 || Size == 4 || Size == 8 || Size == 16 || Size == 32 ||
2111 Size == 64) &&
2112 "Unexpected shuffle mask size");
2113
2114 // Construct a shuffle mask from constant integers or UNDEFs.
2115 int Indexes[64];
2116
2117 for (unsigned I = 0; I < Size; ++I) {
2118 Constant *COp = V->getAggregateElement(I);
2119 if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
2120 return nullptr;
2121
2122 if (isa<UndefValue>(COp)) {
2123 Indexes[I] = -1;
2124 continue;
2125 }
2126
2127 uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
2128 Index &= (2 * Size) - 1;
2129 Indexes[I] = Index;
2130 }
2131
2132 auto V1 = II.getArgOperand(0);
2133 auto V2 = II.getArgOperand(2);
2134 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes, Size));
2135}
2136
2137// Simplify VPERMV/VPERMV3 mask - only demand the active index bits.
2138static bool simplifyX86VPERMMask(Instruction *II, bool IsBinary,
2139 InstCombiner &IC) {
2140 auto *VecTy = cast<FixedVectorType>(II->getType());
2141 unsigned EltSizeInBits = VecTy->getScalarSizeInBits();
2142 unsigned NumElts = VecTy->getNumElements();
2143 assert(isPowerOf2_32(NumElts) && isPowerOf2_32(EltSizeInBits) &&
2144 "Unexpected shuffle mask size");
2145
2146 unsigned IdxSizeInBits = Log2_32(IsBinary ? (2 * NumElts) : NumElts);
2147 APInt DemandedMask = APInt::getLowBitsSet(EltSizeInBits, IdxSizeInBits);
2148
2149 KnownBits KnownMask(EltSizeInBits);
2150 return IC.SimplifyDemandedBits(II, /*OpNo=*/1, DemandedMask, KnownMask);
2151}
2152
2153std::optional<Instruction *>
2155 auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width,
2156 unsigned DemandedWidth) {
2157 APInt UndefElts(Width, 0);
2158 APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
2159 return IC.SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
2160 };
2161
2162 Intrinsic::ID IID = II.getIntrinsicID();
2163 switch (IID) {
2164 case Intrinsic::x86_bmi_bextr_32:
2165 case Intrinsic::x86_bmi_bextr_64:
2166 case Intrinsic::x86_tbm_bextri_u32:
2167 case Intrinsic::x86_tbm_bextri_u64:
2168 // If the RHS is a constant we can try some simplifications.
2169 if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2170 uint64_t Shift = C->getZExtValue();
2171 uint64_t Length = (Shift >> 8) & 0xff;
2172 Shift &= 0xff;
2173 unsigned BitWidth = II.getType()->getIntegerBitWidth();
2174 // If the length is 0 or the shift is out of range, replace with zero.
2175 if (Length == 0 || Shift >= BitWidth) {
2176 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2177 }
2178 // If the LHS is also a constant, we can completely constant fold this.
2179 if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2180 uint64_t Result = InC->getZExtValue() >> Shift;
2181 if (Length > BitWidth)
2182 Length = BitWidth;
2183 Result &= maskTrailingOnes<uint64_t>(Length);
2184 return IC.replaceInstUsesWith(II,
2185 ConstantInt::get(II.getType(), Result));
2186 }
2187 // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2188 // are only masking bits that a shift already cleared?
2189 }
2190 break;
2191
2192 case Intrinsic::x86_bmi_bzhi_32:
2193 case Intrinsic::x86_bmi_bzhi_64:
2194 // If the RHS is a constant we can try some simplifications.
2195 if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2196 uint64_t Index = C->getZExtValue() & 0xff;
2197 unsigned BitWidth = II.getType()->getIntegerBitWidth();
2198 if (Index >= BitWidth) {
2199 return IC.replaceInstUsesWith(II, II.getArgOperand(0));
2200 }
2201 if (Index == 0) {
2202 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2203 }
2204 // If the LHS is also a constant, we can completely constant fold this.
2205 if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2206 uint64_t Result = InC->getZExtValue();
2207 Result &= maskTrailingOnes<uint64_t>(Index);
2208 return IC.replaceInstUsesWith(II,
2209 ConstantInt::get(II.getType(), Result));
2210 }
2211 // TODO should we convert this to an AND if the RHS is constant?
2212 }
2213 break;
2214 case Intrinsic::x86_bmi_pext_32:
2215 case Intrinsic::x86_bmi_pext_64:
2216 if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2217 if (MaskC->isNullValue()) {
2218 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2219 }
2220 if (MaskC->isAllOnesValue()) {
2221 return IC.replaceInstUsesWith(II, II.getArgOperand(0));
2222 }
2223
2224 unsigned MaskIdx, MaskLen;
2225 if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) {
2226 // any single contingous sequence of 1s anywhere in the mask simply
2227 // describes a subset of the input bits shifted to the appropriate
2228 // position. Replace with the straight forward IR.
2229 Value *Input = II.getArgOperand(0);
2230 Value *Masked = IC.Builder.CreateAnd(Input, II.getArgOperand(1));
2231 Value *ShiftAmt = ConstantInt::get(II.getType(), MaskIdx);
2232 Value *Shifted = IC.Builder.CreateLShr(Masked, ShiftAmt);
2233 return IC.replaceInstUsesWith(II, Shifted);
2234 }
2235
2236 if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2237 uint64_t Src = SrcC->getZExtValue();
2238 uint64_t Mask = MaskC->getZExtValue();
2239 uint64_t Result = 0;
2240 uint64_t BitToSet = 1;
2241
2242 while (Mask) {
2243 // Isolate lowest set bit.
2244 uint64_t BitToTest = Mask & -Mask;
2245 if (BitToTest & Src)
2246 Result |= BitToSet;
2247
2248 BitToSet <<= 1;
2249 // Clear lowest set bit.
2250 Mask &= Mask - 1;
2251 }
2252
2253 return IC.replaceInstUsesWith(II,
2254 ConstantInt::get(II.getType(), Result));
2255 }
2256 }
2257 break;
2258 case Intrinsic::x86_bmi_pdep_32:
2259 case Intrinsic::x86_bmi_pdep_64:
2260 if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
2261 if (MaskC->isNullValue()) {
2262 return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
2263 }
2264 if (MaskC->isAllOnesValue()) {
2265 return IC.replaceInstUsesWith(II, II.getArgOperand(0));
2266 }
2267
2268 unsigned MaskIdx, MaskLen;
2269 if (MaskC->getValue().isShiftedMask(MaskIdx, MaskLen)) {
2270 // any single contingous sequence of 1s anywhere in the mask simply
2271 // describes a subset of the input bits shifted to the appropriate
2272 // position. Replace with the straight forward IR.
2273 Value *Input = II.getArgOperand(0);
2274 Value *ShiftAmt = ConstantInt::get(II.getType(), MaskIdx);
2275 Value *Shifted = IC.Builder.CreateShl(Input, ShiftAmt);
2276 Value *Masked = IC.Builder.CreateAnd(Shifted, II.getArgOperand(1));
2277 return IC.replaceInstUsesWith(II, Masked);
2278 }
2279
2280 if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
2281 uint64_t Src = SrcC->getZExtValue();
2282 uint64_t Mask = MaskC->getZExtValue();
2283 uint64_t Result = 0;
2284 uint64_t BitToTest = 1;
2285
2286 while (Mask) {
2287 // Isolate lowest set bit.
