LLVM  10.0.0svn
InstCombineSelect.cpp
Go to the documentation of this file.
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/KnownBits.h"
41 #include <cassert>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "instcombine"
48 
50  SelectPatternFlavor SPF, Value *A, Value *B) {
52  assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53  return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55 
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
59  const TargetLibraryInfo &TLI) {
60  // The select condition must be an equality compare with a constant operand.
61  Value *X;
62  Constant *C;
63  CmpInst::Predicate Pred;
64  if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65  return nullptr;
66 
67  bool IsEq;
68  if (ICmpInst::isEquality(Pred))
69  IsEq = Pred == ICmpInst::ICMP_EQ;
70  else if (Pred == FCmpInst::FCMP_OEQ)
71  IsEq = true;
72  else if (Pred == FCmpInst::FCMP_UNE)
73  IsEq = false;
74  else
75  return nullptr;
76 
77  // A select operand must be a binop.
78  BinaryOperator *BO;
79  if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80  return nullptr;
81 
82  // The compare constant must be the identity constant for that binop.
83  // If this a floating-point compare with 0.0, any zero constant will do.
84  Type *Ty = BO->getType();
85  Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86  if (IdC != C) {
87  if (!IdC || !CmpInst::isFPPredicate(Pred))
88  return nullptr;
89  if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90  return nullptr;
91  }
92 
93  // Last, match the compare variable operand with a binop operand.
94  Value *Y;
95  if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96  return nullptr;
97  if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98  return nullptr;
99 
100  // +0.0 compares equal to -0.0, and so it does not behave as required for this
101  // transform. Bail out if we can not exclude that possibility.
102  if (isa<FPMathOperator>(BO))
103  if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104  return nullptr;
105 
106  // BO = binop Y, X
107  // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108  // =>
109  // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
110  Sel.setOperand(IsEq ? 1 : 2, Y);
111  return &Sel;
112 }
113 
114 /// This folds:
115 /// select (icmp eq (and X, C1)), TC, FC
116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
124  InstCombiner::BuilderTy &Builder) {
125  const APInt *SelTC, *SelFC;
126  if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127  !match(Sel.getFalseValue(), m_APInt(SelFC)))
128  return nullptr;
129 
130  // If this is a vector select, we need a vector compare.
131  Type *SelType = Sel.getType();
132  if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133  return nullptr;
134 
135  Value *V;
136  APInt AndMask;
137  bool CreateAnd = false;
138  ICmpInst::Predicate Pred = Cmp->getPredicate();
139  if (ICmpInst::isEquality(Pred)) {
140  if (!match(Cmp->getOperand(1), m_Zero()))
141  return nullptr;
142 
143  V = Cmp->getOperand(0);
144  const APInt *AndRHS;
145  if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146  return nullptr;
147 
148  AndMask = *AndRHS;
149  } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150  Pred, V, AndMask)) {
151  assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152  if (!AndMask.isPowerOf2())
153  return nullptr;
154 
155  CreateAnd = true;
156  } else {
157  return nullptr;
158  }
159 
160  // In general, when both constants are non-zero, we would need an offset to
161  // replace the select. This would require more instructions than we started
162  // with. But there's one special-case that we handle here because it can
163  // simplify/reduce the instructions.
164  APInt TC = *SelTC;
165  APInt FC = *SelFC;
166  if (!TC.isNullValue() && !FC.isNullValue()) {
167  // If the select constants differ by exactly one bit and that's the same
168  // bit that is masked and checked by the select condition, the select can
169  // be replaced by bitwise logic to set/clear one bit of the constant result.
170  if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171  return nullptr;
172  if (CreateAnd) {
173  // If we have to create an 'and', then we must kill the cmp to not
174  // increase the instruction count.
175  if (!Cmp->hasOneUse())
176  return nullptr;
177  V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178  }
179  bool ExtraBitInTC = TC.ugt(FC);
180  if (Pred == ICmpInst::ICMP_EQ) {
181  // If the masked bit in V is clear, clear or set the bit in the result:
182  // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183  // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184  Constant *C = ConstantInt::get(SelType, TC);
185  return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186  }
187  if (Pred == ICmpInst::ICMP_NE) {
188  // If the masked bit in V is set, set or clear the bit in the result:
189  // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190  // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191  Constant *C = ConstantInt::get(SelType, FC);
192  return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193  }
194  llvm_unreachable("Only expecting equality predicates");
195  }
196 
197  // Make sure one of the select arms is a power-of-2.
198  if (!TC.isPowerOf2() && !FC.isPowerOf2())
199  return nullptr;
200 
201  // Determine which shift is needed to transform result of the 'and' into the
202  // desired result.
203  const APInt &ValC = !TC.isNullValue() ? TC : FC;
204  unsigned ValZeros = ValC.logBase2();
205  unsigned AndZeros = AndMask.logBase2();
206 
207  // Insert the 'and' instruction on the input to the truncate.
208  if (CreateAnd)
209  V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210 
211  // If types don't match, we can still convert the select by introducing a zext
212  // or a trunc of the 'and'.
213  if (ValZeros > AndZeros) {
214  V = Builder.CreateZExtOrTrunc(V, SelType);
215  V = Builder.CreateShl(V, ValZeros - AndZeros);
216  } else if (ValZeros < AndZeros) {
217  V = Builder.CreateLShr(V, AndZeros - ValZeros);
218  V = Builder.CreateZExtOrTrunc(V, SelType);
219  } else {
220  V = Builder.CreateZExtOrTrunc(V, SelType);
221  }
222 
223  // Okay, now we know that everything is set up, we just don't know whether we
224  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225  bool ShouldNotVal = !TC.isNullValue();
226  ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227  if (ShouldNotVal)
228  V = Builder.CreateXor(V, ValC);
229 
230  return V;
231 }
232 
233 /// We want to turn code that looks like this:
234 /// %C = or %A, %B
235 /// %D = select %cond, %C, %A
236 /// into:
237 /// %C = select %cond, %B, 0
238 /// %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
244  switch (I->getOpcode()) {
245  case Instruction::Add:
246  case Instruction::Mul:
247  case Instruction::And:
248  case Instruction::Or:
249  case Instruction::Xor:
250  return 3; // Can fold through either operand.
251  case Instruction::Sub: // Can only fold on the amount subtracted.
252  case Instruction::Shl: // Can only fold on the shift amount.
253  case Instruction::LShr:
254  case Instruction::AShr:
255  return 1;
256  default:
257  return 0; // Cannot fold
258  }
259 }
260 
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
264  switch (I->getOpcode()) {
265  default: llvm_unreachable("This cannot happen!");
266  case Instruction::Add:
267  case Instruction::Sub:
268  case Instruction::Or:
269  case Instruction::Xor:
270  case Instruction::Shl:
271  case Instruction::LShr:
272  case Instruction::AShr:
274  case Instruction::And:
276  case Instruction::Mul:
277  return APInt(I->getType()->getScalarSizeInBits(), 1);
278  }
279 }
280 
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283  Instruction *FI) {
284  // Don't break up min/max patterns. The hasOneUse checks below prevent that
285  // for most cases, but vector min/max with bitcasts can be transformed. If the
286  // one-use restrictions are eased for other patterns, we still don't want to
287  // obfuscate min/max.
288  if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289  match(&SI, m_SMax(m_Value(), m_Value())) ||
290  match(&SI, m_UMin(m_Value(), m_Value())) ||
291  match(&SI, m_UMax(m_Value(), m_Value()))))
292  return nullptr;
293 
294  // If this is a cast from the same type, merge.
295  Value *Cond = SI.getCondition();
296  Type *CondTy = Cond->getType();
297  if (TI->getNumOperands() == 1 && TI->isCast()) {
298  Type *FIOpndTy = FI->getOperand(0)->getType();
299  if (TI->getOperand(0)->getType() != FIOpndTy)
300  return nullptr;
301 
302  // The select condition may be a vector. We may only change the operand
303  // type if the vector width remains the same (and matches the condition).
304  if (CondTy->isVectorTy()) {
305  if (!FIOpndTy->isVectorTy())
306  return nullptr;
307  if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308  return nullptr;
309 
310  // TODO: If the backend knew how to deal with casts better, we could
311  // remove this limitation. For now, there's too much potential to create
312  // worse codegen by promoting the select ahead of size-altering casts
313  // (PR28160).
314  //
315  // Note that ValueTracking's matchSelectPattern() looks through casts
316  // without checking 'hasOneUse' when it matches min/max patterns, so this
317  // transform may end up happening anyway.
318  if (TI->getOpcode() != Instruction::BitCast &&
319  (!TI->hasOneUse() || !FI->hasOneUse()))
320  return nullptr;
321  } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322  // TODO: The one-use restrictions for a scalar select could be eased if
323  // the fold of a select in visitLoadInst() was enhanced to match a pattern
324  // that includes a cast.
325  return nullptr;
326  }
327 
328  // Fold this by inserting a select from the input values.
329  Value *NewSI =
330  Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331  SI.getName() + ".v", &SI);
332  return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333  TI->getType());
334  }
335 
336  // Cond ? -X : -Y --> -(Cond ? X : Y)
337  Value *X, *Y;
338  if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339  (TI->hasOneUse() || FI->hasOneUse())) {
340  Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341  // TODO: Remove the hack for the binop form when the unary op is optimized
342  // properly with all IR passes.
343  if (TI->getOpcode() != Instruction::FNeg)
344  return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345  return UnaryOperator::CreateFNeg(NewSel);
346  }
347 
348  // Only handle binary operators (including two-operand getelementptr) with
349  // one-use here. As with the cast case above, it may be possible to relax the
350  // one-use constraint, but that needs be examined carefully since it may not
351  // reduce the total number of instructions.
352  if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353  (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354  !TI->hasOneUse() || !FI->hasOneUse())
355  return nullptr;
356 
357  // Figure out if the operations have any operands in common.
358  Value *MatchOp, *OtherOpT, *OtherOpF;
359  bool MatchIsOpZero;
360  if (TI->getOperand(0) == FI->getOperand(0)) {
361  MatchOp = TI->getOperand(0);
362  OtherOpT = TI->getOperand(1);
363  OtherOpF = FI->getOperand(1);
364  MatchIsOpZero = true;
365  } else if (TI->getOperand(1) == FI->getOperand(1)) {
366  MatchOp = TI->getOperand(1);
367  OtherOpT = TI->getOperand(0);
368  OtherOpF = FI->getOperand(0);
369  MatchIsOpZero = false;
370  } else if (!TI->isCommutative()) {
371  return nullptr;
372  } else if (TI->getOperand(0) == FI->getOperand(1)) {
373  MatchOp = TI->getOperand(0);
374  OtherOpT = TI->getOperand(1);
375  OtherOpF = FI->getOperand(0);
376  MatchIsOpZero = true;
377  } else if (TI->getOperand(1) == FI->getOperand(0)) {
378  MatchOp = TI->getOperand(1);
379  OtherOpT = TI->getOperand(0);
380  OtherOpF = FI->getOperand(1);
381  MatchIsOpZero = true;
382  } else {
383  return nullptr;
384  }
385 
386  // If the select condition is a vector, the operands of the original select's
387  // operands also must be vectors. This may not be the case for getelementptr
388  // for example.
