LLVM 20.0.0git
ELFObject.cpp
Go to the documentation of this file.
1//===- ELFObject.cpp ------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ELFObject.h"
10#include "llvm/ADT/ArrayRef.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/StringRef.h"
13#include "llvm/ADT/Twine.h"
16#include "llvm/MC/MCELFExtras.h"
18#include "llvm/Object/ELF.h"
21#include "llvm/Support/Endian.h"
24#include "llvm/Support/Path.h"
25#include <algorithm>
26#include <cstddef>
27#include <cstdint>
28#include <iterator>
29#include <unordered_set>
30#include <utility>
31#include <vector>
32
33using namespace llvm;
34using namespace llvm::ELF;
35using namespace llvm::objcopy::elf;
36using namespace llvm::object;
37using namespace llvm::support;
38
39template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
40 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
41 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
42 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
43 Phdr.p_type = Seg.Type;
44 Phdr.p_flags = Seg.Flags;
45 Phdr.p_offset = Seg.Offset;
46 Phdr.p_vaddr = Seg.VAddr;
47 Phdr.p_paddr = Seg.PAddr;
48 Phdr.p_filesz = Seg.FileSize;
49 Phdr.p_memsz = Seg.MemSize;
50 Phdr.p_align = Seg.Align;
51}
52
54 bool, function_ref<bool(const SectionBase *)>) {
55 return Error::success();
56}
57
59 return Error::success();
60}
61
68
69template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
70 uint8_t *B =
71 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
72 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
73 Shdr.sh_name = Sec.NameIndex;
74 Shdr.sh_type = Sec.Type;
75 Shdr.sh_flags = Sec.Flags;
76 Shdr.sh_addr = Sec.Addr;
77 Shdr.sh_offset = Sec.Offset;
78 Shdr.sh_size = Sec.Size;
79 Shdr.sh_link = Sec.Link;
80 Shdr.sh_info = Sec.Info;
81 Shdr.sh_addralign = Sec.Align;
82 Shdr.sh_entsize = Sec.EntrySize;
83}
84
85template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
86 return Error::success();
87}
88
90 return Error::success();
91}
92
94 return Error::success();
95}
96
97template <class ELFT>
99 return Error::success();
100}
101
102template <class ELFT>
104 Sec.EntrySize = sizeof(Elf_Sym);
105 Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
106 // Align to the largest field in Elf_Sym.
107 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
108 return Error::success();
109}
110
111template <bool Is64>
113 using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
116 ELF::encodeCrel<Is64>(OS, Relocations, [&](const Relocation &R) {
117 uint32_t CurSymIdx = R.RelocSymbol ? R.RelocSymbol->Index : 0;
118 return ELF::Elf_Crel<Is64>{static_cast<uint>(R.Offset), CurSymIdx, R.Type,
119 std::make_signed_t<uint>(R.Addend)};
120 });
121 return Content;
122}
123
124template <class ELFT>
126 if (Sec.Type == SHT_CREL) {
127 Sec.Size = encodeCrel<ELFT::Is64Bits>(Sec.Relocations).size();
128 } else {
129 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
130 Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
131 // Align to the largest field in Elf_Rel(a).
132 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
133 }
134 return Error::success();
135}
136
137template <class ELFT>
139 return Error::success();
140}
141
143 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
144 return Error::success();
145}
146
147template <class ELFT>
149 return Error::success();
150}
151
153 return Error::success();
154}
155
156template <class ELFT>
158 return Error::success();
159}
160
163 "cannot write symbol section index table '" +
164 Sec.Name + "' ");
165}
166
169 "cannot write symbol table '" + Sec.Name +
170 "' out to binary");
171}
172
175 "cannot write relocation section '" + Sec.Name +
176 "' out to binary");
177}
178
181 "cannot write '" + Sec.Name + "' out to binary");
182}
183
186 "cannot write '" + Sec.Name + "' out to binary");
190 if (Sec.Type != SHT_NOBITS)
191 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
192
193 return Error::success();
194}
195
197 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
198 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
199}
200
201template <class T> static T checkedGetHex(StringRef S) {
202 T Value;
203 bool Fail = S.getAsInteger(16, Value);
204 assert(!Fail);
205 (void)Fail;
206 return Value;
207}
208
209// Fills exactly Len bytes of buffer with hexadecimal characters
210// representing value 'X'
211template <class T, class Iterator>
212static Iterator toHexStr(T X, Iterator It, size_t Len) {
213 // Fill range with '0'
214 std::fill(It, It + Len, '0');
215
216 for (long I = Len - 1; I >= 0; --I) {
217 unsigned char Mod = static_cast<unsigned char>(X) & 15;
218 *(It + I) = hexdigit(Mod, false);
219 X >>= 4;
220 }
221 assert(X == 0);
222 return It + Len;
223}
224
226 assert((S.size() & 1) == 0);
227 uint8_t Checksum = 0;
228 while (!S.empty()) {
229 Checksum += checkedGetHex<uint8_t>(S.take_front(2));
230 S = S.drop_front(2);
231 }
232 return -Checksum;
233}
234
237 IHexLineData Line(getLineLength(Data.size()));
238 assert(Line.size());
239 auto Iter = Line.begin();
240 *Iter++ = ':';
241 Iter = toHexStr(Data.size(), Iter, 2);
242 Iter = toHexStr(Addr, Iter, 4);
243 Iter = toHexStr(Type, Iter, 2);
244 for (uint8_t X : Data)
245 Iter = toHexStr(X, Iter, 2);
246 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
247 Iter = toHexStr(getChecksum(S), Iter, 2);
248 *Iter++ = '\r';
249 *Iter++ = '\n';
250 assert(Iter == Line.end());
251 return Line;
252}
253
254static Error checkRecord(const IHexRecord &R) {
255 switch (R.Type) {
256 case IHexRecord::Data:
257 if (R.HexData.size() == 0)
258 return createStringError(
260 "zero data length is not allowed for data records");
261 break;
263 break;
265 // 20-bit segment address. Data length must be 2 bytes
266 // (4 bytes in hex)
267 if (R.HexData.size() != 4)
268 return createStringError(
270 "segment address data should be 2 bytes in size");
271 break;
274 if (R.HexData.size() != 8)
276 "start address data should be 4 bytes in size");
277 // According to Intel HEX specification '03' record
278 // only specifies the code address within the 20-bit
279 // segmented address space of the 8086/80186. This
280 // means 12 high order bits should be zeroes.
281 if (R.Type == IHexRecord::StartAddr80x86 &&
282 R.HexData.take_front(3) != "000")
284 "start address exceeds 20 bit for 80x86");
285 break;
287 // 16-31 bits of linear base address
288 if (R.HexData.size() != 4)
289 return createStringError(
291 "extended address data should be 2 bytes in size");
292 break;
293 default:
294 // Unknown record type
295 return createStringError(errc::invalid_argument, "unknown record type: %u",
296 static_cast<unsigned>(R.Type));
297 }
298 return Error::success();
299}
300
301// Checks that IHEX line contains valid characters.
302// This allows converting hexadecimal data to integers
303// without extra verification.
305 assert(!Line.empty());
306 if (Line[0] != ':')
308 "missing ':' in the beginning of line.");
309
310 for (size_t Pos = 1; Pos < Line.size(); ++Pos)
311 if (hexDigitValue(Line[Pos]) == -1U)
313 "invalid character at position %zu.", Pos + 1);
314 return Error::success();
315}
316
318 assert(!Line.empty());
319
320 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
321 if (Line.size() < 11)
323 "line is too short: %zu chars.", Line.size());
324
325 if (Error E = checkChars(Line))
326 return std::move(E);
327
328 IHexRecord Rec;
329 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
330 if (Line.size() != getLength(DataLen))
332 "invalid line length %zu (should be %zu)",
333 Line.size(), getLength(DataLen));
334
335 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
336 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
337 Rec.HexData = Line.substr(9, DataLen * 2);
338
339 if (getChecksum(Line.drop_front(1)) != 0)
340 return createStringError(errc::invalid_argument, "incorrect checksum.");
341 if (Error E = checkRecord(Rec))
342 return std::move(E);
343 return Rec;
344}
345
347 Segment *Seg = Sec->ParentSegment;
348 if (Seg && Seg->Type != ELF::PT_LOAD)
349 Seg = nullptr;
350 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
351 : Sec->Addr;
352}
353
356 assert(Data.size() == Sec->Size);
357 const uint32_t ChunkSize = 16;
358 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
359 while (!Data.empty()) {
360 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
361 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
362 if (Addr > 0xFFFFFU) {
363 // Write extended address record, zeroing segment address
364 // if needed.
365 if (SegmentAddr != 0)
366 SegmentAddr = writeSegmentAddr(0U);
367 BaseAddr = writeBaseAddr(Addr);
368 } else {
369 // We can still remain 16-bit
370 SegmentAddr = writeSegmentAddr(Addr);
371 }
372 }
373 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
374 assert(SegOffset <= 0xFFFFU);
375 DataSize = std::min(DataSize, 0x10000U - SegOffset);
376 writeData(0, SegOffset, Data.take_front(DataSize));
377 Addr += DataSize;
378 Data = Data.drop_front(DataSize);
379 }
380}
381
382uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
383 assert(Addr <= 0xFFFFFU);
384 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
385 writeData(2, 0, Data);
386 return Addr & 0xF0000U;
387}
388
389uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
390 assert(Addr <= 0xFFFFFFFFU);
391 uint64_t Base = Addr & 0xFFFF0000U;
392 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
393 static_cast<uint8_t>((Base >> 16) & 0xFF)};
394 writeData(4, 0, Data);
395 return Base;
396}
397
401}
402
404 writeSection(&Sec, Sec.Contents);
405 return Error::success();
406}
407
409 writeSection(&Sec, Sec.Data);
410 return Error::success();
411}
412
414 // Check that sizer has already done its work
415 assert(Sec.Size == Sec.StrTabBuilder.getSize());
416 // We are free to pass an invalid pointer to writeSection as long
417 // as we don't actually write any data. The real writer class has
418 // to override this method .
419 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
420 return Error::success();
421}
422
424 writeSection(&Sec, Sec.Contents);
425 return Error::success();
426}
427
431 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
432 Offset += HexData.size();
433}
434
436 assert(Sec.Size == Sec.StrTabBuilder.getSize());
437 std::vector<uint8_t> Data(Sec.Size);
438 Sec.StrTabBuilder.write(Data.data());
439 writeSection(&Sec, Data);
440 return Error::success();
441}
442
444 return Visitor.visit(*this);
445}
446
448 return Visitor.visit(*this);
449}
450
452 if (HasSymTabLink) {
453 assert(LinkSection == nullptr);
454 LinkSection = &SymTab;
455 }
456}
457
459 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
460 return Error::success();
461}
462
463template <class ELFT>
465 ArrayRef<uint8_t> Compressed =
467 SmallVector<uint8_t, 128> Decompressed;
469 switch (Sec.ChType) {
470 case ELFCOMPRESS_ZLIB:
472 break;
473 case ELFCOMPRESS_ZSTD:
475 break;
476 default:
478 "--decompress-debug-sections: ch_type (" +
479 Twine(Sec.ChType) + ") of section '" +
480 Sec.Name + "' is unsupported");
481 }
482 if (auto *Reason =
485 "failed to decompress section '" + Sec.Name +
486 "': " + Reason);
487 if (Error E = compression::decompress(Type, Compressed, Decompressed,
488 static_cast<size_t>(Sec.Size)))
490 "failed to decompress section '" + Sec.Name +
491 "': " + toString(std::move(E)));
492
493 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
494 std::copy(Decompressed.begin(), Decompressed.end(), Buf);
495
496 return Error::success();
497}
498
501 "cannot write compressed section '" + Sec.Name +
502 "' ");
503}
504
506 return Visitor.visit(*this);
507}
508
510 return Visitor.visit(*this);
511}
512
514 return Visitor.visit(*this);
515}
516
518 return Visitor.visit(*this);
519}
520
522 assert((HexData.size() & 1) == 0);
523 while (!HexData.empty()) {
524 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
525 HexData = HexData.drop_front(2);
526 }
527 Size = Data.size();
528}
529
532 "cannot write compressed section '" + Sec.Name +
533 "' ");
534}
535
536template <class ELFT>
538 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
539 Elf_Chdr_Impl<ELFT> Chdr = {};
540 switch (Sec.CompressionType) {
542 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
543 return Error::success();
545 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
546 break;
548 Chdr.ch_type = ELF::ELFCOMPRESS_ZSTD;
549 break;
550 }
551 Chdr.ch_size = Sec.DecompressedSize;
552 Chdr.ch_addralign = Sec.DecompressedAlign;
553 memcpy(Buf, &Chdr, sizeof(Chdr));
554 Buf += sizeof(Chdr);
555
556 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
557 return Error::success();
558}
559
561 DebugCompressionType CompressionType,
562 bool Is64Bits)
563 : SectionBase(Sec), CompressionType(CompressionType),
564 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
566 CompressedData);
567
570 size_t ChdrSize = Is64Bits ? sizeof(object::Elf_Chdr_Impl<object::ELF64LE>)
572 Size = ChdrSize + CompressedData.size();
573 Align = 8;
574}
575
577 uint32_t ChType, uint64_t DecompressedSize,
578 uint64_t DecompressedAlign)
579 : ChType(ChType), CompressionType(DebugCompressionType::None),
580 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
581 OriginalData = CompressedData;
582}
583
585 return Visitor.visit(*this);
586}
587
589 return Visitor.visit(*this);
590}
591
593
595 return StrTabBuilder.getOffset(Name);
596}
597
599 StrTabBuilder.finalize();
600 Size = StrTabBuilder.getSize();
601}
602
604 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
605 Sec.Offset);
606 return Error::success();
607}
608
610 return Visitor.visit(*this);
611}
612
614 return Visitor.visit(*this);
615}
616
617template <class ELFT>
619 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
620 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
621 return Error::success();
622}
623
625 Size = 0;
628 Link,
629 "Link field value " + Twine(Link) + " in section " + Name +
630 " is invalid",
631 "Link field value " + Twine(Link) + " in section " + Name +
632 " is not a symbol table");
633 if (!Sec)
634 return Sec.takeError();
635
636 setSymTab(*Sec);
637 Symbols->setShndxTable(this);
638 return Error::success();
639}
640
642
644 return Visitor.visit(*this);
645}
646
648 return Visitor.visit(*this);
649}
650
652 switch (Index) {
653 case SHN_ABS:
654 case SHN_COMMON:
655 return true;
656 }
657
658 if (Machine == EM_AMDGPU) {
659 return Index == SHN_AMDGPU_LDS;
660 }
661
662 if (Machine == EM_MIPS) {
663 switch (Index) {
664 case SHN_MIPS_ACOMMON:
665 case SHN_MIPS_SCOMMON:
667 return true;
668 }
669 }
670
671 if (Machine == EM_HEXAGON) {
672 switch (Index) {
678 return true;
679 }
680 }
681 return false;
682}
683
684// Large indexes force us to clarify exactly what this function should do. This
685// function should return the value that will appear in st_shndx when written
686// out.
