LLVM  6.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/CallingConv.h"
69 #include "llvm/IR/Comdat.h"
70 #include "llvm/IR/Constant.h"
71 #include "llvm/IR/ConstantRange.h"
72 #include "llvm/IR/Constants.h"
73 #include "llvm/IR/DataLayout.h"
74 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/DiagnosticInfo.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119 
120 namespace llvm {
121 
124  const Module &M;
126  const DataLayout &DL;
128 
129  /// Track the brokenness of the module while recursively visiting.
130  bool Broken = false;
131  /// Broken debug info can be "recovered" from by stripping the debug info.
132  bool BrokenDebugInfo = false;
133  /// Whether to treat broken debug info as an error.
135 
136  explicit VerifierSupport(raw_ostream *OS, const Module &M)
137  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138 
139 private:
140  void Write(const Module *M) {
141  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142  }
143 
144  void Write(const Value *V) {
145  if (!V)
146  return;
147  if (isa<Instruction>(V)) {
148  V->print(*OS, MST);
149  *OS << '\n';
150  } else {
151  V->printAsOperand(*OS, true, MST);
152  *OS << '\n';
153  }
154  }
155 
156  void Write(ImmutableCallSite CS) {
157  Write(CS.getInstruction());
158  }
159 
160  void Write(const Metadata *MD) {
161  if (!MD)
162  return;
163  MD->print(*OS, MST, &M);
164  *OS << '\n';
165  }
166 
167  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168  Write(MD.get());
169  }
170 
171  void Write(const NamedMDNode *NMD) {
172  if (!NMD)
173  return;
174  NMD->print(*OS, MST);
175  *OS << '\n';
176  }
177 
178  void Write(Type *T) {
179  if (!T)
180  return;
181  *OS << ' ' << *T;
182  }
183 
184  void Write(const Comdat *C) {
185  if (!C)
186  return;
187  *OS << *C;
188  }
189 
190  void Write(const APInt *AI) {
191  if (!AI)
192  return;
193  *OS << *AI << '\n';
194  }
195 
196  void Write(const unsigned i) { *OS << i << '\n'; }
197 
198  template <typename T> void Write(ArrayRef<T> Vs) {
199  for (const T &V : Vs)
200  Write(V);
201  }
202 
203  template <typename T1, typename... Ts>
204  void WriteTs(const T1 &V1, const Ts &... Vs) {
205  Write(V1);
206  WriteTs(Vs...);
207  }
208 
209  template <typename... Ts> void WriteTs() {}
210 
211 public:
212  /// \brief A check failed, so printout out the condition and the message.
213  ///
214  /// This provides a nice place to put a breakpoint if you want to see why
215  /// something is not correct.
216  void CheckFailed(const Twine &Message) {
217  if (OS)
218  *OS << Message << '\n';
219  Broken = true;
220  }
221 
222  /// \brief A check failed (with values to print).
223  ///
224  /// This calls the Message-only version so that the above is easier to set a
225  /// breakpoint on.
226  template <typename T1, typename... Ts>
227  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228  CheckFailed(Message);
229  if (OS)
230  WriteTs(V1, Vs...);
231  }
232 
233  /// A debug info check failed.
234  void DebugInfoCheckFailed(const Twine &Message) {
235  if (OS)
236  *OS << Message << '\n';
237  Broken |= TreatBrokenDebugInfoAsError;
238  BrokenDebugInfo = true;
239  }
240 
241  /// A debug info check failed (with values to print).
242  template <typename T1, typename... Ts>
243  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244  const Ts &... Vs) {
245  DebugInfoCheckFailed(Message);
246  if (OS)
247  WriteTs(V1, Vs...);
248  }
249 };
250 
251 } // namespace llvm
252 
253 namespace {
254 
255 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256  friend class InstVisitor<Verifier>;
257 
258  DominatorTree DT;
259 
260  /// \brief When verifying a basic block, keep track of all of the
261  /// instructions we have seen so far.
262  ///
263  /// This allows us to do efficient dominance checks for the case when an
264  /// instruction has an operand that is an instruction in the same block.
265  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266 
267  /// \brief Keep track of the metadata nodes that have been checked already.
269 
270  /// Keep track which DISubprogram is attached to which function.
271  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
272 
273  /// Track all DICompileUnits visited.
275 
276  /// \brief The result type for a landingpad.
277  Type *LandingPadResultTy;
278 
279  /// \brief Whether we've seen a call to @llvm.localescape in this function
280  /// already.
281  bool SawFrameEscape;
282 
283  /// Whether the current function has a DISubprogram attached to it.
284  bool HasDebugInfo = false;
285 
286  /// Stores the count of how many objects were passed to llvm.localescape for a
287  /// given function and the largest index passed to llvm.localrecover.
289 
290  // Maps catchswitches and cleanuppads that unwind to siblings to the
291  // terminators that indicate the unwind, used to detect cycles therein.
293 
294  /// Cache of constants visited in search of ConstantExprs.
295  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
296 
297  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298  SmallVector<const Function *, 4> DeoptimizeDeclarations;
299 
300  // Verify that this GlobalValue is only used in this module.
301  // This map is used to avoid visiting uses twice. We can arrive at a user
302  // twice, if they have multiple operands. In particular for very large
303  // constant expressions, we can arrive at a particular user many times.
304  SmallPtrSet<const Value *, 32> GlobalValueVisited;
305 
306  // Keeps track of duplicate function argument debug info.
308 
309  TBAAVerifier TBAAVerifyHelper;
310 
311  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
312 
313 public:
314  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
315  const Module &M)
316  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
317  SawFrameEscape(false), TBAAVerifyHelper(this) {
318  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319  }
320 
321  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
322 
323  bool verify(const Function &F) {
324  assert(F.getParent() == &M &&
325  "An instance of this class only works with a specific module!");
326 
327  // First ensure the function is well-enough formed to compute dominance
328  // information, and directly compute a dominance tree. We don't rely on the
329  // pass manager to provide this as it isolates us from a potentially
330  // out-of-date dominator tree and makes it significantly more complex to run
331  // this code outside of a pass manager.
332  // FIXME: It's really gross that we have to cast away constness here.
333  if (!F.empty())
334  DT.recalculate(const_cast<Function &>(F));
335 
336  for (const BasicBlock &BB : F) {
337  if (!BB.empty() && BB.back().isTerminator())
338  continue;
339 
340  if (OS) {
341  *OS << "Basic Block in function '" << F.getName()
342  << "' does not have terminator!\n";
343  BB.printAsOperand(*OS, true, MST);
344  *OS << "\n";
345  }
346  return false;
347  }
348 
349  Broken = false;
350  // FIXME: We strip const here because the inst visitor strips const.
351  visit(const_cast<Function &>(F));
352  verifySiblingFuncletUnwinds();
353  InstsInThisBlock.clear();
354  DebugFnArgs.clear();
355  LandingPadResultTy = nullptr;
356  SawFrameEscape = false;
357  SiblingFuncletInfo.clear();
358 
359  return !Broken;
360  }
361 
362  /// Verify the module that this instance of \c Verifier was initialized with.
363  bool verify() {
364  Broken = false;
365 
366  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367  for (const Function &F : M)
368  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
369  DeoptimizeDeclarations.push_back(&F);
370 
371  // Now that we've visited every function, verify that we never asked to
372  // recover a frame index that wasn't escaped.
373  verifyFrameRecoverIndices();
374  for (const GlobalVariable &GV : M.globals())
375  visitGlobalVariable(GV);
376 
377  for (const GlobalAlias &GA : M.aliases())
378  visitGlobalAlias(GA);
379 
380  for (const NamedMDNode &NMD : M.named_metadata())
381  visitNamedMDNode(NMD);
382 
383  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
384  visitComdat(SMEC.getValue());
385 
386  visitModuleFlags(M);
387  visitModuleIdents(M);
388 
389  verifyCompileUnits();
390 
391  verifyDeoptimizeCallingConvs();
392  DISubprogramAttachments.clear();
393  return !Broken;
394  }
395 
396 private:
397  // Verification methods...
398  void visitGlobalValue(const GlobalValue &GV);
399  void visitGlobalVariable(const GlobalVariable &GV);
400  void visitGlobalAlias(const GlobalAlias &GA);
401  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
402  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
403  const GlobalAlias &A, const Constant &C);
404  void visitNamedMDNode(const NamedMDNode &NMD);
405  void visitMDNode(const MDNode &MD);
406  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
407  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
408  void visitComdat(const Comdat &C);
409  void visitModuleIdents(const Module &M);
410  void visitModuleFlags(const Module &M);
411  void visitModuleFlag(const MDNode *Op,
413  SmallVectorImpl<const MDNode *> &Requirements);
414  void visitFunction(const Function &F);
415  void visitBasicBlock(BasicBlock &BB);
416  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
417  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
418 
419  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
420 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
421 #include "llvm/IR/Metadata.def"
422  void visitDIScope(const DIScope &N);
423  void visitDIVariable(const DIVariable &N);
424  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
425  void visitDITemplateParameter(const DITemplateParameter &N);
426 
427  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
428 
429  // InstVisitor overrides...
431  void visit(Instruction &I);
432 
433  void visitTruncInst(TruncInst &I);
434  void visitZExtInst(ZExtInst &I);
435  void visitSExtInst(SExtInst &I);
436  void visitFPTruncInst(FPTruncInst &I);
437  void visitFPExtInst(FPExtInst &I);
438  void visitFPToUIInst(FPToUIInst &I);
439  void visitFPToSIInst(FPToSIInst &I);
440  void visitUIToFPInst(UIToFPInst &I);
441  void visitSIToFPInst(SIToFPInst &I);
442  void visitIntToPtrInst(IntToPtrInst &I);
443  void visitPtrToIntInst(PtrToIntInst &I);
444  void visitBitCastInst(BitCastInst &I);
445  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
446  void visitPHINode(PHINode &PN);
447  void visitBinaryOperator(BinaryOperator &B);
448  void visitICmpInst(ICmpInst &IC);
449  void visitFCmpInst(FCmpInst &FC);
450  void visitExtractElementInst(ExtractElementInst &EI);
451  void visitInsertElementInst(InsertElementInst &EI);
452  void visitShuffleVectorInst(ShuffleVectorInst &EI);
453  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
454  void visitCallInst(CallInst &CI);
455  void visitInvokeInst(InvokeInst &II);
456  void visitGetElementPtrInst(GetElementPtrInst &GEP);
457  void visitLoadInst(LoadInst &LI);
458  void visitStoreInst(StoreInst &SI);
459  void verifyDominatesUse(Instruction &I, unsigned i);
460  void visitInstruction(Instruction &I);
461  void visitTerminatorInst(TerminatorInst &I);
462  void visitBranchInst(BranchInst &BI);
463  void visitReturnInst(ReturnInst &RI);
464  void visitSwitchInst(SwitchInst &SI);
465  void visitIndirectBrInst(IndirectBrInst &BI);
466  void visitSelectInst(SelectInst &SI);
467  void visitUserOp1(Instruction &I);
468  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
469  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
470  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
471  template <class DbgIntrinsicTy>
472  void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
473  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
474  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
475  void visitFenceInst(FenceInst &FI);
476  void visitAllocaInst(AllocaInst &AI);
477  void visitExtractValueInst(ExtractValueInst &EVI);
478  void visitInsertValueInst(InsertValueInst &IVI);
479  void visitEHPadPredecessors(Instruction &I);
480  void visitLandingPadInst(LandingPadInst &LPI);
481  void visitResumeInst(ResumeInst &RI);
482  void visitCatchPadInst(CatchPadInst &CPI);
483  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
484  void visitCleanupPadInst(CleanupPadInst &CPI);
485  void visitFuncletPadInst(FuncletPadInst &FPI);
486  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
487  void visitCleanupReturnInst(CleanupReturnInst &CRI);
488 
489  void verifyCallSite(CallSite CS);
490  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
491  void verifySwiftErrorValue(const Value *SwiftErrorVal);
492  void verifyMustTailCall(CallInst &CI);
493  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
494  unsigned ArgNo, std::string &Suffix);
495  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
496  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
497  const Value *V);
498  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
499  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
500  const Value *V);
501  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
502 
503  void visitConstantExprsRecursively(const Constant *EntryC);
504  void visitConstantExpr(const ConstantExpr *CE);
505  void verifyStatepoint(ImmutableCallSite CS);
506  void verifyFrameRecoverIndices();
507  void verifySiblingFuncletUnwinds();
508 
509  void verifyFragmentExpression(const DbgInfoIntrinsic &I);
510  void verifyFnArgs(const DbgInfoIntrinsic &I);
511 
512  /// Module-level debug info verification...
513  void verifyCompileUnits();
514 
515  /// Module-level verification that all @llvm.experimental.deoptimize
516  /// declarations share the same calling convention.
517  void verifyDeoptimizeCallingConvs();
518 };
519 
520 } // end anonymous namespace
521 
522 /// We know that cond should be true, if not print an error message.
523 #define Assert(C, ...) \
524  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
525 
526 /// We know that a debug info condition should be true, if not print
527 /// an error message.
528 #define AssertDI(C, ...) \
529  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
530 
531 void Verifier::visit(Instruction &I) {
532  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
533  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
535 }
536 
537 // Helper to recursively iterate over indirect users. By
538 // returning false, the callback can ask to stop recursing
539 // further.
540 static void forEachUser(const Value *User,
542  llvm::function_ref<bool(const Value *)> Callback) {
543  if (!Visited.insert(User).second)
544  return;
545  for (const Value *TheNextUser : User->materialized_users())
546  if (Callback(TheNextUser))
547  forEachUser(TheNextUser, Visited, Callback);
548 }
549 
550 void Verifier::visitGlobalValue(const GlobalValue &GV) {
552  "Global is external, but doesn't have external or weak linkage!", &GV);
553 
555  "huge alignment values are unsupported", &GV);
556  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
557  "Only global variables can have appending linkage!", &GV);
558 
559  if (GV.hasAppendingLinkage()) {
560  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
561  Assert(GVar && GVar->getValueType()->isArrayTy(),
562  "Only global arrays can have appending linkage!", GVar);
563  }
564 
565  if (GV.isDeclarationForLinker())
566  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
567 
568  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
569  if (const Instruction *I = dyn_cast<Instruction>(V)) {
570  if (!I->getParent() || !I->getParent()->getParent())
571  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
572  I);
573  else if (I->getParent()->getParent()->getParent() != &M)
574  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
575  I->getParent()->getParent(),
576  I->getParent()->getParent()->getParent());
577  return false;
578  } else if (const Function *F = dyn_cast<Function>(V)) {
579  if (F->getParent() != &M)
580  CheckFailed("Global is used by function in a different module", &GV, &M,
581  F, F->getParent());
582  return false;
583  }
584  return true;
585  });
586 }
587 
588 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
589  if (GV.hasInitializer()) {
590  Assert(GV.getInitializer()->getType() == GV.getValueType(),
591  "Global variable initializer type does not match global "
592  "variable type!",
593  &GV);
594  // If the global has common linkage, it must have a zero initializer and
595  // cannot be constant.
596  if (GV.hasCommonLinkage()) {
598  "'common' global must have a zero initializer!", &GV);
599  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
600  &GV);
601  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
602  }
603  }
604 
605  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
606  GV.getName() == "llvm.global_dtors")) {
608  "invalid linkage for intrinsic global variable", &GV);
609  // Don't worry about emitting an error for it not being an array,
610  // visitGlobalValue will complain on appending non-array.
611  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
612  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
613  PointerType *FuncPtrTy =
615  // FIXME: Reject the 2-field form in LLVM 4.0.
616  Assert(STy &&
617  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
618  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
619  STy->getTypeAtIndex(1) == FuncPtrTy,
620  "wrong type for intrinsic global variable", &GV);
621  if (STy->getNumElements() == 3) {
622  Type *ETy = STy->getTypeAtIndex(2);
623  Assert(ETy->isPointerTy() &&
624  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
625  "wrong type for intrinsic global variable", &GV);
626  }
627  }
628  }
629 
630  if (GV.hasName() && (GV.getName() == "llvm.used" ||
631  GV.getName() == "llvm.compiler.used")) {
633  "invalid linkage for intrinsic global variable", &GV);
634  Type *GVType = GV.getValueType();
635  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
636  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
637  Assert(PTy, "wrong type for intrinsic global variable", &GV);
638  if (GV.hasInitializer()) {
639  const Constant *Init = GV.getInitializer();
640  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
641  Assert(InitArray, "wrong initalizer for intrinsic global variable",
642  Init);
643  for (Value *Op : InitArray->operands()) {
644  Value *V = Op->stripPointerCastsNoFollowAliases();
645  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
646  isa<GlobalAlias>(V),
647  "invalid llvm.used member", V);
648  Assert(V->hasName(), "members of llvm.used must be named", V);
649  }
650  }
651  }
652  }
653 
655  (GV.isDeclaration() && GV.hasExternalLinkage()) ||
657  "Global is marked as dllimport, but not external", &GV);
658 
659  // Visit any debug info attachments.
662  for (auto *MD : MDs) {
663  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
664  visitDIGlobalVariableExpression(*GVE);
665  else
666  AssertDI(false, "!dbg attachment of global variable must be a "
667  "DIGlobalVariableExpression");
668  }
669 
670  if (!GV.hasInitializer()) {
671  visitGlobalValue(GV);
672  return;
673  }
674 
675  // Walk any aggregate initializers looking for bitcasts between address spaces
676  visitConstantExprsRecursively(GV.getInitializer());
677 
678  visitGlobalValue(GV);
679 }
680 
681 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
683  Visited.insert(&GA);
684  visitAliaseeSubExpr(Visited, GA, C);
685 }
686 
687 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
688  const GlobalAlias &GA, const Constant &C) {
689  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
690  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
691  &GA);
692 
693  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
694  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
695 
696  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
697  &GA);
698  } else {
699  // Only continue verifying subexpressions of GlobalAliases.
700  // Do not recurse into global initializers.
701  return;
702  }
703  }
704 
705  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
706  visitConstantExprsRecursively(CE);
707 
708  for (const Use &U : C.operands()) {
709  Value *V = &*U;
710  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
711  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
712  else if (const auto *C2 = dyn_cast<Constant>(V))
713  visitAliaseeSubExpr(Visited, GA, *C2);
714  }
715 }
716 
717 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
719  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
720  "weak_odr, or external linkage!",
721  &GA);
722  const Constant *Aliasee = GA.getAliasee();
723  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
724  Assert(GA.getType() == Aliasee->getType(),
725  "Alias and aliasee types should match!", &GA);
726 
727  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
728  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
729 
730  visitAliaseeSubExpr(GA, *Aliasee);
731 
732  visitGlobalValue(GA);
733 }
734 
735 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
736  // There used to be various other llvm.dbg.* nodes, but we don't support
737  // upgrading them and we want to reserve the namespace for future uses.
738  if (NMD.getName().startswith("llvm.dbg."))
739  AssertDI(NMD.getName() == "llvm.dbg.cu",
740  "unrecognized named metadata node in the llvm.dbg namespace",
741  &NMD);
742  for (const MDNode *MD : NMD.operands()) {
743  if (NMD.getName() == "llvm.dbg.cu")
744  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
745 
746  if (!MD)
747  continue;
748 
749  visitMDNode(*MD);
750  }
751 }
752 
753 void Verifier::visitMDNode(const MDNode &MD) {
754  // Only visit each node once. Metadata can be mutually recursive, so this
755  // avoids infinite recursion here, as well as being an optimization.