389  if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390  !OtherOpF->getType()->isVectorTy()))
391  return nullptr;
392 
393  // If we reach here, they do have operations in common.
394  Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395  SI.getName() + ".v", &SI);
396  Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397  Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398  if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399  BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400  NewBO->copyIRFlags(TI);
401  NewBO->andIRFlags(FI);
402  return NewBO;
403  }
404  if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405  auto *FGEP = cast<GetElementPtrInst>(FI);
406  Type *ElementType = TGEP->getResultElementType();
407  return TGEP->isInBounds() && FGEP->isInBounds()
408  ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409  : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410  }
411  llvm_unreachable("Expected BinaryOperator or GEP");
412  return nullptr;
413 }
414 
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416  if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417  return false;
418  return C1I.isOneValue() || C1I.isAllOnesValue() ||
419  C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421 
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425  Value *FalseVal) {
426  // See the comment above GetSelectFoldableOperands for a description of the
427  // transformation we are doing here.
428  if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429  if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430  if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431  unsigned OpToFold = 0;
432  if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433  OpToFold = 1;
434  } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435  OpToFold = 2;
436  }
437 
438  if (OpToFold) {
440  Value *OOp = TVI->getOperand(2-OpToFold);
441  // Avoid creating select between 2 constants unless it's selecting
442  // between 0, 1 and -1.
443  const APInt *OOpC;
444  bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445  if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446  Value *C = ConstantInt::get(OOp->getType(), CI);
447  Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448  NewSel->takeName(TVI);
449  BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450  FalseVal, NewSel);
451  BO->copyIRFlags(TVI);
452  return BO;
453  }
454  }
455  }
456  }
457  }
458 
459  if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460  if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461  if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462  unsigned OpToFold = 0;
463  if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464  OpToFold = 1;
465  } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466  OpToFold = 2;
467  }
468 
469  if (OpToFold) {
471  Value *OOp = FVI->getOperand(2-OpToFold);
472  // Avoid creating select between 2 constants unless it's selecting
473  // between 0, 1 and -1.
474  const APInt *OOpC;
475  bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476  if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477  Value *C = ConstantInt::get(OOp->getType(), CI);
478  Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479  NewSel->takeName(FVI);
480  BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481  TrueVal, NewSel);
482  BO->copyIRFlags(FVI);
483  return BO;
484  }
485  }
486  }
487  }
488  }
489 
490  return nullptr;
491 }
492 
493 /// We want to turn:
494 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 /// Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502  Value *TVal, Value *FVal,
503  InstCombiner::BuilderTy &Builder) {
504  if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505  Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506  match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507  return nullptr;
508 
509  // The TrueVal has general form of: and %B, 1
510  Value *B;
511  if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512  return nullptr;
513 
514  // Where %B may be optionally shifted: lshr %X, %Z.
515  Value *X, *Z;
516  const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517  if (!HasShift)
518  X = B;
519 
520  Value *Y;
521  if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522  return nullptr;
523 
524  // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525  // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526  Constant *One = ConstantInt::get(SelType, 1);
527  Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528  Value *FullMask = Builder.CreateOr(Y, MaskB);
529  Value *MaskedX = Builder.CreateAnd(X, FullMask);
530  Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531  return new ZExtInst(ICmpNeZero, SelType);
532 }
533 
534 /// We want to turn:
535 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 /// ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540  Value *FalseVal,
541  InstCombiner::BuilderTy &Builder) {
542  ICmpInst::Predicate Pred = IC->getPredicate();
543  Value *CmpLHS = IC->getOperand(0);
544  Value *CmpRHS = IC->getOperand(1);
545  if (!CmpRHS->getType()->isIntOrIntVectorTy())
546  return nullptr;
547 
548  Value *X, *Y;
549  unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550  if ((Pred != ICmpInst::ICMP_SGT ||
551  !match(CmpRHS,
552  m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553  (Pred != ICmpInst::ICMP_SLT ||
554  !match(CmpRHS,
556  return nullptr;
557 
558  // Canonicalize so that ashr is in FalseVal.
559  if (Pred == ICmpInst::ICMP_SLT)
560  std::swap(TrueVal, FalseVal);
561 
562  if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563  match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564  match(CmpLHS, m_Specific(X))) {
565  const auto *Ashr = cast<Instruction>(FalseVal);
566  // if lshr is not exact and ashr is, this new ashr must not be exact.
567  bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568  return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569  }
570 
571  return nullptr;
572 }
573 
574 /// We want to turn:
575 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 /// (or (shl (and X, C1), C3), Y)
578 /// iff:
579 /// C1 and C2 are both powers of 2
580 /// where:
581 /// C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588  Value *FalseVal,
589  InstCombiner::BuilderTy &Builder) {
590  // Only handle integer compares. Also, if this is a vector select, we need a
591  // vector compare.
592  if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593  TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594  return nullptr;
595 
596  Value *CmpLHS = IC->getOperand(0);
597  Value *CmpRHS = IC->getOperand(1);
598 
599  Value *V;
600  unsigned C1Log;
601  bool IsEqualZero;
602  bool NeedAnd = false;
603  if (IC->isEquality()) {
604  if (!match(CmpRHS, m_Zero()))
605  return nullptr;
606 
607  const APInt *C1;
608  if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609  return nullptr;
610 
611  V = CmpLHS;
612  C1Log = C1->logBase2();
613  IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614  } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615  IC->getPredicate() == ICmpInst::ICMP_SGT) {
616  // We also need to recognize (icmp slt (trunc (X)), 0) and
617  // (icmp sgt (trunc (X)), -1).
618  IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619  if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620  (!IsEqualZero && !match(CmpRHS, m_Zero())))
621  return nullptr;
622 
623  if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624  return nullptr;
625 
626  C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627  NeedAnd = true;
628  } else {
629  return nullptr;
630  }
631 
632  const APInt *C2;
633  bool OrOnTrueVal = false;
634  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635  if (!OrOnFalseVal)
636  OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637 
638  if (!OrOnFalseVal && !OrOnTrueVal)
639  return nullptr;
640 
641  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642 
643  unsigned C2Log = C2->logBase2();
644 
645  bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646  bool NeedShift = C1Log != C2Log;
647  bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
649 
650  // Make sure we don't create more instructions than we save.
651  Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652  if ((NeedShift + NeedXor + NeedZExtTrunc) >
653  (IC->hasOneUse() + Or->hasOneUse()))
654  return nullptr;
655 
656  if (NeedAnd) {
657  // Insert the AND instruction on the input to the truncate.
659  V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660  }
661 
662  if (C2Log > C1Log) {
663  V = Builder.CreateZExtOrTrunc(V, Y->getType());
664  V = Builder.CreateShl(V, C2Log - C1Log);
665  } else if (C1Log > C2Log) {
666  V = Builder.CreateLShr(V, C1Log - C2Log);
667  V = Builder.CreateZExtOrTrunc(V, Y->getType());
668  } else
669  V = Builder.CreateZExtOrTrunc(V, Y->getType());
670 
671  if (NeedXor)
672  V = Builder.CreateXor(V, *C2);
673 
674  return Builder.CreateOr(V, Y);
675 }
676 
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
681  const Value *TrueVal,
682  const Value *FalseVal,
683  InstCombiner::BuilderTy &Builder) {
684  ICmpInst::Predicate Pred = ICI->getPredicate();
685  if (!ICmpInst::isUnsigned(Pred))
686  return nullptr;
687 
688  // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689  if (match(TrueVal, m_Zero())) {
690  Pred = ICmpInst::getInversePredicate(Pred);
691  std::swap(TrueVal, FalseVal);
692  }
693  if (!match(FalseVal, m_Zero()))
694  return nullptr;
695 
696  Value *A = ICI->getOperand(0);
697  Value *B = ICI->getOperand(1);
698  if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699  // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700  std::swap(A, B);
701  Pred = ICmpInst::getSwappedPredicate(Pred);
702  }
703 
704  assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705  "Unexpected isUnsigned predicate!");
706 
707  // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
708  bool IsNegative = false;
709  if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
710  IsNegative = true;
711  else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
712  return nullptr;
713 
714  // If sub is used anywhere else, we wouldn't be able to eliminate it
715  // afterwards.
716  if (!TrueVal->hasOneUse())
717  return nullptr;
718 
719  // (a > b) ? a - b : 0 -> usub.sat(a, b)
720  // (a > b) ? b - a : 0 -> -usub.sat(a, b)
721  Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
722  if (IsNegative)
723  Result = Builder.CreateNeg(Result);
724  return Result;
725 }
726 
727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
728  InstCombiner::BuilderTy &Builder) {
729  if (!Cmp->hasOneUse())
730  return nullptr;
731 
732  // Match unsigned saturated add with constant.
733  Value *Cmp0 = Cmp->getOperand(0);
734  Value *Cmp1 = Cmp->getOperand(1);
735  ICmpInst::Predicate Pred = Cmp->getPredicate();
736  Value *X;
737  const APInt *C, *CmpC;
738  if (Pred == ICmpInst::ICMP_ULT &&
739  match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
740  match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
741  // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
742  return Builder.CreateBinaryIntrinsic(
743  Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
744  }
745 
746  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
747  // There are 8 commuted variants.
748  // Canonicalize -1 (saturated result) to true value of the select. Just
749  // swapping the compare operands is legal, because the selected value is the
750  // same in case of equality, so we can interchange u< and u<=.
751  if (match(FVal, m_AllOnes())) {
752  std::swap(TVal, FVal);
753  std::swap(Cmp0, Cmp1);
754  }
755  if (!match(TVal, m_AllOnes()))
756  return nullptr;
757 
758  // Canonicalize predicate to 'ULT'.
759  if (Pred == ICmpInst::ICMP_UGT) {
760  Pred = ICmpInst::ICMP_ULT;
761  std::swap(Cmp0, Cmp1);
762  }
763  if (Pred != ICmpInst::ICMP_ULT)
764  return nullptr;
765 
766  // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767  Value *Y;
768  if (match(Cmp0, m_Not(m_Value(X))) &&
769  match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
770  // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
771  // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
772  return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
773  }
774  // The 'not' op may be included in the sum but not the compare.
