LLVM  6.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/CallingConv.h"
69 #include "llvm/IR/Comdat.h"
70 #include "llvm/IR/Constant.h"
71 #include "llvm/IR/ConstantRange.h"
72 #include "llvm/IR/Constants.h"
73 #include "llvm/IR/DataLayout.h"
74 #include "llvm/IR/DebugInfo.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/DiagnosticInfo.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
122  const Module &M;
124  const DataLayout &DL;
126 
127  /// Track the brokenness of the module while recursively visiting.
128  bool Broken = false;
129  /// Broken debug info can be "recovered" from by stripping the debug info.
130  bool BrokenDebugInfo = false;
131  /// Whether to treat broken debug info as an error.
133 
134  explicit VerifierSupport(raw_ostream *OS, const Module &M)
135  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
138  void Write(const Module *M) {
139  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140  }
141 
142  void Write(const Value *V) {
143  if (!V)
144  return;
145  if (isa<Instruction>(V)) {
146  V->print(*OS, MST);
147  *OS << '\n';
148  } else {
149  V->printAsOperand(*OS, true, MST);
150  *OS << '\n';
151  }
152  }
153 
154  void Write(ImmutableCallSite CS) {
155  Write(CS.getInstruction());
156  }
157 
158  void Write(const Metadata *MD) {
159  if (!MD)
160  return;
161  MD->print(*OS, MST, &M);
162  *OS << '\n';
163  }
164 
165  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166  Write(MD.get());
167  }
168 
169  void Write(const NamedMDNode *NMD) {
170  if (!NMD)
171  return;
172  NMD->print(*OS, MST);
173  *OS << '\n';
174  }
175 
176  void Write(Type *T) {
177  if (!T)
178  return;
179  *OS << ' ' << *T;
180  }
181 
182  void Write(const Comdat *C) {
183  if (!C)
184  return;
185  *OS << *C;
186  }
187 
188  void Write(const APInt *AI) {
189  if (!AI)
190  return;
191  *OS << *AI << '\n';
192  }
193 
194  void Write(const unsigned i) { *OS << i << '\n'; }
195 
196  template <typename T> void Write(ArrayRef<T> Vs) {
197  for (const T &V : Vs)
198  Write(V);
199  }
200 
201  template <typename T1, typename... Ts>
202  void WriteTs(const T1 &V1, const Ts &... Vs) {
203  Write(V1);
204  WriteTs(Vs...);
205  }
206 
207  template <typename... Ts> void WriteTs() {}
208 
209 public:
210  /// \brief A check failed, so printout out the condition and the message.
211  ///
212  /// This provides a nice place to put a breakpoint if you want to see why
213  /// something is not correct.
214  void CheckFailed(const Twine &Message) {
215  if (OS)
216  *OS << Message << '\n';
217  Broken = true;
218  }
219 
220  /// \brief A check failed (with values to print).
221  ///
222  /// This calls the Message-only version so that the above is easier to set a
223  /// breakpoint on.
224  template <typename T1, typename... Ts>
225  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226  CheckFailed(Message);
227  if (OS)
228  WriteTs(V1, Vs...);
229  }
230 
231  /// A debug info check failed.
232  void DebugInfoCheckFailed(const Twine &Message) {
233  if (OS)
234  *OS << Message << '\n';
235  Broken |= TreatBrokenDebugInfoAsError;
236  BrokenDebugInfo = true;
237  }
238 
239  /// A debug info check failed (with values to print).
240  template <typename T1, typename... Ts>
241  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242  const Ts &... Vs) {
243  DebugInfoCheckFailed(Message);
244  if (OS)
245  WriteTs(V1, Vs...);
246  }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254  friend class InstVisitor<Verifier>;
255 
256  DominatorTree DT;
257 
258  /// \brief When verifying a basic block, keep track of all of the
259  /// instructions we have seen so far.
260  ///
261  /// This allows us to do efficient dominance checks for the case when an
262  /// instruction has an operand that is an instruction in the same block.
263  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265  /// \brief Keep track of the metadata nodes that have been checked already.
267 
268  /// Keep track which DISubprogram is attached to which function.
269  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271  /// Track all DICompileUnits visited.
273 
274  /// \brief The result type for a landingpad.
275  Type *LandingPadResultTy;
276 
277  /// \brief Whether we've seen a call to @llvm.localescape in this function
278  /// already.
279  bool SawFrameEscape;
280 
281  /// Whether the current function has a DISubprogram attached to it.
282  bool HasDebugInfo = false;
283 
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
287 
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
291 
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304  // Keeps track of duplicate function argument debug info.
306 
307  TBAAVerifier TBAAVerifyHelper;
308 
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313  const Module &M)
314  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315  SawFrameEscape(false), TBAAVerifyHelper(this) {
316  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318 
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321  bool verify(const Function &F) {
322  assert(F.getParent() == &M &&
323  "An instance of this class only works with a specific module!");
324 
325  // First ensure the function is well-enough formed to compute dominance
326  // information, and directly compute a dominance tree. We don't rely on the
327  // pass manager to provide this as it isolates us from a potentially
328  // out-of-date dominator tree and makes it significantly more complex to run
329  // this code outside of a pass manager.
330  // FIXME: It's really gross that we have to cast away constness here.
331  if (!F.empty())
332  DT.recalculate(const_cast<Function &>(F));
333 
334  for (const BasicBlock &BB : F) {
335  if (!BB.empty() && BB.back().isTerminator())
336  continue;
337 
338  if (OS) {
339  *OS << "Basic Block in function '" << F.getName()
340  << "' does not have terminator!\n";
341  BB.printAsOperand(*OS, true, MST);
342  *OS << "\n";
343  }
344  return false;
345  }
346 
347  Broken = false;
348  // FIXME: We strip const here because the inst visitor strips const.