756  if (!MDNodes.insert(&MD).second)
757  return;
758 
759  switch (MD.getMetadataID()) {
760  default:
761  llvm_unreachable("Invalid MDNode subclass");
762  case Metadata::MDTupleKind:
763  break;
764 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
765  case Metadata::CLASS##Kind: \
766  visit##CLASS(cast<CLASS>(MD)); \
767  break;
768 #include "llvm/IR/Metadata.def"
769  }
770 
771  for (const Metadata *Op : MD.operands()) {
772  if (!Op)
773  continue;
774  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
775  &MD, Op);
776  if (auto *N = dyn_cast<MDNode>(Op)) {
777  visitMDNode(*N);
778  continue;
779  }
780  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
781  visitValueAsMetadata(*V, nullptr);
782  continue;
783  }
784  }
785 
786  // Check these last, so we diagnose problems in operands first.
787  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
788  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
789 }
790 
791 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
792  Assert(MD.getValue(), "Expected valid value", &MD);
793  Assert(!MD.getValue()->getType()->isMetadataTy(),
794  "Unexpected metadata round-trip through values", &MD, MD.getValue());
795 
796  auto *L = dyn_cast<LocalAsMetadata>(&MD);
797  if (!L)
798  return;
799 
800  Assert(F, "function-local metadata used outside a function", L);
801 
802  // If this was an instruction, bb, or argument, verify that it is in the
803  // function that we expect.
804  Function *ActualF = nullptr;
805  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
806  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
807  ActualF = I->getParent()->getParent();
808  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
809  ActualF = BB->getParent();
810  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
811  ActualF = A->getParent();
812  assert(ActualF && "Unimplemented function local metadata case!");
813 
814  Assert(ActualF == F, "function-local metadata used in wrong function", L);
815 }
816 
817 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
818  Metadata *MD = MDV.getMetadata();
819  if (auto *N = dyn_cast<MDNode>(MD)) {
820  visitMDNode(*N);
821  return;
822  }
823 
824  // Only visit each node once. Metadata can be mutually recursive, so this
825  // avoids infinite recursion here, as well as being an optimization.
826  if (!MDNodes.insert(MD).second)
827  return;
828 
829  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
830  visitValueAsMetadata(*V, F);
831 }
832 
833 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
834 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
835 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
836 
837 void Verifier::visitDILocation(const DILocation &N) {
838  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
839  "location requires a valid scope", &N, N.getRawScope());
840  if (auto *IA = N.getRawInlinedAt())
841  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
842 }
843 
844 void Verifier::visitGenericDINode(const GenericDINode &N) {
845  AssertDI(N.getTag(), "invalid tag", &N);
846 }
847 
848 void Verifier::visitDIScope(const DIScope &N) {
849  if (auto *F = N.getRawFile())
850  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
851 }
852 
853 void Verifier::visitDISubrange(const DISubrange &N) {
854  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
855  AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
856 }
857 
858 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
859  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
860 }
861 
862 void Verifier::visitDIBasicType(const DIBasicType &N) {
863  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
864  N.getTag() == dwarf::DW_TAG_unspecified_type,
865  "invalid tag", &N);
866 }
867 
868 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
869  // Common scope checks.
870  visitDIScope(N);
871 
872  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
873  N.getTag() == dwarf::DW_TAG_pointer_type ||
874  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
875  N.getTag() == dwarf::DW_TAG_reference_type ||
876  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
877  N.getTag() == dwarf::DW_TAG_const_type ||
878  N.getTag() == dwarf::DW_TAG_volatile_type ||
879  N.getTag() == dwarf::DW_TAG_restrict_type ||
880  N.getTag() == dwarf::DW_TAG_atomic_type ||
881  N.getTag() == dwarf::DW_TAG_member ||
882  N.getTag() == dwarf::DW_TAG_inheritance ||
883  N.getTag() == dwarf::DW_TAG_friend,
884  "invalid tag", &N);
885  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
886  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
887  N.getRawExtraData());
888  }
889 
890  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
891  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
892  N.getRawBaseType());
893 
894  if (N.getDWARFAddressSpace()) {
895  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
896  N.getTag() == dwarf::DW_TAG_reference_type,
897  "DWARF address space only applies to pointer or reference types",
898  &N);
899  }
900 }
901 
902 static bool hasConflictingReferenceFlags(unsigned Flags) {
903  return (Flags & DINode::FlagLValueReference) &&
904  (Flags & DINode::FlagRValueReference);
905 }
906 
907 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
908  auto *Params = dyn_cast<MDTuple>(&RawParams);
909  AssertDI(Params, "invalid template params", &N, &RawParams);
910  for (Metadata *Op : Params->operands()) {
911  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
912  &N, Params, Op);
913  }
914 }
915 
916 void Verifier::visitDICompositeType(const DICompositeType &N) {
917  // Common scope checks.
918  visitDIScope(N);
919 
920  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
921  N.getTag() == dwarf::DW_TAG_structure_type ||
922  N.getTag() == dwarf::DW_TAG_union_type ||
923  N.getTag() == dwarf::DW_TAG_enumeration_type ||
924  N.getTag() == dwarf::DW_TAG_class_type,
925  "invalid tag", &N);
926 
927  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
928  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
929  N.getRawBaseType());
930 
931  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
932  "invalid composite elements", &N, N.getRawElements());
933  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
934  N.getRawVTableHolder());
936  "invalid reference flags", &N);
937  if (auto *Params = N.getRawTemplateParams())
938  visitTemplateParams(N, *Params);
939 
940  if (N.getTag() == dwarf::DW_TAG_class_type ||
941  N.getTag() == dwarf::DW_TAG_union_type) {
942  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
943  "class/union requires a filename", &N, N.getFile());
944  }
945 }
946 
947 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
948  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
949  if (auto *Types = N.getRawTypeArray()) {
950  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
951  for (Metadata *Ty : N.getTypeArray()->operands()) {
952  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
953  }
954  }
956  "invalid reference flags", &N);
957 }
958 
959 void Verifier::visitDIFile(const DIFile &N) {
960  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
962  N.getChecksum().empty()), "invalid checksum kind", &N);
963 }
964 
965 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
966  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
967  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
968 
969  // Don't bother verifying the compilation directory or producer string
970  // as those could be empty.
971  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
972  N.getRawFile());
973  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
974  N.getFile());
975 
977  "invalid emission kind", &N);
978 
979  if (auto *Array = N.getRawEnumTypes()) {
980  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
981  for (Metadata *Op : N.getEnumTypes()->operands()) {
982  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
983  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
984  "invalid enum type", &N, N.getEnumTypes(), Op);
985  }
986  }
987  if (auto *Array = N.getRawRetainedTypes()) {
988  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
989  for (Metadata *Op : N.getRetainedTypes()->operands()) {
990  AssertDI(Op && (isa<DIType>(Op) ||
991  (isa<DISubprogram>(Op) &&
992  !cast<DISubprogram>(Op)->isDefinition())),
993  "invalid retained type", &N, Op);
994  }
995  }
996  if (auto *Array = N.getRawGlobalVariables()) {
997  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
998  for (Metadata *Op : N.getGlobalVariables()->operands()) {
999  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1000  "invalid global variable ref", &N, Op);
1001  }
1002  }
1003  if (auto *Array = N.getRawImportedEntities()) {
1004  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1005  for (Metadata *Op : N.getImportedEntities()->operands()) {
1006  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1007  &N, Op);
1008  }
1009  }
1010  if (auto *Array = N.getRawMacros()) {
1011  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1012  for (Metadata *Op : N.getMacros()->operands()) {
1013  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1014  }
1015  }
1016  CUVisited.insert(&N);
1017 }
1018 
1019 void Verifier::visitDISubprogram(const DISubprogram &N) {
1020  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1021  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1022  if (auto *F = N.getRawFile())
1023  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1024  else
1025  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1026  if (auto *T = N.getRawType())
1027  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1028  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1029  N.getRawContainingType());
1030  if (auto *Params = N.getRawTemplateParams())
1031  visitTemplateParams(N, *Params);
1032  if (auto *S = N.getRawDeclaration())
1033  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1034  "invalid subprogram declaration", &N, S);
1035  if (auto *RawVars = N.getRawVariables()) {
1036  auto *Vars = dyn_cast<MDTuple>(RawVars);
1037  AssertDI(Vars, "invalid variable list", &N, RawVars);
1038  for (Metadata *Op : Vars->operands()) {
1039  AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1040  Vars, Op);
1041  }
1042  }
1043  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1044  "invalid reference flags", &N);
1045 
1046  auto *Unit = N.getRawUnit();
1047  if (N.isDefinition()) {
1048  // Subprogram definitions (not part of the type hierarchy).
1049  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1050  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1051  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1052  } else {
1053  // Subprogram declarations (part of the type hierarchy).
1054  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1055  }
1056 
1057  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1058  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1059  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1060  for (Metadata *Op : ThrownTypes->operands())
1061  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1062  Op);
1063  }
1064 }
1065 
1066 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1067  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1068  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1069  "invalid local scope", &N, N.getRawScope());
1070 }
1071 
1072 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1073  visitDILexicalBlockBase(N);
1074 
1075  AssertDI(N.getLine() || !N.getColumn(),
1076  "cannot have column info without line info", &N);
1077 }
1078 
1079 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1080  visitDILexicalBlockBase(N);
1081 }
1082 
1083 void Verifier::visitDINamespace(const DINamespace &N) {
1084  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1085  if (auto *S = N.getRawScope())
1086  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1087 }
1088 
1089 void Verifier::visitDIMacro(const DIMacro &N) {
1092  "invalid macinfo type", &N);
1093  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1094  if (!N.getValue().empty()) {
1095  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1096  }
1097 }
1098 
1099 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1101  "invalid macinfo type", &N);
1102  if (auto *F = N.getRawFile())
1103  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1104 
1105  if (auto *Array = N.getRawElements()) {
1106  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1107  for (Metadata *Op : N.getElements()->operands()) {
1108  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1109  }
1110  }
1111 }
1112 
1113 void Verifier::visitDIModule(const DIModule &N) {
1114  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1115  AssertDI(!N.getName().empty(), "anonymous module", &N);
1116 }
1117 
1118 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1119  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1120 }
1121 
1122 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1123  visitDITemplateParameter(N);
1124 
1125  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1126  &N);
1127 }
1128 
1129 void Verifier::visitDITemplateValueParameter(
1130  const DITemplateValueParameter &N) {
1131  visitDITemplateParameter(N);
1132 
1133  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1134  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1135  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1136  "invalid tag", &N);
1137 }
1138 
1139 void Verifier::visitDIVariable(const DIVariable &N) {
1140  if (auto *S = N.getRawScope())
1141  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1142  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1143  if (auto *F = N.getRawFile())
1144  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1145 }
1146 
1147 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1148  // Checks common to all variables.
1149  visitDIVariable(N);
1150 
1151  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1152  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1153  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1154  AssertDI(isa<DIDerivedType>(Member),
1155  "invalid static data member declaration", &N, Member);
1156  }
1157 }
1158 
1159 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1160  // Checks common to all variables.
1161  visitDIVariable(N);
1162 
1163  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1164  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1165  "local variable requires a valid scope", &N, N.getRawScope());
1166 }
1167 
1168 void Verifier::visitDIExpression(const DIExpression &N) {
1169  AssertDI(N.isValid(), "invalid expression", &N);
1170 }
1171 
1172 void Verifier::visitDIGlobalVariableExpression(
1173  const DIGlobalVariableExpression &GVE) {
1174  AssertDI(GVE.getVariable(), "missing variable");
1175  if (auto *Var = GVE.getVariable())
1176  visitDIGlobalVariable(*Var);
1177  if (auto *Expr = GVE.getExpression())
1178  visitDIExpression(*Expr);
1179 }
1180 
1181 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1182  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1183  if (auto *T = N.getRawType())
1184  AssertDI(isType(T), "invalid type ref", &N, T);
1185  if (auto *F = N.getRawFile())
1186  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1187 }
1188 
1189 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1190  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1191  N.getTag() == dwarf::DW_TAG_imported_declaration,
1192  "invalid tag", &N);
1193  if (auto *S = N.getRawScope())
1194  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1195  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1196  N.getRawEntity());
1197 }
1198 
1199 void Verifier::visitComdat(const Comdat &C) {
1200  // The Module is invalid if the GlobalValue has private linkage. Entities
1201  // with private linkage don't have entries in the symbol table.
1202  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1203  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1204  GV);
1205 }
1206 
1207 void Verifier::visitModuleIdents(const Module &M) {
1208  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1209  if (!Idents)
1210  return;
1211 
1212  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1213  // Scan each llvm.ident entry and make sure that this requirement is met.
1214  for (const MDNode *N : Idents->operands()) {
1215  Assert(N->getNumOperands() == 1,
1216  "incorrect number of operands in llvm.ident metadata", N);
1217  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1218  ("invalid value for llvm.ident metadata entry operand"
1219  "(the operand should be a string)"),
1220  N->getOperand(0));
1221  }
1222 }
1223 
1224 void Verifier::visitModuleFlags(const Module &M) {
1226  if (!Flags) return;
1227 
1228  // Scan each flag, and track the flags and requirements.
1230  SmallVector<const MDNode*, 16> Requirements;
1231  for (const MDNode *MDN : Flags->operands())
1232  visitModuleFlag(MDN, SeenIDs, Requirements);
1233 
1234  // Validate that the requirements in the module are valid.
1235  for (const MDNode *Requirement : Requirements) {
1236  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1237  const Metadata *ReqValue = Requirement->getOperand(1);
1238 
1239  const MDNode *Op = SeenIDs.lookup(Flag);
1240  if (!Op) {
1241  CheckFailed("invalid requirement on flag, flag is not present in module",
1242  Flag);
1243  continue;
1244  }
1245 
1246  if (Op->getOperand(2) != ReqValue) {
1247  CheckFailed(("invalid requirement on flag, "
1248  "flag does not have the required value"),
1249  Flag);
1250  continue;
1251  }
1252  }
1253 }
1254 
1255 void
1256 Verifier::visitModuleFlag(const MDNode *Op,
1258  SmallVectorImpl<const MDNode *> &Requirements) {
1259  // Each module flag should have three arguments, the merge behavior (a
1260  // constant int), the flag ID (an MDString), and the value.
1261  Assert(Op->getNumOperands() == 3,
1262  "incorrect number of operands in module flag", Op);
1264  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1265  Assert(
1266  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1267  "invalid behavior operand in module flag (expected constant integer)",
1268  Op->getOperand(0));
1269  Assert(false,
1270  "invalid behavior operand in module flag (unexpected constant)",
1271  Op->getOperand(0));
1272  }
1273  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1274  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1275  Op->getOperand(1));
1276 
1277  // Sanity check the values for behaviors with additional requirements.
1278  switch (MFB) {
1279  case Module::Error:
1280  case Module::Warning:
1281  case Module::Override:
1282  // These behavior types accept any value.
1283  break;
1284 
1285  case Module::Max: {
1286  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1287  "invalid value for 'max' module flag (expected constant integer)",
1288  Op->getOperand(2));
1289  break;
1290  }
1291 
1292  case Module::Require: {
1293  // The value should itself be an MDNode with two operands, a flag ID (an
1294  // MDString), and a value.
1295  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1296  Assert(Value && Value->getNumOperands() == 2,
1297  "invalid value for 'require' module flag (expected metadata pair)",
1298  Op->getOperand(2));
1299  Assert(isa<MDString>(Value->getOperand(0)),
1300  ("invalid value for 'require' module flag "
1301  "(first value operand should be a string)"),
1302  Value->getOperand(0));
1303 
1304  // Append it to the list of requirements, to check once all module flags are
1305  // scanned.
1306  Requirements.push_back(Value);
1307  break;
1308  }
1309 
1310  case Module::Append:
1311  case Module::AppendUnique: {
1312  // These behavior types require the operand be an MDNode.
1313  Assert(isa<MDNode>(Op->getOperand(2)),
1314  "invalid value for 'append'-type module flag "
1315  "(expected a metadata node)",
1316  Op->getOperand(2));
1317  break;
1318  }
1319  }
1320 
1321  // Unless this is a "requires" flag, check the ID is unique.
1322  if (MFB != Module::Require) {
1323  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1324  Assert(Inserted,
1325  "module flag identifiers must be unique (or of 'require' type)", ID);
1326  }
1327 
1328  if (ID->getString() == "wchar_size") {
1330  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1331  Assert(Value, "wchar_size metadata requires constant integer argument");
1332  }
1333 
1334  if (ID->getString() == "Linker Options") {
1335  // If the llvm.linker.options named metadata exists, we assume that the
1336  // bitcode reader has upgraded the module flag. Otherwise the flag might
1337  // have been created by a client directly.
1338  Assert(M.getNamedMetadata("llvm.linker.options"),
1339  "'Linker Options' named metadata no longer supported");
1340  }
1341 }
1342 
1343 /// Return true if this attribute kind only applies to functions.
1345  switch (Kind) {
1346  case Attribute::NoReturn:
1347  case Attribute::NoUnwind:
1348  case Attribute::NoInline:
1349  case Attribute::AlwaysInline:
1350  case Attribute::OptimizeForSize:
1351  case Attribute::StackProtect:
1352  case Attribute::StackProtectReq:
1353  case Attribute::StackProtectStrong:
1354  case Attribute::SafeStack:
1355  case Attribute::NoRedZone:
1356  case Attribute::NoImplicitFloat:
1357  case Attribute::Naked:
1358  case Attribute::InlineHint:
1359  case Attribute::StackAlignment:
1360  case Attribute::UWTable:
1361  case Attribute::NonLazyBind:
1362  case Attribute::ReturnsTwice:
1363  case Attribute::SanitizeAddress:
1364  case Attribute::SanitizeThread:
1365  case Attribute::SanitizeMemory:
1366  case Attribute::MinSize:
1367  case Attribute::NoDuplicate:
1368  case Attribute::Builtin:
1369  case Attribute::NoBuiltin:
1370  case Attribute::Cold:
1371  case Attribute::OptimizeNone:
1372  case Attribute::JumpTable:
1373  case Attribute::Convergent:
1374  case Attribute::ArgMemOnly:
1375  case Attribute::NoRecurse:
1376  case Attribute::InaccessibleMemOnly:
1377  case Attribute::InaccessibleMemOrArgMemOnly:
1378  case Attribute::AllocSize:
1379  case Attribute::Speculatable:
1380  return true;
1381  default:
1382  break;
1383  }
1384  return false;
1385 }
1386 
1387 /// Return true if this is a function attribute that can also appear on
1388 /// arguments.
1390  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1391  Kind == Attribute::ReadNone;
1392 }
1393 
1394 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1395  const Value *V) {
1396  for (Attribute A : Attrs) {
1397  if (A.isStringAttribute())
1398  continue;
1399 
1400  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1401  if (!IsFunction) {
1402  CheckFailed("Attribute '" + A.getAsString() +
1403  "' only applies to functions!",
1404  V);
1405  return;
1406  }
1407  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1408  CheckFailed("Attribute '" + A.getAsString() +
1409  "' does not apply to functions!",
1410  V);
1411  return;
1412  }
1413  }
1414 }
1415 
1416 // VerifyParameterAttrs - Check the given attributes for an argument or return
1417 // value of the specified type. The value V is printed in error messages.
1418 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1419  const Value *V) {
1420  if (!Attrs.hasAttributes())
1421  return;
1422 
1423  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1424 
1425  // Check for mutually incompatible attributes. Only inreg is compatible with
1426  // sret.