775  X = Cmp0;
776  Y = Cmp1;
777  if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
778  // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
779  // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
780  BinaryOperator *BO = cast<BinaryOperator>(FVal);
781  return Builder.CreateBinaryIntrinsic(
782  Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
783  }
784 
785  return nullptr;
786 }
787 
788 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
789 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
790 ///
791 /// For example, we can fold the following code sequence:
792 /// \code
793 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
794 /// %1 = icmp ne i32 %x, 0
795 /// %2 = select i1 %1, i32 %0, i32 32
796 /// \code
797 ///
798 /// into:
799 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
800 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
801  InstCombiner::BuilderTy &Builder) {
802  ICmpInst::Predicate Pred = ICI->getPredicate();
803  Value *CmpLHS = ICI->getOperand(0);
804  Value *CmpRHS = ICI->getOperand(1);
805 
806  // Check if the condition value compares a value for equality against zero.
807  if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
808  return nullptr;
809 
810  Value *Count = FalseVal;
811  Value *ValueOnZero = TrueVal;
812  if (Pred == ICmpInst::ICMP_NE)
813  std::swap(Count, ValueOnZero);
814 
815  // Skip zero extend/truncate.
816  Value *V = nullptr;
817  if (match(Count, m_ZExt(m_Value(V))) ||
818  match(Count, m_Trunc(m_Value(V))))
819  Count = V;
820 
821  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
822  // input to the cttz/ctlz is used as LHS for the compare instruction.
823  if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
824  !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
825  return nullptr;
826 
827  IntrinsicInst *II = cast<IntrinsicInst>(Count);
828 
829  // Check if the value propagated on zero is a constant number equal to the
830  // sizeof in bits of 'Count'.
831  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
832  if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
833  // Explicitly clear the 'undef_on_zero' flag.
834  IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
836  Builder.Insert(NewI);
837  return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
838  }
839 
840  // If the ValueOnZero is not the bitwidth, we can at least make use of the
841  // fact that the cttz/ctlz result will not be used if the input is zero, so
842  // it's okay to relax it to undef for that case.
843  if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
845 
846  return nullptr;
847 }
848 
849 /// Return true if we find and adjust an icmp+select pattern where the compare
850 /// is with a constant that can be incremented or decremented to match the
851 /// minimum or maximum idiom.
852 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
853  ICmpInst::Predicate Pred = Cmp.getPredicate();
854  Value *CmpLHS = Cmp.getOperand(0);
855  Value *CmpRHS = Cmp.getOperand(1);
856  Value *TrueVal = Sel.getTrueValue();
857  Value *FalseVal = Sel.getFalseValue();
858 
859  // We may move or edit the compare, so make sure the select is the only user.
860  const APInt *CmpC;
861  if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
862  return false;
863 
864  // These transforms only work for selects of integers or vector selects of
865  // integer vectors.
866  Type *SelTy = Sel.getType();
867  auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
868  if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
869  return false;
870 
871  Constant *AdjustedRHS;
872  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
873  AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
874  else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
875  AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
876  else
877  return false;
878 
879  // X > C ? X : C+1 --> X < C+1 ? C+1 : X
880  // X < C ? X : C-1 --> X > C-1 ? C-1 : X
881  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
882  (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
883  ; // Nothing to do here. Values match without any sign/zero extension.
884  }
885  // Types do not match. Instead of calculating this with mixed types, promote
886  // all to the larger type. This enables scalar evolution to analyze this
887  // expression.
888  else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
889  Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
890 
891  // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
892  // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
893  // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
894  // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
895  if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
896  CmpLHS = TrueVal;
897  AdjustedRHS = SextRHS;
898  } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
899  SextRHS == TrueVal) {
900  CmpLHS = FalseVal;
901  AdjustedRHS = SextRHS;
902  } else if (Cmp.isUnsigned()) {
903  Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
904  // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
905  // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
906  // zext + signed compare cannot be changed:
907  // 0xff <s 0x00, but 0x00ff >s 0x0000
908  if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
909  CmpLHS = TrueVal;
910  AdjustedRHS = ZextRHS;
911  } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
912  ZextRHS == TrueVal) {
913  CmpLHS = FalseVal;
914  AdjustedRHS = ZextRHS;
915  } else {
916  return false;
917  }
918  } else {
919  return false;
920  }
921  } else {
922  return false;
923  }
924 
925  Pred = ICmpInst::getSwappedPredicate(Pred);
926  CmpRHS = AdjustedRHS;
927  std::swap(FalseVal, TrueVal);
928  Cmp.setPredicate(Pred);
929  Cmp.setOperand(0, CmpLHS);
930  Cmp.setOperand(1, CmpRHS);
931  Sel.setOperand(1, TrueVal);
932  Sel.setOperand(2, FalseVal);
933  Sel.swapProfMetadata();
934 
935  // Move the compare instruction right before the select instruction. Otherwise
936  // the sext/zext value may be defined after the compare instruction uses it.
937  Cmp.moveBefore(&Sel);
938 
939  return true;
940 }
941 
942 /// If this is an integer min/max (icmp + select) with a constant operand,
943 /// create the canonical icmp for the min/max operation and canonicalize the
944 /// constant to the 'false' operand of the select:
945 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
946 /// Note: if C1 != C2, this will change the icmp constant to the existing
947 /// constant operand of the select.
948 static Instruction *
949 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
950  InstCombiner::BuilderTy &Builder) {
951  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
952  return nullptr;
953 
954  // Canonicalize the compare predicate based on whether we have min or max.
955  Value *LHS, *RHS;
956  SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
958  return nullptr;
959 
960  // Is this already canonical?
961  ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
962  if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
963  Cmp.getPredicate() == CanonicalPred)
964  return nullptr;
965 
966  // Create the canonical compare and plug it into the select.
967  Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
968 
969  // If the select operands did not change, we're done.
970  if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
971  return &Sel;
972 
973  // If we are swapping the select operands, swap the metadata too.
974  assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
975  "Unexpected results from matchSelectPattern");
976  Sel.swapValues();
977  Sel.swapProfMetadata();
978  return &Sel;
979 }
980 
981 /// There are many select variants for each of ABS/NABS.
982 /// In matchSelectPattern(), there are different compare constants, compare
983 /// predicates/operands and select operands.
984 /// In isKnownNegation(), there are different formats of negated operands.
985 /// Canonicalize all these variants to 1 pattern.
986 /// This makes CSE more likely.
987 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
988  InstCombiner::BuilderTy &Builder) {
989  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
990  return nullptr;
991 
992  // Choose a sign-bit check for the compare (likely simpler for codegen).
993  // ABS: (X <s 0) ? -X : X
994  // NABS: (X <s 0) ? X : -X
995  Value *LHS, *RHS;
996  SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
997  if (SPF != SelectPatternFlavor::SPF_ABS &&
999  return nullptr;
1000 
1001  Value *TVal = Sel.getTrueValue();
1002  Value *FVal = Sel.getFalseValue();
1003  assert(isKnownNegation(TVal, FVal) &&
1004  "Unexpected result from matchSelectPattern");
1005 
1006  // The compare may use the negated abs()/nabs() operand, or it may use
1007  // negation in non-canonical form such as: sub A, B.
1008  bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1009  match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1010 
1011  bool CmpCanonicalized = !CmpUsesNegatedOp &&
1012  match(Cmp.getOperand(1), m_ZeroInt()) &&
1014  bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1015 
1016  // Is this already canonical?
1017  if (CmpCanonicalized && RHSCanonicalized)
1018  return nullptr;
1019 
1020  // If RHS is used by other instructions except compare and select, don't
1021  // canonicalize it to not increase the instruction count.
1022  if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1023  return nullptr;
1024 
1025  // Create the canonical compare: icmp slt LHS 0.
1026  if (!CmpCanonicalized) {
1029  if (CmpUsesNegatedOp)
1030  Cmp.setOperand(0, LHS);
1031  }
1032 
1033  // Create the canonical RHS: RHS = sub (0, LHS).
1034  if (!RHSCanonicalized) {
1035  assert(RHS->hasOneUse() && "RHS use number is not right");
1036  RHS = Builder.CreateNeg(LHS);
1037  if (TVal == LHS) {
1038  Sel.setFalseValue(RHS);
1039  FVal = RHS;
1040  } else {
1041  Sel.setTrueValue(RHS);
1042  TVal = RHS;
1043  }
1044  }
1045 
1046  // If the select operands do not change, we're done.
1047  if (SPF == SelectPatternFlavor::SPF_NABS) {
1048  if (TVal == LHS)
1049  return &Sel;
1050  assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1051  } else {
1052  if (FVal == LHS)
1053  return &Sel;
1054  assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1055  }
1056 
1057  // We are swapping the select operands, so swap the metadata too.
1058  Sel.swapValues();
1059  Sel.swapProfMetadata();
1060  return &Sel;
1061 }
1062 
1063 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1064  const SimplifyQuery &Q) {
1065  // If this is a binary operator, try to simplify it with the replaced op
1066  // because we know Op and ReplaceOp are equivalant.
1067  // For example: V = X + 1, Op = X, ReplaceOp = 42
1068  // Simplifies as: add(42, 1) --> 43
1069  if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1070  if (BO->getOperand(0) == Op)
1071  return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1072  if (BO->getOperand(1) == Op)
1073  return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1074  }
1075 
1076  return nullptr;
1077 }
1078 
1079 /// If we have a select with an equality comparison, then we know the value in
1080 /// one of the arms of the select. See if substituting this value into an arm
1081 /// and simplifying the result yields the same value as the other arm.
1082 ///
1083 /// To make this transform safe, we must drop poison-generating flags
1084 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1085 /// that poison from propagating. If the existing binop already had no
1086 /// poison-generating flags, then this transform can be done by instsimplify.
1087 ///
1088 /// Consider:
1089 /// %cmp = icmp eq i32 %x, 2147483647
1090 /// %add = add nsw i32 %x, 1
1091 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1092 ///
1093 /// We can't replace %sel with %add unless we strip away the flags.
1094 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1095  const SimplifyQuery &Q) {
1096  if (!Cmp.isEquality())
1097  return nullptr;
1098 
1099  // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1100  Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1101  if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1102  std::swap(TrueVal, FalseVal);
1103 
1104  // Try each equivalence substitution possibility.
1105  // We have an 'EQ' comparison, so the select's false value will propagate.