349  visit(const_cast<Function &>(F));
350  verifySiblingFuncletUnwinds();
351  InstsInThisBlock.clear();
352  DebugFnArgs.clear();
353  LandingPadResultTy = nullptr;
354  SawFrameEscape = false;
355  SiblingFuncletInfo.clear();
356 
357  return !Broken;
358  }
359 
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362  Broken = false;
363 
364  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365  for (const Function &F : M)
366  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367  DeoptimizeDeclarations.push_back(&F);
368 
369  // Now that we've visited every function, verify that we never asked to
370  // recover a frame index that wasn't escaped.
371  verifyFrameRecoverIndices();
372  for (const GlobalVariable &GV : M.globals())
373  visitGlobalVariable(GV);
374 
375  for (const GlobalAlias &GA : M.aliases())
376  visitGlobalAlias(GA);
377 
378  for (const NamedMDNode &NMD : M.named_metadata())
379  visitNamedMDNode(NMD);
380 
381  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382  visitComdat(SMEC.getValue());
383 
384  visitModuleFlags(M);
385  visitModuleIdents(M);
386 
387  verifyCompileUnits();
388 
389  verifyDeoptimizeCallingConvs();
390  DISubprogramAttachments.clear();
391  return !Broken;
392  }
393 
394 private:
395  // Verification methods...
396  void visitGlobalValue(const GlobalValue &GV);
397  void visitGlobalVariable(const GlobalVariable &GV);
398  void visitGlobalAlias(const GlobalAlias &GA);
399  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401  const GlobalAlias &A, const Constant &C);
402  void visitNamedMDNode(const NamedMDNode &NMD);
403  void visitMDNode(const MDNode &MD);
404  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406  void visitComdat(const Comdat &C);
407  void visitModuleIdents(const Module &M);
408  void visitModuleFlags(const Module &M);
409  void visitModuleFlag(const MDNode *Op,
411  SmallVectorImpl<const MDNode *> &Requirements);
412  void visitFunction(const Function &F);
413  void visitBasicBlock(BasicBlock &BB);
414  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
415  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
416 
417  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
418 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
419 #include "llvm/IR/Metadata.def"
420  void visitDIScope(const DIScope &N);
421  void visitDIVariable(const DIVariable &N);
422  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
423  void visitDITemplateParameter(const DITemplateParameter &N);
424 
425  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
426 
427  // InstVisitor overrides...
429  void visit(Instruction &I);
430 
431  void visitTruncInst(TruncInst &I);
432  void visitZExtInst(ZExtInst &I);
433  void visitSExtInst(SExtInst &I);
434  void visitFPTruncInst(FPTruncInst &I);
435  void visitFPExtInst(FPExtInst &I);
436  void visitFPToUIInst(FPToUIInst &I);
437  void visitFPToSIInst(FPToSIInst &I);
438  void visitUIToFPInst(UIToFPInst &I);
439  void visitSIToFPInst(SIToFPInst &I);
440  void visitIntToPtrInst(IntToPtrInst &I);
441  void visitPtrToIntInst(PtrToIntInst &I);
442  void visitBitCastInst(BitCastInst &I);
443  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
444  void visitPHINode(PHINode &PN);
445  void visitBinaryOperator(BinaryOperator &B);
446  void visitICmpInst(ICmpInst &IC);
447  void visitFCmpInst(FCmpInst &FC);
448  void visitExtractElementInst(ExtractElementInst &EI);
449  void visitInsertElementInst(InsertElementInst &EI);
450  void visitShuffleVectorInst(ShuffleVectorInst &EI);
451  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
452  void visitCallInst(CallInst &CI);
453  void visitInvokeInst(InvokeInst &II);
454  void visitGetElementPtrInst(GetElementPtrInst &GEP);
455  void visitLoadInst(LoadInst &LI);
456  void visitStoreInst(StoreInst &SI);
457  void verifyDominatesUse(Instruction &I, unsigned i);
458  void visitInstruction(Instruction &I);
459  void visitTerminatorInst(TerminatorInst &I);
460  void visitBranchInst(BranchInst &BI);
461  void visitReturnInst(ReturnInst &RI);
462  void visitSwitchInst(SwitchInst &SI);
463  void visitIndirectBrInst(IndirectBrInst &BI);
464  void visitSelectInst(SelectInst &SI);
465  void visitUserOp1(Instruction &I);
466  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
467  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
468  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
469  void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
470  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472  void visitFenceInst(FenceInst &FI);
473  void visitAllocaInst(AllocaInst &AI);
474  void visitExtractValueInst(ExtractValueInst &EVI);
475  void visitInsertValueInst(InsertValueInst &IVI);
476  void visitEHPadPredecessors(Instruction &I);
477  void visitLandingPadInst(LandingPadInst &LPI);
478  void visitResumeInst(ResumeInst &RI);
479  void visitCatchPadInst(CatchPadInst &CPI);
480  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481  void visitCleanupPadInst(CleanupPadInst &CPI);
482  void visitFuncletPadInst(FuncletPadInst &FPI);
483  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484  void visitCleanupReturnInst(CleanupReturnInst &CRI);
485 
486  void verifyCallSite(CallSite CS);
487  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488  void verifySwiftErrorValue(const Value *SwiftErrorVal);
489  void verifyMustTailCall(CallInst &CI);
490  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491  unsigned ArgNo, std::string &Suffix);
492  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
494  const Value *V);
495  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
496  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
497  const Value *V);
498  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
499 
500  void visitConstantExprsRecursively(const Constant *EntryC);
501  void visitConstantExpr(const ConstantExpr *CE);
502  void verifyStatepoint(ImmutableCallSite CS);
503  void verifyFrameRecoverIndices();
504  void verifySiblingFuncletUnwinds();
505 
506  void verifyFragmentExpression(const DbgInfoIntrinsic &I);
507  template <typename ValueOrMetadata>
508  void verifyFragmentExpression(const DIVariable &V,
510  ValueOrMetadata *Desc);
511  void verifyFnArgs(const DbgInfoIntrinsic &I);
512 
513  /// Module-level debug info verification...