1427  unsigned AttrCount = 0;
1428  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1429  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1430  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1431  Attrs.hasAttribute(Attribute::InReg);
1432  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1433  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1434  "and 'sret' are incompatible!",
1435  V);
1436 
1437  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1438  Attrs.hasAttribute(Attribute::ReadOnly)),
1439  "Attributes "
1440  "'inalloca and readonly' are incompatible!",
1441  V);
1442 
1443  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1444  Attrs.hasAttribute(Attribute::Returned)),
1445  "Attributes "
1446  "'sret and returned' are incompatible!",
1447  V);
1448 
1449  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1450  Attrs.hasAttribute(Attribute::SExt)),
1451  "Attributes "
1452  "'zeroext and signext' are incompatible!",
1453  V);
1454 
1455  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1456  Attrs.hasAttribute(Attribute::ReadOnly)),
1457  "Attributes "
1458  "'readnone and readonly' are incompatible!",
1459  V);
1460 
1461  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1462  Attrs.hasAttribute(Attribute::WriteOnly)),
1463  "Attributes "
1464  "'readnone and writeonly' are incompatible!",
1465  V);
1466 
1467  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1468  Attrs.hasAttribute(Attribute::WriteOnly)),
1469  "Attributes "
1470  "'readonly and writeonly' are incompatible!",
1471  V);
1472 
1473  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1474  Attrs.hasAttribute(Attribute::AlwaysInline)),
1475  "Attributes "
1476  "'noinline and alwaysinline' are incompatible!",
1477  V);
1478 
1479  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1480  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1481  "Wrong types for attribute: " +
1482  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1483  V);
1484 
1485  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1486  SmallPtrSet<Type*, 4> Visited;
1487  if (!PTy->getElementType()->isSized(&Visited)) {
1488  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1489  !Attrs.hasAttribute(Attribute::InAlloca),
1490  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1491  V);
1492  }
1493  if (!isa<PointerType>(PTy->getElementType()))
1494  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1495  "Attribute 'swifterror' only applies to parameters "
1496  "with pointer to pointer type!",
1497  V);
1498  } else {
1499  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1500  "Attribute 'byval' only applies to parameters with pointer type!",
1501  V);
1502  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1503  "Attribute 'swifterror' only applies to parameters "
1504  "with pointer type!",
1505  V);
1506  }
1507 }
1508 
1509 // Check parameter attributes against a function type.
1510 // The value V is printed in error messages.
1511 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1512  const Value *V) {
1513  if (Attrs.isEmpty())
1514  return;
1515 
1516  bool SawNest = false;
1517  bool SawReturned = false;
1518  bool SawSRet = false;
1519  bool SawSwiftSelf = false;
1520  bool SawSwiftError = false;
1521 
1522  // Verify return value attributes.
1523  AttributeSet RetAttrs = Attrs.getRetAttributes();
1524  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1525  !RetAttrs.hasAttribute(Attribute::Nest) &&
1526  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1527  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1528  !RetAttrs.hasAttribute(Attribute::Returned) &&
1529  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1530  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1531  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1532  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1533  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1534  "values!",
1535  V);
1536  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1537  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1538  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1539  "Attribute '" + RetAttrs.getAsString() +
1540  "' does not apply to function returns",
1541  V);
1542  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1543 
1544  // Verify parameter attributes.
1545  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1546  Type *Ty = FT->getParamType(i);
1547  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1548 
1549  verifyParameterAttrs(ArgAttrs, Ty, V);
1550 
1551  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1552  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1553  SawNest = true;
1554  }
1555 
1556  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1557  Assert(!SawReturned, "More than one parameter has attribute returned!",
1558  V);
1560  "Incompatible argument and return types for 'returned' attribute",
1561  V);
1562  SawReturned = true;
1563  }
1564 
1565  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1566  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1567  Assert(i == 0 || i == 1,
1568  "Attribute 'sret' is not on first or second parameter!", V);
1569  SawSRet = true;
1570  }
1571 
1572  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1573  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1574  SawSwiftSelf = true;
1575  }
1576 
1577  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1578  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1579  V);
1580  SawSwiftError = true;
1581  }
1582 
1583  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1584  Assert(i == FT->getNumParams() - 1,
1585  "inalloca isn't on the last parameter!", V);
1586  }
1587  }
1588 
1590  return;
1591 
1592  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1593 
1594  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1595  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1596  "Attributes 'readnone and readonly' are incompatible!", V);
1597 
1598  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1599  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1600  "Attributes 'readnone and writeonly' are incompatible!", V);
1601 
1602  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1603  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1604  "Attributes 'readonly and writeonly' are incompatible!", V);
1605 
1606  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1607  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1608  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1609  "incompatible!",
1610  V);
1611 
1612  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1613  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1614  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1615 
1616  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1617  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1618  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1619 
1620  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1621  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1622  "Attribute 'optnone' requires 'noinline'!", V);
1623 
1624  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1625  "Attributes 'optsize and optnone' are incompatible!", V);
1626 
1627  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1628  "Attributes 'minsize and optnone' are incompatible!", V);
1629  }
1630 
1631  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1632  const GlobalValue *GV = cast<GlobalValue>(V);
1634  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1635  }
1636 
1637  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1638  std::pair<unsigned, Optional<unsigned>> Args =
1640 
1641  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1642  if (ParamNo >= FT->getNumParams()) {
1643  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1644  return false;
1645  }
1646 
1647  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1648  CheckFailed("'allocsize' " + Name +
1649  " argument must refer to an integer parameter",
1650  V);
1651  return false;
1652  }
1653 
1654  return true;
1655  };
1656 
1657  if (!CheckParam("element size", Args.first))
1658  return;
1659 
1660  if (Args.second && !CheckParam("number of elements", *Args.second))
1661  return;
1662  }
1663 }
1664 
1665 void Verifier::verifyFunctionMetadata(
1666  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1667  for (const auto &Pair : MDs) {
1668  if (Pair.first == LLVMContext::MD_prof) {
1669  MDNode *MD = Pair.second;
1670  Assert(MD->getNumOperands() >= 2,
1671  "!prof annotations should have no less than 2 operands", MD);
1672 
1673  // Check first operand.
1674  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1675  MD);
1676  Assert(isa<MDString>(MD->getOperand(0)),
1677  "expected string with name of the !prof annotation", MD);
1678  MDString *MDS = cast<MDString>(MD->getOperand(0));
1679  StringRef ProfName = MDS->getString();
1680  Assert(ProfName.equals("function_entry_count"),
1681  "first operand should be 'function_entry_count'", MD);
1682 
1683  // Check second operand.
1684  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1685  MD);
1686  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1687  "expected integer argument to function_entry_count", MD);
1688  }
1689  }
1690 }
1691 
1692 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1693  if (!ConstantExprVisited.insert(EntryC).second)
1694  return;
1695 
1697  Stack.push_back(EntryC);
1698 
1699  while (!Stack.empty()) {
1700  const Constant *C = Stack.pop_back_val();
1701 
1702  // Check this constant expression.
1703  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1704  visitConstantExpr(CE);
1705 
1706  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1707  // Global Values get visited separately, but we do need to make sure
1708  // that the global value is in the correct module
1709  Assert(GV->getParent() == &M, "Referencing global in another module!",
1710  EntryC, &M, GV, GV->getParent());
1711  continue;
1712  }
1713 
1714  // Visit all sub-expressions.
1715  for (const Use &U : C->operands()) {
1716  const auto *OpC = dyn_cast<Constant>(U);
1717  if (!OpC)
1718  continue;
1719  if (!ConstantExprVisited.insert(OpC).second)
1720  continue;
1721  Stack.push_back(OpC);
1722  }
1723  }
1724 }
1725 
1726 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1727  if (CE->getOpcode() == Instruction::BitCast)
1728  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1729  CE->getType()),
1730  "Invalid bitcast", CE);
1731 
1732  if (CE->getOpcode() == Instruction::IntToPtr ||
1733  CE->getOpcode() == Instruction::PtrToInt) {
1734  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1735  ? CE->getType()
1736  : CE->getOperand(0)->getType();
1737  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1738  ? "inttoptr not supported for non-integral pointers"
1739  : "ptrtoint not supported for non-integral pointers";
1740  Assert(
1741  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1742  Msg);
1743  }
1744 }
1745 
1746 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1747  // There shouldn't be more attribute sets than there are parameters plus the
1748  // function and return value.
1749  return Attrs.getNumAttrSets() <= Params + 2;
1750 }
1751 
1752 /// Verify that statepoint intrinsic is well formed.
1753 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1754  assert(CS.getCalledFunction() &&
1756  Intrinsic::experimental_gc_statepoint);
1757 
1758  const Instruction &CI = *CS.getInstruction();
1759 
1760  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1761  !CS.onlyAccessesArgMemory(),
1762  "gc.statepoint must read and write all memory to preserve "
1763  "reordering restrictions required by safepoint semantics",
1764  &CI);
1765 
1766  const Value *IDV = CS.getArgument(0);
1767  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1768  &CI);
1769 
1770  const Value *NumPatchBytesV = CS.getArgument(1);
1771  Assert(isa<ConstantInt>(NumPatchBytesV),
1772  "gc.statepoint number of patchable bytes must be a constant integer",
1773  &CI);
1774  const int64_t NumPatchBytes =
1775  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1776  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1777  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1778  "positive",
1779  &CI);
1780 
1781  const Value *Target = CS.getArgument(2);
1782  auto *PT = dyn_cast<PointerType>(Target->getType());
1783  Assert(PT && PT->getElementType()->isFunctionTy(),
1784  "gc.statepoint callee must be of function pointer type", &CI, Target);
1785  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1786 
1787  const Value *NumCallArgsV = CS.getArgument(3);
1788  Assert(isa<ConstantInt>(NumCallArgsV),
1789  "gc.statepoint number of arguments to underlying call "
1790  "must be constant integer",
1791  &CI);
1792  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1793  Assert(NumCallArgs >= 0,
1794  "gc.statepoint number of arguments to underlying call "
1795  "must be positive",
1796  &CI);
1797  const int NumParams = (int)TargetFuncType->getNumParams();
1798  if (TargetFuncType->isVarArg()) {
1799  Assert(NumCallArgs >= NumParams,
1800  "gc.statepoint mismatch in number of vararg call args", &CI);
1801 
1802  // TODO: Remove this limitation
1803  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1804  "gc.statepoint doesn't support wrapping non-void "
1805  "vararg functions yet",
1806  &CI);
1807  } else
1808  Assert(NumCallArgs == NumParams,
1809  "gc.statepoint mismatch in number of call args", &CI);
1810 
1811  const Value *FlagsV = CS.getArgument(4);
1812  Assert(isa<ConstantInt>(FlagsV),
1813  "gc.statepoint flags must be constant integer", &CI);
1814  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1815  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1816  "unknown flag used in gc.statepoint flags argument", &CI);
1817 
1818  // Verify that the types of the call parameter arguments match
1819  // the type of the wrapped callee.
1820  for (int i = 0; i < NumParams; i++) {
1821  Type *ParamType = TargetFuncType->getParamType(i);
1822  Type *ArgType = CS.getArgument(5 + i)->getType();
1823  Assert(ArgType == ParamType,
1824  "gc.statepoint call argument does not match wrapped "
1825  "function type",
1826  &CI);
1827  }
1828 
1829  const int EndCallArgsInx = 4 + NumCallArgs;
1830 
1831  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1832  Assert(isa<ConstantInt>(NumTransitionArgsV),
1833  "gc.statepoint number of transition arguments "
1834  "must be constant integer",
1835  &CI);
1836  const int NumTransitionArgs =
1837  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1838  Assert(NumTransitionArgs >= 0,
1839  "gc.statepoint number of transition arguments must be positive", &CI);
1840  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1841 
1842  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1843  Assert(isa<ConstantInt>(NumDeoptArgsV),
1844  "gc.statepoint number of deoptimization arguments "
1845  "must be constant integer",
1846  &CI);
1847  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1848  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1849  "must be positive",
1850  &CI);
1851 
1852  const int ExpectedNumArgs =
1853  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1854  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1855  "gc.statepoint too few arguments according to length fields", &CI);
1856 
1857  // Check that the only uses of this gc.statepoint are gc.result or
1858  // gc.relocate calls which are tied to this statepoint and thus part
1859  // of the same statepoint sequence
1860  for (const User *U : CI.users()) {
1861  const CallInst *Call = dyn_cast<const CallInst>(U);
1862  Assert(Call, "illegal use of statepoint token", &CI, U);
1863  if (!Call) continue;
1864  Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1865  "gc.result or gc.relocate are the only value uses "
1866  "of a gc.statepoint",
1867  &CI, U);
1868  if (isa<GCResultInst>(Call)) {
1869  Assert(Call->getArgOperand(0) == &CI,
1870  "gc.result connected to wrong gc.statepoint", &CI, Call);
1871  } else if (isa<GCRelocateInst>(Call)) {
1872  Assert(Call->getArgOperand(0) == &CI,
1873  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1874  }
1875  }
1876 
1877  // Note: It is legal for a single derived pointer to be listed multiple
1878  // times. It's non-optimal, but it is legal. It can also happen after
1879  // insertion if we strip a bitcast away.
1880  // Note: It is really tempting to check that each base is relocated and
1881  // that a derived pointer is never reused as a base pointer. This turns
1882  // out to be problematic since optimizations run after safepoint insertion
1883  // can recognize equality properties that the insertion logic doesn't know
1884  // about. See example statepoint.ll in the verifier subdirectory
1885 }
1886 
1887 void Verifier::verifyFrameRecoverIndices() {
1888  for (auto &Counts : FrameEscapeInfo) {
1889  Function *F = Counts.first;
1890  unsigned EscapedObjectCount = Counts.second.first;
1891  unsigned MaxRecoveredIndex = Counts.second.second;
1892  Assert(MaxRecoveredIndex <= EscapedObjectCount,
1893  "all indices passed to llvm.localrecover must be less than the "
1894  "number of arguments passed ot llvm.localescape in the parent "
1895  "function",
1896  F);
1897  }
1898 }
1899 
1901  BasicBlock *UnwindDest;
1902  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1903  UnwindDest = II->getUnwindDest();
1904  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1905  UnwindDest = CSI->getUnwindDest();
1906  else
1907  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1908  return UnwindDest->getFirstNonPHI();
1909 }
1910 
1911 void Verifier::verifySiblingFuncletUnwinds() {
1914  for (const auto &Pair : SiblingFuncletInfo) {
1915  Instruction *PredPad = Pair.first;
1916  if (Visited.count(PredPad))
1917  continue;
1918  Active.insert(PredPad);
1919  TerminatorInst *Terminator = Pair.second;
1920  do {
1921  Instruction *SuccPad = getSuccPad(Terminator);
1922  if (Active.count(SuccPad)) {
1923  // Found a cycle; report error
1924  Instruction *CyclePad = SuccPad;
1925  SmallVector<Instruction *, 8> CycleNodes;
1926  do {
1927  CycleNodes.push_back(CyclePad);
1928  TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1929  if (CycleTerminator != CyclePad)
1930  CycleNodes.push_back(CycleTerminator);
1931  CyclePad = getSuccPad(CycleTerminator);
1932  } while (CyclePad != SuccPad);
1933  Assert(false, "EH pads can't handle each other's exceptions",
1934  ArrayRef<Instruction *>(CycleNodes));
1935  }
1936  // Don't re-walk a node we've already checked
1937  if (!Visited.insert(SuccPad).second)
1938  break;
1939  // Walk to this successor if it has a map entry.
1940  PredPad = SuccPad;
1941  auto TermI = SiblingFuncletInfo.find(PredPad);
1942  if (TermI == SiblingFuncletInfo.end())
1943  break;
1944  Terminator = TermI->second;
1945  Active.insert(PredPad);
1946  } while (true);
1947  // Each node only has one successor, so we've walked all the active
1948  // nodes' successors.
1949  Active.clear();
1950  }
1951 }
1952 
1953 // visitFunction - Verify that a function is ok.
1954 //
1955 void Verifier::visitFunction(const Function &F) {
1956  visitGlobalValue(F);
1957 
1958  // Check function arguments.
1959  FunctionType *FT = F.getFunctionType();
1960  unsigned NumArgs = F.arg_size();
1961 
1962  Assert(&Context == &F.getContext(),
1963  "Function context does not match Module context!", &F);
1964 
1965  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1966  Assert(FT->getNumParams() == NumArgs,
1967  "# formal arguments must match # of arguments for function type!", &F,
1968  FT);
1969  Assert(F.getReturnType()->isFirstClassType() ||
1970  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1971  "Functions cannot return aggregate values!", &F);
1972 
1973  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1974  "Invalid struct return type!", &F);
1975 
1976  AttributeList Attrs = F.getAttributes();
1977 
1978  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
1979  "Attribute after last parameter!", &F);
1980 
1981  // Check function attributes.
1982  verifyFunctionAttrs(FT, Attrs, &F);
1983 
1984  // On function declarations/definitions, we do not support the builtin
1985  // attribute. We do not check this in VerifyFunctionAttrs since that is
1986  // checking for Attributes that can/can not ever be on functions.
1987  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
1988  "Attribute 'builtin' can only be applied to a callsite.", &F);
1989 
1990  // Check that this function meets the restrictions on this calling convention.
1991  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1992  // restrictions can be lifted.
1993  switch (F.getCallingConv()) {
1994  default:
1995  case CallingConv::C:
1996  break;
1999  Assert(F.getReturnType()->isVoidTy(),
2000  "Calling convention requires void return type", &F);
2007  Assert(!F.hasStructRetAttr(),
2008  "Calling convention does not allow sret", &F);
2010  case CallingConv::Fast:
2011  case CallingConv::Cold:
2015  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2016  "perfect forwarding!",
2017  &F);
2018  break;
2019  }
2020 
2021  bool isLLVMdotName = F.getName().size() >= 5 &&
2022  F.getName().substr(0, 5) == "llvm.";
2023 
2024  // Check that the argument values match the function type for this function...
2025  unsigned i = 0;
2026  for (const Argument &Arg : F.args()) {
2027  Assert(Arg.getType() == FT->getParamType(i),
2028  "Argument value does not match function argument type!", &Arg,
2029  FT->getParamType(i));
2030  Assert(Arg.getType()->isFirstClassType(),
2031  "Function arguments must have first-class types!", &Arg);
2032  if (!isLLVMdotName) {
2033  Assert(!Arg.getType()->isMetadataTy(),
2034  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2035  Assert(!Arg.getType()->isTokenTy(),
2036  "Function takes token but isn't an intrinsic", &Arg, &F);
2037  }
2038 
2039  // Check that swifterror argument is only used by loads and stores.
2040  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2041  verifySwiftErrorValue(&Arg);
2042  }
2043  ++i;
2044  }
2045 
2046  if (!isLLVMdotName)
2047  Assert(!F.getReturnType()->isTokenTy(),
2048  "Functions returns a token but isn't an intrinsic", &F);
2049 
2050  // Get the function metadata attachments.
2052  F.getAllMetadata(MDs);
2053  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2054  verifyFunctionMetadata(MDs);
2055 
2056  // Check validity of the personality function
2057  if (F.hasPersonalityFn()) {
2058  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2059  if (Per)
2060  Assert(Per->getParent() == F.getParent(),
2061  "Referencing personality function in another module!",
2062  &F, F.getParent(), Per, Per->getParent());
2063  }
2064 
2065  if (F.isMaterializable()) {
2066  // Function has a body somewhere we can't see.
2067  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2068  MDs.empty() ? nullptr : MDs.front().second);
2069  } else if (F.isDeclaration()) {
2070  for (const auto &I : MDs) {
2071  AssertDI(I.first != LLVMContext::MD_dbg,
2072  "function declaration may not have a !dbg attachment", &F);
2073  Assert(I.first != LLVMContext::MD_prof,
2074  "function declaration may not have a !prof attachment", &F);
2075 
2076  // Verify the metadata itself.