1106  // Example:
1107  // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1108  // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1109  Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1110  if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1111  simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1112  simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1113  simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1114  if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1115  FalseInst->dropPoisonGeneratingFlags();
1116  return FalseVal;
1117  }
1118  return nullptr;
1119 }
1120 
1121 // See if this is a pattern like:
1122 // %old_cmp1 = icmp slt i32 %x, C2
1123 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1124 // %old_x_offseted = add i32 %x, C1
1125 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1126 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1127 // This can be rewritten as more canonical pattern:
1128 // %new_cmp1 = icmp slt i32 %x, -C1
1129 // %new_cmp2 = icmp sge i32 %x, C0-C1
1130 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1131 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1132 // Iff -C1 s<= C2 s<= C0-C1
1133 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1134 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1135 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1136  InstCombiner::BuilderTy &Builder) {
1137  Value *X = Sel0.getTrueValue();
1138  Value *Sel1 = Sel0.getFalseValue();
1139 
1140  // First match the condition of the outermost select.
1141  // Said condition must be one-use.
1142  if (!Cmp0.hasOneUse())
1143  return nullptr;
1144  Value *Cmp00 = Cmp0.getOperand(0);
1145  Constant *C0;
1146  if (!match(Cmp0.getOperand(1),
1148  return nullptr;
1149  // Canonicalize Cmp0 into the form we expect.
1150  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1151  switch (Cmp0.getPredicate()) {
1152  case ICmpInst::Predicate::ICMP_ULT:
1153  break; // Great!
1154  case ICmpInst::Predicate::ICMP_ULE:
1155  // We'd have to increment C0 by one, and for that it must not have all-ones
1156  // element, but then it would have been canonicalized to 'ult' before
1157  // we get here. So we can't do anything useful with 'ule'.
1158  return nullptr;
1159  case ICmpInst::Predicate::ICMP_UGT:
1160  // We want to canonicalize it to 'ult', so we'll need to increment C0,
1161  // which again means it must not have any all-ones elements.
1162  if (!match(C0,
1163  m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1165  C0->getType()->getScalarSizeInBits()))))
1166  return nullptr; // Can't do, have all-ones element[s].
1167  C0 = AddOne(C0);
1168  std::swap(X, Sel1);
1169  break;
1170  case ICmpInst::Predicate::ICMP_UGE:
1171  // The only way we'd get this predicate if this `icmp` has extra uses,
1172  // but then we won't be able to do this fold.
1173  return nullptr;
1174  default:
1175  return nullptr; // Unknown predicate.
1176  }
1177 
1178  // Now that we've canonicalized the ICmp, we know the X we expect;
1179  // the select in other hand should be one-use.
1180  if (!Sel1->hasOneUse())
1181  return nullptr;
1182 
1183  // We now can finish matching the condition of the outermost select:
1184  // it should either be the X itself, or an addition of some constant to X.
1185  Constant *C1;
1186  if (Cmp00 == X)
1187  C1 = ConstantInt::getNullValue(Sel0.getType());
1188  else if (!match(Cmp00,
1189  m_Add(m_Specific(X),
1191  return nullptr;
1192 
1193  Value *Cmp1;
1194  ICmpInst::Predicate Pred1;
1195  Constant *C2;
1196  Value *ReplacementLow, *ReplacementHigh;
1197  if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1198  m_Value(ReplacementHigh))) ||
1199  !match(Cmp1,
1200  m_ICmp(Pred1, m_Specific(X),
1202  return nullptr;
1203 
1204  if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1205  return nullptr; // Not enough one-use instructions for the fold.
1206  // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1207  // two comparisons we'll need to build.
1208 
1209  // Canonicalize Cmp1 into the form we expect.
1210  // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1211  switch (Pred1) {
1212  case ICmpInst::Predicate::ICMP_SLT:
1213  break;
1214  case ICmpInst::Predicate::ICMP_SLE:
1215  // We'd have to increment C2 by one, and for that it must not have signed
1216  // max element, but then it would have been canonicalized to 'slt' before
1217  // we get here. So we can't do anything useful with 'sle'.
1218  return nullptr;
1219  case ICmpInst::Predicate::ICMP_SGT:
1220  // We want to canonicalize it to 'slt', so we'll need to increment C2,
1221  // which again means it must not have any signed max elements.
1222  if (!match(C2,
1223  m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1225  C2->getType()->getScalarSizeInBits()))))
1226  return nullptr; // Can't do, have signed max element[s].
1227  C2 = AddOne(C2);
1229  case ICmpInst::Predicate::ICMP_SGE:
1230  // Also non-canonical, but here we don't need to change C2,
1231  // so we don't have any restrictions on C2, so we can just handle it.
1232  std::swap(ReplacementLow, ReplacementHigh);
1233  break;
1234  default:
1235  return nullptr; // Unknown predicate.
1236  }
1237 
1238  // The thresholds of this clamp-like pattern.
1239  auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1240  auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1241 
1242  // The fold has a precondition 1: C2 s>= ThresholdLow
1243  auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1244  ThresholdLowIncl);
1245  if (!match(Precond1, m_One()))
1246  return nullptr;
1247  // The fold has a precondition 2: C2 s<= ThresholdHigh
1248  auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1249  ThresholdHighExcl);
1250  if (!match(Precond2, m_One()))
1251  return nullptr;
1252 
1253  // All good, finally emit the new pattern.
1254  Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1255  Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1256  Value *MaybeReplacedLow =
1257  Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1258  Instruction *MaybeReplacedHigh =
1259  SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1260 
1261  return MaybeReplacedHigh;
1262 }
1263 
1264 /// Visit a SelectInst that has an ICmpInst as its first operand.
1265 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1266  ICmpInst *ICI) {
1267  if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1268  return replaceInstUsesWith(SI, V);
1269 
1270  if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1271  return NewSel;
1272 
1273  if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1274  return NewAbs;
1275 
1276  if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1277  return NewAbs;
1278 
1279  bool Changed = adjustMinMax(SI, *ICI);
1280 
1281  if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1282  return replaceInstUsesWith(SI, V);
1283 
1284  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1285  Value *TrueVal = SI.getTrueValue();
1286  Value *FalseVal = SI.getFalseValue();
1287  ICmpInst::Predicate Pred = ICI->getPredicate();
1288  Value *CmpLHS = ICI->getOperand(0);
1289  Value *CmpRHS = ICI->getOperand(1);
1290  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1291  if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1292  // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1293  SI.setOperand(1, CmpRHS);
1294  Changed = true;
1295  } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1296  // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1297  SI.setOperand(2, CmpRHS);
1298  Changed = true;
1299  }
1300  }
1301 
1302  // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1303  // decomposeBitTestICmp() might help.
1304  {
1305  unsigned BitWidth =
1306  DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1307  APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1308  Value *X;
1309  const APInt *Y, *C;
1310  bool TrueWhenUnset;
1311  bool IsBitTest = false;
1312  if (ICmpInst::isEquality(Pred) &&
1313  match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1314  match(CmpRHS, m_Zero())) {
1315  IsBitTest = true;
1316  TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1317  } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1318  X = CmpLHS;
1319  Y = &MinSignedValue;
1320  IsBitTest = true;
1321  TrueWhenUnset = false;
1322  } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1323  X = CmpLHS;
1324  Y = &MinSignedValue;
1325  IsBitTest = true;
1326  TrueWhenUnset = true;
1327  }
1328  if (IsBitTest) {
1329  Value *V = nullptr;
1330  // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1331  if (TrueWhenUnset && TrueVal == X &&
1332  match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1333  V = Builder.CreateAnd(X, ~(*Y));
1334  // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1335  else if (!TrueWhenUnset && FalseVal == X &&
1336  match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1337  V = Builder.CreateAnd(X, ~(*Y));
1338  // (X & Y) == 0 ? X ^ Y : X --> X | Y
1339  else if (TrueWhenUnset && FalseVal == X &&
1340  match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1341  V = Builder.CreateOr(X, *Y);
1342  // (X & Y) != 0 ? X : X ^ Y --> X | Y
1343  else if (!TrueWhenUnset && TrueVal == X &&
1344  match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1345  V = Builder.CreateOr(X, *Y);
1346 
1347  if (V)
1348  return replaceInstUsesWith(SI, V);
1349  }
1350  }
1351 
1352  if (Instruction *V =
1353  foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1354  return V;
1355 
1356  if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1357  return replaceInstUsesWith(SI, V);
1358 
1359  if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1360  return replaceInstUsesWith(SI, V);
1361 
1362  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1363  return replaceInstUsesWith(SI, V);
1364 
1365  if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1366  return replaceInstUsesWith(SI, V);
1367 
1368  if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1369  return replaceInstUsesWith(SI, V);
1370 
1371  return Changed ? &SI : nullptr;
1372 }
1373 
1374 /// SI is a select whose condition is a PHI node (but the two may be in
1375 /// different blocks). See if the true/false values (V) are live in all of the
1376 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1377 ///
1378 /// X = phi [ C1, BB1], [C2, BB2]
1379 /// Y = add
1380 /// Z = select X, Y, 0
1381 ///
1382 /// because Y is not live in BB1/BB2.
1383 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1384  const SelectInst &SI) {
1385  // If the value is a non-instruction value like a constant or argument, it
1386  // can always be mapped.
1387  const Instruction *I = dyn_cast<Instruction>(V);
1388  if (!I) return true;
1389 
1390  // If V is a PHI node defined in the same block as the condition PHI, we can
1391  // map the arguments.
1392  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1393 
1394  if (const PHINode *VP = dyn_cast<PHINode>(I))
1395  if (VP->getParent() == CondPHI->getParent())
1396  return true;
1397 
1398  // Otherwise, if the PHI and select are defined in the same block and if V is
1399  // defined in a different block, then we can transform it.
1400  if (SI.getParent() == CondPHI->getParent() &&
1401  I->getParent() != CondPHI->getParent())
1402  return true;
1403 
1404  // Otherwise we have a 'hard' case and we can't tell without doing more
1405  // detailed dominator based analysis, punt.
1406  return false;
1407 }
1408 
1409 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1410 /// SPF2(SPF1(A, B), C)
1411 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1412  SelectPatternFlavor SPF1,
1413  Value *A, Value *B,
1414  Instruction &Outer,
1415  SelectPatternFlavor SPF2, Value *C) {
1416  if (Outer.getType() != Inner->getType())
1417  return nullptr;
1418 
1419  if (C == A || C == B) {
1420  // MAX(MAX(A, B), B) -> MAX(A, B)
1421  // MIN(MIN(a, b), a) -> MIN(a, b)
1422  // TODO: This could be done in instsimplify.
1423  if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1424  return replaceInstUsesWith(Outer, Inner);
1425 
1426  // MAX(MIN(a, b), a) -> a
1427  // MIN(MAX(a, b), a) -> a
1428  // TODO: This could be done in instsimplify.
1429  if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1430  (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1431  (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1432  (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1433  return replaceInstUsesWith(Outer, C);
1434  }
1435 
1436  if (SPF1 == SPF2) {
1437  const APInt *CB, *CC;
1438  if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1439  // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1440  // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1441  // TODO: This could be done in instsimplify.
