LLVM  8.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
122  const Module &M;
124  const DataLayout &DL;
126 
127  /// Track the brokenness of the module while recursively visiting.
128  bool Broken = false;
129  /// Broken debug info can be "recovered" from by stripping the debug info.
130  bool BrokenDebugInfo = false;
131  /// Whether to treat broken debug info as an error.
133 
134  explicit VerifierSupport(raw_ostream *OS, const Module &M)
135  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
138  void Write(const Module *M) {
139  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140  }
141 
142  void Write(const Value *V) {
143  if (!V)
144  return;
145  if (isa<Instruction>(V)) {
146  V->print(*OS, MST);
147  *OS << '\n';
148  } else {
149  V->printAsOperand(*OS, true, MST);
150  *OS << '\n';
151  }
152  }
153 
154  void Write(ImmutableCallSite CS) {
155  Write(CS.getInstruction());
156  }
157 
158  void Write(const Metadata *MD) {
159  if (!MD)
160  return;
161  MD->print(*OS, MST, &M);
162  *OS << '\n';
163  }
164 
165  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166  Write(MD.get());
167  }
168 
169  void Write(const NamedMDNode *NMD) {
170  if (!NMD)
171  return;
172  NMD->print(*OS, MST);
173  *OS << '\n';
174  }
175 
176  void Write(Type *T) {
177  if (!T)
178  return;
179  *OS << ' ' << *T;
180  }
181 
182  void Write(const Comdat *C) {
183  if (!C)
184  return;
185  *OS << *C;
186  }
187 
188  void Write(const APInt *AI) {
189  if (!AI)
190  return;
191  *OS << *AI << '\n';
192  }
193 
194  void Write(const unsigned i) { *OS << i << '\n'; }
195 
196  template <typename T> void Write(ArrayRef<T> Vs) {
197  for (const T &V : Vs)
198  Write(V);
199  }
200 
201  template <typename T1, typename... Ts>
202  void WriteTs(const T1 &V1, const Ts &... Vs) {
203  Write(V1);
204  WriteTs(Vs...);
205  }
206 
207  template <typename... Ts> void WriteTs() {}
208 
209 public:
210  /// A check failed, so printout out the condition and the message.
211  ///
212  /// This provides a nice place to put a breakpoint if you want to see why
213  /// something is not correct.
214  void CheckFailed(const Twine &Message) {
215  if (OS)
216  *OS << Message << '\n';
217  Broken = true;
218  }
219 
220  /// A check failed (with values to print).
221  ///
222  /// This calls the Message-only version so that the above is easier to set a
223  /// breakpoint on.
224  template <typename T1, typename... Ts>
225  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226  CheckFailed(Message);
227  if (OS)
228  WriteTs(V1, Vs...);
229  }
230 
231  /// A debug info check failed.
232  void DebugInfoCheckFailed(const Twine &Message) {
233  if (OS)
234  *OS << Message << '\n';
235  Broken |= TreatBrokenDebugInfoAsError;
236  BrokenDebugInfo = true;
237  }
238 
239  /// A debug info check failed (with values to print).
240  template <typename T1, typename... Ts>
241  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242  const Ts &... Vs) {
243  DebugInfoCheckFailed(Message);
244  if (OS)
245  WriteTs(V1, Vs...);
246  }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254  friend class InstVisitor<Verifier>;
255 
256  DominatorTree DT;
257 
258  /// When verifying a basic block, keep track of all of the
259  /// instructions we have seen so far.
260  ///
261  /// This allows us to do efficient dominance checks for the case when an
262  /// instruction has an operand that is an instruction in the same block.
263  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265  /// Keep track of the metadata nodes that have been checked already.
267 
268  /// Keep track which DISubprogram is attached to which function.
269  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271  /// Track all DICompileUnits visited.
273 
274  /// The result type for a landingpad.
275  Type *LandingPadResultTy;
276 
277  /// Whether we've seen a call to @llvm.localescape in this function
278  /// already.
279  bool SawFrameEscape;
280 
281  /// Whether the current function has a DISubprogram attached to it.
282  bool HasDebugInfo = false;
283 
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
287 
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
291 
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304  // Keeps track of duplicate function argument debug info.
306 
307  TBAAVerifier TBAAVerifyHelper;
308 
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313  const Module &M)
314  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315  SawFrameEscape(false), TBAAVerifyHelper(this) {
316  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318 
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321  bool verify(const Function &F) {
322  assert(F.getParent() == &M &&
323  "An instance of this class only works with a specific module!");
324 
325  // First ensure the function is well-enough formed to compute dominance
326  // information, and directly compute a dominance tree. We don't rely on the
327  // pass manager to provide this as it isolates us from a potentially
328  // out-of-date dominator tree and makes it significantly more complex to run
329  // this code outside of a pass manager.
330  // FIXME: It's really gross that we have to cast away constness here.
331  if (!F.empty())
332  DT.recalculate(const_cast<Function &>(F));
333 
334  for (const BasicBlock &BB : F) {
335  if (!BB.empty() && BB.back().isTerminator())
336  continue;
337 
338  if (OS) {
339  *OS << "Basic Block in function '" << F.getName()
340  << "' does not have terminator!\n";
341  BB.printAsOperand(*OS, true, MST);
342  *OS << "\n";
343  }
344  return false;
345  }
346 
347  Broken = false;
348  // FIXME: We strip const here because the inst visitor strips const.
349  visit(const_cast<Function &>(F));
350  verifySiblingFuncletUnwinds();
351  InstsInThisBlock.clear();
352  DebugFnArgs.clear();
353  LandingPadResultTy = nullptr;
354  SawFrameEscape = false;
355  SiblingFuncletInfo.clear();
356 
357  return !Broken;
358  }
359 
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362  Broken = false;
363 
364  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365  for (const Function &F : M)
366  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367  DeoptimizeDeclarations.push_back(&F);
368 
369  // Now that we've visited every function, verify that we never asked to
370  // recover a frame index that wasn't escaped.
371  verifyFrameRecoverIndices();
372  for (const GlobalVariable &GV : M.globals())
373  visitGlobalVariable(GV);
374 
375  for (const GlobalAlias &GA : M.aliases())
376  visitGlobalAlias(GA);
377 
378  for (const NamedMDNode &NMD : M.named_metadata())
379  visitNamedMDNode(NMD);
380 
381  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382  visitComdat(SMEC.getValue());
383 
384  visitModuleFlags(M);
385  visitModuleIdents(M);
386 
387  verifyCompileUnits();
388 
389  verifyDeoptimizeCallingConvs();
390  DISubprogramAttachments.clear();
391  return !Broken;
392  }
393 
394 private:
395  // Verification methods...
396  void visitGlobalValue(const GlobalValue &GV);
397  void visitGlobalVariable(const GlobalVariable &GV);
398  void visitGlobalAlias(const GlobalAlias &GA);
399  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401  const GlobalAlias &A, const Constant &C);
402  void visitNamedMDNode(const NamedMDNode &NMD);
403  void visitMDNode(const MDNode &MD);
404  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406  void visitComdat(const Comdat &C);
407  void visitModuleIdents(const Module &M);
408  void visitModuleFlags(const Module &M);
409  void visitModuleFlag(const MDNode *Op,
411  SmallVectorImpl<const MDNode *> &Requirements);
412  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
413  void visitFunction(const Function &F);
414  void visitBasicBlock(BasicBlock &BB);
415  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
416  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
417 
418  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
419 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420 #include "llvm/IR/Metadata.def"
421  void visitDIScope(const DIScope &N);
422  void visitDIVariable(const DIVariable &N);
423  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
424  void visitDITemplateParameter(const DITemplateParameter &N);
425 
426  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
427 
428  // InstVisitor overrides...
430  void visit(Instruction &I);
431 
432  void visitTruncInst(TruncInst &I);
433  void visitZExtInst(ZExtInst &I);
434  void visitSExtInst(SExtInst &I);
435  void visitFPTruncInst(FPTruncInst &I);
436  void visitFPExtInst(FPExtInst &I);
437  void visitFPToUIInst(FPToUIInst &I);
438  void visitFPToSIInst(FPToSIInst &I);
439  void visitUIToFPInst(UIToFPInst &I);
440  void visitSIToFPInst(SIToFPInst &I);
441  void visitIntToPtrInst(IntToPtrInst &I);
442  void visitPtrToIntInst(PtrToIntInst &I);
443  void visitBitCastInst(BitCastInst &I);
444  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
445  void visitPHINode(PHINode &PN);
446  void visitBinaryOperator(BinaryOperator &B);
447  void visitICmpInst(ICmpInst &IC);
448  void visitFCmpInst(FCmpInst &FC);
449  void visitExtractElementInst(ExtractElementInst &EI);
450  void visitInsertElementInst(InsertElementInst &EI);
451  void visitShuffleVectorInst(ShuffleVectorInst &EI);
452  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
453  void visitCallInst(CallInst &CI);
454  void visitInvokeInst(InvokeInst &II);
455  void visitGetElementPtrInst(GetElementPtrInst &GEP);
456  void visitLoadInst(LoadInst &LI);
457  void visitStoreInst(StoreInst &SI);
458  void verifyDominatesUse(Instruction &I, unsigned i);
459  void visitInstruction(Instruction &I);
460  void visitTerminatorInst(TerminatorInst &I);
461  void visitBranchInst(BranchInst &BI);
462  void visitReturnInst(ReturnInst &RI);
463  void visitSwitchInst(SwitchInst &SI);
464  void visitIndirectBrInst(IndirectBrInst &BI);
465  void visitSelectInst(SelectInst &SI);
466  void visitUserOp1(Instruction &I);
467  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
468  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
469  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
470  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
471  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
472  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
473  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
474  void visitFenceInst(FenceInst &FI);
475  void visitAllocaInst(AllocaInst &AI);
476  void visitExtractValueInst(ExtractValueInst &EVI);
477  void visitInsertValueInst(InsertValueInst &IVI);
478  void visitEHPadPredecessors(Instruction &I);
479  void visitLandingPadInst(LandingPadInst &LPI);
480  void visitResumeInst(ResumeInst &RI);
481  void visitCatchPadInst(CatchPadInst &CPI);
482  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
483  void visitCleanupPadInst(CleanupPadInst &CPI);
484  void visitFuncletPadInst(FuncletPadInst &FPI);
485  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
486  void visitCleanupReturnInst(CleanupReturnInst &CRI);
487 
488  void verifyCallSite(CallSite CS);
489  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
490  void verifySwiftErrorValue(const Value *SwiftErrorVal);
491  void verifyMustTailCall(CallInst &CI);
492  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
493  unsigned ArgNo, std::string &Suffix);
494  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
495  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
496  const Value *V);
497  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
498  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
499  const Value *V);
500  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
501 
502  void visitConstantExprsRecursively(const Constant *EntryC);
503  void visitConstantExpr(const ConstantExpr *CE);
504  void verifyStatepoint(ImmutableCallSite CS);
505  void verifyFrameRecoverIndices();
506  void verifySiblingFuncletUnwinds();
507 
508  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
509  template <typename ValueOrMetadata>
510  void verifyFragmentExpression(const DIVariable &V,
512  ValueOrMetadata *Desc);
513  void verifyFnArgs(const DbgVariableIntrinsic &I);
514 
515  /// Module-level debug info verification...
516  void verifyCompileUnits();
517 
518  /// Module-level verification that all @llvm.experimental.deoptimize
519  /// declarations share the same calling convention.
520  void verifyDeoptimizeCallingConvs();
521 };
522 
523 } // end anonymous namespace
524 
525 /// We know that cond should be true, if not print an error message.
526 #define Assert(C, ...) \
527  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
528 
529 /// We know that a debug info condition should be true, if not print
530 /// an error message.
531 #define AssertDI(C, ...) \
532  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
533 
534 void Verifier::visit(Instruction &I) {
535  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
536  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
538 }
539 
540 // Helper to recursively iterate over indirect users. By
541 // returning false, the callback can ask to stop recursing
542 // further.
543 static void forEachUser(const Value *User,
545  llvm::function_ref<bool(const Value *)> Callback) {
546  if (!Visited.insert(User).second)
547  return;
548  for (const Value *TheNextUser : User->materialized_users())
549  if (Callback(TheNextUser))
550  forEachUser(TheNextUser, Visited, Callback);
551 }
552 
553 void Verifier::visitGlobalValue(const GlobalValue &GV) {
555  "Global is external, but doesn't have external or weak linkage!", &GV);
556 
558  "huge alignment values are unsupported", &GV);
559  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
560  "Only global variables can have appending linkage!", &GV);
561 
562  if (GV.hasAppendingLinkage()) {
563  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
564  Assert(GVar && GVar->getValueType()->isArrayTy(),
565  "Only global arrays can have appending linkage!", GVar);
566  }
567 
568  if (GV.isDeclarationForLinker())
569  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
570 
571  if (GV.hasDLLImportStorageClass()) {
572  Assert(!GV.isDSOLocal(),
573  "GlobalValue with DLLImport Storage is dso_local!", &GV);
574 
575  Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
577  "Global is marked as dllimport, but not external", &GV);
578  }
579 
580  if (GV.hasLocalLinkage())
581  Assert(GV.isDSOLocal(),
582  "GlobalValue with private or internal linkage must be dso_local!",
583  &GV);
584 
585  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
586  Assert(GV.isDSOLocal(),
587  "GlobalValue with non default visibility must be dso_local!", &GV);
588 
589  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
590  if (const Instruction *I = dyn_cast<Instruction>(V)) {
591  if (!I->getParent() || !I->getParent()->getParent())
592  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
593  I);
594  else if (I->getParent()->getParent()->getParent() != &M)
595  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
596  I->getParent()->getParent(),
597  I->getParent()->getParent()->getParent());
598  return false;
599  } else if (const Function *F = dyn_cast<Function>(V)) {
600  if (F->getParent() != &M)
601  CheckFailed("Global is used by function in a different module", &GV, &M,
602  F, F->getParent());
603  return false;
604  }
605  return true;
606  });
607 }
608 
609 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
610  if (GV.hasInitializer()) {
611  Assert(GV.getInitializer()->getType() == GV.getValueType(),
612  "Global variable initializer type does not match global "
613  "variable type!",
614  &GV);
615  // If the global has common linkage, it must have a zero initializer and
616  // cannot be constant.
617  if (GV.hasCommonLinkage()) {
619  "'common' global must have a zero initializer!", &GV);
620  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
621  &GV);
622  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
623  }
624  }
625 
626  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
627  GV.getName() == "llvm.global_dtors")) {
629  "invalid linkage for intrinsic global variable", &GV);
630  // Don't worry about emitting an error for it not being an array,
631  // visitGlobalValue will complain on appending non-array.
632  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
633  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
634  PointerType *FuncPtrTy =
636  // FIXME: Reject the 2-field form in LLVM 4.0.
637  Assert(STy &&
638  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
639  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
640  STy->getTypeAtIndex(1) == FuncPtrTy,
641  "wrong type for intrinsic global variable", &GV);
642  if (STy->getNumElements() == 3) {
643  Type *ETy = STy->getTypeAtIndex(2);
644  Assert(ETy->isPointerTy() &&
645  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
646  "wrong type for intrinsic global variable", &GV);
647  }
648  }
649  }
650 
651  if (GV.hasName() && (GV.getName() == "llvm.used" ||
652  GV.getName() == "llvm.compiler.used")) {
654  "invalid linkage for intrinsic global variable", &GV);
655  Type *GVType = GV.getValueType();
656  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
657  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
658  Assert(PTy, "wrong type for intrinsic global variable", &GV);
659  if (GV.hasInitializer()) {
660  const Constant *Init = GV.getInitializer();
661  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
662  Assert(InitArray, "wrong initalizer for intrinsic global variable",
663  Init);
664  for (Value *Op : InitArray->operands()) {
665  Value *V = Op->stripPointerCastsNoFollowAliases();
666  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
667  isa<GlobalAlias>(V),
668  "invalid llvm.used member", V);
669  Assert(V->hasName(), "members of llvm.used must be named", V);
670  }
671  }
672  }
673  }
674 
675  // Visit any debug info attachments.
678  for (auto *MD : MDs) {
679  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
680  visitDIGlobalVariableExpression(*GVE);
681  else
682  AssertDI(false, "!dbg attachment of global variable must be a "
683  "DIGlobalVariableExpression");
684  }
685 
686  if (!GV.hasInitializer()) {
687  visitGlobalValue(GV);
688  return;
689  }
690 
691  // Walk any aggregate initializers looking for bitcasts between address spaces
692  visitConstantExprsRecursively(GV.getInitializer());
693 
694  visitGlobalValue(GV);
695 }
696 
697 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
699  Visited.insert(&GA);
700  visitAliaseeSubExpr(Visited, GA, C);
701 }
702 
703 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
704  const GlobalAlias &GA, const Constant &C) {
705  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
706  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
707  &GA);
708 
709  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
710  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
711 
712  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
713  &GA);
714  } else {
715  // Only continue verifying subexpressions of GlobalAliases.
716  // Do not recurse into global initializers.
717  return;
718  }
719  }
720 
721  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
722  visitConstantExprsRecursively(CE);
723 
724  for (const Use &U : C.operands()) {
725  Value *V = &*U;
726  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
727  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
728  else if (const auto *C2 = dyn_cast<Constant>(V))
729  visitAliaseeSubExpr(Visited, GA, *C2);
730  }
731 }
732 
733 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
735  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
736  "weak_odr, or external linkage!",
737  &GA);
738  const Constant *Aliasee = GA.getAliasee();
739  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
740  Assert(GA.getType() == Aliasee->getType(),
741  "Alias and aliasee types should match!", &GA);
742 
743  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
744  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
745 
746  visitAliaseeSubExpr(GA, *Aliasee);
747 
748  visitGlobalValue(GA);
749 }
750 
751 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
752  // There used to be various other llvm.dbg.* nodes, but we don't support
753  // upgrading them and we want to reserve the namespace for future uses.
754  if (NMD.getName().startswith("llvm.dbg."))
755  AssertDI(NMD.getName() == "llvm.dbg.cu",
756  "unrecognized named metadata node in the llvm.dbg namespace",
757  &NMD);
758  for (const MDNode *MD : NMD.operands()) {
759  if (NMD.getName() == "llvm.dbg.cu")
760  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
761 
762  if (!MD)
763  continue;
764 
765  visitMDNode(*MD);
766  }
767 }
768 
769 void Verifier::visitMDNode(const MDNode &MD) {
770  // Only visit each node once. Metadata can be mutually recursive, so this
771  // avoids infinite recursion here, as well as being an optimization.
772  if (!MDNodes.insert(&MD).second)
773  return;
774 
775  switch (MD.getMetadataID()) {
776  default:
777  llvm_unreachable("Invalid MDNode subclass");
778  case Metadata::MDTupleKind:
779  break;
780 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
781  case Metadata::CLASS##Kind: \
782  visit##CLASS(cast<CLASS>(MD)); \
783  break;
784 #include "llvm/IR/Metadata.def"
785  }
786 
787  for (const Metadata *Op : MD.operands()) {
788  if (!Op)
789  continue;
790  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
791  &MD, Op);
792  if (auto *N = dyn_cast<MDNode>(Op)) {
793  visitMDNode(*N);
794  continue;
795  }
796  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
797  visitValueAsMetadata(*V, nullptr);
798  continue;
799  }
800  }
801 
802  // Check these last, so we diagnose problems in operands first.