2077  visitMDNode(*I.second);
2078  }
2079  Assert(!F.hasPersonalityFn(),
2080  "Function declaration shouldn't have a personality routine", &F);
2081  } else {
2082  // Verify that this function (which has a body) is not named "llvm.*". It
2083  // is not legal to define intrinsics.
2084  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2085 
2086  // Check the entry node
2087  const BasicBlock *Entry = &F.getEntryBlock();
2088  Assert(pred_empty(Entry),
2089  "Entry block to function must not have predecessors!", Entry);
2090 
2091  // The address of the entry block cannot be taken, unless it is dead.
2092  if (Entry->hasAddressTaken()) {
2093  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2094  "blockaddress may not be used with the entry block!", Entry);
2095  }
2096 
2097  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2098  // Visit metadata attachments.
2099  for (const auto &I : MDs) {
2100  // Verify that the attachment is legal.
2101  switch (I.first) {
2102  default:
2103  break;
2104  case LLVMContext::MD_dbg: {
2105  ++NumDebugAttachments;
2106  AssertDI(NumDebugAttachments == 1,
2107  "function must have a single !dbg attachment", &F, I.second);
2108  AssertDI(isa<DISubprogram>(I.second),
2109  "function !dbg attachment must be a subprogram", &F, I.second);
2110  auto *SP = cast<DISubprogram>(I.second);
2111  const Function *&AttachedTo = DISubprogramAttachments[SP];
2112  AssertDI(!AttachedTo || AttachedTo == &F,
2113  "DISubprogram attached to more than one function", SP, &F);
2114  AttachedTo = &F;
2115  break;
2116  }
2117  case LLVMContext::MD_prof:
2118  ++NumProfAttachments;
2119  Assert(NumProfAttachments == 1,
2120  "function must have a single !prof attachment", &F, I.second);
2121  break;
2122  }
2123 
2124  // Verify the metadata itself.
2125  visitMDNode(*I.second);
2126  }
2127  }
2128 
2129  // If this function is actually an intrinsic, verify that it is only used in
2130  // direct call/invokes, never having its "address taken".
2131  // Only do this if the module is materialized, otherwise we don't have all the
2132  // uses.
2133  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2134  const User *U;
2135  if (F.hasAddressTaken(&U))
2136  Assert(false, "Invalid user of intrinsic instruction!", U);
2137  }
2138 
2139  Assert(!F.hasDLLImportStorageClass() ||
2140  (F.isDeclaration() && F.hasExternalLinkage()) ||
2141  F.hasAvailableExternallyLinkage(),
2142  "Function is marked as dllimport, but not external.", &F);
2143 
2144  auto *N = F.getSubprogram();
2145  HasDebugInfo = (N != nullptr);
2146  if (!HasDebugInfo)
2147  return;
2148 
2149  // Check that all !dbg attachments lead to back to N (or, at least, another
2150  // subprogram that describes the same function).
2151  //
2152  // FIXME: Check this incrementally while visiting !dbg attachments.
2153  // FIXME: Only check when N is the canonical subprogram for F.
2155  for (auto &BB : F)
2156  for (auto &I : BB) {
2157  // Be careful about using DILocation here since we might be dealing with
2158  // broken code (this is the Verifier after all).
2159  DILocation *DL =
2160  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2161  if (!DL)
2162  continue;
2163  if (!Seen.insert(DL).second)
2164  continue;
2165 
2166  DILocalScope *Scope = DL->getInlinedAtScope();
2167  if (Scope && !Seen.insert(Scope).second)
2168  continue;
2169 
2170  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2171 
2172  // Scope and SP could be the same MDNode and we don't want to skip
2173  // validation in that case
2174  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2175  continue;
2176 
2177  // FIXME: Once N is canonical, check "SP == &N".
2178  AssertDI(SP->describes(&F),
2179  "!dbg attachment points at wrong subprogram for function", N, &F,
2180  &I, DL, Scope, SP);
2181  }
2182 }
2183 
2184 // verifyBasicBlock - Verify that a basic block is well formed...
2185 //
2186 void Verifier::visitBasicBlock(BasicBlock &BB) {
2187  InstsInThisBlock.clear();
2188 
2189  // Ensure that basic blocks have terminators!
2190  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2191 
2192  // Check constraints that this basic block imposes on all of the PHI nodes in
2193  // it.
2194  if (isa<PHINode>(BB.front())) {
2197  std::sort(Preds.begin(), Preds.end());
2198  PHINode *PN;
2199  for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2200  // Ensure that PHI nodes have at least one entry!
2201  Assert(PN->getNumIncomingValues() != 0,
2202  "PHI nodes must have at least one entry. If the block is dead, "
2203  "the PHI should be removed!",
2204  PN);
2205  Assert(PN->getNumIncomingValues() == Preds.size(),
2206  "PHINode should have one entry for each predecessor of its "
2207  "parent basic block!",
2208  PN);
2209 
2210  // Get and sort all incoming values in the PHI node...
2211  Values.clear();
2212  Values.reserve(PN->getNumIncomingValues());
2213  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2214  Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2215  PN->getIncomingValue(i)));
2216  std::sort(Values.begin(), Values.end());
2217 
2218  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2219  // Check to make sure that if there is more than one entry for a
2220  // particular basic block in this PHI node, that the incoming values are
2221  // all identical.
2222  //
2223  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2224  Values[i].second == Values[i - 1].second,
2225  "PHI node has multiple entries for the same basic block with "
2226  "different incoming values!",
2227  PN, Values[i].first, Values[i].second, Values[i - 1].second);
2228 
2229  // Check to make sure that the predecessors and PHI node entries are
2230  // matched up.
2231  Assert(Values[i].first == Preds[i],
2232  "PHI node entries do not match predecessors!", PN,
2233  Values[i].first, Preds[i]);
2234  }
2235  }
2236  }
2237 
2238  // Check that all instructions have their parent pointers set up correctly.
2239  for (auto &I : BB)
2240  {
2241  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2242  }
2243 }
2244 
2245 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2246  // Ensure that terminators only exist at the end of the basic block.
2247  Assert(&I == I.getParent()->getTerminator(),
2248  "Terminator found in the middle of a basic block!", I.getParent());
2249  visitInstruction(I);
2250 }
2251 
2252 void Verifier::visitBranchInst(BranchInst &BI) {
2253  if (BI.isConditional()) {
2254  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2255  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2256  }
2257  visitTerminatorInst(BI);
2258 }
2259 
2260 void Verifier::visitReturnInst(ReturnInst &RI) {
2261  Function *F = RI.getParent()->getParent();
2262  unsigned N = RI.getNumOperands();
2263  if (F->getReturnType()->isVoidTy())
2264  Assert(N == 0,
2265  "Found return instr that returns non-void in Function of void "
2266  "return type!",
2267  &RI, F->getReturnType());
2268  else
2269  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2270  "Function return type does not match operand "
2271  "type of return inst!",
2272  &RI, F->getReturnType());
2273 
2274  // Check to make sure that the return value has necessary properties for
2275  // terminators...
2276  visitTerminatorInst(RI);
2277 }
2278 
2279 void Verifier::visitSwitchInst(SwitchInst &SI) {
2280  // Check to make sure that all of the constants in the switch instruction
2281  // have the same type as the switched-on value.
2282  Type *SwitchTy = SI.getCondition()->getType();
2284  for (auto &Case : SI.cases()) {
2285  Assert(Case.getCaseValue()->getType() == SwitchTy,
2286  "Switch constants must all be same type as switch value!", &SI);
2287  Assert(Constants.insert(Case.getCaseValue()).second,
2288  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2289  }
2290 
2291  visitTerminatorInst(SI);
2292 }
2293 
2294 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2295  Assert(BI.getAddress()->getType()->isPointerTy(),
2296  "Indirectbr operand must have pointer type!", &BI);
2297  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2298  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2299  "Indirectbr destinations must all have pointer type!", &BI);
2300 
2301  visitTerminatorInst(BI);
2302 }
2303 
2304 void Verifier::visitSelectInst(SelectInst &SI) {
2306  SI.getOperand(2)),
2307  "Invalid operands for select instruction!", &SI);
2308 
2309  Assert(SI.getTrueValue()->getType() == SI.getType(),
2310  "Select values must have same type as select instruction!", &SI);
2311  visitInstruction(SI);
2312 }
2313 
2314 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2315 /// a pass, if any exist, it's an error.
2316 ///
2317 void Verifier::visitUserOp1(Instruction &I) {
2318  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2319 }
2320 
2321 void Verifier::visitTruncInst(TruncInst &I) {
2322  // Get the source and destination types
2323  Type *SrcTy = I.getOperand(0)->getType();
2324  Type *DestTy = I.getType();
2325 
2326  // Get the size of the types in bits, we'll need this later
2327  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2328  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2329 
2330  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2331  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2332  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2333  "trunc source and destination must both be a vector or neither", &I);
2334  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2335 
2336  visitInstruction(I);
2337 }
2338 
2339 void Verifier::visitZExtInst(ZExtInst &I) {
2340  // Get the source and destination types
2341  Type *SrcTy = I.getOperand(0)->getType();
2342  Type *DestTy = I.getType();
2343 
2344  // Get the size of the types in bits, we'll need this later
2345  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2346  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2347  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2348  "zext source and destination must both be a vector or neither", &I);
2349  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2350  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2351 
2352  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2353 
2354  visitInstruction(I);
2355 }
2356 
2357 void Verifier::visitSExtInst(SExtInst &I) {
2358  // Get the source and destination types
2359  Type *SrcTy = I.getOperand(0)->getType();
2360  Type *DestTy = I.getType();
2361 
2362  // Get the size of the types in bits, we'll need this later
2363  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2364  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2365 
2366  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2367  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2368  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2369  "sext source and destination must both be a vector or neither", &I);
2370  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2371 
2372  visitInstruction(I);
2373 }
2374 
2375 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2376  // Get the source and destination types
2377  Type *SrcTy = I.getOperand(0)->getType();
2378  Type *DestTy = I.getType();
2379  // Get the size of the types in bits, we'll need this later
2380  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2381  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2382 
2383  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2384  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2385  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2386  "fptrunc source and destination must both be a vector or neither", &I);
2387  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2388 
2389  visitInstruction(I);
2390 }
2391 
2392 void Verifier::visitFPExtInst(FPExtInst &I) {
2393  // Get the source and destination types
2394  Type *SrcTy = I.getOperand(0)->getType();
2395  Type *DestTy = I.getType();
2396 
2397  // Get the size of the types in bits, we'll need this later
2398  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2399  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2400 
2401  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2402  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2403  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2404  "fpext source and destination must both be a vector or neither", &I);
2405  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2406 
2407  visitInstruction(I);
2408 }
2409 
2410 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2411  // Get the source and destination types
2412  Type *SrcTy = I.getOperand(0)->getType();
2413  Type *DestTy = I.getType();
2414 
2415  bool SrcVec = SrcTy->isVectorTy();
2416  bool DstVec = DestTy->isVectorTy();
2417 
2418  Assert(SrcVec == DstVec,
2419  "UIToFP source and dest must both be vector or scalar", &I);
2420  Assert(SrcTy->isIntOrIntVectorTy(),
2421  "UIToFP source must be integer or integer vector", &I);
2422  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2423  &I);
2424 
2425  if (SrcVec && DstVec)
2426  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2427  cast<VectorType>(DestTy)->getNumElements(),
2428  "UIToFP source and dest vector length mismatch", &I);
2429 
2430  visitInstruction(I);
2431 }
2432 
2433 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2434  // Get the source and destination types
2435  Type *SrcTy = I.getOperand(0)->getType();
2436  Type *DestTy = I.getType();
2437 
2438  bool SrcVec = SrcTy->isVectorTy();
2439  bool DstVec = DestTy->isVectorTy();
2440 
2441  Assert(SrcVec == DstVec,
2442  "SIToFP source and dest must both be vector or scalar", &I);
2443  Assert(SrcTy->isIntOrIntVectorTy(),
2444  "SIToFP source must be integer or integer vector", &I);
2445  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2446  &I);
2447 
2448  if (SrcVec && DstVec)
2449  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2450  cast<VectorType>(DestTy)->getNumElements(),
2451  "SIToFP source and dest vector length mismatch", &I);
2452 
2453  visitInstruction(I);
2454 }
2455 
2456 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2457  // Get the source and destination types
2458  Type *SrcTy = I.getOperand(0)->getType();
2459  Type *DestTy = I.getType();
2460 
2461  bool SrcVec = SrcTy->isVectorTy();
2462  bool DstVec = DestTy->isVectorTy();
2463 
2464  Assert(SrcVec == DstVec,
2465  "FPToUI source and dest must both be vector or scalar", &I);
2466  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2467  &I);
2468  Assert(DestTy->isIntOrIntVectorTy(),
2469  "FPToUI result must be integer or integer vector", &I);
2470 
2471  if (SrcVec && DstVec)
2472  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2473  cast<VectorType>(DestTy)->getNumElements(),
2474  "FPToUI source and dest vector length mismatch", &I);
2475 
2476  visitInstruction(I);
2477 }
2478 
2479 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2480  // Get the source and destination types
2481  Type *SrcTy = I.getOperand(0)->getType();
2482  Type *DestTy = I.getType();
2483 
2484  bool SrcVec = SrcTy->isVectorTy();
2485  bool DstVec = DestTy->isVectorTy();
2486 
2487  Assert(SrcVec == DstVec,
2488  "FPToSI source and dest must both be vector or scalar", &I);
2489  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2490  &I);
2491  Assert(DestTy->isIntOrIntVectorTy(),
2492  "FPToSI result must be integer or integer vector", &I);
2493 
2494  if (SrcVec && DstVec)
2495  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2496  cast<VectorType>(DestTy)->getNumElements(),
2497  "FPToSI source and dest vector length mismatch", &I);
2498 
2499  visitInstruction(I);
2500 }
2501 
2502 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2503  // Get the source and destination types
2504  Type *SrcTy = I.getOperand(0)->getType();
2505  Type *DestTy = I.getType();
2506 
2507  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2508 
2509  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2511  "ptrtoint not supported for non-integral pointers");
2512 
2513  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2514  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2515  &I);
2516 
2517  if (SrcTy->isVectorTy()) {
2518  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2519  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2520  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2521  "PtrToInt Vector width mismatch", &I);
2522  }
2523 
2524  visitInstruction(I);
2525 }
2526 
2527 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2528  // Get the source and destination types
2529  Type *SrcTy = I.getOperand(0)->getType();
2530  Type *DestTy = I.getType();
2531 
2532  Assert(SrcTy->isIntOrIntVectorTy(),
2533  "IntToPtr source must be an integral", &I);
2534  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2535 
2536  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2538  "inttoptr not supported for non-integral pointers");
2539 
2540  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2541  &I);
2542  if (SrcTy->isVectorTy()) {
2543  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2544  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2545  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2546  "IntToPtr Vector width mismatch", &I);
2547  }
2548  visitInstruction(I);
2549 }
2550 
2551 void Verifier::visitBitCastInst(BitCastInst &I) {
2552  Assert(
2553  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2554  "Invalid bitcast", &I);
2555  visitInstruction(I);
2556 }
2557 
2558 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2559  Type *SrcTy = I.getOperand(0)->getType();
2560  Type *DestTy = I.getType();
2561 
2562  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2563  &I);
2564  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2565  &I);
2567  "AddrSpaceCast must be between different address spaces", &I);
2568  if (SrcTy->isVectorTy())
2569  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2570  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2571  visitInstruction(I);
2572 }
2573 
2574 /// visitPHINode - Ensure that a PHI node is well formed.
2575 ///
2576 void Verifier::visitPHINode(PHINode &PN) {
2577  // Ensure that the PHI nodes are all grouped together at the top of the block.
2578  // This can be tested by checking whether the instruction before this is
2579  // either nonexistent (because this is begin()) or is a PHI node. If not,
2580  // then there is some other instruction before a PHI.
2581  Assert(&PN == &PN.getParent()->front() ||
2582  isa<PHINode>(--BasicBlock::iterator(&PN)),
2583  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2584 
2585  // Check that a PHI doesn't yield a Token.
2586  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2587 
2588  // Check that all of the values of the PHI node have the same type as the
2589  // result, and that the incoming blocks are really basic blocks.
2590  for (Value *IncValue : PN.incoming_values()) {
2591  Assert(PN.getType() == IncValue->getType(),
2592  "PHI node operands are not the same type as the result!", &PN);
2593  }
2594 
2595  // All other PHI node constraints are checked in the visitBasicBlock method.
2596 
2597  visitInstruction(PN);
2598 }
2599 
2600 void Verifier::verifyCallSite(CallSite CS) {
2601  Instruction *I = CS.getInstruction();
2602 
2604  "Called function must be a pointer!", I);
2605  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2606 
2607  Assert(FPTy->getElementType()->isFunctionTy(),
2608  "Called function is not pointer to function type!", I);
2609 
2610  Assert(FPTy->getElementType() == CS.getFunctionType(),
2611  "Called function is not the same type as the call!", I);
2612 
2613  FunctionType *FTy = CS.getFunctionType();
2614 
2615  // Verify that the correct number of arguments are being passed
2616  if (FTy->isVarArg())
2617  Assert(CS.arg_size() >= FTy->getNumParams(),
2618  "Called function requires more parameters than were provided!", I);
2619  else
2620  Assert(CS.arg_size() == FTy->getNumParams(),
2621  "Incorrect number of arguments passed to called function!", I);
2622 
2623  // Verify that all arguments to the call match the function type.
2624  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2625  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2626  "Call parameter type does not match function signature!",
2627  CS.getArgument(i), FTy->getParamType(i), I);
2628 
2629  AttributeList Attrs = CS.getAttributes();
2630 
2631  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2632  "Attribute after last parameter!", I);
2633 
2634  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2635  // Don't allow speculatable on call sites, unless the underlying function
2636  // declaration is also speculatable.
2637  Function *Callee
2639  Assert(Callee && Callee->isSpeculatable(),
2640  "speculatable attribute may not apply to call sites", I);
2641  }
2642 
2643  // Verify call attributes.
2644  verifyFunctionAttrs(FTy, Attrs, I);
2645 
2646  // Conservatively check the inalloca argument.
2647  // We have a bug if we can find that there is an underlying alloca without
2648  // inalloca.
2649  if (CS.hasInAllocaArgument()) {
2650  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2651  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2652  Assert(AI->isUsedWithInAlloca(),
2653  "inalloca argument for call has mismatched alloca", AI, I);
2654  }
2655 
2656  // For each argument of the callsite, if it has the swifterror argument,
2657  // make sure the underlying alloca/parameter it comes from has a swifterror as
2658  // well.
2659  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2660  if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2661  Value *SwiftErrorArg = CS.getArgument(i);
2662  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2663  Assert(AI->isSwiftError(),
2664  "swifterror argument for call has mismatched alloca", AI, I);
2665  continue;
2666  }
2667  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2668  Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2669  Assert(ArgI->hasSwiftErrorAttr(),
2670  "swifterror argument for call has mismatched parameter", ArgI, I);
2671  }
2672 
2673  if (FTy->isVarArg()) {
2674  // FIXME? is 'nest' even legal here?
2675  bool SawNest = false;
2676  bool SawReturned = false;
2677 
2678  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2679  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2680  SawNest = true;
2681  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2682  SawReturned = true;
2683  }
2684 
2685  // Check attributes on the varargs part.