1442  if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1443  (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1444  (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1445  (SPF1 == SPF_SMAX && CB->sge(*CC)))
1446  return replaceInstUsesWith(Outer, Inner);
1447 
1448  // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1449  // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1450  if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1451  (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1452  (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1453  (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1454  Outer.replaceUsesOfWith(Inner, A);
1455  return &Outer;
1456  }
1457  }
1458  }
1459 
1460  // ABS(ABS(X)) -> ABS(X)
1461  // NABS(NABS(X)) -> NABS(X)
1462  // TODO: This could be done in instsimplify.
1463  if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1464  return replaceInstUsesWith(Outer, Inner);
1465  }
1466 
1467  // ABS(NABS(X)) -> ABS(X)
1468  // NABS(ABS(X)) -> NABS(X)
1469  if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1470  (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1471  SelectInst *SI = cast<SelectInst>(Inner);
1472  Value *NewSI =
1473  Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1474  SI->getTrueValue(), SI->getName(), SI);
1475  return replaceInstUsesWith(Outer, NewSI);
1476  }
1477 
1478  auto IsFreeOrProfitableToInvert =
1479  [&](Value *V, Value *&NotV, bool &ElidesXor) {
1480  if (match(V, m_Not(m_Value(NotV)))) {
1481  // If V has at most 2 uses then we can get rid of the xor operation
1482  // entirely.
1483  ElidesXor |= !V->hasNUsesOrMore(3);
1484  return true;
1485  }
1486 
1487  if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1488  NotV = nullptr;
1489  return true;
1490  }
1491 
1492  return false;
1493  };
1494 
1495  Value *NotA, *NotB, *NotC;
1496  bool ElidesXor = false;
1497 
1498  // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1499  // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1500  // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1501  // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1502  //
1503  // This transform is performance neutral if we can elide at least one xor from
1504  // the set of three operands, since we'll be tacking on an xor at the very
1505  // end.
1506  if (SelectPatternResult::isMinOrMax(SPF1) &&
1508  IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1509  IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1510  IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1511  if (!NotA)
1512  NotA = Builder.CreateNot(A);
1513  if (!NotB)
1514  NotB = Builder.CreateNot(B);
1515  if (!NotC)
1516  NotC = Builder.CreateNot(C);
1517 
1518  Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1519  NotB);
1520  Value *NewOuter = Builder.CreateNot(
1521  createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1522  return replaceInstUsesWith(Outer, NewOuter);
1523  }
1524 
1525  return nullptr;
1526 }
1527 
1528 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1529 /// This is even legal for FP.
1530 static Instruction *foldAddSubSelect(SelectInst &SI,
1531  InstCombiner::BuilderTy &Builder) {
1532  Value *CondVal = SI.getCondition();
1533  Value *TrueVal = SI.getTrueValue();
1534  Value *FalseVal = SI.getFalseValue();
1535  auto *TI = dyn_cast<Instruction>(TrueVal);
1536  auto *FI = dyn_cast<Instruction>(FalseVal);
1537  if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1538  return nullptr;
1539 
1540  Instruction *AddOp = nullptr, *SubOp = nullptr;
1541  if ((TI->getOpcode() == Instruction::Sub &&
1542  FI->getOpcode() == Instruction::Add) ||
1543  (TI->getOpcode() == Instruction::FSub &&
1544  FI->getOpcode() == Instruction::FAdd)) {
1545  AddOp = FI;
1546  SubOp = TI;
1547  } else if ((FI->getOpcode() == Instruction::Sub &&
1548  TI->getOpcode() == Instruction::Add) ||
1549  (FI->getOpcode() == Instruction::FSub &&
1550  TI->getOpcode() == Instruction::FAdd)) {
1551  AddOp = TI;
1552  SubOp = FI;
1553  }
1554 
1555  if (AddOp) {
1556  Value *OtherAddOp = nullptr;
1557  if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1558  OtherAddOp = AddOp->getOperand(1);
1559  } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1560  OtherAddOp = AddOp->getOperand(0);
1561  }
1562 
1563  if (OtherAddOp) {
1564  // So at this point we know we have (Y -> OtherAddOp):
1565  // select C, (add X, Y), (sub X, Z)
1566  Value *NegVal; // Compute -Z
1567  if (SI.getType()->isFPOrFPVectorTy()) {
1568  NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1569  if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1570  FastMathFlags Flags = AddOp->getFastMathFlags();
1571  Flags &= SubOp->getFastMathFlags();
1572  NegInst->setFastMathFlags(Flags);
1573  }
1574  } else {
1575  NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1576  }
1577 
1578  Value *NewTrueOp = OtherAddOp;
1579  Value *NewFalseOp = NegVal;
1580  if (AddOp != TI)
1581  std::swap(NewTrueOp, NewFalseOp);
1582  Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1583  SI.getName() + ".p", &SI);
1584 
1585  if (SI.getType()->isFPOrFPVectorTy()) {
1586  Instruction *RI =
1587  BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1588 
1589  FastMathFlags Flags = AddOp->getFastMathFlags();
1590  Flags &= SubOp->getFastMathFlags();
1591  RI->setFastMathFlags(Flags);
1592  return RI;
1593  } else
1594  return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1595  }
1596  }
1597  return nullptr;
1598 }
1599 
1600 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1601  Constant *C;
1602  if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1603  !match(Sel.getFalseValue(), m_Constant(C)))
1604  return nullptr;
1605 
1606  Instruction *ExtInst;
1607  if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1608  !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1609  return nullptr;
1610 
1611  auto ExtOpcode = ExtInst->getOpcode();
1612  if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1613  return nullptr;
1614 
1615  // If we are extending from a boolean type or if we can create a select that
1616  // has the same size operands as its condition, try to narrow the select.
1617  Value *X = ExtInst->getOperand(0);
1618  Type *SmallType = X->getType();
1619  Value *Cond = Sel.getCondition();
1620  auto *Cmp = dyn_cast<CmpInst>(Cond);
1621  if (!SmallType->isIntOrIntVectorTy(1) &&
1622  (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1623  return nullptr;
1624 
1625  // If the constant is the same after truncation to the smaller type and
1626  // extension to the original type, we can narrow the select.
1627  Type *SelType = Sel.getType();
1628  Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1629  Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1630  if (ExtC == C) {
1631  Value *TruncCVal = cast<Value>(TruncC);
1632  if (ExtInst == Sel.getFalseValue())
1633  std::swap(X, TruncCVal);
1634 
1635  // select Cond, (ext X), C --> ext(select Cond, X, C')
1636  // select Cond, C, (ext X) --> ext(select Cond, C', X)
1637  Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1638  return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1639  }
1640 
1641  // If one arm of the select is the extend of the condition, replace that arm
1642  // with the extension of the appropriate known bool value.
1643  if (Cond == X) {
1644  if (ExtInst == Sel.getTrueValue()) {
1645  // select X, (sext X), C --> select X, -1, C
1646  // select X, (zext X), C --> select X, 1, C
1647  Constant *One = ConstantInt::getTrue(SmallType);
1648  Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1649  return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1650  } else {
1651  // select X, C, (sext X) --> select X, C, 0
1652  // select X, C, (zext X) --> select X, C, 0
1653  Constant *Zero = ConstantInt::getNullValue(SelType);
1654  return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1655  }
1656  }
1657 
1658  return nullptr;
1659 }
1660 
1661 /// Try to transform a vector select with a constant condition vector into a
1662 /// shuffle for easier combining with other shuffles and insert/extract.
1663 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1664  Value *CondVal = SI.getCondition();
1665  Constant *CondC;
1666  if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1667  return nullptr;
1668 
1669  unsigned NumElts = CondVal->getType()->getVectorNumElements();
1671  Mask.reserve(NumElts);
1672  Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1673  for (unsigned i = 0; i != NumElts; ++i) {
1674  Constant *Elt = CondC->getAggregateElement(i);
1675  if (!Elt)
1676  return nullptr;
1677 
1678  if (Elt->isOneValue()) {
1679  // If the select condition element is true, choose from the 1st vector.
1680  Mask.push_back(ConstantInt::get(Int32Ty, i));
1681  } else if (Elt->isNullValue()) {
1682  // If the select condition element is false, choose from the 2nd vector.
1683  Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1684  } else if (isa<UndefValue>(Elt)) {
1685  // Undef in a select condition (choose one of the operands) does not mean
1686  // the same thing as undef in a shuffle mask (any value is acceptable), so
1687  // give up.
1688  return nullptr;
1689  } else {
1690  // Bail out on a constant expression.
1691  return nullptr;
1692  }
1693  }
1694 
1695  return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1696  ConstantVector::get(Mask));
1697 }
1698 
1699 /// If we have a select of vectors with a scalar condition, try to convert that
1700 /// to a vector select by splatting the condition. A splat may get folded with
1701 /// other operations in IR and having all operands of a select be vector types
1702 /// is likely better for vector codegen.
1703 static Instruction *canonicalizeScalarSelectOfVecs(
1704  SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
1705  Type *Ty = Sel.getType();
1706  if (!Ty->isVectorTy())
1707  return nullptr;
1708 
1709  // We can replace a single-use extract with constant index.
1710  Value *Cond = Sel.getCondition();
1712  return nullptr;
1713 
1714  // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1715  // Splatting the extracted condition reduces code (we could directly create a
1716  // splat shuffle of the source vector to eliminate the intermediate step).
1717  unsigned NumElts = Ty->getVectorNumElements();
1718  Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond);
1719  Sel.setCondition(SplatCond);
1720  return &Sel;
1721 }
1722 
1723 /// Reuse bitcasted operands between a compare and select:
1724 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1725 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1726 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1727  InstCombiner::BuilderTy &Builder) {
1728  Value *Cond = Sel.getCondition();
1729  Value *TVal = Sel.getTrueValue();
1730  Value *FVal = Sel.getFalseValue();
1731 
1732  CmpInst::Predicate Pred;
1733  Value *A, *B;
1734  if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1735  return nullptr;
1736 
1737  // The select condition is a compare instruction. If the select's true/false
1738  // values are already the same as the compare operands, there's nothing to do.
1739  if (TVal == A || TVal == B || FVal == A || FVal == B)
1740  return nullptr;
1741 
1742  Value *C, *D;
1743  if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1744  return nullptr;
1745 
1746  // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1747  Value *TSrc, *FSrc;
1748  if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1749  !match(FVal, m_BitCast(m_Value(FSrc))))
1750  return nullptr;
1751 
1752  // If the select true/false values are *different bitcasts* of the same source
1753  // operands, make the select operands the same as the compare operands and
1754  // cast the result. This is the canonical select form for min/max.