688 if (DefinedIn != nullptr) {
690 return SHN_XINDEX;
691 return DefinedIn->Index;
692 }
693
695 // This means that we don't have a defined section but we do need to
696 // output a legitimate section index.
697 return SHN_UNDEF;
698 }
699
703 return static_cast<uint16_t>(ShndxType);
704}
705
706bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
707
708void SymbolTableSection::assignIndices() {
709 uint32_t Index = 0;
710 for (auto &Sym : Symbols) {
711 if (Sym->Index != Index)
712 IndicesChanged = true;
713 Sym->Index = Index++;
714 }
715}
716
717void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
718 SectionBase *DefinedIn, uint64_t Value,
719 uint8_t Visibility, uint16_t Shndx,
720 uint64_t SymbolSize) {
721 Symbol Sym;
722 Sym.Name = Name.str();
723 Sym.Binding = Bind;
724 Sym.Type = Type;
725 Sym.DefinedIn = DefinedIn;
726 if (DefinedIn != nullptr)
727 DefinedIn->HasSymbol = true;
728 if (DefinedIn == nullptr) {
729 if (Shndx >= SHN_LORESERVE)
730 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
731 else
732 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
733 }
734 Sym.Value = Value;
735 Sym.Visibility = Visibility;
736 Sym.Size = SymbolSize;
737 Sym.Index = Symbols.size();
738 Symbols.emplace_back(std::make_unique<Symbol>(Sym));
739 Size += this->EntrySize;
740}
741
743 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
745 SectionIndexTable = nullptr;
746 if (ToRemove(SymbolNames)) {
747 if (!AllowBrokenLinks)
748 return createStringError(
750 "string table '%s' cannot be removed because it is "
751 "referenced by the symbol table '%s'",
752 SymbolNames->Name.data(), this->Name.data());
753 SymbolNames = nullptr;
754 }
755 return removeSymbols(
756 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
757}
758
761 Callable(*Sym);
762 std::stable_partition(
763 std::begin(Symbols), std::end(Symbols),
764 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
765 assignIndices();
766}
767
769 function_ref<bool(const Symbol &)> ToRemove) {
770 Symbols.erase(
771 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
772 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
773 std::end(Symbols));
774 auto PrevSize = Size;
775 Size = Symbols.size() * EntrySize;
776 if (Size < PrevSize)
777 IndicesChanged = true;
778 assignIndices();
779 return Error::success();
780}
781
784 for (std::unique_ptr<Symbol> &Sym : Symbols)
785 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
786 Sym->DefinedIn = To;
787}
788
790 Size = 0;
793 Link,
794 "Symbol table has link index of " + Twine(Link) +
795 " which is not a valid index",
796 "Symbol table has link index of " + Twine(Link) +
797 " which is not a string table");
798 if (!Sec)
799 return Sec.takeError();
800
801 setStrTab(*Sec);
802 return Error::success();
803}
804
806 uint32_t MaxLocalIndex = 0;
807 for (std::unique_ptr<Symbol> &Sym : Symbols) {
808 Sym->NameIndex =
809 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
810 if (Sym->Binding == STB_LOCAL)
811 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
812 }
813 // Now we need to set the Link and Info fields.
814 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
815 Info = MaxLocalIndex + 1;
816}
817
819 // Reserve proper amount of space in section index table, so we can
820 // layout sections correctly. We will fill the table with correct
821 // indexes later in fillShdnxTable.
824
825 // Add all of our strings to SymbolNames so that SymbolNames has the right
826 // size before layout is decided.
827 // If the symbol names section has been removed, don't try to add strings to
828 // the table.
829 if (SymbolNames != nullptr)
830 for (std::unique_ptr<Symbol> &Sym : Symbols)
831 SymbolNames->addString(Sym->Name);
832}
833
835 if (SectionIndexTable == nullptr)
836 return;
837 // Fill section index table with real section indexes. This function must
838 // be called after assignOffsets.
839 for (const std::unique_ptr<Symbol> &Sym : Symbols) {
840 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
841 SectionIndexTable->addIndex(Sym->DefinedIn->Index);
842 else
844 }
845}
846
849 if (Symbols.size() <= Index)
851 "invalid symbol index: " + Twine(Index));
852 return Symbols[Index].get();
853}
854
857 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
858 if (!Sym)
859 return Sym.takeError();
860
861 return const_cast<Symbol *>(*Sym);
862}
863
864template <class ELFT>
866 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
867 // Loop though symbols setting each entry of the symbol table.
868 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
869 Sym->st_name = Symbol->NameIndex;
870 Sym->st_value = Symbol->Value;
871 Sym->st_size = Symbol->Size;
872 Sym->st_other = Symbol->Visibility;
873 Sym->setBinding(Symbol->Binding);
874 Sym->setType(Symbol->Type);
875 Sym->st_shndx = Symbol->getShndx();
876 ++Sym;
877 }
878 return Error::success();
879}
880
882 return Visitor.visit(*this);
883}
884
886 return Visitor.visit(*this);
887}
888
890 switch (Type) {
891 case SHT_REL:
892 return ".rel";
893 case SHT_RELA:
894 return ".rela";
895 case SHT_CREL:
896 return ".crel";
897 default:
898 llvm_unreachable("not a relocation section");
899 }
900}
903 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
904 if (ToRemove(Symbols)) {
905 if (!AllowBrokenLinks)
906 return createStringError(
908 "symbol table '%s' cannot be removed because it is "
909 "referenced by the relocation section '%s'",
910 Symbols->Name.data(), this->Name.data());
911 Symbols = nullptr;
912 }
913
914 for (const Relocation &R : Relocations) {
915 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
916 !ToRemove(R.RelocSymbol->DefinedIn))
917 continue;
919 "section '%s' cannot be removed: (%s+0x%" PRIx64
920 ") has relocation against symbol '%s'",
921 R.RelocSymbol->DefinedIn->Name.data(),
922 SecToApplyRel->Name.data(), R.Offset,
923 R.RelocSymbol->Name.c_str());
924 }
925
926 return Error::success();
927}
928
929template <class SymTabType>
931 SectionTableRef SecTable) {
932 if (Link != SHN_UNDEF) {
933 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
934 Link,
935 "Link field value " + Twine(Link) + " in section " + Name +
936 " is invalid",
937 "Link field value " + Twine(Link) + " in section " + Name +
938 " is not a symbol table");
939 if (!Sec)
940 return Sec.takeError();
941
942 setSymTab(*Sec);
943 }
944
945 if (Info != SHN_UNDEF) {
947 SecTable.getSection(Info, "Info field value " + Twine(Info) +
948 " in section " + Name + " is invalid");
949 if (!Sec)
950 return Sec.takeError();
951
952 setSection(*Sec);
953 } else
954 setSection(nullptr);
955
956 return Error::success();
957}
958
959template <class SymTabType>
961 this->Link = Symbols ? Symbols->Index : 0;
962
963 if (SecToApplyRel != nullptr)
964 this->Info = SecToApplyRel->Index;
965}
966
967template <class ELFT>
969
970template <class ELFT>
971static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
972 Rela.r_addend = Addend;
973}
974
975template <class RelRange, class T>
976static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) {
977 for (const auto &Reloc : Relocations) {
978 Buf->r_offset = Reloc.Offset;
979 setAddend(*Buf, Reloc.Addend);
980 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
981 Reloc.Type, IsMips64EL);
982 ++Buf;
983 }
984}
985
986template <class ELFT>
988 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
989 if (Sec.Type == SHT_CREL) {
990 auto Content = encodeCrel<ELFT::Is64Bits>(Sec.Relocations);
991 memcpy(Buf, Content.data(), Content.size());
992 } else if (Sec.Type == SHT_REL) {
993 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf),
994 Sec.getObject().IsMips64EL);
995 } else {
996 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf),
997 Sec.getObject().IsMips64EL);
998 }
999 return Error::success();
1000}
1001
1003 return Visitor.visit(*this);
1004}
1005
1007 return Visitor.visit(*this);
1008}
1009
1011 function_ref<bool(const Symbol &)> ToRemove) {
1012 for (const Relocation &Reloc : Relocations)
1013 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
1014 return createStringError(
1016 "not stripping symbol '%s' because it is named in a relocation",
1017 Reloc.RelocSymbol->Name.data());
1018 return Error::success();
1019}
1020
1022 for (const Relocation &Reloc : Relocations)
1023 if (Reloc.RelocSymbol)
1024 Reloc.RelocSymbol->Referenced = true;
1025}
1026
1029 // Update the target section if it was replaced.
1030 if (SectionBase *To = FromTo.lookup(SecToApplyRel))
1031 SecToApplyRel = To;
1032}
1033
1035 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
1036 return Error::success();
1037}
1038
1040 return Visitor.visit(*this);
1041}
1042
1044 return Visitor.visit(*this);
1045}
1046
1048 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1049 if (ToRemove(Symbols)) {
1050 if (!AllowBrokenLinks)
1051 return createStringError(
1053 "symbol table '%s' cannot be removed because it is "
1054 "referenced by the relocation section '%s'",
1055 Symbols->Name.data(), this->Name.data());
1056 Symbols = nullptr;
1057 }
1058
1059 // SecToApplyRel contains a section referenced by sh_info field. It keeps
1060 // a section to which the relocation section applies. When we remove any
1061 // sections we also remove their relocation sections. Since we do that much
1062 // earlier, this assert should never be triggered.
1064 return Error::success();
1065}
1066
1068 bool AllowBrokenDependency,
1069 function_ref<bool(const SectionBase *)> ToRemove) {
1070 if (ToRemove(LinkSection)) {
1071 if (!AllowBrokenDependency)
1073 "section '%s' cannot be removed because it is "
1074 "referenced by the section '%s'",
1075 LinkSection->Name.data(), this->Name.data());
1076 LinkSection = nullptr;
1077 }
1078 return Error::success();
1079}
1080
1082 this->Info = Sym ? Sym->Index : 0;
1083 this->Link = SymTab ? SymTab->Index : 0;
1084 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1085 // status is not part of the equation. If Sym is localized, the intention is
1086 // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1087 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1088 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1089 this->FlagWord &= ~GRP_COMDAT;
1090}
1091
1093 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1094 if (ToRemove(SymTab)) {
1095 if (!AllowBrokenLinks)
1096 return createStringError(
1098 "section '.symtab' cannot be removed because it is "
1099 "referenced by the group section '%s'",
1100 this->Name.data());
1101 SymTab = nullptr;
1102 Sym = nullptr;
1103 }
1104 llvm::erase_if(GroupMembers, ToRemove);
1105 return Error::success();
1106}
1107
1109 if (ToRemove(*Sym))
1111 "symbol '%s' cannot be removed because it is "
1112 "referenced by the section '%s[%d]'",
1113 Sym->Name.data(), this->Name.data(), this->Index);
1114 return Error::success();
1115}
1116
1118 if (Sym)
1119 Sym->Referenced = true;
1120}
1121
1124 for (SectionBase *&Sec : GroupMembers)
1125 if (SectionBase *To = FromTo.lookup(Sec))
1126 Sec = To;
1127}
1128
1130 // As the header section of the group is removed, drop the Group flag in its
1131 // former members.
1132 for (SectionBase *Sec : GroupMembers)
1133 Sec->Flags &= ~SHF_GROUP;
1134}
1135
1137 if (Link == ELF::SHN_UNDEF)
1138 return Error::success();
1139
1141 SecTable.getSection(Link, "Link field value " + Twine(Link) +
1142 " in section " + Name + " is invalid");
1143 if (!Sec)
1144 return Sec.takeError();
1145
1146 LinkSection = *Sec;
1147
1148 if (LinkSection->Type == ELF::SHT_SYMTAB) {
1149 HasSymTabLink = true;
1150 LinkSection = nullptr;
1151 }
1152
1153 return Error::success();
1154}
1155
1156void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1157
1158void GnuDebugLinkSection::init(StringRef File) {
1159 FileName = sys::path::filename(File);
1160 // The format for the .gnu_debuglink starts with the file name and is
1161 // followed by a null terminator and then the CRC32 of the file. The CRC32
1162 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1163 // byte, and then finally push the size to alignment and add 4.
1164 Size = alignTo(FileName.size() + 1, 4) + 4;
1165 // The CRC32 will only be aligned if we align the whole section.
1166 Align = 4;
1168 Name = ".gnu_debuglink";
1169 // For sections not found in segments, OriginalOffset is only used to
1170 // establish the order that sections should go in. By using the maximum
1171 // possible offset we cause this section to wind up at the end.