2288 uint64_t BitToSet = Mask & -Mask;
2289 if (BitToTest & Src)
2290 Result |= BitToSet;
2291
2292 BitToTest <<= 1;
2293 // Clear lowest set bit;
2294 Mask &= Mask - 1;
2295 }
2296
2297 return IC.replaceInstUsesWith(II,
2298 ConstantInt::get(II.getType(), Result));
2299 }
2300 }
2301 break;
2302
2303 case Intrinsic::x86_sse_cvtss2si:
2304 case Intrinsic::x86_sse_cvtss2si64:
2305 case Intrinsic::x86_sse_cvttss2si:
2306 case Intrinsic::x86_sse_cvttss2si64:
2307 case Intrinsic::x86_sse2_cvtsd2si:
2308 case Intrinsic::x86_sse2_cvtsd2si64:
2309 case Intrinsic::x86_sse2_cvttsd2si:
2310 case Intrinsic::x86_sse2_cvttsd2si64:
2311 case Intrinsic::x86_avx512_vcvtss2si32:
2312 case Intrinsic::x86_avx512_vcvtss2si64:
2313 case Intrinsic::x86_avx512_vcvtss2usi32:
2314 case Intrinsic::x86_avx512_vcvtss2usi64:
2315 case Intrinsic::x86_avx512_vcvtsd2si32:
2316 case Intrinsic::x86_avx512_vcvtsd2si64:
2317 case Intrinsic::x86_avx512_vcvtsd2usi32:
2318 case Intrinsic::x86_avx512_vcvtsd2usi64:
2319 case Intrinsic::x86_avx512_cvttss2si:
2320 case Intrinsic::x86_avx512_cvttss2si64:
2321 case Intrinsic::x86_avx512_cvttss2usi:
2322 case Intrinsic::x86_avx512_cvttss2usi64:
2323 case Intrinsic::x86_avx512_cvttsd2si:
2324 case Intrinsic::x86_avx512_cvttsd2si64:
2325 case Intrinsic::x86_avx512_cvttsd2usi:
2326 case Intrinsic::x86_avx512_cvttsd2usi64: {
2327 // These intrinsics only demand the 0th element of their input vectors. If
2328 // we can simplify the input based on that, do so now.
2329 Value *Arg = II.getArgOperand(0);
2330 unsigned VWidth = cast<FixedVectorType>(Arg->getType())->getNumElements();
2331 if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2332 return IC.replaceOperand(II, 0, V);
2333 }
2334 break;
2335 }
2336
2337 case Intrinsic::x86_mmx_pmovmskb:
2338 case Intrinsic::x86_sse_movmsk_ps:
2339 case Intrinsic::x86_sse2_movmsk_pd:
2340 case Intrinsic::x86_sse2_pmovmskb_128:
2341 case Intrinsic::x86_avx_movmsk_pd_256:
2342 case Intrinsic::x86_avx_movmsk_ps_256:
2343 case Intrinsic::x86_avx2_pmovmskb:
2344 if (Value *V = simplifyX86movmsk(II, IC.Builder)) {
2345 return IC.replaceInstUsesWith(II, V);
2346 }
2347 break;
2348
2349 case Intrinsic::x86_sse_comieq_ss:
2350 case Intrinsic::x86_sse_comige_ss:
2351 case Intrinsic::x86_sse_comigt_ss:
2352 case Intrinsic::x86_sse_comile_ss:
2353 case Intrinsic::x86_sse_comilt_ss:
2354 case Intrinsic::x86_sse_comineq_ss:
2355 case Intrinsic::x86_sse_ucomieq_ss:
2356 case Intrinsic::x86_sse_ucomige_ss:
2357 case Intrinsic::x86_sse_ucomigt_ss:
2358 case Intrinsic::x86_sse_ucomile_ss:
2359 case Intrinsic::x86_sse_ucomilt_ss:
2360 case Intrinsic::x86_sse_ucomineq_ss:
2361 case Intrinsic::x86_sse2_comieq_sd:
2362 case Intrinsic::x86_sse2_comige_sd:
2363 case Intrinsic::x86_sse2_comigt_sd:
2364 case Intrinsic::x86_sse2_comile_sd:
2365 case Intrinsic::x86_sse2_comilt_sd:
2366 case Intrinsic::x86_sse2_comineq_sd:
2367 case Intrinsic::x86_sse2_ucomieq_sd:
2368 case Intrinsic::x86_sse2_ucomige_sd:
2369 case Intrinsic::x86_sse2_ucomigt_sd:
2370 case Intrinsic::x86_sse2_ucomile_sd:
2371 case Intrinsic::x86_sse2_ucomilt_sd:
2372 case Intrinsic::x86_sse2_ucomineq_sd:
2373 case Intrinsic::x86_avx512_vcomi_ss:
2374 case Intrinsic::x86_avx512_vcomi_sd:
2375 case Intrinsic::x86_avx512_mask_cmp_ss:
2376 case Intrinsic::x86_avx512_mask_cmp_sd: {
2377 // These intrinsics only demand the 0th element of their input vectors. If
2378 // we can simplify the input based on that, do so now.
2379 bool MadeChange = false;
2380 Value *Arg0 = II.getArgOperand(0);
2381 Value *Arg1 = II.getArgOperand(1);
2382 unsigned VWidth = cast<FixedVectorType>(Arg0->getType())->getNumElements();
2383 if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2384 IC.replaceOperand(II, 0, V);
2385 MadeChange = true;
2386 }
2387 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2388 IC.replaceOperand(II, 1, V);
2389 MadeChange = true;
2390 }
2391 if (MadeChange) {
2392 return &II;
2393 }
2394 break;
2395 }
2396
2397 case Intrinsic::x86_avx512_add_ps_512:
2398 case Intrinsic::x86_avx512_div_ps_512:
2399 case Intrinsic::x86_avx512_mul_ps_512:
2400 case Intrinsic::x86_avx512_sub_ps_512:
2401 case Intrinsic::x86_avx512_add_pd_512:
2402 case Intrinsic::x86_avx512_div_pd_512:
2403 case Intrinsic::x86_avx512_mul_pd_512:
2404 case Intrinsic::x86_avx512_sub_pd_512:
2405 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2406 // IR operations.
2407 if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
2408 if (R->getValue() == 4) {
2409 Value *Arg0 = II.getArgOperand(0);
2410 Value *Arg1 = II.getArgOperand(1);
2411
2412 Value *V;
2413 switch (IID) {
2414 default:
2415 llvm_unreachable("Case stmts out of sync!");
2416 case Intrinsic::x86_avx512_add_ps_512:
2417 case Intrinsic::x86_avx512_add_pd_512:
2418 V = IC.Builder.CreateFAdd(Arg0, Arg1);
2419 break;
2420 case Intrinsic::x86_avx512_sub_ps_512:
2421 case Intrinsic::x86_avx512_sub_pd_512:
2422 V = IC.Builder.CreateFSub(Arg0, Arg1);
2423 break;
2424 case Intrinsic::x86_avx512_mul_ps_512:
2425 case Intrinsic::x86_avx512_mul_pd_512:
2426 V = IC.Builder.CreateFMul(Arg0, Arg1);
2427 break;
2428 case Intrinsic::x86_avx512_div_ps_512:
2429 case Intrinsic::x86_avx512_div_pd_512:
2430 V = IC.Builder.CreateFDiv(Arg0, Arg1);
2431 break;
2432 }
2433
2434 return IC.replaceInstUsesWith(II, V);
2435 }
2436 }
2437 break;
2438
2439 case Intrinsic::x86_avx512_mask_add_ss_round:
2440 case Intrinsic::x86_avx512_mask_div_ss_round:
2441 case Intrinsic::x86_avx512_mask_mul_ss_round:
2442 case Intrinsic::x86_avx512_mask_sub_ss_round:
2443 case Intrinsic::x86_avx512_mask_add_sd_round:
2444 case Intrinsic::x86_avx512_mask_div_sd_round:
2445 case Intrinsic::x86_avx512_mask_mul_sd_round:
2446 case Intrinsic::x86_avx512_mask_sub_sd_round:
2447 // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2448 // IR operations.
2449 if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(4))) {
2450 if (R->getValue() == 4) {
2451 // Extract the element as scalars.