2686  for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2687  Type *Ty = CS.getArgument(Idx)->getType();
2688  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2689  verifyParameterAttrs(ArgAttrs, Ty, I);
2690 
2691  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2692  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2693  SawNest = true;
2694  }
2695 
2696  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2697  Assert(!SawReturned, "More than one parameter has attribute returned!",
2698  I);
2699  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2700  "Incompatible argument and return types for 'returned' "
2701  "attribute",
2702  I);
2703  SawReturned = true;
2704  }
2705 
2706  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2707  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2708 
2709  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2710  Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2711  I);
2712  }
2713  }
2714 
2715  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2716  if (CS.getCalledFunction() == nullptr ||
2717  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2718  for (Type *ParamTy : FTy->params()) {
2719  Assert(!ParamTy->isMetadataTy(),
2720  "Function has metadata parameter but isn't an intrinsic", I);
2721  Assert(!ParamTy->isTokenTy(),
2722  "Function has token parameter but isn't an intrinsic", I);
2723  }
2724  }
2725 
2726  // Verify that indirect calls don't return tokens.
2727  if (CS.getCalledFunction() == nullptr)
2728  Assert(!FTy->getReturnType()->isTokenTy(),
2729  "Return type cannot be token for indirect call!");
2730 
2731  if (Function *F = CS.getCalledFunction())
2733  visitIntrinsicCallSite(ID, CS);
2734 
2735  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2736  // at most one "gc-transition" operand bundle.
2737  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2738  FoundGCTransitionBundle = false;
2739  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2741  uint32_t Tag = BU.getTagID();
2742  if (Tag == LLVMContext::OB_deopt) {
2743  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2744  FoundDeoptBundle = true;
2745  } else if (Tag == LLVMContext::OB_gc_transition) {
2746  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2747  I);
2748  FoundGCTransitionBundle = true;
2749  } else if (Tag == LLVMContext::OB_funclet) {
2750  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2751  FoundFuncletBundle = true;
2752  Assert(BU.Inputs.size() == 1,
2753  "Expected exactly one funclet bundle operand", I);
2754  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2755  "Funclet bundle operands should correspond to a FuncletPadInst",
2756  I);
2757  }
2758  }
2759 
2760  // Verify that each inlinable callsite of a debug-info-bearing function in a
2761  // debug-info-bearing function has a debug location attached to it. Failure to
2762  // do so causes assertion failures when the inliner sets up inline scope info.
2763  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2765  AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2766  "debug info must have a !dbg location",
2767  I);
2768 
2769  visitInstruction(*I);
2770 }
2771 
2772 /// Two types are "congruent" if they are identical, or if they are both pointer
2773 /// types with different pointee types and the same address space.
2774 static bool isTypeCongruent(Type *L, Type *R) {
2775  if (L == R)
2776  return true;
2778  PointerType *PR = dyn_cast<PointerType>(R);
2779  if (!PL || !PR)
2780  return false;
2781  return PL->getAddressSpace() == PR->getAddressSpace();
2782 }
2783 
2785  static const Attribute::AttrKind ABIAttrs[] = {
2786  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2787  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2788  Attribute::SwiftError};
2789  AttrBuilder Copy;
2790  for (auto AK : ABIAttrs) {
2791  if (Attrs.hasParamAttribute(I, AK))
2792  Copy.addAttribute(AK);
2793  }
2794  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2795  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2796  return Copy;
2797 }
2798 
2799 void Verifier::verifyMustTailCall(CallInst &CI) {
2800  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2801 
2802  // - The caller and callee prototypes must match. Pointer types of
2803  // parameters or return types may differ in pointee type, but not
2804  // address space.
2805  Function *F = CI.getParent()->getParent();
2806  FunctionType *CallerTy = F->getFunctionType();
2807  FunctionType *CalleeTy = CI.getFunctionType();
2808  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2809  "cannot guarantee tail call due to mismatched parameter counts", &CI);
2810  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2811  "cannot guarantee tail call due to mismatched varargs", &CI);
2812  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2813  "cannot guarantee tail call due to mismatched return types", &CI);
2814  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2815  Assert(
2816  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2817  "cannot guarantee tail call due to mismatched parameter types", &CI);
2818  }
2819 
2820  // - The calling conventions of the caller and callee must match.
2821  Assert(F->getCallingConv() == CI.getCallingConv(),
2822  "cannot guarantee tail call due to mismatched calling conv", &CI);
2823 
2824  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2825  // returned, and inalloca, must match.
2826  AttributeList CallerAttrs = F->getAttributes();
2827  AttributeList CalleeAttrs = CI.getAttributes();
2828  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2829  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2830  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2831  Assert(CallerABIAttrs == CalleeABIAttrs,
2832  "cannot guarantee tail call due to mismatched ABI impacting "
2833  "function attributes",
2834  &CI, CI.getOperand(I));
2835  }
2836 
2837  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2838  // or a pointer bitcast followed by a ret instruction.
2839  // - The ret instruction must return the (possibly bitcasted) value
2840  // produced by the call or void.
2841  Value *RetVal = &CI;
2842  Instruction *Next = CI.getNextNode();
2843 
2844  // Handle the optional bitcast.
2845  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2846  Assert(BI->getOperand(0) == RetVal,
2847  "bitcast following musttail call must use the call", BI);
2848  RetVal = BI;
2849  Next = BI->getNextNode();
2850  }
2851 
2852  // Check the return.
2853  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2854  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2855  &CI);
2856  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2857  "musttail call result must be returned", Ret);
2858 }
2859 
2860 void Verifier::visitCallInst(CallInst &CI) {
2861  verifyCallSite(&CI);
2862 
2863  if (CI.isMustTailCall())
2864  verifyMustTailCall(CI);
2865 }
2866 
2867 void Verifier::visitInvokeInst(InvokeInst &II) {
2868  verifyCallSite(&II);
2869 
2870  // Verify that the first non-PHI instruction of the unwind destination is an
2871  // exception handling instruction.
2872  Assert(
2873  II.getUnwindDest()->isEHPad(),
2874  "The unwind destination does not have an exception handling instruction!",
2875  &II);
2876 
2877  visitTerminatorInst(II);
2878 }
2879 
2880 /// visitBinaryOperator - Check that both arguments to the binary operator are
2881 /// of the same type!
2882 ///
2883 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2884  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2885  "Both operands to a binary operator are not of the same type!", &B);
2886 
2887  switch (B.getOpcode()) {
2888  // Check that integer arithmetic operators are only used with
2889  // integral operands.
2890  case Instruction::Add:
2891  case Instruction::Sub:
2892  case Instruction::Mul:
2893  case Instruction::SDiv:
2894  case Instruction::UDiv:
2895  case Instruction::SRem:
2896  case Instruction::URem:
2898  "Integer arithmetic operators only work with integral types!", &B);
2899  Assert(B.getType() == B.getOperand(0)->getType(),
2900  "Integer arithmetic operators must have same type "
2901  "for operands and result!",
2902  &B);
2903  break;
2904  // Check that floating-point arithmetic operators are only used with
2905  // floating-point operands.
2906  case Instruction::FAdd:
2907  case Instruction::FSub:
2908  case Instruction::FMul:
2909  case Instruction::FDiv:
2910  case Instruction::FRem:
2912  "Floating-point arithmetic operators only work with "
2913  "floating-point types!",
2914  &B);
2915  Assert(B.getType() == B.getOperand(0)->getType(),
2916  "Floating-point arithmetic operators must have same type "
2917  "for operands and result!",
2918  &B);
2919  break;
2920  // Check that logical operators are only used with integral operands.
2921  case Instruction::And:
2922  case Instruction::Or:
2923  case Instruction::Xor:
2925  "Logical operators only work with integral types!", &B);
2926  Assert(B.getType() == B.getOperand(0)->getType(),
2927  "Logical operators must have same type for operands and result!",
2928  &B);
2929  break;
2930  case Instruction::Shl:
2931  case Instruction::LShr:
2932  case Instruction::AShr:
2934  "Shifts only work with integral types!", &B);
2935  Assert(B.getType() == B.getOperand(0)->getType(),
2936  "Shift return type must be same as operands!", &B);
2937  break;
2938  default:
2939  llvm_unreachable("Unknown BinaryOperator opcode!");
2940  }
2941 
2942  visitInstruction(B);
2943 }
2944 
2945 void Verifier::visitICmpInst(ICmpInst &IC) {
2946  // Check that the operands are the same type
2947  Type *Op0Ty = IC.getOperand(0)->getType();
2948  Type *Op1Ty = IC.getOperand(1)->getType();
2949  Assert(Op0Ty == Op1Ty,
2950  "Both operands to ICmp instruction are not of the same type!", &IC);
2951  // Check that the operands are the right type
2952  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
2953  "Invalid operand types for ICmp instruction", &IC);
2954  // Check that the predicate is valid.
2955  Assert(IC.isIntPredicate(),
2956  "Invalid predicate in ICmp instruction!", &IC);
2957 
2958  visitInstruction(IC);
2959 }
2960 
2961 void Verifier::visitFCmpInst(FCmpInst &FC) {
2962  // Check that the operands are the same type
2963  Type *Op0Ty = FC.getOperand(0)->getType();
2964  Type *Op1Ty = FC.getOperand(1)->getType();
2965  Assert(Op0Ty == Op1Ty,
2966  "Both operands to FCmp instruction are not of the same type!", &FC);
2967  // Check that the operands are the right type
2968  Assert(Op0Ty->isFPOrFPVectorTy(),
2969  "Invalid operand types for FCmp instruction", &FC);
2970  // Check that the predicate is valid.
2971  Assert(FC.isFPPredicate(),
2972  "Invalid predicate in FCmp instruction!", &FC);
2973 
2974  visitInstruction(FC);
2975 }
2976 
2977 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2978  Assert(
2980  "Invalid extractelement operands!", &EI);
2981  visitInstruction(EI);
2982 }
2983 
2984 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2986  IE.getOperand(2)),
2987  "Invalid insertelement operands!", &IE);
2988  visitInstruction(IE);
2989 }
2990 
2991 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2993  SV.getOperand(2)),
2994  "Invalid shufflevector operands!", &SV);
2995  visitInstruction(SV);
2996 }
2997 
2998 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2999  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3000 
3001  Assert(isa<PointerType>(TargetTy),
3002  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3003  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3004  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3005  Type *ElTy =
3007  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3008 
3009  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3010  GEP.getResultElementType() == ElTy,
3011  "GEP is not of right type for indices!", &GEP, ElTy);
3012 
3013  if (GEP.getType()->isVectorTy()) {
3014  // Additional checks for vector GEPs.
3015  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3016  if (GEP.getPointerOperandType()->isVectorTy())
3017  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3018  "Vector GEP result width doesn't match operand's", &GEP);
3019  for (Value *Idx : Idxs) {
3020  Type *IndexTy = Idx->getType();
3021  if (IndexTy->isVectorTy()) {
3022  unsigned IndexWidth = IndexTy->getVectorNumElements();
3023  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3024  }
3025  Assert(IndexTy->isIntOrIntVectorTy(),
3026  "All GEP indices should be of integer type");
3027  }
3028  }
3029  visitInstruction(GEP);
3030 }
3031 
3032 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3033  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3034 }
3035 
3036 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3037  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3038  "precondition violation");
3039 
3040  unsigned NumOperands = Range->getNumOperands();
3041  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3042  unsigned NumRanges = NumOperands / 2;
3043  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3044 
3045  ConstantRange LastRange(1); // Dummy initial value
3046  for (unsigned i = 0; i < NumRanges; ++i) {
3047  ConstantInt *Low =
3048  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3049  Assert(Low, "The lower limit must be an integer!", Low);
3050  ConstantInt *High =
3051  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3052  Assert(High, "The upper limit must be an integer!", High);
3053  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3054  "Range types must match instruction type!", &I);
3055 
3056  APInt HighV = High->getValue();
3057  APInt LowV = Low->getValue();
3058  ConstantRange CurRange(LowV, HighV);
3059  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3060  "Range must not be empty!", Range);
3061  if (i != 0) {
3062  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3063  "Intervals are overlapping", Range);
3064  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3065  Range);
3066  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3067  Range);
3068  }
3069  LastRange = ConstantRange(LowV, HighV);
3070  }
3071  if (NumRanges > 2) {
3072  APInt FirstLow =
3073  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3074  APInt FirstHigh =
3075  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3076  ConstantRange FirstRange(FirstLow, FirstHigh);
3077  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3078  "Intervals are overlapping", Range);
3079  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3080  Range);
3081  }
3082 }
3083 
3084 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3085  unsigned Size = DL.getTypeSizeInBits(Ty);
3086  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3087  Assert(!(Size & (Size - 1)),
3088  "atomic memory access' operand must have a power-of-two size", Ty, I);
3089 }
3090 
3091 void Verifier::visitLoadInst(LoadInst &LI) {
3093  Assert(PTy, "Load operand must be a pointer.", &LI);
3094  Type *ElTy = LI.getType();
3096  "huge alignment values are unsupported", &LI);
3097  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3098  if (LI.isAtomic()) {
3101  "Load cannot have Release ordering", &LI);
3102  Assert(LI.getAlignment() != 0,
3103  "Atomic load must specify explicit alignment", &LI);
3104  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3105  ElTy->isFloatingPointTy(),
3106  "atomic load operand must have integer, pointer, or floating point "
3107  "type!",
3108  ElTy, &LI);
3109  checkAtomicMemAccessSize(ElTy, &LI);
3110  } else {
3112  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3113  }
3114 
3115  visitInstruction(LI);
3116 }
3117 
3118 void Verifier::visitStoreInst(StoreInst &SI) {
3120  Assert(PTy, "Store operand must be a pointer.", &SI);
3121  Type *ElTy = PTy->getElementType();
3122  Assert(ElTy == SI.getOperand(0)->getType(),
3123  "Stored value type does not match pointer operand type!", &SI, ElTy);
3125  "huge alignment values are unsupported", &SI);
3126  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3127  if (SI.isAtomic()) {
3130  "Store cannot have Acquire ordering", &SI);
3131  Assert(SI.getAlignment() != 0,
3132  "Atomic store must specify explicit alignment", &SI);
3133  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3134  ElTy->isFloatingPointTy(),
3135  "atomic store operand must have integer, pointer, or floating point "
3136  "type!",
3137  ElTy, &SI);
3138  checkAtomicMemAccessSize(ElTy, &SI);
3139  } else {
3141  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3142  }
3143  visitInstruction(SI);
3144 }
3145 
3146 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3147 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3148  const Value *SwiftErrorVal) {
3149  unsigned Idx = 0;
3150  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3151  I != E; ++I, ++Idx) {
3152  if (*I == SwiftErrorVal) {
3153  Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3154  "swifterror value when used in a callsite should be marked "
3155  "with swifterror attribute",
3156  SwiftErrorVal, CS);
3157  }
3158  }
3159 }
3160 
3161 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3162  // Check that swifterror value is only used by loads, stores, or as
3163  // a swifterror argument.
3164  for (const User *U : SwiftErrorVal->users()) {
3165  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3166  isa<InvokeInst>(U),
3167  "swifterror value can only be loaded and stored from, or "
3168  "as a swifterror argument!",
3169  SwiftErrorVal, U);
3170  // If it is used by a store, check it is the second operand.
3171  if (auto StoreI = dyn_cast<StoreInst>(U))
3172  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3173  "swifterror value should be the second operand when used "
3174  "by stores", SwiftErrorVal, U);
3175  if (auto CallI = dyn_cast<CallInst>(U))
3176  verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3177  if (auto II = dyn_cast<InvokeInst>(U))
3178  verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3179  }
3180 }
3181 
3182 void Verifier::visitAllocaInst(AllocaInst &AI) {
3183  SmallPtrSet<Type*, 4> Visited;
3184  PointerType *PTy = AI.getType();
3185  // TODO: Relax this restriction?
3187  "Allocation instruction pointer not in the stack address space!",
3188  &AI);
3189  Assert(AI.getAllocatedType()->isSized(&Visited),
3190  "Cannot allocate unsized type", &AI);
3192  "Alloca array size must have integer type", &AI);
3194  "huge alignment values are unsupported", &AI);
3195 
3196  if (AI.isSwiftError()) {
3197  verifySwiftErrorValue(&AI);
3198  }
3199 
3200  visitInstruction(AI);
3201 }
3202 
3203 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3204 
3205  // FIXME: more conditions???
3207  "cmpxchg instructions must be atomic.", &CXI);
3209  "cmpxchg instructions must be atomic.", &CXI);
3211  "cmpxchg instructions cannot be unordered.", &CXI);
3213  "cmpxchg instructions cannot be unordered.", &CXI);
3215  "cmpxchg instructions failure argument shall be no stronger than the "
3216  "success argument",
3217  &CXI);
3220  "cmpxchg failure ordering cannot include release semantics", &CXI);
3221 
3222  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3223  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3224  Type *ElTy = PTy->getElementType();
3225  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3226  "cmpxchg operand must have integer or pointer type",
3227  ElTy, &CXI);
3228  checkAtomicMemAccessSize(ElTy, &CXI);
3229  Assert(ElTy == CXI.getOperand(1)->getType(),
3230  "Expected value type does not match pointer operand type!", &CXI,
3231  ElTy);
3232  Assert(ElTy == CXI.getOperand(2)->getType(),
3233  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3234  visitInstruction(CXI);
3235 }
3236 
3237 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3239  "atomicrmw instructions must be atomic.", &RMWI);
3241  "atomicrmw instructions cannot be unordered.", &RMWI);
3242  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3243  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3244  Type *ElTy = PTy->getElementType();
3245  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3246  &RMWI, ElTy);
3247  checkAtomicMemAccessSize(ElTy, &RMWI);
3248  Assert(ElTy == RMWI.getOperand(1)->getType(),
3249  "Argument value type does not match pointer operand type!", &RMWI,
3250  ElTy);
3253  "Invalid binary operation!", &RMWI);
3254  visitInstruction(RMWI);
3255 }
3256 
3257 void Verifier::visitFenceInst(FenceInst &FI) {
3258  const AtomicOrdering Ordering = FI.getOrdering();
3259  Assert(Ordering == AtomicOrdering::Acquire ||
3260  Ordering == AtomicOrdering::Release ||
3261  Ordering == AtomicOrdering::AcquireRelease ||
3263  "fence instructions may only have acquire, release, acq_rel, or "
3264  "seq_cst ordering.",
3265  &FI);
3266  visitInstruction(FI);
3267 }
3268 
3269 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3271  EVI.getIndices()) == EVI.getType(),
3272  "Invalid ExtractValueInst operands!", &EVI);
3273 
3274  visitInstruction(EVI);
3275 }
3276 
3277 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3279  IVI.getIndices()) ==
3280  IVI.getOperand(1)->getType(),
3281  "Invalid InsertValueInst operands!", &IVI);
3282 
3283  visitInstruction(IVI);
3284 }
3285 
3286 static Value *getParentPad(Value *EHPad) {
3287  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3288  return FPI->getParentPad();
3289 
3290  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3291 }
3292 
3293 void Verifier::visitEHPadPredecessors(Instruction &I) {
3294  assert(I.isEHPad());
3295 
3296  BasicBlock *BB = I.getParent();
3297  Function *F = BB->getParent();
3298 
3299  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3300 
3301  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3302  // The landingpad instruction defines its parent as a landing pad block. The
3303  // landing pad block may be branched to only by the unwind edge of an
3304  // invoke.
