LLVM  7.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
122  const Module &M;
124  const DataLayout &DL;
126 
127  /// Track the brokenness of the module while recursively visiting.
128  bool Broken = false;
129  /// Broken debug info can be "recovered" from by stripping the debug info.
130  bool BrokenDebugInfo = false;
131  /// Whether to treat broken debug info as an error.
133 
134  explicit VerifierSupport(raw_ostream *OS, const Module &M)
135  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
138  void Write(const Module *M) {
139  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140  }
141 
142  void Write(const Value *V) {
143  if (!V)
144  return;
145  if (isa<Instruction>(V)) {
146  V->print(*OS, MST);
147  *OS << '\n';
148  } else {
149  V->printAsOperand(*OS, true, MST);
150  *OS << '\n';
151  }
152  }
153 
154  void Write(ImmutableCallSite CS) {
155  Write(CS.getInstruction());
156  }
157 
158  void Write(const Metadata *MD) {
159  if (!MD)
160  return;
161  MD->print(*OS, MST, &M);
162  *OS << '\n';
163  }
164 
165  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166  Write(MD.get());
167  }
168 
169  void Write(const NamedMDNode *NMD) {
170  if (!NMD)
171  return;
172  NMD->print(*OS, MST);
173  *OS << '\n';
174  }
175 
176  void Write(Type *T) {
177  if (!T)
178  return;
179  *OS << ' ' << *T;
180  }
181 
182  void Write(const Comdat *C) {
183  if (!C)
184  return;
185  *OS << *C;
186  }
187 
188  void Write(const APInt *AI) {
189  if (!AI)
190  return;
191  *OS << *AI << '\n';
192  }
193 
194  void Write(const unsigned i) { *OS << i << '\n'; }
195 
196  template <typename T> void Write(ArrayRef<T> Vs) {
197  for (const T &V : Vs)
198  Write(V);
199  }
200 
201  template <typename T1, typename... Ts>
202  void WriteTs(const T1 &V1, const Ts &... Vs) {
203  Write(V1);
204  WriteTs(Vs...);
205  }
206 
207  template <typename... Ts> void WriteTs() {}
208 
209 public:
210  /// \brief A check failed, so printout out the condition and the message.
211  ///
212  /// This provides a nice place to put a breakpoint if you want to see why
213  /// something is not correct.
214  void CheckFailed(const Twine &Message) {
215  if (OS)
216  *OS << Message << '\n';
217  Broken = true;
218  }
219 
220  /// \brief A check failed (with values to print).
221  ///
222  /// This calls the Message-only version so that the above is easier to set a
223  /// breakpoint on.
224  template <typename T1, typename... Ts>
225  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226  CheckFailed(Message);
227  if (OS)
228  WriteTs(V1, Vs...);
229  }
230 
231  /// A debug info check failed.
232  void DebugInfoCheckFailed(const Twine &Message) {
233  if (OS)
234  *OS << Message << '\n';
235  Broken |= TreatBrokenDebugInfoAsError;
236  BrokenDebugInfo = true;
237  }
238 
239  /// A debug info check failed (with values to print).
240  template <typename T1, typename... Ts>
241  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242  const Ts &... Vs) {
243  DebugInfoCheckFailed(Message);
244  if (OS)
245  WriteTs(V1, Vs...);
246  }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254  friend class InstVisitor<Verifier>;
255 
256  DominatorTree DT;
257 
258  /// \brief When verifying a basic block, keep track of all of the
259  /// instructions we have seen so far.
260  ///
261  /// This allows us to do efficient dominance checks for the case when an
262  /// instruction has an operand that is an instruction in the same block.
263  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265  /// \brief Keep track of the metadata nodes that have been checked already.
267 
268  /// Keep track which DISubprogram is attached to which function.
269  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271  /// Track all DICompileUnits visited.
273 
274  /// \brief The result type for a landingpad.
275  Type *LandingPadResultTy;
276 
277  /// \brief Whether we've seen a call to @llvm.localescape in this function
278  /// already.
279  bool SawFrameEscape;
280 
281  /// Whether the current function has a DISubprogram attached to it.
282  bool HasDebugInfo = false;
283 
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
287 
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
291 
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304  // Keeps track of duplicate function argument debug info.
306 
307  TBAAVerifier TBAAVerifyHelper;
308 
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313  const Module &M)
314  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315  SawFrameEscape(false), TBAAVerifyHelper(this) {
316  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318 
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321  bool verify(const Function &F) {
322  assert(F.getParent() == &M &&
323  "An instance of this class only works with a specific module!");
324 
325  // First ensure the function is well-enough formed to compute dominance
326  // information, and directly compute a dominance tree. We don't rely on the
327  // pass manager to provide this as it isolates us from a potentially
328  // out-of-date dominator tree and makes it significantly more complex to run
329  // this code outside of a pass manager.
330  // FIXME: It's really gross that we have to cast away constness here.
331  if (!F.empty())
332  DT.recalculate(const_cast<Function &>(F));
333 
334  for (const BasicBlock &BB : F) {
335  if (!BB.empty() && BB.back().isTerminator())
336  continue;
337 
338  if (OS) {
339  *OS << "Basic Block in function '" << F.getName()
340  << "' does not have terminator!\n";
341  BB.printAsOperand(*OS, true, MST);
342  *OS << "\n";
343  }
344  return false;
345  }
346 
347  Broken = false;
348  // FIXME: We strip const here because the inst visitor strips const.
349  visit(const_cast<Function &>(F));
350  verifySiblingFuncletUnwinds();
351  InstsInThisBlock.clear();
352  DebugFnArgs.clear();
353  LandingPadResultTy = nullptr;
354  SawFrameEscape = false;
355  SiblingFuncletInfo.clear();
356 
357  return !Broken;
358  }
359 
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362  Broken = false;
363 
364  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365  for (const Function &F : M)
366  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367  DeoptimizeDeclarations.push_back(&F);
368 
369  // Now that we've visited every function, verify that we never asked to
370  // recover a frame index that wasn't escaped.
371  verifyFrameRecoverIndices();
372  for (const GlobalVariable &GV : M.globals())
373  visitGlobalVariable(GV);
374 
375  for (const GlobalAlias &GA : M.aliases())
376  visitGlobalAlias(GA);
377 
378  for (const NamedMDNode &NMD : M.named_metadata())
379  visitNamedMDNode(NMD);
380 
381  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382  visitComdat(SMEC.getValue());
383 
384  visitModuleFlags(M);
385  visitModuleIdents(M);
386 
387  verifyCompileUnits();
388 
389  verifyDeoptimizeCallingConvs();
390  DISubprogramAttachments.clear();
391  return !Broken;
392  }
393 
394 private:
395  // Verification methods...
396  void visitGlobalValue(const GlobalValue &GV);
397  void visitGlobalVariable(const GlobalVariable &GV);
398  void visitGlobalAlias(const GlobalAlias &GA);
399  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401  const GlobalAlias &A, const Constant &C);
402  void visitNamedMDNode(const NamedMDNode &NMD);
403  void visitMDNode(const MDNode &MD);
404  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406  void visitComdat(const Comdat &C);
407  void visitModuleIdents(const Module &M);
408  void visitModuleFlags(const Module &M);
409  void visitModuleFlag(const MDNode *Op,
411  SmallVectorImpl<const MDNode *> &Requirements);
412  void visitFunction(const Function &F);
413  void visitBasicBlock(BasicBlock &BB);
414  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
415  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
416 
417  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
418 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
419 #include "llvm/IR/Metadata.def"
420  void visitDIScope(const DIScope &N);
421  void visitDIVariable(const DIVariable &N);
422  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
423  void visitDITemplateParameter(const DITemplateParameter &N);
424 
425  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
426 
427  // InstVisitor overrides...
429  void visit(Instruction &I);
430 
431  void visitTruncInst(TruncInst &I);
432  void visitZExtInst(ZExtInst &I);
433  void visitSExtInst(SExtInst &I);
434  void visitFPTruncInst(FPTruncInst &I);
435  void visitFPExtInst(FPExtInst &I);
436  void visitFPToUIInst(FPToUIInst &I);
437  void visitFPToSIInst(FPToSIInst &I);
438  void visitUIToFPInst(UIToFPInst &I);
439  void visitSIToFPInst(SIToFPInst &I);
440  void visitIntToPtrInst(IntToPtrInst &I);
441  void visitPtrToIntInst(PtrToIntInst &I);
442  void visitBitCastInst(BitCastInst &I);
443  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
444  void visitPHINode(PHINode &PN);
445  void visitBinaryOperator(BinaryOperator &B);
446  void visitICmpInst(ICmpInst &IC);
447  void visitFCmpInst(FCmpInst &FC);
448  void visitExtractElementInst(ExtractElementInst &EI);
449  void visitInsertElementInst(InsertElementInst &EI);
450  void visitShuffleVectorInst(ShuffleVectorInst &EI);
451  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
452  void visitCallInst(CallInst &CI);
453  void visitInvokeInst(InvokeInst &II);
454  void visitGetElementPtrInst(GetElementPtrInst &GEP);
455  void visitLoadInst(LoadInst &LI);
456  void visitStoreInst(StoreInst &SI);
457  void verifyDominatesUse(Instruction &I, unsigned i);
458  void visitInstruction(Instruction &I);
459  void visitTerminatorInst(TerminatorInst &I);
460  void visitBranchInst(BranchInst &BI);
461  void visitReturnInst(ReturnInst &RI);
462  void visitSwitchInst(SwitchInst &SI);
463  void visitIndirectBrInst(IndirectBrInst &BI);
464  void visitSelectInst(SelectInst &SI);
465  void visitUserOp1(Instruction &I);
466  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
467  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
468  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
469  void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
470  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472  void visitFenceInst(FenceInst &FI);
473  void visitAllocaInst(AllocaInst &AI);
474  void visitExtractValueInst(ExtractValueInst &EVI);
475  void visitInsertValueInst(InsertValueInst &IVI);
476  void visitEHPadPredecessors(Instruction &I);
477  void visitLandingPadInst(LandingPadInst &LPI);
478  void visitResumeInst(ResumeInst &RI);
479  void visitCatchPadInst(CatchPadInst &CPI);
480  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481  void visitCleanupPadInst(CleanupPadInst &CPI);
482  void visitFuncletPadInst(FuncletPadInst &FPI);
483  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484  void visitCleanupReturnInst(CleanupReturnInst &CRI);
485 
486  void verifyCallSite(CallSite CS);
487  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488  void verifySwiftErrorValue(const Value *SwiftErrorVal);
489  void verifyMustTailCall(CallInst &CI);
490  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491  unsigned ArgNo, std::string &Suffix);
492  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
494  const Value *V);
495  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
496  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
497  const Value *V);
498  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
499 
500  void visitConstantExprsRecursively(const Constant *EntryC);
501  void visitConstantExpr(const ConstantExpr *CE);
502  void verifyStatepoint(ImmutableCallSite CS);
503  void verifyFrameRecoverIndices();
504  void verifySiblingFuncletUnwinds();
505 
506  void verifyFragmentExpression(const DbgInfoIntrinsic &I);
507  template <typename ValueOrMetadata>
508  void verifyFragmentExpression(const DIVariable &V,
510  ValueOrMetadata *Desc);
511  void verifyFnArgs(const DbgInfoIntrinsic &I);
512 
513  /// Module-level debug info verification...
514  void verifyCompileUnits();
515 
516  /// Module-level verification that all @llvm.experimental.deoptimize
517  /// declarations share the same calling convention.
518  void verifyDeoptimizeCallingConvs();
519 };
520 
521 } // end anonymous namespace
522 
523 /// We know that cond should be true, if not print an error message.
524 #define Assert(C, ...) \
525  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
526 
527 /// We know that a debug info condition should be true, if not print
528 /// an error message.
529 #define AssertDI(C, ...) \
530  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
531 
532 void Verifier::visit(Instruction &I) {
533  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
534  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
536 }
537 
538 // Helper to recursively iterate over indirect users. By
539 // returning false, the callback can ask to stop recursing
540 // further.
541 static void forEachUser(const Value *User,
543  llvm::function_ref<bool(const Value *)> Callback) {
544  if (!Visited.insert(User).second)
545  return;
546  for (const Value *TheNextUser : User->materialized_users())
547  if (Callback(TheNextUser))
548  forEachUser(TheNextUser, Visited, Callback);
549 }
550 
551 void Verifier::visitGlobalValue(const GlobalValue &GV) {
553  "Global is external, but doesn't have external or weak linkage!", &GV);
554 
556  "huge alignment values are unsupported", &GV);
557  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
558  "Only global variables can have appending linkage!", &GV);
559 
560  if (GV.hasAppendingLinkage()) {
561  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
562  Assert(GVar && GVar->getValueType()->isArrayTy(),
563  "Only global arrays can have appending linkage!", GVar);
564  }
565 
566  if (GV.isDeclarationForLinker())
567  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
568 
569  if (GV.hasDLLImportStorageClass())
570  Assert(!GV.isDSOLocal(),
571  "GlobalValue with DLLImport Storage is dso_local!", &GV);
572 
573  if (GV.hasLocalLinkage())
574  Assert(GV.isDSOLocal(),
575  "GlobalValue with private or internal linkage must be dso_local!",
576  &GV);
577 
578  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
579  Assert(GV.isDSOLocal(),
580  "GlobalValue with non default visibility must be dso_local!", &GV);
581 
582  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
583  if (const Instruction *I = dyn_cast<Instruction>(V)) {
584  if (!I->getParent() || !I->getParent()->getParent())
585  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
586  I);
587  else if (I->getParent()->getParent()->getParent() != &M)
588  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
589  I->getParent()->getParent(),
590  I->getParent()->getParent()->getParent());
591  return false;
592  } else if (const Function *F = dyn_cast<Function>(V)) {
593  if (F->getParent() != &M)
594  CheckFailed("Global is used by function in a different module", &GV, &M,
595  F, F->getParent());
596  return false;
597  }
598  return true;
599  });
600 }
601 
602 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
603  if (GV.hasInitializer()) {
604  Assert(GV.getInitializer()->getType() == GV.getValueType(),
605  "Global variable initializer type does not match global "
606  "variable type!",
607  &GV);
608  // If the global has common linkage, it must have a zero initializer and
609  // cannot be constant.
610  if (GV.hasCommonLinkage()) {
612  "'common' global must have a zero initializer!", &GV);
613  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
614  &GV);
615  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
616  }
617  }
618 
619  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
620  GV.getName() == "llvm.global_dtors")) {
622  "invalid linkage for intrinsic global variable", &GV);
623  // Don't worry about emitting an error for it not being an array,
624  // visitGlobalValue will complain on appending non-array.
625  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
626  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
627  PointerType *FuncPtrTy =
629  // FIXME: Reject the 2-field form in LLVM 4.0.
630  Assert(STy &&
631  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
632  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
633  STy->getTypeAtIndex(1) == FuncPtrTy,
634  "wrong type for intrinsic global variable", &GV);
635  if (STy->getNumElements() == 3) {
636  Type *ETy = STy->getTypeAtIndex(2);
637  Assert(ETy->isPointerTy() &&
638  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
639  "wrong type for intrinsic global variable", &GV);
640  }
641  }
642  }
643 
644  if (GV.hasName() && (GV.getName() == "llvm.used" ||
645  GV.getName() == "llvm.compiler.used")) {
647  "invalid linkage for intrinsic global variable", &GV);
648  Type *GVType = GV.getValueType();
649  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
650  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
651  Assert(PTy, "wrong type for intrinsic global variable", &GV);
652  if (GV.hasInitializer()) {
653  const Constant *Init = GV.getInitializer();
654  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
655  Assert(InitArray, "wrong initalizer for intrinsic global variable",
656  Init);
657  for (Value *Op : InitArray->operands()) {
658  Value *V = Op->stripPointerCastsNoFollowAliases();
659  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
660  isa<GlobalAlias>(V),
661  "invalid llvm.used member", V);
662  Assert(V->hasName(), "members of llvm.used must be named", V);
663  }
664  }
665  }
666  }
667 
669  (GV.isDeclaration() && GV.hasExternalLinkage()) ||
671  "Global is marked as dllimport, but not external", &GV);
672 
673  // Visit any debug info attachments.
676  for (auto *MD : MDs) {
677  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
678  visitDIGlobalVariableExpression(*GVE);
679  else
680  AssertDI(false, "!dbg attachment of global variable must be a "
681  "DIGlobalVariableExpression");
682  }
683 
684  if (!GV.hasInitializer()) {
685  visitGlobalValue(GV);
686  return;
687  }
688 
689  // Walk any aggregate initializers looking for bitcasts between address spaces
690  visitConstantExprsRecursively(GV.getInitializer());
691 
692  visitGlobalValue(GV);
693 }
694 
695 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
697  Visited.insert(&GA);
698  visitAliaseeSubExpr(Visited, GA, C);
699 }
700 
701 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
702  const GlobalAlias &GA, const Constant &C) {
703  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
704  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
705  &GA);
706 
707  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
708  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
709 
710  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
711  &GA);
712  } else {
713  // Only continue verifying subexpressions of GlobalAliases.
714  // Do not recurse into global initializers.
715  return;
716  }
717  }
718 
719  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
720  visitConstantExprsRecursively(CE);
721 
722  for (const Use &U : C.operands()) {
723  Value *V = &*U;
724  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
725  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
726  else if (const auto *C2 = dyn_cast<Constant>(V))
727  visitAliaseeSubExpr(Visited, GA, *C2);
728  }
729 }
730 
731 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
733  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
734  "weak_odr, or external linkage!",
735  &GA);
736  const Constant *Aliasee = GA.getAliasee();
737  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
738  Assert(GA.getType() == Aliasee->getType(),
739  "Alias and aliasee types should match!", &GA);
740 
741  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
742  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
743 
744  visitAliaseeSubExpr(GA, *Aliasee);
745 
746  visitGlobalValue(GA);
747 }
748 
749 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
750  // There used to be various other llvm.dbg.* nodes, but we don't support
751  // upgrading them and we want to reserve the namespace for future uses.
752  if (NMD.getName().startswith("llvm.dbg."))
753  AssertDI(NMD.getName() == "llvm.dbg.cu",
754  "unrecognized named metadata node in the llvm.dbg namespace",
755  &NMD);
756  for (const MDNode *MD : NMD.operands()) {
757  if (NMD.getName() == "llvm.dbg.cu")
758  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
759 
760  if (!MD)
761  continue;
762 
763  visitMDNode(*MD);
764  }
765 }
766 
767 void Verifier::visitMDNode(const MDNode &MD) {
768  // Only visit each node once. Metadata can be mutually recursive, so this
769  // avoids infinite recursion here, as well as being an optimization.
770  if (!MDNodes.insert(&MD).second)
771  return;
772 
773  switch (MD.getMetadataID()) {
774  default:
775  llvm_unreachable("Invalid MDNode subclass");
776  case Metadata::MDTupleKind:
777  break;
778 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
779  case Metadata::CLASS##Kind: \
780  visit##CLASS(cast<CLASS>(MD)); \
781  break;
782 #include "llvm/IR/Metadata.def"
783  }
784 
785  for (const Metadata *Op : MD.operands()) {
786  if (!Op)
787  continue;
788  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
789  &MD, Op);
790  if (auto *N = dyn_cast<MDNode>(Op)) {
791  visitMDNode(*N);
792  continue;
793  }
794  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
795  visitValueAsMetadata(*V, nullptr);
796  continue;
797  }
798  }
799 
800  // Check these last, so we diagnose problems in operands first.