514  void verifyCompileUnits();
515 
516  /// Module-level verification that all @llvm.experimental.deoptimize
517  /// declarations share the same calling convention.
518  void verifyDeoptimizeCallingConvs();
519 };
520 
521 } // end anonymous namespace
522 
523 /// We know that cond should be true, if not print an error message.
524 #define Assert(C, ...) \
525  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
526 
527 /// We know that a debug info condition should be true, if not print
528 /// an error message.
529 #define AssertDI(C, ...) \
530  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
531 
532 void Verifier::visit(Instruction &I) {
533  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
534  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
536 }
537 
538 // Helper to recursively iterate over indirect users. By
539 // returning false, the callback can ask to stop recursing
540 // further.
541 static void forEachUser(const Value *User,
543  llvm::function_ref<bool(const Value *)> Callback) {
544  if (!Visited.insert(User).second)
545  return;
546  for (const Value *TheNextUser : User->materialized_users())
547  if (Callback(TheNextUser))
548  forEachUser(TheNextUser, Visited, Callback);
549 }
550 
551 void Verifier::visitGlobalValue(const GlobalValue &GV) {
553  "Global is external, but doesn't have external or weak linkage!", &GV);
554 
556  "huge alignment values are unsupported", &GV);
557  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
558  "Only global variables can have appending linkage!", &GV);
559 
560  if (GV.hasAppendingLinkage()) {
561  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
562  Assert(GVar && GVar->getValueType()->isArrayTy(),
563  "Only global arrays can have appending linkage!", GVar);
564  }
565 
566  if (GV.isDeclarationForLinker())
567  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
568 
569  if (GV.hasDLLImportStorageClass())
570  Assert(!GV.isDSOLocal(),
571  "GlobalValue with DLLImport Storage is dso_local!", &GV);
572 
573  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
574  if (const Instruction *I = dyn_cast<Instruction>(V)) {
575  if (!I->getParent() || !I->getParent()->getParent())
576  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
577  I);
578  else if (I->getParent()->getParent()->getParent() != &M)
579  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
580  I->getParent()->getParent(),
581  I->getParent()->getParent()->getParent());
582  return false;
583  } else if (const Function *F = dyn_cast<Function>(V)) {
584  if (F->getParent() != &M)
585  CheckFailed("Global is used by function in a different module", &GV, &M,
586  F, F->getParent());
587  return false;
588  }
589  return true;
590  });
591 }
592 
593 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
594  if (GV.hasInitializer()) {
595  Assert(GV.getInitializer()->getType() == GV.getValueType(),
596  "Global variable initializer type does not match global "
597  "variable type!",
598  &GV);
599  // If the global has common linkage, it must have a zero initializer and
600  // cannot be constant.
601  if (GV.hasCommonLinkage()) {
603  "'common' global must have a zero initializer!", &GV);
604  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
605  &GV);
606  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
607  }
608  }
609 
610  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
611  GV.getName() == "llvm.global_dtors")) {
613  "invalid linkage for intrinsic global variable", &GV);
614  // Don't worry about emitting an error for it not being an array,
615  // visitGlobalValue will complain on appending non-array.
616  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
617  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
618  PointerType *FuncPtrTy =
620  // FIXME: Reject the 2-field form in LLVM 4.0.
621  Assert(STy &&
622  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
623  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
624  STy->getTypeAtIndex(1) == FuncPtrTy,
625  "wrong type for intrinsic global variable", &GV);
626  if (STy->getNumElements() == 3) {
627  Type *ETy = STy->getTypeAtIndex(2);
628  Assert(ETy->isPointerTy() &&
629  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
630  "wrong type for intrinsic global variable", &GV);
631  }
632  }
633  }
634 
635  if (GV.hasName() && (GV.getName() == "llvm.used" ||
636  GV.getName() == "llvm.compiler.used")) {
638  "invalid linkage for intrinsic global variable", &GV);
639  Type *GVType = GV.getValueType();
640  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
641  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
642  Assert(PTy, "wrong type for intrinsic global variable", &GV);
643  if (GV.hasInitializer()) {
644  const Constant *Init = GV.getInitializer();
645  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
646  Assert(InitArray, "wrong initalizer for intrinsic global variable",
647  Init);
648  for (Value *Op : InitArray->operands()) {
649  Value *V = Op->stripPointerCastsNoFollowAliases();
650  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
651  isa<GlobalAlias>(V),
652  "invalid llvm.used member", V);
653  Assert(V->hasName(), "members of llvm.used must be named", V);
654  }
655  }
656  }
657  }
658 
660  (GV.isDeclaration() && GV.hasExternalLinkage()) ||
662  "Global is marked as dllimport, but not external", &GV);
663 
664  // Visit any debug info attachments.
667  for (auto *MD : MDs) {
668  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
669  visitDIGlobalVariableExpression(*GVE);
670  else
671  AssertDI(false, "!dbg attachment of global variable must be a "
672  "DIGlobalVariableExpression");
673  }
674 
675  if (!GV.hasInitializer()) {
676  visitGlobalValue(GV);
677  return;
678  }
679 
680  // Walk any aggregate initializers looking for bitcasts between address spaces
681  visitConstantExprsRecursively(GV.getInitializer());
682 
683  visitGlobalValue(GV);
684 }
685 
686 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
688  Visited.insert(&GA);
689  visitAliaseeSubExpr(Visited, GA, C);
690 }
691 
692 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
693  const GlobalAlias &GA, const Constant &C) {
694  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
695  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
696  &GA);
697 
698  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
699  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
700 
701  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
702  &GA);
703  } else {
704  // Only continue verifying subexpressions of GlobalAliases.
705  // Do not recurse into global initializers.