1172 OriginalOffset = std::numeric_limits<uint64_t>::max();
1173}
1174
1176 uint32_t PrecomputedCRC)
1177 : FileName(File), CRC32(PrecomputedCRC) {
1178 init(File);
1179}
1180
1181template <class ELFT>
1183 unsigned char *Buf =
1184 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1185 Elf_Word *CRC =
1186 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1187 *CRC = Sec.CRC32;
1188 llvm::copy(Sec.FileName, Buf);
1189 return Error::success();
1190}
1191
1193 return Visitor.visit(*this);
1194}
1195
1197 return Visitor.visit(*this);
1198}
1199
1200template <class ELFT>
1202 ELF::Elf32_Word *Buf =
1203 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1204 endian::write32<ELFT::Endianness>(Buf++, Sec.FlagWord);
1205 for (SectionBase *S : Sec.GroupMembers)
1206 endian::write32<ELFT::Endianness>(Buf++, S->Index);
1207 return Error::success();
1208}
1209
1211 return Visitor.visit(*this);
1212}
1213
1215 return Visitor.visit(*this);
1216}
1217
1218// Returns true IFF a section is wholly inside the range of a segment
1219static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1220 // If a section is empty it should be treated like it has a size of 1. This is
1221 // to clarify the case when an empty section lies on a boundary between two
1222 // segments and ensures that the section "belongs" to the second segment and
1223 // not the first.
1224 uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1225
1226 // Ignore just added sections.
1227 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1228 return false;
1229
1230 if (Sec.Type == SHT_NOBITS) {
1231 if (!(Sec.Flags & SHF_ALLOC))
1232 return false;
1233
1234 bool SectionIsTLS = Sec.Flags & SHF_TLS;
1235 bool SegmentIsTLS = Seg.Type == PT_TLS;
1236 if (SectionIsTLS != SegmentIsTLS)
1237 return false;
1238
1239 return Seg.VAddr <= Sec.Addr &&
1240 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1241 }
1242
1243 return Seg.Offset <= Sec.OriginalOffset &&
1244 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1245}
1246
1247// Returns true IFF a segment's original offset is inside of another segment's
1248// range.
1249static bool segmentOverlapsSegment(const Segment &Child,
1250 const Segment &Parent) {
1251
1252 return Parent.OriginalOffset <= Child.OriginalOffset &&
1253 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1254}
1255
1256static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1257 // Any segment without a parent segment should come before a segment
1258 // that has a parent segment.
1259 if (A->OriginalOffset < B->OriginalOffset)
1260 return true;
1261 if (A->OriginalOffset > B->OriginalOffset)
1262 return false;
1263 // If alignments are different, the one with a smaller alignment cannot be the
1264 // parent; otherwise, layoutSegments will not respect the larger alignment
1265 // requirement. This rule ensures that PT_LOAD/PT_INTERP/PT_GNU_RELRO/PT_TLS
1266 // segments at the same offset will be aligned correctly.
1267 if (A->Align != B->Align)
1268 return A->Align > B->Align;
1269 return A->Index < B->Index;
1270}
1271
1273 Obj->Flags = 0x0;
1274 Obj->Type = ET_REL;
1275 Obj->OSABI = ELFOSABI_NONE;
1276 Obj->ABIVersion = 0;
1277 Obj->Entry = 0x0;
1278 Obj->Machine = EM_NONE;
1279 Obj->Version = 1;
1280}
1281
1282void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1283
1285 auto &StrTab = Obj->addSection<StringTableSection>();
1286 StrTab.Name = ".strtab";
1287
1288 Obj->SectionNames = &StrTab;
1289 return &StrTab;
1290}
1291
1293 auto &SymTab = Obj->addSection<SymbolTableSection>();
1294
1295 SymTab.Name = ".symtab";
1296 SymTab.Link = StrTab->Index;
1297
1298 // The symbol table always needs a null symbol
1299 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1300
1301 Obj->SymbolTable = &SymTab;
1302 return &SymTab;
1303}
1304
1306 for (SectionBase &Sec : Obj->sections())
1307 if (Error Err = Sec.initialize(Obj->sections()))
1308 return Err;
1309
1310 return Error::success();
1311}
1312
1313void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1314 auto Data = ArrayRef<uint8_t>(
1315 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1316 MemBuf->getBufferSize());
1317 auto &DataSection = Obj->addSection<Section>(Data);
1318 DataSection.Name = ".data";
1319 DataSection.Type = ELF::SHT_PROGBITS;
1320 DataSection.Size = Data.size();
1321 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1322
1323 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1324 std::replace_if(
1325 std::begin(SanitizedFilename), std::end(SanitizedFilename),
1326 [](char C) { return !isAlnum(C); }, '_');
1327 Twine Prefix = Twine("_binary_") + SanitizedFilename;
1328
1329 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1330 /*Value=*/0, NewSymbolVisibility, 0, 0);
1331 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1332 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1333 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1334 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1335 0);
1336}
1337
1341
1343 if (Error Err = initSections())
1344 return std::move(Err);
1345 addData(SymTab);
1346
1347 return std::move(Obj);
1348}
1349
1350// Adds sections from IHEX data file. Data should have been
1351// fully validated by this time.
1352void IHexELFBuilder::addDataSections() {
1353 OwnedDataSection *Section = nullptr;
1354 uint64_t SegmentAddr = 0, BaseAddr = 0;
1355 uint32_t SecNo = 1;
1356
1357 for (const IHexRecord &R : Records) {
1358 uint64_t RecAddr;
1359 switch (R.Type) {
1360 case IHexRecord::Data:
1361 // Ignore empty data records
1362 if (R.HexData.empty())
1363 continue;
1364 RecAddr = R.Addr + SegmentAddr + BaseAddr;
1365 if (!Section || Section->Addr + Section->Size != RecAddr) {
1366 // OriginalOffset field is only used to sort sections before layout, so
1367 // instead of keeping track of real offsets in IHEX file, and as
1368 // layoutSections() and layoutSectionsForOnlyKeepDebug() use
1369 // llvm::stable_sort(), we can just set it to a constant (zero).
1370 Section = &Obj->addSection<OwnedDataSection>(
1371 ".sec" + std::to_string(SecNo), RecAddr,
1373 SecNo++;
1374 }
1375 Section->appendHexData(R.HexData);
1376 break;
1378 break;
1380 // 20-bit segment address.
1381 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1382 break;
1385 Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1386 assert(Obj->Entry <= 0xFFFFFU);
1387 break;
1389 // 16-31 bits of linear base address
1390 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1391 break;
1392 default:
1393 llvm_unreachable("unknown record type");
1394 }
1395 }
1396}
1397
1401 StringTableSection *StrTab = addStrTab();
1402 addSymTab(StrTab);
1403 if (Error Err = initSections())
1404 return std::move(Err);
1405 addDataSections();
1406
1407 return std::move(Obj);
1408}
1409
1410template <class ELFT>
1412 std::optional<StringRef> ExtractPartition)
1413 : ElfFile(ElfObj.getELFFile()), Obj(Obj),
1414 ExtractPartition(ExtractPartition) {
1415 Obj.IsMips64EL = ElfFile.isMips64EL();
1416}
1417
1418template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1419 for (Segment &Parent : Obj.segments()) {
1420 // Every segment will overlap with itself but we don't want a segment to
1421 // be its own parent so we avoid that situation.
1422 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1423 // We want a canonical "most parental" segment but this requires
1424 // inspecting the ParentSegment.
1425 if (compareSegmentsByOffset(&Parent, &Child))
1426 if (Child.ParentSegment == nullptr ||
1427 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1428 Child.ParentSegment = &Parent;
1429 }
1430 }
1431 }
1432}
1433
1434template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1435 if (!ExtractPartition)
1436 return Error::success();
1437
1438 for (const SectionBase &Sec : Obj.sections()) {
1439 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1440 EhdrOffset = Sec.Offset;
1441 return Error::success();
1442 }
1443 }
1445 "could not find partition named '" +
1446 *ExtractPartition + "'");
1447}
1448
1449template <class ELFT>
1451 uint32_t Index = 0;
1452
1454 HeadersFile.program_headers();
1455 if (!Headers)
1456 return Headers.takeError();
1457
1458 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1459 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1460 return createStringError(
1462 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1463 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1464 " goes past the end of the file");
1465
1466 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1467 (size_t)Phdr.p_filesz};
1468 Segment &Seg = Obj.addSegment(Data);
1469 Seg.Type = Phdr.p_type;
1470 Seg.Flags = Phdr.p_flags;
1471 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1472 Seg.Offset = Phdr.p_offset + EhdrOffset;
1473 Seg.VAddr = Phdr.p_vaddr;
1474 Seg.PAddr = Phdr.p_paddr;
1475 Seg.FileSize = Phdr.p_filesz;
1476 Seg.MemSize = Phdr.p_memsz;
1477 Seg.Align = Phdr.p_align;
1478 Seg.Index = Index++;
1479 for (SectionBase &Sec : Obj.sections())
1480 if (sectionWithinSegment(Sec, Seg)) {
1481 Seg.addSection(&Sec);
1482 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1483 Sec.ParentSegment = &Seg;
1484 }
1485 }
1486
1487 auto &ElfHdr = Obj.ElfHdrSegment;
1488 ElfHdr.Index = Index++;
1489 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1490
1491 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1492 auto &PrHdr = Obj.ProgramHdrSegment;
1493 PrHdr.Type = PT_PHDR;
1494 PrHdr.Flags = 0;
1495 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1496 // Whereas this works automatically for ElfHdr, here OriginalOffset is
1497 // always non-zero and to ensure the equation we assign the same value to
1498 // VAddr as well.
1499 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1500 PrHdr.PAddr = 0;
1501 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1502 // The spec requires us to naturally align all the fields.
1503 PrHdr.Align = sizeof(Elf_Addr);
1504 PrHdr.Index = Index++;
1505
1506 // Now we do an O(n^2) loop through the segments in order to match up
1507 // segments.
1508 for (Segment &Child : Obj.segments())
1509 setParentSegment(Child);
1510 setParentSegment(ElfHdr);
1511 setParentSegment(PrHdr);
1512
1513 return Error::success();
1514}
1515
1516template <class ELFT>
1518 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1520 "invalid alignment " + Twine(GroupSec->Align) +
1521 " of group section '" + GroupSec->Name + "'");
1522 SectionTableRef SecTable = Obj.sections();
1523 if (GroupSec->Link != SHN_UNDEF) {
1524 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1525 GroupSec->Link,
1526 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1527 GroupSec->Name + "' is invalid",
1528 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1529 GroupSec->Name + "' is not a symbol table");
1530 if (!SymTab)
1531 return SymTab.takeError();
1532
1533 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1534 if (!Sym)
1536 "info field value '" + Twine(GroupSec->Info) +
1537 "' in section '" + GroupSec->Name +
1538 "' is not a valid symbol index");
1539 GroupSec->setSymTab(*SymTab);
1540 GroupSec->setSymbol(*Sym);
1541 }
1542 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1543 GroupSec->Contents.empty())
1545 "the content of the section " + GroupSec->Name +
1546 " is malformed");
1547 const ELF::Elf32_Word *Word =
1548 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1549 const ELF::Elf32_Word *End =
1550 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1551 GroupSec->setFlagWord(endian::read32<ELFT::Endianness>(Word++));
1552 for (; Word != End; ++Word) {
1553 uint32_t Index = support::endian::read32<ELFT::Endianness>(Word);
1554 Expected<SectionBase *> Sec = SecTable.getSection(
1555 Index, "group member index " + Twine(Index) + " in section '" +
1556 GroupSec->Name + "' is invalid");
1557 if (!Sec)
1558 return Sec.takeError();
1559
1560 GroupSec->addMember(*Sec);
1561 }
1562
1563 return Error::success();
1564}
1565
1566template <class ELFT>
1568 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1569 if (!Shdr)
1570 return Shdr.takeError();
1571
1572 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1573 if (!StrTabData)
1574 return StrTabData.takeError();
1575
1576 ArrayRef<Elf_Word> ShndxData;
1577
1579 ElfFile.symbols(*Shdr);
1580 if (!Symbols)
1581 return Symbols.takeError();
1582
1583 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1584 SectionBase *DefSection = nullptr;
1585
1586 Expected<StringRef> Name = Sym.getName(*StrTabData);
1587 if (!Name)
1588 return Name.takeError();
1589
1590 if (Sym.st_shndx == SHN_XINDEX) {
1591 if (SymTab->getShndxTable() == nullptr)
1593 "symbol '" + *Name +
1594 "' has index SHN_XINDEX but no "
1595 "SHT_SYMTAB_SHNDX section exists");
1596 if (ShndxData.data() == nullptr) {
1598 ElfFile.getSection(SymTab->getShndxTable()->Index);
1599 if (!ShndxSec)
1600 return ShndxSec.takeError();
1601
1603 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1604 if (!Data)
1605 return Data.takeError();
1606
1607 ShndxData = *Data;
1608 if (ShndxData.size() != Symbols->size())
1609 return createStringError(
1611 "symbol section index table does not have the same number of "
1612 "entries as the symbol table");
1613 }
1614 Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1615 Expected<SectionBase *> Sec = Obj.sections().getSection(
1616 Index,
1617 "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1618 if (!Sec)
1619 return Sec.takeError();
1620
1621 DefSection = *Sec;
1622 } else if (Sym.st_shndx >= SHN_LORESERVE) {
1623 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1624 return createStringError(
1626 "symbol '" + *Name +
1627 "' has unsupported value greater than or equal "
1628 "to SHN_LORESERVE: " +
1629 Twine(Sym.st_shndx));
1630 }
1631 } else if (Sym.st_shndx != SHN_UNDEF) {
1632 Expected<SectionBase *> Sec = Obj.sections().getSection(
1633 Sym.st_shndx, "symbol '" + *Name +
1634 "' is defined has invalid section index " +
1635 Twine(Sym.st_shndx));
1636 if (!Sec)
1637 return Sec.takeError();
1638
1639 DefSection = *Sec;
1640 }
1641
1642 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1643 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1644 }
1645
1646 return Error::success();
1647}
1648
1649template <class ELFT>
1651
1652template <class ELFT>
1653static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1654 ToSet = Rela.r_addend;
1655}
1656
1657template <class T>
1658static Error initRelocations(RelocationSection *Relocs, T RelRange) {
1659 for (const auto &Rel : RelRange) {
1660 Relocation ToAdd;
1661 ToAdd.Offset = Rel.r_offset;
1662 getAddend(ToAdd.Addend, Rel);
1663 ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL);
1664
1665 if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) {
1666 if (!Relocs->getObject().SymbolTable)
1667 return createStringError(
1669 "'" + Relocs->Name + "': relocation references symbol with index " +
1670 Twine(Sym) + ", but there is no symbol table");
1671 Expected<Symbol *> SymByIndex =
1673 if (!SymByIndex)
1674 return SymByIndex.takeError();
1675
1676 ToAdd.RelocSymbol = *SymByIndex;
1677 }
1678
1679 Relocs->addRelocation(ToAdd);
1680 }
1681
1682 return Error::success();
1683}
1684
1686 Twine ErrMsg) {
1687 if (Index == SHN_UNDEF || Index > Sections.size())
1689 return Sections[Index - 1].get();
1690}
1691
1692template <class T>
1694 Twine IndexErrMsg,
1695 Twine TypeErrMsg) {
1696 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1697 if (!BaseSec)
1698 return BaseSec.takeError();
1699
1700 if (T *Sec = dyn_cast<T>(*BaseSec))
1701 return Sec;
1702
1703 return createStringError(errc::invalid_argument, TypeErrMsg);
1704}
1705
1706template <class ELFT>
1708 switch (Shdr.sh_type) {
1709 case SHT_REL:
1710 case SHT_RELA:
1711 case SHT_CREL:
1712 if (Shdr.sh_flags & SHF_ALLOC) {
1713 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1714 return Obj.addSection<DynamicRelocationSection>(*Data);
1715 else
1716 return Data.takeError();
1717 }
1718 return Obj.addSection<RelocationSection>(Obj);
1719 case SHT_STRTAB:
1720 // If a string table is allocated we don't want to mess with it. That would
1721 // mean altering the memory image. There are no special link types or
1722 // anything so we can just use a Section.