801  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
802  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
803 }
804 
805 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
806  Assert(MD.getValue(), "Expected valid value", &MD);
807  Assert(!MD.getValue()->getType()->isMetadataTy(),
808  "Unexpected metadata round-trip through values", &MD, MD.getValue());
809 
810  auto *L = dyn_cast<LocalAsMetadata>(&MD);
811  if (!L)
812  return;
813 
814  Assert(F, "function-local metadata used outside a function", L);
815 
816  // If this was an instruction, bb, or argument, verify that it is in the
817  // function that we expect.
818  Function *ActualF = nullptr;
819  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
820  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
821  ActualF = I->getParent()->getParent();
822  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
823  ActualF = BB->getParent();
824  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
825  ActualF = A->getParent();
826  assert(ActualF && "Unimplemented function local metadata case!");
827 
828  Assert(ActualF == F, "function-local metadata used in wrong function", L);
829 }
830 
831 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
832  Metadata *MD = MDV.getMetadata();
833  if (auto *N = dyn_cast<MDNode>(MD)) {
834  visitMDNode(*N);
835  return;
836  }
837 
838  // Only visit each node once. Metadata can be mutually recursive, so this
839  // avoids infinite recursion here, as well as being an optimization.
840  if (!MDNodes.insert(MD).second)
841  return;
842 
843  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
844  visitValueAsMetadata(*V, F);
845 }
846 
847 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
848 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
849 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
850 
851 void Verifier::visitDILocation(const DILocation &N) {
852  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
853  "location requires a valid scope", &N, N.getRawScope());
854  if (auto *IA = N.getRawInlinedAt())
855  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
856  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
857  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
858 }
859 
860 void Verifier::visitGenericDINode(const GenericDINode &N) {
861  AssertDI(N.getTag(), "invalid tag", &N);
862 }
863 
864 void Verifier::visitDIScope(const DIScope &N) {
865  if (auto *F = N.getRawFile())
866  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
867 }
868 
869 void Verifier::visitDISubrange(const DISubrange &N) {
870  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
871  AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
872 }
873 
874 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
875  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
876 }
877 
878 void Verifier::visitDIBasicType(const DIBasicType &N) {
879  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
880  N.getTag() == dwarf::DW_TAG_unspecified_type,
881  "invalid tag", &N);
882 }
883 
884 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
885  // Common scope checks.
886  visitDIScope(N);
887 
888  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
889  N.getTag() == dwarf::DW_TAG_pointer_type ||
890  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
891  N.getTag() == dwarf::DW_TAG_reference_type ||
892  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
893  N.getTag() == dwarf::DW_TAG_const_type ||
894  N.getTag() == dwarf::DW_TAG_volatile_type ||
895  N.getTag() == dwarf::DW_TAG_restrict_type ||
896  N.getTag() == dwarf::DW_TAG_atomic_type ||
897  N.getTag() == dwarf::DW_TAG_member ||
898  N.getTag() == dwarf::DW_TAG_inheritance ||
899  N.getTag() == dwarf::DW_TAG_friend,
900  "invalid tag", &N);
901  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
902  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
903  N.getRawExtraData());
904  }
905 
906  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
907  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
908  N.getRawBaseType());
909 
910  if (N.getDWARFAddressSpace()) {
911  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
912  N.getTag() == dwarf::DW_TAG_reference_type,
913  "DWARF address space only applies to pointer or reference types",
914  &N);
915  }
916 }
917 
918 /// Detect mutually exclusive flags.
919 static bool hasConflictingReferenceFlags(unsigned Flags) {
920  return ((Flags & DINode::FlagLValueReference) &&
921  (Flags & DINode::FlagRValueReference)) ||
922  ((Flags & DINode::FlagTypePassByValue) &&
923  (Flags & DINode::FlagTypePassByReference));
924 }
925 
926 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
927  auto *Params = dyn_cast<MDTuple>(&RawParams);
928  AssertDI(Params, "invalid template params", &N, &RawParams);
929  for (Metadata *Op : Params->operands()) {
930  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
931  &N, Params, Op);
932  }
933 }
934 
935 void Verifier::visitDICompositeType(const DICompositeType &N) {
936  // Common scope checks.
937  visitDIScope(N);
938 
939  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
940  N.getTag() == dwarf::DW_TAG_structure_type ||
941  N.getTag() == dwarf::DW_TAG_union_type ||
942  N.getTag() == dwarf::DW_TAG_enumeration_type ||
943  N.getTag() == dwarf::DW_TAG_class_type,
944  "invalid tag", &N);
945 
946  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
947  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
948  N.getRawBaseType());
949 
950  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
951  "invalid composite elements", &N, N.getRawElements());
952  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
953  N.getRawVTableHolder());
955  "invalid reference flags", &N);
956  if (auto *Params = N.getRawTemplateParams())
957  visitTemplateParams(N, *Params);
958 
959  if (N.getTag() == dwarf::DW_TAG_class_type ||
960  N.getTag() == dwarf::DW_TAG_union_type) {
961  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
962  "class/union requires a filename", &N, N.getFile());
963  }
964 }
965 
966 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
967  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
968  if (auto *Types = N.getRawTypeArray()) {
969  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
970  for (Metadata *Ty : N.getTypeArray()->operands()) {
971  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
972  }
973  }
975  "invalid reference flags", &N);
976 }
977 
978 void Verifier::visitDIFile(const DIFile &N) {
979  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
980  AssertDI(N.getChecksumKind() <= DIFile::CSK_Last, "invalid checksum kind",
981  &N);
982  size_t Size;
983  switch (N.getChecksumKind()) {
984  case DIFile::CSK_None:
985  Size = 0;
986  break;
987  case DIFile::CSK_MD5:
988  Size = 32;
989  break;
990  case DIFile::CSK_SHA1:
991  Size = 40;
992  break;
993  }
994  AssertDI(N.getChecksum().size() == Size, "invalid checksum length", &N);
995  AssertDI(N.getChecksum().find_if_not(llvm::isHexDigit) == StringRef::npos,
996  "invalid checksum", &N);
997 }
998 
999 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1000  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1001  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1002 
1003  // Don't bother verifying the compilation directory or producer string
1004  // as those could be empty.
1005  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1006  N.getRawFile());
1007  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1008  N.getFile());
1009 
1011  "invalid emission kind", &N);
1012 
1013  if (auto *Array = N.getRawEnumTypes()) {
1014  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1015  for (Metadata *Op : N.getEnumTypes()->operands()) {
1016  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1017  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1018  "invalid enum type", &N, N.getEnumTypes(), Op);
1019  }
1020  }
1021  if (auto *Array = N.getRawRetainedTypes()) {
1022  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1023  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1024  AssertDI(Op && (isa<DIType>(Op) ||
1025  (isa<DISubprogram>(Op) &&
1026  !cast<DISubprogram>(Op)->isDefinition())),
1027  "invalid retained type", &N, Op);
1028  }
1029  }
1030  if (auto *Array = N.getRawGlobalVariables()) {
1031  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1032  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1033  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1034  "invalid global variable ref", &N, Op);
1035  }
1036  }
1037  if (auto *Array = N.getRawImportedEntities()) {
1038  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1039  for (Metadata *Op : N.getImportedEntities()->operands()) {
1040  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1041  &N, Op);
1042  }
1043  }
1044  if (auto *Array = N.getRawMacros()) {
1045  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1046  for (Metadata *Op : N.getMacros()->operands()) {
1047  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1048  }
1049  }
1050  CUVisited.insert(&N);
1051 }
1052 
1053 void Verifier::visitDISubprogram(const DISubprogram &N) {
1054  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1055  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1056  if (auto *F = N.getRawFile())
1057  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1058  else
1059  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1060  if (auto *T = N.getRawType())
1061  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1062  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1063  N.getRawContainingType());
1064  if (auto *Params = N.getRawTemplateParams())
1065  visitTemplateParams(N, *Params);
1066  if (auto *S = N.getRawDeclaration())
1067  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1068  "invalid subprogram declaration", &N, S);
1069  if (auto *RawVars = N.getRawVariables()) {
1070  auto *Vars = dyn_cast<MDTuple>(RawVars);
1071  AssertDI(Vars, "invalid variable list", &N, RawVars);
1072  for (Metadata *Op : Vars->operands()) {
1073  AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1074  Vars, Op);
1075  }
1076  }
1077  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1078  "invalid reference flags", &N);
1079 
1080  auto *Unit = N.getRawUnit();
1081  if (N.isDefinition()) {
1082  // Subprogram definitions (not part of the type hierarchy).
1083  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1084  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1085  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1086  } else {
1087  // Subprogram declarations (part of the type hierarchy).
1088  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1089  }
1090 
1091  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1092  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1093  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1094  for (Metadata *Op : ThrownTypes->operands())
1095  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1096  Op);
1097  }
1098 }
1099 
1100 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1101  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1102  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1103  "invalid local scope", &N, N.getRawScope());
1104  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1105  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1106 }
1107 
1108 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1109  visitDILexicalBlockBase(N);
1110 
1111  AssertDI(N.getLine() || !N.getColumn(),
1112  "cannot have column info without line info", &N);
1113 }
1114 
1115 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1116  visitDILexicalBlockBase(N);
1117 }
1118 
1119 void Verifier::visitDINamespace(const DINamespace &N) {
1120  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1121  if (auto *S = N.getRawScope())
1122  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1123 }
1124 
1125 void Verifier::visitDIMacro(const DIMacro &N) {
1128  "invalid macinfo type", &N);
1129  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1130  if (!N.getValue().empty()) {
1131  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1132  }
1133 }
1134 
1135 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1137  "invalid macinfo type", &N);
1138  if (auto *F = N.getRawFile())
1139  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1140 
1141  if (auto *Array = N.getRawElements()) {
1142  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1143  for (Metadata *Op : N.getElements()->operands()) {
1144  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1145  }
1146  }
1147 }
1148 
1149 void Verifier::visitDIModule(const DIModule &N) {
1150  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1151  AssertDI(!N.getName().empty(), "anonymous module", &N);
1152 }
1153 
1154 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1155  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1156 }
1157 
1158 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1159  visitDITemplateParameter(N);
1160 
1161  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1162  &N);
1163 }
1164 
1165 void Verifier::visitDITemplateValueParameter(
1166  const DITemplateValueParameter &N) {
1167  visitDITemplateParameter(N);
1168 
1169  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1170  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1171  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1172  "invalid tag", &N);
1173 }
1174 
1175 void Verifier::visitDIVariable(const DIVariable &N) {
1176  if (auto *S = N.getRawScope())
1177  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1178  if (auto *F = N.getRawFile())
1179  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1180 }
1181 
1182 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1183  // Checks common to all variables.
1184  visitDIVariable(N);
1185 
1186  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1187  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1188  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1189  AssertDI(N.getType(), "missing global variable type", &N);
1190  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1191  AssertDI(isa<DIDerivedType>(Member),
1192  "invalid static data member declaration", &N, Member);
1193  }
1194 }
1195 
1196 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1197  // Checks common to all variables.
1198  visitDIVariable(N);
1199 
1200  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1201  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1202  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1203  "local variable requires a valid scope", &N, N.getRawScope());
1204 }
1205 
1206 void Verifier::visitDIExpression(const DIExpression &N) {
1207  AssertDI(N.isValid(), "invalid expression", &N);
1208 }
1209 
1210 void Verifier::visitDIGlobalVariableExpression(
1211  const DIGlobalVariableExpression &GVE) {
1212  AssertDI(GVE.getVariable(), "missing variable");
1213  if (auto *Var = GVE.getVariable())
1214  visitDIGlobalVariable(*Var);
1215  if (auto *Expr = GVE.getExpression()) {
1216  visitDIExpression(*Expr);
1217  if (auto Fragment = Expr->getFragmentInfo())
1218  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1219  }
1220 }
1221 
1222 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1223  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1224  if (auto *T = N.getRawType())
1225  AssertDI(isType(T), "invalid type ref", &N, T);
1226  if (auto *F = N.getRawFile())
1227  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1228 }
1229 
1230 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1231  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1232  N.getTag() == dwarf::DW_TAG_imported_declaration,
1233  "invalid tag", &N);
1234  if (auto *S = N.getRawScope())
1235  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1236  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1237  N.getRawEntity());
1238 }
1239 
1240 void Verifier::visitComdat(const Comdat &C) {
1241  // The Module is invalid if the GlobalValue has private linkage. Entities
1242  // with private linkage don't have entries in the symbol table.
1243  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1244  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1245  GV);
1246 }
1247 
1248 void Verifier::visitModuleIdents(const Module &M) {
1249  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1250  if (!Idents)
1251  return;
1252 
1253  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1254  // Scan each llvm.ident entry and make sure that this requirement is met.
1255  for (const MDNode *N : Idents->operands()) {
1256  Assert(N->getNumOperands() == 1,
1257  "incorrect number of operands in llvm.ident metadata", N);
1258  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1259  ("invalid value for llvm.ident metadata entry operand"
1260  "(the operand should be a string)"),
1261  N->getOperand(0));
1262  }
1263 }
1264 
1265 void Verifier::visitModuleFlags(const Module &M) {
1266  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1267  if (!Flags) return;
1268 
1269  // Scan each flag, and track the flags and requirements.
1271  SmallVector<const MDNode*, 16> Requirements;
1272  for (const MDNode *MDN : Flags->operands())
1273  visitModuleFlag(MDN, SeenIDs, Requirements);
1274 
1275  // Validate that the requirements in the module are valid.
1276  for (const MDNode *Requirement : Requirements) {
1277  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1278  const Metadata *ReqValue = Requirement->getOperand(1);
1279 
1280  const MDNode *Op = SeenIDs.lookup(Flag);
1281  if (!Op) {
1282  CheckFailed("invalid requirement on flag, flag is not present in module",
1283  Flag);
1284  continue;
1285  }
1286 
1287  if (Op->getOperand(2) != ReqValue) {
1288  CheckFailed(("invalid requirement on flag, "
1289  "flag does not have the required value"),
1290  Flag);
1291  continue;
1292  }
1293  }
1294 }
1295 
1296 void
1297 Verifier::visitModuleFlag(const MDNode *Op,
1299  SmallVectorImpl<const MDNode *> &Requirements) {
1300  // Each module flag should have three arguments, the merge behavior (a
1301  // constant int), the flag ID (an MDString), and the value.
1302  Assert(Op->getNumOperands() == 3,
1303  "incorrect number of operands in module flag", Op);
1305  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1306  Assert(
1307  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1308  "invalid behavior operand in module flag (expected constant integer)",
1309  Op->getOperand(0));
1310  Assert(false,
1311  "invalid behavior operand in module flag (unexpected constant)",
1312  Op->getOperand(0));
1313  }
1314  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1315  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1316  Op->getOperand(1));
1317 
1318  // Sanity check the values for behaviors with additional requirements.
1319  switch (MFB) {
1320  case Module::Error:
1321  case Module::Warning:
1322  case Module::Override:
1323  // These behavior types accept any value.
1324  break;
1325 
1326  case Module::Max: {
1327  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1328  "invalid value for 'max' module flag (expected constant integer)",
1329  Op->getOperand(2));
1330  break;
1331  }
1332 
1333  case Module::Require: {
1334  // The value should itself be an MDNode with two operands, a flag ID (an
1335  // MDString), and a value.
1336  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1337  Assert(Value && Value->getNumOperands() == 2,
1338  "invalid value for 'require' module flag (expected metadata pair)",
1339  Op->getOperand(2));
1340  Assert(isa<MDString>(Value->getOperand(0)),
1341  ("invalid value for 'require' module flag "
1342  "(first value operand should be a string)"),
1343  Value->getOperand(0));
1344 
1345  // Append it to the list of requirements, to check once all module flags are
1346  // scanned.
1347  Requirements.push_back(Value);
1348  break;
1349  }
1350 
1351  case Module::Append:
1352  case Module::AppendUnique: {
1353  // These behavior types require the operand be an MDNode.
1354  Assert(isa<MDNode>(Op->getOperand(2)),
1355  "invalid value for 'append'-type module flag "
1356  "(expected a metadata node)",
1357  Op->getOperand(2));
1358  break;
1359  }
1360  }
1361 
1362  // Unless this is a "requires" flag, check the ID is unique.
1363  if (MFB != Module::Require) {
1364  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1365  Assert(Inserted,
1366  "module flag identifiers must be unique (or of 'require' type)", ID);
1367  }
1368 
1369  if (ID->getString() == "wchar_size") {
1371  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1372  Assert(Value, "wchar_size metadata requires constant integer argument");
1373  }
1374 
1375  if (ID->getString() == "Linker Options") {
1376  // If the llvm.linker.options named metadata exists, we assume that the
1377  // bitcode reader has upgraded the module flag. Otherwise the flag might
1378  // have been created by a client directly.
1379  Assert(M.getNamedMetadata("llvm.linker.options"),
1380  "'Linker Options' named metadata no longer supported");
1381  }
1382 }
1383 
1384 /// Return true if this attribute kind only applies to functions.
1386  switch (Kind) {
1387  case Attribute::NoReturn:
1388  case Attribute::NoUnwind:
1389  case Attribute::NoInline:
1390  case Attribute::AlwaysInline:
1391  case Attribute::OptimizeForSize:
1392  case Attribute::StackProtect:
1393  case Attribute::StackProtectReq:
1394  case Attribute::StackProtectStrong:
1395  case Attribute::SafeStack:
1396  case Attribute::NoRedZone:
1397  case Attribute::NoImplicitFloat:
1398  case Attribute::Naked:
1399  case Attribute::InlineHint:
1400  case Attribute::StackAlignment:
1401  case Attribute::UWTable:
1402  case Attribute::NonLazyBind:
1403  case Attribute::ReturnsTwice:
1404  case Attribute::SanitizeAddress:
1405  case Attribute::SanitizeHWAddress:
1406  case Attribute::SanitizeThread:
1407  case Attribute::SanitizeMemory:
1408  case Attribute::MinSize:
1409  case Attribute::NoDuplicate:
1410  case Attribute::Builtin:
1411  case Attribute::NoBuiltin:
1412  case Attribute::Cold:
1413  case Attribute::OptimizeNone:
1414  case Attribute::JumpTable:
1415  case Attribute::Convergent:
1416  case Attribute::ArgMemOnly:
1417  case Attribute::NoRecurse:
1418  case Attribute::InaccessibleMemOnly:
1419  case Attribute::InaccessibleMemOrArgMemOnly:
1420  case Attribute::AllocSize:
1421  case Attribute::Speculatable:
1422  case Attribute::StrictFP:
1423  return true;
1424  default:
1425  break;
1426  }
1427  return false;
1428 }
1429 
1430 /// Return true if this is a function attribute that can also appear on
1431 /// arguments.
1433  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1434  Kind == Attribute::ReadNone;
1435 }
1436 
1437 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1438  const Value *V) {
1439  for (Attribute A : Attrs) {
1440  if (A.isStringAttribute())
1441  continue;
1442 
1443  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1444  if (!IsFunction) {
1445  CheckFailed("Attribute '" + A.getAsString() +
1446  "' only applies to functions!",
1447  V);
1448  return;
1449  }
1450  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1451  CheckFailed("Attribute '" + A.getAsString() +
1452  "' does not apply to functions!",
1453  V);
1454  return;
1455  }
1456  }
1457 }
1458 
1459 // VerifyParameterAttrs - Check the given attributes for an argument or return
1460 // value of the specified type. The value V is printed in error messages.