803  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
804  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
805 }
806 
807 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
808  Assert(MD.getValue(), "Expected valid value", &MD);
809  Assert(!MD.getValue()->getType()->isMetadataTy(),
810  "Unexpected metadata round-trip through values", &MD, MD.getValue());
811 
812  auto *L = dyn_cast<LocalAsMetadata>(&MD);
813  if (!L)
814  return;
815 
816  Assert(F, "function-local metadata used outside a function", L);
817 
818  // If this was an instruction, bb, or argument, verify that it is in the
819  // function that we expect.
820  Function *ActualF = nullptr;
821  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
822  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
823  ActualF = I->getParent()->getParent();
824  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
825  ActualF = BB->getParent();
826  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
827  ActualF = A->getParent();
828  assert(ActualF && "Unimplemented function local metadata case!");
829 
830  Assert(ActualF == F, "function-local metadata used in wrong function", L);
831 }
832 
833 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
834  Metadata *MD = MDV.getMetadata();
835  if (auto *N = dyn_cast<MDNode>(MD)) {
836  visitMDNode(*N);
837  return;
838  }
839 
840  // Only visit each node once. Metadata can be mutually recursive, so this
841  // avoids infinite recursion here, as well as being an optimization.
842  if (!MDNodes.insert(MD).second)
843  return;
844 
845  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
846  visitValueAsMetadata(*V, F);
847 }
848 
849 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
850 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
851 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
852 
853 void Verifier::visitDILocation(const DILocation &N) {
854  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
855  "location requires a valid scope", &N, N.getRawScope());
856  if (auto *IA = N.getRawInlinedAt())
857  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
858  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
859  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
860 }
861 
862 void Verifier::visitGenericDINode(const GenericDINode &N) {
863  AssertDI(N.getTag(), "invalid tag", &N);
864 }
865 
866 void Verifier::visitDIScope(const DIScope &N) {
867  if (auto *F = N.getRawFile())
868  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
869 }
870 
871 void Verifier::visitDISubrange(const DISubrange &N) {
872  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
873  auto Count = N.getCount();
874  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
875  &N);
876  AssertDI(!Count.is<ConstantInt*>() ||
877  Count.get<ConstantInt*>()->getSExtValue() >= -1,
878  "invalid subrange count", &N);
879 }
880 
881 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
882  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
883 }
884 
885 void Verifier::visitDIBasicType(const DIBasicType &N) {
886  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
887  N.getTag() == dwarf::DW_TAG_unspecified_type,
888  "invalid tag", &N);
889  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
890  "has conflicting flags", &N);
891 }
892 
893 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
894  // Common scope checks.
895  visitDIScope(N);
896 
897  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
898  N.getTag() == dwarf::DW_TAG_pointer_type ||
899  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
900  N.getTag() == dwarf::DW_TAG_reference_type ||
901  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
902  N.getTag() == dwarf::DW_TAG_const_type ||
903  N.getTag() == dwarf::DW_TAG_volatile_type ||
904  N.getTag() == dwarf::DW_TAG_restrict_type ||
905  N.getTag() == dwarf::DW_TAG_atomic_type ||
906  N.getTag() == dwarf::DW_TAG_member ||
907  N.getTag() == dwarf::DW_TAG_inheritance ||
908  N.getTag() == dwarf::DW_TAG_friend,
909  "invalid tag", &N);
910  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
911  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
912  N.getRawExtraData());
913  }
914 
915  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
916  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
917  N.getRawBaseType());
918 
919  if (N.getDWARFAddressSpace()) {
920  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
921  N.getTag() == dwarf::DW_TAG_reference_type,
922  "DWARF address space only applies to pointer or reference types",
923  &N);
924  }
925 }
926 
927 /// Detect mutually exclusive flags.
928 static bool hasConflictingReferenceFlags(unsigned Flags) {
929  return ((Flags & DINode::FlagLValueReference) &&
930  (Flags & DINode::FlagRValueReference)) ||
931  ((Flags & DINode::FlagTypePassByValue) &&
932  (Flags & DINode::FlagTypePassByReference));
933 }
934 
935 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
936  auto *Params = dyn_cast<MDTuple>(&RawParams);
937  AssertDI(Params, "invalid template params", &N, &RawParams);
938  for (Metadata *Op : Params->operands()) {
939  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
940  &N, Params, Op);
941  }
942 }
943 
944 void Verifier::visitDICompositeType(const DICompositeType &N) {
945  // Common scope checks.
946  visitDIScope(N);
947 
948  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
949  N.getTag() == dwarf::DW_TAG_structure_type ||
950  N.getTag() == dwarf::DW_TAG_union_type ||
951  N.getTag() == dwarf::DW_TAG_enumeration_type ||
952  N.getTag() == dwarf::DW_TAG_class_type ||
953  N.getTag() == dwarf::DW_TAG_variant_part,
954  "invalid tag", &N);
955 
956  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
957  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
958  N.getRawBaseType());
959 
960  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
961  "invalid composite elements", &N, N.getRawElements());
962  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
963  N.getRawVTableHolder());
965  "invalid reference flags", &N);
966 
967  if (N.isVector()) {
968  const DINodeArray Elements = N.getElements();
969  AssertDI(Elements.size() == 1 &&
970  Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
971  "invalid vector, expected one element of type subrange", &N);
972  }
973 
974  if (auto *Params = N.getRawTemplateParams())
975  visitTemplateParams(N, *Params);
976 
977  if (N.getTag() == dwarf::DW_TAG_class_type ||
978  N.getTag() == dwarf::DW_TAG_union_type) {
979  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
980  "class/union requires a filename", &N, N.getFile());
981  }
982 
983  if (auto *D = N.getRawDiscriminator()) {
984  AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
985  "discriminator can only appear on variant part");
986  }
987 }
988 
989 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
990  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
991  if (auto *Types = N.getRawTypeArray()) {
992  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
993  for (Metadata *Ty : N.getTypeArray()->operands()) {
994  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
995  }
996  }
998  "invalid reference flags", &N);
999 }
1000 
1001 void Verifier::visitDIFile(const DIFile &N) {
1002  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1003  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1004  if (Checksum) {
1005  AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1006  "invalid checksum kind", &N);
1007  size_t Size;
1008  switch (Checksum->Kind) {
1009  case DIFile::CSK_MD5:
1010  Size = 32;
1011  break;
1012  case DIFile::CSK_SHA1:
1013  Size = 40;
1014  break;
1015  }
1016  AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1017  AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1018  "invalid checksum", &N);
1019  }
1020 }
1021 
1022 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1023  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1024  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1025 
1026  // Don't bother verifying the compilation directory or producer string
1027  // as those could be empty.
1028  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1029  N.getRawFile());
1030  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1031  N.getFile());
1032 
1034  "invalid emission kind", &N);
1035 
1036  if (auto *Array = N.getRawEnumTypes()) {
1037  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1038  for (Metadata *Op : N.getEnumTypes()->operands()) {
1039  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1040  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1041  "invalid enum type", &N, N.getEnumTypes(), Op);
1042  }
1043  }
1044  if (auto *Array = N.getRawRetainedTypes()) {
1045  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1046  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1047  AssertDI(Op && (isa<DIType>(Op) ||
1048  (isa<DISubprogram>(Op) &&
1049  !cast<DISubprogram>(Op)->isDefinition())),
1050  "invalid retained type", &N, Op);
1051  }
1052  }
1053  if (auto *Array = N.getRawGlobalVariables()) {
1054  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1055  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1056  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1057  "invalid global variable ref", &N, Op);
1058  }
1059  }
1060  if (auto *Array = N.getRawImportedEntities()) {
1061  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1062  for (Metadata *Op : N.getImportedEntities()->operands()) {
1063  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1064  &N, Op);
1065  }
1066  }
1067  if (auto *Array = N.getRawMacros()) {
1068  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1069  for (Metadata *Op : N.getMacros()->operands()) {
1070  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1071  }
1072  }
1073  CUVisited.insert(&N);
1074 }
1075 
1076 void Verifier::visitDISubprogram(const DISubprogram &N) {
1077  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1078  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1079  if (auto *F = N.getRawFile())
1080  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1081  else
1082  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1083  if (auto *T = N.getRawType())
1084  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1085  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1086  N.getRawContainingType());
1087  if (auto *Params = N.getRawTemplateParams())
1088  visitTemplateParams(N, *Params);
1089  if (auto *S = N.getRawDeclaration())
1090  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1091  "invalid subprogram declaration", &N, S);
1092  if (auto *RawNode = N.getRawRetainedNodes()) {
1093  auto *Node = dyn_cast<MDTuple>(RawNode);
1094  AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1095  for (Metadata *Op : Node->operands()) {
1096  AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1097  "invalid retained nodes, expected DILocalVariable or DILabel",
1098  &N, Node, Op);
1099  }
1100  }
1101  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1102  "invalid reference flags", &N);
1103 
1104  auto *Unit = N.getRawUnit();
1105  if (N.isDefinition()) {
1106  // Subprogram definitions (not part of the type hierarchy).
1107  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1108  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1109  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1110  } else {
1111  // Subprogram declarations (part of the type hierarchy).
1112  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1113  }
1114 
1115  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1116  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1117  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1118  for (Metadata *Op : ThrownTypes->operands())
1119  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1120  Op);
1121  }
1122 }
1123 
1124 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1125  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1126  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1127  "invalid local scope", &N, N.getRawScope());
1128  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1129  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1130 }
1131 
1132 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1133  visitDILexicalBlockBase(N);
1134 
1135  AssertDI(N.getLine() || !N.getColumn(),
1136  "cannot have column info without line info", &N);
1137 }
1138 
1139 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1140  visitDILexicalBlockBase(N);
1141 }
1142 
1143 void Verifier::visitDINamespace(const DINamespace &N) {
1144  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1145  if (auto *S = N.getRawScope())
1146  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1147 }
1148 
1149 void Verifier::visitDIMacro(const DIMacro &N) {
1152  "invalid macinfo type", &N);
1153  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1154  if (!N.getValue().empty()) {
1155  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1156  }
1157 }
1158 
1159 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1161  "invalid macinfo type", &N);
1162  if (auto *F = N.getRawFile())
1163  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1164 
1165  if (auto *Array = N.getRawElements()) {
1166  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1167  for (Metadata *Op : N.getElements()->operands()) {
1168  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1169  }
1170  }
1171 }
1172 
1173 void Verifier::visitDIModule(const DIModule &N) {
1174  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1175  AssertDI(!N.getName().empty(), "anonymous module", &N);
1176 }
1177 
1178 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1179  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1180 }
1181 
1182 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1183  visitDITemplateParameter(N);
1184 
1185  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1186  &N);
1187 }
1188 
1189 void Verifier::visitDITemplateValueParameter(
1190  const DITemplateValueParameter &N) {
1191  visitDITemplateParameter(N);
1192 
1193  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1194  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1195  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1196  "invalid tag", &N);
1197 }
1198 
1199 void Verifier::visitDIVariable(const DIVariable &N) {
1200  if (auto *S = N.getRawScope())
1201  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1202  if (auto *F = N.getRawFile())
1203  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1204 }
1205 
1206 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1207  // Checks common to all variables.
1208  visitDIVariable(N);
1209 
1210  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1211  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1212  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1213  AssertDI(N.getType(), "missing global variable type", &N);
1214  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1215  AssertDI(isa<DIDerivedType>(Member),
1216  "invalid static data member declaration", &N, Member);
1217  }
1218 }
1219 
1220 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1221  // Checks common to all variables.
1222  visitDIVariable(N);
1223 
1224  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1225  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1226  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1227  "local variable requires a valid scope", &N, N.getRawScope());
1228 }
1229 
1230 void Verifier::visitDILabel(const DILabel &N) {
1231  if (auto *S = N.getRawScope())
1232  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1233  if (auto *F = N.getRawFile())
1234  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1235 
1236  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1237  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1238  "label requires a valid scope", &N, N.getRawScope());
1239 }
1240 
1241 void Verifier::visitDIExpression(const DIExpression &N) {
1242  AssertDI(N.isValid(), "invalid expression", &N);
1243 }
1244 
1245 void Verifier::visitDIGlobalVariableExpression(
1246  const DIGlobalVariableExpression &GVE) {
1247  AssertDI(GVE.getVariable(), "missing variable");
1248  if (auto *Var = GVE.getVariable())
1249  visitDIGlobalVariable(*Var);
1250  if (auto *Expr = GVE.getExpression()) {
1251  visitDIExpression(*Expr);
1252  if (auto Fragment = Expr->getFragmentInfo())
1253  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1254  }
1255 }
1256 
1257 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1258  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1259  if (auto *T = N.getRawType())
1260  AssertDI(isType(T), "invalid type ref", &N, T);
1261  if (auto *F = N.getRawFile())
1262  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1263 }
1264 
1265 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1266  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1267  N.getTag() == dwarf::DW_TAG_imported_declaration,
1268  "invalid tag", &N);
1269  if (auto *S = N.getRawScope())
1270  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1271  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1272  N.getRawEntity());
1273 }
1274 
1275 void Verifier::visitComdat(const Comdat &C) {
1276  // The Module is invalid if the GlobalValue has private linkage. Entities
1277  // with private linkage don't have entries in the symbol table.
1278  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1279  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1280  GV);
1281 }
1282 
1283 void Verifier::visitModuleIdents(const Module &M) {
1284  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1285  if (!Idents)
1286  return;
1287 
1288  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1289  // Scan each llvm.ident entry and make sure that this requirement is met.
1290  for (const MDNode *N : Idents->operands()) {
1291  Assert(N->getNumOperands() == 1,
1292  "incorrect number of operands in llvm.ident metadata", N);
1293  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1294  ("invalid value for llvm.ident metadata entry operand"
1295  "(the operand should be a string)"),
1296  N->getOperand(0));
1297  }
1298 }
1299 
1300 void Verifier::visitModuleFlags(const Module &M) {
1301  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1302  if (!Flags) return;
1303 
1304  // Scan each flag, and track the flags and requirements.
1306  SmallVector<const MDNode*, 16> Requirements;
1307  for (const MDNode *MDN : Flags->operands())
1308  visitModuleFlag(MDN, SeenIDs, Requirements);
1309 
1310  // Validate that the requirements in the module are valid.
1311  for (const MDNode *Requirement : Requirements) {
1312  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1313  const Metadata *ReqValue = Requirement->getOperand(1);
1314 
1315  const MDNode *Op = SeenIDs.lookup(Flag);
1316  if (!Op) {
1317  CheckFailed("invalid requirement on flag, flag is not present in module",
1318  Flag);
1319  continue;
1320  }
1321 
1322  if (Op->getOperand(2) != ReqValue) {
1323  CheckFailed(("invalid requirement on flag, "
1324  "flag does not have the required value"),
1325  Flag);
1326  continue;
1327  }
1328  }
1329 }
1330 
1331 void
1332 Verifier::visitModuleFlag(const MDNode *Op,
1334  SmallVectorImpl<const MDNode *> &Requirements) {
1335  // Each module flag should have three arguments, the merge behavior (a
1336  // constant int), the flag ID (an MDString), and the value.
1337  Assert(Op->getNumOperands() == 3,
1338  "incorrect number of operands in module flag", Op);
1340  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1341  Assert(
1342  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1343  "invalid behavior operand in module flag (expected constant integer)",
1344  Op->getOperand(0));
1345  Assert(false,
1346  "invalid behavior operand in module flag (unexpected constant)",
1347  Op->getOperand(0));
1348  }
1349  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1350  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1351  Op->getOperand(1));
1352 
1353  // Sanity check the values for behaviors with additional requirements.
1354  switch (MFB) {
1355  case Module::Error:
1356  case Module::Warning:
1357  case Module::Override:
1358  // These behavior types accept any value.
1359  break;
1360 
1361  case Module::Max: {
1362  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1363  "invalid value for 'max' module flag (expected constant integer)",
1364  Op->getOperand(2));
1365  break;
1366  }
1367 
1368  case Module::Require: {
1369  // The value should itself be an MDNode with two operands, a flag ID (an
1370  // MDString), and a value.
1371  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1372  Assert(Value && Value->getNumOperands() == 2,
1373  "invalid value for 'require' module flag (expected metadata pair)",
1374  Op->getOperand(2));
1375  Assert(isa<MDString>(Value->getOperand(0)),
1376  ("invalid value for 'require' module flag "
1377  "(first value operand should be a string)"),
1378  Value->getOperand(0));
1379 
1380  // Append it to the list of requirements, to check once all module flags are
1381  // scanned.
1382  Requirements.push_back(Value);
1383  break;
1384  }
1385 
1386  case Module::Append:
1387  case Module::AppendUnique: {
1388  // These behavior types require the operand be an MDNode.
1389  Assert(isa<MDNode>(Op->getOperand(2)),
1390  "invalid value for 'append'-type module flag "
1391  "(expected a metadata node)",
1392  Op->getOperand(2));
1393  break;
1394  }
1395  }
1396 
1397  // Unless this is a "requires" flag, check the ID is unique.
1398  if (MFB != Module::Require) {
1399  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1400  Assert(Inserted,
1401  "module flag identifiers must be unique (or of 'require' type)", ID);
1402  }
1403 
1404  if (ID->getString() == "wchar_size") {
1406  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1407  Assert(Value, "wchar_size metadata requires constant integer argument");
1408  }
1409 
1410  if (ID->getString() == "Linker Options") {
1411  // If the llvm.linker.options named metadata exists, we assume that the
1412  // bitcode reader has upgraded the module flag. Otherwise the flag might
1413  // have been created by a client directly.
1414  Assert(M.getNamedMetadata("llvm.linker.options"),
1415  "'Linker Options' named metadata no longer supported");
1416  }
1417 
1418  if (ID->getString() == "CG Profile") {
1419  for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1420  visitModuleFlagCGProfileEntry(MDO);
1421  }
1422 }
1423 
1424 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1425  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1426  if (!FuncMDO)
1427  return;
1428  auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1429  Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1430  FuncMDO);
1431  };
1432  auto Node = dyn_cast_or_null<MDNode>(MDO);
1433  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1434  CheckFunction(Node->getOperand(0));
1435  CheckFunction(Node->getOperand(1));
1436  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1437  Assert(Count && Count->getType()->isIntegerTy(),
1438  "expected an integer constant", Node->getOperand(2));
1439 }
1440 
1441 /// Return true if this attribute kind only applies to functions.
1443  switch (Kind) {
1444  case Attribute::NoReturn:
1445  case Attribute::NoCfCheck:
1446  case Attribute::NoUnwind:
1447  case Attribute::NoInline:
1448  case Attribute::AlwaysInline:
1449  case Attribute::OptimizeForSize:
1450  case Attribute::StackProtect:
1451  case Attribute::StackProtectReq:
1452  case Attribute::StackProtectStrong:
1453  case Attribute::SafeStack:
1454  case Attribute::ShadowCallStack:
1455  case Attribute::NoRedZone:
1456  case Attribute::NoImplicitFloat:
1457  case Attribute::Naked:
1458  case Attribute::InlineHint:
1459  case Attribute::StackAlignment:
1460  case Attribute::UWTable:
1461  case Attribute::NonLazyBind:
1462  case Attribute::ReturnsTwice:
1463  case Attribute::SanitizeAddress:
1464  case Attribute::SanitizeHWAddress:
1465  case Attribute::SanitizeThread:
1466  case Attribute::SanitizeMemory:
1467  case Attribute::MinSize:
1468  case Attribute::NoDuplicate:
1469  case Attribute::Builtin:
1470  case Attribute::NoBuiltin:
1471  case Attribute::Cold:
1472  case Attribute::OptForFuzzing:
1473  case Attribute::OptimizeNone:
1474  case Attribute::JumpTable:
1475  case Attribute::Convergent:
1476  case Attribute::ArgMemOnly:
1477  case Attribute::NoRecurse:
1478  case Attribute::InaccessibleMemOnly:
1479  case Attribute::InaccessibleMemOrArgMemOnly:
1480  case Attribute::AllocSize:
1481  case Attribute::SpeculativeLoadHardening:
1482  case Attribute::Speculatable:
1483  case Attribute::StrictFP:
1484  return true;
1485  default:
1486  break;
1487  }
1488  return false;
1489 }
1490 
1491 /// Return true if this is a function attribute that can also appear on
1492 /// arguments.