1723 if (Shdr.sh_flags & SHF_ALLOC) {
1724 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1725 return Obj.addSection<Section>(*Data);
1726 else
1727 return Data.takeError();
1728 }
1729 return Obj.addSection<StringTableSection>();
1730 case SHT_HASH:
1731 case SHT_GNU_HASH:
1732 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1733 // Because of this we don't need to mess with the hash tables either.
1734 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1735 return Obj.addSection<Section>(*Data);
1736 else
1737 return Data.takeError();
1738 case SHT_GROUP:
1739 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1740 return Obj.addSection<GroupSection>(*Data);
1741 else
1742 return Data.takeError();
1743 case SHT_DYNSYM:
1744 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1745 return Obj.addSection<DynamicSymbolTableSection>(*Data);
1746 else
1747 return Data.takeError();
1748 case SHT_DYNAMIC:
1749 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1750 return Obj.addSection<DynamicSection>(*Data);
1751 else
1752 return Data.takeError();
1753 case SHT_SYMTAB: {
1754 // Multiple SHT_SYMTAB sections are forbidden by the ELF gABI.
1755 if (Obj.SymbolTable != nullptr)
1757 "found multiple SHT_SYMTAB sections");
1758 auto &SymTab = Obj.addSection<SymbolTableSection>();
1759 Obj.SymbolTable = &SymTab;
1760 return SymTab;
1761 }
1762 case SHT_SYMTAB_SHNDX: {
1763 auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1764 Obj.SectionIndexTable = &ShndxSection;
1765 return ShndxSection;
1766 }
1767 case SHT_NOBITS:
1768 return Obj.addSection<Section>(ArrayRef<uint8_t>());
1769 default: {
1770 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1771 if (!Data)
1772 return Data.takeError();
1773
1774 Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1775 if (!Name)
1776 return Name.takeError();
1777
1778 if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED))
1779 return Obj.addSection<Section>(*Data);
1780 auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data());
1781 return Obj.addSection<CompressedSection>(CompressedSection(
1782 *Data, Chdr->ch_type, Chdr->ch_size, Chdr->ch_addralign));
1783 }
1784 }
1785}
1786
1787template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1788 uint32_t Index = 0;
1790 ElfFile.sections();
1791 if (!Sections)
1792 return Sections.takeError();
1793
1794 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1795 if (Index == 0) {
1796 ++Index;
1797 continue;
1798 }
1799 Expected<SectionBase &> Sec = makeSection(Shdr);
1800 if (!Sec)
1801 return Sec.takeError();
1802
1803 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1804 if (!SecName)
1805 return SecName.takeError();
1806 Sec->Name = SecName->str();
1807 Sec->Type = Sec->OriginalType = Shdr.sh_type;
1808 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1809 Sec->Addr = Shdr.sh_addr;
1810 Sec->Offset = Shdr.sh_offset;
1811 Sec->OriginalOffset = Shdr.sh_offset;
1812 Sec->Size = Shdr.sh_size;
1813 Sec->Link = Shdr.sh_link;
1814 Sec->Info = Shdr.sh_info;
1815 Sec->Align = Shdr.sh_addralign;
1816 Sec->EntrySize = Shdr.sh_entsize;
1817 Sec->Index = Index++;
1818 Sec->OriginalIndex = Sec->Index;
1819 Sec->OriginalData = ArrayRef<uint8_t>(
1820 ElfFile.base() + Shdr.sh_offset,
1821 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1822 }
1823
1824 return Error::success();
1825}
1826
1827template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1828 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1829 if (ShstrIndex == SHN_XINDEX) {
1830 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1831 if (!Sec)
1832 return Sec.takeError();
1833
1834 ShstrIndex = (*Sec)->sh_link;
1835 }
1836
1837 if (ShstrIndex == SHN_UNDEF)
1838 Obj.HadShdrs = false;
1839 else {
1841 Obj.sections().template getSectionOfType<StringTableSection>(
1842 ShstrIndex,
1843 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1844 " is invalid",
1845 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1846 " does not reference a string table");
1847 if (!Sec)
1848 return Sec.takeError();
1849
1850 Obj.SectionNames = *Sec;
1851 }
1852
1853 // If a section index table exists we'll need to initialize it before we
1854 // initialize the symbol table because the symbol table might need to
1855 // reference it.
1856 if (Obj.SectionIndexTable)
1857 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1858 return Err;
1859
1860 // Now that all of the sections have been added we can fill out some extra
1861 // details about symbol tables. We need the symbol table filled out before
1862 // any relocations.
1863 if (Obj.SymbolTable) {
1864 if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1865 return Err;
1866 if (Error Err = initSymbolTable(Obj.SymbolTable))
1867 return Err;
1868 } else if (EnsureSymtab) {
1869 if (Error Err = Obj.addNewSymbolTable())
1870 return Err;
1871 }
1872
1873 // Now that all sections and symbols have been added we can add
1874 // relocations that reference symbols and set the link and info fields for
1875 // relocation sections.
1876 for (SectionBase &Sec : Obj.sections()) {
1877 if (&Sec == Obj.SymbolTable)
1878 continue;
1879 if (Error Err = Sec.initialize(Obj.sections()))
1880 return Err;
1881 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1883 ElfFile.sections();
1884 if (!Sections)
1885 return Sections.takeError();
1886
1887 const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1888 Sections->begin() + RelSec->Index;
1889 if (RelSec->Type == SHT_CREL) {
1890 auto RelsOrRelas = ElfFile.crels(*Shdr);
1891 if (!RelsOrRelas)
1892 return RelsOrRelas.takeError();
1893 if (Error Err = initRelocations(RelSec, RelsOrRelas->first))
1894 return Err;
1895 if (Error Err = initRelocations(RelSec, RelsOrRelas->second))
1896 return Err;
1897 } else if (RelSec->Type == SHT_REL) {
1899 ElfFile.rels(*Shdr);
1900 if (!Rels)
1901 return Rels.takeError();
1902
1903 if (Error Err = initRelocations(RelSec, *Rels))
1904 return Err;
1905 } else {
1907 ElfFile.relas(*Shdr);
1908 if (!Relas)
1909 return Relas.takeError();
1910
1911 if (Error Err = initRelocations(RelSec, *Relas))
1912 return Err;
1913 }
1914 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1915 if (Error Err = initGroupSection(GroupSec))
1916 return Err;
1917 }
1918 }
1919
1920 return Error::success();
1921}
1922
1923template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1924 if (Error E = readSectionHeaders())
1925 return E;
1926 if (Error E = findEhdrOffset())
1927 return E;
1928
1929 // The ELFFile whose ELF headers and program headers are copied into the
1930 // output file. Normally the same as ElfFile, but if we're extracting a
1931 // loadable partition it will point to the partition's headers.
1933 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1934 if (!HeadersFile)
1935 return HeadersFile.takeError();
1936
1937 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1938 Obj.Is64Bits = Ehdr.e_ident[EI_CLASS] == ELFCLASS64;
1939 Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1940 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1941 Obj.Type = Ehdr.e_type;
1942 Obj.Machine = Ehdr.e_machine;
1943 Obj.Version = Ehdr.e_version;
1944 Obj.Entry = Ehdr.e_entry;
1945 Obj.Flags = Ehdr.e_flags;
1946
1947 if (Error E = readSections(EnsureSymtab))
1948 return E;
1949 return readProgramHeaders(*HeadersFile);
1950}
1951
1952Writer::~Writer() = default;
1953
1954Reader::~Reader() = default;
1955
1957BinaryReader::create(bool /*EnsureSymtab*/) const {
1958 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1959}
1960
1961Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1963 std::vector<IHexRecord> Records;
1964 bool HasSections = false;
1965
1966 MemBuf->getBuffer().split(Lines, '\n');
1967 Records.reserve(Lines.size());
1968 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1969 StringRef Line = Lines[LineNo - 1].trim();
1970 if (Line.empty())
1971 continue;
1972
1974 if (!R)
1975 return parseError(LineNo, R.takeError());
1976 if (R->Type == IHexRecord::EndOfFile)
1977 break;
1978 HasSections |= (R->Type == IHexRecord::Data);
1979 Records.push_back(*R);
1980 }
1981 if (!HasSections)
1982 return parseError(-1U, "no sections");
1983
1984 return std::move(Records);
1985}
1986
1988IHexReader::create(bool /*EnsureSymtab*/) const {
1990 if (!Records)
1991 return Records.takeError();
1992
1993 return IHexELFBuilder(*Records).build();
1994}
1995
1997 auto Obj = std::make_unique<Object>();
1998 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1999 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
2000 if (Error Err = Builder.build(EnsureSymtab))
2001 return std::move(Err);
2002 return std::move(Obj);
2003 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
2004 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
2005 if (Error Err = Builder.build(EnsureSymtab))
2006 return std::move(Err);
2007 return std::move(Obj);
2008 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
2009 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
2010 if (Error Err = Builder.build(EnsureSymtab))
2011 return std::move(Err);
2012 return std::move(Obj);
2013 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
2014 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
2015 if (Error Err = Builder.build(EnsureSymtab))
2016 return std::move(Err);
2017 return std::move(Obj);
2018 }
2019 return createStringError(errc::invalid_argument, "invalid file type");
2020}
2021
2022template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
2023 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
2024 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
2025 Ehdr.e_ident[EI_MAG0] = 0x7f;
2026 Ehdr.e_ident[EI_MAG1] = 'E';
2027 Ehdr.e_ident[EI_MAG2] = 'L';
2028 Ehdr.e_ident[EI_MAG3] = 'F';
2029 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
2030 Ehdr.e_ident[EI_DATA] =
2031 ELFT::Endianness == llvm::endianness::big ? ELFDATA2MSB : ELFDATA2LSB;
2032 Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
2033 Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
2034 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
2035
2036 Ehdr.e_type = Obj.Type;
2037 Ehdr.e_machine = Obj.Machine;
2038 Ehdr.e_version = Obj.Version;
2039 Ehdr.e_entry = Obj.Entry;
2040 // We have to use the fully-qualified name llvm::size
2041 // since some compilers complain on ambiguous resolution.
2042 Ehdr.e_phnum = llvm::size(Obj.segments());
2043 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
2044 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
2045 Ehdr.e_flags = Obj.Flags;
2046 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
2047 if (WriteSectionHeaders && Obj.sections().size() != 0) {
2048 Ehdr.e_shentsize = sizeof(Elf_Shdr);
2049 Ehdr.e_shoff = Obj.SHOff;
2050 // """
2051 // If the number of sections is greater than or equal to
2052 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
2053 // number of section header table entries is contained in the sh_size field
2054 // of the section header at index 0.
2055 // """
2056 auto Shnum = Obj.sections().size() + 1;
2057 if (Shnum >= SHN_LORESERVE)
2058 Ehdr.e_shnum = 0;
2059 else
2060 Ehdr.e_shnum = Shnum;
2061 // """
2062 // If the section name string table section index is greater than or equal
2063 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
2064 // and the actual index of the section name string table section is
2065 // contained in the sh_link field of the section header at index 0.