1461 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1462  const Value *V) {
1463  if (!Attrs.hasAttributes())
1464  return;
1465 
1466  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1467 
1468  // Check for mutually incompatible attributes. Only inreg is compatible with
1469  // sret.
1470  unsigned AttrCount = 0;
1471  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1472  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1473  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1474  Attrs.hasAttribute(Attribute::InReg);
1475  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1476  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1477  "and 'sret' are incompatible!",
1478  V);
1479 
1480  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1481  Attrs.hasAttribute(Attribute::ReadOnly)),
1482  "Attributes "
1483  "'inalloca and readonly' are incompatible!",
1484  V);
1485 
1486  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1487  Attrs.hasAttribute(Attribute::Returned)),
1488  "Attributes "
1489  "'sret and returned' are incompatible!",
1490  V);
1491 
1492  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1493  Attrs.hasAttribute(Attribute::SExt)),
1494  "Attributes "
1495  "'zeroext and signext' are incompatible!",
1496  V);
1497 
1498  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1499  Attrs.hasAttribute(Attribute::ReadOnly)),
1500  "Attributes "
1501  "'readnone and readonly' are incompatible!",
1502  V);
1503 
1504  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1505  Attrs.hasAttribute(Attribute::WriteOnly)),
1506  "Attributes "
1507  "'readnone and writeonly' are incompatible!",
1508  V);
1509 
1510  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1511  Attrs.hasAttribute(Attribute::WriteOnly)),
1512  "Attributes "
1513  "'readonly and writeonly' are incompatible!",
1514  V);
1515 
1516  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1517  Attrs.hasAttribute(Attribute::AlwaysInline)),
1518  "Attributes "
1519  "'noinline and alwaysinline' are incompatible!",
1520  V);
1521 
1522  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1523  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1524  "Wrong types for attribute: " +
1525  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1526  V);
1527 
1528  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1529  SmallPtrSet<Type*, 4> Visited;
1530  if (!PTy->getElementType()->isSized(&Visited)) {
1531  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1532  !Attrs.hasAttribute(Attribute::InAlloca),
1533  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1534  V);
1535  }
1536  if (!isa<PointerType>(PTy->getElementType()))
1537  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1538  "Attribute 'swifterror' only applies to parameters "
1539  "with pointer to pointer type!",
1540  V);
1541  } else {
1542  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1543  "Attribute 'byval' only applies to parameters with pointer type!",
1544  V);
1545  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1546  "Attribute 'swifterror' only applies to parameters "
1547  "with pointer type!",
1548  V);
1549  }
1550 }
1551 
1552 // Check parameter attributes against a function type.
1553 // The value V is printed in error messages.
1554 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1555  const Value *V) {
1556  if (Attrs.isEmpty())
1557  return;
1558 
1559  bool SawNest = false;
1560  bool SawReturned = false;
1561  bool SawSRet = false;
1562  bool SawSwiftSelf = false;
1563  bool SawSwiftError = false;
1564 
1565  // Verify return value attributes.
1566  AttributeSet RetAttrs = Attrs.getRetAttributes();
1567  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1568  !RetAttrs.hasAttribute(Attribute::Nest) &&
1569  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1570  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1571  !RetAttrs.hasAttribute(Attribute::Returned) &&
1572  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1573  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1574  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1575  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1576  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1577  "values!",
1578  V);
1579  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1580  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1581  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1582  "Attribute '" + RetAttrs.getAsString() +
1583  "' does not apply to function returns",
1584  V);
1585  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1586 
1587  // Verify parameter attributes.
1588  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1589  Type *Ty = FT->getParamType(i);
1590  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1591 
1592  verifyParameterAttrs(ArgAttrs, Ty, V);
1593 
1594  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1595  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1596  SawNest = true;
1597  }
1598 
1599  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1600  Assert(!SawReturned, "More than one parameter has attribute returned!",
1601  V);
1603  "Incompatible argument and return types for 'returned' attribute",
1604  V);
1605  SawReturned = true;
1606  }
1607 
1608  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1609  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1610  Assert(i == 0 || i == 1,
1611  "Attribute 'sret' is not on first or second parameter!", V);
1612  SawSRet = true;
1613  }
1614 
1615  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1616  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1617  SawSwiftSelf = true;
1618  }
1619 
1620  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1621  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1622  V);
1623  SawSwiftError = true;
1624  }
1625 
1626  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1627  Assert(i == FT->getNumParams() - 1,
1628  "inalloca isn't on the last parameter!", V);
1629  }
1630  }
1631 
1633  return;
1634 
1635  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1636 
1637  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1638  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1639  "Attributes 'readnone and readonly' are incompatible!", V);
1640 
1641  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1642  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1643  "Attributes 'readnone and writeonly' are incompatible!", V);
1644 
1645  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1646  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1647  "Attributes 'readonly and writeonly' are incompatible!", V);
1648 
1649  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1650  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1651  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1652  "incompatible!",
1653  V);
1654 
1655  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1656  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1657  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1658 
1659  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1660  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1661  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1662 
1663  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1664  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1665  "Attribute 'optnone' requires 'noinline'!", V);
1666 
1667  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1668  "Attributes 'optsize and optnone' are incompatible!", V);
1669 
1670  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1671  "Attributes 'minsize and optnone' are incompatible!", V);
1672  }
1673 
1674  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1675  const GlobalValue *GV = cast<GlobalValue>(V);
1677  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1678  }
1679 
1680  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1681  std::pair<unsigned, Optional<unsigned>> Args =
1683 
1684  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1685  if (ParamNo >= FT->getNumParams()) {
1686  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1687  return false;
1688  }
1689 
1690  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1691  CheckFailed("'allocsize' " + Name +
1692  " argument must refer to an integer parameter",
1693  V);
1694  return false;
1695  }
1696 
1697  return true;
1698  };
1699 
1700  if (!CheckParam("element size", Args.first))
1701  return;
1702 
1703  if (Args.second && !CheckParam("number of elements", *Args.second))
1704  return;
1705  }
1706 }
1707 
1708 void Verifier::verifyFunctionMetadata(
1709  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1710  for (const auto &Pair : MDs) {
1711  if (Pair.first == LLVMContext::MD_prof) {
1712  MDNode *MD = Pair.second;
1713  Assert(MD->getNumOperands() >= 2,
1714  "!prof annotations should have no less than 2 operands", MD);
1715 
1716  // Check first operand.
1717  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1718  MD);
1719  Assert(isa<MDString>(MD->getOperand(0)),
1720  "expected string with name of the !prof annotation", MD);
1721  MDString *MDS = cast<MDString>(MD->getOperand(0));
1722  StringRef ProfName = MDS->getString();
1723  Assert(ProfName.equals("function_entry_count") ||
1724  ProfName.equals("synthetic_function_entry_count"),
1725  "first operand should be 'function_entry_count'"
1726  " or 'synthetic_function_entry_count'",
1727  MD);
1728 
1729  // Check second operand.
1730  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1731  MD);
1732  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1733  "expected integer argument to function_entry_count", MD);
1734  }
1735  }
1736 }
1737 
1738 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1739  if (!ConstantExprVisited.insert(EntryC).second)
1740  return;
1741 
1743  Stack.push_back(EntryC);
1744 
1745  while (!Stack.empty()) {
1746  const Constant *C = Stack.pop_back_val();
1747 
1748  // Check this constant expression.
1749  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1750  visitConstantExpr(CE);
1751 
1752  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1753  // Global Values get visited separately, but we do need to make sure
1754  // that the global value is in the correct module
1755  Assert(GV->getParent() == &M, "Referencing global in another module!",
1756  EntryC, &M, GV, GV->getParent());
1757  continue;
1758  }
1759 
1760  // Visit all sub-expressions.
1761  for (const Use &U : C->operands()) {
1762  const auto *OpC = dyn_cast<Constant>(U);
1763  if (!OpC)
1764  continue;
1765  if (!ConstantExprVisited.insert(OpC).second)
1766  continue;
1767  Stack.push_back(OpC);
1768  }
1769  }
1770 }
1771 
1772 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1773  if (CE->getOpcode() == Instruction::BitCast)
1774  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1775  CE->getType()),
1776  "Invalid bitcast", CE);
1777 
1778  if (CE->getOpcode() == Instruction::IntToPtr ||
1779  CE->getOpcode() == Instruction::PtrToInt) {
1780  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1781  ? CE->getType()
1782  : CE->getOperand(0)->getType();
1783  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1784  ? "inttoptr not supported for non-integral pointers"
1785  : "ptrtoint not supported for non-integral pointers";
1786  Assert(
1787  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1788  Msg);
1789  }
1790 }
1791 
1792 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1793  // There shouldn't be more attribute sets than there are parameters plus the
1794  // function and return value.
1795  return Attrs.getNumAttrSets() <= Params + 2;
1796 }
1797 
1798 /// Verify that statepoint intrinsic is well formed.
1799 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1800  assert(CS.getCalledFunction() &&
1802  Intrinsic::experimental_gc_statepoint);
1803 
1804  const Instruction &CI = *CS.getInstruction();
1805 
1806  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1807  !CS.onlyAccessesArgMemory(),
1808  "gc.statepoint must read and write all memory to preserve "
1809  "reordering restrictions required by safepoint semantics",
1810  &CI);
1811 
1812  const Value *IDV = CS.getArgument(0);
1813  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1814  &CI);
1815 
1816  const Value *NumPatchBytesV = CS.getArgument(1);
1817  Assert(isa<ConstantInt>(NumPatchBytesV),
1818  "gc.statepoint number of patchable bytes must be a constant integer",
1819  &CI);
1820  const int64_t NumPatchBytes =
1821  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1822  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1823  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1824  "positive",
1825  &CI);
1826 
1827  const Value *Target = CS.getArgument(2);
1828  auto *PT = dyn_cast<PointerType>(Target->getType());
1829  Assert(PT && PT->getElementType()->isFunctionTy(),
1830  "gc.statepoint callee must be of function pointer type", &CI, Target);
1831  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1832 
1833  const Value *NumCallArgsV = CS.getArgument(3);
1834  Assert(isa<ConstantInt>(NumCallArgsV),
1835  "gc.statepoint number of arguments to underlying call "
1836  "must be constant integer",
1837  &CI);
1838  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1839  Assert(NumCallArgs >= 0,
1840  "gc.statepoint number of arguments to underlying call "
1841  "must be positive",
1842  &CI);
1843  const int NumParams = (int)TargetFuncType->getNumParams();
1844  if (TargetFuncType->isVarArg()) {
1845  Assert(NumCallArgs >= NumParams,
1846  "gc.statepoint mismatch in number of vararg call args", &CI);
1847 
1848  // TODO: Remove this limitation
1849  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1850  "gc.statepoint doesn't support wrapping non-void "
1851  "vararg functions yet",
1852  &CI);
1853  } else
1854  Assert(NumCallArgs == NumParams,
1855  "gc.statepoint mismatch in number of call args", &CI);
1856 
1857  const Value *FlagsV = CS.getArgument(4);
1858  Assert(isa<ConstantInt>(FlagsV),
1859  "gc.statepoint flags must be constant integer", &CI);
1860  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1861  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1862  "unknown flag used in gc.statepoint flags argument", &CI);
1863 
1864  // Verify that the types of the call parameter arguments match
1865  // the type of the wrapped callee.
1866  for (int i = 0; i < NumParams; i++) {
1867  Type *ParamType = TargetFuncType->getParamType(i);
1868  Type *ArgType = CS.getArgument(5 + i)->getType();
1869  Assert(ArgType == ParamType,
1870  "gc.statepoint call argument does not match wrapped "
1871  "function type",
1872  &CI);
1873  }
1874 
1875  const int EndCallArgsInx = 4 + NumCallArgs;
1876 
1877  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1878  Assert(isa<ConstantInt>(NumTransitionArgsV),
1879  "gc.statepoint number of transition arguments "
1880  "must be constant integer",
1881  &CI);
1882  const int NumTransitionArgs =
1883  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1884  Assert(NumTransitionArgs >= 0,
1885  "gc.statepoint number of transition arguments must be positive", &CI);
1886  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1887 
1888  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1889  Assert(isa<ConstantInt>(NumDeoptArgsV),
1890  "gc.statepoint number of deoptimization arguments "
1891  "must be constant integer",
1892  &CI);
1893  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1894  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1895  "must be positive",
1896  &CI);
1897 
1898  const int ExpectedNumArgs =
1899  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1900  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1901  "gc.statepoint too few arguments according to length fields", &CI);
1902 
1903  // Check that the only uses of this gc.statepoint are gc.result or
1904  // gc.relocate calls which are tied to this statepoint and thus part
1905  // of the same statepoint sequence
1906  for (const User *U : CI.users()) {
1907  const CallInst *Call = dyn_cast<const CallInst>(U);
1908  Assert(Call, "illegal use of statepoint token", &CI, U);
1909  if (!Call) continue;
1910  Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1911  "gc.result or gc.relocate are the only value uses "
1912  "of a gc.statepoint",
1913  &CI, U);
1914  if (isa<GCResultInst>(Call)) {
1915  Assert(Call->getArgOperand(0) == &CI,
1916  "gc.result connected to wrong gc.statepoint", &CI, Call);
1917  } else if (isa<GCRelocateInst>(Call)) {
1918  Assert(Call->getArgOperand(0) == &CI,
1919  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1920  }
1921  }
1922 
1923  // Note: It is legal for a single derived pointer to be listed multiple
1924  // times. It's non-optimal, but it is legal. It can also happen after
1925  // insertion if we strip a bitcast away.
1926  // Note: It is really tempting to check that each base is relocated and
1927  // that a derived pointer is never reused as a base pointer. This turns
1928  // out to be problematic since optimizations run after safepoint insertion
1929  // can recognize equality properties that the insertion logic doesn't know
1930  // about. See example statepoint.ll in the verifier subdirectory
1931 }
1932 
1933 void Verifier::verifyFrameRecoverIndices() {
1934  for (auto &Counts : FrameEscapeInfo) {
1935  Function *F = Counts.first;
1936  unsigned EscapedObjectCount = Counts.second.first;
1937  unsigned MaxRecoveredIndex = Counts.second.second;
1938  Assert(MaxRecoveredIndex <= EscapedObjectCount,
1939  "all indices passed to llvm.localrecover must be less than the "
1940  "number of arguments passed ot llvm.localescape in the parent "
1941  "function",
1942  F);
1943  }
1944 }
1945 
1947  BasicBlock *UnwindDest;
1948  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1949  UnwindDest = II->getUnwindDest();
1950  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1951  UnwindDest = CSI->getUnwindDest();
1952  else
1953  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1954  return UnwindDest->getFirstNonPHI();
1955 }
1956 
1957 void Verifier::verifySiblingFuncletUnwinds() {
1960  for (const auto &Pair : SiblingFuncletInfo) {
1961  Instruction *PredPad = Pair.first;
1962  if (Visited.count(PredPad))
1963  continue;
1964  Active.insert(PredPad);
1965  TerminatorInst *Terminator = Pair.second;
1966  do {
1967  Instruction *SuccPad = getSuccPad(Terminator);
1968  if (Active.count(SuccPad)) {
1969  // Found a cycle; report error
1970  Instruction *CyclePad = SuccPad;
1971  SmallVector<Instruction *, 8> CycleNodes;
1972  do {
1973  CycleNodes.push_back(CyclePad);
1974  TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1975  if (CycleTerminator != CyclePad)
1976  CycleNodes.push_back(CycleTerminator);
1977  CyclePad = getSuccPad(CycleTerminator);
1978  } while (CyclePad != SuccPad);
1979  Assert(false, "EH pads can't handle each other's exceptions",
1980  ArrayRef<Instruction *>(CycleNodes));
1981  }
1982  // Don't re-walk a node we've already checked
1983  if (!Visited.insert(SuccPad).second)
1984  break;
1985  // Walk to this successor if it has a map entry.
1986  PredPad = SuccPad;
1987  auto TermI = SiblingFuncletInfo.find(PredPad);
1988  if (TermI == SiblingFuncletInfo.end())
1989  break;
1990  Terminator = TermI->second;
1991  Active.insert(PredPad);
1992  } while (true);
1993  // Each node only has one successor, so we've walked all the active
1994  // nodes' successors.
1995  Active.clear();
1996  }
1997 }
1998 
1999 // visitFunction - Verify that a function is ok.
2000 //
2001 void Verifier::visitFunction(const Function &F) {
2002  visitGlobalValue(F);
2003 
2004  // Check function arguments.
2005  FunctionType *FT = F.getFunctionType();
2006  unsigned NumArgs = F.arg_size();
2007 
2008  Assert(&Context == &F.getContext(),
2009  "Function context does not match Module context!", &F);
2010 
2011  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2012  Assert(FT->getNumParams() == NumArgs,
2013  "# formal arguments must match # of arguments for function type!", &F,
2014  FT);
2015  Assert(F.getReturnType()->isFirstClassType() ||
2016  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2017  "Functions cannot return aggregate values!", &F);
2018 
2019  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2020  "Invalid struct return type!", &F);
2021 
2022  AttributeList Attrs = F.getAttributes();
2023 
2024  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2025  "Attribute after last parameter!", &F);
2026 
2027  // Check function attributes.
2028  verifyFunctionAttrs(FT, Attrs, &F);
2029 
2030  // On function declarations/definitions, we do not support the builtin
2031  // attribute. We do not check this in VerifyFunctionAttrs since that is
2032  // checking for Attributes that can/can not ever be on functions.
2033  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2034  "Attribute 'builtin' can only be applied to a callsite.", &F);
2035 
2036  // Check that this function meets the restrictions on this calling convention.
2037  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2038  // restrictions can be lifted.
2039  switch (F.getCallingConv()) {
2040  default:
2041  case CallingConv::C:
2042  break;
2045  Assert(F.getReturnType()->isVoidTy(),
2046  "Calling convention requires void return type", &F);
2053  Assert(!F.hasStructRetAttr(),
2054  "Calling convention does not allow sret", &F);
2056  case CallingConv::Fast:
2057  case CallingConv::Cold:
2061  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2062  "perfect forwarding!",
2063  &F);
2064  break;
2065  }
2066 
2067  bool isLLVMdotName = F.getName().size() >= 5 &&
2068  F.getName().substr(0, 5) == "llvm.";
2069 
2070  // Check that the argument values match the function type for this function...
2071  unsigned i = 0;
2072  for (const Argument &Arg : F.args()) {
2073  Assert(Arg.getType() == FT->getParamType(i),
2074  "Argument value does not match function argument type!", &Arg,
2075  FT->getParamType(i));
2077  "Function arguments must have first-class types!", &Arg);
2078  if (!isLLVMdotName) {
2080  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2081  Assert(!Arg.getType()->isTokenTy(),
2082  "Function takes token but isn't an intrinsic", &Arg, &F);
2083  }
2084 
2085  // Check that swifterror argument is only used by loads and stores.
2086  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2087  verifySwiftErrorValue(&Arg);
2088  }
2089  ++i;
2090  }
2091 
2092  if (!isLLVMdotName)
2093  Assert(!F.getReturnType()->isTokenTy(),
2094  "Functions returns a token but isn't an intrinsic", &F);
2095 
2096  // Get the function metadata attachments.
2098  F.getAllMetadata(MDs);
2099  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2100  verifyFunctionMetadata(MDs);
2101 
2102  // Check validity of the personality function
2103  if (F.hasPersonalityFn()) {
2104  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2105  if (Per)
2106  Assert(Per->getParent() == F.getParent(),
2107  "Referencing personality function in another module!",
2108  &F, F.getParent(), Per, Per->getParent());
2109  }
2110 
2111  if (F.isMaterializable()) {
2112  // Function has a body somewhere we can't see.
