45#define DEBUG_TYPE "hardware-loops"
47#define HW_LOOPS_NAME "Hardware Loop Insertion"
53 cl::desc(
"Force hardware loops intrinsics to be inserted"));
58 cl::desc(
"Force hardware loop counter to be updated through a phi"));
62 cl::desc(
"Force allowance of nested hardware loops"));
66 cl::desc(
"Set the loop decrement value"));
70 cl::desc(
"Set the loop counter bitwidth"));
75 cl::desc(
"Force generation of loop guard intrinsic"));
77STATISTIC(NumHWLoops,
"Number of loops converted to hardware loops");
82 dbgs() <<
"HWLoops: " << DebugMsg;
97 CodeRegion =
I->getParent();
100 if (
I->getDebugLoc())
101 DL =
I->getDebugLoc();
105 R <<
"hardware-loop not created: ";
123 HardwareLoopsLegacy() : FunctionPass(ID) {
129 void getAnalysisUsage(AnalysisUsage &AU)
const override {
138 AU.
addRequired<OptimizationRemarkEmitterWrapperPass>();
143 class HardwareLoopsImpl {
145 HardwareLoopsImpl(ScalarEvolution &SE, LoopInfo &LI,
bool PreserveLCSSA,
146 DominatorTree &DT,
const TargetTransformInfo &TTI,
147 TargetLibraryInfo *TLI, AssumptionCache &AC,
148 OptimizationRemarkEmitter *ORE, HardwareLoopOptions &Opts)
149 : SE(SE), LI(LI), PreserveLCSSA(PreserveLCSSA), DT(DT), TTI(TTI),
150 TLI(TLI), AC(AC), ORE(ORE), Opts(Opts) {}
152 bool run(Function &
F);
156 bool TryConvertLoop(Loop *L, LLVMContext &Ctx);
160 bool TryConvertLoop(HardwareLoopInfo &HWLoopInfo);
166 const TargetTransformInfo &TTI;
167 TargetLibraryInfo *TLI =
nullptr;
169 OptimizationRemarkEmitter *ORE;
170 HardwareLoopOptions &Opts;
171 bool MadeChange =
false;
176 Value *InitLoopCount();
179 Value *InsertIterationSetup(
Value *LoopCountInit);
182 void InsertLoopDec();
190 PHINode *InsertPHICounter(
Value *NumElts,
Value *EltsRem);
194 void UpdateBranch(
Value *EltsRem);
197 HardwareLoop(HardwareLoopInfo &
Info, ScalarEvolution &SE,
198 OptimizationRemarkEmitter *ORE, HardwareLoopOptions &Opts)
199 : SE(SE), ORE(ORE), Opts(Opts), L(
Info.L),
200 M(L->getHeader()->getModule()), ExitCount(
Info.ExitCount),
201 CountType(
Info.CountType), ExitBranch(
Info.ExitBranch),
202 LoopDecrement(
Info.LoopDecrement), UsePHICounter(
Info.CounterInReg),
203 UseLoopGuard(
Info.PerformEntryTest) {}
209 OptimizationRemarkEmitter *ORE =
nullptr;
210 HardwareLoopOptions &Opts;
213 const SCEV *ExitCount =
nullptr;
214 Type *CountType =
nullptr;
215 BranchInst *ExitBranch =
nullptr;
216 Value *LoopDecrement =
nullptr;
217 bool UsePHICounter =
false;
218 bool UseLoopGuard =
false;
223char HardwareLoopsLegacy::ID = 0;
225bool HardwareLoopsLegacy::runOnFunction(
Function &
F) {
231 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
232 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
233 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
234 auto &
TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
F);
235 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
236 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
237 auto *TLI = TLIP ? &TLIP->getTLI(
F) :
nullptr;
238 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
F);
239 bool PreserveLCSSA = mustPreserveAnalysisID(
LCSSAID);
241 HardwareLoopOptions Opts;
255 HardwareLoopsImpl Impl(SE, LI, PreserveLCSSA, DT,
TTI, TLI, AC, ORE, Opts);
269 HardwareLoopsImpl Impl(SE, LI,
true, DT,
TTI, TLI, AC, ORE, Opts);
282bool HardwareLoopsImpl::run(
Function &
F) {
285 if (L->isOutermost())
286 TryConvertLoop(L, Ctx);
294 bool AnyChanged =
false;
296 AnyChanged |= TryConvertLoop(SL, Ctx);
298 reportHWLoopFailure(
"nested hardware-loops not supported",
"HWLoopNested",
303 LLVM_DEBUG(
dbgs() <<
"HWLoops: Loop " <<
L->getHeader()->getName() <<
"\n");
305 HardwareLoopInfo HWLoopInfo(L);
306 if (!HWLoopInfo.canAnalyze(LI)) {
307 reportHWLoopFailure(
"cannot analyze loop, irreducible control flow",
308 "HWLoopCannotAnalyze", ORE, L);
314 reportHWLoopFailure(
"it's not profitable to create a hardware-loop",
315 "HWLoopNotProfitable", ORE, L);