2066 // """
2067 if (Obj.SectionNames->Index >= SHN_LORESERVE)
2068 Ehdr.e_shstrndx = SHN_XINDEX;
2069 else
2070 Ehdr.e_shstrndx = Obj.SectionNames->Index;
2071 } else {
2072 Ehdr.e_shentsize = 0;
2073 Ehdr.e_shoff = 0;
2074 Ehdr.e_shnum = 0;
2075 Ehdr.e_shstrndx = 0;
2076 }
2077}
2078
2079template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
2080 for (auto &Seg : Obj.segments())
2081 writePhdr(Seg);
2082}
2083
2084template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2085 // This reference serves to write the dummy section header at the begining
2086 // of the file. It is not used for anything else
2087 Elf_Shdr &Shdr =
2088 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2089 Shdr.sh_name = 0;
2090 Shdr.sh_type = SHT_NULL;
2091 Shdr.sh_flags = 0;
2092 Shdr.sh_addr = 0;
2093 Shdr.sh_offset = 0;
2094 // See writeEhdr for why we do this.
2095 uint64_t Shnum = Obj.sections().size() + 1;
2096 if (Shnum >= SHN_LORESERVE)
2097 Shdr.sh_size = Shnum;
2098 else
2099 Shdr.sh_size = 0;
2100 // See writeEhdr for why we do this.
2101 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2102 Shdr.sh_link = Obj.SectionNames->Index;
2103 else
2104 Shdr.sh_link = 0;
2105 Shdr.sh_info = 0;
2106 Shdr.sh_addralign = 0;
2107 Shdr.sh_entsize = 0;
2108
2109 for (SectionBase &Sec : Obj.sections())
2110 writeShdr(Sec);
2111}
2112
2113template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2114 for (SectionBase &Sec : Obj.sections())
2115 // Segments are responsible for writing their contents, so only write the
2116 // section data if the section is not in a segment. Note that this renders
2117 // sections in segments effectively immutable.
2118 if (Sec.ParentSegment == nullptr)
2119 if (Error Err = Sec.accept(*SecWriter))
2120 return Err;
2121
2122 return Error::success();
2123}
2124
2125template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2126 for (Segment &Seg : Obj.segments()) {
2127 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2128 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2129 Size);
2130 }
2131
2132 for (const auto &it : Obj.getUpdatedSections()) {
2133 SectionBase *Sec = it.first;
2134 ArrayRef<uint8_t> Data = it.second;
2135
2136 auto *Parent = Sec->ParentSegment;
2137 assert(Parent && "This section should've been part of a segment.");
2139 Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2140 llvm::copy(Data, Buf->getBufferStart() + Offset);
2141 }
2142
2143 // Iterate over removed sections and overwrite their old data with zeroes.
2144 for (auto &Sec : Obj.removedSections()) {
2145 Segment *Parent = Sec.ParentSegment;
2146 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2147 continue;
2149 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2150 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2151 }
2152}
2153
2154template <class ELFT>
2156 bool OnlyKeepDebug)
2157 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2158 OnlyKeepDebug(OnlyKeepDebug) {}
2159
2161 auto It = llvm::find_if(Sections,
2162 [&](const SecPtr &Sec) { return Sec->Name == Name; });
2163 if (It == Sections.end())
2164 return createStringError(errc::invalid_argument, "section '%s' not found",
2165 Name.str().c_str());
2166
2167 auto *OldSec = It->get();
2168 if (!OldSec->hasContents())
2169 return createStringError(
2171 "section '%s' cannot be updated because it does not have contents",
2172 Name.str().c_str());
2173
2174 if (Data.size() > OldSec->Size && OldSec->ParentSegment)
2176 "cannot fit data of size %zu into section '%s' "
2177 "with size %" PRIu64 " that is part of a segment",
2178 Data.size(), Name.str().c_str(), OldSec->Size);
2179
2180 if (!OldSec->ParentSegment) {
2181 *It = std::make_unique<OwnedDataSection>(*OldSec, Data);
2182 } else {
2183 // The segment writer will be in charge of updating these contents.
2184 OldSec->Size = Data.size();
2185 UpdatedSections[OldSec] = Data;
2186 }
2187
2188 return Error::success();
2189}
2190
2192 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2193
2194 auto Iter = std::stable_partition(
2195 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2196 if (ToRemove(*Sec))
2197 return false;
2198 // TODO: A compressed relocation section may be recognized as
2199 // RelocationSectionBase. We don't want such a section to be removed.
2200 if (isa<CompressedSection>(Sec))
2201 return true;
2202 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2203 if (auto ToRelSec = RelSec->getSection())
2204 return !ToRemove(*ToRelSec);
2205 }
2206 // Remove empty group sections.
2207 if (Sec->Type == ELF::SHT_GROUP) {
2208 auto GroupSec = cast<GroupSection>(Sec.get());
2209 return !llvm::all_of(GroupSec->members(), ToRemove);
2210 }
2211 return true;
2212 });
2213 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2214 SymbolTable = nullptr;
2215 if (SectionNames != nullptr && ToRemove(*SectionNames))
2216 SectionNames = nullptr;
2217 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2218 SectionIndexTable = nullptr;
2219 // Now make sure there are no remaining references to the sections that will
2220 // be removed. Sometimes it is impossible to remove a reference so we emit
2221 // an error here instead.
2222 std::unordered_set<const SectionBase *> RemoveSections;
2223 RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2224 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2225 for (auto &Segment : Segments)
2226 Segment->removeSection(RemoveSec.get());
2227 RemoveSec->onRemove();
2228 RemoveSections.insert(RemoveSec.get());
2229 }
2230
2231 // For each section that remains alive, we want to remove the dead references.
2232 // This either might update the content of the section (e.g. remove symbols
2233 // from symbol table that belongs to removed section) or trigger an error if
2234 // a live section critically depends on a section being removed somehow
2235 // (e.g. the removed section is referenced by a relocation).
2236 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2237 if (Error E = KeepSec->removeSectionReferences(
2238 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2239 return RemoveSections.find(Sec) != RemoveSections.end();
2240 }))
2241 return E;
2242 }
2243
2244 // Transfer removed sections into the Object RemovedSections container for use
2245 // later.
2246 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2247 // Now finally get rid of them all together.
2248 Sections.erase(Iter, std::end(Sections));
2249 return Error::success();
2250}
2251
2254 auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) {
2255 return Lhs->Index < Rhs->Index;
2256 };
2257 assert(llvm::is_sorted(Sections, SectionIndexLess) &&
2258 "Sections are expected to be sorted by Index");
2259 // Set indices of new sections so that they can be later sorted into positions
2260 // of removed ones.
2261 for (auto &I : FromTo)
2262 I.second->Index = I.first->Index;
2263
2264 // Notify all sections about the replacement.
2265 for (auto &Sec : Sections)
2266 Sec->replaceSectionReferences(FromTo);
2267
2268 if (Error E = removeSections(
2269 /*AllowBrokenLinks=*/false,
2270 [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
2271 return E;
2272 llvm::sort(Sections, SectionIndexLess);
2273 return Error::success();
2274}
2275
2277 if (SymbolTable)
2278 for (const SecPtr &Sec : Sections)
2279 if (Error E = Sec->removeSymbols(ToRemove))
2280 return E;
2281 return Error::success();
2282}
2283
2285 assert(!SymbolTable && "Object must not has a SymbolTable.");
2286
2287 // Reuse an existing SHT_STRTAB section if it exists.
2288 StringTableSection *StrTab = nullptr;
2289 for (SectionBase &Sec : sections()) {
2290 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2291 StrTab = static_cast<StringTableSection *>(&Sec);
2292
2293 // Prefer a string table that is not the section header string table, if
2294 // such a table exists.
2295 if (SectionNames != &Sec)
2296 break;
2297 }
2298 }
2299 if (!StrTab)
2300 StrTab = &addSection<StringTableSection>();
2301
2302 SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2303 SymTab.Name = ".symtab";
2304 SymTab.Link = StrTab->Index;
2305 if (Error Err = SymTab.initialize(sections()))
2306 return Err;
2307 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2308
2309 SymbolTable = &SymTab;
2310
2311 return Error::success();
2312}
2313
2314// Orders segments such that if x = y->ParentSegment then y comes before x.
2315static void orderSegments(std::vector<Segment *> &Segments) {
2317}
2318
2319// This function finds a consistent layout for a list of segments starting from
2320// an Offset. It assumes that Segments have been sorted by orderSegments and
2321// returns an Offset one past the end of the last segment.
2322static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2323 uint64_t Offset) {
2325 // The only way a segment should move is if a section was between two
2326 // segments and that section was removed. If that section isn't in a segment
2327 // then it's acceptable, but not ideal, to simply move it to after the
2328 // segments. So we can simply layout segments one after the other accounting
2329 // for alignment.
2330 for (Segment *Seg : Segments) {
2331 // We assume that segments have been ordered by OriginalOffset and Index
2332 // such that a parent segment will always come before a child segment in
2333 // OrderedSegments. This means that the Offset of the ParentSegment should
2334 // already be set and we can set our offset relative to it.
2335 if (Seg->ParentSegment != nullptr) {
2336 Segment *Parent = Seg->ParentSegment;
2337 Seg->Offset =
2338 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2339 } else {
2340 Seg->Offset =
2341 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2342 }
2343 Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2344 }
2345 return Offset;
2346}
2347
2348// This function finds a consistent layout for a list of sections. It assumes
2349// that the ->ParentSegment of each section has already been laid out. The
2350// supplied starting Offset is used for the starting offset of any section that
2351// does not have a ParentSegment. It returns either the offset given if all
2352// sections had a ParentSegment or an offset one past the last section if there
2353// was a section that didn't have a ParentSegment.
2354template <class Range>
2356 // Now the offset of every segment has been set we can assign the offsets
2357 // of each section. For sections that are covered by a segment we should use
2358 // the segment's original offset and the section's original offset to compute
2359 // the offset from the start of the segment. Using the offset from the start
2360 // of the segment we can assign a new offset to the section. For sections not
2361 // covered by segments we can just bump Offset to the next valid location.
2362 // While it is not necessary, layout the sections in the order based on their
2363 // original offsets to resemble the input file as close as possible.
2364 std::vector<SectionBase *> OutOfSegmentSections;
2365 uint32_t Index = 1;
2366 for (auto &Sec : Sections) {
2367 Sec.Index = Index++;
2368 if (Sec.ParentSegment != nullptr) {
2369 const Segment &Segment = *Sec.ParentSegment;
2370 Sec.Offset =
2371 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2372 } else
2373 OutOfSegmentSections.push_back(&Sec);
2374 }
2375
2376 llvm::stable_sort(OutOfSegmentSections,
2377 [](const SectionBase *Lhs, const SectionBase *Rhs) {
2378 return Lhs->OriginalOffset < Rhs->OriginalOffset;
2379 });
2380 for (auto *Sec : OutOfSegmentSections) {
2381 Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align);
2382 Sec->Offset = Offset;
2383 if (Sec->Type != SHT_NOBITS)
2384 Offset += Sec->Size;
2385 }
2386 return Offset;
2387}
2388
2389// Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2390// occupy no space in the file.
2392 // The layout algorithm requires the sections to be handled in the order of
2393 // their offsets in the input file, at least inside segments.
2394 std::vector<SectionBase *> Sections;
2395 Sections.reserve(Obj.sections().size());
2396 uint32_t Index = 1;
2397 for (auto &Sec : Obj.sections()) {
2398 Sec.Index = Index++;
2399 Sections.push_back(&Sec);
2400 }
2401 llvm::stable_sort(Sections,
2402 [](const SectionBase *Lhs, const SectionBase *Rhs) {
2403 return Lhs->OriginalOffset < Rhs->OriginalOffset;
2404 });
2405
2406 for (auto *Sec : Sections) {
2407 auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD
2408 ? Sec->ParentSegment->firstSection()
2409 : nullptr;
2410
2411 // The first section in a PT_LOAD has to have congruent offset and address
2412 // modulo the alignment, which usually equals the maximum page size.
2413 if (FirstSec && FirstSec == Sec)
2414 Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr);
2415
2416 // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2417 // rule must be followed if it is the first section in a PT_LOAD. Do not
2418 // advance Off.
2419 if (Sec->Type == SHT_NOBITS) {
2420 Sec->Offset = Off;
2421 continue;
2422 }
2423
2424 if (!FirstSec) {
2425 // FirstSec being nullptr generally means that Sec does not have the
2426 // SHF_ALLOC flag.
2427 Off = Sec->Align ? alignTo(Off, Sec->Align) : Off;
2428 } else if (FirstSec != Sec) {
2429 // The offset is relative to the first section in the PT_LOAD segment. Use
2430 // sh_offset for non-SHF_ALLOC sections.
2431 Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2432 }
2433 Sec->Offset = Off;
2434 Off += Sec->Size;
2435 }
2436 return Off;
2437}
2438
2439// Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2440// have been updated.
2441static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2442 uint64_t HdrEnd) {
2443 uint64_t MaxOffset = 0;
2444 for (Segment *Seg : Segments) {
2445 if (Seg->Type == PT_PHDR)
2446 continue;
2447
2448 // The segment offset is generally the offset of the first section.
2449 //
2450 // For a segment containing no section (see sectionWithinSegment), if it has
2451 // a parent segment, copy the parent segment's offset field. This works for
2452 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2453 // debugging anyway.
2454 const SectionBase *FirstSec = Seg->firstSection();
2456 FirstSec ? FirstSec->Offset
2457 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2458 uint64_t FileSize = 0;
2459 for (const SectionBase *Sec : Seg->Sections) {
2460 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2461 if (Sec->Offset + Size > Offset)
2462 FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2463 }
2464
2465 // If the segment includes EHDR and program headers, don't make it smaller
2466 // than the headers.
2467 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2468 FileSize += Offset - Seg->Offset;
2469 Offset = Seg->Offset;
2470 FileSize = std::max(FileSize, HdrEnd - Offset);
2471 }
2472
2473 Seg->Offset = Offset;
2474 Seg->FileSize = FileSize;
2475 MaxOffset = std::max(MaxOffset, Offset + FileSize);
2476 }
2477 return MaxOffset;
2478}
2479
2480template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2481 Segment &ElfHdr = Obj.ElfHdrSegment;
2482 ElfHdr.Type = PT_PHDR;
2483 ElfHdr.Flags = 0;
2484 ElfHdr.VAddr = 0;
2485 ElfHdr.PAddr = 0;
2486 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2487 ElfHdr.Align = 0;
2488}
2489
2490template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2491 // We need a temporary list of segments that has a special order to it
2492 // so that we know that anytime ->ParentSegment is set that segment has
2493 // already had its offset properly set.