2113  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2114  MDs.empty() ? nullptr : MDs.front().second);
2115  } else if (F.isDeclaration()) {
2116  for (const auto &I : MDs) {
2117  AssertDI(I.first != LLVMContext::MD_dbg,
2118  "function declaration may not have a !dbg attachment", &F);
2119  Assert(I.first != LLVMContext::MD_prof,
2120  "function declaration may not have a !prof attachment", &F);
2121 
2122  // Verify the metadata itself.
2123  visitMDNode(*I.second);
2124  }
2125  Assert(!F.hasPersonalityFn(),
2126  "Function declaration shouldn't have a personality routine", &F);
2127  } else {
2128  // Verify that this function (which has a body) is not named "llvm.*". It
2129  // is not legal to define intrinsics.
2130  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2131 
2132  // Check the entry node
2133  const BasicBlock *Entry = &F.getEntryBlock();
2134  Assert(pred_empty(Entry),
2135  "Entry block to function must not have predecessors!", Entry);
2136 
2137  // The address of the entry block cannot be taken, unless it is dead.
2138  if (Entry->hasAddressTaken()) {
2139  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2140  "blockaddress may not be used with the entry block!", Entry);
2141  }
2142 
2143  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2144  // Visit metadata attachments.
2145  for (const auto &I : MDs) {
2146  // Verify that the attachment is legal.
2147  switch (I.first) {
2148  default:
2149  break;
2150  case LLVMContext::MD_dbg: {
2151  ++NumDebugAttachments;
2152  AssertDI(NumDebugAttachments == 1,
2153  "function must have a single !dbg attachment", &F, I.second);
2154  AssertDI(isa<DISubprogram>(I.second),
2155  "function !dbg attachment must be a subprogram", &F, I.second);
2156  auto *SP = cast<DISubprogram>(I.second);
2157  const Function *&AttachedTo = DISubprogramAttachments[SP];
2158  AssertDI(!AttachedTo || AttachedTo == &F,
2159  "DISubprogram attached to more than one function", SP, &F);
2160  AttachedTo = &F;
2161  break;
2162  }
2163  case LLVMContext::MD_prof:
2164  ++NumProfAttachments;
2165  Assert(NumProfAttachments == 1,
2166  "function must have a single !prof attachment", &F, I.second);
2167  break;
2168  }
2169 
2170  // Verify the metadata itself.
2171  visitMDNode(*I.second);
2172  }
2173  }
2174 
2175  // If this function is actually an intrinsic, verify that it is only used in
2176  // direct call/invokes, never having its "address taken".
2177  // Only do this if the module is materialized, otherwise we don't have all the
2178  // uses.
2179  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2180  const User *U;
2181  if (F.hasAddressTaken(&U))
2182  Assert(false, "Invalid user of intrinsic instruction!", U);
2183  }
2184 
2185  Assert(!F.hasDLLImportStorageClass() ||
2186  (F.isDeclaration() && F.hasExternalLinkage()) ||
2187  F.hasAvailableExternallyLinkage(),
2188  "Function is marked as dllimport, but not external.", &F);
2189 
2190  auto *N = F.getSubprogram();
2191  HasDebugInfo = (N != nullptr);
2192  if (!HasDebugInfo)
2193  return;
2194 
2195  // Check that all !dbg attachments lead to back to N (or, at least, another
2196  // subprogram that describes the same function).
2197  //
2198  // FIXME: Check this incrementally while visiting !dbg attachments.
2199  // FIXME: Only check when N is the canonical subprogram for F.
2201  for (auto &BB : F)
2202  for (auto &I : BB) {
2203  // Be careful about using DILocation here since we might be dealing with
2204  // broken code (this is the Verifier after all).
2205  DILocation *DL =
2206  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2207  if (!DL)
2208  continue;
2209  if (!Seen.insert(DL).second)
2210  continue;
2211 
2212  DILocalScope *Scope = DL->getInlinedAtScope();
2213  if (Scope && !Seen.insert(Scope).second)
2214  continue;
2215 
2216  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2217 
2218  // Scope and SP could be the same MDNode and we don't want to skip
2219  // validation in that case
2220  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2221  continue;
2222 
2223  // FIXME: Once N is canonical, check "SP == &N".
2224  AssertDI(SP->describes(&F),
2225  "!dbg attachment points at wrong subprogram for function", N, &F,
2226  &I, DL, Scope, SP);
2227  }
2228 }
2229 
2230 // verifyBasicBlock - Verify that a basic block is well formed...
2231 //
2232 void Verifier::visitBasicBlock(BasicBlock &BB) {
2233  InstsInThisBlock.clear();
2234 
2235  // Ensure that basic blocks have terminators!
2236  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2237 
2238  // Check constraints that this basic block imposes on all of the PHI nodes in
2239  // it.
2240  if (isa<PHINode>(BB.front())) {
2243  std::sort(Preds.begin(), Preds.end());
2244  for (const PHINode &PN : BB.phis()) {
2245  // Ensure that PHI nodes have at least one entry!
2246  Assert(PN.getNumIncomingValues() != 0,
2247  "PHI nodes must have at least one entry. If the block is dead, "
2248  "the PHI should be removed!",
2249  &PN);
2250  Assert(PN.getNumIncomingValues() == Preds.size(),
2251  "PHINode should have one entry for each predecessor of its "
2252  "parent basic block!",
2253  &PN);
2254 
2255  // Get and sort all incoming values in the PHI node...
2256  Values.clear();
2257  Values.reserve(PN.getNumIncomingValues());
2258  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2259  Values.push_back(
2260  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2261  std::sort(Values.begin(), Values.end());
2262 
2263  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2264  // Check to make sure that if there is more than one entry for a
2265  // particular basic block in this PHI node, that the incoming values are
2266  // all identical.
2267  //
2268  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2269  Values[i].second == Values[i - 1].second,
2270  "PHI node has multiple entries for the same basic block with "
2271  "different incoming values!",
2272  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2273 
2274  // Check to make sure that the predecessors and PHI node entries are
2275  // matched up.
2276  Assert(Values[i].first == Preds[i],
2277  "PHI node entries do not match predecessors!", &PN,
2278  Values[i].first, Preds[i]);
2279  }
2280  }
2281  }
2282 
2283  // Check that all instructions have their parent pointers set up correctly.
2284  for (auto &I : BB)
2285  {
2286  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2287  }
2288 }
2289 
2290 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2291  // Ensure that terminators only exist at the end of the basic block.
2292  Assert(&I == I.getParent()->getTerminator(),
2293  "Terminator found in the middle of a basic block!", I.getParent());
2294  visitInstruction(I);
2295 }
2296 
2297 void Verifier::visitBranchInst(BranchInst &BI) {
2298  if (BI.isConditional()) {
2299  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2300  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2301  }
2302  visitTerminatorInst(BI);
2303 }
2304 
2305 void Verifier::visitReturnInst(ReturnInst &RI) {
2306  Function *F = RI.getParent()->getParent();
2307  unsigned N = RI.getNumOperands();
2308  if (F->getReturnType()->isVoidTy())
2309  Assert(N == 0,
2310  "Found return instr that returns non-void in Function of void "
2311  "return type!",
2312  &RI, F->getReturnType());
2313  else
2314  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2315  "Function return type does not match operand "
2316  "type of return inst!",
2317  &RI, F->getReturnType());
2318 
2319  // Check to make sure that the return value has necessary properties for
2320  // terminators...
2321  visitTerminatorInst(RI);
2322 }
2323 
2324 void Verifier::visitSwitchInst(SwitchInst &SI) {
2325  // Check to make sure that all of the constants in the switch instruction
2326  // have the same type as the switched-on value.
2327  Type *SwitchTy = SI.getCondition()->getType();
2329  for (auto &Case : SI.cases()) {
2330  Assert(Case.getCaseValue()->getType() == SwitchTy,
2331  "Switch constants must all be same type as switch value!", &SI);
2332  Assert(Constants.insert(Case.getCaseValue()).second,
2333  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2334  }
2335 
2336  visitTerminatorInst(SI);
2337 }
2338 
2339 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2340  Assert(BI.getAddress()->getType()->isPointerTy(),
2341  "Indirectbr operand must have pointer type!", &BI);
2342  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2343  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2344  "Indirectbr destinations must all have pointer type!", &BI);
2345 
2346  visitTerminatorInst(BI);
2347 }
2348 
2349 void Verifier::visitSelectInst(SelectInst &SI) {
2351  SI.getOperand(2)),
2352  "Invalid operands for select instruction!", &SI);
2353 
2354  Assert(SI.getTrueValue()->getType() == SI.getType(),
2355  "Select values must have same type as select instruction!", &SI);
2356  visitInstruction(SI);
2357 }
2358 
2359 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2360 /// a pass, if any exist, it's an error.
2361 ///
2362 void Verifier::visitUserOp1(Instruction &I) {
2363  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2364 }
2365 
2366 void Verifier::visitTruncInst(TruncInst &I) {
2367  // Get the source and destination types
2368  Type *SrcTy = I.getOperand(0)->getType();
2369  Type *DestTy = I.getType();
2370 
2371  // Get the size of the types in bits, we'll need this later
2372  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2373  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2374 
2375  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2376  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2377  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2378  "trunc source and destination must both be a vector or neither", &I);
2379  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2380 
2381  visitInstruction(I);
2382 }
2383 
2384 void Verifier::visitZExtInst(ZExtInst &I) {
2385  // Get the source and destination types
2386  Type *SrcTy = I.getOperand(0)->getType();
2387  Type *DestTy = I.getType();
2388 
2389  // Get the size of the types in bits, we'll need this later
2390  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2391  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2392  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2393  "zext source and destination must both be a vector or neither", &I);
2394  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2395  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2396 
2397  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2398 
2399  visitInstruction(I);
2400 }
2401 
2402 void Verifier::visitSExtInst(SExtInst &I) {
2403  // Get the source and destination types
2404  Type *SrcTy = I.getOperand(0)->getType();
2405  Type *DestTy = I.getType();
2406 
2407  // Get the size of the types in bits, we'll need this later
2408  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2409  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2410 
2411  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2412  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2413  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2414  "sext source and destination must both be a vector or neither", &I);
2415  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2416 
2417  visitInstruction(I);
2418 }
2419 
2420 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2421  // Get the source and destination types
2422  Type *SrcTy = I.getOperand(0)->getType();
2423  Type *DestTy = I.getType();
2424  // Get the size of the types in bits, we'll need this later
2425  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427 
2428  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2429  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2430  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2431  "fptrunc source and destination must both be a vector or neither", &I);
2432  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2433 
2434  visitInstruction(I);
2435 }
2436 
2437 void Verifier::visitFPExtInst(FPExtInst &I) {
2438  // Get the source and destination types
2439  Type *SrcTy = I.getOperand(0)->getType();
2440  Type *DestTy = I.getType();
2441 
2442  // Get the size of the types in bits, we'll need this later
2443  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2444  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2445 
2446  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2447  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2448  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2449  "fpext source and destination must both be a vector or neither", &I);
2450  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2451 
2452  visitInstruction(I);
2453 }
2454 
2455 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2456  // Get the source and destination types
2457  Type *SrcTy = I.getOperand(0)->getType();
2458  Type *DestTy = I.getType();
2459 
2460  bool SrcVec = SrcTy->isVectorTy();
2461  bool DstVec = DestTy->isVectorTy();
2462 
2463  Assert(SrcVec == DstVec,
2464  "UIToFP source and dest must both be vector or scalar", &I);
2465  Assert(SrcTy->isIntOrIntVectorTy(),
2466  "UIToFP source must be integer or integer vector", &I);
2467  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2468  &I);
2469 
2470  if (SrcVec && DstVec)
2471  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2472  cast<VectorType>(DestTy)->getNumElements(),
2473  "UIToFP source and dest vector length mismatch", &I);
2474 
2475  visitInstruction(I);
2476 }
2477 
2478 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2479  // Get the source and destination types
2480  Type *SrcTy = I.getOperand(0)->getType();
2481  Type *DestTy = I.getType();
2482 
2483  bool SrcVec = SrcTy->isVectorTy();
2484  bool DstVec = DestTy->isVectorTy();
2485 
2486  Assert(SrcVec == DstVec,
2487  "SIToFP source and dest must both be vector or scalar", &I);
2488  Assert(SrcTy->isIntOrIntVectorTy(),
2489  "SIToFP source must be integer or integer vector", &I);
2490  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2491  &I);
2492 
2493  if (SrcVec && DstVec)
2494  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2495  cast<VectorType>(DestTy)->getNumElements(),
2496  "SIToFP source and dest vector length mismatch", &I);
2497 
2498  visitInstruction(I);
2499 }
2500 
2501 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2502  // Get the source and destination types
2503  Type *SrcTy = I.getOperand(0)->getType();
2504  Type *DestTy = I.getType();
2505 
2506  bool SrcVec = SrcTy->isVectorTy();
2507  bool DstVec = DestTy->isVectorTy();
2508 
2509  Assert(SrcVec == DstVec,
2510  "FPToUI source and dest must both be vector or scalar", &I);
2511  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2512  &I);
2513  Assert(DestTy->isIntOrIntVectorTy(),
2514  "FPToUI result must be integer or integer vector", &I);
2515 
2516  if (SrcVec && DstVec)
2517  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2518  cast<VectorType>(DestTy)->getNumElements(),
2519  "FPToUI source and dest vector length mismatch", &I);
2520 
2521  visitInstruction(I);
2522 }
2523 
2524 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2525  // Get the source and destination types
2526  Type *SrcTy = I.getOperand(0)->getType();
2527  Type *DestTy = I.getType();
2528 
2529  bool SrcVec = SrcTy->isVectorTy();
2530  bool DstVec = DestTy->isVectorTy();
2531 
2532  Assert(SrcVec == DstVec,
2533  "FPToSI source and dest must both be vector or scalar", &I);
2534  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2535  &I);
2536  Assert(DestTy->isIntOrIntVectorTy(),
2537  "FPToSI result must be integer or integer vector", &I);
2538 
2539  if (SrcVec && DstVec)
2540  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2541  cast<VectorType>(DestTy)->getNumElements(),
2542  "FPToSI source and dest vector length mismatch", &I);
2543 
2544  visitInstruction(I);
2545 }
2546 
2547 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2548  // Get the source and destination types
2549  Type *SrcTy = I.getOperand(0)->getType();
2550  Type *DestTy = I.getType();
2551 
2552  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2553 
2554  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2556  "ptrtoint not supported for non-integral pointers");
2557 
2558  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2559  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2560  &I);
2561 
2562  if (SrcTy->isVectorTy()) {
2563  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2564  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2565  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2566  "PtrToInt Vector width mismatch", &I);
2567  }
2568 
2569  visitInstruction(I);
2570 }
2571 
2572 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2573  // Get the source and destination types
2574  Type *SrcTy = I.getOperand(0)->getType();
2575  Type *DestTy = I.getType();
2576 
2577  Assert(SrcTy->isIntOrIntVectorTy(),
2578  "IntToPtr source must be an integral", &I);
2579  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2580 
2581  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2583  "inttoptr not supported for non-integral pointers");
2584 
2585  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2586  &I);
2587  if (SrcTy->isVectorTy()) {
2588  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2589  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2590  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2591  "IntToPtr Vector width mismatch", &I);
2592  }
2593  visitInstruction(I);
2594 }
2595 
2596 void Verifier::visitBitCastInst(BitCastInst &I) {
2597  Assert(
2598  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2599  "Invalid bitcast", &I);
2600  visitInstruction(I);
2601 }
2602 
2603 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2604  Type *SrcTy = I.getOperand(0)->getType();
2605  Type *DestTy = I.getType();
2606 
2607  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2608  &I);
2609  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2610  &I);
2612  "AddrSpaceCast must be between different address spaces", &I);
2613  if (SrcTy->isVectorTy())
2614  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2615  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2616  visitInstruction(I);
2617 }
2618 
2619 /// visitPHINode - Ensure that a PHI node is well formed.
2620 ///
2621 void Verifier::visitPHINode(PHINode &PN) {
2622  // Ensure that the PHI nodes are all grouped together at the top of the block.
2623  // This can be tested by checking whether the instruction before this is
2624  // either nonexistent (because this is begin()) or is a PHI node. If not,
2625  // then there is some other instruction before a PHI.
2626  Assert(&PN == &PN.getParent()->front() ||
2627  isa<PHINode>(--BasicBlock::iterator(&PN)),
2628  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2629 
2630  // Check that a PHI doesn't yield a Token.
2631  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2632 
2633  // Check that all of the values of the PHI node have the same type as the
2634  // result, and that the incoming blocks are really basic blocks.
2635  for (Value *IncValue : PN.incoming_values()) {
2636  Assert(PN.getType() == IncValue->getType(),
2637  "PHI node operands are not the same type as the result!", &PN);
2638  }
2639 
2640  // All other PHI node constraints are checked in the visitBasicBlock method.
2641 
2642  visitInstruction(PN);
2643 }
2644 
2645 void Verifier::verifyCallSite(CallSite CS) {
2646  Instruction *I = CS.getInstruction();
2647 
2649  "Called function must be a pointer!", I);
2650  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2651 
2652  Assert(FPTy->getElementType()->isFunctionTy(),
2653  "Called function is not pointer to function type!", I);
2654 
2655  Assert(FPTy->getElementType() == CS.getFunctionType(),
2656  "Called function is not the same type as the call!", I);
2657 
2658  FunctionType *FTy = CS.getFunctionType();
2659 
2660  // Verify that the correct number of arguments are being passed
2661  if (FTy->isVarArg())
2662  Assert(CS.arg_size() >= FTy->getNumParams(),
2663  "Called function requires more parameters than were provided!", I);
2664  else
2665  Assert(CS.arg_size() == FTy->getNumParams(),
2666  "Incorrect number of arguments passed to called function!", I);
2667 
2668  // Verify that all arguments to the call match the function type.
2669  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2670  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2671  "Call parameter type does not match function signature!",
2672  CS.getArgument(i), FTy->getParamType(i), I);
2673 
2674  AttributeList Attrs = CS.getAttributes();
2675 
2676  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2677  "Attribute after last parameter!", I);
2678 
2679  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2680  // Don't allow speculatable on call sites, unless the underlying function
2681  // declaration is also speculatable.
2682  Function *Callee
2684  Assert(Callee && Callee->isSpeculatable(),
2685  "speculatable attribute may not apply to call sites", I);
2686  }
2687 
2688  // Verify call attributes.
2689  verifyFunctionAttrs(FTy, Attrs, I);
2690 
2691  // Conservatively check the inalloca argument.
2692  // We have a bug if we can find that there is an underlying alloca without
2693  // inalloca.
2694  if (CS.hasInAllocaArgument()) {
2695  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2696  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2697  Assert(AI->isUsedWithInAlloca(),
2698  "inalloca argument for call has mismatched alloca", AI, I);
2699  }
2700 
2701  // For each argument of the callsite, if it has the swifterror argument,
2702  // make sure the underlying alloca/parameter it comes from has a swifterror as
2703  // well.
2704  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2705  if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2706  Value *SwiftErrorArg = CS.getArgument(i);
2707  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2708  Assert(AI->isSwiftError(),
2709  "swifterror argument for call has mismatched alloca", AI, I);
2710  continue;
2711  }
2712  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2713  Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2714  Assert(ArgI->hasSwiftErrorAttr(),
2715  "swifterror argument for call has mismatched parameter", ArgI, I);
2716  }
2717 
2718  if (FTy->isVarArg()) {
2719  // FIXME? is 'nest' even legal here?