1494  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1495  Kind == Attribute::ReadNone;
1496 }
1497 
1498 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1499  const Value *V) {
1500  for (Attribute A : Attrs) {
1501  if (A.isStringAttribute())
1502  continue;
1503 
1504  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1505  if (!IsFunction) {
1506  CheckFailed("Attribute '" + A.getAsString() +
1507  "' only applies to functions!",
1508  V);
1509  return;
1510  }
1511  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1512  CheckFailed("Attribute '" + A.getAsString() +
1513  "' does not apply to functions!",
1514  V);
1515  return;
1516  }
1517  }
1518 }
1519 
1520 // VerifyParameterAttrs - Check the given attributes for an argument or return
1521 // value of the specified type. The value V is printed in error messages.
1522 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1523  const Value *V) {
1524  if (!Attrs.hasAttributes())
1525  return;
1526 
1527  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1528 
1529  // Check for mutually incompatible attributes. Only inreg is compatible with
1530  // sret.
1531  unsigned AttrCount = 0;
1532  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1533  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1534  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1535  Attrs.hasAttribute(Attribute::InReg);
1536  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1537  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1538  "and 'sret' are incompatible!",
1539  V);
1540 
1541  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1542  Attrs.hasAttribute(Attribute::ReadOnly)),
1543  "Attributes "
1544  "'inalloca and readonly' are incompatible!",
1545  V);
1546 
1547  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1548  Attrs.hasAttribute(Attribute::Returned)),
1549  "Attributes "
1550  "'sret and returned' are incompatible!",
1551  V);
1552 
1553  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1554  Attrs.hasAttribute(Attribute::SExt)),
1555  "Attributes "
1556  "'zeroext and signext' are incompatible!",
1557  V);
1558 
1559  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1560  Attrs.hasAttribute(Attribute::ReadOnly)),
1561  "Attributes "
1562  "'readnone and readonly' are incompatible!",
1563  V);
1564 
1565  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1566  Attrs.hasAttribute(Attribute::WriteOnly)),
1567  "Attributes "
1568  "'readnone and writeonly' are incompatible!",
1569  V);
1570 
1571  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1572  Attrs.hasAttribute(Attribute::WriteOnly)),
1573  "Attributes "
1574  "'readonly and writeonly' are incompatible!",
1575  V);
1576 
1577  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1578  Attrs.hasAttribute(Attribute::AlwaysInline)),
1579  "Attributes "
1580  "'noinline and alwaysinline' are incompatible!",
1581  V);
1582 
1583  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1584  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1585  "Wrong types for attribute: " +
1586  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1587  V);
1588 
1589  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1590  SmallPtrSet<Type*, 4> Visited;
1591  if (!PTy->getElementType()->isSized(&Visited)) {
1592  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1593  !Attrs.hasAttribute(Attribute::InAlloca),
1594  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1595  V);
1596  }
1597  if (!isa<PointerType>(PTy->getElementType()))
1598  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1599  "Attribute 'swifterror' only applies to parameters "
1600  "with pointer to pointer type!",
1601  V);
1602  } else {
1603  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1604  "Attribute 'byval' only applies to parameters with pointer type!",
1605  V);
1606  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1607  "Attribute 'swifterror' only applies to parameters "
1608  "with pointer type!",
1609  V);
1610  }
1611 }
1612 
1613 // Check parameter attributes against a function type.
1614 // The value V is printed in error messages.
1615 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1616  const Value *V) {
1617  if (Attrs.isEmpty())
1618  return;
1619 
1620  bool SawNest = false;
1621  bool SawReturned = false;
1622  bool SawSRet = false;
1623  bool SawSwiftSelf = false;
1624  bool SawSwiftError = false;
1625 
1626  // Verify return value attributes.
1627  AttributeSet RetAttrs = Attrs.getRetAttributes();
1628  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1629  !RetAttrs.hasAttribute(Attribute::Nest) &&
1630  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1631  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1632  !RetAttrs.hasAttribute(Attribute::Returned) &&
1633  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1634  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1635  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1636  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1637  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1638  "values!",
1639  V);
1640  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1641  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1642  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1643  "Attribute '" + RetAttrs.getAsString() +
1644  "' does not apply to function returns",
1645  V);
1646  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1647 
1648  // Verify parameter attributes.
1649  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1650  Type *Ty = FT->getParamType(i);
1651  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1652 
1653  verifyParameterAttrs(ArgAttrs, Ty, V);
1654 
1655  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1656  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1657  SawNest = true;
1658  }
1659 
1660  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1661  Assert(!SawReturned, "More than one parameter has attribute returned!",
1662  V);
1664  "Incompatible argument and return types for 'returned' attribute",
1665  V);
1666  SawReturned = true;
1667  }
1668 
1669  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1670  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1671  Assert(i == 0 || i == 1,
1672  "Attribute 'sret' is not on first or second parameter!", V);
1673  SawSRet = true;
1674  }
1675 
1676  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1677  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1678  SawSwiftSelf = true;
1679  }
1680 
1681  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1682  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1683  V);
1684  SawSwiftError = true;
1685  }
1686 
1687  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1688  Assert(i == FT->getNumParams() - 1,
1689  "inalloca isn't on the last parameter!", V);
1690  }
1691  }
1692 
1694  return;
1695 
1696  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1697 
1698  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1699  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1700  "Attributes 'readnone and readonly' are incompatible!", V);
1701 
1702  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1703  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1704  "Attributes 'readnone and writeonly' are incompatible!", V);
1705 
1706  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1707  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1708  "Attributes 'readonly and writeonly' are incompatible!", V);
1709 
1710  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1711  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1712  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1713  "incompatible!",
1714  V);
1715 
1716  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1717  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1718  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1719 
1720  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1721  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1722  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1723 
1724  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1725  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1726  "Attribute 'optnone' requires 'noinline'!", V);
1727 
1728  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1729  "Attributes 'optsize and optnone' are incompatible!", V);
1730 
1731  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1732  "Attributes 'minsize and optnone' are incompatible!", V);
1733  }
1734 
1735  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1736  const GlobalValue *GV = cast<GlobalValue>(V);
1738  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1739  }
1740 
1741  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1742  std::pair<unsigned, Optional<unsigned>> Args =
1744 
1745  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1746  if (ParamNo >= FT->getNumParams()) {
1747  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1748  return false;
1749  }
1750 
1751  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1752  CheckFailed("'allocsize' " + Name +
1753  " argument must refer to an integer parameter",
1754  V);
1755  return false;
1756  }
1757 
1758  return true;
1759  };
1760 
1761  if (!CheckParam("element size", Args.first))
1762  return;
1763 
1764  if (Args.second && !CheckParam("number of elements", *Args.second))
1765  return;
1766  }
1767 }
1768 
1769 void Verifier::verifyFunctionMetadata(
1770  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1771  for (const auto &Pair : MDs) {
1772  if (Pair.first == LLVMContext::MD_prof) {
1773  MDNode *MD = Pair.second;
1774  Assert(MD->getNumOperands() >= 2,
1775  "!prof annotations should have no less than 2 operands", MD);
1776 
1777  // Check first operand.
1778  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1779  MD);
1780  Assert(isa<MDString>(MD->getOperand(0)),
1781  "expected string with name of the !prof annotation", MD);
1782  MDString *MDS = cast<MDString>(MD->getOperand(0));
1783  StringRef ProfName = MDS->getString();
1784  Assert(ProfName.equals("function_entry_count") ||
1785  ProfName.equals("synthetic_function_entry_count"),
1786  "first operand should be 'function_entry_count'"
1787  " or 'synthetic_function_entry_count'",
1788  MD);
1789 
1790  // Check second operand.
1791  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1792  MD);
1793  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1794  "expected integer argument to function_entry_count", MD);
1795  }
1796  }
1797 }
1798 
1799 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1800  if (!ConstantExprVisited.insert(EntryC).second)
1801  return;
1802 
1804  Stack.push_back(EntryC);
1805 
1806  while (!Stack.empty()) {
1807  const Constant *C = Stack.pop_back_val();
1808 
1809  // Check this constant expression.
1810  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1811  visitConstantExpr(CE);
1812 
1813  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1814  // Global Values get visited separately, but we do need to make sure
1815  // that the global value is in the correct module
1816  Assert(GV->getParent() == &M, "Referencing global in another module!",
1817  EntryC, &M, GV, GV->getParent());
1818  continue;
1819  }
1820 
1821  // Visit all sub-expressions.
1822  for (const Use &U : C->operands()) {
1823  const auto *OpC = dyn_cast<Constant>(U);
1824  if (!OpC)
1825  continue;
1826  if (!ConstantExprVisited.insert(OpC).second)
1827  continue;
1828  Stack.push_back(OpC);
1829  }
1830  }
1831 }
1832 
1833 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1834  if (CE->getOpcode() == Instruction::BitCast)
1835  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1836  CE->getType()),
1837  "Invalid bitcast", CE);
1838 
1839  if (CE->getOpcode() == Instruction::IntToPtr ||
1840  CE->getOpcode() == Instruction::PtrToInt) {
1841  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1842  ? CE->getType()
1843  : CE->getOperand(0)->getType();
1844  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1845  ? "inttoptr not supported for non-integral pointers"
1846  : "ptrtoint not supported for non-integral pointers";
1847  Assert(
1848  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1849  Msg);
1850  }
1851 }
1852 
1853 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1854  // There shouldn't be more attribute sets than there are parameters plus the
1855  // function and return value.
1856  return Attrs.getNumAttrSets() <= Params + 2;
1857 }
1858 
1859 /// Verify that statepoint intrinsic is well formed.
1860 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1861  assert(CS.getCalledFunction() &&
1863  Intrinsic::experimental_gc_statepoint);
1864 
1865  const Instruction &CI = *CS.getInstruction();
1866 
1867  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1868  !CS.onlyAccessesArgMemory(),
1869  "gc.statepoint must read and write all memory to preserve "
1870  "reordering restrictions required by safepoint semantics",
1871  &CI);
1872 
1873  const Value *IDV = CS.getArgument(0);
1874  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1875  &CI);
1876 
1877  const Value *NumPatchBytesV = CS.getArgument(1);
1878  Assert(isa<ConstantInt>(NumPatchBytesV),
1879  "gc.statepoint number of patchable bytes must be a constant integer",
1880  &CI);
1881  const int64_t NumPatchBytes =
1882  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1883  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1884  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1885  "positive",
1886  &CI);
1887 
1888  const Value *Target = CS.getArgument(2);
1889  auto *PT = dyn_cast<PointerType>(Target->getType());
1890  Assert(PT && PT->getElementType()->isFunctionTy(),
1891  "gc.statepoint callee must be of function pointer type", &CI, Target);
1892  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1893 
1894  const Value *NumCallArgsV = CS.getArgument(3);
1895  Assert(isa<ConstantInt>(NumCallArgsV),
1896  "gc.statepoint number of arguments to underlying call "
1897  "must be constant integer",
1898  &CI);
1899  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1900  Assert(NumCallArgs >= 0,
1901  "gc.statepoint number of arguments to underlying call "
1902  "must be positive",
1903  &CI);
1904  const int NumParams = (int)TargetFuncType->getNumParams();
1905  if (TargetFuncType->isVarArg()) {
1906  Assert(NumCallArgs >= NumParams,
1907  "gc.statepoint mismatch in number of vararg call args", &CI);
1908 
1909  // TODO: Remove this limitation
1910  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1911  "gc.statepoint doesn't support wrapping non-void "
1912  "vararg functions yet",
1913  &CI);
1914  } else
1915  Assert(NumCallArgs == NumParams,
1916  "gc.statepoint mismatch in number of call args", &CI);
1917 
1918  const Value *FlagsV = CS.getArgument(4);
1919  Assert(isa<ConstantInt>(FlagsV),
1920  "gc.statepoint flags must be constant integer", &CI);
1921  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1922  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1923  "unknown flag used in gc.statepoint flags argument", &CI);
1924 
1925  // Verify that the types of the call parameter arguments match
1926  // the type of the wrapped callee.
1927  for (int i = 0; i < NumParams; i++) {
1928  Type *ParamType = TargetFuncType->getParamType(i);
1929  Type *ArgType = CS.getArgument(5 + i)->getType();
1930  Assert(ArgType == ParamType,
1931  "gc.statepoint call argument does not match wrapped "
1932  "function type",
1933  &CI);
1934  }
1935 
1936  const int EndCallArgsInx = 4 + NumCallArgs;
1937 
1938  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1939  Assert(isa<ConstantInt>(NumTransitionArgsV),
1940  "gc.statepoint number of transition arguments "
1941  "must be constant integer",
1942  &CI);
1943  const int NumTransitionArgs =
1944  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1945  Assert(NumTransitionArgs >= 0,
1946  "gc.statepoint number of transition arguments must be positive", &CI);
1947  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1948 
1949  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1950  Assert(isa<ConstantInt>(NumDeoptArgsV),
1951  "gc.statepoint number of deoptimization arguments "
1952  "must be constant integer",
1953  &CI);
1954  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1955  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1956  "must be positive",
1957  &CI);
1958 
1959  const int ExpectedNumArgs =
1960  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1961  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1962  "gc.statepoint too few arguments according to length fields", &CI);
1963 
1964  // Check that the only uses of this gc.statepoint are gc.result or
1965  // gc.relocate calls which are tied to this statepoint and thus part
1966  // of the same statepoint sequence
1967  for (const User *U : CI.users()) {
1968  const CallInst *Call = dyn_cast<const CallInst>(U);
1969  Assert(Call, "illegal use of statepoint token", &CI, U);
1970  if (!Call) continue;
1971  Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1972  "gc.result or gc.relocate are the only value uses "
1973  "of a gc.statepoint",
1974  &CI, U);
1975  if (isa<GCResultInst>(Call)) {
1976  Assert(Call->getArgOperand(0) == &CI,
1977  "gc.result connected to wrong gc.statepoint", &CI, Call);
1978  } else if (isa<GCRelocateInst>(Call)) {
1979  Assert(Call->getArgOperand(0) == &CI,
1980  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1981  }
1982  }
1983 
1984  // Note: It is legal for a single derived pointer to be listed multiple
1985  // times. It's non-optimal, but it is legal. It can also happen after
1986  // insertion if we strip a bitcast away.
1987  // Note: It is really tempting to check that each base is relocated and
1988  // that a derived pointer is never reused as a base pointer. This turns
1989  // out to be problematic since optimizations run after safepoint insertion
1990  // can recognize equality properties that the insertion logic doesn't know
1991  // about. See example statepoint.ll in the verifier subdirectory
1992 }
1993 
1994 void Verifier::verifyFrameRecoverIndices() {
1995  for (auto &Counts : FrameEscapeInfo) {
1996  Function *F = Counts.first;
1997  unsigned EscapedObjectCount = Counts.second.first;
1998  unsigned MaxRecoveredIndex = Counts.second.second;
1999  Assert(MaxRecoveredIndex <= EscapedObjectCount,
2000  "all indices passed to llvm.localrecover must be less than the "
2001  "number of arguments passed ot llvm.localescape in the parent "
2002  "function",
2003  F);
2004  }
2005 }
2006 
2008  BasicBlock *UnwindDest;
2009  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2010  UnwindDest = II->getUnwindDest();
2011  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2012  UnwindDest = CSI->getUnwindDest();
2013  else
2014  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2015  return UnwindDest->getFirstNonPHI();
2016 }
2017 
2018 void Verifier::verifySiblingFuncletUnwinds() {
2021  for (const auto &Pair : SiblingFuncletInfo) {
2022  Instruction *PredPad = Pair.first;
2023  if (Visited.count(PredPad))
2024  continue;
2025  Active.insert(PredPad);
2026  TerminatorInst *Terminator = Pair.second;
2027  do {
2028  Instruction *SuccPad = getSuccPad(Terminator);
2029  if (Active.count(SuccPad)) {
2030  // Found a cycle; report error
2031  Instruction *CyclePad = SuccPad;
2032  SmallVector<Instruction *, 8> CycleNodes;
2033  do {
2034  CycleNodes.push_back(CyclePad);
2035  TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
2036  if (CycleTerminator != CyclePad)
2037  CycleNodes.push_back(CycleTerminator);
2038  CyclePad = getSuccPad(CycleTerminator);
2039  } while (CyclePad != SuccPad);
2040  Assert(false, "EH pads can't handle each other's exceptions",
2041  ArrayRef<Instruction *>(CycleNodes));
2042  }
2043  // Don't re-walk a node we've already checked
2044  if (!Visited.insert(SuccPad).second)
2045  break;
2046  // Walk to this successor if it has a map entry.
2047  PredPad = SuccPad;
2048  auto TermI = SiblingFuncletInfo.find(PredPad);
2049  if (TermI == SiblingFuncletInfo.end())
2050  break;
2051  Terminator = TermI->second;
2052  Active.insert(PredPad);
2053  } while (true);
2054  // Each node only has one successor, so we've walked all the active
2055  // nodes' successors.
2056  Active.clear();
2057  }
2058 }
2059 
2060 // visitFunction - Verify that a function is ok.
2061 //
2062 void Verifier::visitFunction(const Function &F) {
2063  visitGlobalValue(F);
2064 
2065  // Check function arguments.
2066  FunctionType *FT = F.getFunctionType();
2067  unsigned NumArgs = F.arg_size();
2068 
2069  Assert(&Context == &F.getContext(),
2070  "Function context does not match Module context!", &F);
2071 
2072  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2073  Assert(FT->getNumParams() == NumArgs,
2074  "# formal arguments must match # of arguments for function type!", &F,
2075  FT);
2076  Assert(F.getReturnType()->isFirstClassType() ||
2077  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2078  "Functions cannot return aggregate values!", &F);
2079 
2080  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2081  "Invalid struct return type!", &F);
2082 
2083  AttributeList Attrs = F.getAttributes();
2084 
2085  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2086  "Attribute after last parameter!", &F);
2087 
2088  // Check function attributes.
2089  verifyFunctionAttrs(FT, Attrs, &F);
2090 
2091  // On function declarations/definitions, we do not support the builtin
2092  // attribute. We do not check this in VerifyFunctionAttrs since that is
2093  // checking for Attributes that can/can not ever be on functions.
2094  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2095  "Attribute 'builtin' can only be applied to a callsite.", &F);
2096 
2097  // Check that this function meets the restrictions on this calling convention.
2098  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2099  // restrictions can be lifted.