706  return;
707  }
708  }
709 
710  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
711  visitConstantExprsRecursively(CE);
712 
713  for (const Use &U : C.operands()) {
714  Value *V = &*U;
715  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
716  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
717  else if (const auto *C2 = dyn_cast<Constant>(V))
718  visitAliaseeSubExpr(Visited, GA, *C2);
719  }
720 }
721 
722 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
724  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
725  "weak_odr, or external linkage!",
726  &GA);
727  const Constant *Aliasee = GA.getAliasee();
728  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
729  Assert(GA.getType() == Aliasee->getType(),
730  "Alias and aliasee types should match!", &GA);
731 
732  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
733  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
734 
735  visitAliaseeSubExpr(GA, *Aliasee);
736 
737  visitGlobalValue(GA);
738 }
739 
740 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
741  // There used to be various other llvm.dbg.* nodes, but we don't support
742  // upgrading them and we want to reserve the namespace for future uses.
743  if (NMD.getName().startswith("llvm.dbg."))
744  AssertDI(NMD.getName() == "llvm.dbg.cu",
745  "unrecognized named metadata node in the llvm.dbg namespace",
746  &NMD);
747  for (const MDNode *MD : NMD.operands()) {
748  if (NMD.getName() == "llvm.dbg.cu")
749  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
750 
751  if (!MD)
752  continue;
753 
754  visitMDNode(*MD);
755  }
756 }
757 
758 void Verifier::visitMDNode(const MDNode &MD) {
759  // Only visit each node once. Metadata can be mutually recursive, so this
760  // avoids infinite recursion here, as well as being an optimization.
761  if (!MDNodes.insert(&MD).second)
762  return;
763 
764  switch (MD.getMetadataID()) {
765  default:
766  llvm_unreachable("Invalid MDNode subclass");
767  case Metadata::MDTupleKind:
768  break;
769 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
770  case Metadata::CLASS##Kind: \
771  visit##CLASS(cast<CLASS>(MD)); \
772  break;
773 #include "llvm/IR/Metadata.def"
774  }
775 
776  for (const Metadata *Op : MD.operands()) {
777  if (!Op)
778  continue;
779  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
780  &MD, Op);
781  if (auto *N = dyn_cast<MDNode>(Op)) {
782  visitMDNode(*N);
783  continue;
784  }
785  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
786  visitValueAsMetadata(*V, nullptr);
787  continue;
788  }
789  }
790 
791  // Check these last, so we diagnose problems in operands first.
792  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
793  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
794 }
795 
796 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
797  Assert(MD.getValue(), "Expected valid value", &MD);
798  Assert(!MD.getValue()->getType()->isMetadataTy(),
799  "Unexpected metadata round-trip through values", &MD, MD.getValue());
800 
801  auto *L = dyn_cast<LocalAsMetadata>(&MD);
802  if (!L)
803  return;
804 
805  Assert(F, "function-local metadata used outside a function", L);
806 
807  // If this was an instruction, bb, or argument, verify that it is in the
808  // function that we expect.
809  Function *ActualF = nullptr;
810  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
811  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
812  ActualF = I->getParent()->getParent();
813  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
814  ActualF = BB->getParent();
815  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
816  ActualF = A->getParent();
817  assert(ActualF && "Unimplemented function local metadata case!");
818 
819  Assert(ActualF == F, "function-local metadata used in wrong function", L);
820 }
821 
822 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
823  Metadata *MD = MDV.getMetadata();
824  if (auto *N = dyn_cast<MDNode>(MD)) {
825  visitMDNode(*N);
826  return;
827  }
828 
829  // Only visit each node once. Metadata can be mutually recursive, so this
830  // avoids infinite recursion here, as well as being an optimization.
831  if (!MDNodes.insert(MD).second)
832  return;
833 
834  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
835  visitValueAsMetadata(*V, F);
836 }
837 
838 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
839 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
840 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
841 
842 void Verifier::visitDILocation(const DILocation &N) {
843  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
844  "location requires a valid scope", &N, N.getRawScope());
845  if (auto *IA = N.getRawInlinedAt())
846  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
847  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
848  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
849 }
850 
851 void Verifier::visitGenericDINode(const GenericDINode &N) {
852  AssertDI(N.getTag(), "invalid tag", &N);
853 }
854 
855 void Verifier::visitDIScope(const DIScope &N) {
856  if (auto *F = N.getRawFile())
857  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
858 }
859 
860 void Verifier::visitDISubrange(const DISubrange &N) {
861  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
862  AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
863 }
864 
865 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
866  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
867 }
868 
869 void Verifier::visitDIBasicType(const DIBasicType &N) {
870  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
871  N.getTag() == dwarf::DW_TAG_unspecified_type,
872  "invalid tag", &N);
873 }
874 
875 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
876  // Common scope checks.
877  visitDIScope(N);
878 
879  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
880  N.getTag() == dwarf::DW_TAG_pointer_type ||
881  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
882  N.getTag() == dwarf::DW_TAG_reference_type ||
883  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
884  N.getTag() == dwarf::DW_TAG_const_type ||
885  N.getTag() == dwarf::DW_TAG_volatile_type ||
886  N.getTag() == dwarf::DW_TAG_restrict_type ||
887  N.getTag() == dwarf::DW_TAG_atomic_type ||
888  N.getTag() == dwarf::DW_TAG_member ||
889  N.getTag() == dwarf::DW_TAG_inheritance ||
890  N.getTag() == dwarf::DW_TAG_friend,
891  "invalid tag", &N);
892  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
893  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
894  N.getRawExtraData());
895  }
896 
897  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
898  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
899  N.getRawBaseType());
900 
901  if (N.getDWARFAddressSpace()) {
902  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
903  N.getTag() == dwarf::DW_TAG_reference_type,
904  "DWARF address space only applies to pointer or reference types",
905  &N);
906  }
907 }
908 
909 static bool hasConflictingReferenceFlags(unsigned Flags) {
910  return (Flags & DINode::FlagLValueReference) &&
911  (Flags & DINode::FlagRValueReference);
912 }
913 
914 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
915  auto *Params = dyn_cast<MDTuple>(&RawParams);
916  AssertDI(Params, "invalid template params", &N, &RawParams);
917  for (Metadata *Op : Params->operands()) {
918  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
919  &N, Params, Op);
920  }
921 }
922 
923 void Verifier::visitDICompositeType(const DICompositeType &N) {
924  // Common scope checks.