325 HWLoopInfo.LoopDecrement =
326 ConstantInt::get(HWLoopInfo.CountType, Opts.
Decrement.value());
328 MadeChange |= TryConvertLoop(HWLoopInfo);
329 return MadeChange && (!HWLoopInfo.IsNestingLegal && !Opts.
ForceNested);
332bool HardwareLoopsImpl::TryConvertLoop(HardwareLoopInfo &HWLoopInfo) {
334 Loop *
L = HWLoopInfo.
L;
335 LLVM_DEBUG(
dbgs() <<
"HWLoops: Try to convert profitable loop: " << *L);
342 reportHWLoopFailure(
"loop is not a candidate",
"HWLoopNoCandidate", ORE, L);
348 "Hardware Loop must have set exit info.");
358 HardwareLoop HWLoop(HWLoopInfo, SE, ORE, Opts);
364void HardwareLoop::Create() {
367 Value *LoopCountInit = InitLoopCount();
368 if (!LoopCountInit) {
369 reportHWLoopFailure(
"could not safely create a loop count expression",
370 "HWLoopNotSafe", ORE, L);
374 Value *
Setup = InsertIterationSetup(LoopCountInit);
376 if (UsePHICounter || Opts.
ForcePhi) {
377 Instruction *LoopDec = InsertLoopRegDec(LoopCountInit);
378 Value *EltsRem = InsertPHICounter(Setup, LoopDec);
380 UpdateBranch(LoopDec);
386 for (
auto *
I :
L->blocks())
391 BasicBlock *Preheader = L->getLoopPreheader();
400 if (BI->isUnconditional() || !
isa<ICmpInst>(BI->getCondition()))
407 if (!ICmp->isEquality())
417 Value *CountBefZext =
420 if (!IsCompareZero(ICmp,
Count, 0) && !IsCompareZero(ICmp,
Count, 1) &&
421 !IsCompareZero(ICmp, CountBefZext, 0) &&
422 !IsCompareZero(ICmp, CountBefZext, 1))
426 if (BI->getSuccessor(SuccIdx) != Preheader)
432Value *HardwareLoop::InitLoopCount() {
433 LLVM_DEBUG(
dbgs() <<
"HWLoops: Initialising loop counter value:\n");
437 SCEVExpander SCEVE(SE,
"loopcnt");
439 ExitCount->
getType() != CountType)
454 UseLoopGuard =
false;
462 if (!SCEVE.isSafeToExpandAt(ExitCount, Predecessor->
getTerminator()))
463 UseLoopGuard =
false;
468 if (!SCEVE.isSafeToExpandAt(ExitCount, BB->
getTerminator())) {
470 << *ExitCount <<
"\n");
474 Value *
Count = SCEVE.expandCodeFor(ExitCount, CountType,
485 BeginBB = UseLoopGuard ? BB :
L->getLoopPreheader();
487 <<
" - Expanded Count in " << BB->
getName() <<
"\n"
488 <<
" - Will insert set counter intrinsic into: "
489 << BeginBB->
getName() <<
"\n");
493Value* HardwareLoop::InsertIterationSetup(
Value *LoopCountInit) {
496 Builder.setIsFPConstrained(
true);
498 bool UsePhi = UsePHICounter || Opts.
ForcePhi;
500 ? (UsePhi ? Intrinsic::test_start_loop_iterations
501 : Intrinsic::test_set_loop_iterations)
502 : (UsePhi ?