3305  for (BasicBlock *PredBB : predecessors(BB)) {
3306  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3307  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3308  "Block containing LandingPadInst must be jumped to "
3309  "only by the unwind edge of an invoke.",
3310  LPI);
3311  }
3312  return;
3313  }
3314  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3315  if (!pred_empty(BB))
3316  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3317  "Block containg CatchPadInst must be jumped to "
3318  "only by its catchswitch.",
3319  CPI);
3320  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3321  "Catchswitch cannot unwind to one of its catchpads",
3322  CPI->getCatchSwitch(), CPI);
3323  return;
3324  }
3325 
3326  // Verify that each pred has a legal terminator with a legal to/from EH
3327  // pad relationship.
3328  Instruction *ToPad = &I;
3329  Value *ToPadParent = getParentPad(ToPad);
3330  for (BasicBlock *PredBB : predecessors(BB)) {
3331  TerminatorInst *TI = PredBB->getTerminator();
3332  Value *FromPad;
3333  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3334  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3335  "EH pad must be jumped to via an unwind edge", ToPad, II);
3336  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3337  FromPad = Bundle->Inputs[0];
3338  else
3339  FromPad = ConstantTokenNone::get(II->getContext());
3340  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3341  FromPad = CRI->getOperand(0);
3342  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3343  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3344  FromPad = CSI;
3345  } else {
3346  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3347  }
3348 
3349  // The edge may exit from zero or more nested pads.
3350  SmallSet<Value *, 8> Seen;
3351  for (;; FromPad = getParentPad(FromPad)) {
3352  Assert(FromPad != ToPad,
3353  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3354  if (FromPad == ToPadParent) {
3355  // This is a legal unwind edge.
3356  break;
3357  }
3358  Assert(!isa<ConstantTokenNone>(FromPad),
3359  "A single unwind edge may only enter one EH pad", TI);
3360  Assert(Seen.insert(FromPad).second,
3361  "EH pad jumps through a cycle of pads", FromPad);
3362  }
3363  }
3364 }
3365 
3366 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3367  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3368  // isn't a cleanup.
3369  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3370  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3371 
3372  visitEHPadPredecessors(LPI);
3373 
3374  if (!LandingPadResultTy)
3375  LandingPadResultTy = LPI.getType();
3376  else
3377  Assert(LandingPadResultTy == LPI.getType(),
3378  "The landingpad instruction should have a consistent result type "
3379  "inside a function.",
3380  &LPI);
3381 
3382  Function *F = LPI.getParent()->getParent();
3383  Assert(F->hasPersonalityFn(),
3384  "LandingPadInst needs to be in a function with a personality.", &LPI);
3385 
3386  // The landingpad instruction must be the first non-PHI instruction in the
3387  // block.
3388  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3389  "LandingPadInst not the first non-PHI instruction in the block.",
3390  &LPI);
3391 
3392  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3393  Constant *Clause = LPI.getClause(i);
3394  if (LPI.isCatch(i)) {
3395  Assert(isa<PointerType>(Clause->getType()),
3396  "Catch operand does not have pointer type!", &LPI);
3397  } else {
3398  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3399  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3400  "Filter operand is not an array of constants!", &LPI);
3401  }
3402  }
3403 
3404  visitInstruction(LPI);
3405 }
3406 
3407 void Verifier::visitResumeInst(ResumeInst &RI) {
3409  "ResumeInst needs to be in a function with a personality.", &RI);
3410 
3411  if (!LandingPadResultTy)
3412  LandingPadResultTy = RI.getValue()->getType();
3413  else
3414  Assert(LandingPadResultTy == RI.getValue()->getType(),
3415  "The resume instruction should have a consistent result type "
3416  "inside a function.",
3417  &RI);
3418 
3419  visitTerminatorInst(RI);
3420 }
3421 
3422 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3423  BasicBlock *BB = CPI.getParent();
3424 
3425  Function *F = BB->getParent();
3426  Assert(F->hasPersonalityFn(),
3427  "CatchPadInst needs to be in a function with a personality.", &CPI);
3428 
3429  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3430  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3431  CPI.getParentPad());
3432 
3433  // The catchpad instruction must be the first non-PHI instruction in the
3434  // block.
3435  Assert(BB->getFirstNonPHI() == &CPI,
3436  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3437 
3438  visitEHPadPredecessors(CPI);
3439  visitFuncletPadInst(CPI);
3440 }
3441 
3442 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3443  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3444  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3445  CatchReturn.getOperand(0));
3446 
3447  visitTerminatorInst(CatchReturn);
3448 }
3449 
3450 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3451  BasicBlock *BB = CPI.getParent();
3452 
3453  Function *F = BB->getParent();
3454  Assert(F->hasPersonalityFn(),
3455  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3456 
3457  // The cleanuppad instruction must be the first non-PHI instruction in the
3458  // block.
3459  Assert(BB->getFirstNonPHI() == &CPI,
3460  "CleanupPadInst not the first non-PHI instruction in the block.",
3461  &CPI);
3462 
3463  auto *ParentPad = CPI.getParentPad();
3464  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3465  "CleanupPadInst has an invalid parent.", &CPI);
3466 
3467  visitEHPadPredecessors(CPI);
3468  visitFuncletPadInst(CPI);
3469 }
3470 
3471 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3472  User *FirstUser = nullptr;
3473  Value *FirstUnwindPad = nullptr;
3474  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3476 
3477  while (!Worklist.empty()) {
3478  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3479  Assert(Seen.insert(CurrentPad).second,
3480  "FuncletPadInst must not be nested within itself", CurrentPad);
3481  Value *UnresolvedAncestorPad = nullptr;
3482  for (User *U : CurrentPad->users()) {
3483  BasicBlock *UnwindDest;
3484  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3485  UnwindDest = CRI->getUnwindDest();
3486  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3487  // We allow catchswitch unwind to caller to nest
3488  // within an outer pad that unwinds somewhere else,
3489  // because catchswitch doesn't have a nounwind variant.
3490  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3491  if (CSI->unwindsToCaller())
3492  continue;
3493  UnwindDest = CSI->getUnwindDest();
3494  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3495  UnwindDest = II->getUnwindDest();
3496  } else if (isa<CallInst>(U)) {
3497  // Calls which don't unwind may be found inside funclet
3498  // pads that unwind somewhere else. We don't *require*
3499  // such calls to be annotated nounwind.
3500  continue;
3501  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3502  // The unwind dest for a cleanup can only be found by
3503  // recursive search. Add it to the worklist, and we'll
3504  // search for its first use that determines where it unwinds.
3505  Worklist.push_back(CPI);
3506  continue;
3507  } else {
3508  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3509  continue;
3510  }
3511 
3512  Value *UnwindPad;
3513  bool ExitsFPI;
3514  if (UnwindDest) {
3515  UnwindPad = UnwindDest->getFirstNonPHI();
3516  if (!cast<Instruction>(UnwindPad)->isEHPad())
3517  continue;
3518  Value *UnwindParent = getParentPad(UnwindPad);
3519  // Ignore unwind edges that don't exit CurrentPad.
3520  if (UnwindParent == CurrentPad)
3521  continue;
3522  // Determine whether the original funclet pad is exited,
3523  // and if we are scanning nested pads determine how many
3524  // of them are exited so we can stop searching their
3525  // children.
3526  Value *ExitedPad = CurrentPad;
3527  ExitsFPI = false;
3528  do {
3529  if (ExitedPad == &FPI) {
3530  ExitsFPI = true;
3531  // Now we can resolve any ancestors of CurrentPad up to
3532  // FPI, but not including FPI since we need to make sure
3533  // to check all direct users of FPI for consistency.
3534  UnresolvedAncestorPad = &FPI;
3535  break;
3536  }
3537  Value *ExitedParent = getParentPad(ExitedPad);
3538  if (ExitedParent == UnwindParent) {
3539  // ExitedPad is the ancestor-most pad which this unwind
3540  // edge exits, so we can resolve up to it, meaning that
3541  // ExitedParent is the first ancestor still unresolved.
3542  UnresolvedAncestorPad = ExitedParent;
3543  break;
3544  }
3545  ExitedPad = ExitedParent;
3546  } while (!isa<ConstantTokenNone>(ExitedPad));
3547  } else {
3548  // Unwinding to caller exits all pads.
3549  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3550  ExitsFPI = true;
3551  UnresolvedAncestorPad = &FPI;
3552  }
3553 
3554  if (ExitsFPI) {
3555  // This unwind edge exits FPI. Make sure it agrees with other
3556  // such edges.
3557  if (FirstUser) {
3558  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3559  "pad must have the same unwind "
3560  "dest",
3561  &FPI, U, FirstUser);
3562  } else {
3563  FirstUser = U;
3564  FirstUnwindPad = UnwindPad;
3565  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3566  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3567  getParentPad(UnwindPad) == getParentPad(&FPI))
3568  SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3569  }
3570  }
3571  // Make sure we visit all uses of FPI, but for nested pads stop as
3572  // soon as we know where they unwind to.
3573  if (CurrentPad != &FPI)
3574  break;
3575  }
3576  if (UnresolvedAncestorPad) {
3577  if (CurrentPad == UnresolvedAncestorPad) {
3578  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3579  // we've found an unwind edge that exits it, because we need to verify
3580  // all direct uses of FPI.
3581  assert(CurrentPad == &FPI);
3582  continue;
3583  }
3584  // Pop off the worklist any nested pads that we've found an unwind
3585  // destination for. The pads on the worklist are the uncles,
3586  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3587  // for all ancestors of CurrentPad up to but not including
3588  // UnresolvedAncestorPad.
3589  Value *ResolvedPad = CurrentPad;
3590  while (!Worklist.empty()) {
3591  Value *UnclePad = Worklist.back();
3592  Value *AncestorPad = getParentPad(UnclePad);
3593  // Walk ResolvedPad up the ancestor list until we either find the
3594  // uncle's parent or the last resolved ancestor.
3595  while (ResolvedPad != AncestorPad) {
3596  Value *ResolvedParent = getParentPad(ResolvedPad);
3597  if (ResolvedParent == UnresolvedAncestorPad) {
3598  break;
3599  }
3600  ResolvedPad = ResolvedParent;
3601  }
3602  // If the resolved ancestor search didn't find the uncle's parent,
3603  // then the uncle is not yet resolved.
3604  if (ResolvedPad != AncestorPad)
3605  break;
3606  // This uncle is resolved, so pop it from the worklist.
3607  Worklist.pop_back();
3608  }
3609  }
3610  }
3611 
3612  if (FirstUnwindPad) {
3613  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3614  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3615  Value *SwitchUnwindPad;
3616  if (SwitchUnwindDest)
3617  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3618  else
3619  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3620  Assert(SwitchUnwindPad == FirstUnwindPad,
3621  "Unwind edges out of a catch must have the same unwind dest as "
3622  "the parent catchswitch",
3623  &FPI, FirstUser, CatchSwitch);
3624  }
3625  }
3626 
3627  visitInstruction(FPI);
3628 }
3629 
3630 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3631  BasicBlock *BB = CatchSwitch.getParent();
3632 
3633  Function *F = BB->getParent();
3634  Assert(F->hasPersonalityFn(),
3635  "CatchSwitchInst needs to be in a function with a personality.",
3636  &CatchSwitch);
3637 
3638  // The catchswitch instruction must be the first non-PHI instruction in the
3639  // block.
3640  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3641  "CatchSwitchInst not the first non-PHI instruction in the block.",
3642  &CatchSwitch);
3643 
3644  auto *ParentPad = CatchSwitch.getParentPad();
3645  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3646  "CatchSwitchInst has an invalid parent.", ParentPad);
3647 
3648  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3649  Instruction *I = UnwindDest->getFirstNonPHI();
3650  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3651  "CatchSwitchInst must unwind to an EH block which is not a "
3652  "landingpad.",
3653  &CatchSwitch);
3654 
3655  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3656  if (getParentPad(I) == ParentPad)
3657  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3658  }
3659 
3660  Assert(CatchSwitch.getNumHandlers() != 0,
3661  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3662 
3663  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3664  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3665  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3666  }
3667 
3668  visitEHPadPredecessors(CatchSwitch);
3669  visitTerminatorInst(CatchSwitch);
3670 }
3671 
3672 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3673  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3674  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3675  CRI.getOperand(0));
3676 
3677  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3678  Instruction *I = UnwindDest->getFirstNonPHI();
3679  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3680  "CleanupReturnInst must unwind to an EH block which is not a "
3681  "landingpad.",
3682  &CRI);
3683  }
3684 
3685  visitTerminatorInst(CRI);
3686 }
3687 
3688 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3689  Instruction *Op = cast<Instruction>(I.getOperand(i));
3690  // If the we have an invalid invoke, don't try to compute the dominance.
3691  // We already reject it in the invoke specific checks and the dominance
3692  // computation doesn't handle multiple edges.
3693  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3694  if (II->getNormalDest() == II->getUnwindDest())
3695  return;
3696  }
3697 
3698  // Quick check whether the def has already been encountered in the same block.
3699  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3700  // uses are defined to happen on the incoming edge, not at the instruction.
3701  //
3702  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3703  // wrapping an SSA value, assert that we've already encountered it. See
3704  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3705  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3706  return;
3707 
3708  const Use &U = I.getOperandUse(i);
3709  Assert(DT.dominates(Op, U),
3710  "Instruction does not dominate all uses!", Op, &I);
3711 }
3712 
3713 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3714  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3715  "apply only to pointer types", &I);
3716  Assert(isa<LoadInst>(I),
3717  "dereferenceable, dereferenceable_or_null apply only to load"
3718  " instructions, use attributes for calls or invokes", &I);
3719  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3720  "take one operand!", &I);
3721  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3722  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3723  "dereferenceable_or_null metadata value must be an i64!", &I);
3724 }
3725 
3726 /// verifyInstruction - Verify that an instruction is well formed.
3727 ///
3728 void Verifier::visitInstruction(Instruction &I) {
3729  BasicBlock *BB = I.getParent();
3730  Assert(BB, "Instruction not embedded in basic block!", &I);
3731 
3732  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3733  for (User *U : I.users()) {
3734  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3735  "Only PHI nodes may reference their own value!", &I);
3736  }
3737  }
3738 
3739  // Check that void typed values don't have names
3740  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3741  "Instruction has a name, but provides a void value!", &I);
3742 
3743  // Check that the return value of the instruction is either void or a legal
3744  // value type.
3745  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3746  "Instruction returns a non-scalar type!", &I);
3747 
3748  // Check that the instruction doesn't produce metadata. Calls are already
3749  // checked against the callee type.
3750  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3751  "Invalid use of metadata!", &I);
3752 
3753  // Check that all uses of the instruction, if they are instructions
3754  // themselves, actually have parent basic blocks. If the use is not an
3755  // instruction, it is an error!
3756  for (Use &U : I.uses()) {
3757  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3758  Assert(Used->getParent() != nullptr,
3759  "Instruction referencing"
3760  " instruction not embedded in a basic block!",
3761  &I, Used);
3762  else {
3763  CheckFailed("Use of instruction is not an instruction!", U);
3764  return;
3765  }
3766  }
3767 
3768  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3769  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3770 
3771  // Check to make sure that only first-class-values are operands to
3772  // instructions.
3773  if (!I.getOperand(i)->getType()->isFirstClassType()) {
3774  Assert(false, "Instruction operands must be first-class values!", &I);
3775  }
3776 
3777  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3778  // Check to make sure that the "address of" an intrinsic function is never
3779  // taken.
3780  Assert(
3781  !F->isIntrinsic() ||
3782  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3783  "Cannot take the address of an intrinsic!", &I);
3784  Assert(
3785  !F->isIntrinsic() || isa<CallInst>(I) ||
3786  F->getIntrinsicID() == Intrinsic::donothing ||
3787  F->getIntrinsicID() == Intrinsic::coro_resume ||
3788  F->getIntrinsicID() == Intrinsic::coro_destroy ||
3789  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3790  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3791  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3792  "Cannot invoke an intrinsic other than donothing, patchpoint, "
3793  "statepoint, coro_resume or coro_destroy",
3794  &I);
3795  Assert(F->getParent() == &M, "Referencing function in another module!",
3796  &I, &M, F, F->getParent());
3797  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3798  Assert(OpBB->getParent() == BB->getParent(),
3799  "Referring to a basic block in another function!", &I);
3800  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3801  Assert(OpArg->getParent() == BB->getParent(),
3802  "Referring to an argument in another function!", &I);
3803  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3804  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3805  &M, GV, GV->getParent());
3806  } else if (isa<Instruction>(I.getOperand(i))) {
3807  verifyDominatesUse(I, i);
3808  } else if (isa<InlineAsm>(I.getOperand(i))) {
3809  Assert((i + 1 == e && isa<CallInst>(I)) ||
3810  (i + 3 == e && isa<InvokeInst>(I)),
3811  "Cannot take the address of an inline asm!", &I);
3812  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3813  if (CE->getType()->isPtrOrPtrVectorTy() ||
3815  // If we have a ConstantExpr pointer, we need to see if it came from an
3816  // illegal bitcast. If the datalayout string specifies non-integral
3817  // address spaces then we also need to check for illegal ptrtoint and
3818  // inttoptr expressions.
3819  visitConstantExprsRecursively(CE);
3820  }
3821  }
3822  }
3823 
3824  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3826  "fpmath requires a floating point result!", &I);
3827  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3828  if (ConstantFP *CFP0 =
3829  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3830  const APFloat &Accuracy = CFP0->getValueAPF();
3831  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3832  "fpmath accuracy must have float type", &I);
3833  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3834  "fpmath accuracy not a positive number!", &I);
3835  } else {
3836  Assert(false, "invalid fpmath accuracy!", &I);
3837  }
3838  }
3839 
3840  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3841  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3842  "Ranges are only for loads, calls and invokes!", &I);
3843  visitRangeMetadata(I, Range, I.getType());
3844  }
3845 
3847  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3848  &I);
3849  Assert(isa<LoadInst>(I),
3850  "nonnull applies only to load instructions, use attributes"
3851  " for calls or invokes",
3852  &I);
3853  }
3854 
3856  visitDereferenceableMetadata(I, MD);
3857 
3859  visitDereferenceableMetadata(I, MD);
3860 
3861  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3862  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3863 
3864  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3865  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3866  &I);
3867  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3868  "use attributes for calls or invokes", &I);
3869  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3870  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3871  Assert(CI && CI->getType()->isIntegerTy(64),
3872  "align metadata value must be an i64!", &I);
3873  uint64_t Align = CI->getZExtValue();
3874  Assert(isPowerOf2_64(Align),
3875  "align metadata value must be a power of 2!", &I);
3877  "alignment is larger that implementation defined limit", &I);
3878  }
3879 
3880  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3881  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3882  visitMDNode(*N);
3883  }
3884 
3885  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3886  verifyFragmentExpression(*DII);
3887 
3888  InstsInThisBlock.insert(&I);
3889 }
3890 
3891 /// Allow intrinsics to be verified in different ways.
3892 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3893  Function *IF = CS.getCalledFunction();
3894  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3895  IF);
3896 
3897  // Verify that the intrinsic prototype lines up with what the .td files
3898  // describe.
3899  FunctionType *IFTy = IF->getFunctionType();
3900  bool IsVarArg = IFTy->isVarArg();
3901 
3903  getIntrinsicInfoTableEntries(ID, Table);
3904  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3905 
3906  SmallVector<Type *, 4> ArgTys;
3907  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3908  TableRef, ArgTys),
3909  "Intrinsic has incorrect return type!", IF);
3910  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3911  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3912  TableRef, ArgTys),
3913  "Intrinsic has incorrect argument type!", IF);
3914 
3915  // Verify if the intrinsic call matches the vararg property.
3916  if (IsVarArg)
3917  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3918  "Intrinsic was not defined with variable arguments!", IF);
3919  else
3920  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3921  "Callsite was not defined with variable arguments!", IF);
3922 
3923  // All descriptors should be absorbed by now.