2100  switch (F.getCallingConv()) {
2101  default:
2102  case CallingConv::C:
2103  break;
2106  Assert(F.getReturnType()->isVoidTy(),
2107  "Calling convention requires void return type", &F);
2114  Assert(!F.hasStructRetAttr(),
2115  "Calling convention does not allow sret", &F);
2117  case CallingConv::Fast:
2118  case CallingConv::Cold:
2122  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2123  "perfect forwarding!",
2124  &F);
2125  break;
2126  }
2127 
2128  bool isLLVMdotName = F.getName().size() >= 5 &&
2129  F.getName().substr(0, 5) == "llvm.";
2130 
2131  // Check that the argument values match the function type for this function...
2132  unsigned i = 0;
2133  for (const Argument &Arg : F.args()) {
2134  Assert(Arg.getType() == FT->getParamType(i),
2135  "Argument value does not match function argument type!", &Arg,
2136  FT->getParamType(i));
2138  "Function arguments must have first-class types!", &Arg);
2139  if (!isLLVMdotName) {
2141  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2142  Assert(!Arg.getType()->isTokenTy(),
2143  "Function takes token but isn't an intrinsic", &Arg, &F);
2144  }
2145 
2146  // Check that swifterror argument is only used by loads and stores.
2147  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2148  verifySwiftErrorValue(&Arg);
2149  }
2150  ++i;
2151  }
2152 
2153  if (!isLLVMdotName)
2154  Assert(!F.getReturnType()->isTokenTy(),
2155  "Functions returns a token but isn't an intrinsic", &F);
2156 
2157  // Get the function metadata attachments.
2159  F.getAllMetadata(MDs);
2160  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2161  verifyFunctionMetadata(MDs);
2162 
2163  // Check validity of the personality function
2164  if (F.hasPersonalityFn()) {
2165  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2166  if (Per)
2167  Assert(Per->getParent() == F.getParent(),
2168  "Referencing personality function in another module!",
2169  &F, F.getParent(), Per, Per->getParent());
2170  }
2171 
2172  if (F.isMaterializable()) {
2173  // Function has a body somewhere we can't see.
2174  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2175  MDs.empty() ? nullptr : MDs.front().second);
2176  } else if (F.isDeclaration()) {
2177  for (const auto &I : MDs) {
2178  AssertDI(I.first != LLVMContext::MD_dbg,
2179  "function declaration may not have a !dbg attachment", &F);
2180  Assert(I.first != LLVMContext::MD_prof,
2181  "function declaration may not have a !prof attachment", &F);
2182 
2183  // Verify the metadata itself.
2184  visitMDNode(*I.second);
2185  }
2186  Assert(!F.hasPersonalityFn(),
2187  "Function declaration shouldn't have a personality routine", &F);
2188  } else {
2189  // Verify that this function (which has a body) is not named "llvm.*". It
2190  // is not legal to define intrinsics.
2191  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2192 
2193  // Check the entry node
2194  const BasicBlock *Entry = &F.getEntryBlock();
2195  Assert(pred_empty(Entry),
2196  "Entry block to function must not have predecessors!", Entry);
2197 
2198  // The address of the entry block cannot be taken, unless it is dead.
2199  if (Entry->hasAddressTaken()) {
2200  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2201  "blockaddress may not be used with the entry block!", Entry);
2202  }
2203 
2204  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2205  // Visit metadata attachments.
2206  for (const auto &I : MDs) {
2207  // Verify that the attachment is legal.
2208  switch (I.first) {
2209  default:
2210  break;
2211  case LLVMContext::MD_dbg: {
2212  ++NumDebugAttachments;
2213  AssertDI(NumDebugAttachments == 1,
2214  "function must have a single !dbg attachment", &F, I.second);
2215  AssertDI(isa<DISubprogram>(I.second),
2216  "function !dbg attachment must be a subprogram", &F, I.second);
2217  auto *SP = cast<DISubprogram>(I.second);
2218  const Function *&AttachedTo = DISubprogramAttachments[SP];
2219  AssertDI(!AttachedTo || AttachedTo == &F,
2220  "DISubprogram attached to more than one function", SP, &F);
2221  AttachedTo = &F;
2222  break;
2223  }
2224  case LLVMContext::MD_prof:
2225  ++NumProfAttachments;
2226  Assert(NumProfAttachments == 1,
2227  "function must have a single !prof attachment", &F, I.second);
2228  break;
2229  }
2230 
2231  // Verify the metadata itself.
2232  visitMDNode(*I.second);
2233  }
2234  }
2235 
2236  // If this function is actually an intrinsic, verify that it is only used in
2237  // direct call/invokes, never having its "address taken".
2238  // Only do this if the module is materialized, otherwise we don't have all the
2239  // uses.
2240  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2241  const User *U;
2242  if (F.hasAddressTaken(&U))
2243  Assert(false, "Invalid user of intrinsic instruction!", U);
2244  }
2245 
2246  auto *N = F.getSubprogram();
2247  HasDebugInfo = (N != nullptr);
2248  if (!HasDebugInfo)
2249  return;
2250 
2251  // Check that all !dbg attachments lead to back to N (or, at least, another
2252  // subprogram that describes the same function).
2253  //
2254  // FIXME: Check this incrementally while visiting !dbg attachments.
2255  // FIXME: Only check when N is the canonical subprogram for F.
2257  for (auto &BB : F)
2258  for (auto &I : BB) {
2259  // Be careful about using DILocation here since we might be dealing with
2260  // broken code (this is the Verifier after all).
2261  DILocation *DL =
2262  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2263  if (!DL)
2264  continue;
2265  if (!Seen.insert(DL).second)
2266  continue;
2267 
2268  Metadata *Parent = DL->getRawScope();
2269  AssertDI(Parent && isa<DILocalScope>(Parent),
2270  "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2271  Parent);
2272  DILocalScope *Scope = DL->getInlinedAtScope();
2273  if (Scope && !Seen.insert(Scope).second)
2274  continue;
2275 
2276  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2277 
2278  // Scope and SP could be the same MDNode and we don't want to skip
2279  // validation in that case
2280  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2281  continue;
2282 
2283  // FIXME: Once N is canonical, check "SP == &N".
2284  AssertDI(SP->describes(&F),
2285  "!dbg attachment points at wrong subprogram for function", N, &F,
2286  &I, DL, Scope, SP);
2287  }
2288 }
2289 
2290 // verifyBasicBlock - Verify that a basic block is well formed...
2291 //
2292 void Verifier::visitBasicBlock(BasicBlock &BB) {
2293  InstsInThisBlock.clear();
2294 
2295  // Ensure that basic blocks have terminators!
2296  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2297 
2298  // Check constraints that this basic block imposes on all of the PHI nodes in
2299  // it.
2300  if (isa<PHINode>(BB.front())) {
2303  llvm::sort(Preds.begin(), Preds.end());
2304  for (const PHINode &PN : BB.phis()) {
2305  // Ensure that PHI nodes have at least one entry!
2306  Assert(PN.getNumIncomingValues() != 0,
2307  "PHI nodes must have at least one entry. If the block is dead, "
2308  "the PHI should be removed!",
2309  &PN);
2310  Assert(PN.getNumIncomingValues() == Preds.size(),
2311  "PHINode should have one entry for each predecessor of its "
2312  "parent basic block!",
2313  &PN);
2314 
2315  // Get and sort all incoming values in the PHI node...
2316  Values.clear();
2317  Values.reserve(PN.getNumIncomingValues());
2318  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2319  Values.push_back(
2320  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2321  llvm::sort(Values.begin(), Values.end());
2322 
2323  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2324  // Check to make sure that if there is more than one entry for a
2325  // particular basic block in this PHI node, that the incoming values are
2326  // all identical.
2327  //
2328  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2329  Values[i].second == Values[i - 1].second,
2330  "PHI node has multiple entries for the same basic block with "
2331  "different incoming values!",
2332  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2333 
2334  // Check to make sure that the predecessors and PHI node entries are
2335  // matched up.
2336  Assert(Values[i].first == Preds[i],
2337  "PHI node entries do not match predecessors!", &PN,
2338  Values[i].first, Preds[i]);
2339  }
2340  }
2341  }
2342 
2343  // Check that all instructions have their parent pointers set up correctly.
2344  for (auto &I : BB)
2345  {
2346  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2347  }
2348 }
2349 
2350 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2351  // Ensure that terminators only exist at the end of the basic block.
2352  Assert(&I == I.getParent()->getTerminator(),
2353  "Terminator found in the middle of a basic block!", I.getParent());
2354  visitInstruction(I);
2355 }
2356 
2357 void Verifier::visitBranchInst(BranchInst &BI) {
2358  if (BI.isConditional()) {
2359  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2360  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2361  }
2362  visitTerminatorInst(BI);
2363 }
2364 
2365 void Verifier::visitReturnInst(ReturnInst &RI) {
2366  Function *F = RI.getParent()->getParent();
2367  unsigned N = RI.getNumOperands();
2368  if (F->getReturnType()->isVoidTy())
2369  Assert(N == 0,
2370  "Found return instr that returns non-void in Function of void "
2371  "return type!",
2372  &RI, F->getReturnType());
2373  else
2374  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2375  "Function return type does not match operand "
2376  "type of return inst!",
2377  &RI, F->getReturnType());
2378 
2379  // Check to make sure that the return value has necessary properties for
2380  // terminators...
2381  visitTerminatorInst(RI);
2382 }
2383 
2384 void Verifier::visitSwitchInst(SwitchInst &SI) {
2385  // Check to make sure that all of the constants in the switch instruction
2386  // have the same type as the switched-on value.
2387  Type *SwitchTy = SI.getCondition()->getType();
2389  for (auto &Case : SI.cases()) {
2390  Assert(Case.getCaseValue()->getType() == SwitchTy,
2391  "Switch constants must all be same type as switch value!", &SI);
2392  Assert(Constants.insert(Case.getCaseValue()).second,
2393  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2394  }
2395 
2396  visitTerminatorInst(SI);
2397 }
2398 
2399 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2400  Assert(BI.getAddress()->getType()->isPointerTy(),
2401  "Indirectbr operand must have pointer type!", &BI);
2402  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2403  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2404  "Indirectbr destinations must all have pointer type!", &BI);
2405 
2406  visitTerminatorInst(BI);
2407 }
2408 
2409 void Verifier::visitSelectInst(SelectInst &SI) {
2411  SI.getOperand(2)),
2412  "Invalid operands for select instruction!", &SI);
2413 
2414  Assert(SI.getTrueValue()->getType() == SI.getType(),
2415  "Select values must have same type as select instruction!", &SI);
2416  visitInstruction(SI);
2417 }
2418 
2419 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2420 /// a pass, if any exist, it's an error.
2421 ///
2422 void Verifier::visitUserOp1(Instruction &I) {
2423  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2424 }
2425 
2426 void Verifier::visitTruncInst(TruncInst &I) {
2427  // Get the source and destination types
2428  Type *SrcTy = I.getOperand(0)->getType();
2429  Type *DestTy = I.getType();
2430 
2431  // Get the size of the types in bits, we'll need this later
2432  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2433  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2434 
2435  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2436  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2437  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2438  "trunc source and destination must both be a vector or neither", &I);
2439  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2440 
2441  visitInstruction(I);
2442 }
2443 
2444 void Verifier::visitZExtInst(ZExtInst &I) {
2445  // Get the source and destination types
2446  Type *SrcTy = I.getOperand(0)->getType();
2447  Type *DestTy = I.getType();
2448 
2449  // Get the size of the types in bits, we'll need this later
2450  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2451  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2452  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2453  "zext source and destination must both be a vector or neither", &I);
2454  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2455  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2456 
2457  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2458 
2459  visitInstruction(I);
2460 }
2461 
2462 void Verifier::visitSExtInst(SExtInst &I) {
2463  // Get the source and destination types
2464  Type *SrcTy = I.getOperand(0)->getType();
2465  Type *DestTy = I.getType();
2466 
2467  // Get the size of the types in bits, we'll need this later
2468  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2469  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2470 
2471  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2472  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2473  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2474  "sext source and destination must both be a vector or neither", &I);
2475  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2476 
2477  visitInstruction(I);
2478 }
2479 
2480 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2481  // Get the source and destination types
2482  Type *SrcTy = I.getOperand(0)->getType();
2483  Type *DestTy = I.getType();
2484  // Get the size of the types in bits, we'll need this later
2485  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2486  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2487 
2488  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2489  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2490  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2491  "fptrunc source and destination must both be a vector or neither", &I);
2492  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2493 
2494  visitInstruction(I);
2495 }
2496 
2497 void Verifier::visitFPExtInst(FPExtInst &I) {
2498  // Get the source and destination types
2499  Type *SrcTy = I.getOperand(0)->getType();
2500  Type *DestTy = I.getType();
2501 
2502  // Get the size of the types in bits, we'll need this later
2503  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2504  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2505 
2506  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2507  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2508  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2509  "fpext source and destination must both be a vector or neither", &I);
2510  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2511 
2512  visitInstruction(I);
2513 }
2514 
2515 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2516  // Get the source and destination types
2517  Type *SrcTy = I.getOperand(0)->getType();
2518  Type *DestTy = I.getType();
2519 
2520  bool SrcVec = SrcTy->isVectorTy();
2521  bool DstVec = DestTy->isVectorTy();
2522 
2523  Assert(SrcVec == DstVec,
2524  "UIToFP source and dest must both be vector or scalar", &I);
2525  Assert(SrcTy->isIntOrIntVectorTy(),
2526  "UIToFP source must be integer or integer vector", &I);
2527  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2528  &I);
2529 
2530  if (SrcVec && DstVec)
2531  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2532  cast<VectorType>(DestTy)->getNumElements(),
2533  "UIToFP source and dest vector length mismatch", &I);
2534 
2535  visitInstruction(I);
2536 }
2537 
2538 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2539  // Get the source and destination types
2540  Type *SrcTy = I.getOperand(0)->getType();
2541  Type *DestTy = I.getType();
2542 
2543  bool SrcVec = SrcTy->isVectorTy();
2544  bool DstVec = DestTy->isVectorTy();
2545 
2546  Assert(SrcVec == DstVec,
2547  "SIToFP source and dest must both be vector or scalar", &I);
2548  Assert(SrcTy->isIntOrIntVectorTy(),
2549  "SIToFP source must be integer or integer vector", &I);
2550  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2551  &I);
2552 
2553  if (SrcVec && DstVec)
2554  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2555  cast<VectorType>(DestTy)->getNumElements(),
2556  "SIToFP source and dest vector length mismatch", &I);
2557 
2558  visitInstruction(I);
2559 }
2560 
2561 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2562  // Get the source and destination types
2563  Type *SrcTy = I.getOperand(0)->getType();
2564  Type *DestTy = I.getType();
2565 
2566  bool SrcVec = SrcTy->isVectorTy();
2567  bool DstVec = DestTy->isVectorTy();
2568 
2569  Assert(SrcVec == DstVec,
2570  "FPToUI source and dest must both be vector or scalar", &I);
2571  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2572  &I);
2573  Assert(DestTy->isIntOrIntVectorTy(),
2574  "FPToUI result must be integer or integer vector", &I);
2575 
2576  if (SrcVec && DstVec)
2577  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2578  cast<VectorType>(DestTy)->getNumElements(),
2579  "FPToUI source and dest vector length mismatch", &I);
2580 
2581  visitInstruction(I);
2582 }
2583 
2584 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2585  // Get the source and destination types
2586  Type *SrcTy = I.getOperand(0)->getType();
2587  Type *DestTy = I.getType();
2588 
2589  bool SrcVec = SrcTy->isVectorTy();
2590  bool DstVec = DestTy->isVectorTy();
2591 
2592  Assert(SrcVec == DstVec,
2593  "FPToSI source and dest must both be vector or scalar", &I);
2594  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2595  &I);
2596  Assert(DestTy->isIntOrIntVectorTy(),
2597  "FPToSI result must be integer or integer vector", &I);
2598 
2599  if (SrcVec && DstVec)
2600  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2601  cast<VectorType>(DestTy)->getNumElements(),
2602  "FPToSI source and dest vector length mismatch", &I);
2603 
2604  visitInstruction(I);
2605 }
2606 
2607 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2608  // Get the source and destination types
2609  Type *SrcTy = I.getOperand(0)->getType();
2610  Type *DestTy = I.getType();
2611 
2612  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2613 
2614  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2616  "ptrtoint not supported for non-integral pointers");
2617 
2618  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2619  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2620  &I);
2621 
2622  if (SrcTy->isVectorTy()) {
2623  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2624  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2625  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2626  "PtrToInt Vector width mismatch", &I);
2627  }
2628 
2629  visitInstruction(I);
2630 }
2631 
2632 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2633  // Get the source and destination types
2634  Type *SrcTy = I.getOperand(0)->getType();
2635  Type *DestTy = I.getType();
2636 
2637  Assert(SrcTy->isIntOrIntVectorTy(),
2638  "IntToPtr source must be an integral", &I);
2639  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2640 
2641  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2643  "inttoptr not supported for non-integral pointers");
2644 
2645  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2646  &I);
2647  if (SrcTy->isVectorTy()) {
2648  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2649  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2650  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2651  "IntToPtr Vector width mismatch", &I);
2652  }
2653  visitInstruction(I);
2654 }
2655 
2656 void Verifier::visitBitCastInst(BitCastInst &I) {
2657  Assert(
2658  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2659  "Invalid bitcast", &I);
2660  visitInstruction(I);
2661 }
2662 
2663 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2664  Type *SrcTy = I.getOperand(0)->getType();
2665  Type *DestTy = I.getType();
2666 
2667  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2668  &I);
2669  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2670  &I);
2672  "AddrSpaceCast must be between different address spaces", &I);
2673  if (SrcTy->isVectorTy())
2674  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2675  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2676  visitInstruction(I);
2677 }
2678 
2679 /// visitPHINode - Ensure that a PHI node is well formed.
2680 ///
2681 void Verifier::visitPHINode(PHINode &PN) {
2682  // Ensure that the PHI nodes are all grouped together at the top of the block.
2683  // This can be tested by checking whether the instruction before this is
2684  // either nonexistent (because this is begin()) or is a PHI node. If not,
2685  // then there is some other instruction before a PHI.
2686  Assert(&PN == &PN.getParent()->front() ||
2687  isa<PHINode>(--BasicBlock::iterator(&PN)),
2688  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2689 
2690  // Check that a PHI doesn't yield a Token.
2691  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2692 
2693  // Check that all of the values of the PHI node have the same type as the
2694  // result, and that the incoming blocks are really basic blocks.
2695  for (Value *IncValue : PN.incoming_values()) {
2696  Assert(PN.getType() == IncValue->getType(),
2697  "PHI node operands are not the same type as the result!", &PN);
2698  }
2699 
2700  // All other PHI node constraints are checked in the visitBasicBlock method.
2701 
2702  visitInstruction(PN);
2703 }
2704 
2705 void Verifier::verifyCallSite(CallSite CS) {
2706  Instruction *I = CS.getInstruction();
2707 
2709  "Called function must be a pointer!", I);
2710  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2711 
2712  Assert(FPTy->getElementType()->isFunctionTy(),
2713  "Called function is not pointer to function type!", I);
2714 
2715  Assert(FPTy->getElementType() == CS.getFunctionType(),
2716  "Called function is not the same type as the call!", I);
2717 
2718  FunctionType *FTy = CS.getFunctionType();
2719 
2720  // Verify that the correct number of arguments are being passed
2721  if (FTy->isVarArg())
2722  Assert(CS.arg_size() >= FTy->getNumParams(),
2723  "Called function requires more parameters than were provided!", I);
2724  else
2725  Assert(CS.arg_size() == FTy->getNumParams(),
2726  "Incorrect number of arguments passed to called function!", I);
2727 
2728  // Verify that all arguments to the call match the function type.