925  visitDIScope(N);
926 
927  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
928  N.getTag() == dwarf::DW_TAG_structure_type ||
929  N.getTag() == dwarf::DW_TAG_union_type ||
930  N.getTag() == dwarf::DW_TAG_enumeration_type ||
931  N.getTag() == dwarf::DW_TAG_class_type,
932  "invalid tag", &N);
933 
934  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
935  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
936  N.getRawBaseType());
937 
938  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
939  "invalid composite elements", &N, N.getRawElements());
940  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
941  N.getRawVTableHolder());
943  "invalid reference flags", &N);
944  if (auto *Params = N.getRawTemplateParams())
945  visitTemplateParams(N, *Params);
946 
947  if (N.getTag() == dwarf::DW_TAG_class_type ||
948  N.getTag() == dwarf::DW_TAG_union_type) {
949  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
950  "class/union requires a filename", &N, N.getFile());
951  }
952 }
953 
954 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
955  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
956  if (auto *Types = N.getRawTypeArray()) {
957  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
958  for (Metadata *Ty : N.getTypeArray()->operands()) {
959  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
960  }
961  }
963  "invalid reference flags", &N);
964 }
965 
966 void Verifier::visitDIFile(const DIFile &N) {
967  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
969  N.getChecksum().empty()), "invalid checksum kind", &N);
970 }
971 
972 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
973  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
974  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
975 
976  // Don't bother verifying the compilation directory or producer string
977  // as those could be empty.
978  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
979  N.getRawFile());
980  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
981  N.getFile());
982 
984  "invalid emission kind", &N);
985 
986  if (auto *Array = N.getRawEnumTypes()) {
987  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
988  for (Metadata *Op : N.getEnumTypes()->operands()) {
989  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
990  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
991  "invalid enum type", &N, N.getEnumTypes(), Op);
992  }
993  }
994  if (auto *Array = N.getRawRetainedTypes()) {
995  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
996  for (Metadata *Op : N.getRetainedTypes()->operands()) {
997  AssertDI(Op && (isa<DIType>(Op) ||
998  (isa<DISubprogram>(Op) &&
999  !cast<DISubprogram>(Op)->isDefinition())),
1000  "invalid retained type", &N, Op);
1001  }
1002  }
1003  if (auto *Array = N.getRawGlobalVariables()) {
1004  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1005  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1006  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1007  "invalid global variable ref", &N, Op);
1008  }
1009  }
1010  if (auto *Array = N.getRawImportedEntities()) {
1011  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1012  for (Metadata *Op : N.getImportedEntities()->operands()) {
1013  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1014  &N, Op);
1015  }
1016  }
1017  if (auto *Array = N.getRawMacros()) {
1018  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1019  for (Metadata *Op : N.getMacros()->operands()) {
1020  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1021  }
1022  }
1023  CUVisited.insert(&N);
1024 }
1025 
1026 void Verifier::visitDISubprogram(const DISubprogram &N) {
1027  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1028  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1029  if (auto *F = N.getRawFile())
1030  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1031  else
1032  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1033  if (auto *T = N.getRawType())
1034  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1035  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1036  N.getRawContainingType());
1037  if (auto *Params = N.getRawTemplateParams())
1038  visitTemplateParams(N, *Params);
1039  if (auto *S = N.getRawDeclaration())
1040  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1041  "invalid subprogram declaration", &N, S);
1042  if (auto *RawVars = N.getRawVariables()) {
1043  auto *Vars = dyn_cast<MDTuple>(RawVars);
1044  AssertDI(Vars, "invalid variable list", &N, RawVars);
1045  for (Metadata *Op : Vars->operands()) {
1046  AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1047  Vars, Op);
1048  }
1049  }
1050  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1051  "invalid reference flags", &N);
1052 
1053  auto *Unit = N.getRawUnit();
1054  if (N.isDefinition()) {
1055  // Subprogram definitions (not part of the type hierarchy).
1056  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1057  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1058  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1059  } else {
1060  // Subprogram declarations (part of the type hierarchy).
1061  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1062  }
1063 
1064  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1065  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1066  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1067  for (Metadata *Op : ThrownTypes->operands())
1068  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1069  Op);
1070  }
1071 }
1072 
1073 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1074  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1075  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1076  "invalid local scope", &N, N.getRawScope());
1077  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1078  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1079 }
1080 
1081 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1082  visitDILexicalBlockBase(N);
1083 
1084  AssertDI(N.getLine() || !N.getColumn(),
1085  "cannot have column info without line info", &N);
1086 }
1087 
1088 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1089  visitDILexicalBlockBase(N);
1090 }
1091 
1092 void Verifier::visitDINamespace(const DINamespace &N) {
1093  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1094  if (auto *S = N.getRawScope())
1095  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1096 }
1097 
1098 void Verifier::visitDIMacro(const DIMacro &N) {
1101  "invalid macinfo type", &N);
1102  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1103  if (!N.getValue().empty()) {
1104  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1105  }
1106 }
1107 
1108 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1110  "invalid macinfo type", &N);
1111  if (auto *F = N.getRawFile())
1112  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1113 
1114  if (auto *Array = N.getRawElements()) {
1115  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1116  for (Metadata *Op : N.getElements()->operands()) {
1117  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1118  }
1119  }
1120 }
1121 
1122 void Verifier::visitDIModule(const DIModule &N) {
1123  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1124  AssertDI(!N.getName().empty(), "anonymous module", &N);
1125 }
1126 
1127 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1128  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1129 }
1130 
1131 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1132  visitDITemplateParameter(N);
1133 
1134  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1135  &N);
1136 }
1137 
1138 void Verifier::visitDITemplateValueParameter(
1139  const DITemplateValueParameter &N) {
1140  visitDITemplateParameter(N);
1141 
1142  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1143  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1144  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1145  "invalid tag", &N);
1146 }
1147 
1148 void Verifier::visitDIVariable(const DIVariable &N) {
1149  if (auto *S = N.getRawScope())
1150  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1151  if (auto *F = N.getRawFile())
1152  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1153 }
1154 
1155 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1156  // Checks common to all variables.