2720  bool SawNest = false;
2721  bool SawReturned = false;
2722 
2723  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2724  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2725  SawNest = true;
2726  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2727  SawReturned = true;
2728  }
2729 
2730  // Check attributes on the varargs part.
2731  for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2732  Type *Ty = CS.getArgument(Idx)->getType();
2733  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2734  verifyParameterAttrs(ArgAttrs, Ty, I);
2735 
2736  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2737  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2738  SawNest = true;
2739  }
2740 
2741  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2742  Assert(!SawReturned, "More than one parameter has attribute returned!",
2743  I);
2744  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2745  "Incompatible argument and return types for 'returned' "
2746  "attribute",
2747  I);
2748  SawReturned = true;
2749  }
2750 
2751  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2752  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2753 
2754  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2755  Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2756  I);
2757  }
2758  }
2759 
2760  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2761  if (CS.getCalledFunction() == nullptr ||
2762  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2763  for (Type *ParamTy : FTy->params()) {
2764  Assert(!ParamTy->isMetadataTy(),
2765  "Function has metadata parameter but isn't an intrinsic", I);
2766  Assert(!ParamTy->isTokenTy(),
2767  "Function has token parameter but isn't an intrinsic", I);
2768  }
2769  }
2770 
2771  // Verify that indirect calls don't return tokens.
2772  if (CS.getCalledFunction() == nullptr)
2773  Assert(!FTy->getReturnType()->isTokenTy(),
2774  "Return type cannot be token for indirect call!");
2775 
2776  if (Function *F = CS.getCalledFunction())
2778  visitIntrinsicCallSite(ID, CS);
2779 
2780  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2781  // at most one "gc-transition" operand bundle.
2782  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2783  FoundGCTransitionBundle = false;
2784  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2786  uint32_t Tag = BU.getTagID();
2787  if (Tag == LLVMContext::OB_deopt) {
2788  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2789  FoundDeoptBundle = true;
2790  } else if (Tag == LLVMContext::OB_gc_transition) {
2791  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2792  I);
2793  FoundGCTransitionBundle = true;
2794  } else if (Tag == LLVMContext::OB_funclet) {
2795  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2796  FoundFuncletBundle = true;
2797  Assert(BU.Inputs.size() == 1,
2798  "Expected exactly one funclet bundle operand", I);
2799  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2800  "Funclet bundle operands should correspond to a FuncletPadInst",
2801  I);
2802  }
2803  }
2804 
2805  // Verify that each inlinable callsite of a debug-info-bearing function in a
2806  // debug-info-bearing function has a debug location attached to it. Failure to
2807  // do so causes assertion failures when the inliner sets up inline scope info.
2808  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2810  AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2811  "debug info must have a !dbg location",
2812  I);
2813 
2814  visitInstruction(*I);
2815 }
2816 
2817 /// Two types are "congruent" if they are identical, or if they are both pointer
2818 /// types with different pointee types and the same address space.
2819 static bool isTypeCongruent(Type *L, Type *R) {
2820  if (L == R)
2821  return true;
2824  if (!PL || !PR)
2825  return false;
2826  return PL->getAddressSpace() == PR->getAddressSpace();
2827 }
2828 
2830  static const Attribute::AttrKind ABIAttrs[] = {
2831  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2832  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2833  Attribute::SwiftError};
2834  AttrBuilder Copy;
2835  for (auto AK : ABIAttrs) {
2836  if (Attrs.hasParamAttribute(I, AK))
2837  Copy.addAttribute(AK);
2838  }
2839  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2840  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2841  return Copy;
2842 }
2843 
2844 void Verifier::verifyMustTailCall(CallInst &CI) {
2845  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2846 
2847  // - The caller and callee prototypes must match. Pointer types of
2848  // parameters or return types may differ in pointee type, but not
2849  // address space.
2850  Function *F = CI.getParent()->getParent();
2851  FunctionType *CallerTy = F->getFunctionType();
2852  FunctionType *CalleeTy = CI.getFunctionType();
2853  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2854  "cannot guarantee tail call due to mismatched parameter counts", &CI);
2855  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2856  "cannot guarantee tail call due to mismatched varargs", &CI);
2857  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2858  "cannot guarantee tail call due to mismatched return types", &CI);
2859  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2860  Assert(
2861  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2862  "cannot guarantee tail call due to mismatched parameter types", &CI);
2863  }
2864 
2865  // - The calling conventions of the caller and callee must match.
2866  Assert(F->getCallingConv() == CI.getCallingConv(),
2867  "cannot guarantee tail call due to mismatched calling conv", &CI);
2868 
2869  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2870  // returned, and inalloca, must match.
2871  AttributeList CallerAttrs = F->getAttributes();
2872  AttributeList CalleeAttrs = CI.getAttributes();
2873  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2874  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2875  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2876  Assert(CallerABIAttrs == CalleeABIAttrs,
2877  "cannot guarantee tail call due to mismatched ABI impacting "
2878  "function attributes",
2879  &CI, CI.getOperand(I));
2880  }
2881 
2882  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2883  // or a pointer bitcast followed by a ret instruction.
2884  // - The ret instruction must return the (possibly bitcasted) value
2885  // produced by the call or void.
2886  Value *RetVal = &CI;
2887  Instruction *Next = CI.getNextNode();
2888 
2889  // Handle the optional bitcast.
2890  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2891  Assert(BI->getOperand(0) == RetVal,
2892  "bitcast following musttail call must use the call", BI);
2893  RetVal = BI;
2894  Next = BI->getNextNode();
2895  }
2896 
2897  // Check the return.
2898  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2899  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2900  &CI);
2901  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2902  "musttail call result must be returned", Ret);
2903 }
2904 
2905 void Verifier::visitCallInst(CallInst &CI) {
2906  verifyCallSite(&CI);
2907 
2908  if (CI.isMustTailCall())
2909  verifyMustTailCall(CI);
2910 }
2911 
2912 void Verifier::visitInvokeInst(InvokeInst &II) {
2913  verifyCallSite(&II);
2914 
2915  // Verify that the first non-PHI instruction of the unwind destination is an
2916  // exception handling instruction.
2917  Assert(
2918  II.getUnwindDest()->isEHPad(),
2919  "The unwind destination does not have an exception handling instruction!",
2920  &II);
2921 
2922  visitTerminatorInst(II);
2923 }
2924 
2925 /// visitBinaryOperator - Check that both arguments to the binary operator are
2926 /// of the same type!
2927 ///
2928 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2929  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2930  "Both operands to a binary operator are not of the same type!", &B);
2931 
2932  switch (B.getOpcode()) {
2933  // Check that integer arithmetic operators are only used with
2934  // integral operands.
2935  case Instruction::Add:
2936  case Instruction::Sub:
2937  case Instruction::Mul:
2938  case Instruction::SDiv:
2939  case Instruction::UDiv:
2940  case Instruction::SRem:
2941  case Instruction::URem:
2943  "Integer arithmetic operators only work with integral types!", &B);
2944  Assert(B.getType() == B.getOperand(0)->getType(),
2945  "Integer arithmetic operators must have same type "
2946  "for operands and result!",
2947  &B);
2948  break;
2949  // Check that floating-point arithmetic operators are only used with
2950  // floating-point operands.
2951  case Instruction::FAdd:
2952  case Instruction::FSub:
2953  case Instruction::FMul:
2954  case Instruction::FDiv:
2955  case Instruction::FRem:
2957  "Floating-point arithmetic operators only work with "
2958  "floating-point types!",
2959  &B);
2960  Assert(B.getType() == B.getOperand(0)->getType(),
2961  "Floating-point arithmetic operators must have same type "
2962  "for operands and result!",
2963  &B);
2964  break;
2965  // Check that logical operators are only used with integral operands.
2966  case Instruction::And:
2967  case Instruction::Or:
2968  case Instruction::Xor:
2970  "Logical operators only work with integral types!", &B);
2971  Assert(B.getType() == B.getOperand(0)->getType(),
2972  "Logical operators must have same type for operands and result!",
2973  &B);
2974  break;
2975  case Instruction::Shl:
2976  case Instruction::LShr:
2977  case Instruction::AShr:
2979  "Shifts only work with integral types!", &B);
2980  Assert(B.getType() == B.getOperand(0)->getType(),
2981  "Shift return type must be same as operands!", &B);
2982  break;
2983  default:
2984  llvm_unreachable("Unknown BinaryOperator opcode!");
2985  }
2986 
2987  visitInstruction(B);
2988 }
2989 
2990 void Verifier::visitICmpInst(ICmpInst &IC) {
2991  // Check that the operands are the same type
2992  Type *Op0Ty = IC.getOperand(0)->getType();
2993  Type *Op1Ty = IC.getOperand(1)->getType();
2994  Assert(Op0Ty == Op1Ty,
2995  "Both operands to ICmp instruction are not of the same type!", &IC);
2996  // Check that the operands are the right type
2997  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
2998  "Invalid operand types for ICmp instruction", &IC);
2999  // Check that the predicate is valid.
3000  Assert(IC.isIntPredicate(),
3001  "Invalid predicate in ICmp instruction!", &IC);
3002 
3003  visitInstruction(IC);
3004 }
3005 
3006 void Verifier::visitFCmpInst(FCmpInst &FC) {
3007  // Check that the operands are the same type
3008  Type *Op0Ty = FC.getOperand(0)->getType();
3009  Type *Op1Ty = FC.getOperand(1)->getType();
3010  Assert(Op0Ty == Op1Ty,
3011  "Both operands to FCmp instruction are not of the same type!", &FC);
3012  // Check that the operands are the right type
3013  Assert(Op0Ty->isFPOrFPVectorTy(),
3014  "Invalid operand types for FCmp instruction", &FC);
3015  // Check that the predicate is valid.
3016  Assert(FC.isFPPredicate(),
3017  "Invalid predicate in FCmp instruction!", &FC);
3018 
3019  visitInstruction(FC);
3020 }
3021 
3022 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3023  Assert(
3025  "Invalid extractelement operands!", &EI);
3026  visitInstruction(EI);
3027 }
3028 
3029 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3031  IE.getOperand(2)),
3032  "Invalid insertelement operands!", &IE);
3033  visitInstruction(IE);
3034 }
3035 
3036 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3038  SV.getOperand(2)),
3039  "Invalid shufflevector operands!", &SV);
3040  visitInstruction(SV);
3041 }
3042 
3043 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3044  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3045 
3046  Assert(isa<PointerType>(TargetTy),
3047  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3048  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3049 
3050  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3051  Assert(all_of(
3052  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3053  "GEP indexes must be integers", &GEP);
3054  Type *ElTy =
3056  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3057 
3058  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3059  GEP.getResultElementType() == ElTy,
3060  "GEP is not of right type for indices!", &GEP, ElTy);
3061 
3062  if (GEP.getType()->isVectorTy()) {
3063  // Additional checks for vector GEPs.
3064  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3065  if (GEP.getPointerOperandType()->isVectorTy())
3066  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3067  "Vector GEP result width doesn't match operand's", &GEP);
3068  for (Value *Idx : Idxs) {
3069  Type *IndexTy = Idx->getType();
3070  if (IndexTy->isVectorTy()) {
3071  unsigned IndexWidth = IndexTy->getVectorNumElements();
3072  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3073  }
3074  Assert(IndexTy->isIntOrIntVectorTy(),
3075  "All GEP indices should be of integer type");
3076  }
3077  }
3078  visitInstruction(GEP);
3079 }
3080 
3081 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3082  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3083 }
3084 
3085 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3086  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3087  "precondition violation");
3088 
3089  unsigned NumOperands = Range->getNumOperands();
3090  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3091  unsigned NumRanges = NumOperands / 2;
3092  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3093 
3094  ConstantRange LastRange(1); // Dummy initial value
3095  for (unsigned i = 0; i < NumRanges; ++i) {
3096  ConstantInt *Low =
3097  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3098  Assert(Low, "The lower limit must be an integer!", Low);
3099  ConstantInt *High =
3100  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3101  Assert(High, "The upper limit must be an integer!", High);
3102  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3103  "Range types must match instruction type!", &I);
3104 
3105  APInt HighV = High->getValue();
3106  APInt LowV = Low->getValue();
3107  ConstantRange CurRange(LowV, HighV);
3108  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3109  "Range must not be empty!", Range);
3110  if (i != 0) {
3111  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3112  "Intervals are overlapping", Range);
3113  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3114  Range);
3115  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3116  Range);
3117  }
3118  LastRange = ConstantRange(LowV, HighV);
3119  }
3120  if (NumRanges > 2) {
3121  APInt FirstLow =
3122  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3123  APInt FirstHigh =
3124  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3125  ConstantRange FirstRange(FirstLow, FirstHigh);
3126  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3127  "Intervals are overlapping", Range);
3128  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3129  Range);
3130  }
3131 }
3132 
3133 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3134  unsigned Size = DL.getTypeSizeInBits(Ty);
3135  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3136  Assert(!(Size & (Size - 1)),
3137  "atomic memory access' operand must have a power-of-two size", Ty, I);
3138 }
3139 
3140 void Verifier::visitLoadInst(LoadInst &LI) {
3142  Assert(PTy, "Load operand must be a pointer.", &LI);
3143  Type *ElTy = LI.getType();
3145  "huge alignment values are unsupported", &LI);
3146  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3147  if (LI.isAtomic()) {
3150  "Load cannot have Release ordering", &LI);
3151  Assert(LI.getAlignment() != 0,
3152  "Atomic load must specify explicit alignment", &LI);
3153  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3154  ElTy->isFloatingPointTy(),
3155  "atomic load operand must have integer, pointer, or floating point "
3156  "type!",
3157  ElTy, &LI);
3158  checkAtomicMemAccessSize(ElTy, &LI);
3159  } else {
3161  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3162  }
3163 
3164  visitInstruction(LI);
3165 }
3166 
3167 void Verifier::visitStoreInst(StoreInst &SI) {
3169  Assert(PTy, "Store operand must be a pointer.", &SI);
3170  Type *ElTy = PTy->getElementType();
3171  Assert(ElTy == SI.getOperand(0)->getType(),
3172  "Stored value type does not match pointer operand type!", &SI, ElTy);
3174  "huge alignment values are unsupported", &SI);
3175  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3176  if (SI.isAtomic()) {
3179  "Store cannot have Acquire ordering", &SI);
3180  Assert(SI.getAlignment() != 0,
3181  "Atomic store must specify explicit alignment", &SI);
3182  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3183  ElTy->isFloatingPointTy(),
3184  "atomic store operand must have integer, pointer, or floating point "
3185  "type!",
3186  ElTy, &SI);
3187  checkAtomicMemAccessSize(ElTy, &SI);
3188  } else {
3190  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3191  }
3192  visitInstruction(SI);
3193 }
3194 
3195 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3196 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3197  const Value *SwiftErrorVal) {
3198  unsigned Idx = 0;
3199  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3200  I != E; ++I, ++Idx) {
3201  if (*I == SwiftErrorVal) {
3202  Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3203  "swifterror value when used in a callsite should be marked "
3204  "with swifterror attribute",
3205  SwiftErrorVal, CS);
3206  }
3207  }
3208 }
3209 
3210 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3211  // Check that swifterror value is only used by loads, stores, or as
3212  // a swifterror argument.
3213  for (const User *U : SwiftErrorVal->users()) {
3214  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3215  isa<InvokeInst>(U),
3216  "swifterror value can only be loaded and stored from, or "
3217  "as a swifterror argument!",
3218  SwiftErrorVal, U);
3219  // If it is used by a store, check it is the second operand.
3220  if (auto StoreI = dyn_cast<StoreInst>(U))
3221  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3222  "swifterror value should be the second operand when used "
3223  "by stores", SwiftErrorVal, U);
3224  if (auto CallI = dyn_cast<CallInst>(U))
3225  verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3226  if (auto II = dyn_cast<InvokeInst>(U))
3227  verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3228  }
3229 }
3230 
3231 void Verifier::visitAllocaInst(AllocaInst &AI) {
3232  SmallPtrSet<Type*, 4> Visited;
3233  PointerType *PTy = AI.getType();
3234  // TODO: Relax this restriction?
3236  "Allocation instruction pointer not in the stack address space!",
3237  &AI);
3238  Assert(AI.getAllocatedType()->isSized(&Visited),
3239  "Cannot allocate unsized type", &AI);
3241  "Alloca array size must have integer type", &AI);
3243  "huge alignment values are unsupported", &AI);
3244 
3245  if (AI.isSwiftError()) {
3246  verifySwiftErrorValue(&AI);
3247  }
3248 
3249  visitInstruction(AI);
3250 }
3251 
3252 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3253 
3254  // FIXME: more conditions???
3256  "cmpxchg instructions must be atomic.", &CXI);
3258  "cmpxchg instructions must be atomic.", &CXI);
3260  "cmpxchg instructions cannot be unordered.", &CXI);
3262  "cmpxchg instructions cannot be unordered.", &CXI);
3264  "cmpxchg instructions failure argument shall be no stronger than the "
3265  "success argument",
3266  &CXI);
3269  "cmpxchg failure ordering cannot include release semantics", &CXI);
3270 
3271  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3272  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3273  Type *ElTy = PTy->getElementType();
3274  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3275  "cmpxchg operand must have integer or pointer type",
3276  ElTy, &CXI);
3277  checkAtomicMemAccessSize(ElTy, &CXI);
3278  Assert(ElTy == CXI.getOperand(1)->getType(),
3279  "Expected value type does not match pointer operand type!", &CXI,
3280  ElTy);
3281  Assert(ElTy == CXI.getOperand(2)->getType(),
3282  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3283  visitInstruction(CXI);
3284 }
3285 
3286 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3288  "atomicrmw instructions must be atomic.", &RMWI);
3290  "atomicrmw instructions cannot be unordered.", &RMWI);
3291  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3292  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3293  Type *ElTy = PTy->getElementType();
3294  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3295  &RMWI, ElTy);
3296  checkAtomicMemAccessSize(ElTy, &RMWI);
3297  Assert(ElTy == RMWI.getOperand(1)->getType(),
3298  "Argument value type does not match pointer operand type!", &RMWI,
3299  ElTy);
3302  "Invalid binary operation!", &RMWI);
3303  visitInstruction(RMWI);
3304 }
3305 
3306 void Verifier::visitFenceInst(FenceInst &FI) {
3307  const AtomicOrdering Ordering = FI.getOrdering();
3308  Assert(Ordering == AtomicOrdering::Acquire ||
3309  Ordering == AtomicOrdering::Release ||
3310  Ordering == AtomicOrdering::AcquireRelease ||
3312  "fence instructions may only have acquire, release, acq_rel, or "
3313  "seq_cst ordering.",
3314  &FI);
3315  visitInstruction(FI);
3316 }
3317 
3318 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3320  EVI.getIndices()) == EVI.getType(),
3321  "Invalid ExtractValueInst operands!", &EVI);
3322 
3323  visitInstruction(EVI);
3324 }
3325 
3326 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3328  IVI.getIndices()) ==
3329  IVI.getOperand(1)->getType(),
3330  "Invalid InsertValueInst operands!", &IVI);
3331 
3332  visitInstruction(IVI);
3333 }
3334 
3335 static Value *getParentPad(Value *EHPad) {
3336  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3337  return FPI->getParentPad();
3338 
3339  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3340 }
3341 
3342 void Verifier::visitEHPadPredecessors(Instruction &I) {
3343  assert(I.isEHPad());
3344 
3345  BasicBlock *BB = I.getParent();
3346  Function *F = BB->getParent();
3347 
3348  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3349 
3350  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3351  // The landingpad instruction defines its parent as a landing pad block. The
3352  // landing pad block may be branched to only by the unwind edge of an
3353  // invoke.