2729  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2730  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2731  "Call parameter type does not match function signature!",
2732  CS.getArgument(i), FTy->getParamType(i), I);
2733 
2734  AttributeList Attrs = CS.getAttributes();
2735 
2736  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2737  "Attribute after last parameter!", I);
2738 
2739  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2740  // Don't allow speculatable on call sites, unless the underlying function
2741  // declaration is also speculatable.
2742  Function *Callee
2744  Assert(Callee && Callee->isSpeculatable(),
2745  "speculatable attribute may not apply to call sites", I);
2746  }
2747 
2748  // Verify call attributes.
2749  verifyFunctionAttrs(FTy, Attrs, I);
2750 
2751  // Conservatively check the inalloca argument.
2752  // We have a bug if we can find that there is an underlying alloca without
2753  // inalloca.
2754  if (CS.hasInAllocaArgument()) {
2755  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2756  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2757  Assert(AI->isUsedWithInAlloca(),
2758  "inalloca argument for call has mismatched alloca", AI, I);
2759  }
2760 
2761  // For each argument of the callsite, if it has the swifterror argument,
2762  // make sure the underlying alloca/parameter it comes from has a swifterror as
2763  // well.
2764  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2765  if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2766  Value *SwiftErrorArg = CS.getArgument(i);
2767  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2768  Assert(AI->isSwiftError(),
2769  "swifterror argument for call has mismatched alloca", AI, I);
2770  continue;
2771  }
2772  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2773  Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2774  Assert(ArgI->hasSwiftErrorAttr(),
2775  "swifterror argument for call has mismatched parameter", ArgI, I);
2776  }
2777 
2778  if (FTy->isVarArg()) {
2779  // FIXME? is 'nest' even legal here?
2780  bool SawNest = false;
2781  bool SawReturned = false;
2782 
2783  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2784  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2785  SawNest = true;
2786  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2787  SawReturned = true;
2788  }
2789 
2790  // Check attributes on the varargs part.
2791  for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2792  Type *Ty = CS.getArgument(Idx)->getType();
2793  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2794  verifyParameterAttrs(ArgAttrs, Ty, I);
2795 
2796  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2797  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2798  SawNest = true;
2799  }
2800 
2801  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2802  Assert(!SawReturned, "More than one parameter has attribute returned!",
2803  I);
2804  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2805  "Incompatible argument and return types for 'returned' "
2806  "attribute",
2807  I);
2808  SawReturned = true;
2809  }
2810 
2811  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2812  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2813 
2814  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2815  Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2816  I);
2817  }
2818  }
2819 
2820  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2821  if (CS.getCalledFunction() == nullptr ||
2822  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2823  for (Type *ParamTy : FTy->params()) {
2824  Assert(!ParamTy->isMetadataTy(),
2825  "Function has metadata parameter but isn't an intrinsic", I);
2826  Assert(!ParamTy->isTokenTy(),
2827  "Function has token parameter but isn't an intrinsic", I);
2828  }
2829  }
2830 
2831  // Verify that indirect calls don't return tokens.
2832  if (CS.getCalledFunction() == nullptr)
2833  Assert(!FTy->getReturnType()->isTokenTy(),
2834  "Return type cannot be token for indirect call!");
2835 
2836  if (Function *F = CS.getCalledFunction())
2838  visitIntrinsicCallSite(ID, CS);
2839 
2840  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2841  // at most one "gc-transition" operand bundle.
2842  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2843  FoundGCTransitionBundle = false;
2844  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2846  uint32_t Tag = BU.getTagID();
2847  if (Tag == LLVMContext::OB_deopt) {
2848  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2849  FoundDeoptBundle = true;
2850  } else if (Tag == LLVMContext::OB_gc_transition) {
2851  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2852  I);
2853  FoundGCTransitionBundle = true;
2854  } else if (Tag == LLVMContext::OB_funclet) {
2855  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2856  FoundFuncletBundle = true;
2857  Assert(BU.Inputs.size() == 1,
2858  "Expected exactly one funclet bundle operand", I);
2859  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2860  "Funclet bundle operands should correspond to a FuncletPadInst",
2861  I);
2862  }
2863  }
2864 
2865  // Verify that each inlinable callsite of a debug-info-bearing function in a
2866  // debug-info-bearing function has a debug location attached to it. Failure to
2867  // do so causes assertion failures when the inliner sets up inline scope info.
2868  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2870  AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2871  "debug info must have a !dbg location",
2872  I);
2873 
2874  visitInstruction(*I);
2875 }
2876 
2877 /// Two types are "congruent" if they are identical, or if they are both pointer
2878 /// types with different pointee types and the same address space.
2879 static bool isTypeCongruent(Type *L, Type *R) {
2880  if (L == R)
2881  return true;
2884  if (!PL || !PR)
2885  return false;
2886  return PL->getAddressSpace() == PR->getAddressSpace();
2887 }
2888 
2890  static const Attribute::AttrKind ABIAttrs[] = {
2891  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2892  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2893  Attribute::SwiftError};
2894  AttrBuilder Copy;
2895  for (auto AK : ABIAttrs) {
2896  if (Attrs.hasParamAttribute(I, AK))
2897  Copy.addAttribute(AK);
2898  }
2899  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2900  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2901  return Copy;
2902 }
2903 
2904 void Verifier::verifyMustTailCall(CallInst &CI) {
2905  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2906 
2907  // - The caller and callee prototypes must match. Pointer types of
2908  // parameters or return types may differ in pointee type, but not
2909  // address space.
2910  Function *F = CI.getParent()->getParent();
2911  FunctionType *CallerTy = F->getFunctionType();
2912  FunctionType *CalleeTy = CI.getFunctionType();
2913  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2914  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2915  "cannot guarantee tail call due to mismatched parameter counts",
2916  &CI);
2917  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2918  Assert(
2919  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2920  "cannot guarantee tail call due to mismatched parameter types", &CI);
2921  }
2922  }
2923  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2924  "cannot guarantee tail call due to mismatched varargs", &CI);
2925  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2926  "cannot guarantee tail call due to mismatched return types", &CI);
2927 
2928  // - The calling conventions of the caller and callee must match.
2929  Assert(F->getCallingConv() == CI.getCallingConv(),
2930  "cannot guarantee tail call due to mismatched calling conv", &CI);
2931 
2932  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2933  // returned, and inalloca, must match.
2934  AttributeList CallerAttrs = F->getAttributes();
2935  AttributeList CalleeAttrs = CI.getAttributes();
2936  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2937  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2938  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2939  Assert(CallerABIAttrs == CalleeABIAttrs,
2940  "cannot guarantee tail call due to mismatched ABI impacting "
2941  "function attributes",
2942  &CI, CI.getOperand(I));
2943  }
2944 
2945  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2946  // or a pointer bitcast followed by a ret instruction.
2947  // - The ret instruction must return the (possibly bitcasted) value
2948  // produced by the call or void.
2949  Value *RetVal = &CI;
2950  Instruction *Next = CI.getNextNode();
2951 
2952  // Handle the optional bitcast.
2953  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2954  Assert(BI->getOperand(0) == RetVal,
2955  "bitcast following musttail call must use the call", BI);
2956  RetVal = BI;
2957  Next = BI->getNextNode();
2958  }
2959 
2960  // Check the return.
2961  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2962  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2963  &CI);
2964  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2965  "musttail call result must be returned", Ret);
2966 }
2967 
2968 void Verifier::visitCallInst(CallInst &CI) {
2969  verifyCallSite(&CI);
2970 
2971  if (CI.isMustTailCall())
2972  verifyMustTailCall(CI);
2973 }
2974 
2975 void Verifier::visitInvokeInst(InvokeInst &II) {
2976  verifyCallSite(&II);
2977 
2978  // Verify that the first non-PHI instruction of the unwind destination is an
2979  // exception handling instruction.
2980  Assert(
2981  II.getUnwindDest()->isEHPad(),
2982  "The unwind destination does not have an exception handling instruction!",
2983  &II);
2984 
2985  visitTerminatorInst(II);
2986 }
2987 
2988 /// visitBinaryOperator - Check that both arguments to the binary operator are
2989 /// of the same type!
2990 ///
2991 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2992  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2993  "Both operands to a binary operator are not of the same type!", &B);
2994 
2995  switch (B.getOpcode()) {
2996  // Check that integer arithmetic operators are only used with
2997  // integral operands.
2998  case Instruction::Add:
2999  case Instruction::Sub:
3000  case Instruction::Mul:
3001  case Instruction::SDiv:
3002  case Instruction::UDiv:
3003  case Instruction::SRem:
3004  case Instruction::URem:
3006  "Integer arithmetic operators only work with integral types!", &B);
3007  Assert(B.getType() == B.getOperand(0)->getType(),
3008  "Integer arithmetic operators must have same type "
3009  "for operands and result!",
3010  &B);
3011  break;
3012  // Check that floating-point arithmetic operators are only used with
3013  // floating-point operands.
3014  case Instruction::FAdd:
3015  case Instruction::FSub:
3016  case Instruction::FMul:
3017  case Instruction::FDiv:
3018  case Instruction::FRem:
3020  "Floating-point arithmetic operators only work with "
3021  "floating-point types!",
3022  &B);
3023  Assert(B.getType() == B.getOperand(0)->getType(),
3024  "Floating-point arithmetic operators must have same type "
3025  "for operands and result!",
3026  &B);
3027  break;
3028  // Check that logical operators are only used with integral operands.
3029  case Instruction::And:
3030  case Instruction::Or:
3031  case Instruction::Xor:
3033  "Logical operators only work with integral types!", &B);
3034  Assert(B.getType() == B.getOperand(0)->getType(),
3035  "Logical operators must have same type for operands and result!",
3036  &B);
3037  break;
3038  case Instruction::Shl:
3039  case Instruction::LShr:
3040  case Instruction::AShr:
3042  "Shifts only work with integral types!", &B);
3043  Assert(B.getType() == B.getOperand(0)->getType(),
3044  "Shift return type must be same as operands!", &B);
3045  break;
3046  default:
3047  llvm_unreachable("Unknown BinaryOperator opcode!");
3048  }
3049 
3050  visitInstruction(B);
3051 }
3052 
3053 void Verifier::visitICmpInst(ICmpInst &IC) {
3054  // Check that the operands are the same type
3055  Type *Op0Ty = IC.getOperand(0)->getType();
3056  Type *Op1Ty = IC.getOperand(1)->getType();
3057  Assert(Op0Ty == Op1Ty,
3058  "Both operands to ICmp instruction are not of the same type!", &IC);
3059  // Check that the operands are the right type
3060  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3061  "Invalid operand types for ICmp instruction", &IC);
3062  // Check that the predicate is valid.
3063  Assert(IC.isIntPredicate(),
3064  "Invalid predicate in ICmp instruction!", &IC);
3065 
3066  visitInstruction(IC);
3067 }
3068 
3069 void Verifier::visitFCmpInst(FCmpInst &FC) {
3070  // Check that the operands are the same type
3071  Type *Op0Ty = FC.getOperand(0)->getType();
3072  Type *Op1Ty = FC.getOperand(1)->getType();
3073  Assert(Op0Ty == Op1Ty,
3074  "Both operands to FCmp instruction are not of the same type!", &FC);
3075  // Check that the operands are the right type
3076  Assert(Op0Ty->isFPOrFPVectorTy(),
3077  "Invalid operand types for FCmp instruction", &FC);
3078  // Check that the predicate is valid.
3079  Assert(FC.isFPPredicate(),
3080  "Invalid predicate in FCmp instruction!", &FC);
3081 
3082  visitInstruction(FC);
3083 }
3084 
3085 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3086  Assert(
3088  "Invalid extractelement operands!", &EI);
3089  visitInstruction(EI);
3090 }
3091 
3092 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3094  IE.getOperand(2)),
3095  "Invalid insertelement operands!", &IE);
3096  visitInstruction(IE);
3097 }
3098 
3099 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3101  SV.getOperand(2)),
3102  "Invalid shufflevector operands!", &SV);
3103  visitInstruction(SV);
3104 }
3105 
3106 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3107  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3108 
3109  Assert(isa<PointerType>(TargetTy),
3110  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3111  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3112 
3113  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3114  Assert(all_of(
3115  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3116  "GEP indexes must be integers", &GEP);
3117  Type *ElTy =
3119  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3120 
3121  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3122  GEP.getResultElementType() == ElTy,
3123  "GEP is not of right type for indices!", &GEP, ElTy);
3124 
3125  if (GEP.getType()->isVectorTy()) {
3126  // Additional checks for vector GEPs.
3127  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3128  if (GEP.getPointerOperandType()->isVectorTy())
3129  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3130  "Vector GEP result width doesn't match operand's", &GEP);
3131  for (Value *Idx : Idxs) {
3132  Type *IndexTy = Idx->getType();
3133  if (IndexTy->isVectorTy()) {
3134  unsigned IndexWidth = IndexTy->getVectorNumElements();
3135  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3136  }
3137  Assert(IndexTy->isIntOrIntVectorTy(),
3138  "All GEP indices should be of integer type");
3139  }
3140  }
3141  visitInstruction(GEP);
3142 }
3143 
3144 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3145  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3146 }
3147 
3148 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3149  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3150  "precondition violation");
3151 
3152  unsigned NumOperands = Range->getNumOperands();
3153  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3154  unsigned NumRanges = NumOperands / 2;
3155  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3156 
3157  ConstantRange LastRange(1); // Dummy initial value
3158  for (unsigned i = 0; i < NumRanges; ++i) {
3159  ConstantInt *Low =
3160  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3161  Assert(Low, "The lower limit must be an integer!", Low);
3162  ConstantInt *High =
3163  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3164  Assert(High, "The upper limit must be an integer!", High);
3165  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3166  "Range types must match instruction type!", &I);
3167 
3168  APInt HighV = High->getValue();
3169  APInt LowV = Low->getValue();
3170  ConstantRange CurRange(LowV, HighV);
3171  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3172  "Range must not be empty!", Range);
3173  if (i != 0) {
3174  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3175  "Intervals are overlapping", Range);
3176  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3177  Range);
3178  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3179  Range);
3180  }
3181  LastRange = ConstantRange(LowV, HighV);
3182  }
3183  if (NumRanges > 2) {
3184  APInt FirstLow =
3185  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3186  APInt FirstHigh =
3187  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3188  ConstantRange FirstRange(FirstLow, FirstHigh);
3189  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3190  "Intervals are overlapping", Range);
3191  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3192  Range);
3193  }
3194 }
3195 
3196 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3197  unsigned Size = DL.getTypeSizeInBits(Ty);
3198  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3199  Assert(!(Size & (Size - 1)),
3200  "atomic memory access' operand must have a power-of-two size", Ty, I);
3201 }
3202 
3203 void Verifier::visitLoadInst(LoadInst &LI) {
3205  Assert(PTy, "Load operand must be a pointer.", &LI);
3206  Type *ElTy = LI.getType();
3208  "huge alignment values are unsupported", &LI);
3209  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3210  if (LI.isAtomic()) {
3213  "Load cannot have Release ordering", &LI);
3214  Assert(LI.getAlignment() != 0,
3215  "Atomic load must specify explicit alignment", &LI);
3216  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3217  "atomic load operand must have integer, pointer, or floating point "
3218  "type!",
3219  ElTy, &LI);
3220  checkAtomicMemAccessSize(ElTy, &LI);
3221  } else {
3223  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3224  }
3225 
3226  visitInstruction(LI);
3227 }
3228 
3229 void Verifier::visitStoreInst(StoreInst &SI) {
3231  Assert(PTy, "Store operand must be a pointer.", &SI);
3232  Type *ElTy = PTy->getElementType();
3233  Assert(ElTy == SI.getOperand(0)->getType(),
3234  "Stored value type does not match pointer operand type!", &SI, ElTy);
3236  "huge alignment values are unsupported", &SI);
3237  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3238  if (SI.isAtomic()) {
3241  "Store cannot have Acquire ordering", &SI);
3242  Assert(SI.getAlignment() != 0,
3243  "Atomic store must specify explicit alignment", &SI);
3244  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3245  "atomic store operand must have integer, pointer, or floating point "
3246  "type!",
3247  ElTy, &SI);
3248  checkAtomicMemAccessSize(ElTy, &SI);
3249  } else {
3251  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3252  }
3253  visitInstruction(SI);
3254 }
3255 
3256 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3257 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3258  const Value *SwiftErrorVal) {
3259  unsigned Idx = 0;
3260  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3261  I != E; ++I, ++Idx) {
3262  if (*I == SwiftErrorVal) {
3263  Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3264  "swifterror value when used in a callsite should be marked "
3265  "with swifterror attribute",
3266  SwiftErrorVal, CS);
3267  }
3268  }
3269 }
3270 
3271 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3272  // Check that swifterror value is only used by loads, stores, or as
3273  // a swifterror argument.
3274  for (const User *U : SwiftErrorVal->users()) {
3275  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3276  isa<InvokeInst>(U),
3277  "swifterror value can only be loaded and stored from, or "
3278  "as a swifterror argument!",
3279  SwiftErrorVal, U);
3280  // If it is used by a store, check it is the second operand.
3281  if (auto StoreI = dyn_cast<StoreInst>(U))
3282  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3283  "swifterror value should be the second operand when used "
3284  "by stores", SwiftErrorVal, U);
3285  if (auto CallI = dyn_cast<CallInst>(U))
3286  verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3287  if (auto II = dyn_cast<InvokeInst>(U))
3288  verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3289  }
3290 }
3291 
3292 void Verifier::visitAllocaInst(AllocaInst &AI) {
3293  SmallPtrSet<Type*, 4> Visited;
3294  PointerType *PTy = AI.getType();
3295  // TODO: Relax this restriction?
3297  "Allocation instruction pointer not in the stack address space!",
3298  &AI);
3299  Assert(AI.getAllocatedType()->isSized(&Visited),
3300  "Cannot allocate unsized type", &AI);
3302  "Alloca array size must have integer type", &AI);
3304  "huge alignment values are unsupported", &AI);
3305 
3306  if (AI.isSwiftError()) {
3307  verifySwiftErrorValue(&AI);
3308  }
3309 
3310  visitInstruction(AI);
3311 }
3312 
3313 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3314 
3315  // FIXME: more conditions???