2452 Value *Arg0 = II.getArgOperand(0);
2453 Value *Arg1 = II.getArgOperand(1);
2456
2457 Value *V;
2458 switch (IID) {
2459 default:
2460 llvm_unreachable("Case stmts out of sync!");
2461 case Intrinsic::x86_avx512_mask_add_ss_round:
2462 case Intrinsic::x86_avx512_mask_add_sd_round:
2463 V = IC.Builder.CreateFAdd(LHS, RHS);
2464 break;
2465 case Intrinsic::x86_avx512_mask_sub_ss_round:
2466 case Intrinsic::x86_avx512_mask_sub_sd_round:
2467 V = IC.Builder.CreateFSub(LHS, RHS);
2468 break;
2469 case Intrinsic::x86_avx512_mask_mul_ss_round:
2470 case Intrinsic::x86_avx512_mask_mul_sd_round:
2471 V = IC.Builder.CreateFMul(LHS, RHS);
2472 break;
2473 case Intrinsic::x86_avx512_mask_div_ss_round:
2474 case Intrinsic::x86_avx512_mask_div_sd_round:
2475 V = IC.Builder.CreateFDiv(LHS, RHS);
2476 break;
2477 }
2478
2479 // Handle the masking aspect of the intrinsic.
2480 Value *Mask = II.getArgOperand(3);
2481 auto *C = dyn_cast<ConstantInt>(Mask);
2482 // We don't need a select if we know the mask bit is a 1.
2483 if (!C || !C->getValue()[0]) {
2484 // Cast the mask to an i1 vector and then extract the lowest element.
2485 auto *MaskTy = FixedVectorType::get(
2486 IC.Builder.getInt1Ty(),
2487 cast<IntegerType>(Mask->getType())->getBitWidth());
2488 Mask = IC.Builder.CreateBitCast(Mask, MaskTy);
2489 Mask = IC.Builder.CreateExtractElement(Mask, (uint64_t)0);
2490 // Extract the lowest element from the passthru operand.
2491 Value *Passthru =
2492 IC.Builder.CreateExtractElement(II.getArgOperand(2), (uint64_t)0);
2493 V = IC.Builder.CreateSelect(Mask, V, Passthru);
2494 }
2495
2496 // Insert the result back into the original argument 0.
2497 V = IC.Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2498
2499 return IC.replaceInstUsesWith(II, V);
2500 }
2501 }
2502 break;
2503
2504 // Constant fold ashr( <A x Bi>, Ci ).
2505 // Constant fold lshr( <A x Bi>, Ci ).
2506 // Constant fold shl( <A x Bi>, Ci ).
2507 case Intrinsic::x86_sse2_psrai_d:
2508 case Intrinsic::x86_sse2_psrai_w:
2509 case Intrinsic::x86_avx2_psrai_d:
2510 case Intrinsic::x86_avx2_psrai_w:
2511 case Intrinsic::x86_avx512_psrai_q_128:
2512 case Intrinsic::x86_avx512_psrai_q_256:
2513 case Intrinsic::x86_avx512_psrai_d_512:
2514 case Intrinsic::x86_avx512_psrai_q_512:
2515 case Intrinsic::x86_avx512_psrai_w_512:
2516 case Intrinsic::x86_sse2_psrli_d:
2517 case Intrinsic::x86_sse2_psrli_q:
2518 case Intrinsic::x86_sse2_psrli_w:
2519 case Intrinsic::x86_avx2_psrli_d:
2520 case Intrinsic::x86_avx2_psrli_q:
2521 case Intrinsic::x86_avx2_psrli_w:
2522 case Intrinsic::x86_avx512_psrli_d_512:
2523 case Intrinsic::x86_avx512_psrli_q_512:
2524 case Intrinsic::x86_avx512_psrli_w_512:
2525 case Intrinsic::x86_sse2_pslli_d:
2526 case Intrinsic::x86_sse2_pslli_q:
2527 case Intrinsic::x86_sse2_pslli_w:
2528 case Intrinsic::x86_avx2_pslli_d:
2529 case Intrinsic::x86_avx2_pslli_q:
2530 case Intrinsic::x86_avx2_pslli_w:
2531 case Intrinsic::x86_avx512_pslli_d_512:
2532 case Intrinsic::x86_avx512_pslli_q_512:
2533 case Intrinsic::x86_avx512_pslli_w_512:
2534 if (Value *V = simplifyX86immShift(II, IC.Builder)) {
2535 return IC.replaceInstUsesWith(II, V);
2536 }
2537 break;
2538
2539 case Intrinsic::x86_sse2_psra_d:
2540 case Intrinsic::x86_sse2_psra_w:
2541 case Intrinsic::x86_avx2_psra_d:
2542 case Intrinsic::x86_avx2_psra_w:
2543 case Intrinsic::x86_avx512_psra_q_128:
2544 case Intrinsic::x86_avx512_psra_q_256:
2545 case Intrinsic::x86_avx512_psra_d_512:
2546 case Intrinsic::x86_avx512_psra_q_512:
2547 case Intrinsic::x86_avx512_psra_w_512:
2548 case Intrinsic::x86_sse2_psrl_d:
2549 case Intrinsic::x86_sse2_psrl_q:
2550 case Intrinsic::x86_sse2_psrl_w:
2551 case Intrinsic::x86_avx2_psrl_d:
2552 case Intrinsic::x86_avx2_psrl_q:
2553 case Intrinsic::x86_avx2_psrl_w:
2554 case Intrinsic::x86_avx512_psrl_d_512:
2555 case Intrinsic::x86_avx512_psrl_q_512:
2556 case Intrinsic::x86_avx512_psrl_w_512:
2557 case Intrinsic::x86_sse2_psll_d:
2558 case Intrinsic::x86_sse2_psll_q:
2559 case Intrinsic::x86_sse2_psll_w:
2560 case Intrinsic::x86_avx2_psll_d:
2561 case Intrinsic::x86_avx2_psll_q:
2562 case Intrinsic::x86_avx2_psll_w:
2563 case Intrinsic::x86_avx512_psll_d_512:
2564 case Intrinsic::x86_avx512_psll_q_512:
2565 case Intrinsic::x86_avx512_psll_w_512: {
2566 if (Value *V = simplifyX86immShift(II, IC.Builder)) {
2567 return IC.replaceInstUsesWith(II, V);
2568 }
2569
2570 // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2571 // operand to compute the shift amount.