1157  visitDIVariable(N);
1158 
1159  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1160  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1161  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1162  AssertDI(N.getType(), "missing global variable type", &N);
1163  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1164  AssertDI(isa<DIDerivedType>(Member),
1165  "invalid static data member declaration", &N, Member);
1166  }
1167 }
1168 
1169 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1170  // Checks common to all variables.
1171  visitDIVariable(N);
1172 
1173  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1174  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1175  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1176  "local variable requires a valid scope", &N, N.getRawScope());
1177 }
1178 
1179 void Verifier::visitDIExpression(const DIExpression &N) {
1180  AssertDI(N.isValid(), "invalid expression", &N);
1181 }
1182 
1183 void Verifier::visitDIGlobalVariableExpression(
1184  const DIGlobalVariableExpression &GVE) {
1185  AssertDI(GVE.getVariable(), "missing variable");
1186  if (auto *Var = GVE.getVariable())
1187  visitDIGlobalVariable(*Var);
1188  if (auto *Expr = GVE.getExpression()) {
1189  visitDIExpression(*Expr);
1190  if (auto Fragment = Expr->getFragmentInfo())
1191  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1192  }
1193 }
1194 
1195 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1196  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1197  if (auto *T = N.getRawType())
1198  AssertDI(isType(T), "invalid type ref", &N, T);
1199  if (auto *F = N.getRawFile())
1200  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1201 }
1202 
1203 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1204  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1205  N.getTag() == dwarf::DW_TAG_imported_declaration,
1206  "invalid tag", &N);
1207  if (auto *S = N.getRawScope())
1208  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1209  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1210  N.getRawEntity());
1211 }
1212 
1213 void Verifier::visitComdat(const Comdat &C) {
1214  // The Module is invalid if the GlobalValue has private linkage. Entities
1215  // with private linkage don't have entries in the symbol table.
1216  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1217  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1218  GV);
1219 }
1220 
1221 void Verifier::visitModuleIdents(const Module &M) {
1222  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1223  if (!Idents)
1224  return;
1225 
1226  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1227  // Scan each llvm.ident entry and make sure that this requirement is met.
1228  for (const MDNode *N : Idents->operands()) {
1229  Assert(N->getNumOperands() == 1,
1230  "incorrect number of operands in llvm.ident metadata", N);
1231  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1232  ("invalid value for llvm.ident metadata entry operand"
1233  "(the operand should be a string)"),
1234  N->getOperand(0));
1235  }
1236 }
1237 
1238 void Verifier::visitModuleFlags(const Module &M) {
1239  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1240  if (!Flags) return;
1241 
1242  // Scan each flag, and track the flags and requirements.
1244  SmallVector<const MDNode*, 16> Requirements;
1245  for (const MDNode *MDN : Flags->operands())
1246  visitModuleFlag(MDN, SeenIDs, Requirements);
1247 
1248  // Validate that the requirements in the module are valid.
1249  for (const MDNode *Requirement : Requirements) {
1250  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1251  const Metadata *ReqValue = Requirement->getOperand(1);
1252 
1253  const MDNode *Op = SeenIDs.lookup(Flag);
1254  if (!Op) {
1255  CheckFailed("invalid requirement on flag, flag is not present in module",
1256  Flag);
1257  continue;
1258  }
1259 
1260  if (Op->getOperand(2) != ReqValue) {
1261  CheckFailed(("invalid requirement on flag, "
1262  "flag does not have the required value"),
1263  Flag);
1264  continue;
1265  }
1266  }
1267 }
1268 
1269 void
1270 Verifier::visitModuleFlag(const MDNode *Op,
1272  SmallVectorImpl<const MDNode *> &Requirements) {
1273  // Each module flag should have three arguments, the merge behavior (a
1274  // constant int), the flag ID (an MDString), and the value.
1275  Assert(Op->getNumOperands() == 3,
1276  "incorrect number of operands in module flag", Op);
1278  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1279  Assert(
1280  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1281  "invalid behavior operand in module flag (expected constant integer)",
1282  Op->getOperand(0));
1283  Assert(false,
1284  "invalid behavior operand in module flag (unexpected constant)",
1285  Op->getOperand(0));
1286  }
1287  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1288  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1289  Op->getOperand(1));
1290 
1291  // Sanity check the values for behaviors with additional requirements.
1292  switch (MFB) {
1293  case Module::Error:
1294  case Module::Warning:
1295  case Module::Override:
1296  // These behavior types accept any value.
1297  break;
1298 
1299  case Module::Max: {
1300  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1301  "invalid value for 'max' module flag (expected constant integer)",
1302  Op->getOperand(2));
1303  break;
1304  }
1305 
1306  case Module::Require: {
1307  // The value should itself be an MDNode with two operands, a flag ID (an
1308  // MDString), and a value.
1309  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1310  Assert(Value && Value->getNumOperands() == 2,
1311  "invalid value for 'require' module flag (expected metadata pair)",
1312  Op->getOperand(2));
1313  Assert(isa<MDString>(Value->getOperand(0)),
1314  ("invalid value for 'require' module flag "
1315  "(first value operand should be a string)"),
1316  Value->getOperand(0));
1317 
1318  // Append it to the list of requirements, to check once all module flags are
1319  // scanned.
1320  Requirements.push_back(Value);
1321  break;
1322  }
1323 
1324  case Module::Append:
1325  case Module::AppendUnique: {
1326  // These behavior types require the operand be an MDNode.