3317  "cmpxchg instructions must be atomic.", &CXI);
3319  "cmpxchg instructions must be atomic.", &CXI);
3321  "cmpxchg instructions cannot be unordered.", &CXI);
3323  "cmpxchg instructions cannot be unordered.", &CXI);
3325  "cmpxchg instructions failure argument shall be no stronger than the "
3326  "success argument",
3327  &CXI);
3330  "cmpxchg failure ordering cannot include release semantics", &CXI);
3331 
3332  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3333  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3334  Type *ElTy = PTy->getElementType();
3335  Assert(ElTy->isIntOrPtrTy(),
3336  "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3337  checkAtomicMemAccessSize(ElTy, &CXI);
3338  Assert(ElTy == CXI.getOperand(1)->getType(),
3339  "Expected value type does not match pointer operand type!", &CXI,
3340  ElTy);
3341  Assert(ElTy == CXI.getOperand(2)->getType(),
3342  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3343  visitInstruction(CXI);
3344 }
3345 
3346 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3348  "atomicrmw instructions must be atomic.", &RMWI);
3350  "atomicrmw instructions cannot be unordered.", &RMWI);
3351  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3352  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3353  Type *ElTy = PTy->getElementType();
3354  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3355  &RMWI, ElTy);
3356  checkAtomicMemAccessSize(ElTy, &RMWI);
3357  Assert(ElTy == RMWI.getOperand(1)->getType(),
3358  "Argument value type does not match pointer operand type!", &RMWI,
3359  ElTy);
3362  "Invalid binary operation!", &RMWI);
3363  visitInstruction(RMWI);
3364 }
3365 
3366 void Verifier::visitFenceInst(FenceInst &FI) {
3367  const AtomicOrdering Ordering = FI.getOrdering();
3368  Assert(Ordering == AtomicOrdering::Acquire ||
3369  Ordering == AtomicOrdering::Release ||
3370  Ordering == AtomicOrdering::AcquireRelease ||
3372  "fence instructions may only have acquire, release, acq_rel, or "
3373  "seq_cst ordering.",
3374  &FI);
3375  visitInstruction(FI);
3376 }
3377 
3378 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3380  EVI.getIndices()) == EVI.getType(),
3381  "Invalid ExtractValueInst operands!", &EVI);
3382 
3383  visitInstruction(EVI);
3384 }
3385 
3386 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3388  IVI.getIndices()) ==
3389  IVI.getOperand(1)->getType(),
3390  "Invalid InsertValueInst operands!", &IVI);
3391 
3392  visitInstruction(IVI);
3393 }
3394 
3395 static Value *getParentPad(Value *EHPad) {
3396  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3397  return FPI->getParentPad();
3398 
3399  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3400 }
3401 
3402 void Verifier::visitEHPadPredecessors(Instruction &I) {
3403  assert(I.isEHPad());
3404 
3405  BasicBlock *BB = I.getParent();
3406  Function *F = BB->getParent();
3407 
3408  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3409 
3410  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3411  // The landingpad instruction defines its parent as a landing pad block. The
3412  // landing pad block may be branched to only by the unwind edge of an
3413  // invoke.
3414  for (BasicBlock *PredBB : predecessors(BB)) {
3415  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3416  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3417  "Block containing LandingPadInst must be jumped to "
3418  "only by the unwind edge of an invoke.",
3419  LPI);
3420  }
3421  return;
3422  }
3423  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3424  if (!pred_empty(BB))
3425  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3426  "Block containg CatchPadInst must be jumped to "
3427  "only by its catchswitch.",
3428  CPI);
3429  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3430  "Catchswitch cannot unwind to one of its catchpads",
3431  CPI->getCatchSwitch(), CPI);
3432  return;
3433  }
3434 
3435  // Verify that each pred has a legal terminator with a legal to/from EH
3436  // pad relationship.
3437  Instruction *ToPad = &I;
3438  Value *ToPadParent = getParentPad(ToPad);
3439  for (BasicBlock *PredBB : predecessors(BB)) {
3440  TerminatorInst *TI = PredBB->getTerminator();
3441  Value *FromPad;
3442  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3443  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3444  "EH pad must be jumped to via an unwind edge", ToPad, II);
3445  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3446  FromPad = Bundle->Inputs[0];
3447  else
3448  FromPad = ConstantTokenNone::get(II->getContext());
3449  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3450  FromPad = CRI->getOperand(0);
3451  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3452  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3453  FromPad = CSI;
3454  } else {
3455  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3456  }
3457 
3458  // The edge may exit from zero or more nested pads.
3459  SmallSet<Value *, 8> Seen;
3460  for (;; FromPad = getParentPad(FromPad)) {
3461  Assert(FromPad != ToPad,
3462  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3463  if (FromPad == ToPadParent) {
3464  // This is a legal unwind edge.
3465  break;
3466  }
3467  Assert(!isa<ConstantTokenNone>(FromPad),
3468  "A single unwind edge may only enter one EH pad", TI);
3469  Assert(Seen.insert(FromPad).second,
3470  "EH pad jumps through a cycle of pads", FromPad);
3471  }
3472  }
3473 }
3474 
3475 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3476  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3477  // isn't a cleanup.
3478  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3479  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3480 
3481  visitEHPadPredecessors(LPI);
3482 
3483  if (!LandingPadResultTy)
3484  LandingPadResultTy = LPI.getType();
3485  else
3486  Assert(LandingPadResultTy == LPI.getType(),
3487  "The landingpad instruction should have a consistent result type "
3488  "inside a function.",
3489  &LPI);
3490 
3491  Function *F = LPI.getParent()->getParent();
3492  Assert(F->hasPersonalityFn(),
3493  "LandingPadInst needs to be in a function with a personality.", &LPI);
3494 
3495  // The landingpad instruction must be the first non-PHI instruction in the
3496  // block.
3497  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3498  "LandingPadInst not the first non-PHI instruction in the block.",
3499  &LPI);
3500 
3501  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3502  Constant *Clause = LPI.getClause(i);
3503  if (LPI.isCatch(i)) {
3504  Assert(isa<PointerType>(Clause->getType()),
3505  "Catch operand does not have pointer type!", &LPI);
3506  } else {
3507  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3508  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3509  "Filter operand is not an array of constants!", &LPI);
3510  }
3511  }
3512 
3513  visitInstruction(LPI);
3514 }
3515 
3516 void Verifier::visitResumeInst(ResumeInst &RI) {
3518  "ResumeInst needs to be in a function with a personality.", &RI);
3519 
3520  if (!LandingPadResultTy)
3521  LandingPadResultTy = RI.getValue()->getType();
3522  else
3523  Assert(LandingPadResultTy == RI.getValue()->getType(),
3524  "The resume instruction should have a consistent result type "
3525  "inside a function.",
3526  &RI);
3527 
3528  visitTerminatorInst(RI);
3529 }
3530 
3531 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3532  BasicBlock *BB = CPI.getParent();
3533 
3534  Function *F = BB->getParent();
3535  Assert(F->hasPersonalityFn(),
3536  "CatchPadInst needs to be in a function with a personality.", &CPI);
3537 
3538  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3539  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3540  CPI.getParentPad());
3541 
3542  // The catchpad instruction must be the first non-PHI instruction in the
3543  // block.
3544  Assert(BB->getFirstNonPHI() == &CPI,
3545  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3546 
3547  visitEHPadPredecessors(CPI);
3548  visitFuncletPadInst(CPI);
3549 }
3550 
3551 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3552  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3553  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3554  CatchReturn.getOperand(0));
3555 
3556  visitTerminatorInst(CatchReturn);
3557 }
3558 
3559 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3560  BasicBlock *BB = CPI.getParent();
3561 
3562  Function *F = BB->getParent();
3563  Assert(F->hasPersonalityFn(),
3564  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3565 
3566  // The cleanuppad instruction must be the first non-PHI instruction in the
3567  // block.
3568  Assert(BB->getFirstNonPHI() == &CPI,
3569  "CleanupPadInst not the first non-PHI instruction in the block.",
3570  &CPI);
3571 
3572  auto *ParentPad = CPI.getParentPad();
3573  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3574  "CleanupPadInst has an invalid parent.", &CPI);
3575 
3576  visitEHPadPredecessors(CPI);
3577  visitFuncletPadInst(CPI);
3578 }
3579 
3580 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3581  User *FirstUser = nullptr;
3582  Value *FirstUnwindPad = nullptr;
3583  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3585 
3586  while (!Worklist.empty()) {
3587  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3588  Assert(Seen.insert(CurrentPad).second,
3589  "FuncletPadInst must not be nested within itself", CurrentPad);
3590  Value *UnresolvedAncestorPad = nullptr;
3591  for (User *U : CurrentPad->users()) {
3592  BasicBlock *UnwindDest;
3593  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3594  UnwindDest = CRI->getUnwindDest();
3595  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3596  // We allow catchswitch unwind to caller to nest
3597  // within an outer pad that unwinds somewhere else,
3598  // because catchswitch doesn't have a nounwind variant.
3599  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3600  if (CSI->unwindsToCaller())
3601  continue;
3602  UnwindDest = CSI->getUnwindDest();
3603  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3604  UnwindDest = II->getUnwindDest();
3605  } else if (isa<CallInst>(U)) {
3606  // Calls which don't unwind may be found inside funclet
3607  // pads that unwind somewhere else. We don't *require*
3608  // such calls to be annotated nounwind.
3609  continue;
3610  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3611  // The unwind dest for a cleanup can only be found by
3612  // recursive search. Add it to the worklist, and we'll
3613  // search for its first use that determines where it unwinds.
3614  Worklist.push_back(CPI);
3615  continue;
3616  } else {
3617  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3618  continue;
3619  }
3620 
3621  Value *UnwindPad;
3622  bool ExitsFPI;
3623  if (UnwindDest) {
3624  UnwindPad = UnwindDest->getFirstNonPHI();
3625  if (!cast<Instruction>(UnwindPad)->isEHPad())
3626  continue;
3627  Value *UnwindParent = getParentPad(UnwindPad);
3628  // Ignore unwind edges that don't exit CurrentPad.
3629  if (UnwindParent == CurrentPad)
3630  continue;
3631  // Determine whether the original funclet pad is exited,
3632  // and if we are scanning nested pads determine how many
3633  // of them are exited so we can stop searching their
3634  // children.
3635  Value *ExitedPad = CurrentPad;
3636  ExitsFPI = false;
3637  do {
3638  if (ExitedPad == &FPI) {
3639  ExitsFPI = true;
3640  // Now we can resolve any ancestors of CurrentPad up to
3641  // FPI, but not including FPI since we need to make sure
3642  // to check all direct users of FPI for consistency.
3643  UnresolvedAncestorPad = &FPI;
3644  break;
3645  }
3646  Value *ExitedParent = getParentPad(ExitedPad);
3647  if (ExitedParent == UnwindParent) {
3648  // ExitedPad is the ancestor-most pad which this unwind
3649  // edge exits, so we can resolve up to it, meaning that
3650  // ExitedParent is the first ancestor still unresolved.
3651  UnresolvedAncestorPad = ExitedParent;
3652  break;
3653  }
3654  ExitedPad = ExitedParent;
3655  } while (!isa<ConstantTokenNone>(ExitedPad));
3656  } else {
3657  // Unwinding to caller exits all pads.
3658  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3659  ExitsFPI = true;
3660  UnresolvedAncestorPad = &FPI;
3661  }
3662 
3663  if (ExitsFPI) {
3664  // This unwind edge exits FPI. Make sure it agrees with other
3665  // such edges.
3666  if (FirstUser) {
3667  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3668  "pad must have the same unwind "
3669  "dest",
3670  &FPI, U, FirstUser);
3671  } else {
3672  FirstUser = U;
3673  FirstUnwindPad = UnwindPad;
3674  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3675  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3676  getParentPad(UnwindPad) == getParentPad(&FPI))
3677  SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3678  }
3679  }
3680  // Make sure we visit all uses of FPI, but for nested pads stop as
3681  // soon as we know where they unwind to.
3682  if (CurrentPad != &FPI)
3683  break;
3684  }
3685  if (UnresolvedAncestorPad) {
3686  if (CurrentPad == UnresolvedAncestorPad) {
3687  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3688  // we've found an unwind edge that exits it, because we need to verify
3689  // all direct uses of FPI.
3690  assert(CurrentPad == &FPI);
3691  continue;
3692  }
3693  // Pop off the worklist any nested pads that we've found an unwind
3694  // destination for. The pads on the worklist are the uncles,
3695  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3696  // for all ancestors of CurrentPad up to but not including
3697  // UnresolvedAncestorPad.
3698  Value *ResolvedPad = CurrentPad;
3699  while (!Worklist.empty()) {
3700  Value *UnclePad = Worklist.back();
3701  Value *AncestorPad = getParentPad(UnclePad);
3702  // Walk ResolvedPad up the ancestor list until we either find the
3703  // uncle's parent or the last resolved ancestor.
3704  while (ResolvedPad != AncestorPad) {
3705  Value *ResolvedParent = getParentPad(ResolvedPad);
3706  if (ResolvedParent == UnresolvedAncestorPad) {
3707  break;
3708  }
3709  ResolvedPad = ResolvedParent;
3710  }
3711  // If the resolved ancestor search didn't find the uncle's parent,
3712  // then the uncle is not yet resolved.
3713  if (ResolvedPad != AncestorPad)
3714  break;
3715  // This uncle is resolved, so pop it from the worklist.
3716  Worklist.pop_back();
3717  }
3718  }
3719  }
3720 
3721  if (FirstUnwindPad) {
3722  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3723  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3724  Value *SwitchUnwindPad;
3725  if (SwitchUnwindDest)
3726  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3727  else
3728  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3729  Assert(SwitchUnwindPad == FirstUnwindPad,
3730  "Unwind edges out of a catch must have the same unwind dest as "
3731  "the parent catchswitch",
3732  &FPI, FirstUser, CatchSwitch);
3733  }
3734  }
3735 
3736  visitInstruction(FPI);
3737 }
3738 
3739 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3740  BasicBlock *BB = CatchSwitch.getParent();
3741 
3742  Function *F = BB->getParent();
3743  Assert(F->hasPersonalityFn(),
3744  "CatchSwitchInst needs to be in a function with a personality.",
3745  &CatchSwitch);
3746 
3747  // The catchswitch instruction must be the first non-PHI instruction in the
3748  // block.
3749  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3750  "CatchSwitchInst not the first non-PHI instruction in the block.",
3751  &CatchSwitch);
3752 
3753  auto *ParentPad = CatchSwitch.getParentPad();
3754  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3755  "CatchSwitchInst has an invalid parent.", ParentPad);
3756 
3757  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3758  Instruction *I = UnwindDest->getFirstNonPHI();
3759  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3760  "CatchSwitchInst must unwind to an EH block which is not a "
3761  "landingpad.",
3762  &CatchSwitch);
3763 
3764  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3765  if (getParentPad(I) == ParentPad)
3766  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3767  }
3768 
3769  Assert(CatchSwitch.getNumHandlers() != 0,
3770  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3771 
3772  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3773  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3774  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3775  }
3776 
3777  visitEHPadPredecessors(CatchSwitch);
3778  visitTerminatorInst(CatchSwitch);
3779 }
3780 
3781 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3782  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3783  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3784  CRI.getOperand(0));
3785 
3786  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3787  Instruction *I = UnwindDest->getFirstNonPHI();
3788  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3789  "CleanupReturnInst must unwind to an EH block which is not a "
3790  "landingpad.",
3791  &CRI);
3792  }
3793 
3794  visitTerminatorInst(CRI);
3795 }
3796 
3797 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3798  Instruction *Op = cast<Instruction>(I.getOperand(i));
3799  // If the we have an invalid invoke, don't try to compute the dominance.
3800  // We already reject it in the invoke specific checks and the dominance
3801  // computation doesn't handle multiple edges.
3802  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3803  if (II->getNormalDest() == II->getUnwindDest())
3804  return;
3805  }
3806 
3807  // Quick check whether the def has already been encountered in the same block.
3808  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3809  // uses are defined to happen on the incoming edge, not at the instruction.
3810  //
3811  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3812  // wrapping an SSA value, assert that we've already encountered it. See
3813  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3814  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3815  return;
3816 
3817  const Use &U = I.getOperandUse(i);
3818  Assert(DT.dominates(Op, U),
3819  "Instruction does not dominate all uses!", Op, &I);
3820 }
3821 
3822 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3823  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3824  "apply only to pointer types", &I);
3825  Assert(isa<LoadInst>(I),
3826  "dereferenceable, dereferenceable_or_null apply only to load"
3827  " instructions, use attributes for calls or invokes", &I);
3828  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3829  "take one operand!", &I);
3830  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3831  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3832  "dereferenceable_or_null metadata value must be an i64!", &I);
3833 }
3834 
3835 /// verifyInstruction - Verify that an instruction is well formed.
3836 ///
3837 void Verifier::visitInstruction(Instruction &I) {
3838  BasicBlock *BB = I.getParent();
3839  Assert(BB, "Instruction not embedded in basic block!", &I);
3840 
3841  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3842  for (User *U : I.users()) {
3843  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3844  "Only PHI nodes may reference their own value!", &I);
3845  }
3846  }
3847 
3848  // Check that void typed values don't have names
3849  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3850  "Instruction has a name, but provides a void value!", &I);
3851 
3852  // Check that the return value of the instruction is either void or a legal
3853  // value type.
3854  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3855  "Instruction returns a non-scalar type!", &I);
3856 
3857  // Check that the instruction doesn't produce metadata. Calls are already
3858  // checked against the callee type.
3859  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3860  "Invalid use of metadata!", &I);
3861 
3862  // Check that all uses of the instruction, if they are instructions
3863  // themselves, actually have parent basic blocks. If the use is not an
3864  // instruction, it is an error!
3865  for (Use &U : I.uses()) {
3866  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3867  Assert(Used->getParent() != nullptr,
3868  "Instruction referencing"
3869  " instruction not embedded in a basic block!",
3870  &I, Used);
3871  else {
3872  CheckFailed("Use of instruction is not an instruction!", U);
3873  return;
3874  }
3875  }
3876 
3877  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3878  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3879 
3880  // Check to make sure that only first-class-values are operands to
3881  // instructions.
3882  if (!I.getOperand(i)->getType()->isFirstClassType()) {
3883  Assert(false, "Instruction operands must be first-class values!", &I);
3884  }
3885 
3886  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3887  // Check to make sure that the "address of" an intrinsic function is never
3888  // taken.
3889  Assert(
3890  !F->isIntrinsic() ||
3891  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3892  "Cannot take the address of an intrinsic!", &I);
3893  Assert(
3894  !F->isIntrinsic() || isa<CallInst>(I) ||
3895  F->getIntrinsicID() == Intrinsic::donothing ||
3896  F->getIntrinsicID() == Intrinsic::coro_resume ||
3897  F->getIntrinsicID() == Intrinsic::coro_destroy ||
3898  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3899  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3900  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3901  "Cannot invoke an intrinsic other than donothing, patchpoint, "
3902  "statepoint, coro_resume or coro_destroy",
3903  &I);
3904  Assert(F->getParent() == &M, "Referencing function in another module!",
3905  &I, &M, F, F->getParent());
3906  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3907  Assert(OpBB->getParent() == BB->getParent(),
3908  "Referring to a basic block in another function!", &I);
3909  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3910  Assert(OpArg->getParent() == BB->getParent(),
3911  "Referring to an argument in another function!", &I);
3912  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3913  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3914  &M, GV, GV->getParent());
3915  } else if (isa<Instruction>(I.getOperand(i))) {
3916  verifyDominatesUse(I, i);
3917  } else if (isa<InlineAsm>(I.getOperand(i))) {
3918  Assert((i + 1 == e && isa<CallInst>(I)) ||
3919  (i + 3 == e && isa<InvokeInst>(I)),
3920  "Cannot take the address of an inline asm!", &I);
3921  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3922  if (CE->getType()->isPtrOrPtrVectorTy() ||
3924  // If we have a ConstantExpr pointer, we need to see if it came from an
3925  // illegal bitcast. If the datalayout string specifies non-integral
3926  // address spaces then we also need to check for illegal ptrtoint and
3927  // inttoptr expressions.