1755  Value *NewSel;
1756  if (TSrc == C && FSrc == D) {
1757  // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1758  // bitcast (select (cmp A, B), A, B)
1759  NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1760  } else if (TSrc == D && FSrc == C) {
1761  // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1762  // bitcast (select (cmp A, B), B, A)
1763  NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1764  } else {
1765  return nullptr;
1766  }
1767  return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1768 }
1769 
1770 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1771 /// instructions.
1772 ///
1773 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1774 /// selects between the returned value of the cmpxchg instruction its compare
1775 /// operand, the result of the select will always be equal to its false value.
1776 /// For example:
1777 ///
1778 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1779 /// %1 = extractvalue { i64, i1 } %0, 1
1780 /// %2 = extractvalue { i64, i1 } %0, 0
1781 /// %3 = select i1 %1, i64 %compare, i64 %2
1782 /// ret i64 %3
1783 ///
1784 /// The returned value of the cmpxchg instruction (%2) is the original value
1785 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1786 /// must have been equal to %compare. Thus, the result of the select is always
1787 /// equal to %2, and the code can be simplified to:
1788 ///
1789 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1790 /// %1 = extractvalue { i64, i1 } %0, 0
1791 /// ret i64 %1
1792 ///
1793 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1794  // A helper that determines if V is an extractvalue instruction whose
1795  // aggregate operand is a cmpxchg instruction and whose single index is equal
1796  // to I. If such conditions are true, the helper returns the cmpxchg
1797  // instruction; otherwise, a nullptr is returned.
1798  auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1799  auto *Extract = dyn_cast<ExtractValueInst>(V);
1800  if (!Extract)
1801  return nullptr;
1802  if (Extract->getIndices()[0] != I)
1803  return nullptr;
1804  return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1805  };
1806 
1807  // If the select has a single user, and this user is a select instruction that
1808  // we can simplify, skip the cmpxchg simplification for now.
1809  if (SI.hasOneUse())
1810  if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1811  if (Select->getCondition() == SI.getCondition())
1812  if (Select->getFalseValue() == SI.getTrueValue() ||
1813  Select->getTrueValue() == SI.getFalseValue())
1814  return nullptr;
1815 
1816  // Ensure the select condition is the returned flag of a cmpxchg instruction.
1817  auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1818  if (!CmpXchg)
1819  return nullptr;
1820 
1821  // Check the true value case: The true value of the select is the returned
1822  // value of the same cmpxchg used by the condition, and the false value is the
1823  // cmpxchg instruction's compare operand.
1824  if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1825  if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1826  SI.setTrueValue(SI.getFalseValue());
1827  return &SI;
1828  }
1829 
1830  // Check the false value case: The false value of the select is the returned
1831  // value of the same cmpxchg used by the condition, and the true value is the
1832  // cmpxchg instruction's compare operand.
1833  if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1834  if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1835  SI.setTrueValue(SI.getFalseValue());
1836  return &SI;
1837  }
1838 
1839  return nullptr;
1840 }
1841 
1842 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
1843  Value *Y,
1844  InstCombiner::BuilderTy &Builder) {
1845  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
1846  bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
1848  // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
1849  // the constant value check to an assert.
1850  Value *A;
1851  const APInt *C1, *C2;
1852  if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
1853  match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
1854  // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
1855  // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
1856  Value *NewMinMax = createMinMax(Builder, SPF, A,
1857  ConstantInt::get(X->getType(), *C2 - *C1));
1859  ConstantInt::get(X->getType(), *C1));
1860  }
1861 
1862  if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
1863  match(Y, m_APInt(C2)) && X->hasNUses(2)) {
1864  bool Overflow;
1865  APInt Diff = C2->ssub_ov(*C1, Overflow);
1866  if (!Overflow) {
1867  // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
1868  // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
1869  Value *NewMinMax = createMinMax(Builder, SPF, A,
1870  ConstantInt::get(X->getType(), Diff));
1872  ConstantInt::get(X->getType(), *C1));
1873  }
1874  }
1875 
1876  return nullptr;
1877 }
1878 
1879 /// Reduce a sequence of min/max with a common operand.
1880 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1881  Value *RHS,
1882  InstCombiner::BuilderTy &Builder) {
1883  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1884  // TODO: Allow FP min/max with nnan/nsz.
1885  if (!LHS->getType()->isIntOrIntVectorTy())
1886  return nullptr;
1887 
1888  // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1889  Value *A, *B, *C, *D;
1890  SelectPatternResult L = matchSelectPattern(LHS, A, B);
1891  SelectPatternResult R = matchSelectPattern(RHS, C, D);
1892  if (SPF != L.Flavor || L.Flavor != R.Flavor)
1893  return nullptr;
1894 
1895  // Look for a common operand. The use checks are different than usual because
1896  // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1897  // the select.
1898  Value *MinMaxOp = nullptr;
1899  Value *ThirdOp = nullptr;
1900  if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1901  // If the LHS is only used in this chain and the RHS is used outside of it,
1902  // reuse the RHS min/max because that will eliminate the LHS.
1903  if (D == A || C == A) {
1904  // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1905  // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1906  MinMaxOp = RHS;
1907  ThirdOp = B;
1908  } else if (D == B || C == B) {
1909  // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1910  // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1911  MinMaxOp = RHS;
1912  ThirdOp = A;
1913  }
1914  } else if (!RHS->hasNUsesOrMore(3)) {
1915  // Reuse the LHS. This will eliminate the RHS.
1916  if (D == A || D == B) {
1917  // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1918  // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1919  MinMaxOp = LHS;
1920  ThirdOp = C;
1921  } else if (C == A || C == B) {
1922  // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1923  // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1924  MinMaxOp = LHS;
1925  ThirdOp = D;
1926  }
1927  }
1928  if (!MinMaxOp || !ThirdOp)
1929  return nullptr;
1930 
1932  Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1933  return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1934 }
1935 
1936 /// Try to reduce a rotate pattern that includes a compare and select into a
1937 /// funnel shift intrinsic. Example:
1938 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
1939 /// --> call llvm.fshl.i32(a, a, b)
1940 static Instruction *foldSelectRotate(SelectInst &Sel) {
1941  // The false value of the select must be a rotate of the true value.
1942  Value *Or0, *Or1;
1943  if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
1944  return nullptr;
1945 
1946  Value *TVal = Sel.getTrueValue();
1947  Value *SA0, *SA1;
1948  if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
1949  !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
1950  return nullptr;
1951 
1952  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
1953  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
1954  if (ShiftOpcode0 == ShiftOpcode1)
1955  return nullptr;
1956 
1957  // We have one of these patterns so far:
1958  // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
1959  // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
1960  // This must be a power-of-2 rotate for a bitmasking transform to be valid.
1961  unsigned Width = Sel.getType()->getScalarSizeInBits();
1962  if (!isPowerOf2_32(Width))
1963  return nullptr;
1964 
1965  // Check the shift amounts to see if they are an opposite pair.
1966  Value *ShAmt;
1967  if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
1968  ShAmt = SA0;
1969  else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
1970  ShAmt = SA1;
1971  else
1972  return nullptr;
1973 
1974  // Finally, see if the select is filtering out a shift-by-zero.
1975  Value *Cond = Sel.getCondition();
1976  ICmpInst::Predicate Pred;
1977  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
1978  Pred != ICmpInst::ICMP_EQ)
1979  return nullptr;
1980 
1981  // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
1982  // Convert to funnel shift intrinsic.
1983  bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
1984  (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
1985  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
1986  Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
1987  return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
1988 }
1989 
1991  Value *CondVal = SI.getCondition();
1992  Value *TrueVal = SI.getTrueValue();
1993  Value *FalseVal = SI.getFalseValue();
1994  Type *SelType = SI.getType();
1995 
1996  // FIXME: Remove this workaround when freeze related patches are done.
1997  // For select with undef operand which feeds into an equality comparison,
1998  // don't simplify it so loop unswitch can know the equality comparison
1999  // may have an undef operand. This is a workaround for PR31652 caused by
2000  // descrepancy about branch on undef between LoopUnswitch and GVN.
2001  if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2002  if (llvm::any_of(SI.users(), [&](User *U) {
2003  ICmpInst *CI = dyn_cast<ICmpInst>(U);
2004  if (CI && CI->isEquality())
2005  return true;
2006  return false;
2007  })) {
2008  return nullptr;
2009  }
2010  }
2011 
2012  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2013  SQ.getWithInstruction(&SI)))
2014  return replaceInstUsesWith(SI, V);
2015 
2016  if (Instruction *I = canonicalizeSelectToShuffle(SI))
2017  return I;
2018 
2019  if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder))
2020  return I;
2021 
2022  // Canonicalize a one-use integer compare with a non-canonical predicate by
2023  // inverting the predicate and swapping the select operands. This matches a
2024  // compare canonicalization for conditional branches.
2025  // TODO: Should we do the same for FP compares?
2026  CmpInst::Predicate Pred;
2027  if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2028  !isCanonicalPredicate(Pred)) {
2029  // Swap true/false values and condition.
2030  CmpInst *Cond = cast<CmpInst>(CondVal);
2032  SI.setOperand(1, FalseVal);
2033  SI.setOperand(2, TrueVal);
2034  SI.swapProfMetadata();
2035  Worklist.Add(Cond);
2036  return &SI;
2037  }
2038 
2039  if (SelType->isIntOrIntVectorTy(1) &&
2040  TrueVal->getType() == CondVal->getType()) {
2041  if (match(TrueVal, m_One())) {
2042  // Change: A = select B, true, C --> A = or B, C
2043  return BinaryOperator::CreateOr(CondVal, FalseVal);
2044  }
2045  if (match(TrueVal, m_Zero())) {
2046  // Change: A = select B, false, C --> A = and !B, C
2047  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2048  return BinaryOperator::CreateAnd(NotCond, FalseVal);
2049  }
2050  if (match(FalseVal, m_Zero())) {
2051  // Change: A = select B, C, false --> A = and B, C
2052  return BinaryOperator::CreateAnd(CondVal, TrueVal);
2053  }
2054  if (match(FalseVal, m_One())) {
2055  // Change: A = select B, C, true --> A = or !B, C
2056  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2057  return BinaryOperator::CreateOr(NotCond, TrueVal);
2058  }
2059 
2060  // select a, a, b -> a | b
2061  // select a, b, a -> a & b
2062  if (CondVal == TrueVal)
2063  return BinaryOperator::CreateOr(CondVal, FalseVal);
2064  if (CondVal == FalseVal)
2065  return BinaryOperator::CreateAnd(CondVal, TrueVal);
2066 
2067  // select a, ~a, b -> (~a) & b
2068  // select a, b, ~a -> (~a) | b
2069  if (match(TrueVal, m_Not(m_Specific(CondVal))))
2070  return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2071  if (match(FalseVal, m_Not(m_Specific(CondVal))))
2072  return BinaryOperator::CreateOr(TrueVal, FalseVal);
2073  }
2074 
2075  // Selecting between two integer or vector splat integer constants?