2494 std::vector<Segment *> OrderedSegments;
2495 for (Segment &Segment : Obj.segments())
2496 OrderedSegments.push_back(&Segment);
2497 OrderedSegments.push_back(&Obj.ElfHdrSegment);
2498 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2499 orderSegments(OrderedSegments);
2500
2502 if (OnlyKeepDebug) {
2503 // For --only-keep-debug, the sections that did not preserve contents were
2504 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2505 // then rewrite p_offset/p_filesz of program headers.
2506 uint64_t HdrEnd =
2507 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2509 Offset = std::max(Offset,
2510 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2511 } else {
2512 // Offset is used as the start offset of the first segment to be laid out.
2513 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2514 // we start at offset 0.
2515 Offset = layoutSegments(OrderedSegments, 0);
2516 Offset = layoutSections(Obj.sections(), Offset);
2517 }
2518 // If we need to write the section header table out then we need to align the
2519 // Offset so that SHOffset is valid.
2520 if (WriteSectionHeaders)
2521 Offset = alignTo(Offset, sizeof(Elf_Addr));
2522 Obj.SHOff = Offset;
2523}
2524
2525template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2526 // We already have the section header offset so we can calculate the total
2527 // size by just adding up the size of each section header.
2528 if (!WriteSectionHeaders)
2529 return Obj.SHOff;
2530 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2531 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2532}
2533
2534template <class ELFT> Error ELFWriter<ELFT>::write() {
2535 // Segment data must be written first, so that the ELF header and program
2536 // header tables can overwrite it, if covered by a segment.
2537 writeSegmentData();
2538 writeEhdr();
2539 writePhdrs();
2540 if (Error E = writeSectionData())
2541 return E;
2542 if (WriteSectionHeaders)
2543 writeShdrs();
2544
2545 // TODO: Implement direct writing to the output stream (without intermediate
2546 // memory buffer Buf).
2547 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2548 return Error::success();
2549}
2550
2552 // We can remove an empty symbol table from non-relocatable objects.
2553 // Relocatable objects typically have relocation sections whose
2554 // sh_link field points to .symtab, so we can't remove .symtab
2555 // even if it is empty.
2556 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2557 !Obj.SymbolTable->empty())
2558 return Error::success();
2559
2560 // .strtab can be used for section names. In such a case we shouldn't
2561 // remove it.
2562 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2563 ? nullptr
2564 : Obj.SymbolTable->getStrTab();
2565 return Obj.removeSections(false, [&](const SectionBase &Sec) {
2566 return &Sec == Obj.SymbolTable || &Sec == StrTab;
2567 });
2568}
2569
2570template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2571 // It could happen that SectionNames has been removed and yet the user wants
2572 // a section header table output. We need to throw an error if a user tries
2573 // to do that.
2574 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2576 "cannot write section header table because "
2577 "section header string table was removed");
2578
2579 if (Error E = removeUnneededSections(Obj))
2580 return E;
2581
2582 // If the .symtab indices have not been changed, restore the sh_link to
2583 // .symtab for sections that were linked to .symtab.
2584 if (Obj.SymbolTable && !Obj.SymbolTable->indicesChanged())
2585 for (SectionBase &Sec : Obj.sections())
2586 Sec.restoreSymTabLink(*Obj.SymbolTable);
2587
2588 // We need to assign indexes before we perform layout because we need to know
2589 // if we need large indexes or not. We can assign indexes first and check as
2590 // we go to see if we will actully need large indexes.
2591 bool NeedsLargeIndexes = false;
2592 if (Obj.sections().size() >= SHN_LORESERVE) {
2593 SectionTableRef Sections = Obj.sections();
2594 // Sections doesn't include the null section header, so account for this
2595 // when skipping the first N sections.
2596 NeedsLargeIndexes =
2597 any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2598 [](const SectionBase &Sec) { return Sec.HasSymbol; });
2599 // TODO: handle case where only one section needs the large index table but
2600 // only needs it because the large index table hasn't been removed yet.
2601 }
2602
2603 if (NeedsLargeIndexes) {
2604 // This means we definitely need to have a section index table but if we
2605 // already have one then we should use it instead of making a new one.
2606 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2607 // Addition of a section to the end does not invalidate the indexes of
2608 // other sections and assigns the correct index to the new section.
2609 auto &Shndx = Obj.addSection<SectionIndexSection>();
2610 Obj.SymbolTable->setShndxTable(&Shndx);
2611 Shndx.setSymTab(Obj.SymbolTable);
2612 }
2613 } else {
2614 // Since we don't need SectionIndexTable we should remove it and all
2615 // references to it.
2616 if (Obj.SectionIndexTable != nullptr) {
2617 // We do not support sections referring to the section index table.
2618 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2619 [this](const SectionBase &Sec) {
2620 return &Sec == Obj.SectionIndexTable;
2621 }))
2622 return E;
2623 }
2624 }
2625
2626 // Make sure we add the names of all the sections. Importantly this must be
2627 // done after we decide to add or remove SectionIndexes.
2628 if (Obj.SectionNames != nullptr)
2629 for (const SectionBase &Sec : Obj.sections())
2630 Obj.SectionNames->addString(Sec.Name);
2631
2632 initEhdrSegment();
2633
2634 // Before we can prepare for layout the indexes need to be finalized.
2635 // Also, the output arch may not be the same as the input arch, so fix up
2636 // size-related fields before doing layout calculations.
2637 uint64_t Index = 0;
2638 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2639 for (SectionBase &Sec : Obj.sections()) {
2640 Sec.Index = Index++;
2641 if (Error Err = Sec.accept(*SecSizer))
2642 return Err;
2643 }
2644
2645 // The symbol table does not update all other sections on update. For
2646 // instance, symbol names are not added as new symbols are added. This means
2647 // that some sections, like .strtab, don't yet have their final size.
2648 if (Obj.SymbolTable != nullptr)
2649 Obj.SymbolTable->prepareForLayout();
2650
2651 // Now that all strings are added we want to finalize string table builders,
2652 // because that affects section sizes which in turn affects section offsets.
2653 for (SectionBase &Sec : Obj.sections())
2654 if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2655 StrTab->prepareForLayout();
2656
2657 assignOffsets();
2658
2659 // layoutSections could have modified section indexes, so we need
2660 // to fill the index table after assignOffsets.
2661 if (Obj.SymbolTable != nullptr)
2662 Obj.SymbolTable->fillShndxTable();
2663
2664 // Finally now that all offsets and indexes have been set we can finalize any
2665 // remaining issues.
2666 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2667 for (SectionBase &Sec : Obj.sections()) {
2668 Sec.HeaderOffset = Offset;
2669 Offset += sizeof(Elf_Shdr);
2670 if (WriteSectionHeaders)
2671 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2672 Sec.finalize();
2673 }
2674
2675 size_t TotalSize = totalSize();
2677 if (!Buf)
2679 "failed to allocate memory buffer of " +
2680 Twine::utohexstr(TotalSize) + " bytes");
2681
2682 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2683 return Error::success();
2684}
2685
2688 for (const SectionBase &Sec : Obj.allocSections()) {
2689 if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2690 SectionsToWrite.push_back(&Sec);
2691 }
2692
2693 if (SectionsToWrite.empty())
2694 return Error::success();
2695
2696 llvm::stable_sort(SectionsToWrite,
2697 [](const SectionBase *LHS, const SectionBase *RHS) {
2698 return LHS->Offset < RHS->Offset;
2699 });
2700
2701 assert(SectionsToWrite.front()->Offset == 0);
2702
2703 for (size_t i = 0; i != SectionsToWrite.size(); ++i) {
2704 const SectionBase &Sec = *SectionsToWrite[i];
2705 if (Error Err = Sec.accept(*SecWriter))
2706 return Err;
2707 if (GapFill == 0)
2708 continue;
2709 uint64_t PadOffset = (i < SectionsToWrite.size() - 1)
2710 ? SectionsToWrite[i + 1]->Offset
2711 : Buf->getBufferSize();
2712 assert(PadOffset <= Buf->getBufferSize());
2713 assert(Sec.Offset + Sec.Size <= PadOffset);
2714 std::fill(Buf->getBufferStart() + Sec.Offset + Sec.Size,
2715 Buf->getBufferStart() + PadOffset, GapFill);
2716 }
2717
2718 // TODO: Implement direct writing to the output stream (without intermediate
2719 // memory buffer Buf).
2720 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2721 return Error::success();
2722}
2723
2725 // Compute the section LMA based on its sh_offset and the containing segment's
2726 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2727 // sections as MinAddr. In the output, the contents between address 0 and
2728 // MinAddr will be skipped.
2729 uint64_t MinAddr = UINT64_MAX;
2730 for (SectionBase &Sec : Obj.allocSections()) {
2731 if (Sec.ParentSegment != nullptr)
2732 Sec.Addr =
2733 Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
2734 if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2735 MinAddr = std::min(MinAddr, Sec.Addr);
2736 }
2737
2738 // Now that every section has been laid out we just need to compute the total
2739 // file size. This might not be the same as the offset returned by
2740 // layoutSections, because we want to truncate the last segment to the end of
2741 // its last non-empty section, to match GNU objcopy's behaviour.
2742 TotalSize = PadTo > MinAddr ? PadTo - MinAddr : 0;
2743 for (SectionBase &Sec : Obj.allocSections())
2744 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2745 Sec.Offset = Sec.Addr - MinAddr;
2746 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2747 }
2748
2750 if (!Buf)
2752 "failed to allocate memory buffer of " +
2753 Twine::utohexstr(TotalSize) + " bytes");
2754 SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2755 return Error::success();
2756}
2757
2759 if (addressOverflows32bit(S.Addr) ||
2760 addressOverflows32bit(S.Addr + S.Size - 1))
2761 return createStringError(
2763 "section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2764 S.Name.c_str(), S.Addr, S.Addr + S.Size - 1);
2765 return Error::success();
2766}
2767
2769 // We can't write 64-bit addresses.
2772 "entry point address 0x%llx overflows 32 bits",
2773 Obj.Entry);
2774
2775 for (const SectionBase &S : Obj.sections()) {
2776 if ((S.Flags & ELF::SHF_ALLOC) && S.Type != ELF::SHT_NOBITS && S.Size > 0) {
2777 if (Error E = checkSection(S))
2778 return E;
2779 Sections.push_back(&S);
2780 }
2781 }
2782
2783 llvm::sort(Sections, [](const SectionBase *A, const SectionBase *B) {
2785 });
2786
2787 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2789 if (!EmptyBuffer)
2791 "failed to allocate memory buffer of 0 bytes");
2792
2793 Expected<size_t> ExpTotalSize = getTotalSize(*EmptyBuffer);
2794 if (!ExpTotalSize)
2795 return ExpTotalSize.takeError();
2796 TotalSize = *ExpTotalSize;
2797
2799 if (!Buf)
2801 "failed to allocate memory buffer of 0x" +
2802 Twine::utohexstr(TotalSize) + " bytes");
2803 return Error::success();
2804}
2805
2806uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2807 IHexLineData HexData;
2808 uint8_t Data[4] = {};
2809 // We don't write entry point record if entry is zero.
2810 if (Obj.Entry == 0)
2811 return 0;
2812
2813 if (Obj.Entry <= 0xFFFFFU) {
2814 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2815 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2818 } else {
2822 }
2823 memcpy(Buf, HexData.data(), HexData.size());
2824 return HexData.size();
2825}
2826
2827uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2829 memcpy(Buf, HexData.data(), HexData.size());
2830 return HexData.size();
2831}
2832
2834IHexWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const {
2835 IHexSectionWriterBase LengthCalc(EmptyBuffer);
2836 for (const SectionBase *Sec : Sections)
2837 if (Error Err = Sec->accept(LengthCalc))
2838 return std::move(Err);
2839
2840 // We need space to write section records + StartAddress record
2841 // (if start adress is not zero) + EndOfFile record.
2842 return LengthCalc.getBufferOffset() +
2844 IHexRecord::getLineLength(0);
2845}
2846
2849 // Write sections.
2850 for (const SectionBase *Sec : Sections)
2851 if (Error Err = Sec->accept(Writer))
2852 return Err;
2853
2854 uint64_t Offset = Writer.getBufferOffset();
2855 // Write entry point address.
2856 Offset += writeEntryPointRecord(
2857 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2858 // Write EOF.
2859 Offset += writeEndOfFileRecord(
2860 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2862
2863 // TODO: Implement direct writing to the output stream (without intermediate
2864 // memory buffer Buf).
2865 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2866 return Error::success();
2867}
2868
2870 // Check that the sizer has already done its work.
2871 assert(Sec.Size == Sec.StrTabBuilder.getSize() &&
2872 "Expected section size to have been finalized");
2873 // We don't need to write anything here because the real writer has already
2874 // done it.
2875 return Error::success();
2876}
2877
2879 writeSection(Sec, Sec.Contents);
2880 return Error::success();
2881}
2882
2884 writeSection(Sec, Sec.Data);
2885 return Error::success();
2886}
2887
2889 writeSection(Sec, Sec.Contents);
2890 return Error::success();
2891}
2892
2894 SRecLineData Data = Record.toString();
2895 memcpy(Out.getBufferStart() + Off, Data.data(), Data.size());
2896}
2897
2899 // The ELF header could contain an entry point outside of the sections we have
2900 // seen that does not fit the current record Type.