3354  for (BasicBlock *PredBB : predecessors(BB)) {
3355  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3356  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3357  "Block containing LandingPadInst must be jumped to "
3358  "only by the unwind edge of an invoke.",
3359  LPI);
3360  }
3361  return;
3362  }
3363  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3364  if (!pred_empty(BB))
3365  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3366  "Block containg CatchPadInst must be jumped to "
3367  "only by its catchswitch.",
3368  CPI);
3369  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3370  "Catchswitch cannot unwind to one of its catchpads",
3371  CPI->getCatchSwitch(), CPI);
3372  return;
3373  }
3374 
3375  // Verify that each pred has a legal terminator with a legal to/from EH
3376  // pad relationship.
3377  Instruction *ToPad = &I;
3378  Value *ToPadParent = getParentPad(ToPad);
3379  for (BasicBlock *PredBB : predecessors(BB)) {
3380  TerminatorInst *TI = PredBB->getTerminator();
3381  Value *FromPad;
3382  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3383  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3384  "EH pad must be jumped to via an unwind edge", ToPad, II);
3385  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3386  FromPad = Bundle->Inputs[0];
3387  else
3388  FromPad = ConstantTokenNone::get(II->getContext());
3389  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3390  FromPad = CRI->getOperand(0);
3391  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3392  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3393  FromPad = CSI;
3394  } else {
3395  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3396  }
3397 
3398  // The edge may exit from zero or more nested pads.
3399  SmallSet<Value *, 8> Seen;
3400  for (;; FromPad = getParentPad(FromPad)) {
3401  Assert(FromPad != ToPad,
3402  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3403  if (FromPad == ToPadParent) {
3404  // This is a legal unwind edge.
3405  break;
3406  }
3407  Assert(!isa<ConstantTokenNone>(FromPad),
3408  "A single unwind edge may only enter one EH pad", TI);
3409  Assert(Seen.insert(FromPad).second,
3410  "EH pad jumps through a cycle of pads", FromPad);
3411  }
3412  }
3413 }
3414 
3415 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3416  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3417  // isn't a cleanup.
3418  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3419  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3420 
3421  visitEHPadPredecessors(LPI);
3422 
3423  if (!LandingPadResultTy)
3424  LandingPadResultTy = LPI.getType();
3425  else
3426  Assert(LandingPadResultTy == LPI.getType(),
3427  "The landingpad instruction should have a consistent result type "
3428  "inside a function.",
3429  &LPI);
3430 
3431  Function *F = LPI.getParent()->getParent();
3432  Assert(F->hasPersonalityFn(),
3433  "LandingPadInst needs to be in a function with a personality.", &LPI);
3434 
3435  // The landingpad instruction must be the first non-PHI instruction in the
3436  // block.
3437  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3438  "LandingPadInst not the first non-PHI instruction in the block.",
3439  &LPI);
3440 
3441  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3442  Constant *Clause = LPI.getClause(i);
3443  if (LPI.isCatch(i)) {
3444  Assert(isa<PointerType>(Clause->getType()),
3445  "Catch operand does not have pointer type!", &LPI);
3446  } else {
3447  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3448  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3449  "Filter operand is not an array of constants!", &LPI);
3450  }
3451  }
3452 
3453  visitInstruction(LPI);
3454 }
3455 
3456 void Verifier::visitResumeInst(ResumeInst &RI) {
3458  "ResumeInst needs to be in a function with a personality.", &RI);
3459 
3460  if (!LandingPadResultTy)
3461  LandingPadResultTy = RI.getValue()->getType();
3462  else
3463  Assert(LandingPadResultTy == RI.getValue()->getType(),
3464  "The resume instruction should have a consistent result type "
3465  "inside a function.",
3466  &RI);
3467 
3468  visitTerminatorInst(RI);
3469 }
3470 
3471 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3472  BasicBlock *BB = CPI.getParent();
3473 
3474  Function *F = BB->getParent();
3475  Assert(F->hasPersonalityFn(),
3476  "CatchPadInst needs to be in a function with a personality.", &CPI);
3477 
3478  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3479  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3480  CPI.getParentPad());
3481 
3482  // The catchpad instruction must be the first non-PHI instruction in the
3483  // block.
3484  Assert(BB->getFirstNonPHI() == &CPI,
3485  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3486 
3487  visitEHPadPredecessors(CPI);
3488  visitFuncletPadInst(CPI);
3489 }
3490 
3491 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3492  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3493  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3494  CatchReturn.getOperand(0));
3495 
3496  visitTerminatorInst(CatchReturn);
3497 }
3498 
3499 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3500  BasicBlock *BB = CPI.getParent();
3501 
3502  Function *F = BB->getParent();
3503  Assert(F->hasPersonalityFn(),
3504  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3505 
3506  // The cleanuppad instruction must be the first non-PHI instruction in the
3507  // block.
3508  Assert(BB->getFirstNonPHI() == &CPI,
3509  "CleanupPadInst not the first non-PHI instruction in the block.",
3510  &CPI);
3511 
3512  auto *ParentPad = CPI.getParentPad();
3513  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3514  "CleanupPadInst has an invalid parent.", &CPI);
3515 
3516  visitEHPadPredecessors(CPI);
3517  visitFuncletPadInst(CPI);
3518 }
3519 
3520 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3521  User *FirstUser = nullptr;
3522  Value *FirstUnwindPad = nullptr;
3523  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3525 
3526  while (!Worklist.empty()) {
3527  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3528  Assert(Seen.insert(CurrentPad).second,
3529  "FuncletPadInst must not be nested within itself", CurrentPad);
3530  Value *UnresolvedAncestorPad = nullptr;
3531  for (User *U : CurrentPad->users()) {
3532  BasicBlock *UnwindDest;
3533  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3534  UnwindDest = CRI->getUnwindDest();
3535  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3536  // We allow catchswitch unwind to caller to nest
3537  // within an outer pad that unwinds somewhere else,
3538  // because catchswitch doesn't have a nounwind variant.
3539  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3540  if (CSI->unwindsToCaller())
3541  continue;
3542  UnwindDest = CSI->getUnwindDest();
3543  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3544  UnwindDest = II->getUnwindDest();
3545  } else if (isa<CallInst>(U)) {
3546  // Calls which don't unwind may be found inside funclet
3547  // pads that unwind somewhere else. We don't *require*
3548  // such calls to be annotated nounwind.
3549  continue;
3550  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3551  // The unwind dest for a cleanup can only be found by
3552  // recursive search. Add it to the worklist, and we'll
3553  // search for its first use that determines where it unwinds.
3554  Worklist.push_back(CPI);
3555  continue;
3556  } else {
3557  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3558  continue;
3559  }
3560 
3561  Value *UnwindPad;
3562  bool ExitsFPI;
3563  if (UnwindDest) {
3564  UnwindPad = UnwindDest->getFirstNonPHI();
3565  if (!cast<Instruction>(UnwindPad)->isEHPad())
3566  continue;
3567  Value *UnwindParent = getParentPad(UnwindPad);
3568  // Ignore unwind edges that don't exit CurrentPad.
3569  if (UnwindParent == CurrentPad)
3570  continue;
3571  // Determine whether the original funclet pad is exited,
3572  // and if we are scanning nested pads determine how many
3573  // of them are exited so we can stop searching their
3574  // children.
3575  Value *ExitedPad = CurrentPad;
3576  ExitsFPI = false;
3577  do {
3578  if (ExitedPad == &FPI) {
3579  ExitsFPI = true;
3580  // Now we can resolve any ancestors of CurrentPad up to
3581  // FPI, but not including FPI since we need to make sure
3582  // to check all direct users of FPI for consistency.
3583  UnresolvedAncestorPad = &FPI;
3584  break;
3585  }
3586  Value *ExitedParent = getParentPad(ExitedPad);
3587  if (ExitedParent == UnwindParent) {
3588  // ExitedPad is the ancestor-most pad which this unwind
3589  // edge exits, so we can resolve up to it, meaning that
3590  // ExitedParent is the first ancestor still unresolved.
3591  UnresolvedAncestorPad = ExitedParent;
3592  break;
3593  }
3594  ExitedPad = ExitedParent;
3595  } while (!isa<ConstantTokenNone>(ExitedPad));
3596  } else {
3597  // Unwinding to caller exits all pads.
3598  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3599  ExitsFPI = true;
3600  UnresolvedAncestorPad = &FPI;
3601  }
3602 
3603  if (ExitsFPI) {
3604  // This unwind edge exits FPI. Make sure it agrees with other
3605  // such edges.
3606  if (FirstUser) {
3607  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3608  "pad must have the same unwind "
3609  "dest",
3610  &FPI, U, FirstUser);
3611  } else {
3612  FirstUser = U;
3613  FirstUnwindPad = UnwindPad;
3614  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3615  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3616  getParentPad(UnwindPad) == getParentPad(&FPI))
3617  SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3618  }
3619  }
3620  // Make sure we visit all uses of FPI, but for nested pads stop as
3621  // soon as we know where they unwind to.
3622  if (CurrentPad != &FPI)
3623  break;
3624  }
3625  if (UnresolvedAncestorPad) {
3626  if (CurrentPad == UnresolvedAncestorPad) {
3627  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3628  // we've found an unwind edge that exits it, because we need to verify
3629  // all direct uses of FPI.
3630  assert(CurrentPad == &FPI);
3631  continue;
3632  }
3633  // Pop off the worklist any nested pads that we've found an unwind
3634  // destination for. The pads on the worklist are the uncles,
3635  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3636  // for all ancestors of CurrentPad up to but not including
3637  // UnresolvedAncestorPad.
3638  Value *ResolvedPad = CurrentPad;
3639  while (!Worklist.empty()) {
3640  Value *UnclePad = Worklist.back();
3641  Value *AncestorPad = getParentPad(UnclePad);
3642  // Walk ResolvedPad up the ancestor list until we either find the
3643  // uncle's parent or the last resolved ancestor.
3644  while (ResolvedPad != AncestorPad) {
3645  Value *ResolvedParent = getParentPad(ResolvedPad);
3646  if (ResolvedParent == UnresolvedAncestorPad) {
3647  break;
3648  }
3649  ResolvedPad = ResolvedParent;
3650  }
3651  // If the resolved ancestor search didn't find the uncle's parent,
3652  // then the uncle is not yet resolved.
3653  if (ResolvedPad != AncestorPad)
3654  break;
3655  // This uncle is resolved, so pop it from the worklist.
3656  Worklist.pop_back();
3657  }
3658  }
3659  }
3660 
3661  if (FirstUnwindPad) {
3662  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3663  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3664  Value *SwitchUnwindPad;
3665  if (SwitchUnwindDest)
3666  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3667  else
3668  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3669  Assert(SwitchUnwindPad == FirstUnwindPad,
3670  "Unwind edges out of a catch must have the same unwind dest as "
3671  "the parent catchswitch",
3672  &FPI, FirstUser, CatchSwitch);
3673  }
3674  }
3675 
3676  visitInstruction(FPI);
3677 }
3678 
3679 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3680  BasicBlock *BB = CatchSwitch.getParent();
3681 
3682  Function *F = BB->getParent();
3683  Assert(F->hasPersonalityFn(),
3684  "CatchSwitchInst needs to be in a function with a personality.",
3685  &CatchSwitch);
3686 
3687  // The catchswitch instruction must be the first non-PHI instruction in the
3688  // block.
3689  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3690  "CatchSwitchInst not the first non-PHI instruction in the block.",
3691  &CatchSwitch);
3692 
3693  auto *ParentPad = CatchSwitch.getParentPad();
3694  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3695  "CatchSwitchInst has an invalid parent.", ParentPad);
3696 
3697  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3698  Instruction *I = UnwindDest->getFirstNonPHI();
3699  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3700  "CatchSwitchInst must unwind to an EH block which is not a "
3701  "landingpad.",
3702  &CatchSwitch);
3703 
3704  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3705  if (getParentPad(I) == ParentPad)
3706  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3707  }
3708 
3709  Assert(CatchSwitch.getNumHandlers() != 0,
3710  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3711 
3712  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3713  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3714  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3715  }
3716 
3717  visitEHPadPredecessors(CatchSwitch);
3718  visitTerminatorInst(CatchSwitch);
3719 }
3720 
3721 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3722  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3723  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3724  CRI.getOperand(0));
3725 
3726  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3727  Instruction *I = UnwindDest->getFirstNonPHI();
3728  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3729  "CleanupReturnInst must unwind to an EH block which is not a "
3730  "landingpad.",
3731  &CRI);
3732  }
3733 
3734  visitTerminatorInst(CRI);
3735 }
3736 
3737 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3738  Instruction *Op = cast<Instruction>(I.getOperand(i));
3739  // If the we have an invalid invoke, don't try to compute the dominance.
3740  // We already reject it in the invoke specific checks and the dominance
3741  // computation doesn't handle multiple edges.
3742  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3743  if (II->getNormalDest() == II->getUnwindDest())
3744  return;
3745  }
3746 
3747  // Quick check whether the def has already been encountered in the same block.
3748  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3749  // uses are defined to happen on the incoming edge, not at the instruction.
3750  //
3751  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3752  // wrapping an SSA value, assert that we've already encountered it. See
3753  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3754  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3755  return;
3756 
3757  const Use &U = I.getOperandUse(i);
3758  Assert(DT.dominates(Op, U),
3759  "Instruction does not dominate all uses!", Op, &I);
3760 }
3761 
3762 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3763  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3764  "apply only to pointer types", &I);
3765  Assert(isa<LoadInst>(I),
3766  "dereferenceable, dereferenceable_or_null apply only to load"
3767  " instructions, use attributes for calls or invokes", &I);
3768  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3769  "take one operand!", &I);
3770  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3771  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3772  "dereferenceable_or_null metadata value must be an i64!", &I);
3773 }
3774 
3775 /// verifyInstruction - Verify that an instruction is well formed.
3776 ///
3777 void Verifier::visitInstruction(Instruction &I) {
3778  BasicBlock *BB = I.getParent();
3779  Assert(BB, "Instruction not embedded in basic block!", &I);
3780 
3781  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3782  for (User *U : I.users()) {
3783  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3784  "Only PHI nodes may reference their own value!", &I);
3785  }
3786  }
3787 
3788  // Check that void typed values don't have names
3789  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3790  "Instruction has a name, but provides a void value!", &I);
3791 
3792  // Check that the return value of the instruction is either void or a legal
3793  // value type.
3794  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3795  "Instruction returns a non-scalar type!", &I);
3796 
3797  // Check that the instruction doesn't produce metadata. Calls are already
3798  // checked against the callee type.
3799  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3800  "Invalid use of metadata!", &I);
3801 
3802  // Check that all uses of the instruction, if they are instructions
3803  // themselves, actually have parent basic blocks. If the use is not an
3804  // instruction, it is an error!
3805  for (Use &U : I.uses()) {
3806  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3807  Assert(Used->getParent() != nullptr,
3808  "Instruction referencing"
3809  " instruction not embedded in a basic block!",
3810  &I, Used);
3811  else {
3812  CheckFailed("Use of instruction is not an instruction!", U);
3813  return;
3814  }
3815  }
3816 
3817  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3818  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3819 
3820  // Check to make sure that only first-class-values are operands to
3821  // instructions.
3822  if (!I.getOperand(i)->getType()->isFirstClassType()) {
3823  Assert(false, "Instruction operands must be first-class values!", &I);
3824  }
3825 
3826  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3827  // Check to make sure that the "address of" an intrinsic function is never
3828  // taken.
3829  Assert(
3830  !F->isIntrinsic() ||
3831  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3832  "Cannot take the address of an intrinsic!", &I);
3833  Assert(
3834  !F->isIntrinsic() || isa<CallInst>(I) ||
3835  F->getIntrinsicID() == Intrinsic::donothing ||
3836  F->getIntrinsicID() == Intrinsic::coro_resume ||
3837  F->getIntrinsicID() == Intrinsic::coro_destroy ||
3838  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3839  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3840  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3841  "Cannot invoke an intrinsic other than donothing, patchpoint, "
3842  "statepoint, coro_resume or coro_destroy",
3843  &I);
3844  Assert(F->getParent() == &M, "Referencing function in another module!",
3845  &I, &M, F, F->getParent());
3846  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3847  Assert(OpBB->getParent() == BB->getParent(),
3848  "Referring to a basic block in another function!", &I);
3849  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3850  Assert(OpArg->getParent() == BB->getParent(),
3851  "Referring to an argument in another function!", &I);
3852  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3853  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3854  &M, GV, GV->getParent());
3855  } else if (isa<Instruction>(I.getOperand(i))) {
3856  verifyDominatesUse(I, i);
3857  } else if (isa<InlineAsm>(I.getOperand(i))) {
3858  Assert((i + 1 == e && isa<CallInst>(I)) ||
3859  (i + 3 == e && isa<InvokeInst>(I)),
3860  "Cannot take the address of an inline asm!", &I);
3861  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3862  if (CE->getType()->isPtrOrPtrVectorTy() ||
3864  // If we have a ConstantExpr pointer, we need to see if it came from an
3865  // illegal bitcast. If the datalayout string specifies non-integral
3866  // address spaces then we also need to check for illegal ptrtoint and
3867  // inttoptr expressions.
3868  visitConstantExprsRecursively(CE);
3869  }
3870  }
3871  }
3872 
3873  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3875  "fpmath requires a floating point result!", &I);
3876  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3877  if (ConstantFP *CFP0 =
3878  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3879  const APFloat &Accuracy = CFP0->getValueAPF();
3880  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3881  "fpmath accuracy must have float type", &I);
3882  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3883  "fpmath accuracy not a positive number!", &I);
3884  } else {
3885  Assert(false, "invalid fpmath accuracy!", &I);
3886  }
3887  }
3888 
3889  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3890  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3891  "Ranges are only for loads, calls and invokes!", &I);
3892  visitRangeMetadata(I, Range, I.getType());
3893  }
3894 
3896  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3897  &I);
3898  Assert(isa<LoadInst>(I),
3899  "nonnull applies only to load instructions, use attributes"
3900  " for calls or invokes",
3901  &I);
3902  }
3903 
3905  visitDereferenceableMetadata(I, MD);
3906 
3908  visitDereferenceableMetadata(I, MD);
3909 
3910  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3911  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3912 
3913  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3914  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3915  &I);
3916  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3917  "use attributes for calls or invokes", &I);
3918  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3919  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3920  Assert(CI && CI->getType()->isIntegerTy(64),
3921  "align metadata value must be an i64!", &I);
3922  uint64_t Align = CI->getZExtValue();
3923  Assert(isPowerOf2_64(Align),
3924  "align metadata value must be a power of 2!", &I);
3926  "alignment is larger that implementation defined limit", &I);
3927  }
3928 
3929  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3930  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3931  visitMDNode(*N);
3932  }
3933 
3934  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3935  verifyFragmentExpression(*DII);
3936 
3937  InstsInThisBlock.insert(&I);
3938 }
3939 
3940 /// Allow intrinsics to be verified in different ways.
3941 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3942  Function *IF = CS.getCalledFunction();
3943  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3944  IF);
3945 
3946  // Verify that the intrinsic prototype lines up with what the .td files
3947  // describe.