2076  //
2077  // Note that we don't handle a scalar select of vectors:
2078  // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2079  // because that may need 3 instructions to splat the condition value:
2080  // extend, insertelement, shufflevector.
2081  if (SelType->isIntOrIntVectorTy() &&
2082  CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2083  // select C, 1, 0 -> zext C to int
2084  if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2085  return new ZExtInst(CondVal, SelType);
2086 
2087  // select C, -1, 0 -> sext C to int
2088  if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2089  return new SExtInst(CondVal, SelType);
2090 
2091  // select C, 0, 1 -> zext !C to int
2092  if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2093  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2094  return new ZExtInst(NotCond, SelType);
2095  }
2096 
2097  // select C, 0, -1 -> sext !C to int
2098  if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2099  Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2100  return new SExtInst(NotCond, SelType);
2101  }
2102  }
2103 
2104  // See if we are selecting two values based on a comparison of the two values.
2105  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2106  if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
2107  // Canonicalize to use ordered comparisons by swapping the select
2108  // operands.
2109  //
2110  // e.g.
2111  // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2112  if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2113  FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2114  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2115  Builder.setFastMathFlags(FCI->getFastMathFlags());
2116  Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
2117  FCI->getName() + ".inv");
2118 
2119  return SelectInst::Create(NewCond, FalseVal, TrueVal,
2120  SI.getName() + ".p");
2121  }
2122 
2123  // NOTE: if we wanted to, this is where to detect MIN/MAX
2124  } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
2125  // Canonicalize to use ordered comparisons by swapping the select
2126  // operands.
2127  //
2128  // e.g.
2129  // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
2130  if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2131  FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2132  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2133  Builder.setFastMathFlags(FCI->getFastMathFlags());
2134  Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
2135  FCI->getName() + ".inv");
2136 
2137  return SelectInst::Create(NewCond, FalseVal, TrueVal,
2138  SI.getName() + ".p");
2139  }
2140 
2141  // NOTE: if we wanted to, this is where to detect MIN/MAX
2142  }
2143  }
2144 
2145  // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2146  // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2147  // also require nnan because we do not want to unintentionally change the
2148  // sign of a NaN value.
2149  // FIXME: These folds should test/propagate FMF from the select, not the
2150  // fsub or fneg.
2151  // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2152  Instruction *FSub;
2153  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2154  match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2155  match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2156  (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2157  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2158  return replaceInstUsesWith(SI, Fabs);
2159  }
2160  // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
2161  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2162  match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2163  match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2164  (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2165  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2166  return replaceInstUsesWith(SI, Fabs);
2167  }
2168  // With nnan and nsz:
2169  // (X < +/-0.0) ? -X : X --> fabs(X)
2170  // (X <= +/-0.0) ? -X : X --> fabs(X)
2171  Instruction *FNeg;
2172  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2173  match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2174  match(TrueVal, m_Instruction(FNeg)) &&
2175  FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2176  (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2177  Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2178  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2179  return replaceInstUsesWith(SI, Fabs);
2180  }
2181  // With nnan and nsz:
2182  // (X > +/-0.0) ? X : -X --> fabs(X)
2183  // (X >= +/-0.0) ? X : -X --> fabs(X)
2184  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2185  match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2186  match(FalseVal, m_Instruction(FNeg)) &&
2187  FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2188  (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2189  Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2190  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2191  return replaceInstUsesWith(SI, Fabs);
2192  }
2193 
2194  // See if we are selecting two values based on a comparison of the two values.
2195  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2196  if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2197  return Result;
2198 
2199  if (Instruction *Add = foldAddSubSelect(SI, Builder))
2200  return Add;
2201 
2202  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2203  auto *TI = dyn_cast<Instruction>(TrueVal);
2204  auto *FI = dyn_cast<Instruction>(FalseVal);
2205  if (TI && FI && TI->getOpcode() == FI->getOpcode())
2206  if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2207  return IV;
2208 
2209  if (Instruction *I = foldSelectExtConst(SI))
2210  return I;
2211 
2212  // See if we can fold the select into one of our operands.
2213  if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2214  if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2215  return FoldI;
2216 
2217  Value *LHS, *RHS;
2218  Instruction::CastOps CastOp;
2219  SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2220  auto SPF = SPR.Flavor;
2221  if (SPF) {
2222  Value *LHS2, *RHS2;
2223  if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2224  if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2225  RHS2, SI, SPF, RHS))
2226  return R;
2227  if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2228  if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2229  RHS2, SI, SPF, LHS))
2230  return R;
2231  // TODO.
2232  // ABS(-X) -> ABS(X)
2233  }
2234 
2236  // Canonicalize so that
2237  // - type casts are outside select patterns.
2238  // - float clamp is transformed to min/max pattern
2239 
2240  bool IsCastNeeded = LHS->getType() != SelType;
2241  Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2242  Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2243  if (IsCastNeeded ||
2244  (LHS->getType()->isFPOrFPVectorTy() &&
2245  ((CmpLHS != LHS && CmpLHS != RHS) ||
2246  (CmpRHS != LHS && CmpRHS != RHS)))) {
2247  CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
2248 
2249  Value *Cmp;
2250  if (CmpInst::isIntPredicate(Pred)) {
2251  Cmp = Builder.CreateICmp(Pred, LHS, RHS);
2252  } else {
2253  IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2254  auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2255  Builder.setFastMathFlags(FMF);
2256  Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
2257  }
2258 
2259  Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2260  if (!IsCastNeeded)
2261  return replaceInstUsesWith(SI, NewSI);
2262 
2263  Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2264  return replaceInstUsesWith(SI, NewCast);
2265  }
2266 
2267  // MAX(~a, ~b) -> ~MIN(a, b)
2268  // MAX(~a, C) -> ~MIN(a, ~C)
2269  // MIN(~a, ~b) -> ~MAX(a, b)
2270  // MIN(~a, C) -> ~MAX(a, ~C)
2271  auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2272  Value *A;
2273  if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2274  !isFreeToInvert(A, A->hasOneUse()) &&
2275  // Passing false to only consider m_Not and constants.
2276  isFreeToInvert(Y, false)) {
2277  Value *B = Builder.CreateNot(Y);
2278  Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2279  A, B);
2280  // Copy the profile metadata.
2281  if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2282  cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2283  // Swap the metadata if the operands are swapped.
2284  if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2285  cast<SelectInst>(NewMinMax)->swapProfMetadata();
2286  }
2287 
2288  return BinaryOperator::CreateNot(NewMinMax);
2289  }
2290 
2291  return nullptr;
2292  };
2293 
2294  if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2295  return I;
2296  if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2297  return I;
2298 
2299  if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2300  return I;
2301 
2302  if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2303  return I;
2304  }
2305  }
2306 
2307  // Canonicalize select of FP values where NaN and -0.0 are not valid as
2308  // minnum/maxnum intrinsics.
2309  if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2310  Value *X, *Y;
2311  if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2312  return replaceInstUsesWith(
2313  SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2314 
2315  if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2316  return replaceInstUsesWith(
2317  SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2318  }
2319 
2320  // See if we can fold the select into a phi node if the condition is a select.
2321  if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2322  // The true/false values have to be live in the PHI predecessor's blocks.
2323  if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2324  canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2325  if (Instruction *NV = foldOpIntoPhi(SI, PN))
2326  return NV;
2327 
2328  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2329  if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2330  // select(C, select(C, a, b), c) -> select(C, a, c)
2331  if (TrueSI->getCondition() == CondVal) {
2332  if (SI.getTrueValue() == TrueSI->getTrueValue())
2333  return nullptr;
2334  SI.setOperand(1, TrueSI->getTrueValue());
2335  return &SI;
2336  }
2337  // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2338  // We choose this as normal form to enable folding on the And and shortening
2339  // paths for the values (this helps GetUnderlyingObjects() for example).
2340  if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2341  Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2342  SI.setOperand(0, And);
2343  SI.setOperand(1, TrueSI->getTrueValue());
2344  return &SI;
2345  }
2346  }
2347  }
2348  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2349  if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2350  // select(C, a, select(C, b, c)) -> select(C, a, c)
2351  if (FalseSI->getCondition() == CondVal) {
2352  if (SI.getFalseValue() == FalseSI->getFalseValue())
2353  return nullptr;
2354  SI.setOperand(2, FalseSI->getFalseValue());
2355  return &SI;
2356  }
2357  // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2358  if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2359  Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2360  SI.setOperand(0, Or);
2361  SI.setOperand(2, FalseSI->getFalseValue());
2362  return &SI;
2363  }
2364  }
2365  }
2366 
2367  auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2368  // The select might be preventing a division by 0.
2369  switch (BO->getOpcode()) {
2370  default:
2371  return true;
2372  case Instruction::SRem:
2373  case Instruction::URem:
2374  case Instruction::SDiv:
2375  case Instruction::UDiv:
2376  return false;
2377  }
2378  };
2379 
2380  // Try to simplify a binop sandwiched between 2 selects with the same
2381  // condition.
2382  // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2383  BinaryOperator *TrueBO;
2384  if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2385  canMergeSelectThroughBinop(TrueBO)) {
2386  if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2387  if (TrueBOSI->getCondition() == CondVal) {
2388  TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2389  Worklist.Add(TrueBO);
2390  return &SI;
2391  }
2392  }
2393  if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2394  if (TrueBOSI->getCondition() == CondVal) {
2395  TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2396  Worklist.Add(TrueBO);
2397  return &SI;
2398  }
2399  }
2400  }
2401 
2402  // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2403  BinaryOperator *FalseBO;
2404  if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2405  canMergeSelectThroughBinop(FalseBO)) {
2406  if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2407  if (FalseBOSI->getCondition() == CondVal) {
2408  FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2409  Worklist.Add(FalseBO);
2410  return &SI;
2411  }
2412  }
2413  if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2414  if (FalseBOSI->getCondition() == CondVal) {
2415  FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2416  Worklist.Add(FalseBO);
2417  return &SI;
2418  }
2419  }
2420  }
2421 
2422  Value *NotCond;
2423  if (match(CondVal, m_Not(m_Value(NotCond)))) {
2424  SI.setOperand(0, NotCond);
2425  SI.setOperand(1, FalseVal);
2426  SI.setOperand(2, TrueVal);
2427  SI.swapProfMetadata();
2428  return &SI;
2429  }
2430 
2431  if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2432  unsigned VWidth = VecTy->getNumElements();
2433  APInt UndefElts(VWidth, 0);
2434  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2435  if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2436  if (V != &SI)
2437  return replaceInstUsesWith(SI, V);
2438  return &SI;
2439  }
2440  }
2441 
2442  // If we can compute the condition, there's no need for a select.