3924  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3925 
3926  // Now that we have the intrinsic ID and the actual argument types (and we
3927  // know they are legal for the intrinsic!) get the intrinsic name through the
3928  // usual means. This allows us to verify the mangling of argument types into
3929  // the name.
3930  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3931  Assert(ExpectedName == IF->getName(),
3932  "Intrinsic name not mangled correctly for type arguments! "
3933  "Should be: " +
3934  ExpectedName,
3935  IF);
3936 
3937  // If the intrinsic takes MDNode arguments, verify that they are either global
3938  // or are local to *this* function.
3939  for (Value *V : CS.args())
3940  if (auto *MD = dyn_cast<MetadataAsValue>(V))
3941  visitMetadataAsValue(*MD, CS.getCaller());
3942 
3943  switch (ID) {
3944  default:
3945  break;
3946  case Intrinsic::coro_id: {
3947  auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3948  if (isa<ConstantPointerNull>(InfoArg))
3949  break;
3950  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3951  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
3952  "info argument of llvm.coro.begin must refer to an initialized "
3953  "constant");
3954  Constant *Init = GV->getInitializer();
3955  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
3956  "info argument of llvm.coro.begin must refer to either a struct or "
3957  "an array");
3958  break;
3959  }
3960  case Intrinsic::ctlz: // llvm.ctlz
3961  case Intrinsic::cttz: // llvm.cttz
3962  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3963  "is_zero_undef argument of bit counting intrinsics must be a "
3964  "constant int",
3965  CS);
3966  break;
3967  case Intrinsic::experimental_constrained_fadd:
3968  case Intrinsic::experimental_constrained_fsub:
3969  case Intrinsic::experimental_constrained_fmul:
3970  case Intrinsic::experimental_constrained_fdiv:
3971  case Intrinsic::experimental_constrained_frem:
3972  case Intrinsic::experimental_constrained_sqrt:
3973  case Intrinsic::experimental_constrained_pow:
3974  case Intrinsic::experimental_constrained_powi:
3975  case Intrinsic::experimental_constrained_sin:
3976  case Intrinsic::experimental_constrained_cos:
3977  case Intrinsic::experimental_constrained_exp:
3978  case Intrinsic::experimental_constrained_exp2:
3979  case Intrinsic::experimental_constrained_log:
3980  case Intrinsic::experimental_constrained_log10:
3981  case Intrinsic::experimental_constrained_log2:
3982  case Intrinsic::experimental_constrained_rint:
3983  case Intrinsic::experimental_constrained_nearbyint:
3984  visitConstrainedFPIntrinsic(
3985  cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3986  break;
3987  case Intrinsic::dbg_declare: // llvm.dbg.declare
3988  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3989  "invalid llvm.dbg.declare intrinsic call 1", CS);
3990  visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3991  break;
3992  case Intrinsic::dbg_value: // llvm.dbg.value
3993  visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3994  break;
3995  case Intrinsic::memcpy:
3996  case Intrinsic::memmove:
3997  case Intrinsic::memset: {
3998  ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3999  Assert(AlignCI,
4000  "alignment argument of memory intrinsics must be a constant int",
4001  CS);
4002  const APInt &AlignVal = AlignCI->getValue();
4003  Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
4004  "alignment argument of memory intrinsics must be a power of 2", CS);
4005  Assert(isa<ConstantInt>(CS.getArgOperand(4)),
4006  "isvolatile argument of memory intrinsics must be a constant int",
4007  CS);
4008  break;
4009  }
4010  case Intrinsic::memcpy_element_unordered_atomic: {
4012  cast<ElementUnorderedAtomicMemCpyInst>(CS.getInstruction());
4013  ;
4014 
4015  ConstantInt *ElementSizeCI =
4017  Assert(ElementSizeCI,
4018  "element size of the element-wise unordered atomic memory "
4019  "intrinsic must be a constant int",
4020  CS);
4021  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4022  Assert(ElementSizeVal.isPowerOf2(),
4023  "element size of the element-wise atomic memory intrinsic "
4024  "must be a power of 2",
4025  CS);
4026 
4027  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4028  uint64_t Length = LengthCI->getZExtValue();
4029  uint64_t ElementSize = MI->getElementSizeInBytes();
4030  Assert((Length % ElementSize) == 0,
4031  "constant length must be a multiple of the element size in the "
4032  "element-wise atomic memory intrinsic",
4033  CS);
4034  }
4035 
4036  auto IsValidAlignment = [&](uint64_t Alignment) {
4037  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4038  };
4039  uint64_t DstAlignment = CS.getParamAlignment(0),
4040  SrcAlignment = CS.getParamAlignment(1);
4041  Assert(IsValidAlignment(DstAlignment),
4042  "incorrect alignment of the destination argument", CS);
4043  Assert(IsValidAlignment(SrcAlignment),
4044  "incorrect alignment of the source argument", CS);
4045  break;
4046  }
4047  case Intrinsic::memmove_element_unordered_atomic: {
4048  auto *MI = cast<ElementUnorderedAtomicMemMoveInst>(CS.getInstruction());
4049 
4050  ConstantInt *ElementSizeCI =
4051  dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4052  Assert(ElementSizeCI,
4053  "element size of the element-wise unordered atomic memory "
4054  "intrinsic must be a constant int",
4055  CS);
4056  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4057  Assert(ElementSizeVal.isPowerOf2(),
4058  "element size of the element-wise atomic memory intrinsic "
4059  "must be a power of 2",
4060  CS);
4061 
4062  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4063  uint64_t Length = LengthCI->getZExtValue();
4064  uint64_t ElementSize = MI->getElementSizeInBytes();
4065  Assert((Length % ElementSize) == 0,
4066  "constant length must be a multiple of the element size in the "
4067  "element-wise atomic memory intrinsic",
4068  CS);
4069  }
4070 
4071  auto IsValidAlignment = [&](uint64_t Alignment) {
4072  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4073  };
4074  uint64_t DstAlignment = CS.getParamAlignment(0),
4075  SrcAlignment = CS.getParamAlignment(1);
4076  Assert(IsValidAlignment(DstAlignment),
4077  "incorrect alignment of the destination argument", CS);
4078  Assert(IsValidAlignment(SrcAlignment),
4079  "incorrect alignment of the source argument", CS);
4080  break;
4081  }
4082  case Intrinsic::memset_element_unordered_atomic: {
4083  auto *MI = cast<ElementUnorderedAtomicMemSetInst>(CS.getInstruction());
4084 
4085  ConstantInt *ElementSizeCI =
4086  dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4087  Assert(ElementSizeCI,
4088  "element size of the element-wise unordered atomic memory "
4089  "intrinsic must be a constant int",
4090  CS);
4091  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4092  Assert(ElementSizeVal.isPowerOf2(),
4093  "element size of the element-wise atomic memory intrinsic "
4094  "must be a power of 2",
4095  CS);
4096 
4097  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4098  uint64_t Length = LengthCI->getZExtValue();
4099  uint64_t ElementSize = MI->getElementSizeInBytes();
4100  Assert((Length % ElementSize) == 0,
4101  "constant length must be a multiple of the element size in the "
4102  "element-wise atomic memory intrinsic",
4103  CS);
4104  }
4105 
4106  auto IsValidAlignment = [&](uint64_t Alignment) {
4107  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4108  };
4109  uint64_t DstAlignment = CS.getParamAlignment(0);
4110  Assert(IsValidAlignment(DstAlignment),
4111  "incorrect alignment of the destination argument", CS);
4112  break;
4113  }
4114  case Intrinsic::gcroot:
4115  case Intrinsic::gcwrite:
4116  case Intrinsic::gcread:
4117  if (ID == Intrinsic::gcroot) {
4118  AllocaInst *AI =
4120  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4121  Assert(isa<Constant>(CS.getArgOperand(1)),
4122  "llvm.gcroot parameter #2 must be a constant.", CS);
4123  if (!AI->getAllocatedType()->isPointerTy()) {
4124  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4125  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4126  "or argument #2 must be a non-null constant.",
4127  CS);
4128  }
4129  }
4130 
4131  Assert(CS.getParent()->getParent()->hasGC(),
4132  "Enclosing function does not use GC.", CS);
4133  break;
4134  case Intrinsic::init_trampoline:
4135  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4136  "llvm.init_trampoline parameter #2 must resolve to a function.",
4137  CS);
4138  break;
4139  case Intrinsic::prefetch:
4140  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4141  isa<ConstantInt>(CS.getArgOperand(2)) &&
4142  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4143  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4144  "invalid arguments to llvm.prefetch", CS);
4145  break;
4146  case Intrinsic::stackprotector:
4147  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4148  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4149  break;
4150  case Intrinsic::lifetime_start:
4151  case Intrinsic::lifetime_end:
4152  case Intrinsic::invariant_start:
4153  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4154  "size argument of memory use markers must be a constant integer",
4155  CS);
4156  break;
4157  case Intrinsic::invariant_end:
4158  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4159  "llvm.invariant.end parameter #2 must be a constant integer", CS);
4160  break;
4161 
4162  case Intrinsic::localescape: {
4163  BasicBlock *BB = CS.getParent();
4164  Assert(BB == &BB->getParent()->front(),
4165  "llvm.localescape used outside of entry block", CS);
4166  Assert(!SawFrameEscape,
4167  "multiple calls to llvm.localescape in one function", CS);
4168  for (Value *Arg : CS.args()) {
4169  if (isa<ConstantPointerNull>(Arg))
4170  continue; // Null values are allowed as placeholders.
4171  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4172  Assert(AI && AI->isStaticAlloca(),
4173  "llvm.localescape only accepts static allocas", CS);
4174  }
4175  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4176  SawFrameEscape = true;
4177  break;
4178  }
4179  case Intrinsic::localrecover: {
4180  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4181  Function *Fn = dyn_cast<Function>(FnArg);
4182  Assert(Fn && !Fn->isDeclaration(),
4183  "llvm.localrecover first "
4184  "argument must be function defined in this module",
4185  CS);
4186  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4187  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4188  CS);
4189  auto &Entry = FrameEscapeInfo[Fn];
4190  Entry.second = unsigned(
4191  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4192  break;
4193  }
4194 
4195  case Intrinsic::experimental_gc_statepoint:
4196  Assert(!CS.isInlineAsm(),
4197  "gc.statepoint support for inline assembly unimplemented", CS);
4198  Assert(CS.getParent()->getParent()->hasGC(),
4199  "Enclosing function does not use GC.", CS);
4200 
4201  verifyStatepoint(CS);
4202  break;
4203  case Intrinsic::experimental_gc_result: {
4204  Assert(CS.getParent()->getParent()->hasGC(),
4205  "Enclosing function does not use GC.", CS);
4206  // Are we tied to a statepoint properly?
4207  CallSite StatepointCS(CS.getArgOperand(0));
4208  const Function *StatepointFn =
4209  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4210  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4211  StatepointFn->getIntrinsicID() ==
4212  Intrinsic::experimental_gc_statepoint,
4213  "gc.result operand #1 must be from a statepoint", CS,
4214  CS.getArgOperand(0));
4215 
4216  // Assert that result type matches wrapped callee.
4217  const Value *Target = StatepointCS.getArgument(2);
4218  auto *PT = cast<PointerType>(Target->getType());
4219  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4220  Assert(CS.getType() == TargetFuncType->getReturnType(),
4221  "gc.result result type does not match wrapped callee", CS);
4222  break;
4223  }
4224  case Intrinsic::experimental_gc_relocate: {
4225  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4226 
4227  Assert(isa<PointerType>(CS.getType()->getScalarType()),
4228  "gc.relocate must return a pointer or a vector of pointers", CS);
4229 
4230  // Check that this relocate is correctly tied to the statepoint
4231 
4232  // This is case for relocate on the unwinding path of an invoke statepoint
4233  if (LandingPadInst *LandingPad =
4234  dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4235 
4236  const BasicBlock *InvokeBB =
4237  LandingPad->getParent()->getUniquePredecessor();
4238 
4239  // Landingpad relocates should have only one predecessor with invoke
4240  // statepoint terminator
4241  Assert(InvokeBB, "safepoints should have unique landingpads",
4242  LandingPad->getParent());
4243  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4244  InvokeBB);
4245  Assert(isStatepoint(InvokeBB->getTerminator()),
4246  "gc relocate should be linked to a statepoint", InvokeBB);
4247  }
4248  else {
4249  // In all other cases relocate should be tied to the statepoint directly.
4250  // This covers relocates on a normal return path of invoke statepoint and
4251  // relocates of a call statepoint.
4252  auto Token = CS.getArgOperand(0);
4253  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4254  "gc relocate is incorrectly tied to the statepoint", CS, Token);
4255  }
4256 
4257  // Verify rest of the relocate arguments.
4258 
4259  ImmutableCallSite StatepointCS(
4260  cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4261 
4262  // Both the base and derived must be piped through the safepoint.
4263  Value* Base = CS.getArgOperand(1);
4264  Assert(isa<ConstantInt>(Base),
4265  "gc.relocate operand #2 must be integer offset", CS);
4266 
4267  Value* Derived = CS.getArgOperand(2);
4268  Assert(isa<ConstantInt>(Derived),
4269  "gc.relocate operand #3 must be integer offset", CS);
4270 
4271  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4272  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4273  // Check the bounds
4274  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4275  "gc.relocate: statepoint base index out of bounds", CS);
4276  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4277  "gc.relocate: statepoint derived index out of bounds", CS);
4278 
4279  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4280  // section of the statepoint's argument.
4281  Assert(StatepointCS.arg_size() > 0,
4282  "gc.statepoint: insufficient arguments");
4283  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4284  "gc.statement: number of call arguments must be constant integer");
4285  const unsigned NumCallArgs =
4286  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4287  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4288  "gc.statepoint: mismatch in number of call arguments");
4289  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4290  "gc.statepoint: number of transition arguments must be "
4291  "a constant integer");
4292  const int NumTransitionArgs =
4293  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4294  ->getZExtValue();
4295  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4296  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4297  "gc.statepoint: number of deoptimization arguments must be "
4298  "a constant integer");
4299  const int NumDeoptArgs =
4300  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4301  ->getZExtValue();
4302  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4303  const int GCParamArgsEnd = StatepointCS.arg_size();
4304  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4305  "gc.relocate: statepoint base index doesn't fall within the "
4306  "'gc parameters' section of the statepoint call",
4307  CS);
4308  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4309  "gc.relocate: statepoint derived index doesn't fall within the "
4310  "'gc parameters' section of the statepoint call",
4311  CS);
4312 
4313  // Relocated value must be either a pointer type or vector-of-pointer type,
4314  // but gc_relocate does not need to return the same pointer type as the
4315  // relocated pointer. It can be casted to the correct type later if it's
4316  // desired. However, they must have the same address space and 'vectorness'
4317  GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4319  "gc.relocate: relocated value must be a gc pointer", CS);
4320 
4321  auto ResultType = CS.getType();
4322  auto DerivedType = Relocate.getDerivedPtr()->getType();
4323  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4324  "gc.relocate: vector relocates to vector and pointer to pointer",
4325  CS);
4326  Assert(
4327  ResultType->getPointerAddressSpace() ==
4328  DerivedType->getPointerAddressSpace(),
4329  "gc.relocate: relocating a pointer shouldn't change its address space",
4330  CS);
4331  break;
4332  }
4333  case Intrinsic::eh_exceptioncode:
4334  case Intrinsic::eh_exceptionpointer: {
4335  Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4336  "eh.exceptionpointer argument must be a catchpad", CS);
4337  break;
4338  }
4339  case Intrinsic::masked_load: {
4340  Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4341 
4342  Value *Ptr = CS.getArgOperand(0);
4343  //Value *Alignment = CS.getArgOperand(1);
4344  Value *Mask = CS.getArgOperand(2);
4345  Value *PassThru = CS.getArgOperand(3);
4346  Assert(Mask->getType()->isVectorTy(),
4347  "masked_load: mask must be vector", CS);
4348 
4349  // DataTy is the overloaded type
4350  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4351  Assert(DataTy == CS.getType(),
4352  "masked_load: return must match pointer type", CS);
4353  Assert(PassThru->getType() == DataTy,
4354  "masked_load: pass through and data type must match", CS);
4355  Assert(Mask->getType()->getVectorNumElements() ==
4356  DataTy->getVectorNumElements(),
4357  "masked_load: vector mask must be same length as data", CS);
4358  break;
4359  }
4360  case Intrinsic::masked_store: {
4361  Value *Val = CS.getArgOperand(0);
4362  Value *Ptr = CS.getArgOperand(1);
4363  //Value *Alignment = CS.getArgOperand(2);
4364  Value *Mask = CS.getArgOperand(3);
4365  Assert(Mask->getType()->isVectorTy(),
4366  "masked_store: mask must be vector", CS);
4367 
4368  // DataTy is the overloaded type
4369  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4370  Assert(DataTy == Val->getType(),
4371  "masked_store: storee must match pointer type", CS);
4372  Assert(Mask->getType()->getVectorNumElements() ==
4373  DataTy->getVectorNumElements(),
4374  "masked_store: vector mask must be same length as data", CS);
4375  break;
4376  }
4377 
4378  case Intrinsic::experimental_guard: {
4379  Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4381  "experimental_guard must have exactly one "
4382  "\"deopt\" operand bundle");
4383  break;
4384  }
4385 
4386  case Intrinsic::experimental_deoptimize: {
4387  Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4389  "experimental_deoptimize must have exactly one "
4390  "\"deopt\" operand bundle");
4392  "experimental_deoptimize return type must match caller return type");
4393 
4394  if (CS.isCall()) {
4395  auto *DeoptCI = CS.getInstruction();
4396  auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4397  Assert(RI,
4398  "calls to experimental_deoptimize must be followed by a return");
4399 
4400  if (!CS.getType()->isVoidTy() && RI)
4401  Assert(RI->getReturnValue() == DeoptCI,
4402  "calls to experimental_deoptimize must be followed by a return "
4403  "of the value computed by experimental_deoptimize");
4404  }
4405 
4406  break;
4407  }
4408  };
4409 }
4410 
4411 /// \brief Carefully grab the subprogram from a local scope.
4412 ///
4413 /// This carefully grabs the subprogram from a local scope, avoiding the
4414 /// built-in assertions that would typically fire.
4415 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4416  if (!LocalScope)
4417  return nullptr;
4418 
4419  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4420  return SP;
4421 
4422  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4423  return getSubprogram(LB->getRawScope());
4424 
4425  // Just return null; broken scope chains are checked elsewhere.
4426  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4427  return nullptr;
4428 }
4429 
4430 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4431  unsigned NumOperands = FPI.getNumArgOperands();
4432  Assert(((NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4433  "invalid arguments for constrained FP intrinsic", &FPI);
4434  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4435  "invalid exception behavior argument", &FPI);
4436  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4437  "invalid rounding mode argument", &FPI);
4439  "invalid rounding mode argument", &FPI);
4441  "invalid exception behavior argument", &FPI);
4442 }
4443 
4444 template <class DbgIntrinsicTy>
4445 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4446  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4447  AssertDI(isa<ValueAsMetadata>(MD) ||
4448  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4449  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4450  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4451  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4452  DII.getRawVariable());
4453  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4454  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4455  DII.getRawExpression());
4456 
4457  // Ignore broken !dbg attachments; they're checked elsewhere.
4458  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4459  if (!isa<DILocation>(N))
4460  return;
4461 
4462  BasicBlock *BB = DII.getParent();
4463  Function *F = BB ? BB->getParent() : nullptr;
4464 
4465  // The scopes for variables and !dbg attachments must agree.