3928  visitConstantExprsRecursively(CE);
3929  }
3930  }
3931  }
3932 
3933  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3935  "fpmath requires a floating point result!", &I);
3936  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3937  if (ConstantFP *CFP0 =
3938  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3939  const APFloat &Accuracy = CFP0->getValueAPF();
3940  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3941  "fpmath accuracy must have float type", &I);
3942  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3943  "fpmath accuracy not a positive number!", &I);
3944  } else {
3945  Assert(false, "invalid fpmath accuracy!", &I);
3946  }
3947  }
3948 
3949  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3950  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3951  "Ranges are only for loads, calls and invokes!", &I);
3952  visitRangeMetadata(I, Range, I.getType());
3953  }
3954 
3956  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3957  &I);
3958  Assert(isa<LoadInst>(I),
3959  "nonnull applies only to load instructions, use attributes"
3960  " for calls or invokes",
3961  &I);
3962  }
3963 
3965  visitDereferenceableMetadata(I, MD);
3966 
3968  visitDereferenceableMetadata(I, MD);
3969 
3970  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3971  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3972 
3973  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3974  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3975  &I);
3976  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3977  "use attributes for calls or invokes", &I);
3978  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3979  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3980  Assert(CI && CI->getType()->isIntegerTy(64),
3981  "align metadata value must be an i64!", &I);
3982  uint64_t Align = CI->getZExtValue();
3983  Assert(isPowerOf2_64(Align),
3984  "align metadata value must be a power of 2!", &I);
3986  "alignment is larger that implementation defined limit", &I);
3987  }
3988 
3989  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3990  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3991  visitMDNode(*N);
3992  }
3993 
3994  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
3995  verifyFragmentExpression(*DII);
3996 
3997  InstsInThisBlock.insert(&I);
3998 }
3999 
4000 /// Allow intrinsics to be verified in different ways.
4001 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
4002  Function *IF = CS.getCalledFunction();
4003  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4004  IF);
4005 
4006  // Verify that the intrinsic prototype lines up with what the .td files
4007  // describe.
4008  FunctionType *IFTy = IF->getFunctionType();
4009  bool IsVarArg = IFTy->isVarArg();
4010 
4012  getIntrinsicInfoTableEntries(ID, Table);
4014 
4015  SmallVector<Type *, 4> ArgTys;
4016  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4017  TableRef, ArgTys),
4018  "Intrinsic has incorrect return type!", IF);
4019  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4020  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4021  TableRef, ArgTys),
4022  "Intrinsic has incorrect argument type!", IF);
4023 
4024  // Verify if the intrinsic call matches the vararg property.
4025  if (IsVarArg)
4026  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4027  "Intrinsic was not defined with variable arguments!", IF);
4028  else
4029  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4030  "Callsite was not defined with variable arguments!", IF);
4031 
4032  // All descriptors should be absorbed by now.
4033  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4034 
4035  // Now that we have the intrinsic ID and the actual argument types (and we
4036  // know they are legal for the intrinsic!) get the intrinsic name through the
4037  // usual means. This allows us to verify the mangling of argument types into
4038  // the name.
4039  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4040  Assert(ExpectedName == IF->getName(),
4041  "Intrinsic name not mangled correctly for type arguments! "
4042  "Should be: " +
4043  ExpectedName,
4044  IF);
4045 
4046  // If the intrinsic takes MDNode arguments, verify that they are either global
4047  // or are local to *this* function.
4048  for (Value *V : CS.args())
4049  if (auto *MD = dyn_cast<MetadataAsValue>(V))
4050  visitMetadataAsValue(*MD, CS.getCaller());
4051 
4052  switch (ID) {
4053  default:
4054  break;
4055  case Intrinsic::coro_id: {
4056  auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4057  if (isa<ConstantPointerNull>(InfoArg))
4058  break;
4059  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4060  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4061  "info argument of llvm.coro.begin must refer to an initialized "
4062  "constant");
4063  Constant *Init = GV->getInitializer();
4064  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4065  "info argument of llvm.coro.begin must refer to either a struct or "
4066  "an array");
4067  break;
4068  }
4069  case Intrinsic::ctlz: // llvm.ctlz
4070  case Intrinsic::cttz: // llvm.cttz
4071  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4072  "is_zero_undef argument of bit counting intrinsics must be a "
4073  "constant int",
4074  CS);
4075  break;
4076  case Intrinsic::experimental_constrained_fadd:
4077  case Intrinsic::experimental_constrained_fsub:
4078  case Intrinsic::experimental_constrained_fmul:
4079  case Intrinsic::experimental_constrained_fdiv:
4080  case Intrinsic::experimental_constrained_frem:
4081  case Intrinsic::experimental_constrained_fma:
4082  case Intrinsic::experimental_constrained_sqrt:
4083  case Intrinsic::experimental_constrained_pow:
4084  case Intrinsic::experimental_constrained_powi:
4085  case Intrinsic::experimental_constrained_sin:
4086  case Intrinsic::experimental_constrained_cos:
4087  case Intrinsic::experimental_constrained_exp:
4088  case Intrinsic::experimental_constrained_exp2:
4089  case Intrinsic::experimental_constrained_log:
4090  case Intrinsic::experimental_constrained_log10:
4091  case Intrinsic::experimental_constrained_log2:
4092  case Intrinsic::experimental_constrained_rint:
4093  case Intrinsic::experimental_constrained_nearbyint:
4094  visitConstrainedFPIntrinsic(
4095  cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4096  break;
4097  case Intrinsic::dbg_declare: // llvm.dbg.declare
4098  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4099  "invalid llvm.dbg.declare intrinsic call 1", CS);
4100  visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(*CS.getInstruction()));
4101  break;
4102  case Intrinsic::dbg_addr: // llvm.dbg.addr
4103  visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(*CS.getInstruction()));
4104  break;
4105  case Intrinsic::dbg_value: // llvm.dbg.value
4106  visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(*CS.getInstruction()));
4107  break;
4108  case Intrinsic::dbg_label: // llvm.dbg.label
4109  visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction()));
4110  break;
4111  case Intrinsic::memcpy:
4112  case Intrinsic::memmove:
4113  case Intrinsic::memset: {
4114  const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4115  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4116  return Alignment == 0 || isPowerOf2_32(Alignment);
4117  };
4118  Assert(IsValidAlignment(MI->getDestAlignment()),
4119  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4120  CS);
4121  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4122  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4123  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4124  CS);
4125  }
4126  Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4127  "isvolatile argument of memory intrinsics must be a constant int",
4128  CS);
4129  break;
4130  }
4131  case Intrinsic::memcpy_element_unordered_atomic:
4132  case Intrinsic::memmove_element_unordered_atomic:
4133  case Intrinsic::memset_element_unordered_atomic: {
4134  const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4135 
4136  ConstantInt *ElementSizeCI =
4137  dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4138  Assert(ElementSizeCI,
4139  "element size of the element-wise unordered atomic memory "
4140  "intrinsic must be a constant int",
4141  CS);
4142  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4143  Assert(ElementSizeVal.isPowerOf2(),
4144  "element size of the element-wise atomic memory intrinsic "
4145  "must be a power of 2",
4146  CS);
4147 
4148  if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4149  uint64_t Length = LengthCI->getZExtValue();
4150  uint64_t ElementSize = AMI->getElementSizeInBytes();
4151  Assert((Length % ElementSize) == 0,
4152  "constant length must be a multiple of the element size in the "
4153  "element-wise atomic memory intrinsic",
4154  CS);
4155  }
4156 
4157  auto IsValidAlignment = [&](uint64_t Alignment) {
4158  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4159  };
4160  uint64_t DstAlignment = AMI->getDestAlignment();
4161  Assert(IsValidAlignment(DstAlignment),
4162  "incorrect alignment of the destination argument", CS);
4163  if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4164  uint64_t SrcAlignment = AMT->getSourceAlignment();
4165  Assert(IsValidAlignment(SrcAlignment),
4166  "incorrect alignment of the source argument", CS);
4167  }
4168  break;
4169  }
4170  case Intrinsic::gcroot:
4171  case Intrinsic::gcwrite:
4172  case Intrinsic::gcread:
4173  if (ID == Intrinsic::gcroot) {
4174  AllocaInst *AI =
4176  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4177  Assert(isa<Constant>(CS.getArgOperand(1)),
4178  "llvm.gcroot parameter #2 must be a constant.", CS);
4179  if (!AI->getAllocatedType()->isPointerTy()) {
4180  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4181  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4182  "or argument #2 must be a non-null constant.",
4183  CS);
4184  }
4185  }
4186 
4187  Assert(CS.getParent()->getParent()->hasGC(),
4188  "Enclosing function does not use GC.", CS);
4189  break;
4190  case Intrinsic::init_trampoline:
4191  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4192  "llvm.init_trampoline parameter #2 must resolve to a function.",
4193  CS);
4194  break;
4195  case Intrinsic::prefetch:
4196  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4197  isa<ConstantInt>(CS.getArgOperand(2)) &&
4198  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4199  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4200  "invalid arguments to llvm.prefetch", CS);
4201  break;
4202  case Intrinsic::stackprotector:
4203  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4204  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4205  break;
4206  case Intrinsic::lifetime_start:
4207  case Intrinsic::lifetime_end:
4208  case Intrinsic::invariant_start:
4209  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4210  "size argument of memory use markers must be a constant integer",
4211  CS);
4212  break;
4213  case Intrinsic::invariant_end:
4214  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4215  "llvm.invariant.end parameter #2 must be a constant integer", CS);
4216  break;
4217 
4218  case Intrinsic::localescape: {
4219  BasicBlock *BB = CS.getParent();
4220  Assert(BB == &BB->getParent()->front(),
4221  "llvm.localescape used outside of entry block", CS);
4222  Assert(!SawFrameEscape,
4223  "multiple calls to llvm.localescape in one function", CS);
4224  for (Value *Arg : CS.args()) {
4225  if (isa<ConstantPointerNull>(Arg))
4226  continue; // Null values are allowed as placeholders.
4227  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4228  Assert(AI && AI->isStaticAlloca(),
4229  "llvm.localescape only accepts static allocas", CS);
4230  }
4231  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4232  SawFrameEscape = true;
4233  break;
4234  }
4235  case Intrinsic::localrecover: {
4236  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4237  Function *Fn = dyn_cast<Function>(FnArg);
4238  Assert(Fn && !Fn->isDeclaration(),
4239  "llvm.localrecover first "
4240  "argument must be function defined in this module",
4241  CS);
4242  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4243  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4244  CS);
4245  auto &Entry = FrameEscapeInfo[Fn];
4246  Entry.second = unsigned(
4247  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4248  break;
4249  }
4250 
4251  case Intrinsic::experimental_gc_statepoint:
4252  Assert(!CS.isInlineAsm(),
4253  "gc.statepoint support for inline assembly unimplemented", CS);
4254  Assert(CS.getParent()->getParent()->hasGC(),
4255  "Enclosing function does not use GC.", CS);
4256 
4257  verifyStatepoint(CS);
4258  break;
4259  case Intrinsic::experimental_gc_result: {
4260  Assert(CS.getParent()->getParent()->hasGC(),
4261  "Enclosing function does not use GC.", CS);
4262  // Are we tied to a statepoint properly?
4263  CallSite StatepointCS(CS.getArgOperand(0));
4264  const Function *StatepointFn =
4265  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4266  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4267  StatepointFn->getIntrinsicID() ==
4268  Intrinsic::experimental_gc_statepoint,
4269  "gc.result operand #1 must be from a statepoint", CS,
4270  CS.getArgOperand(0));
4271 
4272  // Assert that result type matches wrapped callee.
4273  const Value *Target = StatepointCS.getArgument(2);
4274  auto *PT = cast<PointerType>(Target->getType());
4275  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4276  Assert(CS.getType() == TargetFuncType->getReturnType(),
4277  "gc.result result type does not match wrapped callee", CS);
4278  break;
4279  }
4280  case Intrinsic::experimental_gc_relocate: {
4281  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4282 
4283  Assert(isa<PointerType>(CS.getType()->getScalarType()),
4284  "gc.relocate must return a pointer or a vector of pointers", CS);
4285 
4286  // Check that this relocate is correctly tied to the statepoint
4287 
4288  // This is case for relocate on the unwinding path of an invoke statepoint
4289  if (LandingPadInst *LandingPad =
4290  dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4291 
4292  const BasicBlock *InvokeBB =
4293  LandingPad->getParent()->getUniquePredecessor();
4294 
4295  // Landingpad relocates should have only one predecessor with invoke
4296  // statepoint terminator
4297  Assert(InvokeBB, "safepoints should have unique landingpads",
4298  LandingPad->getParent());
4299  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4300  InvokeBB);
4301  Assert(isStatepoint(InvokeBB->getTerminator()),
4302  "gc relocate should be linked to a statepoint", InvokeBB);
4303  }
4304  else {
4305  // In all other cases relocate should be tied to the statepoint directly.
4306  // This covers relocates on a normal return path of invoke statepoint and
4307  // relocates of a call statepoint.
4308  auto Token = CS.getArgOperand(0);
4309  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4310  "gc relocate is incorrectly tied to the statepoint", CS, Token);
4311  }
4312 
4313  // Verify rest of the relocate arguments.
4314 
4315  ImmutableCallSite StatepointCS(
4316  cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4317 
4318  // Both the base and derived must be piped through the safepoint.
4319  Value* Base = CS.getArgOperand(1);
4320  Assert(isa<ConstantInt>(Base),
4321  "gc.relocate operand #2 must be integer offset", CS);
4322 
4323  Value* Derived = CS.getArgOperand(2);
4324  Assert(isa<ConstantInt>(Derived),
4325  "gc.relocate operand #3 must be integer offset", CS);
4326 
4327  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4328  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4329  // Check the bounds
4330  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4331  "gc.relocate: statepoint base index out of bounds", CS);
4332  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4333  "gc.relocate: statepoint derived index out of bounds", CS);
4334 
4335  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4336  // section of the statepoint's argument.
4337  Assert(StatepointCS.arg_size() > 0,
4338  "gc.statepoint: insufficient arguments");
4339  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4340  "gc.statement: number of call arguments must be constant integer");
4341  const unsigned NumCallArgs =
4342  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4343  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4344  "gc.statepoint: mismatch in number of call arguments");
4345  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4346  "gc.statepoint: number of transition arguments must be "
4347  "a constant integer");
4348  const int NumTransitionArgs =
4349  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4350  ->getZExtValue();
4351  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4352  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4353  "gc.statepoint: number of deoptimization arguments must be "
4354  "a constant integer");
4355  const int NumDeoptArgs =
4356  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4357  ->getZExtValue();
4358  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4359  const int GCParamArgsEnd = StatepointCS.arg_size();
4360  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4361  "gc.relocate: statepoint base index doesn't fall within the "
4362  "'gc parameters' section of the statepoint call",
4363  CS);
4364  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4365  "gc.relocate: statepoint derived index doesn't fall within the "
4366  "'gc parameters' section of the statepoint call",
4367  CS);
4368 
4369  // Relocated value must be either a pointer type or vector-of-pointer type,
4370  // but gc_relocate does not need to return the same pointer type as the
4371  // relocated pointer. It can be casted to the correct type later if it's
4372  // desired. However, they must have the same address space and 'vectorness'
4373  GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4375  "gc.relocate: relocated value must be a gc pointer", CS);
4376 
4377  auto ResultType = CS.getType();
4378  auto DerivedType = Relocate.getDerivedPtr()->getType();
4379  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4380  "gc.relocate: vector relocates to vector and pointer to pointer",
4381  CS);
4382  Assert(
4383  ResultType->getPointerAddressSpace() ==
4384  DerivedType->getPointerAddressSpace(),
4385  "gc.relocate: relocating a pointer shouldn't change its address space",
4386  CS);
4387  break;
4388  }
4389  case Intrinsic::eh_exceptioncode:
4390  case Intrinsic::eh_exceptionpointer: {
4391  Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4392  "eh.exceptionpointer argument must be a catchpad", CS);
4393  break;
4394  }
4395  case Intrinsic::masked_load: {
4396  Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4397 
4398  Value *Ptr = CS.getArgOperand(0);
4399  //Value *Alignment = CS.getArgOperand(1);
4400  Value *Mask = CS.getArgOperand(2);
4401  Value *PassThru = CS.getArgOperand(3);
4402  Assert(Mask->getType()->isVectorTy(),
4403  "masked_load: mask must be vector", CS);
4404 
4405  // DataTy is the overloaded type
4406  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4407  Assert(DataTy == CS.getType(),
4408  "masked_load: return must match pointer type", CS);
4409  Assert(PassThru->getType() == DataTy,
4410  "masked_load: pass through and data type must match", CS);
4411  Assert(Mask->getType()->getVectorNumElements() ==
4412  DataTy->getVectorNumElements(),
4413  "masked_load: vector mask must be same length as data", CS);
4414  break;
4415  }
4416  case Intrinsic::masked_store: {
4417  Value *Val = CS.getArgOperand(0);
4418  Value *Ptr = CS.getArgOperand(1);
4419  //Value *Alignment = CS.getArgOperand(2);
4420  Value *Mask = CS.getArgOperand(3);
4421  Assert(Mask->getType()->isVectorTy(),
4422  "masked_store: mask must be vector", CS);
4423 
4424  // DataTy is the overloaded type
4425  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4426  Assert(DataTy == Val->getType(),
4427  "masked_store: storee must match pointer type", CS);
4428  Assert(Mask->getType()->getVectorNumElements() ==
4429  DataTy->getVectorNumElements(),
4430  "masked_store: vector mask must be same length as data", CS);
4431  break;
4432  }
4433 
4434  case Intrinsic::experimental_guard: {
4435  Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4437  "experimental_guard must have exactly one "
4438  "\"deopt\" operand bundle");
4439  break;
4440  }
4441 
4442  case Intrinsic::experimental_deoptimize: {
4443  Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4445  "experimental_deoptimize must have exactly one "
4446  "\"deopt\" operand bundle");
4448  "experimental_deoptimize return type must match caller return type");
4449 
4450  if (CS.isCall()) {
4451  auto *DeoptCI = CS.getInstruction();
4452  auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4453  Assert(RI,
4454  "calls to experimental_deoptimize must be followed by a return");
4455 
4456  if (!CS.getType()->isVoidTy() && RI)
4457  Assert(RI->getReturnValue() == DeoptCI,
4458  "calls to experimental_deoptimize must be followed by a return "
4459  "of the value computed by experimental_deoptimize");
4460  }
4461 
4462  break;
4463  }
4464  };
4465 }
4466 
4467 /// Carefully grab the subprogram from a local scope.
4468 ///
4469 /// This carefully grabs the subprogram from a local scope, avoiding the
4470 /// built-in assertions that would typically fire.
4471 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4472  if (!LocalScope)
4473  return nullptr;
4474 
4475  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4476  return SP;
4477 
4478  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4479  return getSubprogram(LB->getRawScope());
4480 
4481  // Just return null; broken scope chains are checked elsewhere.
4482  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4483  return nullptr;
4484 }
4485 
4486 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4487  unsigned NumOperands = FPI.getNumArgOperands();
4488  Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4489  (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4490  "invalid arguments for constrained FP intrinsic", &FPI);
4491  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4492  "invalid exception behavior argument", &FPI);
4493  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4494  "invalid rounding mode argument", &FPI);
4496  "invalid rounding mode argument", &FPI);
4498  "invalid exception behavior argument", &FPI);
4499 }
4500 
4501 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4502  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4503  AssertDI(isa<ValueAsMetadata>(MD) ||
4504  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4505  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4506  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4507  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4508  DII.getRawVariable());
4509  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4510  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4511  DII.getRawExpression());
4512 
4513  // Ignore broken !dbg attachments; they're checked elsewhere.