1327  Assert(isa<MDNode>(Op->getOperand(2)),
1328  "invalid value for 'append'-type module flag "
1329  "(expected a metadata node)",
1330  Op->getOperand(2));
1331  break;
1332  }
1333  }
1334 
1335  // Unless this is a "requires" flag, check the ID is unique.
1336  if (MFB != Module::Require) {
1337  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1338  Assert(Inserted,
1339  "module flag identifiers must be unique (or of 'require' type)", ID);
1340  }
1341 
1342  if (ID->getString() == "wchar_size") {
1344  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1345  Assert(Value, "wchar_size metadata requires constant integer argument");
1346  }
1347 
1348  if (ID->getString() == "Linker Options") {
1349  // If the llvm.linker.options named metadata exists, we assume that the
1350  // bitcode reader has upgraded the module flag. Otherwise the flag might
1351  // have been created by a client directly.
1352  Assert(M.getNamedMetadata("llvm.linker.options"),
1353  "'Linker Options' named metadata no longer supported");
1354  }
1355 }
1356 
1357 /// Return true if this attribute kind only applies to functions.
1359  switch (Kind) {
1360  case Attribute::NoReturn:
1361  case Attribute::NoUnwind:
1362  case Attribute::NoInline:
1363  case Attribute::AlwaysInline:
1364  case Attribute::OptimizeForSize:
1365  case Attribute::StackProtect:
1366  case Attribute::StackProtectReq:
1367  case Attribute::StackProtectStrong:
1368  case Attribute::SafeStack:
1369  case Attribute::NoRedZone:
1370  case Attribute::NoImplicitFloat:
1371  case Attribute::Naked:
1372  case Attribute::InlineHint:
1373  case Attribute::StackAlignment:
1374  case Attribute::UWTable:
1375  case Attribute::NonLazyBind:
1376  case Attribute::ReturnsTwice:
1377  case Attribute::SanitizeAddress:
1378  case Attribute::SanitizeThread:
1379  case Attribute::SanitizeMemory:
1380  case Attribute::MinSize:
1381  case Attribute::NoDuplicate:
1382  case Attribute::Builtin:
1383  case Attribute::NoBuiltin:
1384  case Attribute::Cold:
1385  case Attribute::OptimizeNone:
1386  case Attribute::JumpTable:
1387  case Attribute::Convergent:
1388  case Attribute::ArgMemOnly:
1389  case Attribute::NoRecurse:
1390  case Attribute::InaccessibleMemOnly:
1391  case Attribute::InaccessibleMemOrArgMemOnly:
1392  case Attribute::AllocSize:
1393  case Attribute::Speculatable:
1394  case Attribute::StrictFP:
1395  return true;
1396  default:
1397  break;
1398  }
1399  return false;
1400 }
1401 
1402 /// Return true if this is a function attribute that can also appear on
1403 /// arguments.
1405  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1406  Kind == Attribute::ReadNone;
1407 }
1408 
1409 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1410  const Value *V) {
1411  for (Attribute A : Attrs) {
1412  if (A.isStringAttribute())
1413  continue;
1414 
1415  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1416  if (!IsFunction) {
1417  CheckFailed("Attribute '" + A.getAsString() +
1418  "' only applies to functions!",
1419  V);
1420  return;
1421  }
1422  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1423  CheckFailed("Attribute '" + A.getAsString() +
1424  "' does not apply to functions!",
1425  V);
1426  return;
1427  }
1428  }
1429 }
1430 
1431 // VerifyParameterAttrs - Check the given attributes for an argument or return
1432 // value of the specified type. The value V is printed in error messages.
1433 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1434  const Value *V) {
1435  if (!Attrs.hasAttributes())
1436  return;
1437 
1438  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1439 
1440  // Check for mutually incompatible attributes. Only inreg is compatible with
1441  // sret.
1442  unsigned AttrCount = 0;
1443  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1444  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1445  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1446  Attrs.hasAttribute(Attribute::InReg);
1447  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1448  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1449  "and 'sret' are incompatible!",
1450  V);
1451 
1452  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1453  Attrs.hasAttribute(Attribute::ReadOnly)),
1454  "Attributes "
1455  "'inalloca and readonly' are incompatible!",
1456  V);
1457 
1458  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1459  Attrs.hasAttribute(Attribute::Returned)),
1460  "Attributes "
1461  "'sret and returned' are incompatible!",
1462  V);
1463 
1464  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1465  Attrs.hasAttribute(Attribute::SExt)),
1466  "Attributes "
1467  "'zeroext and signext' are incompatible!",
1468  V);
1469 
1470  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1471  Attrs.hasAttribute(Attribute::ReadOnly)),
1472  "Attributes "
1473  "'readnone and readonly' are incompatible!",
1474  V);
1475 
1476  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1477  Attrs.hasAttribute(Attribute::WriteOnly)),
1478  "Attributes "
1479  "'readnone and writeonly' are incompatible!",
1480  V);
1481 
1482  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1483  Attrs.hasAttribute(Attribute::WriteOnly)),
1484  "Attributes "
1485  "'readonly and writeonly' are incompatible!",
1486  V);
1487 
1488  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1489  Attrs.hasAttribute(Attribute::AlwaysInline)),
1490  "Attributes "
1491  "'noinline and alwaysinline' are incompatible!",
1492  V);
1493 
1494  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1495  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1496  "Wrong types for attribute: " +
1497  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1498  V);
1499 
1500  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1501  SmallPtrSet<Type*, 4> Visited;
1502  if (!PTy->getElementType()->isSized(&Visited)) {
1503  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1504  !Attrs.hasAttribute(Attribute::InAlloca),
1505  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1506  V);
1507  }
1508  if (!isa<PointerType>(PTy->getElementType()))
1509  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1510  "Attribute 'swifterror' only applies to parameters "
1511  "with pointer to pointer type!",
1512  V);
1513  } else {
1514  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1515  "Attribute 'byval' only applies to parameters with pointer type!",
1516  V);
1517  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1518  "Attribute 'swifterror' only applies to parameters "
1519  "with pointer type!",
1520  V);
1521  }
1522 }
1523 
1524 // Check parameter attributes against a function type.