Intrinsic::start_loop_iterations
504 Value *LoopSetup = Builder.CreateIntrinsic(
ID, Ty, LoopCountInit);
510 "Expected conditional branch");
513 UsePhi ? Builder.CreateExtractValue(LoopSetup, 1) : LoopSetup;
515 LoopGuard->setCondition(SetCount);
516 if (LoopGuard->getSuccessor(0) !=
L->getLoopPreheader())
517 LoopGuard->swapSuccessors();
519 LLVM_DEBUG(
dbgs() <<
"HWLoops: Inserted loop counter: " << *LoopSetup
521 if (UsePhi && UseLoopGuard)
522 LoopSetup = Builder.CreateExtractValue(LoopSetup, 0);
523 return !UsePhi ? LoopCountInit : LoopSetup;
526void HardwareLoop::InsertLoopDec() {
528 if (ExitBranch->
getParent()->getParent()->getAttributes().hasFnAttr(
529 Attribute::StrictFP))
530 CondBuilder.setIsFPConstrained(
true);
533 Value *NewCond = CondBuilder.CreateIntrinsic(Intrinsic::loop_decrement,
546 LLVM_DEBUG(
dbgs() <<
"HWLoops: Inserted loop dec: " << *NewCond <<
"\n");
551 if (ExitBranch->
getParent()->getParent()->getAttributes().hasFnAttr(
552 Attribute::StrictFP))
553 CondBuilder.setIsFPConstrained(
true);
556 Value *
Call = CondBuilder.CreateIntrinsic(Intrinsic::loop_decrement_reg,
563PHINode* HardwareLoop::InsertPHICounter(
Value *NumElts,
Value *EltsRem) {
567 IRBuilder<> Builder(Header, Header->getFirstNonPHIIt());
568 PHINode *
Index = Builder.CreatePHI(NumElts->
getType(), 2);
569 Index->addIncoming(NumElts, Preheader);
570 Index->addIncoming(EltsRem, Latch);
575void HardwareLoop::UpdateBranch(
Value *EltsRem) {
578 CondBuilder.CreateICmpNE(EltsRem, ConstantInt::get(EltsRem->
getType(), 0));
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool runOnFunction(Function &F, bool PostInlining)
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< unsigned > CounterBitWidth("hardware-loop-counter-bitwidth", cl::Hidden, cl::init(32), cl::desc("Set the loop counter bitwidth"))
static OptimizationRemarkAnalysis createHWLoopAnalysis(StringRef RemarkName, Loop *L, Instruction *I)
static cl::opt< bool > ForceGuardLoopEntry("force-hardware-loop-guard", cl::Hidden, cl::init(false), cl::desc("Force generation of loop guard intrinsic"))
static void debugHWLoopFailure(const StringRef DebugMsg, Instruction *I)
static cl::opt< unsigned > LoopDecrement("hardware-loop-decrement", cl::Hidden, cl::init(1), cl::desc("Set the loop decrement value"))
static cl::opt< bool > ForceHardwareLoops("force-hardware-loops", cl::Hidden, cl::init(false), cl::desc("Force hardware loops intrinsics to be inserted"))
static bool CanGenerateTest(Loop *L, Value *Count)
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
Defines an IR pass for the creation of hardware loops.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
MachineInstr unsigned OpIdx
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
A function analysis which provides an AssumptionCache.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setCondition(Value *V)
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Predicate getPredicate() const
Return the predicate for this instruction.
Analysis pass which computes a DominatorTree.
FunctionPass class - This class is used to implement most global optimizations.
AttributeList getAttributes() const
Return the attribute list for this Function.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
Analysis pass that exposes the LoopInfo for a function.
Represents a single loop in the control flow graph.
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
bool isPointerTy() const
True if this is an instance of PointerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
int getNumOccurrences() const
const ParentTy * getParent() const
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ BasicBlock
Various leaf nodes.
initializer< Ty > init(const Ty &Val)
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI BasicBlock * InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
InsertPreheaderForLoop - Once we discover that a loop doesn't have a preheader, this method is called...
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void initializeHardwareLoopsLegacyPass(PassRegistry &)
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *, ArrayRef< OperandBundleDef >) -> IRBuilder< FolderTy, InserterTy >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI FunctionPass * createHardwareLoopsLegacyPass()
Create Hardware Loop pass.
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
std::optional< bool > Force
HardwareLoopOptions & setForceNested(bool Force)
std::optional< bool > ForceGuard
std::optional< unsigned > Decrement
HardwareLoopOptions & setDecrement(unsigned Count)
HardwareLoopOptions & setForceGuard(bool Force)
HardwareLoopOptions & setForce(bool Force)
HardwareLoopOptions & setCounterBitwidth(unsigned Width)
std::optional< unsigned > Bitwidth
HardwareLoopOptions & setForcePhi(bool Force)
std::optional< bool > ForcePhi
std::optional< bool > ForceNested
bool getForceNested() const