4514  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4515  if (!isa<DILocation>(N))
4516  return;
4517 
4518  BasicBlock *BB = DII.getParent();
4519  Function *F = BB ? BB->getParent() : nullptr;
4520 
4521  // The scopes for variables and !dbg attachments must agree.
4522  DILocalVariable *Var = DII.getVariable();
4523  DILocation *Loc = DII.getDebugLoc();
4524  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4525  &DII, BB, F);
4526 
4527  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4528  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4529  if (!VarSP || !LocSP)
4530  return; // Broken scope chains are checked elsewhere.
4531 
4532  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4533  " variable and !dbg attachment",
4534  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4535  Loc->getScope()->getSubprogram());
4536 
4537  // This check is redundant with one in visitLocalVariable().
4538  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4539  Var->getRawType());
4540  if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4541  if (Type->isBlockByrefStruct())
4543  "BlockByRef variable without complex expression", Var, &DII);
4544 
4545  verifyFnArgs(DII);
4546 }
4547 
4548 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4549  AssertDI(isa<DILabel>(DLI.getRawLabel()),
4550  "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4551  DLI.getRawLabel());
4552 
4553  // Ignore broken !dbg attachments; they're checked elsewhere.
4554  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4555  if (!isa<DILocation>(N))
4556  return;
4557 
4558  BasicBlock *BB = DLI.getParent();
4559  Function *F = BB ? BB->getParent() : nullptr;
4560 
4561  // The scopes for variables and !dbg attachments must agree.
4562  DILabel *Label = DLI.getLabel();
4563  DILocation *Loc = DLI.getDebugLoc();
4564  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4565  &DLI, BB, F);
4566 
4567  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4568  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4569  if (!LabelSP || !LocSP)
4570  return;
4571 
4572  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4573  " label and !dbg attachment",
4574  &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4575  Loc->getScope()->getSubprogram());
4576 }
4577 
4578 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4579  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4580  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4581 
4582  // We don't know whether this intrinsic verified correctly.
4583  if (!V || !E || !E->isValid())
4584  return;
4585 
4586  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4587  auto Fragment = E->getFragmentInfo();
4588  if (!Fragment)
4589  return;
4590 
4591  // The frontend helps out GDB by emitting the members of local anonymous
4592  // unions as artificial local variables with shared storage. When SROA splits
4593  // the storage for artificial local variables that are smaller than the entire
4594  // union, the overhang piece will be outside of the allotted space for the
4595  // variable and this check fails.
4596  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4597  if (V->isArtificial())
4598  return;
4599 
4600  verifyFragmentExpression(*V, *Fragment, &I);
4601 }
4602 
4603 template <typename ValueOrMetadata>
4604 void Verifier::verifyFragmentExpression(const DIVariable &V,
4605  DIExpression::FragmentInfo Fragment,
4606  ValueOrMetadata *Desc) {
4607  // If there's no size, the type is broken, but that should be checked
4608  // elsewhere.
4609  auto VarSize = V.getSizeInBits();
4610  if (!VarSize)
4611  return;
4612 
4613  unsigned FragSize = Fragment.SizeInBits;
4614  unsigned FragOffset = Fragment.OffsetInBits;
4615  AssertDI(FragSize + FragOffset <= *VarSize,
4616  "fragment is larger than or outside of variable", Desc, &V);
4617  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4618 }
4619 
4620 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4621  // This function does not take the scope of noninlined function arguments into
4622  // account. Don't run it if current function is nodebug, because it may
4623  // contain inlined debug intrinsics.
4624  if (!HasDebugInfo)
4625  return;
4626 
4627  // For performance reasons only check non-inlined ones.
4628  if (I.getDebugLoc()->getInlinedAt())
4629  return;
4630 
4631  DILocalVariable *Var = I.getVariable();
4632  AssertDI(Var, "dbg intrinsic without variable");
4633 
4634  unsigned ArgNo = Var->getArg();
4635  if (!ArgNo)
4636  return;
4637 
4638  // Verify there are no duplicate function argument debug info entries.
4639  // These will cause hard-to-debug assertions in the DWARF backend.
4640  if (DebugFnArgs.size() < ArgNo)
4641  DebugFnArgs.resize(ArgNo, nullptr);
4642 
4643  auto *Prev = DebugFnArgs[ArgNo - 1];
4644  DebugFnArgs[ArgNo - 1] = Var;
4645  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4646  Prev, Var);
4647 }
4648 
4649 void Verifier::verifyCompileUnits() {
4650  // When more than one Module is imported into the same context, such as during
4651  // an LTO build before linking the modules, ODR type uniquing may cause types
4652  // to point to a different CU. This check does not make sense in this case.
4654  return;
4655  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4657  if (CUs)
4658  Listed.insert(CUs->op_begin(), CUs->op_end());
4659  for (auto *CU : CUVisited)
4660  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4661  CUVisited.clear();
4662 }
4663 
4664 void Verifier::verifyDeoptimizeCallingConvs() {
4665  if (DeoptimizeDeclarations.empty())
4666  return;
4667 
4668  const Function *First = DeoptimizeDeclarations[0];
4669  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4670  Assert(First->getCallingConv() == F->getCallingConv(),
4671  "All llvm.experimental.deoptimize declarations must have the same "
4672  "calling convention",
4673  First, F);
4674  }
4675 }
4676 
4677 //===----------------------------------------------------------------------===//
4678 // Implement the public interfaces to this file...
4679 //===----------------------------------------------------------------------===//
4680 
4682  Function &F = const_cast<Function &>(f);
4683 
4684  // Don't use a raw_null_ostream. Printing IR is expensive.
4685  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4686 
4687  // Note that this function's return value is inverted from what you would
4688  // expect of a function called "verify".
4689  return !V.verify(F);
4690 }
4691 
4693  bool *BrokenDebugInfo) {
4694  // Don't use a raw_null_ostream. Printing IR is expensive.
4695  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4696 
4697  bool Broken = false;
4698  for (const Function &F : M)
4699  Broken |= !V.verify(F);
4700 
4701  Broken |= !V.verify();
4702  if (BrokenDebugInfo)
4703  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4704  // Note that this function's return value is inverted from what you would
4705  // expect of a function called "verify".
4706  return Broken;
4707 }
4708 
4709 namespace {
4710 
4711 struct VerifierLegacyPass : public FunctionPass {
4712  static char ID;
4713 
4714  std::unique_ptr<Verifier> V;
4715  bool FatalErrors = true;
4716 
4717  VerifierLegacyPass() : FunctionPass(ID) {
4719  }
4720  explicit VerifierLegacyPass(bool FatalErrors)
4721  : FunctionPass(ID),
4722  FatalErrors(FatalErrors) {
4724  }
4725 
4726  bool doInitialization(Module &M) override {
4727  V = llvm::make_unique<Verifier>(
4728  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4729  return false;
4730  }
4731 
4732  bool runOnFunction(Function &F) override {
4733  if (!V->verify(F) && FatalErrors) {
4734  errs() << "in function " << F.getName() << '\n';
4735  report_fatal_error("Broken function found, compilation aborted!");
4736  }
4737  return false;
4738  }
4739 
4740  bool doFinalization(Module &M) override {
4741  bool HasErrors = false;
4742  for (Function &F : M)
4743  if (F.isDeclaration())
4744  HasErrors |= !V->verify(F);
4745 
4746  HasErrors |= !V->verify();
4747  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4748  report_fatal_error("Broken module found, compilation aborted!");
4749  return false;
4750  }
4751 
4752  void getAnalysisUsage(AnalysisUsage &AU) const override {
4753  AU.setPreservesAll();
4754  }
4755 };
4756 
4757 } // end anonymous namespace
4758 
4759 /// Helper to issue failure from the TBAA verification
4760 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4761  if (Diagnostic)
4762  return Diagnostic->CheckFailed(Args...);
4763 }
4764 
4765 #define AssertTBAA(C, ...) \
4766  do { \
4767  if (!(C)) { \
4768  CheckFailed(__VA_ARGS__); \
4769  return false; \
4770  } \
4771  } while (false)
4772 
4773 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4774 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4775 /// struct-type node describing an aggregate data structure (like a struct).
4776 TBAAVerifier::TBAABaseNodeSummary
4777 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4778  bool IsNewFormat) {
4779  if (BaseNode->getNumOperands() < 2) {
4780  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4781  return {true, ~0u};
4782  }
4783 
4784  auto Itr = TBAABaseNodes.find(BaseNode);
4785  if (Itr != TBAABaseNodes.end())
4786  return Itr->second;
4787 
4788  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4789  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4790  (void)InsertResult;
4791  assert(InsertResult.second && "We just checked!");
4792  return Result;
4793 }
4794 
4795 TBAAVerifier::TBAABaseNodeSummary
4796 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4797  bool IsNewFormat) {
4798  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4799 
4800  if (BaseNode->getNumOperands() == 2) {
4801  // Scalar nodes can only be accessed at offset 0.
4802  return isValidScalarTBAANode(BaseNode)
4803  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4804  : InvalidNode;
4805  }
4806 
4807  if (IsNewFormat) {
4808  if (BaseNode->getNumOperands() % 3 != 0) {
4809  CheckFailed("Access tag nodes must have the number of operands that is a "
4810  "multiple of 3!", BaseNode);
4811  return InvalidNode;
4812  }
4813  } else {
4814  if (BaseNode->getNumOperands() % 2 != 1) {
4815  CheckFailed("Struct tag nodes must have an odd number of operands!",
4816  BaseNode);
4817  return InvalidNode;
4818  }
4819  }
4820 
4821  // Check the type size field.
4822  if (IsNewFormat) {
4823  auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4824  BaseNode->getOperand(1));
4825  if (!TypeSizeNode) {
4826  CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4827  return InvalidNode;
4828  }
4829  }
4830 
4831  // Check the type name field. In the new format it can be anything.
4832  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4833  CheckFailed("Struct tag nodes have a string as their first operand",
4834  BaseNode);
4835  return InvalidNode;
4836  }
4837 
4838  bool Failed = false;
4839 
4840  Optional<APInt> PrevOffset;
4841  unsigned BitWidth = ~0u;
4842 
4843  // We've already checked that BaseNode is not a degenerate root node with one
4844  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4845  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4846  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4847  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4848  Idx += NumOpsPerField) {
4849  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4850  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4851  if (!isa<MDNode>(FieldTy)) {
4852  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4853  Failed = true;
4854  continue;
4855  }
4856 
4857  auto *OffsetEntryCI =
4858  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4859  if (!OffsetEntryCI) {
4860  CheckFailed("Offset entries must be constants!", &I, BaseNode);
4861  Failed = true;
4862  continue;
4863  }
4864 
4865  if (BitWidth == ~0u)
4866  BitWidth = OffsetEntryCI->getBitWidth();
4867 
4868  if (OffsetEntryCI->getBitWidth() != BitWidth) {
4869  CheckFailed(
4870  "Bitwidth between the offsets and struct type entries must match", &I,
4871  BaseNode);
4872  Failed = true;
4873  continue;
4874  }
4875 
4876  // NB! As far as I can tell, we generate a non-strictly increasing offset
4877  // sequence only from structs that have zero size bit fields. When
4878  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4879  // pick the field lexically the latest in struct type metadata node. This
4880  // mirrors the actual behavior of the alias analysis implementation.
4881  bool IsAscending =
4882  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4883 
4884  if (!IsAscending) {
4885  CheckFailed("Offsets must be increasing!", &I, BaseNode);
4886  Failed = true;
4887  }
4888 
4889  PrevOffset = OffsetEntryCI->getValue();
4890 
4891  if (IsNewFormat) {
4892  auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4893  BaseNode->getOperand(Idx + 2));
4894  if (!MemberSizeNode) {
4895  CheckFailed("Member size entries must be constants!", &I, BaseNode);
4896  Failed = true;
4897  continue;
4898  }
4899  }
4900  }
4901 
4902  return Failed ? InvalidNode
4903  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4904 }
4905 
4906 static bool IsRootTBAANode(const MDNode *MD) {
4907  return MD->getNumOperands() < 2;
4908 }
4909 
4910 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4912  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4913  return false;
4914 
4915  if (!isa<MDString>(MD->getOperand(0)))
4916  return false;
4917 
4918  if (MD->getNumOperands() == 3) {
4919  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4920  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4921  return false;
4922  }
4923 
4924  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4925  return Parent && Visited.insert(Parent).second &&
4926  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4927 }
4928 
4929 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4930  auto ResultIt = TBAAScalarNodes.find(MD);
4931  if (ResultIt != TBAAScalarNodes.end())
4932  return ResultIt->second;
4933 
4935  bool Result = IsScalarTBAANodeImpl(MD, Visited);
4936  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4937  (void)InsertResult;
4938  assert(InsertResult.second && "Just checked!");
4939 
4940  return Result;
4941 }
4942 
4943 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4944 /// Offset in place to be the offset within the field node returned.
4945 ///
4946 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4947 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4948  const MDNode *BaseNode,
4949  APInt &Offset,
4950  bool IsNewFormat) {
4951  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4952 
4953  // Scalar nodes have only one possible "field" -- their parent in the access
4954  // hierarchy. Offset must be zero at this point, but our caller is supposed
4955  // to Assert that.
4956  if (BaseNode->getNumOperands() == 2)
4957  return cast<MDNode>(BaseNode->getOperand(1));
4958 
4959  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4960  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4961  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4962  Idx += NumOpsPerField) {
4963  auto *OffsetEntryCI =
4964  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4965  if (OffsetEntryCI->getValue().ugt(Offset)) {
4966  if (Idx == FirstFieldOpNo) {
4967  CheckFailed("Could not find TBAA parent in struct type node", &I,
4968  BaseNode, &Offset);
4969  return nullptr;
4970  }
4971 
4972  unsigned PrevIdx = Idx - NumOpsPerField;
4973  auto *PrevOffsetEntryCI =
4974  mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4975  Offset -= PrevOffsetEntryCI->getValue();
4976  return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4977  }
4978  }
4979 
4980  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4981  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4982  BaseNode->getOperand(LastIdx + 1));
4983  Offset -= LastOffsetEntryCI->getValue();
4984  return cast<MDNode>(BaseNode->getOperand(LastIdx));
4985 }
4986 
4988  if (!Type || Type->getNumOperands() < 3)
4989  return false;
4990 
4991  // In the new format type nodes shall have a reference to the parent type as
4992  // its first operand.
4993  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4994  if (!Parent)
4995  return false;
4996 
4997  return true;
4998 }
4999 
5001  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5002  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5003  isa<AtomicCmpXchgInst>(I),
5004  "This instruction shall not have a TBAA access tag!", &I);
5005 
5006  bool IsStructPathTBAA =
5007  isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5008 
5009  AssertTBAA(
5010  IsStructPathTBAA,
5011  "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5012 
5013  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5014  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5015 
5016  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5017 
5018  if (IsNewFormat) {
5019  AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5020  "Access tag metadata must have either 4 or 5 operands", &I, MD);
5021  } else {
5022  AssertTBAA(MD->getNumOperands() < 5,
5023  "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5024  }
5025 
5026  // Check the access size field.
5027  if (IsNewFormat) {
5028  auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5029  MD->getOperand(3));
5030  AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5031  }
5032 
5033  // Check the immutability flag.
5034  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5035  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5036  auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5037  MD->getOperand(ImmutabilityFlagOpNo));
5038  AssertTBAA(IsImmutableCI,
5039  "Immutability tag on struct tag metadata must be a constant",
5040  &I, MD);
5041  AssertTBAA(
5042  IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5043  "Immutability part of the struct tag metadata must be either 0 or 1",
5044  &I, MD);
5045  }
5046 
5047  AssertTBAA(BaseNode && AccessType,
5048  "Malformed struct tag metadata: base and access-type "
5049  "should be non-null and point to Metadata nodes",
5050  &I, MD, BaseNode, AccessType);
5051 
5052  if (!IsNewFormat) {
5053  AssertTBAA(isValidScalarTBAANode(AccessType),
5054  "Access type node must be a valid scalar type", &I, MD,
5055  AccessType);
5056  }
5057 
5058  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5059  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5060 
5061  APInt Offset = OffsetCI->getValue();
5062  bool SeenAccessTypeInPath = false;
5063 
5064  SmallPtrSet<MDNode *, 4> StructPath;
5065 
5066  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5067  BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5068  IsNewFormat)) {
5069  if (!StructPath.insert(BaseNode).second) {
5070  CheckFailed("Cycle detected in struct path", &I, MD);
5071  return false;
5072  }
5073 
5074  bool Invalid;
5075  unsigned BaseNodeBitWidth;
5076  std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5077  IsNewFormat);
5078 
5079  // If the base node is invalid in itself, then we've already printed all the
5080  // errors we wanted to print.
5081  if (Invalid)
5082  return false;
5083 
5084  SeenAccessTypeInPath |= BaseNode == AccessType;
5085 
5086  if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5087  AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5088  &I, MD, &Offset);
5089 
5090  AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5091  (BaseNodeBitWidth == 0 && Offset == 0) ||
5092  (IsNewFormat && BaseNodeBitWidth == ~0u),
5093  "Access bit-width not the same as description bit-width", &I, MD,
5094  BaseNodeBitWidth, Offset.getBitWidth());
5095 
5096  if (IsNewFormat && SeenAccessTypeInPath)
5097  break;
5098  }
5099 
5100  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5101  &I, MD);
5102  return true;
5103 }
5104 
5105 char VerifierLegacyPass::ID = 0;
5106 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5107 
5108 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5109  return new VerifierLegacyPass(FatalErrors);
5110 }
5111 
5112 AnalysisKey VerifierAnalysis::Key;
5115  Result Res;
5116  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5117  return Res;
5118 }
5119 
5122  return { llvm::verifyFunction(F, &dbgs()), false };
5123 }
5124 
5126  auto Res = AM.getResult<VerifierAnalysis>(M);
5127  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5128  report_fatal_error("Broken module found, compilation aborted!");
5129 
5130  return PreservedAnalyses::all();
5131 }
5132 
5134  auto res = AM.getResult<VerifierAnalysis>(F);
5135  if (res.IRBroken && FatalErrors)
5136  report_fatal_error("Broken function found, compilation aborted!");
5137 
5138  return PreservedAnalyses::all();
5139 }
DIFlags getFlags() const
bool isDeclarationForLinker() const
Definition: GlobalValue.h:524
Metadata * getRawRetainedTypes() const
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:199
static bool isScope(const Metadata *MD)
Definition: Verifier.cpp:850
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:711
Function * getCalledFunction() const
Return the function called, or null if this is an indirect function invocation.
static Value * getParentPad(Value *EHPad)
Definition: Verifier.cpp:3395
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:355
bool empty() const
Definition: Function.h:662
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
bool isDistinct() const
Definition: Metadata.h:943
bool hasLocalLinkage() const
Definition: GlobalValue.h:436
void clear()
Definition: MapVector.h:89
SPIR_KERNEL - Calling convention for SPIR kernel functions.
Definition: CallingConv.h:137
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1199
This instruction extracts a struct member or array element value from an aggregate value...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
unsigned getLine() const
bool isInlineAsm() const
Definition: CallSite.h:305
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:219