3948  FunctionType *IFTy = IF->getFunctionType();
3949  bool IsVarArg = IFTy->isVarArg();
3950 
3952  getIntrinsicInfoTableEntries(ID, Table);
3954 
3955  SmallVector<Type *, 4> ArgTys;
3956  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3957  TableRef, ArgTys),
3958  "Intrinsic has incorrect return type!", IF);
3959  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3960  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3961  TableRef, ArgTys),
3962  "Intrinsic has incorrect argument type!", IF);
3963 
3964  // Verify if the intrinsic call matches the vararg property.
3965  if (IsVarArg)
3966  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3967  "Intrinsic was not defined with variable arguments!", IF);
3968  else
3969  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3970  "Callsite was not defined with variable arguments!", IF);
3971 
3972  // All descriptors should be absorbed by now.
3973  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3974 
3975  // Now that we have the intrinsic ID and the actual argument types (and we
3976  // know they are legal for the intrinsic!) get the intrinsic name through the
3977  // usual means. This allows us to verify the mangling of argument types into
3978  // the name.
3979  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3980  Assert(ExpectedName == IF->getName(),
3981  "Intrinsic name not mangled correctly for type arguments! "
3982  "Should be: " +
3983  ExpectedName,
3984  IF);
3985 
3986  // If the intrinsic takes MDNode arguments, verify that they are either global
3987  // or are local to *this* function.
3988  for (Value *V : CS.args())
3989  if (auto *MD = dyn_cast<MetadataAsValue>(V))
3990  visitMetadataAsValue(*MD, CS.getCaller());
3991 
3992  switch (ID) {
3993  default:
3994  break;
3995  case Intrinsic::coro_id: {
3996  auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3997  if (isa<ConstantPointerNull>(InfoArg))
3998  break;
3999  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4000  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4001  "info argument of llvm.coro.begin must refer to an initialized "
4002  "constant");
4003  Constant *Init = GV->getInitializer();
4004  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4005  "info argument of llvm.coro.begin must refer to either a struct or "
4006  "an array");
4007  break;
4008  }
4009  case Intrinsic::ctlz: // llvm.ctlz
4010  case Intrinsic::cttz: // llvm.cttz
4011  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4012  "is_zero_undef argument of bit counting intrinsics must be a "
4013  "constant int",
4014  CS);
4015  break;
4016  case Intrinsic::experimental_constrained_fadd:
4017  case Intrinsic::experimental_constrained_fsub:
4018  case Intrinsic::experimental_constrained_fmul:
4019  case Intrinsic::experimental_constrained_fdiv:
4020  case Intrinsic::experimental_constrained_frem:
4021  case Intrinsic::experimental_constrained_fma:
4022  case Intrinsic::experimental_constrained_sqrt:
4023  case Intrinsic::experimental_constrained_pow:
4024  case Intrinsic::experimental_constrained_powi:
4025  case Intrinsic::experimental_constrained_sin:
4026  case Intrinsic::experimental_constrained_cos:
4027  case Intrinsic::experimental_constrained_exp:
4028  case Intrinsic::experimental_constrained_exp2:
4029  case Intrinsic::experimental_constrained_log:
4030  case Intrinsic::experimental_constrained_log10:
4031  case Intrinsic::experimental_constrained_log2:
4032  case Intrinsic::experimental_constrained_rint:
4033  case Intrinsic::experimental_constrained_nearbyint:
4034  visitConstrainedFPIntrinsic(
4035  cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4036  break;
4037  case Intrinsic::dbg_declare: // llvm.dbg.declare
4038  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4039  "invalid llvm.dbg.declare intrinsic call 1", CS);
4040  visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4041  break;
4042  case Intrinsic::dbg_addr: // llvm.dbg.addr
4043  visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4044  break;
4045  case Intrinsic::dbg_value: // llvm.dbg.value
4046  visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4047  break;
4048  case Intrinsic::memcpy:
4049  case Intrinsic::memmove:
4050  case Intrinsic::memset: {
4051  const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4052  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4053  return Alignment == 0 || isPowerOf2_32(Alignment);
4054  };
4055  Assert(IsValidAlignment(MI->getDestAlignment()),
4056  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4057  CS);
4058  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4059  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4060  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4061  CS);
4062  // TODO: Remove this assert when we enhance IRBuilder API to create
4063  // memcpy/memmove with separate source & dest alignments.
4064  Assert(MTI->getSourceAlignment() == MTI->getDestAlignment(),
4065  "TEMPORARY: source and dest alignments must be the same");
4066  }
4067  Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4068  "isvolatile argument of memory intrinsics must be a constant int",
4069  CS);
4070  break;
4071  }
4072  case Intrinsic::memcpy_element_unordered_atomic: {
4073  const AtomicMemCpyInst *MI = cast<AtomicMemCpyInst>(CS.getInstruction());
4074 
4075  ConstantInt *ElementSizeCI =
4077  Assert(ElementSizeCI,
4078  "element size of the element-wise unordered atomic memory "
4079  "intrinsic must be a constant int",
4080  CS);
4081  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4082  Assert(ElementSizeVal.isPowerOf2(),
4083  "element size of the element-wise atomic memory intrinsic "
4084  "must be a power of 2",
4085  CS);
4086 
4087  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4088  uint64_t Length = LengthCI->getZExtValue();
4089  uint64_t ElementSize = MI->getElementSizeInBytes();
4090  Assert((Length % ElementSize) == 0,
4091  "constant length must be a multiple of the element size in the "
4092  "element-wise atomic memory intrinsic",
4093  CS);
4094  }
4095 
4096  auto IsValidAlignment = [&](uint64_t Alignment) {
4097  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4098  };
4099  uint64_t DstAlignment = CS.getParamAlignment(0),
4100  SrcAlignment = CS.getParamAlignment(1);
4101  Assert(IsValidAlignment(DstAlignment),
4102  "incorrect alignment of the destination argument", CS);
4103  Assert(IsValidAlignment(SrcAlignment),
4104  "incorrect alignment of the source argument", CS);
4105  break;
4106  }
4107  case Intrinsic::memmove_element_unordered_atomic: {
4108  auto *MI = cast<AtomicMemMoveInst>(CS.getInstruction());
4109 
4110  ConstantInt *ElementSizeCI =
4111  dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4112  Assert(ElementSizeCI,
4113  "element size of the element-wise unordered atomic memory "
4114  "intrinsic must be a constant int",
4115  CS);
4116  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4117  Assert(ElementSizeVal.isPowerOf2(),
4118  "element size of the element-wise atomic memory intrinsic "
4119  "must be a power of 2",
4120  CS);
4121 
4122  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4123  uint64_t Length = LengthCI->getZExtValue();
4124  uint64_t ElementSize = MI->getElementSizeInBytes();
4125  Assert((Length % ElementSize) == 0,
4126  "constant length must be a multiple of the element size in the "
4127  "element-wise atomic memory intrinsic",
4128  CS);
4129  }
4130 
4131  auto IsValidAlignment = [&](uint64_t Alignment) {
4132  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4133  };
4134  uint64_t DstAlignment = CS.getParamAlignment(0),
4135  SrcAlignment = CS.getParamAlignment(1);
4136  Assert(IsValidAlignment(DstAlignment),
4137  "incorrect alignment of the destination argument", CS);
4138  Assert(IsValidAlignment(SrcAlignment),
4139  "incorrect alignment of the source argument", CS);
4140  break;
4141  }
4142  case Intrinsic::memset_element_unordered_atomic: {
4143  auto *MI = cast<AtomicMemSetInst>(CS.getInstruction());
4144 
4145  ConstantInt *ElementSizeCI =
4146  dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4147  Assert(ElementSizeCI,
4148  "element size of the element-wise unordered atomic memory "
4149  "intrinsic must be a constant int",
4150  CS);
4151  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4152  Assert(ElementSizeVal.isPowerOf2(),
4153  "element size of the element-wise atomic memory intrinsic "
4154  "must be a power of 2",
4155  CS);
4156 
4157  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4158  uint64_t Length = LengthCI->getZExtValue();
4159  uint64_t ElementSize = MI->getElementSizeInBytes();
4160  Assert((Length % ElementSize) == 0,
4161  "constant length must be a multiple of the element size in the "
4162  "element-wise atomic memory intrinsic",
4163  CS);
4164  }
4165 
4166  auto IsValidAlignment = [&](uint64_t Alignment) {
4167  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4168  };
4169  uint64_t DstAlignment = CS.getParamAlignment(0);
4170  Assert(IsValidAlignment(DstAlignment),
4171  "incorrect alignment of the destination argument", CS);
4172  break;
4173  }
4174  case Intrinsic::gcroot:
4175  case Intrinsic::gcwrite:
4176  case Intrinsic::gcread:
4177  if (ID == Intrinsic::gcroot) {
4178  AllocaInst *AI =
4180  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4181  Assert(isa<Constant>(CS.getArgOperand(1)),
4182  "llvm.gcroot parameter #2 must be a constant.", CS);
4183  if (!AI->getAllocatedType()->isPointerTy()) {
4184  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4185  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4186  "or argument #2 must be a non-null constant.",
4187  CS);
4188  }
4189  }
4190 
4191  Assert(CS.getParent()->getParent()->hasGC(),
4192  "Enclosing function does not use GC.", CS);
4193  break;
4194  case Intrinsic::init_trampoline:
4195  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4196  "llvm.init_trampoline parameter #2 must resolve to a function.",
4197  CS);
4198  break;
4199  case Intrinsic::prefetch:
4200  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4201  isa<ConstantInt>(CS.getArgOperand(2)) &&
4202  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4203  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4204  "invalid arguments to llvm.prefetch", CS);
4205  break;
4206  case Intrinsic::stackprotector:
4207  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4208  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4209  break;
4210  case Intrinsic::lifetime_start:
4211  case Intrinsic::lifetime_end:
4212  case Intrinsic::invariant_start:
4213  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4214  "size argument of memory use markers must be a constant integer",
4215  CS);
4216  break;
4217  case Intrinsic::invariant_end:
4218  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4219  "llvm.invariant.end parameter #2 must be a constant integer", CS);
4220  break;
4221 
4222  case Intrinsic::localescape: {
4223  BasicBlock *BB = CS.getParent();
4224  Assert(BB == &BB->getParent()->front(),
4225  "llvm.localescape used outside of entry block", CS);
4226  Assert(!SawFrameEscape,
4227  "multiple calls to llvm.localescape in one function", CS);
4228  for (Value *Arg : CS.args()) {
4229  if (isa<ConstantPointerNull>(Arg))
4230  continue; // Null values are allowed as placeholders.
4231  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4232  Assert(AI && AI->isStaticAlloca(),
4233  "llvm.localescape only accepts static allocas", CS);
4234  }
4235  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4236  SawFrameEscape = true;
4237  break;
4238  }
4239  case Intrinsic::localrecover: {
4240  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4241  Function *Fn = dyn_cast<Function>(FnArg);
4242  Assert(Fn && !Fn->isDeclaration(),
4243  "llvm.localrecover first "
4244  "argument must be function defined in this module",
4245  CS);
4246  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4247  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4248  CS);
4249  auto &Entry = FrameEscapeInfo[Fn];
4250  Entry.second = unsigned(
4251  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4252  break;
4253  }
4254 
4255  case Intrinsic::experimental_gc_statepoint:
4256  Assert(!CS.isInlineAsm(),
4257  "gc.statepoint support for inline assembly unimplemented", CS);
4258  Assert(CS.getParent()->getParent()->hasGC(),
4259  "Enclosing function does not use GC.", CS);
4260 
4261  verifyStatepoint(CS);
4262  break;
4263  case Intrinsic::experimental_gc_result: {
4264  Assert(CS.getParent()->getParent()->hasGC(),
4265  "Enclosing function does not use GC.", CS);
4266  // Are we tied to a statepoint properly?
4267  CallSite StatepointCS(CS.getArgOperand(0));
4268  const Function *StatepointFn =
4269  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4270  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4271  StatepointFn->getIntrinsicID() ==
4272  Intrinsic::experimental_gc_statepoint,
4273  "gc.result operand #1 must be from a statepoint", CS,
4274  CS.getArgOperand(0));
4275 
4276  // Assert that result type matches wrapped callee.
4277  const Value *Target = StatepointCS.getArgument(2);
4278  auto *PT = cast<PointerType>(Target->getType());
4279  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4280  Assert(CS.getType() == TargetFuncType->getReturnType(),
4281  "gc.result result type does not match wrapped callee", CS);
4282  break;
4283  }
4284  case Intrinsic::experimental_gc_relocate: {
4285  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4286 
4287  Assert(isa<PointerType>(CS.getType()->getScalarType()),
4288  "gc.relocate must return a pointer or a vector of pointers", CS);
4289 
4290  // Check that this relocate is correctly tied to the statepoint
4291 
4292  // This is case for relocate on the unwinding path of an invoke statepoint
4293  if (LandingPadInst *LandingPad =
4294  dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4295 
4296  const BasicBlock *InvokeBB =
4297  LandingPad->getParent()->getUniquePredecessor();
4298 
4299  // Landingpad relocates should have only one predecessor with invoke
4300  // statepoint terminator
4301  Assert(InvokeBB, "safepoints should have unique landingpads",
4302  LandingPad->getParent());
4303  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4304  InvokeBB);
4305  Assert(isStatepoint(InvokeBB->getTerminator()),
4306  "gc relocate should be linked to a statepoint", InvokeBB);
4307  }
4308  else {
4309  // In all other cases relocate should be tied to the statepoint directly.
4310  // This covers relocates on a normal return path of invoke statepoint and
4311  // relocates of a call statepoint.
4312  auto Token = CS.getArgOperand(0);
4313  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4314  "gc relocate is incorrectly tied to the statepoint", CS, Token);
4315  }
4316 
4317  // Verify rest of the relocate arguments.
4318 
4319  ImmutableCallSite StatepointCS(
4320  cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4321 
4322  // Both the base and derived must be piped through the safepoint.
4323  Value* Base = CS.getArgOperand(1);
4324  Assert(isa<ConstantInt>(Base),
4325  "gc.relocate operand #2 must be integer offset", CS);
4326 
4327  Value* Derived = CS.getArgOperand(2);
4328  Assert(isa<ConstantInt>(Derived),
4329  "gc.relocate operand #3 must be integer offset", CS);
4330 
4331  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4332  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4333  // Check the bounds
4334  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4335  "gc.relocate: statepoint base index out of bounds", CS);
4336  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4337  "gc.relocate: statepoint derived index out of bounds", CS);
4338 
4339  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4340  // section of the statepoint's argument.
4341  Assert(StatepointCS.arg_size() > 0,
4342  "gc.statepoint: insufficient arguments");
4343  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4344  "gc.statement: number of call arguments must be constant integer");
4345  const unsigned NumCallArgs =
4346  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4347  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4348  "gc.statepoint: mismatch in number of call arguments");
4349  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4350  "gc.statepoint: number of transition arguments must be "
4351  "a constant integer");
4352  const int NumTransitionArgs =
4353  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4354  ->getZExtValue();
4355  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4356  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4357  "gc.statepoint: number of deoptimization arguments must be "
4358  "a constant integer");
4359  const int NumDeoptArgs =
4360  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4361  ->getZExtValue();
4362  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4363  const int GCParamArgsEnd = StatepointCS.arg_size();
4364  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4365  "gc.relocate: statepoint base index doesn't fall within the "
4366  "'gc parameters' section of the statepoint call",
4367  CS);
4368  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4369  "gc.relocate: statepoint derived index doesn't fall within the "
4370  "'gc parameters' section of the statepoint call",
4371  CS);
4372 
4373  // Relocated value must be either a pointer type or vector-of-pointer type,
4374  // but gc_relocate does not need to return the same pointer type as the
4375  // relocated pointer. It can be casted to the correct type later if it's
4376  // desired. However, they must have the same address space and 'vectorness'
4377  GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4379  "gc.relocate: relocated value must be a gc pointer", CS);
4380 
4381  auto ResultType = CS.getType();
4382  auto DerivedType = Relocate.getDerivedPtr()->getType();
4383  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4384  "gc.relocate: vector relocates to vector and pointer to pointer",
4385  CS);
4386  Assert(
4387  ResultType->getPointerAddressSpace() ==
4388  DerivedType->getPointerAddressSpace(),
4389  "gc.relocate: relocating a pointer shouldn't change its address space",
4390  CS);
4391  break;
4392  }
4393  case Intrinsic::eh_exceptioncode:
4394  case Intrinsic::eh_exceptionpointer: {
4395  Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4396  "eh.exceptionpointer argument must be a catchpad", CS);
4397  break;
4398  }
4399  case Intrinsic::masked_load: {
4400  Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4401 
4402  Value *Ptr = CS.getArgOperand(0);
4403  //Value *Alignment = CS.getArgOperand(1);
4404  Value *Mask = CS.getArgOperand(2);
4405  Value *PassThru = CS.getArgOperand(3);
4406  Assert(Mask->getType()->isVectorTy(),
4407  "masked_load: mask must be vector", CS);
4408 
4409  // DataTy is the overloaded type
4410  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4411  Assert(DataTy == CS.getType(),
4412  "masked_load: return must match pointer type", CS);
4413  Assert(PassThru->getType() == DataTy,
4414  "masked_load: pass through and data type must match", CS);
4415  Assert(Mask->getType()->getVectorNumElements() ==
4416  DataTy->getVectorNumElements(),
4417  "masked_load: vector mask must be same length as data", CS);
4418  break;
4419  }
4420  case Intrinsic::masked_store: {
4421  Value *Val = CS.getArgOperand(0);
4422  Value *Ptr = CS.getArgOperand(1);
4423  //Value *Alignment = CS.getArgOperand(2);
4424  Value *Mask = CS.getArgOperand(3);
4425  Assert(Mask->getType()->isVectorTy(),
4426  "masked_store: mask must be vector", CS);
4427 
4428  // DataTy is the overloaded type
4429  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4430  Assert(DataTy == Val->getType(),
4431  "masked_store: storee must match pointer type", CS);
4432  Assert(Mask->getType()->getVectorNumElements() ==
4433  DataTy->getVectorNumElements(),
4434  "masked_store: vector mask must be same length as data", CS);
4435  break;
4436  }
4437 
4438  case Intrinsic::experimental_guard: {
4439  Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4441  "experimental_guard must have exactly one "
4442  "\"deopt\" operand bundle");
4443  break;
4444  }
4445 
4446  case Intrinsic::experimental_deoptimize: {
4447  Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4449  "experimental_deoptimize must have exactly one "
4450  "\"deopt\" operand bundle");
4452  "experimental_deoptimize return type must match caller return type");
4453 
4454  if (CS.isCall()) {
4455  auto *DeoptCI = CS.getInstruction();
4456  auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4457  Assert(RI,
4458  "calls to experimental_deoptimize must be followed by a return");
4459 
4460  if (!CS.getType()->isVoidTy() && RI)
4461  Assert(RI->getReturnValue() == DeoptCI,
4462  "calls to experimental_deoptimize must be followed by a return "
4463  "of the value computed by experimental_deoptimize");
4464  }
4465 
4466  break;
4467  }
4468  };
4469 }
4470 
4471 /// \brief Carefully grab the subprogram from a local scope.
4472 ///
4473 /// This carefully grabs the subprogram from a local scope, avoiding the
4474 /// built-in assertions that would typically fire.