2572 Value *Arg1 = II.getArgOperand(1);
2573 assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2574 "Unexpected packed shift size");
2575 unsigned VWidth = cast<FixedVectorType>(Arg1->getType())->getNumElements();
2576
2577 if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2578 return IC.replaceOperand(II, 1, V);
2579 }
2580 break;
2581 }
2582
2583 case Intrinsic::x86_avx2_psllv_d:
2584 case Intrinsic::x86_avx2_psllv_d_256:
2585 case Intrinsic::x86_avx2_psllv_q:
2586 case Intrinsic::x86_avx2_psllv_q_256:
2587 case Intrinsic::x86_avx512_psllv_d_512:
2588 case Intrinsic::x86_avx512_psllv_q_512:
2589 case Intrinsic::x86_avx512_psllv_w_128:
2590 case Intrinsic::x86_avx512_psllv_w_256:
2591 case Intrinsic::x86_avx512_psllv_w_512:
2592 case Intrinsic::x86_avx2_psrav_d:
2593 case Intrinsic::x86_avx2_psrav_d_256:
2594 case Intrinsic::x86_avx512_psrav_q_128:
2595 case Intrinsic::x86_avx512_psrav_q_256:
2596 case Intrinsic::x86_avx512_psrav_d_512:
2597 case Intrinsic::x86_avx512_psrav_q_512:
2598 case Intrinsic::x86_avx512_psrav_w_128:
2599 case Intrinsic::x86_avx512_psrav_w_256:
2600 case Intrinsic::x86_avx512_psrav_w_512:
2601 case Intrinsic::x86_avx2_psrlv_d:
2602 case Intrinsic::x86_avx2_psrlv_d_256:
2603 case Intrinsic::x86_avx2_psrlv_q:
2604 case Intrinsic::x86_avx2_psrlv_q_256:
2605 case Intrinsic::x86_avx512_psrlv_d_512:
2606 case Intrinsic::x86_avx512_psrlv_q_512:
2607 case Intrinsic::x86_avx512_psrlv_w_128:
2608 case Intrinsic::x86_avx512_psrlv_w_256:
2609 case Intrinsic::x86_avx512_psrlv_w_512:
2610 if (Value *V = simplifyX86varShift(II, IC.Builder)) {
2611 return IC.replaceInstUsesWith(II, V);
2612 }
2613 break;
2614
2615 case Intrinsic::x86_sse2_packssdw_128:
2616 case Intrinsic::x86_sse2_packsswb_128:
2617 case Intrinsic::x86_avx2_packssdw:
2618 case Intrinsic::x86_avx2_packsswb:
2619 case Intrinsic::x86_avx512_packssdw_512:
2620 case Intrinsic::x86_avx512_packsswb_512:
2621 if (Value *V = simplifyX86pack(II, IC.Builder, true)) {
2622 return IC.replaceInstUsesWith(II, V);
2623 }
2624 break;
2625
2626 case Intrinsic::x86_sse2_packuswb_128:
2627 case Intrinsic::x86_sse41_packusdw:
2628 case Intrinsic::x86_avx2_packusdw:
2629 case Intrinsic::x86_avx2_packuswb:
2630 case Intrinsic::x86_avx512_packusdw_512:
2631 case Intrinsic::x86_avx512_packuswb_512:
2632 if (Value *V = simplifyX86pack(II, IC.Builder, false)) {
2633 return IC.replaceInstUsesWith(II, V);
2634 }
2635 break;
2636
2637 case Intrinsic::x86_sse2_pmulh_w:
2638 case Intrinsic::x86_avx2_pmulh_w:
2639 case Intrinsic::x86_avx512_pmulh_w_512:
2640 if (Value *V = simplifyX86pmulh(II, IC.Builder, true, false)) {
2641 return IC.replaceInstUsesWith(II, V);
2642 }
2643 break;
2644
2645 case Intrinsic::x86_sse2_pmulhu_w:
2646 case Intrinsic::x86_avx2_pmulhu_w:
2647 case Intrinsic::x86_avx512_pmulhu_w_512:
2648 if (Value *V = simplifyX86pmulh(II, IC.Builder, false, false)) {
2649 return IC.replaceInstUsesWith(II, V);
2650 }
2651 break;
2652
2653 case Intrinsic::x86_ssse3_pmul_hr_sw_128:
2654 case Intrinsic::x86_avx2_pmul_hr_sw:
2655 case Intrinsic::x86_avx512_pmul_hr_sw_512:
2656 if (Value *V = simplifyX86pmulh(II, IC.Builder, true, true)) {
2657 return IC.replaceInstUsesWith(II, V);
2658 }
2659 break;
2660
2661 case Intrinsic::x86_sse2_pmadd_wd:
2662 case Intrinsic::x86_avx2_pmadd_wd:
2663 case Intrinsic::x86_avx512_pmaddw_d_512:
2664 if (Value *V = simplifyX86pmadd(II, IC.Builder, true)) {
2665 return IC.replaceInstUsesWith(II, V);
2666 }
2667 break;
2668
2669 case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2670 case Intrinsic::x86_avx2_pmadd_ub_sw:
2671 case Intrinsic::x86_avx512_pmaddubs_w_512:
2672 if (Value *V = simplifyX86pmadd(II, IC.Builder, false)) {
2673 return IC.replaceInstUsesWith(II, V);
2674 }
2675 break;
2676
2677 case Intrinsic::x86_pclmulqdq:
2678 case Intrinsic::x86_pclmulqdq_256:
2679 case Intrinsic::x86_pclmulqdq_512: {
2680 if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
2681 unsigned Imm = C->getZExtValue();
2682
2683 bool MadeChange = false;
2684 Value *Arg0 = II.getArgOperand(0);
2685 Value *Arg1 = II.getArgOperand(1);
2686 unsigned VWidth =
2687 cast<FixedVectorType>(Arg0->getType())->getNumElements();
2688
2689 APInt UndefElts1(VWidth, 0);
2690 APInt DemandedElts1 =
2691 APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1));
2692 if (Value *V =
2693 IC.SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) {
2694 IC.replaceOperand(II, 0, V);
2695 MadeChange = true;
2696 }
2697
2698 APInt UndefElts2(VWidth, 0);
2699 APInt DemandedElts2 =
2700 APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1));
2701 if (Value *V =
2702 IC.SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) {
2703 IC.replaceOperand(II, 1, V);
2704 MadeChange = true;
2705 }
2706
2707 // If either input elements are undef, the result is zero.
2708 if (DemandedElts1.isSubsetOf(UndefElts1) ||
2709 DemandedElts2.isSubsetOf(UndefElts2)) {
2710 return IC.replaceInstUsesWith(II,
2711 ConstantAggregateZero::get(II.getType()));
2712 }
2713
2714 if (MadeChange) {
2715 return &II;
2716 }
2717 }
2718 break;
2719 }
2720
2721 case Intrinsic::x86_sse41_insertps:
2722 if (Value *V = simplifyX86insertps(II, IC.Builder)) {
2723 return IC.replaceInstUsesWith(II, V);
2724 }
2725 break;
2726
2727 case Intrinsic::x86_sse4a_extrq: {
2728 Value *Op0 = II.getArgOperand(0);
2729 Value *Op1 = II.getArgOperand(1);
2730 unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
2731 unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
2732 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2733 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2734 VWidth1 == 16 && "Unexpected operand sizes");
2735
2736 // See if we're dealing with constant values.
2737 auto *C1 = dyn_cast<Constant>(Op1);
2738 auto *CILength =
2739 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2740 : nullptr;
2741 auto *CIIndex =
2742 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2743 : nullptr;
2744
2745 // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2746 if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
2747 return IC.replaceInstUsesWith(II, V);
2748 }
2749
2750 // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2751 // operands and the lowest 16-bits of the second.
2752 bool MadeChange = false;
2753 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2754 IC.replaceOperand(II, 0, V);
2755 MadeChange = true;
2756 }
2757 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2758 IC.replaceOperand(II, 1, V);
2759 MadeChange = true;
2760 }
2761 if (MadeChange) {
2762 return &II;
2763 }
2764 break;
2765 }
2766
2767 case Intrinsic::x86_sse4a_extrqi: {
2768 // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2769 // bits of the lower 64-bits. The upper 64-bits are undefined.
2770 Value *Op0 = II.getArgOperand(0);
2771 unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
2772 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2773 "Unexpected operand size");
2774
2775 // See if we're dealing with constant values.
2776 auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(1));
2777 auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(2));
2778
2779 // Attempt to simplify to a constant or shuffle vector.
2780 if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
2781 return IC.replaceInstUsesWith(II, V);
2782 }
2783
2784 // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2785 // operand.
2786 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2787 return IC.replaceOperand(II, 0, V);
2788 }
2789 break;
2790 }
2791
2792 case Intrinsic::x86_sse4a_insertq: {
2793 Value *Op0 = II.getArgOperand(0);
2794 Value *Op1 = II.getArgOperand(1);
2795 unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
2796 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2797 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2798 cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 &&
2799 "Unexpected operand size");
2800
2801 // See if we're dealing with constant values.
2802 auto *C1 = dyn_cast<Constant>(Op1);
2803 auto *CI11 =
2804 C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2805 : nullptr;
2806
2807 // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2808 if (CI11) {
2809 const APInt &V11 = CI11->getValue();
2810 APInt Len = V11.zextOrTrunc(6);
2811 APInt Idx = V11.lshr(8).zextOrTrunc(6);
2812 if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
2813 return IC.replaceInstUsesWith(II, V);
2814 }
2815 }
2816
2817 // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2818 // operand.