4466  DILocalVariable *Var = DII.getVariable();
4467  DILocation *Loc = DII.getDebugLoc();
4468  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4469  &DII, BB, F);
4470 
4471  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4472  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4473  if (!VarSP || !LocSP)
4474  return; // Broken scope chains are checked elsewhere.
4475 
4476  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4477  " variable and !dbg attachment",
4478  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4479  Loc->getScope()->getSubprogram());
4480 
4481  verifyFnArgs(DII);
4482 }
4483 
4484 static uint64_t getVariableSize(const DILocalVariable &V) {
4485  // Be careful of broken types (checked elsewhere).
4486  const Metadata *RawType = V.getRawType();
4487  while (RawType) {
4488  // Try to get the size directly.
4489  if (auto *T = dyn_cast<DIType>(RawType))
4490  if (uint64_t Size = T->getSizeInBits())
4491  return Size;
4492 
4493  if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4494  // Look at the base type.
4495  RawType = DT->getRawBaseType();
4496  continue;
4497  }
4498 
4499  // Missing type or size.
4500  break;
4501  }
4502 
4503  // Fail gracefully.
4504  return 0;
4505 }
4506 
4507 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4508  DILocalVariable *V;
4509  DIExpression *E;
4510  if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4511  V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4512  E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4513  } else {
4514  auto *DDI = cast<DbgDeclareInst>(&I);
4515  V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4516  E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4517  }
4518 
4519  // We don't know whether this intrinsic verified correctly.
4520  if (!V || !E || !E->isValid())
4521  return;
4522 
4523  // Nothing to do if this isn't a bit piece expression.
4524  auto Fragment = E->getFragmentInfo();
4525  if (!Fragment)
4526  return;
4527 
4528  // The frontend helps out GDB by emitting the members of local anonymous
4529  // unions as artificial local variables with shared storage. When SROA splits
4530  // the storage for artificial local variables that are smaller than the entire
4531  // union, the overhang piece will be outside of the allotted space for the
4532  // variable and this check fails.
4533  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4534  if (V->isArtificial())
4535  return;
4536 
4537  // If there's no size, the type is broken, but that should be checked
4538  // elsewhere.
4539  uint64_t VarSize = getVariableSize(*V);
4540  if (!VarSize)
4541  return;
4542 
4543  unsigned FragSize = Fragment->SizeInBits;
4544  unsigned FragOffset = Fragment->OffsetInBits;
4545  AssertDI(FragSize + FragOffset <= VarSize,
4546  "fragment is larger than or outside of variable", &I, V, E);
4547  AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E);
4548 }
4549 
4550 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4551  // This function does not take the scope of noninlined function arguments into
4552  // account. Don't run it if current function is nodebug, because it may
4553  // contain inlined debug intrinsics.
4554  if (!HasDebugInfo)
4555  return;
4556 
4557  DILocalVariable *Var;
4558  if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
4559  // For performance reasons only check non-inlined ones.
4560  if (DV->getDebugLoc()->getInlinedAt())
4561  return;
4562  Var = DV->getVariable();
4563  } else {
4564  auto *DD = cast<DbgDeclareInst>(&I);
4565  if (DD->getDebugLoc()->getInlinedAt())
4566  return;
4567  Var = DD->getVariable();
4568  }
4569  AssertDI(Var, "dbg intrinsic without variable");
4570 
4571  unsigned ArgNo = Var->getArg();
4572  if (!ArgNo)
4573  return;
4574 
4575  // Verify there are no duplicate function argument debug info entries.
4576  // These will cause hard-to-debug assertions in the DWARF backend.
4577  if (DebugFnArgs.size() < ArgNo)
4578  DebugFnArgs.resize(ArgNo, nullptr);
4579 
4580  auto *Prev = DebugFnArgs[ArgNo - 1];
4581  DebugFnArgs[ArgNo - 1] = Var;
4582  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4583  Prev, Var);
4584 }
4585 
4586 void Verifier::verifyCompileUnits() {
4587  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4589  if (CUs)
4590  Listed.insert(CUs->op_begin(), CUs->op_end());
4591  for (auto *CU : CUVisited)
4592  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4593  CUVisited.clear();
4594 }
4595 
4596 void Verifier::verifyDeoptimizeCallingConvs() {
4597  if (DeoptimizeDeclarations.empty())
4598  return;
4599 
4600  const Function *First = DeoptimizeDeclarations[0];
4601  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4602  Assert(First->getCallingConv() == F->getCallingConv(),
4603  "All llvm.experimental.deoptimize declarations must have the same "
4604  "calling convention",
4605  First, F);
4606  }
4607 }
4608 
4609 //===----------------------------------------------------------------------===//
4610 // Implement the public interfaces to this file...
4611 //===----------------------------------------------------------------------===//
4612 
4614  Function &F = const_cast<Function &>(f);
4615 
4616  // Don't use a raw_null_ostream. Printing IR is expensive.
4617  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4618 
4619  // Note that this function's return value is inverted from what you would
4620  // expect of a function called "verify".
4621  return !V.verify(F);
4622 }
4623 
4625  bool *BrokenDebugInfo) {
4626  // Don't use a raw_null_ostream. Printing IR is expensive.
4627  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4628 
4629  bool Broken = false;
4630  for (const Function &F : M)
4631  Broken |= !V.verify(F);
4632 
4633  Broken |= !V.verify();
4634  if (BrokenDebugInfo)
4635  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4636  // Note that this function's return value is inverted from what you would
4637  // expect of a function called "verify".
4638  return Broken;
4639 }
4640 
4641 namespace {
4642 
4643 struct VerifierLegacyPass : public FunctionPass {
4644  static char ID;
4645 
4646  std::unique_ptr<Verifier> V;
4647  bool FatalErrors = true;
4648 
4649  VerifierLegacyPass() : FunctionPass(ID) {
4651  }
4652  explicit VerifierLegacyPass(bool FatalErrors)
4653  : FunctionPass(ID),
4654  FatalErrors(FatalErrors) {
4656  }
4657 
4658  bool doInitialization(Module &M) override {
4659  V = llvm::make_unique<Verifier>(
4660  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4661  return false;
4662  }
4663 
4664  bool runOnFunction(Function &F) override {
4665  if (!V->verify(F) && FatalErrors)
4666  report_fatal_error("Broken function found, compilation aborted!");
4667 
4668  return false;
4669  }
4670 
4671  bool doFinalization(Module &M) override {
4672  bool HasErrors = false;
4673  for (Function &F : M)
4674  if (F.isDeclaration())
4675  HasErrors |= !V->verify(F);
4676 
4677  HasErrors |= !V->verify();
4678  if (FatalErrors) {
4679  if (HasErrors)
4680  report_fatal_error("Broken module found, compilation aborted!");
4681  assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info");
4682  }
4683 
4684  // Strip broken debug info.
4685  if (V->hasBrokenDebugInfo()) {
4687  M.getContext().diagnose(DiagInvalid);
4688  if (!StripDebugInfo(M))
4689  report_fatal_error("Failed to strip malformed debug info");
4690  }
4691  return false;
4692  }
4693 
4694  void getAnalysisUsage(AnalysisUsage &AU) const override {
4695  AU.setPreservesAll();
4696  }
4697 };
4698 
4699 } // end anonymous namespace
4700 
4701 /// Helper to issue failure from the TBAA verification
4702 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4703  if (Diagnostic)
4704  return Diagnostic->CheckFailed(Args...);
4705 }
4706 
4707 #define AssertTBAA(C, ...) \
4708  do { \
4709  if (!(C)) { \
4710  CheckFailed(__VA_ARGS__); \
4711  return false; \
4712  } \
4713  } while (false)
4714 
4715 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4716 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4717 /// struct-type node describing an aggregate data structure (like a struct).
4718 TBAAVerifier::TBAABaseNodeSummary
4719 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4720  if (BaseNode->getNumOperands() < 2) {
4721  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4722  return {true, ~0u};
4723  }
4724 
4725  auto Itr = TBAABaseNodes.find(BaseNode);
4726  if (Itr != TBAABaseNodes.end())
4727  return Itr->second;
4728 
4729  auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4730  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4731  (void)InsertResult;
4732  assert(InsertResult.second && "We just checked!");
4733  return Result;
4734 }
4735 
4736 TBAAVerifier::TBAABaseNodeSummary
4737 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4738  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4739 
4740  if (BaseNode->getNumOperands() == 2) {
4741  // Scalar nodes can only be accessed at offset 0.
4742  return isValidScalarTBAANode(BaseNode)
4743  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4744  : InvalidNode;
4745  }
4746 
4747  if (BaseNode->getNumOperands() % 2 != 1) {
4748  CheckFailed("Struct tag nodes must have an odd number of operands!",
4749  BaseNode);
4750  return InvalidNode;
4751  }
4752 
4753  if (!isa<MDString>(BaseNode->getOperand(0))) {
4754  CheckFailed("Struct tag nodes have a string as their first operand",
4755  BaseNode);
4756  return InvalidNode;
4757  }
4758 
4759  bool Failed = false;
4760 
4761  Optional<APInt> PrevOffset;
4762  unsigned BitWidth = ~0u;
4763 
4764  // We've already checked that BaseNode is not a degenerate root node with one
4765  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4766  for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4767  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4768  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4769  if (!isa<MDNode>(FieldTy)) {
4770  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4771  Failed = true;
4772  continue;
4773  }
4774 
4775  auto *OffsetEntryCI =
4776  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4777  if (!OffsetEntryCI) {
4778  CheckFailed("Offset entries must be constants!", &I, BaseNode);
4779  Failed = true;
4780  continue;
4781  }
4782 
4783  if (BitWidth == ~0u)
4784  BitWidth = OffsetEntryCI->getBitWidth();
4785 
4786  if (OffsetEntryCI->getBitWidth() != BitWidth) {
4787  CheckFailed(
4788  "Bitwidth between the offsets and struct type entries must match", &I,
4789  BaseNode);
4790  Failed = true;
4791  continue;
4792  }
4793 
4794  // NB! As far as I can tell, we generate a non-strictly increasing offset
4795  // sequence only from structs that have zero size bit fields. When
4796  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4797  // pick the field lexically the latest in struct type metadata node. This
4798  // mirrors the actual behavior of the alias analysis implementation.
4799  bool IsAscending =
4800  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4801 
4802  if (!IsAscending) {
4803  CheckFailed("Offsets must be increasing!", &I, BaseNode);
4804  Failed = true;
4805  }
4806 
4807  PrevOffset = OffsetEntryCI->getValue();
4808  }
4809 
4810  return Failed ? InvalidNode
4811  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4812 }
4813 
4814 static bool IsRootTBAANode(const MDNode *MD) {
4815  return MD->getNumOperands() < 2;
4816 }
4817 
4818 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4820  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4821  return false;
4822 
4823  if (!isa<MDString>(MD->getOperand(0)))
4824  return false;
4825 
4826  if (MD->getNumOperands() == 3) {
4827  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4828  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4829  return false;
4830  }
4831 
4832  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4833  return Parent && Visited.insert(Parent).second &&
4834  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4835 }
4836 
4837 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4838  auto ResultIt = TBAAScalarNodes.find(MD);
4839  if (ResultIt != TBAAScalarNodes.end())
4840  return ResultIt->second;
4841 
4843  bool Result = IsScalarTBAANodeImpl(MD, Visited);
4844  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4845  (void)InsertResult;
4846  assert(InsertResult.second && "Just checked!");
4847 
4848  return Result;
4849 }
4850 
4851 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4852 /// Offset in place to be the offset within the field node returned.
4853 ///
4854 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4855 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4856  const MDNode *BaseNode,
4857  APInt &Offset) {
4858  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4859 
4860  // Scalar nodes have only one possible "field" -- their parent in the access
4861  // hierarchy. Offset must be zero at this point, but our caller is supposed
4862  // to Assert that.
4863  if (BaseNode->getNumOperands() == 2)
4864  return cast<MDNode>(BaseNode->getOperand(1));
4865 
4866  for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4867  auto *OffsetEntryCI =
4868  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4869  if (OffsetEntryCI->getValue().ugt(Offset)) {
4870  if (Idx == 1) {
4871  CheckFailed("Could not find TBAA parent in struct type node", &I,
4872  BaseNode, &Offset);
4873  return nullptr;
4874  }
4875 
4876  auto *PrevOffsetEntryCI =
4877  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4878  Offset -= PrevOffsetEntryCI->getValue();
4879  return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4880  }
4881  }
4882 
4883  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4884  BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4885 
4886  Offset -= LastOffsetEntryCI->getValue();
4887  return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4888 }
4889 
4891  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4892  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4893  isa<AtomicCmpXchgInst>(I),
4894  "TBAA is only for loads, stores and calls!", &I);
4895 
4896  bool IsStructPathTBAA =
4897  isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4898 
4899  AssertTBAA(
4900  IsStructPathTBAA,
4901  "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4902 
4903  AssertTBAA(MD->getNumOperands() < 5,
4904  "Struct tag metadata must have either 3 or 4 operands", &I, MD);
4905 
4906  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4907  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4908 
4909  if (MD->getNumOperands() == 4) {
4910  auto *IsImmutableCI =
4911  mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4912  AssertTBAA(IsImmutableCI,
4913  "Immutability tag on struct tag metadata must be a constant", &I,
4914  MD);
4915  AssertTBAA(
4916  IsImmutableCI->isZero() || IsImmutableCI->isOne(),
4917  "Immutability part of the struct tag metadata must be either 0 or 1",
4918  &I, MD);
4919  }
4920 
4921  AssertTBAA(BaseNode && AccessType,
4922  "Malformed struct tag metadata: base and access-type "
4923  "should be non-null and point to Metadata nodes",
4924  &I, MD, BaseNode, AccessType);
4925 
4926  AssertTBAA(isValidScalarTBAANode(AccessType),
4927  "Access type node must be a valid scalar type", &I, MD,
4928  AccessType);
4929 
4930  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4931  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
4932 
4933  APInt Offset = OffsetCI->getValue();
4934  bool SeenAccessTypeInPath = false;
4935 
4936  SmallPtrSet<MDNode *, 4> StructPath;
4937 
4938  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4939  BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4940  if (!StructPath.insert(BaseNode).second) {
4941  CheckFailed("Cycle detected in struct path", &I, MD);
4942  return false;
4943  }
4944 
4945  bool Invalid;
4946  unsigned BaseNodeBitWidth;
4947  std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4948 
4949  // If the base node is invalid in itself, then we've already printed all the
4950  // errors we wanted to print.
4951  if (Invalid)
4952  return false;
4953 
4954  SeenAccessTypeInPath |= BaseNode == AccessType;
4955 
4956  if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4957  AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
4958  &I, MD, &Offset);
4959 
4960  AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
4961  (BaseNodeBitWidth == 0 && Offset == 0),
4962  "Access bit-width not the same as description bit-width", &I, MD,
4963  BaseNodeBitWidth, Offset.getBitWidth());
4964  }
4965 
4966  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
4967  &I, MD);
4968  return true;
4969 }
4970 
4971 char VerifierLegacyPass::ID = 0;
4972 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4973 
4974 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4975  return new VerifierLegacyPass(FatalErrors);
4976 }
4977 
4978 AnalysisKey VerifierAnalysis::Key;
4981  Result Res;
4982  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4983  return Res;
4984 }
4985 
4988  return { llvm::verifyFunction(F, &dbgs()), false };
4989 }
4990 
4992  auto Res = AM.getResult<VerifierAnalysis>(M);
4993  if (FatalErrors) {
4994  if (Res.IRBroken)
4995  report_fatal_error("Broken module found, compilation aborted!");
4996  assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
4997  }
4998 
4999  // Strip broken debug info.
5000  if (Res.DebugInfoBroken) {
5002  M.getContext().diagnose(DiagInvalid);
5003  if (!StripDebugInfo(M))
5004  report_fatal_error("Failed to strip malformed debug info");
5005  }
5006  return PreservedAnalyses::all();
5007 }
5008 
5010  auto res = AM.getResult<VerifierAnalysis>(F);
5011  if (res.IRBroken && FatalErrors)
5012  report_fatal_error("Broken function found, compilation aborted!");
5013 
5014  return PreservedAnalyses::all();
5015 }
DIFlags getFlags() const
bool isDeclarationForLinker() const
Definition: GlobalValue.h:503
Calling convention used for Mesa compute shaders.
Definition: CallingConv.h:196
Metadata * getRawRetainedTypes() const
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:210
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:172
static bool isScope(const Metadata *MD)
Definition: Verifier.cpp:834
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:709
static Value * getParentPad(Value *EHPad)
Definition: Verifier.cpp:3286
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:350
bool empty() const
Definition: Function.h:586
bool isDistinct() const
Definition: Metadata.h:941
void clear()
Definition: MapVector.h:78
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1171
This instruction extracts a struct member or array element value from an aggregate value...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
unsigned getLine() const
bool isInlineAsm() const
Definition: CallSite.h:302
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:216
bool isSpeculatable() const
Determine if the call has sideeffects.
Definition: Function.h:471
const Value * stripInBoundsOffsets() const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:587
Atomic ordering constants.
Takes the max of the two values, which are required to be integers.
Definition: Module.h:143
StringRef getName() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
bool hasPrivateLinkage() const
Definition: GlobalValue.h:415
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:687
bool isMetadataTy() const
Return true if this is &#39;metadata&#39;.
Definition: Type.h:191
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:103
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:523
unsigned getParamAlignment(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
Definition: CallSite.h:403
const APInt & getUpper() const
Return the upper value for this range.
bool isAtomic() const
Return true if this instruction has an AtomicOrdering of unordered or higher.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Metadata * getRawGlobalVariables() const
Metadata * getRawVTableHolder() const
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:262
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:136
Result run(Module &M, ModuleAnalysisManager &)
Definition: Verifier.cpp:4979
An instruction for ordering other memory operations.
Definition: Instructions.h:440
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:514
bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
Definition: CallSite.h:463
This class represents zero extension of integer types.
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:313
DIFile * getFile() const
Metadata * getMetadata() const
Definition: Metadata.h:189
ModuleSlotTracker MST
Definition: Verifier.cpp:125
Metadata * getRawFile() const
Return the raw underlying file.
This class represents a function call, abstracting a target machine&#39;s calling convention.
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:403
This file contains the declarations for metadata subclasses.
static uint64_t getVariableSize(const DILocalVariable &V)
Definition: Verifier.cpp:4484
Metadata * getRawInlinedAt() const
Value * getCondition() const
iterator_range< IterTy > args() const
Definition: CallSite.h:212
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
Definition: Instructions.h:370
FunctionPass * createVerifierPass(bool FatalErrors=true)
Definition: Verifier.cpp:4974
const Value * getTrueValue() const
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:89
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:132
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Definition: Instructions.h:233
This instruction constructs a fixed permutation of two input vectors.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:697
DICompositeTypeArray getEnumTypes() const
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1253
const Use & getOperandUse(unsigned i) const
Definition: User.h:167
unsigned second
This class implements a map that also provides access to all stored values in a deterministic order...
Definition: MapVector.h:38
bool hasDLLImportStorageClass() const
Definition: GlobalValue.h:248
PTX_Kernel - Call to a PTX kernel.
Definition: CallingConv.h:115
Metadata node.
Definition: Metadata.h:862
Calling convention used for Mesa geometry shaders.
Definition: CallingConv.h:190
Metadata * getRawScope() const
const fltSemantics & getSemantics() const
Definition: APFloat.h:1140
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1067
This class represents a sign extension of integer types.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
An instruction for reading from m