2901 Type = std::max(Type, SRecord::getType(Entry));
2902 uint64_t Off = HeaderSize;
2903 for (SRecord &Record : Records) {
2904 Record.Type = Type;
2905 writeRecord(Record, Off);
2906 Off += Record.getSize();
2907 }
2908 Offset = Off;
2909}
2910
2913 const uint32_t ChunkSize = 16;
2915 uint32_t EndAddr = Address + S.Size - 1;
2916 Type = std::max(SRecord::getType(EndAddr), Type);
2917 while (!Data.empty()) {
2918 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
2919 SRecord Record{Type, Address, Data.take_front(DataSize)};
2920 Records.push_back(Record);
2921 Data = Data.drop_front(DataSize);
2922 Address += DataSize;
2923 }
2924}
2925
2927 assert(Sec.Size == Sec.StrTabBuilder.getSize() &&
2928 "Section size does not match the section's string table builder size");
2929 std::vector<uint8_t> Data(Sec.Size);
2930 Sec.StrTabBuilder.write(Data.data());
2931 writeSection(Sec, Data);
2932 return Error::success();
2933}
2934
2936 SRecLineData Line(getSize());
2937 auto *Iter = Line.begin();
2938 *Iter++ = 'S';
2939 *Iter++ = '0' + Type;
2940 // Write 1 byte (2 hex characters) record count.
2941 Iter = toHexStr(getCount(), Iter, 2);
2942 // Write the address field with length depending on record type.
2943 Iter = toHexStr(Address, Iter, getAddressSize());
2944 // Write data byte by byte.
2945 for (uint8_t X : Data)
2946 Iter = toHexStr(X, Iter, 2);
2947 // Write the 1 byte checksum.
2948 Iter = toHexStr(getChecksum(), Iter, 2);
2949 *Iter++ = '\r';
2950 *Iter++ = '\n';
2951 assert(Iter == Line.end());
2952 return Line;
2953}
2954
2955uint8_t SRecord::getChecksum() const {
2956 uint32_t Sum = getCount();
2957 Sum += (Address >> 24) & 0xFF;
2958 Sum += (Address >> 16) & 0xFF;
2959 Sum += (Address >> 8) & 0xFF;
2960 Sum += Address & 0xFF;
2961 for (uint8_t Byte : Data)
2962 Sum += Byte;
2963 return 0xFF - (Sum & 0xFF);
2964}
2965
2966size_t SRecord::getSize() const {
2967 // Type, Count, Checksum, and CRLF are two characters each.
2968 return 2 + 2 + getAddressSize() + Data.size() * 2 + 2 + 2;
2969}
2970
2972 switch (Type) {
2973 case Type::S2:
2974 return 6;
2975 case Type::S3:
2976 return 8;
2977 case Type::S7:
2978 return 8;
2979 case Type::S8:
2980 return 6;
2981 default:
2982 return 4;
2983 }
2984}
2985
2986uint8_t SRecord::getCount() const {
2987 uint8_t DataSize = Data.size();
2988 uint8_t ChecksumSize = 1;
2989 return getAddressSize() / 2 + DataSize + ChecksumSize;
2990}
2991
2993 if (isUInt<16>(Address))
2994 return SRecord::S1;
2995 if (isUInt<24>(Address))
2996 return SRecord::S2;
2997 return SRecord::S3;
2998}
2999
3001 // Header is a record with Type S0, Address 0, and Data that is a
3002 // vendor-specific text comment. For the comment we will use the output file
3003 // name truncated to 40 characters to match the behavior of GNU objcopy.
3004 StringRef HeaderContents = FileName.slice(0, 40);
3006 reinterpret_cast<const uint8_t *>(HeaderContents.data()),
3007 HeaderContents.size());
3008 return {SRecord::S0, 0, Data};
3009}
3010
3011size_t SRECWriter::writeHeader(uint8_t *Buf) {
3013 memcpy(Buf, Record.data(), Record.size());
3014 return Record.size();
3015}
3016
3017size_t SRECWriter::writeTerminator(uint8_t *Buf, uint8_t Type) {
3019 "Invalid record type for terminator");
3020 uint32_t Entry = Obj.Entry;
3021 SRecLineData Data = SRecord{Type, Entry, {}}.toString();
3022 memcpy(Buf, Data.data(), Data.size());
3023 return Data.size();
3024}
3025
3027SRECWriter::getTotalSize(WritableMemoryBuffer &EmptyBuffer) const {
3028 SRECSizeCalculator SizeCalc(EmptyBuffer, 0);
3029 for (const SectionBase *Sec : Sections)
3030 if (Error Err = Sec->accept(SizeCalc))
3031 return std::move(Err);
3032
3033 SizeCalc.writeRecords(Obj.Entry);
3034 // We need to add the size of the Header and Terminator records.
3036 uint8_t TerminatorType = 10 - SizeCalc.getType();
3037 SRecord Terminator = {TerminatorType, static_cast<uint32_t>(Obj.Entry), {}};
3038 return Header.getSize() + SizeCalc.getBufferOffset() + Terminator.getSize();
3039}
3040
3042 uint32_t HeaderSize =
3043 writeHeader(reinterpret_cast<uint8_t *>(Buf->getBufferStart()));
3044 SRECSectionWriter Writer(*Buf, HeaderSize);
3045 for (const SectionBase *S : Sections) {
3046 if (Error E = S->accept(Writer))
3047 return E;
3048 }
3049 Writer.writeRecords(Obj.Entry);
3050 uint64_t Offset = Writer.getBufferOffset();
3051
3052 // An S1 record terminates with an S9 record, S2 with S8, and S3 with S7.
3053 uint8_t TerminatorType = 10 - Writer.getType();
3054 Offset += writeTerminator(
3055 reinterpret_cast<uint8_t *>(Buf->getBufferStart() + Offset),
3056 TerminatorType);
3058 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
3059 return Error::success();
3060}
3061
3062namespace llvm {
3063namespace objcopy {
3064namespace elf {
3065
3066template class ELFBuilder<ELF64LE>;
3067template class ELFBuilder<ELF64BE>;
3068template class ELFBuilder<ELF32LE>;
3069template class ELFBuilder<ELF32BE>;
3070
3071template class ELFWriter<ELF64LE>;
3072template class ELFWriter<ELF64BE>;
3073template class ELFWriter<ELF32LE>;
3074template class ELFWriter<ELF32BE>;
3075
3076} // end namespace elf
3077} // end namespace objcopy
3078} // end namespace llvm
#define Fail
ReachingDefAnalysis InstSet & ToRemove
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:371
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
T Content
Elf_Shdr Shdr
uint64_t Addr
std::string Name
uint64_t Size
static bool segmentOverlapsSegment(const Segment &Child, const Segment &Parent)
Definition: ELFObject.cpp:1249
static void setAddend(Elf_Rel_Impl< ELFT, false > &, uint64_t)
Definition: ELFObject.cpp:968
static Error checkChars(StringRef Line)
Definition: ELFObject.cpp:304
static void orderSegments(std::vector< Segment * > &Segments)
Definition: ELFObject.cpp:2315
static uint64_t layoutSegments(std::vector< Segment * > &Segments, uint64_t Offset)
Definition: ELFObject.cpp:2322
static bool compareSegmentsByOffset(const Segment *A, const Segment *B)
Definition: ELFObject.cpp:1256
static uint64_t layoutSections(Range Sections, uint64_t Offset)
Definition: ELFObject.cpp:2355
static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off)
Definition: ELFObject.cpp:2391
static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine)
Definition: ELFObject.cpp:651
static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector< Segment * > &Segments, uint64_t HdrEnd)
Definition: ELFObject.cpp:2441
static void getAddend(uint64_t &, const Elf_Rel_Impl< ELFT, false > &)
Definition: ELFObject.cpp:1650
static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL)
Definition: ELFObject.cpp:976
static bool addressOverflows32bit(uint64_t Addr)
Definition: ELFObject.cpp:196
static T checkedGetHex(StringRef S)
Definition: ELFObject.cpp:201
static uint64_t sectionPhysicalAddr(const SectionBase *Sec)
Definition: ELFObject.cpp:346
static Iterator toHexStr(T X, Iterator It, size_t Len)
Definition: ELFObject.cpp:212
static Error checkRecord(const IHexRecord &R)
Definition: ELFObject.cpp:254
static Error initRelocations(RelocationSection *Relocs, T RelRange)
Definition: ELFObject.cpp:1658
static Error removeUnneededSections(Object &Obj)
Definition: ELFObject.cpp:2551
static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg)
Definition: ELFObject.cpp:1219
bool End
Definition: ELF_riscv.cpp:480
Symbol * Sym
Definition: ELF_riscv.cpp:479
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
if(PassOpts->AAPipeline)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:154
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
iterator begin() const
Definition: ArrayRef.h:153
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
const T * data() const
Definition: ArrayRef.h:162
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition: ArrayRef.h:195
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:337
Tagged union holding either a T or a Error.
Definition: Error.h:481
Error takeError()
Take ownership of the stored error.
Definition: Error.h:608
virtual StringRef getBufferIdentifier() const
Return an identifier for this buffer, typically the filename it was read from.
Definition: MemoryBuffer.h:76
size_t getBufferSize() const
Definition: MemoryBuffer.h:68
StringRef getBuffer() const
Definition: MemoryBuffer.h:70
const char * getBufferStart() const
Definition: MemoryBuffer.h:66
bool empty() const
Definition: SmallVector.h:95
size_t size() const
Definition: SmallVector.h:92
void push_back(const T &Elt)
Definition: SmallVector.h:427
pointer data()
Return a pointer to the vector's buffer, even if empty().
Definition: SmallVector.h:300
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:685
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition: StringRef.h:455
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:215
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
StringRef drop_front(size_t N=1) const
Return a StringRef equal to 'this' but with the first N elements dropped.
Definition: StringRef.h:594
StringRef slice(size_t Start, size_t End) const
Return a reference to the substring from [Start, End).
Definition: StringRef.h:669
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:131
StringRef take_front(size_t N=1) const
Return a StringRef equal to 'this' but with only the first N elements remaining.
Definition: StringRef.h:565
size_t getOffset(CachedHashStringRef S) const
Get the offest of a string in the string table.
void write(raw_ostream &OS) const
size_t add(CachedHashStringRef S)
Add a string to the builder.
void finalize()
Analyze the strings and build the final table.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static Twine utohexstr(const uint64_t &Val)
Definition: Twine.h:416
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
This class is an extension of MemoryBuffer, which allows copy-on-write access to the underlying conte...
Definition: MemoryBuffer.h:181
static std::unique_ptr< WritableMemoryBuffer > getNewMemBuffer(size_t Size, const Twine &BufferName="")
Allocate a new zero-initialized MemoryBuffer of the specified size.
An efficient, type-erasing, non-owning reference to a callable.