2819 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2820 return IC.replaceOperand(II, 0, V);
2821 }
2822 break;
2823 }
2824
2825 case Intrinsic::x86_sse4a_insertqi: {
2826 // INSERTQI: Extract lowest Length bits from lower half of second source and
2827 // insert over first source starting at Index bit. The upper 64-bits are
2828 // undefined.
2829 Value *Op0 = II.getArgOperand(0);
2830 Value *Op1 = II.getArgOperand(1);
2831 unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
2832 unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
2833 assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2834 Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2835 VWidth1 == 2 && "Unexpected operand sizes");
2836
2837 // See if we're dealing with constant values.
2838 auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(2));
2839 auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(3));
2840
2841 // Attempt to simplify to a constant or shuffle vector.
2842 if (CILength && CIIndex) {
2843 APInt Len = CILength->getValue().zextOrTrunc(6);
2844 APInt Idx = CIIndex->getValue().zextOrTrunc(6);
2845 if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
2846 return IC.replaceInstUsesWith(II, V);
2847 }
2848 }
2849
2850 // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2851 // operands.
2852 bool MadeChange = false;
2853 if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2854 IC.replaceOperand(II, 0, V);
2855 MadeChange = true;
2856 }
2857 if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2858 IC.replaceOperand(II, 1, V);
2859 MadeChange = true;
2860 }
2861 if (MadeChange) {
2862 return &II;
2863 }
2864 break;
2865 }
2866
2867 case Intrinsic::x86_sse41_pblendvb:
2868 case Intrinsic::x86_sse41_blendvps:
2869 case Intrinsic::x86_sse41_blendvpd:
2870 case Intrinsic::x86_avx_blendv_ps_256:
2871 case Intrinsic::x86_avx_blendv_pd_256:
2872 case Intrinsic::x86_avx2_pblendvb: {
2873 // fold (blend A, A, Mask) -> A
2874 Value *Op0 = II.getArgOperand(0);
2875 Value *Op1 = II.getArgOperand(1);
2876 Value *Mask = II.getArgOperand(2);
2877 if (Op0 == Op1) {
2878 return IC.replaceInstUsesWith(II, Op0);
2879 }
2880
2881 // Zero Mask - select 1st argument.
2882 if (isa<ConstantAggregateZero>(Mask)) {
2883 return IC.replaceInstUsesWith(II, Op0);
2884 }
2885
2886 // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
2887 if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2888 Constant *NewSelector =
2889 getNegativeIsTrueBoolVec(ConstantMask, IC.getDataLayout());
2890 return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
2891 }
2892
2894
2895 // Peek through a one-use shuffle - VectorCombine should have simplified
2896 // this for cases where we're splitting wider vectors to use blendv
2897 // intrinsics.
2898 Value *MaskSrc = nullptr;
2899 ArrayRef<int> ShuffleMask;
2900 if (match(Mask, m_OneUse(m_Shuffle(m_Value(MaskSrc), m_Undef(),
2901 m_Mask(ShuffleMask))))) {
2902 // Bail if the shuffle was irregular or contains undefs.
2903 int NumElts = cast<FixedVectorType>(MaskSrc->getType())->getNumElements();
2904 if (NumElts < (int)ShuffleMask.size() || !isPowerOf2_32(NumElts) ||
2905 any_of(ShuffleMask,
2906 [NumElts](int M) { return M < 0 || M >= NumElts; }))
2907 break;
2908 Mask = InstCombiner::peekThroughBitcast(MaskSrc);
2909 }
2910
2911 // Convert to a vector select if we can bypass casts and find a boolean
2912 // vector condition value.
2913 Value *BoolVec;
2914 if (match(Mask, m_SExt(m_Value(BoolVec))) &&
2915 BoolVec->getType()->isVectorTy() &&
2916 BoolVec->getType()->getScalarSizeInBits() == 1) {
2917 auto *MaskTy = cast<FixedVectorType>(Mask->getType());
2918 auto *OpTy = cast<FixedVectorType>(II.getType());
2919 unsigned NumMaskElts = MaskTy->getNumElements();
2920 unsigned NumOperandElts = OpTy->getNumElements();
2921
2922 // If we peeked through a shuffle, reapply the shuffle to the bool vector.
2923 if (MaskSrc) {
2924 unsigned NumMaskSrcElts =
2925 cast<FixedVectorType>(MaskSrc->getType())->getNumElements();
2926 NumMaskElts = (ShuffleMask.size() * NumMaskElts) / NumMaskSrcElts;
2927 // Multiple mask bits maps to the same operand element - bail out.
2928 if (NumMaskElts > NumOperandElts)
2929 break;
2930 SmallVector<int> ScaledMask;
2931 if (!llvm::scaleShuffleMaskElts(NumMaskElts, ShuffleMask, ScaledMask))
2932 break;
2933 BoolVec = IC.Builder.CreateShuffleVector(BoolVec, ScaledMask);
2934 MaskTy = FixedVectorType::get(MaskTy->getElementType(), NumMaskElts);
2935 }
2936 assert(MaskTy->getPrimitiveSizeInBits() ==
2937 OpTy->getPrimitiveSizeInBits() &&
2938 "Not expecting mask and operands with different sizes");
2939
2940 if (NumMaskElts == NumOperandElts) {
2941 return SelectInst::Create(BoolVec, Op1, Op0);
2942 }
2943
2944 // If the mask has less elements than the operands, each mask bit maps to
2945 // multiple elements of the operands. Bitcast back and forth.
2946 if (NumMaskElts < NumOperandElts) {
2947 Value *CastOp0 = IC.Builder.CreateBitCast(Op0, MaskTy);
2948 Value *CastOp1 = IC.Builder.CreateBitCast(Op1, MaskTy);
2949 Value *Sel = IC.Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
2950 return new BitCastInst(Sel, II.getType());
2951 }
2952 }
2953
2954 break;
2955 }
2956
2957 case Intrinsic::x86_ssse3_pshuf_b_128:
2958 case Intrinsic::x86_avx2_pshuf_b:
2959 case Intrinsic::x86_avx512_pshuf_b_512: {
2960 if (Value *V = simplifyX86pshufb(II, IC.Builder)) {
2961 return IC.replaceInstUsesWith(II, V);
2962 }
2963
2964 KnownBits KnownMask(8);
2965 if (IC.SimplifyDemandedBits(&II, 1, APInt(8, 0b10001111), KnownMask))
2966 return &II;
2967 break;
2968 }
2969
2970 case Intrinsic::x86_avx_vpermilvar_ps:
2971 case Intrinsic::x86_avx_vpermilvar_ps_256:
2972 case Intrinsic::x86_avx512_vpermilvar_ps_512: {
2973 if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) {
2974 return IC.replaceInstUsesWith(II, V);
2975 }
2976
2977 KnownBits KnownMask(32);
2978 if (IC.SimplifyDemandedBits(&II, 1, APInt(32, 0b00011), KnownMask))
2979 return &II;
2980 break;
2981 }
2982
2983 case Intrinsic::x86_avx_vpermilvar_pd:
2984 case Intrinsic::x86_avx_vpermilvar_pd_256:
2985 case Intrinsic::x86_avx512_vpermilvar_pd_512: {
2986 if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) {
2987 return IC.replaceInstUsesWith(II, V);
2988 }
2989
2990 KnownBits KnownMask(64);
2991 if (IC.SimplifyDemandedBits(&II, 1, APInt(64, 0b00010), KnownMask))
2992 return &II;
2993 break;
2994 }
2995
2996 case Intrinsic::x86_avx2_permd:
2997 case Intrinsic::x86_avx2_permps:
2998 case Intrinsic::x86_avx512_permvar_df_256:
2999 case Intrinsic::x86_avx512_permvar_df_512:
3000 case Intrinsic::x86_avx512_permvar_di_256:
3001 case Intrinsic::x86_avx512_permvar_di_512:
3002 case Intrinsic::x86_avx512_permvar_hi_128:
3003 case Intrinsic::x86_avx512_permvar_hi_256:
3004 case Intrinsic::x86_avx512_permvar_hi_512:
3005 case Intrinsic::x86_avx512_permvar_qi_128:
3006 case Intrinsic::x86_avx512_permvar_qi_256:
3007 case Intrinsic::x86_avx512_permvar_qi_512:
3008 case Intrinsic::x86_avx512_permvar_sf_512:
3009 case Intrinsic::x86_avx512_permvar_si_512:
3010 if (Value *V = simplifyX86vpermv(II, IC.Builder)) {
3011 return IC.replaceInstUsesWith(II, V);
3012 }
3013 if (simplifyX86VPERMMask(&II, /*IsBinary=*/false, IC))
3014 return &II;
3015 break;
3016
3017 case Intrinsic::x86_avx512_vpermi2var_d_128:
3018 case Intrinsic::x86_avx512_vpermi2var_d_256:
3019 case Intrinsic::x86_avx512_vpermi2var_d_512:
3020 case Intrinsic::x86_avx512_vpermi2var_hi_128:
3021 case Intrinsic::x86_avx512_vpermi2var_hi_256:
3022 case Intrinsic::x86_avx512_vpermi2var_hi_512:
3023 case Intrinsic::x86_avx512_vpermi2var_pd_128:
3024 case Intrinsic::x86_avx512_vpermi2var_pd_256:
3025 case Intrinsic::x86_avx512_vpermi2var_pd_512:
3026 case Intrinsic::x86_avx512_vpermi2var_ps_128:
3027 case Intrinsic::x86_avx512_vpermi2var_ps_256:
3028 case Intrinsic::x86_avx512_vpermi2var_ps_512:
3029 case Intrinsic::x86_avx512_vpermi2var_q_128:
3030 case Intrinsic::x86_avx512_vpermi2var_q_256:
3031 case Intrinsic::x86_avx512_vpermi2var_q_512:
3032 case Intrinsic::x86_avx512_vpermi2var_qi_128:
3033 case Intrinsic::x86_avx512_vpermi2var_qi_256:
3034 case Intrinsic::x86_avx512_vpermi2var_qi_512:
3035 if (Value *V = simplifyX86vpermv3(II, IC.Builder)) {
3036 return IC.replaceInstUsesWith(II, V);
3037 }
3038 if (simplifyX86VPERMMask(&II, /*IsBinary=*/true, IC))
3039 return &II;
3040 break;
3041
3042 case Intrinsic::x86_avx_maskload_ps:
3043 case Intrinsic::x86_avx_maskload_pd:
3044 case Intrinsic::x86_avx_maskload_ps_256:
3045 case Intrinsic::x86_avx_maskload_pd_256:
3046 case Intrinsic::x86_avx2_maskload_d:
3047 case Intrinsic::x86_avx2_maskload_q:
3048 case Intrinsic::x86_avx2_maskload_d_256:
3049 case Intrinsic::x86_avx2_maskload_q_256:
3050 if (Instruction *I = simplifyX86MaskedLoad(II, IC)) {
3051 return I;
3052 }
3053 break;
3054
3055 case Intrinsic::x86_sse2_maskmov_dqu:
3056 case Intrinsic::x86_avx_maskstore_ps:
3057 case Intrinsic::x86_avx_maskstore_pd:
3058 case Intrinsic::x86_avx_maskstore_ps_256:
3059 case Intrinsic::x86_avx_maskstore_pd_256:
3060 case Intrinsic::x86_avx2_maskstore_d:
3061 case Intrinsic::x86_avx2_maskstore_q:
3062 case Intrinsic::x86_avx2_maskstore_d_256:
3063 case Intrinsic::x86_avx2_maskstore_q_256:
3064 if (simplifyX86MaskedStore(II, IC)) {
3065 return nullptr;
3066 }
3067 break;
3068
3069 case Intrinsic::x86_addcarry_32:
3070 case Intrinsic::x86_addcarry_64:
3071 if (Value *V = simplifyX86addcarry(II, IC.Builder)) {
3072 return IC.replaceInstUsesWith(II, V);
3073 }
3074 break;
3075
3076 case Intrinsic::x86_avx512_pternlog_d_128:
3077 case Intrinsic::x86_avx512_pternlog_d_256:
3078 case Intrinsic::x86_avx512_pternlog_d_512:
3079 case Intrinsic::x86_avx512_pternlog_q_128:
3080 case Intrinsic::x86_avx512_pternlog_q_256:
3081 case Intrinsic::x86_avx512_pternlog_q_512:
3082 if (Value *V = simplifyTernarylogic(II, IC.Builder)) {
3083 return IC.replaceInstUsesWith(II, V);
3084 }
3085 break;
3086 default:
3087 break;
3088 }
3089 return std::nullopt;
3090}
3091
3093 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
3094 bool &KnownBitsComputed) const {
3095 switch (II.getIntrinsicID()) {
3096 default:
3097 break;
3098 case Intrinsic::x86_mmx_pmovmskb:
3099 case Intrinsic::x86_sse_movmsk_ps:
3100 case Intrinsic::x86_sse2_movmsk_pd:
3101 case Intrinsic::x86_sse2_pmovmskb_128:
3102 case Intrinsic::x86_avx_movmsk_ps_256:
3103 case Intrinsic::x86_avx_movmsk_pd_256:
3104 case Intrinsic::x86_avx2_pmovmskb: {
3105 // MOVMSK copies the vector elements' sign bits to the low bits
3106 // and zeros the high bits.
3107 unsigned ArgWidth;
3108 if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
3109 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
3110 } else {
3111 auto *ArgType = cast<FixedVectorType>(II.getArgOperand(0)->getType());
3112 ArgWidth = ArgType->getNumElements();
3113 }
3114
3115 // If we don't need any of low bits then return zero,
3116 // we know that DemandedMask is non-zero already.
3117 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
3118 Type *VTy = II.getType();
3119 if (DemandedElts.isZero()) {
3120 return ConstantInt::getNullValue(VTy);
3121 }
3122
3123 // We know that the upper bits are set to zero.
3124 Known.Zero.setBitsFrom(ArgWidth);
3125 KnownBitsComputed = true;
3126 break;
3127 }
3128 }
3129 return std::nullopt;
3130}
3131
3133 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
3134 APInt &UndefElts2, APInt &UndefElts3,
3135 std::function<void(Instruction *, unsigned, APInt, APInt &)>
3136 simplifyAndSetOp) const {
3137 unsigned VWidth = cast<FixedVectorType>(II.getType())->getNumElements();
3138 switch (II.getIntrinsicID()) {
3139 default:
3140 break;
3141 case Intrinsic::x86_xop_vfrcz_ss:
3142 case Intrinsic::x86_xop_vfrcz_sd:
3143 // The instructions for these intrinsics are speced to zero upper bits not
3144 // pass them through like other scalar intrinsics. So we shouldn't just
3145 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
3146 // Instead we should return a zero vector.
3147 if (!DemandedElts[0]) {
3148 IC.addToWorklist(&II);
3149 return ConstantAggregateZero::get(II.getType());
3150 }
3151
3152 // Only the lower element is used.
3153 DemandedElts = 1;
3154 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3155
3156 // Only the lower element is undefined. The high elements are zero.
3157 UndefElts = UndefElts[0];
3158 break;
3159
3160 // Unary scalar-as-vector operations that work column-wise.
3161 case Intrinsic::x86_sse_rcp_ss:
3162 case Intrinsic::x86_sse_rsqrt_ss:
3163 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3164
3165 // If lowest element of a scalar op isn't used then use Arg0.
3166 if (!DemandedElts[0]) {
3167 IC.addToWorklist(&II);
3168 return II.getArgOperand(0);
3169 }
3170 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
3171 // checks).
3172 break;
3173
3174 // Binary scalar-as-vector operations that work column-wise. The high
3175 // elements come from operand 0. The low element is a function of both
3176 // operands.