2443  // Like the above fold, we are attempting to reduce compile-time cost by
2444  // putting this fold here with limitations rather than in InstSimplify.
2445  // The motivation for this call into value tracking is to take advantage of
2446  // the assumption cache, so make sure that is populated.
2447  if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2448  KnownBits Known(1);
2449  computeKnownBits(CondVal, Known, 0, &SI);
2450  if (Known.One.isOneValue())
2451  return replaceInstUsesWith(SI, TrueVal);
2452  if (Known.Zero.isOneValue())
2453  return replaceInstUsesWith(SI, FalseVal);
2454  }
2455 
2456  if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2457  return BitCastSel;
2458 
2459  // Simplify selects that test the returned flag of cmpxchg instructions.
2460  if (Instruction *Select = foldSelectCmpXchg(SI))
2461  return Select;
2462 
2463  if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2464  return Select;
2465 
2466  if (Instruction *Rot = foldSelectRotate(SI))
2467  return Rot;
2468 
2469  return nullptr;
2470 }
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing &#39;pred&#39; (eg/ne/...) to Threshold.
Definition: PatternMatch.h:489
bool isFPPredicate() const
Definition: InstrTypes.h:824
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:831
uint64_t CallInst * C
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
static bool isSelect01(const APInt &C1I, const APInt &C2I)
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:603
static Instruction * foldSelectBinOpIdentity(SelectInst &Sel, const TargetLibraryInfo &TLI)
Replace a select operand based on an equality comparison with the identity constant of a binop...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2198
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:722
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
bool hasNoSignedZeros() const
Determine whether the no-signed-zeros flag is set.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:78
This instruction extracts a struct member or array element value from an aggregate value...
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:561
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:728
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:398
DiagnosticInfoOptimizationBase::Argument NV
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return an i1 value testing if Arg is not null.
Definition: IRBuilder.h:2368
Unsigned minimum.
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:1888
This class represents lattice values for constants.
Definition: AllocatorList.h:23
BinaryOps getOpcode() const
Definition: InstrTypes.h:402
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1320
bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, Value *&X, APInt &Mask, bool LookThroughTrunc=true)
Decompose an icmp into the form ((X & Mask) pred 0) if possible.
An instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:530
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
This class represents zero extension of integer types.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:901
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2120
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1203
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:89
static bool isCanonicalPredicate(CmpInst::Predicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
const Value * getTrueValue() const
unsigned less or equal
Definition: InstrTypes.h:758
unsigned less than
Definition: InstrTypes.h:757
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:861
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:738
This instruction constructs a fixed permutation of two input vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:745
static unsigned getSelectFoldableOperands(BinaryOperator *I)
We want to turn code that looks like this: C = or A, B D = select cond, C, A into: C = select cond...
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:748
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1273
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1246
Metadata node.
Definition: Metadata.h:863
SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
F(f)
This class represents a sign extension of integer types.
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:734
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2248
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:229
void reserve(size_type N)
Definition: SmallVector.h:369
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1238
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
static bool isFreeToInvert(Value *V, bool WillInvertAllUses)
Return true if the specified value is free to invert (apply ~ to).
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:386
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:534
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1515
Signed maximum.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
static Constant * getNullValue(Type *Ty)
Constructor to create a &#39;0&#39; constant of arbitrary type.
Definition: Constants.cpp:274
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1524
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1241
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition: InstrTypes.h:289
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:47
CmpClass_match< LHS, RHS, FCmpInst, FCmpInst::Predicate > m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R)
static Value * foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, InstCombiner::BuilderTy &Builder)
This folds: select (icmp eq (and X, C1)), TC, FC iff C1 is a power 2 and the difference between TC an...
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:843
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElement(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
This class represents the LLVM &#39;select&#39; instruction.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
Definition: InstrTypes.h:831
Absolute value.
static Optional< unsigned > getOpcode(ArrayRef< VPValue *> Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:196
static Value * foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 (select (icmp slt x...
bool isUnsigned() const
Definition: InstrTypes.h:908
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
static Constant * AddOne(Constant *C)
Add one to a Constant.
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:739
static Constant * getSExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1669
This file implements a class to represent arbitrary precision integral constant values and operations...
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:716
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1683
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:927
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:84
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
This instruction compares its operands according to the predicate given to the constructor.
void andIRFlags(const Value *V)
Logical &#39;and&#39; of any supported wrapping, exact, and fast-math flags of V and this instruction...
MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty > m_OrdFMin(const LHS &L, const RHS &R)
Match an &#39;ordered&#39; floating point minimum function.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:234
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.h:2448
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:81
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:519
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:202
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Definition: IRBuilder.cpp:731
static Instruction * foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) into: zext (icmp ne i32 (a...
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:407
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:291
Function * getDeclaration(Module *M, ID id, ArrayRef< Type *> Tys=None)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1043
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Value * getOperand(unsigned i) const
Definition: User.h:169
bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
void replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:20
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1294
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:344
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:303
Value * CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2206
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:61
#define P(N)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:855
bool hasNUsesOrMore(unsigned N) const
Return true if this value has N users or more.
Definition: Value.cpp:135
Value * SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:395
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
bool hasNUses(unsigned N) const
Return true if this Value has exactly N users.
Definition: Value.cpp:131
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:189
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1248
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false)
Return true if the two given values are negation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:428
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:837
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1184
CastClass_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.h:2271
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition: InstrTypes.h:308
bool isOneValue() const
Determine if this is a value of 1.
Definition: APInt.h:410
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1892
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:331
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:587
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:576
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1184
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1485
This instruction compares its operands according to the predicate given to the constructor.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:732
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false)
Return the identity constant for a binary opcode.
Definition: Constants.cpp:2325
Value * CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2116
CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced=false)
get* - Return some common constants without having to specify the full Instruction::OPCODE identifier...
Definition: Constants.cpp:2052
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:73
Class to represent integer types.
Definition: DerivedTypes.h:40
const Value * getCondition() const
bool isCast() const
Definition: Instruction.h:133
C setMetadata(LLVMContext::MD_range, MDNode::get(Context, LowAndHigh))
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:747
void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE maxNum semantics.
Definition: APFloat.h:1248
signed greater than
Definition: InstrTypes.h:759
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
Floating point maxnum.
static Value * createMinMax(InstCombiner::BuilderTy &Builder, SelectPatternFlavor SPF, Value *A, Value *B)
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:736
static Value * foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy &Builder)
We want to turn: (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) into: (or (shl (and X...
unsigned getNumOperands() const
Definition: User.h:191
SelectPatternFlavor Flavor
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:129
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:746
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
SelectPatternFlavor
Specific patterns of select instructions we can match.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:63
Provides information about what library functions are available for the current target.
signed less than
Definition: InstrTypes.h:761
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:1655
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:640
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1292
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:596
bool isCommutative() const
Return true if the instruction is commutative:
Definition: Instruction.h:488
Instruction * visitSelectInst(SelectInst &SI)
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:812
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:894
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
unsigned logBase2() const
Definition: APInt.h:1754
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a &#39;Neg&#39; as &#39;sub 0, V&#39;.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:940
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:535
bool isIntPredicate() const
Definition: InstrTypes.h:825
Class to represent vector types.
Definition: DerivedTypes.h:427
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:55
Class for arbitrary precision integers.
Definition: APInt.h:69
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1222
static Value * canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, InstCombiner::BuilderTy &Builder)
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:463
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1308
iterator_range< user_iterator > users()
Definition: Value.h:419
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
Definition: Constants.cpp:1548
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1207
const Value * getFalseValue() const
void setCondition(Value *V)
static BinaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:283
static APInt getSelectFoldableConstant(BinaryOperator *I)
For the same transformation as the previous function, return the identity constant that goes into the...
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2218
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1254
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:807
static cl::opt< bool > NeedAnd("extract-needand", cl::init(true), cl::Hidden, cl::desc("Require & in extract patterns"))
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match &#39;fneg X&#39; as &#39;fsub -0.0, X&#39;.
Definition: PatternMatch.h:771
static Value * canonicalizeSaturatedSubtract(const ICmpInst *ICI, const Value *TrueVal, const Value *FalseVal, InstCombiner::BuilderTy &Builder)
Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
void setTrueValue(Value *V)
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:175
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
unsigned greater or equal
Definition: InstrTypes.h:756
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
bool isEquality() const
Return true if this predicate is either EQ or NE.
#define I(x, y, z)
Definition: MD5.cpp:58
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
void swapValues()
Swap the true and false values of the select instruction.
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
void setFalseValue(Value *V)
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:744
Signed minimum.
CallInst * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type. ...
Definition: IRBuilder.cpp:739
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1268
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Definition: IRBuilder.h:830
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:184
bool isOneValue() const
Returns true if the value is one.
Definition: Constants.cpp:125
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1995
Value * SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value *> IdxList, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Definition: Instructions.h:935
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:544
MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty > m_OrdFMax(const LHS &L, const RHS &R)
Match an &#39;ordered&#39; floating point maximum function.
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:735
LLVM Value Representation.
Definition: Value.h:73
This file provides internal interfaces used to implement the InstCombine.
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:745
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:377
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition: Compiler.h:258
std::underlying_type< E >::type Mask()
Get a bitmask with 1s in all places up to the high-order bit of E&#39;s largest value.
Definition: BitmaskEnum.h:80
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:225
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
Definition: Instruction.cpp:86
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1228
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:143
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
Definition: PatternMatch.h:322
bool hasNoNaNs() const
Determine whether the no-NaNs flag is set.
bool hasOneUse() const
Return true if there is exactly one user of this value.
Definition: Value.h:432
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:159
unsigned greater than
Definition: InstrTypes.h:755
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:847
static APInt getNullValue(unsigned numBits)
Get the &#39;0&#39; value.
Definition: APInt.h:568
specific_intval m_SpecificInt(uint64_t V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:653
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:510
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:737
static Constant * get(ArrayRef< Constant *> V)
Definition: Constants.cpp:1097
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1503
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE minNum semantics.
Definition: APFloat.h:1237
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:553
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a &#39;Not&#39; as &#39;xor V, -1&#39; or &#39;xor -1, V&#39;.
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:405
signed greater or equal
Definition: InstrTypes.h:760
IntegerType * Int32Ty
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:43
const BasicBlock * getParent() const
Definition: Instruction.h:66
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)