Error checkSection(const SectionBase &S) const
Definition: ELFObject.cpp:2758
std::vector< const SectionBase * > Sections
Definition: ELFObject.h:387
virtual Expected< size_t > getTotalSize(WritableMemoryBuffer &EmptyBuffer) const =0
StringTableSection * addStrTab()
Definition: ELFObject.cpp:1284
SymbolTableSection * addSymTab(StringTableSection *StrTab)
Definition: ELFObject.cpp:1292
std::unique_ptr< Object > Obj
Definition: ELFObject.h:1049
Expected< std::unique_ptr< Object > > build()
Definition: ELFObject.cpp:1338
Expected< std::unique_ptr< Object > > create(bool EnsureSymtab) const override
Definition: ELFObject.cpp:1957
Error visit(const SymbolTableSection &Sec) override
Definition: ELFObject.cpp:167
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:584
CompressedSection(const SectionBase &Sec, DebugCompressionType CompressionType, bool Is64Bits)
Definition: ELFObject.cpp:560
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:505
Error accept(SectionVisitor &) const override
Definition: ELFObject.cpp:1039
Error removeSectionReferences(bool AllowBrokenLinks, function_ref< bool(const SectionBase *)> ToRemove) override
Definition: ELFObject.cpp:1047
ELFBuilder(const ELFObjectFile< ELFT > &ElfObj, Object &Obj, std::optional< StringRef > ExtractPartition)
Definition: ELFObject.cpp:1411
Error build(bool EnsureSymtab)
Definition: ELFObject.cpp:1923
Expected< std::unique_ptr< Object > > create(bool EnsureSymtab) const override
Definition: ELFObject.cpp:1996
Error visit(Section &Sec) override
Definition: ELFObject.cpp:85
Error visit(const SymbolTableSection &Sec) override
Definition: ELFObject.cpp:865
ELFWriter(Object &Obj, raw_ostream &Out, bool WSH, bool OnlyKeepDebug)
Definition: ELFObject.cpp:2155
void setSymTab(const SymbolTableSection *SymTabSec)
Definition: ELFObject.h:953
void replaceSectionReferences(const DenseMap< SectionBase *, SectionBase * > &FromTo) override
Definition: ELFObject.cpp:1122
Error accept(SectionVisitor &) const override
Definition: ELFObject.cpp:1210
ArrayRef< uint8_t > Contents
Definition: ELFObject.h:949
void addMember(SectionBase *Sec)
Definition: ELFObject.h:956
Error removeSectionReferences(bool AllowBrokenLinks, function_ref< bool(const SectionBase *)> ToRemove) override
Definition: ELFObject.cpp:1092
void setFlagWord(ELF::Elf32_Word W)
Definition: ELFObject.h:955
Error removeSymbols(function_ref< bool(const Symbol &)> ToRemove) override
Definition: ELFObject.cpp:1108
Expected< std::unique_ptr< Object > > build()
Definition: ELFObject.cpp:1398
Expected< std::unique_ptr< Object > > create(bool EnsureSymtab) const override
Definition: ELFObject.cpp:1988
void writeSection(const SectionBase *Sec, ArrayRef< uint8_t > Data)
Definition: ELFObject.cpp:354
Error visit(const Section &Sec) final
Definition: ELFObject.cpp:403
virtual void writeData(uint8_t Type, uint16_t Addr, ArrayRef< uint8_t > Data)
Definition: ELFObject.cpp:398
void writeData(uint8_t Type, uint16_t Addr, ArrayRef< uint8_t > Data) override
Definition: ELFObject.cpp:428
Error visit(const StringTableSection &Sec) override
Definition: ELFObject.cpp:435
virtual Error visit(Section &Sec)=0
SectionTableRef sections() const
Definition: ELFObject.h:1199
StringTableSection * SectionNames
Definition: ELFObject.h:1193
bool isRelocatable() const
Definition: ELFObject.h:1237
iterator_range< filter_iterator< pointee_iterator< std::vector< SecPtr >::const_iterator >, decltype(&sectionIsAlloc)> > allocSections() const
Definition: ELFObject.h:1203
Error updateSection(StringRef Name, ArrayRef< uint8_t > Data)
Definition: ELFObject.cpp:2160
SectionIndexSection * SectionIndexTable
Definition: ELFObject.h:1195
Error removeSymbols(function_ref< bool(const Symbol &)> ToRemove)
Definition: ELFObject.cpp:2276
Error removeSections(bool AllowBrokenLinks, std::function< bool(const SectionBase &)> ToRemove)
Definition: ELFObject.cpp:2191
SymbolTableSection * SymbolTable
Definition: ELFObject.h:1194
Error replaceSections(const DenseMap< SectionBase *, SectionBase * > &FromTo)
Definition: ELFObject.cpp:2252
void appendHexData(StringRef HexData)
Definition: ELFObject.cpp:521
Error accept(SectionVisitor &Sec) const override
Definition: ELFObject.cpp:513
Error initialize(SectionTableRef SecTable) override
Definition: ELFObject.cpp:930
const Object & getObject() const
Definition: ELFObject.h:924
void addRelocation(const Relocation &Rel)
Definition: ELFObject.h:914
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:1002
Error removeSymbols(function_ref< bool(const Symbol &)> ToRemove) override
Definition: ELFObject.cpp:1010
void replaceSectionReferences(const DenseMap< SectionBase *, SectionBase * > &FromTo) override
Definition: ELFObject.cpp:1027
Error removeSectionReferences(bool AllowBrokenLinks, function_ref< bool(const SectionBase *)> ToRemove) override
Definition: ELFObject.cpp:902
virtual void writeRecord(SRecord &Record, uint64_t Off)=0
void writeSection(const SectionBase &S, ArrayRef< uint8_t > Data)
Definition: ELFObject.cpp:2911
Error visit(const Section &S) override
Definition: ELFObject.cpp:2878
Error visit(const StringTableSection &Sec) override
Definition: ELFObject.cpp:2926
void writeRecord(SRecord &Record, uint64_t Off) override
Definition: ELFObject.cpp:2893
ArrayRef< uint8_t > OriginalData
Definition: ELFObject.h:531
virtual Error initialize(SectionTableRef SecTable)
Definition: ELFObject.cpp:62
virtual Error removeSectionReferences(bool AllowBrokenLinks, function_ref< bool(const SectionBase *)> ToRemove)
Definition: ELFObject.cpp:53
virtual void replaceSectionReferences(const DenseMap< SectionBase *, SectionBase * > &)
Definition: ELFObject.cpp:65
virtual Error removeSymbols(function_ref< bool(const Symbol &)> ToRemove)
Definition: ELFObject.cpp:58
virtual Error accept(SectionVisitor &Visitor) const =0
void setSymTab(SymbolTableSection *SymTab)
Definition: ELFObject.h:793
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:643
void reserve(size_t NumSymbols)
Definition: ELFObject.h:789
Error initialize(SectionTableRef SecTable) override
Definition: ELFObject.cpp:624
Expected< T * > getSectionOfType(uint32_t Index, Twine IndexErrMsg, Twine TypeErrMsg)
Definition: ELFObject.cpp:1693
Expected< SectionBase * > getSection(uint32_t Index, Twine ErrMsg)
Definition: ELFObject.cpp:1685
virtual Error visit(const Section &Sec)=0
Error visit(const Section &Sec) override
Definition: ELFObject.cpp:189
WritableMemoryBuffer & Out
Definition: ELFObject.h:109
Error removeSectionReferences(bool AllowBrokenLinks, function_ref< bool(const SectionBase *)> ToRemove) override
Definition: ELFObject.cpp:1067
Error initialize(SectionTableRef SecTable) override
Definition: ELFObject.cpp:1136
void restoreSymTabLink(SymbolTableSection &SymTab) override
Definition: ELFObject.cpp:451
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:443
void addSection(const SectionBase *Sec)
Definition: ELFObject.h:597
void removeSection(const SectionBase *Sec)
Definition: ELFObject.h:596
const SectionBase * firstSection() const
Definition: ELFObject.h:590
ArrayRef< uint8_t > getContents() const
Definition: ELFObject.h:599
std::set< const SectionBase *, SectionCompare > Sections
Definition: ELFObject.h:585
uint32_t findIndex(StringRef Name) const
Definition: ELFObject.cpp:594
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:609
const SectionBase * getStrTab() const
Definition: ELFObject.h:836
Error removeSectionReferences(bool AllowBrokenLinks, function_ref< bool(const SectionBase *)> ToRemove) override
Definition: ELFObject.cpp:742
const SectionIndexSection * getShndxTable() const
Definition: ELFObject.h:834
std::vector< std::unique_ptr< Symbol > > Symbols
Definition: ELFObject.h:814
SectionIndexSection * SectionIndexTable
Definition: ELFObject.h:816
Error accept(SectionVisitor &Visitor) const override
Definition: ELFObject.cpp:881
void addSymbol(Twine Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn, uint64_t Value, uint8_t Visibility, uint16_t Shndx, uint64_t SymbolSize)
Definition: ELFObject.cpp:717
void updateSymbols(function_ref< void(Symbol &)> Callable)
Definition: ELFObject.cpp:759
Expected< const Symbol * > getSymbolByIndex(uint32_t Index) const
Definition: ELFObject.cpp:848
Error removeSymbols(function_ref< bool(const Symbol &)> ToRemove) override
Definition: ELFObject.cpp:768
Error initialize(SectionTableRef SecTable) override
Definition: ELFObject.cpp:789
void replaceSectionReferences(const DenseMap< SectionBase *, SectionBase * > &FromTo) override
Definition: ELFObject.cpp:782
std::unique_ptr< Symbol > SymPtr
Definition: ELFObject.h:819
void setShndxTable(SectionIndexSection *ShndxTable)
Definition: ELFObject.h:831
StringTableSection * SymbolNames
Definition: ELFObject.h:815
std::unique_ptr< WritableMemoryBuffer > Buf
Definition: ELFObject.h:313
const Elf_Ehdr & getHeader() const
Definition: ELF.h:278
static Expected< ELFFile > create(StringRef Object)
Definition: ELF.h:887
Expected< Elf_Phdr_Range > program_headers() const
Iterate over program header table.
Definition: ELF.h:375
size_t getBufSize() const
Definition: ELF.h:268
const uint8_t * base() const
Definition: ELF.h:265
Represents a GOFF physical record.
Definition: GOFF.h:31
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & write(unsigned char C)
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:691
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Definition: ELF.h:28
@ ELFDATA2MSB
Definition: ELF.h:337
@ ELFDATA2LSB
Definition: ELF.h:336
@ SHN_MIPS_SUNDEFINED
Definition: ELF.h:578
@ SHN_MIPS_SCOMMON
Definition: ELF.h:577
@ SHN_MIPS_ACOMMON
Definition: ELF.h:574
@ GRP_COMDAT
Definition: ELF.h:1286
void encodeCrel(raw_ostream &OS, RelocsTy Relocs, F ToCrel)
Definition: MCELFExtras.h:25
@ ELFCOMPRESS_ZSTD
Definition: ELF.h:1969
@ ELFCOMPRESS_ZLIB
Definition: ELF.h:1968
@ EM_NONE
Definition: ELF.h:134
@ EM_HEXAGON
Definition: ELF.h:258
@ EM_MIPS
Definition: ELF.h:142
@ EM_AMDGPU
Definition: ELF.h:317
@ ET_REL
Definition: ELF.h:117
@ EV_CURRENT
Definition: ELF.h:128
uint32_t Elf32_Word
Definition: ELF.h:33
@ ELFOSABI_NONE
Definition: ELF.h:342
@ SHT_STRTAB
Definition: ELF.h:1091
@ SHT_GROUP
Definition: ELF.h:1103
@ SHT_PROGBITS
Definition: ELF.h:1089
@ SHT_REL
Definition: ELF.h:1097
@ SHT_NULL
Definition: ELF.h:1088
@ SHT_NOBITS
Definition: ELF.h:1096
@ SHT_SYMTAB
Definition: ELF.h:1090
@ SHT_LLVM_PART_EHDR
Definition: ELF.h:1123
@ SHT_CREL
Definition: ELF.h:1110
@ SHT_DYNAMIC
Definition: ELF.h:1094
@ SHT_SYMTAB_SHNDX
Definition: ELF.h:1104
@ SHT_GNU_HASH
Definition: ELF.h:1136
@ SHT_RELA
Definition: ELF.h:1092
@ SHT_DYNSYM
Definition: ELF.h:1099
@ SHT_HASH
Definition: ELF.h:1093
@ SHN_HEXAGON_SCOMMON_2
Definition: ELF.h:657
@ SHN_HEXAGON_SCOMMON_4
Definition: ELF.h:658
@ SHN_HEXAGON_SCOMMON_8
Definition: ELF.h:659
@ SHN_HEXAGON_SCOMMON_1
Definition: ELF.h:656
@ SHN_HEXAGON_SCOMMON
Definition: ELF.h:655
@ EI_DATA
Definition: ELF.h:54
@ EI_MAG3
Definition: ELF.h:52
@ EI_MAG1
Definition: ELF.h:50
@ EI_VERSION
Definition: ELF.h:55
@ EI_MAG2
Definition: ELF.h:51
@ EI_ABIVERSION
Definition: ELF.h:57
@ EI_MAG0
Definition: ELF.h:49
@ EI_CLASS
Definition: ELF.h:53
@ EI_OSABI
Definition: ELF.h:56
@ STB_GLOBAL
Definition: ELF.h:1340
@ STB_LOCAL
Definition: ELF.h:1339
@ ELFCLASS64
Definition: ELF.h:330
@ ELFCLASS32
Definition: ELF.h:329
@ SHN_XINDEX
Definition: ELF.h:1082
@ SHN_ABS
Definition: ELF.h:1080
@ SHN_COMMON
Definition: ELF.h:1081
@ SHN_UNDEF
Definition: ELF.h:1074
@ SHN_LORESERVE
Definition: ELF.h:1075
@ SHF_ALLOC
Definition: ELF.h:1186
@ SHF_COMPRESSED
Definition: ELF.h:1214
@ SHF_WRITE
Definition: ELF.h:1183
@ SHF_TLS
Definition: ELF.h:1211
@ STT_NOTYPE
Definition: ELF.h:1351
@ PT_LOAD
Definition: ELF.h:1493
@ PT_TLS
Definition: ELF.h:1499
@ PT_PHDR
Definition: ELF.h:1498
@ SHN_AMDGPU_LDS
Definition: ELF.h:1890
const char * getReasonIfUnsupported(Format F)
Definition: Compression.cpp:30
Error decompress(DebugCompressionType T, ArrayRef< uint8_t > Input, uint8_t *Output, size_t UncompressedSize)
Definition: Compression.cpp:58
Format formatFor(DebugCompressionType Type)
Definition: Compression.h:81
void compress(Params P, ArrayRef< uint8_t > Input, SmallVectorImpl< uint8_t > &Output)
Definition: Compression.cpp:46
std::optional< const char * > toString(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract a string value from it.
StringRef toStringRef(const std::optional< DWARFFormValue > &V, StringRef Default={})
Take an optional DWARFFormValue and try to extract a string value from it.
support::ulittle32_t Word
Definition: IRSymtab.h:52
void write(void *memory, value_type value, endianness endian)
Write a value to memory with a particular endianness.
Definition: Endian.h:92
StringRef filename(StringRef path, Style style=Style::native)
Get filename.
Definition: Path.cpp:578
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
void stable_sort(R &&Range)
Definition: STLExtras.h:1995
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition: Casting.h:649
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition: Error.h:1286
@ operation_not_permitted
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition: STLExtras.h:1902
@ Mod
The access may modify the value stored in memory.
DebugCompressionType
Definition: Compression.h:27
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1824
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2057
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static IHexLineData getLine(uint8_t Type, uint16_t Addr, ArrayRef< uint8_t > Data)
Definition: ELFObject.cpp:235
static uint8_t getChecksum(StringRef S)
Definition: ELFObject.cpp:225
static Expected< IHexRecord > parse(StringRef Line)
Definition: ELFObject.cpp:317
static size_t getLength(size_t DataSize)
Definition: ELFObject.h:209
static size_t getLineLength(size_t DataSize)
Definition: ELFObject.h:215
uint8_t getAddressSize() const
Definition: ELFObject.cpp:2971
static SRecord getHeader(StringRef FileName)
Definition: ELFObject.cpp:3000
uint8_t getChecksum() const
Definition: ELFObject.cpp:2955
SRecLineData toString() const
Definition: ELFObject.cpp:2935
static uint8_t getType(uint32_t Address)
Definition: ELFObject.cpp:2992
ArrayRef< uint8_t > Data
Definition: ELFObject.h:424
uint16_t getShndx() const
Definition: ELFObject.cpp:687
SectionBase * DefinedIn
Definition: ELFObject.h:760
SymbolShndxType ShndxType
Definition: ELFObject.h:761
Definition: regcomp.c:192