3177 case Intrinsic::x86_sse_min_ss:
3178 case Intrinsic::x86_sse_max_ss:
3179 case Intrinsic::x86_sse_cmp_ss:
3180 case Intrinsic::x86_sse2_min_sd:
3181 case Intrinsic::x86_sse2_max_sd:
3182 case Intrinsic::x86_sse2_cmp_sd: {
3183 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3184
3185 // If lowest element of a scalar op isn't used then use Arg0.
3186 if (!DemandedElts[0]) {
3187 IC.addToWorklist(&II);
3188 return II.getArgOperand(0);
3189 }
3190
3191 // Only lower element is used for operand 1.
3192 DemandedElts = 1;
3193 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3194
3195 // Lower element is undefined if both lower elements are undefined.
3196 // Consider things like undef&0. The result is known zero, not undef.
3197 if (!UndefElts2[0])
3198 UndefElts.clearBit(0);
3199
3200 break;
3201 }
3202
3203 // Binary scalar-as-vector operations that work column-wise. The high
3204 // elements come from operand 0 and the low element comes from operand 1.
3205 case Intrinsic::x86_sse41_round_ss:
3206 case Intrinsic::x86_sse41_round_sd: {
3207 // Don't use the low element of operand 0.
3208 APInt DemandedElts2 = DemandedElts;
3209 DemandedElts2.clearBit(0);
3210 simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts);
3211
3212 // If lowest element of a scalar op isn't used then use Arg0.
3213 if (!DemandedElts[0]) {
3214 IC.addToWorklist(&II);
3215 return II.getArgOperand(0);
3216 }
3217
3218 // Only lower element is used for operand 1.
3219 DemandedElts = 1;
3220 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3221
3222 // Take the high undef elements from operand 0 and take the lower element
3223 // from operand 1.
3224 UndefElts.clearBit(0);
3225 UndefElts |= UndefElts2[0];
3226 break;
3227 }
3228
3229 // Three input scalar-as-vector operations that work column-wise. The high
3230 // elements come from operand 0 and the low element is a function of all
3231 // three inputs.
3232 case Intrinsic::x86_avx512_mask_add_ss_round:
3233 case Intrinsic::x86_avx512_mask_div_ss_round:
3234 case Intrinsic::x86_avx512_mask_mul_ss_round:
3235 case Intrinsic::x86_avx512_mask_sub_ss_round:
3236 case Intrinsic::x86_avx512_mask_max_ss_round:
3237 case Intrinsic::x86_avx512_mask_min_ss_round:
3238 case Intrinsic::x86_avx512_mask_add_sd_round:
3239 case Intrinsic::x86_avx512_mask_div_sd_round:
3240 case Intrinsic::x86_avx512_mask_mul_sd_round:
3241 case Intrinsic::x86_avx512_mask_sub_sd_round:
3242 case Intrinsic::x86_avx512_mask_max_sd_round:
3243 case Intrinsic::x86_avx512_mask_min_sd_round:
3244 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3245
3246 // If lowest element of a scalar op isn't used then use Arg0.
3247 if (!DemandedElts[0]) {
3248 IC.addToWorklist(&II);
3249 return II.getArgOperand(0);
3250 }
3251
3252 // Only lower element is used for operand 1 and 2.
3253 DemandedElts = 1;
3254 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3255 simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3);
3256
3257 // Lower element is undefined if all three lower elements are undefined.
3258 // Consider things like undef&0. The result is known zero, not undef.
3259 if (!UndefElts2[0] || !UndefElts3[0])
3260 UndefElts.clearBit(0);
3261 break;
3262
3263 // TODO: Add fmaddsub support?
3264 case Intrinsic::x86_sse3_addsub_pd:
3265 case Intrinsic::x86_sse3_addsub_ps:
3266 case Intrinsic::x86_avx_addsub_pd_256:
3267 case Intrinsic::x86_avx_addsub_ps_256: {
3268 // If none of the even or none of the odd lanes are required, turn this
3269 // into a generic FP math instruction.
3270 APInt SubMask = APInt::getSplat(VWidth, APInt(2, 0x1));
3271 APInt AddMask = APInt::getSplat(VWidth, APInt(2, 0x2));
3272 bool IsSubOnly = DemandedElts.isSubsetOf(SubMask);
3273 bool IsAddOnly = DemandedElts.isSubsetOf(AddMask);
3274 if (IsSubOnly || IsAddOnly) {
3275 assert((IsSubOnly ^ IsAddOnly) && "Can't be both add-only and sub-only");
3278 Value *Arg0 = II.getArgOperand(0), *Arg1 = II.getArgOperand(1);
3279 return IC.Builder.CreateBinOp(
3280 IsSubOnly ? Instruction::FSub : Instruction::FAdd, Arg0, Arg1);
3281 }
3282
3283 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3284 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3285 UndefElts &= UndefElts2;
3286 break;
3287 }
3288
3289 // General per-element vector operations.
3290 case Intrinsic::x86_avx2_psllv_d:
3291 case Intrinsic::x86_avx2_psllv_d_256:
3292 case Intrinsic::x86_avx2_psllv_q:
3293 case Intrinsic::x86_avx2_psllv_q_256:
3294 case Intrinsic::x86_avx2_psrlv_d:
3295 case Intrinsic::x86_avx2_psrlv_d_256:
3296 case Intrinsic::x86_avx2_psrlv_q:
3297 case Intrinsic::x86_avx2_psrlv_q_256:
3298 case Intrinsic::x86_avx2_psrav_d:
3299 case Intrinsic::x86_avx2_psrav_d_256: {
3300 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3301 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3302 UndefElts &= UndefElts2;
3303 break;
3304 }
3305
3306 case Intrinsic::x86_sse2_pmulh_w:
3307 case Intrinsic::x86_avx2_pmulh_w:
3308 case Intrinsic::x86_avx512_pmulh_w_512:
3309 case Intrinsic::x86_sse2_pmulhu_w:
3310 case Intrinsic::x86_avx2_pmulhu_w:
3311 case Intrinsic::x86_avx512_pmulhu_w_512:
3312 case Intrinsic::x86_ssse3_pmul_hr_sw_128:
3313 case Intrinsic::x86_avx2_pmul_hr_sw:
3314 case Intrinsic::x86_avx512_pmul_hr_sw_512: {
3315 simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
3316 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
3317 // NOTE: mulh(undef,undef) != undef.
3318 break;
3319 }
3320
3321 case Intrinsic::x86_sse2_packssdw_128:
3322 case Intrinsic::x86_sse2_packsswb_128:
3323 case Intrinsic::x86_sse2_packuswb_128:
3324 case Intrinsic::x86_sse41_packusdw:
3325 case Intrinsic::x86_avx2_packssdw:
3326 case Intrinsic::x86_avx2_packsswb:
3327 case Intrinsic::x86_avx2_packusdw:
3328 case Intrinsic::x86_avx2_packuswb:
3329 case Intrinsic::x86_avx512_packssdw_512:
3330 case Intrinsic::x86_avx512_packsswb_512:
3331 case Intrinsic::x86_avx512_packusdw_512:
3332 case Intrinsic::x86_avx512_packuswb_512: {
3333 auto *Ty0 = II.getArgOperand(0)->getType();
3334 unsigned InnerVWidth = cast<FixedVectorType>(Ty0)->getNumElements();
3335 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
3336
3337 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
3338 unsigned VWidthPerLane = VWidth / NumLanes;
3339 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
3340
3341 // Per lane, pack the elements of the first input and then the second.
3342 // e.g.
3343 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
3344 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
3345 for (int OpNum = 0; OpNum != 2; ++OpNum) {
3346 APInt OpDemandedElts(InnerVWidth, 0);
3347 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
3348 unsigned LaneIdx = Lane * VWidthPerLane;
3349 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
3350 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
3351 if (DemandedElts[Idx])
3352 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
3353 }
3354 }
3355
3356 // Demand elements from the operand.