4475 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4476  if (!LocalScope)
4477  return nullptr;
4478 
4479  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4480  return SP;
4481 
4482  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4483  return getSubprogram(LB->getRawScope());
4484 
4485  // Just return null; broken scope chains are checked elsewhere.
4486  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4487  return nullptr;
4488 }
4489 
4490 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4491  unsigned NumOperands = FPI.getNumArgOperands();
4492  Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4493  (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4494  "invalid arguments for constrained FP intrinsic", &FPI);
4495  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4496  "invalid exception behavior argument", &FPI);
4497  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4498  "invalid rounding mode argument", &FPI);
4500  "invalid rounding mode argument", &FPI);
4502  "invalid exception behavior argument", &FPI);
4503 }
4504 
4505 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4506  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4507  AssertDI(isa<ValueAsMetadata>(MD) ||
4508  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4509  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4510  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4511  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4512  DII.getRawVariable());
4513  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4514  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4515  DII.getRawExpression());
4516 
4517  // Ignore broken !dbg attachments; they're checked elsewhere.
4518  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4519  if (!isa<DILocation>(N))
4520  return;
4521 
4522  BasicBlock *BB = DII.getParent();
4523  Function *F = BB ? BB->getParent() : nullptr;
4524 
4525  // The scopes for variables and !dbg attachments must agree.
4526  DILocalVariable *Var = DII.getVariable();
4527  DILocation *Loc = DII.getDebugLoc();
4528  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4529  &DII, BB, F);
4530 
4531  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4532  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4533  if (!VarSP || !LocSP)
4534  return; // Broken scope chains are checked elsewhere.
4535 
4536  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4537  " variable and !dbg attachment",
4538  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4539  Loc->getScope()->getSubprogram());
4540 
4541  verifyFnArgs(DII);
4542 }
4543 
4544 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4545  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4546  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4547 
4548  // We don't know whether this intrinsic verified correctly.
4549  if (!V || !E || !E->isValid())
4550  return;
4551 
4552  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4553  auto Fragment = E->getFragmentInfo();
4554  if (!Fragment)
4555  return;
4556 
4557  // The frontend helps out GDB by emitting the members of local anonymous
4558  // unions as artificial local variables with shared storage. When SROA splits
4559  // the storage for artificial local variables that are smaller than the entire
4560  // union, the overhang piece will be outside of the allotted space for the
4561  // variable and this check fails.
4562  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4563  if (V->isArtificial())
4564  return;
4565 
4566  verifyFragmentExpression(*V, *Fragment, &I);
4567 }
4568 
4569 template <typename ValueOrMetadata>
4570 void Verifier::verifyFragmentExpression(const DIVariable &V,
4571  DIExpression::FragmentInfo Fragment,
4572  ValueOrMetadata *Desc) {
4573  // If there's no size, the type is broken, but that should be checked
4574  // elsewhere.
4575  auto VarSize = V.getSizeInBits();
4576  if (!VarSize)
4577  return;
4578 
4579  unsigned FragSize = Fragment.SizeInBits;
4580  unsigned FragOffset = Fragment.OffsetInBits;
4581  AssertDI(FragSize + FragOffset <= *VarSize,
4582  "fragment is larger than or outside of variable", Desc, &V);
4583  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4584 }
4585 
4586 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4587  // This function does not take the scope of noninlined function arguments into
4588  // account. Don't run it if current function is nodebug, because it may
4589  // contain inlined debug intrinsics.
4590  if (!HasDebugInfo)
4591  return;
4592 
4593  // For performance reasons only check non-inlined ones.
4594  if (I.getDebugLoc()->getInlinedAt())
4595  return;
4596 
4597  DILocalVariable *Var = I.getVariable();
4598  AssertDI(Var, "dbg intrinsic without variable");
4599 
4600  unsigned ArgNo = Var->getArg();
4601  if (!ArgNo)
4602  return;
4603 
4604  // Verify there are no duplicate function argument debug info entries.
4605  // These will cause hard-to-debug assertions in the DWARF backend.
4606  if (DebugFnArgs.size() < ArgNo)
4607  DebugFnArgs.resize(ArgNo, nullptr);
4608 
4609  auto *Prev = DebugFnArgs[ArgNo - 1];
4610  DebugFnArgs[ArgNo - 1] = Var;
4611  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4612  Prev, Var);
4613 }
4614 
4615 void Verifier::verifyCompileUnits() {
4616  // When more than one Module is imported into the same context, such as during
4617  // an LTO build before linking the modules, ODR type uniquing may cause types
4618  // to point to a different CU. This check does not make sense in this case.
4620  return;
4621  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4623  if (CUs)
4624  Listed.insert(CUs->op_begin(), CUs->op_end());
4625  for (auto *CU : CUVisited)
4626  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4627  CUVisited.clear();
4628 }
4629 
4630 void Verifier::verifyDeoptimizeCallingConvs() {
4631  if (DeoptimizeDeclarations.empty())
4632  return;
4633 
4634  const Function *First = DeoptimizeDeclarations[0];
4635  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4636  Assert(First->getCallingConv() == F->getCallingConv(),
4637  "All llvm.experimental.deoptimize declarations must have the same "
4638  "calling convention",
4639  First, F);
4640  }
4641 }
4642 
4643 //===----------------------------------------------------------------------===//
4644 // Implement the public interfaces to this file...
4645 //===----------------------------------------------------------------------===//
4646 
4648  Function &F = const_cast<Function &>(f);
4649 
4650  // Don't use a raw_null_ostream. Printing IR is expensive.
4651  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4652 
4653  // Note that this function's return value is inverted from what you would
4654  // expect of a function called "verify".
4655  return !V.verify(F);
4656 }
4657 
4659  bool *BrokenDebugInfo) {
4660  // Don't use a raw_null_ostream. Printing IR is expensive.
4661  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4662 
4663  bool Broken = false;
4664  for (const Function &F : M)
4665  Broken |= !V.verify(F);
4666 
4667  Broken |= !V.verify();
4668  if (BrokenDebugInfo)
4669  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4670  // Note that this function's return value is inverted from what you would
4671  // expect of a function called "verify".
4672  return Broken;
4673 }
4674 
4675 namespace {
4676 
4677 struct VerifierLegacyPass : public FunctionPass {
4678  static char ID;
4679 
4680  std::unique_ptr<Verifier> V;
4681  bool FatalErrors = true;
4682 
4683  VerifierLegacyPass() : FunctionPass(ID) {
4685  }
4686  explicit VerifierLegacyPass(bool FatalErrors)
4687  : FunctionPass(ID),
4688  FatalErrors(FatalErrors) {
4690  }
4691 
4692  bool doInitialization(Module &M) override {
4693  V = llvm::make_unique<Verifier>(
4694  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4695  return false;
4696  }
4697 
4698  bool runOnFunction(Function &F) override {
4699  if (!V->verify(F) && FatalErrors)
4700  report_fatal_error("Broken function found, compilation aborted!");
4701 
4702  return false;
4703  }
4704 
4705  bool doFinalization(Module &M) override {
4706  bool HasErrors = false;
4707  for (Function &F : M)
4708  if (F.isDeclaration())
4709  HasErrors |= !V->verify(F);
4710 
4711  HasErrors |= !V->verify();
4712  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4713  report_fatal_error("Broken module found, compilation aborted!");
4714  return false;
4715  }
4716 
4717  void getAnalysisUsage(AnalysisUsage &AU) const override {
4718  AU.setPreservesAll();
4719  }
4720 };
4721 
4722 } // end anonymous namespace
4723 
4724 /// Helper to issue failure from the TBAA verification
4725 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4726  if (Diagnostic)
4727  return Diagnostic->CheckFailed(Args...);
4728 }
4729 
4730 #define AssertTBAA(C, ...) \
4731  do { \
4732  if (!(C)) { \
4733  CheckFailed(__VA_ARGS__); \
4734  return false; \
4735  } \
4736  } while (false)
4737 
4738 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4739 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4740 /// struct-type node describing an aggregate data structure (like a struct).
4741 TBAAVerifier::TBAABaseNodeSummary
4742 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4743  bool IsNewFormat) {
4744  if (BaseNode->getNumOperands() < 2) {
4745  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4746  return {true, ~0u};
4747  }
4748 
4749  auto Itr = TBAABaseNodes.find(BaseNode);
4750  if (Itr != TBAABaseNodes.end())
4751  return Itr->second;
4752 
4753  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4754  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4755  (void)InsertResult;
4756  assert(InsertResult.second && "We just checked!");
4757  return Result;
4758 }
4759 
4760 TBAAVerifier::TBAABaseNodeSummary
4761 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4762  bool IsNewFormat) {
4763  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4764 
4765  if (BaseNode->getNumOperands() == 2) {
4766  // Scalar nodes can only be accessed at offset 0.
4767  return isValidScalarTBAANode(BaseNode)
4768  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4769  : InvalidNode;
4770  }
4771 
4772  if (IsNewFormat) {
4773  if (BaseNode->getNumOperands() % 3 != 0) {
4774  CheckFailed("Access tag nodes must have the number of operands that is a "
4775  "multiple of 3!", BaseNode);
4776  return InvalidNode;
4777  }
4778  } else {
4779  if (BaseNode->getNumOperands() % 2 != 1) {
4780  CheckFailed("Struct tag nodes must have an odd number of operands!",
4781  BaseNode);
4782  return InvalidNode;
4783  }
4784  }
4785 
4786  // Check the type size field.
4787  if (IsNewFormat) {
4788  auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4789  BaseNode->getOperand(1));
4790  if (!TypeSizeNode) {
4791  CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4792  return InvalidNode;
4793  }
4794  }
4795 
4796  // Check the type name field. In the new format it can be anything.
4797  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4798  CheckFailed("Struct tag nodes have a string as their first operand",
4799  BaseNode);
4800  return InvalidNode;
4801  }
4802 
4803  bool Failed = false;
4804 
4805  Optional<APInt> PrevOffset;
4806  unsigned BitWidth = ~0u;
4807 
4808  // We've already checked that BaseNode is not a degenerate root node with one
4809  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4810  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4811  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4812  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4813  Idx += NumOpsPerField) {
4814  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4815  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4816  if (!isa<MDNode>(FieldTy)) {
4817  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4818  Failed = true;
4819  continue;
4820  }
4821 
4822  auto *OffsetEntryCI =
4823  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4824  if (!OffsetEntryCI) {
4825  CheckFailed("Offset entries must be constants!", &I, BaseNode);
4826  Failed = true;
4827  continue;
4828  }
4829 
4830  if (BitWidth == ~0u)
4831  BitWidth = OffsetEntryCI->getBitWidth();
4832 
4833  if (OffsetEntryCI->getBitWidth() != BitWidth) {
4834  CheckFailed(
4835  "Bitwidth between the offsets and struct type entries must match", &I,
4836  BaseNode);
4837  Failed = true;
4838  continue;
4839  }
4840 
4841  // NB! As far as I can tell, we generate a non-strictly increasing offset
4842  // sequence only from structs that have zero size bit fields. When
4843  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4844  // pick the field lexically the latest in struct type metadata node. This
4845  // mirrors the actual behavior of the alias analysis implementation.
4846  bool IsAscending =
4847  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4848 
4849  if (!IsAscending) {
4850  CheckFailed("Offsets must be increasing!", &I, BaseNode);
4851  Failed = true;
4852  }
4853 
4854  PrevOffset = OffsetEntryCI->getValue();
4855 
4856  if (IsNewFormat) {
4857  auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4858  BaseNode->getOperand(Idx + 2));
4859  if (!MemberSizeNode) {
4860  CheckFailed("Member size entries must be constants!", &I, BaseNode);
4861  Failed = true;
4862  continue;
4863  }
4864  }
4865  }
4866 
4867  return Failed ? InvalidNode
4868  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4869 }
4870 
4871 static bool IsRootTBAANode(const MDNode *MD) {
4872  return MD->getNumOperands() < 2;
4873 }
4874 
4875 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4877  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4878  return false;
4879 
4880  if (!isa<MDString>(MD->getOperand(0)))
4881  return false;
4882 
4883  if (MD->getNumOperands() == 3) {
4884  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4885  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4886  return false;
4887  }
4888 
4889  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4890  return Parent && Visited.insert(Parent).second &&
4891  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4892 }
4893 
4894 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4895  auto ResultIt = TBAAScalarNodes.find(MD);
4896  if (ResultIt != TBAAScalarNodes.end())
4897  return ResultIt->second;
4898 
4900  bool Result = IsScalarTBAANodeImpl(MD, Visited);
4901  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4902  (void)InsertResult;
4903  assert(InsertResult.second && "Just checked!");
4904 
4905  return Result;
4906 }
4907 
4908 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4909 /// Offset in place to be the offset within the field node returned.
4910 ///
4911 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4912 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4913  const MDNode *BaseNode,
4914  APInt &Offset,
4915  bool IsNewFormat) {
4916  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4917 
4918  // Scalar nodes have only one possible "field" -- their parent in the access
4919  // hierarchy. Offset must be zero at this point, but our caller is supposed
4920  // to Assert that.
4921  if (BaseNode->getNumOperands() == 2)
4922  return cast<MDNode>(BaseNode->getOperand(1));
4923 
4924  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4925  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4926  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4927  Idx += NumOpsPerField) {
4928  auto *OffsetEntryCI =
4929  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4930  if (OffsetEntryCI->getValue().ugt(Offset)) {
4931  if (Idx == FirstFieldOpNo) {
4932  CheckFailed("Could not find TBAA parent in struct type node", &I,
4933  BaseNode, &Offset);
4934  return nullptr;
4935  }
4936 
4937  unsigned PrevIdx = Idx - NumOpsPerField;
4938  auto *PrevOffsetEntryCI =
4939  mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4940  Offset -= PrevOffsetEntryCI->getValue();
4941  return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4942  }
4943  }
4944 
4945  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4946  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4947  BaseNode->getOperand(LastIdx + 1));
4948  Offset -= LastOffsetEntryCI->getValue();
4949  return cast<MDNode>(BaseNode->getOperand(LastIdx));
4950 }
4951 
4953  if (!Type || Type->getNumOperands() < 3)
4954  return false;
4955 
4956  // In the new format type nodes shall have a reference to the parent type as
4957  // its first operand.
4958  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4959  if (!Parent)
4960  return false;
4961 
4962  return true;
4963 }
4964 
4966  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4967  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4968  isa<AtomicCmpXchgInst>(I),
4969  "This instruction shall not have a TBAA access tag!", &I);
4970 
4971  bool IsStructPathTBAA =
4972  isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4973 
4974  AssertTBAA(
4975  IsStructPathTBAA,
4976  "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4977 
4978  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4979  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4980 
4981  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
4982 
4983  if (IsNewFormat) {
4984  AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
4985  "Access tag metadata must have either 4 or 5 operands", &I, MD);
4986  } else {
4987  AssertTBAA(MD->getNumOperands() < 5,
4988  "Struct tag metadata must have either 3 or 4 operands", &I, MD);
4989  }
4990 
4991  // Check the access size field.
4992  if (IsNewFormat) {
4993  auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4994  MD->getOperand(3));
4995  AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
4996  }
4997 
4998  // Check the immutability flag.
4999  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5000  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5001  auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5002  MD->getOperand(ImmutabilityFlagOpNo));
5003  AssertTBAA(IsImmutableCI,
5004  "Immutability tag on struct tag metadata must be a constant",
5005  &I, MD);
5006  AssertTBAA(
5007  IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5008  "Immutability part of the struct tag metadata must be either 0 or 1",
5009  &I, MD);
5010  }
5011 
5012  AssertTBAA(BaseNode && AccessType,
5013  "Malformed struct tag metadata: base and access-type "
5014  "should be non-null and point to Metadata nodes",
5015  &I, MD, BaseNode, AccessType);
5016 
5017  if (!IsNewFormat) {
5018  AssertTBAA(isValidScalarTBAANode(AccessType),
5019  "Access type node must be a valid scalar type", &I, MD,
5020  AccessType);
5021  }
5022 
5023  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5024  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5025 
5026  APInt Offset = OffsetCI->getValue();
5027  bool SeenAccessTypeInPath = false;
5028 
5029  SmallPtrSet<MDNode *, 4> StructPath;
5030 
5031  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5032  BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5033  IsNewFormat)) {
5034  if (!StructPath.insert(BaseNode).second) {
5035  CheckFailed("Cycle detected in struct path", &I, MD);
5036  return false;
5037  }
5038 
5039  bool Invalid;
5040  unsigned BaseNodeBitWidth;
5041  std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5042  IsNewFormat);
5043 
5044  // If the base node is invalid in itself, then we've already printed all the
5045  // errors we wanted to print.
5046  if (Invalid)
5047  return false;
5048 
5049  SeenAccessTypeInPath |= BaseNode == AccessType;
5050 
5051  if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5052  AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5053  &I, MD, &Offset);
5054 
5055  AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5056  (BaseNodeBitWidth == 0 && Offset == 0) ||
5057  (IsNewFormat && BaseNodeBitWidth == ~0u),
5058  "Access bit-width not the same as description bit-width", &I, MD,
5059  BaseNodeBitWidth, Offset.getBitWidth());
5060 
5061  if (IsNewFormat && SeenAccessTypeInPath)
5062  break;
5063  }
5064 
5065  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5066  &I, MD);
5067  return true;
5068 }
5069 
5070 char VerifierLegacyPass::ID = 0;
5071 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5072 
5073 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5074  return new VerifierLegacyPass(FatalErrors);
5075 }
5076 
5077 AnalysisKey VerifierAnalysis::Key;
5080  Result Res;
5081  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5082  return Res;
5083 }
5084 
5087  return { llvm::verifyFunction(F, &dbgs()), false };
5088 }
5089 
5091  auto Res = AM.getResult<VerifierAnalysis>(M);
5092  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5093  report_fatal_error("Broken module found, compilation aborted!");
5094 
5095  return PreservedAnalyses::all();
5096 }
5097 
5099  auto res = AM.getResult<VerifierAnalysis>(F);
5100  if (res.IRBroken && FatalErrors)
5101  report_fatal_error("Broken function found, compilation aborted!");
5102 
5103  return PreservedAnalyses::all();
5104 }
DIFlags getFlags() const
bool isDeclarationForLinker() const
Definition: GlobalValue.h:519
Metadata * getRawRetainedTypes() const
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:180
static bool isScope(const Metadata *MD)
Definition: Verifier.cpp:848
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:709
static Value * getParentPad(Value *EHPad)
Definition: Verifier.cpp:3335
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:360
bool empty() const
Definition: Function.h:640
bool isDistinct() const
Definition: Metadata.h:941
bool hasLocalLinkage() const
Definition: GlobalValue.h:430
void clear()
Definition: MapVector.h:85
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1171
This instruction extracts a struct member or array element value from an aggregate value...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
unsigned getLine() const
bool isInlineAsm() const
Definition: CallSite.h:305
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:219
bool isSpeculatable() const
Determine if the call has sideeffects.
Definition: Function.h:525
const Value * stripInBoundsOffsets() const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:627
Atomic ordering constants.
Takes the max of the two values, which are required to be integers.
Definition: Module.h:143
StringRef getName() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
bool hasPrivateLinkage() const
Definition: GlobalValue.h:429
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:687
bool isMetadataTy() const
Return true if this is &#39;metadata&#39;.
Definition: Type.h:191
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:115
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:523
unsigned getParamAlignment(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
Definition: CallSite.h:406
const APInt & getUpper() const
Return the upper value for this range.
bool isAtomic() const
Return true if this instruction has an AtomicOrdering of unordered or higher.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.