3357 APInt OpUndefElts(InnerVWidth, 0);
3358 simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts);
3359
3360 // Pack the operand's UNDEF elements, one lane at a time.
3361 OpUndefElts = OpUndefElts.zext(VWidth);
3362 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
3363 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
3364 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
3365 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
3366 UndefElts |= LaneElts;
3367 }
3368 }
3369 break;
3370 }
3371
3372 case Intrinsic::x86_sse2_pmadd_wd:
3373 case Intrinsic::x86_avx2_pmadd_wd:
3374 case Intrinsic::x86_avx512_pmaddw_d_512:
3375 case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
3376 case Intrinsic::x86_avx2_pmadd_ub_sw:
3377 case Intrinsic::x86_avx512_pmaddubs_w_512: {
3378 // PMADD - demand both src elements that map to each dst element.
3379 auto *ArgTy = II.getArgOperand(0)->getType();
3380 unsigned InnerVWidth = cast<FixedVectorType>(ArgTy)->getNumElements();
3381 assert((VWidth * 2) == InnerVWidth && "Unexpected input size");
3382 APInt OpDemandedElts = APIntOps::ScaleBitMask(DemandedElts, InnerVWidth);
3383 APInt Op0UndefElts(InnerVWidth, 0);
3384 APInt Op1UndefElts(InnerVWidth, 0);
3385 simplifyAndSetOp(&II, 0, OpDemandedElts, Op0UndefElts);
3386 simplifyAndSetOp(&II, 1, OpDemandedElts, Op1UndefElts);
3387 // NOTE: madd(undef,undef) != undef.
3388 break;
3389 }
3390
3391 // PSHUFB
3392 case Intrinsic::x86_ssse3_pshuf_b_128:
3393 case Intrinsic::x86_avx2_pshuf_b:
3394 case Intrinsic::x86_avx512_pshuf_b_512:
3395 // PERMILVAR
3396 case Intrinsic::x86_avx_vpermilvar_ps:
3397 case Intrinsic::x86_avx_vpermilvar_ps_256:
3398 case Intrinsic::x86_avx512_vpermilvar_ps_512:
3399 case Intrinsic::x86_avx_vpermilvar_pd:
3400 case Intrinsic::x86_avx_vpermilvar_pd_256:
3401 case Intrinsic::x86_avx512_vpermilvar_pd_512:
3402 // PERMV
3403 case Intrinsic::x86_avx2_permd:
3404 case Intrinsic::x86_avx2_permps: {
3405 simplifyAndSetOp(&II, 1, DemandedElts, UndefElts);
3406 break;
3407 }
3408
3409 // SSE4A instructions leave the upper 64-bits of the 128-bit result
3410 // in an undefined state.
3411 case Intrinsic::x86_sse4a_extrq:
3412 case Intrinsic::x86_sse4a_extrqi:
3413 case Intrinsic::x86_sse4a_insertq:
3414 case Intrinsic::x86_sse4a_insertqi:
3415 UndefElts.setHighBits(VWidth / 2);
3416 break;
3417 }
3418 return std::nullopt;
3419}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
This file provides the interface for the instcombine pass implementation.
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
static Value * simplifyTernarylogic(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
static Instruction * simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC)
static Value * simplifyX86immShift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
static Value * simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1, APInt APLength, APInt APIndex, InstCombiner::BuilderTy &Builder)
Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant folding or conversion to a shu...
static Value * simplifyX86addcarry(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
static Value * simplifyX86pack(IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool IsSigned)
static Constant * getNegativeIsTrueBoolVec(Constant *V, const DataLayout &DL)
Return a constant boolean vector that has true elements in all positions where the input constant dat...
static Value * simplifyX86pshufb(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Attempt to convert pshufb* to shufflevector if the mask is constant.
static Value * simplifyX86vpermv3(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Attempt to convert vpermi2/vpermt2 to shufflevector if the mask is constant.
static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC)
static Value * simplifyX86vpermilvar(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Attempt to convert vpermilvar* to shufflevector if the mask is constant.
static Value * simplifyX86pmulh(IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool IsSigned, bool IsRounding)
static Value * simplifyX86movmsk(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
static Value * simplifyX86vpermv(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
static Value * simplifyX86pmadd(IntrinsicInst &II, InstCombiner::BuilderTy &Builder, bool IsPMADDWD)
static Value * simplifyX86insertps(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
static bool simplifyX86VPERMMask(Instruction *II, bool IsBinary, InstCombiner &IC)
static Value * simplifyX86extrq(IntrinsicInst &II, Value *Op0, ConstantInt *CILength, ConstantInt *CIIndex, InstCombiner::BuilderTy &Builder)
Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding or conversion to a shuffle...
static Value * getBoolVecFromMask(Value *Mask, const DataLayout &DL)
Convert the x86 XMM integer vector mask to a vector of bools based on each element's most significant...
static Value * simplifyX86varShift(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Value * RHS
Value * LHS
BinaryOperator * Mul
This file a TargetTransformInfo::Concept conforming object specific to the X86 target machine.
support::ulittle16_t & Lo
Definition: aarch32.cpp:204
support::ulittle16_t & Hi
Definition: aarch32.cpp:203
Class for arbitrary precision integers.
Definition: APInt.h:78
APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition: APInt.cpp:617
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition: APInt.h:1407
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:986
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition: APInt.h:1392
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition: APInt.h:1386
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:1007
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1330
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition: APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:209
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.cpp:624
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:219
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:959
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:873
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition: APInt.h:1257
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:306
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:200
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:239
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:858
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1221
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
This class represents a no-op cast from one type to another.
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:700
All zero aggregate value.
Definition: Constants.h:353
static ConstantAggregateZero * get(Type *Ty)
Definition: Constants.cpp:1672
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2321
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:148
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1421
This is an important base class in LLVM.
Definition: Constant.h:42
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
Definition: Constants.cpp:403
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:420
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
static FixedVectorType * getExtendedElementVectorType(FixedVectorType *VTy)
Definition: DerivedTypes.h:579
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:791
Value * CreateFSub(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1595
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2511
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Definition: IRBuilder.h:530
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2562
Value * CreateFDiv(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1633
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2499
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Definition: IRBuilder.h:558
Value * CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2294
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2051
Value * CreateFAdd(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1576
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1163
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2555
CallInst * CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Load intrinsic.
Definition: IRBuilder.cpp:546
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1053
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1480
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr, FMFSource FMFSource={})
Definition: IRBuilder.h:2186
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:900
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1757
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Definition: IRBuilder.h:2593
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2152
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1459
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2033
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:2533
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1518
CallInst * CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment, Value *Mask)
Create a call to Masked Store intrinsic.
Definition: IRBuilder.cpp:566
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1370
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2019
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1540
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1671
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2302
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:199
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1499
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1562
Value * CreateFMul(Value *L, Value *R, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1614
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:535
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1404
The core instruction combiner logic.
Definition: InstCombiner.h:48
const DataLayout & getDataLayout() const
Definition: InstCombiner.h:337
virtual Instruction * eraseInstFromFunction(Instruction &I)=0
Combiner aware instruction erasure.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:388
virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, const SimplifyQuery &Q)=0
virtual Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, unsigned Depth=0, bool AllowMultipleUsers=false)=0
static Value * peekThroughBitcast(Value *V, bool OneUseOnly=false)
Return the source operand of a potentially bitcasted value while optionally checking if it has one us...
Definition: InstCombiner.h:119
void addToWorklist(Instruction *I)
Definition: InstCombiner.h:332
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:412
BuilderTy & Builder
Definition: InstCombiner.h:61
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:74
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:243
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static IntegerType * getInt8Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1859
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition: APInt.cpp:2982
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:599
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:864
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:342
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:293
@ Or
Bitwise or logical OR of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
bool isZero() const
Returns true if value is all zero.
Definition: KnownBits.h:79
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition: KnownBits.h:137
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
Definition: KnownBits.h:121