1525 // The value V is printed in error messages.
1526 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1527  const Value *V) {
1528  if (Attrs.isEmpty())
1529  return;
1530 
1531  bool SawNest = false;
1532  bool SawReturned = false;
1533  bool SawSRet = false;
1534  bool SawSwiftSelf = false;
1535  bool SawSwiftError = false;
1536 
1537  // Verify return value attributes.
1538  AttributeSet RetAttrs = Attrs.getRetAttributes();
1539  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1540  !RetAttrs.hasAttribute(Attribute::Nest) &&
1541  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1542  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1543  !RetAttrs.hasAttribute(Attribute::Returned) &&
1544  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1545  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1546  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1547  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1548  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1549  "values!",
1550  V);
1551  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1552  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1553  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1554  "Attribute '" + RetAttrs.getAsString() +
1555  "' does not apply to function returns",
1556  V);
1557  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1558 
1559  // Verify parameter attributes.
1560  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1561  Type *Ty = FT->getParamType(i);
1562  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1563 
1564  verifyParameterAttrs(ArgAttrs, Ty, V);
1565 
1566  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1567  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1568  SawNest = true;
1569  }
1570 
1571  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1572  Assert(!SawReturned, "More than one parameter has attribute returned!",
1573  V);
1575  "Incompatible argument and return types for 'returned' attribute",
1576  V);
1577  SawReturned = true;
1578  }
1579 
1580  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1581  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1582  Assert(i == 0 || i == 1,
1583  "Attribute 'sret' is not on first or second parameter!", V);
1584  SawSRet = true;
1585  }
1586 
1587  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1588  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1589  SawSwiftSelf = true;
1590  }
1591 
1592  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1593  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1594  V);
1595  SawSwiftError = true;
1596  }
1597 
1598  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1599  Assert(i == FT->getNumParams() - 1,
1600  "inalloca isn't on the last parameter!", V);
1601  }
1602  }
1603 
1605  return;
1606 
1607  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1608 
1609  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1610  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1611  "Attributes 'readnone and readonly' are incompatible!", V);
1612 
1613  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1614  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1615  "Attributes 'readnone and writeonly' are incompatible!", V);
1616 
1617  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1618  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1619  "Attributes 'readonly and writeonly' are incompatible!", V);
1620 
1621  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1622  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1623  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1624  "incompatible!",
1625  V);
1626 
1627  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1628  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1629  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1630 
1631  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1632  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1633  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1634 
1635  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1636  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1637  "Attribute 'optnone' requires 'noinline'!", V);
1638 
1639  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1640  "Attributes 'optsize and optnone' are incompatible!", V);
1641 
1642  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1643  "Attributes 'minsize and optnone' are incompatible!", V);
1644  }
1645 
1646  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1647  const GlobalValue *GV = cast<GlobalValue>(V);
1649  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1650  }
1651 
1652  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1653  std::pair<unsigned, Optional<unsigned>> Args =
1655 
1656  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1657  if (ParamNo >= FT->getNumParams()) {
1658  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1659  return false;
1660  }
1661 
1662  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1663  CheckFailed("'allocsize' " + Name +
1664  " argument must refer to an integer parameter",
1665  V);
1666  return false;
1667  }
1668 
1669  return true;
1670  };
1671 
1672  if (!CheckParam("element size", Args.first))
1673  return;
1674 
1675  if (Args.second && !CheckParam("number of elements", *Args.second))
1676  return;
1677  }
1678 }
1679 
1680 void Verifier::verifyFunctionMetadata(
1681  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1682  for (const auto &Pair : MDs) {
1683  if (Pair.first == LLVMContext::MD_prof) {
1684  MDNode *MD = Pair.second;
1685  Assert(MD->getNumOperands() >= 2,
1686  "!prof annotations should have no less than 2 operands", MD);
1687 
1688  // Check first operand.
1689  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1690  MD);
1691  Assert(isa<MDString>(MD->getOperand(0)),
1692  "expected string with name of the !prof annotation", MD);
1693  MDString *MDS = cast<MDString>(MD->getOperand(0));
1694  StringRef ProfName = MDS->getString();
1695  Assert(ProfName.equals("function_entry_count"),
1696  "first operand should be 'function_entry_count'", MD);
1697 
1698  // Check second operand.
1699  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1700  MD);
1701  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1702  "expected integer argument to function_entry_count", MD);
1703  }
1704  }
1705 }
1706 
1707 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1708  if (!ConstantExprVisited.insert(EntryC).second)
1709  return;
1710 
1712  Stack.push_back(EntryC);
1713 
1714  while (!Stack.empty()) {
1715  const Constant *C = Stack.pop_back_val();
1716 
1717  // Check this constant expression.
1718  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1719  visitConstantExpr(CE);
1720 
1721  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1722  // Global Values get visited separately, but we do need to make sure
1723  // that the global value is in the correct module
1724  Assert(GV->getParent() == &M, "Referencing global in another module!",
1725  EntryC, &M, GV, GV->getParent());
1726  continue;
1727  }
1728 
1729  // Visit all sub-expressions.
1730  for (const Use &U : C->operands()) {
1731  const auto *OpC = dyn_cast<Constant>(U);
1732  if (!OpC)
1733  continue;
1734  if (!ConstantExprVisited.insert(OpC).second)
1735  continue;
1736  Stack.push_back(OpC);
1737  }
1738  }
1739 }
1740 
1741 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1742  if (CE->getOpcode() == Instruction::BitCast)
1743  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1744  CE->getType()),
1745  "Invalid bitcast", CE);
1746 
1747  if (CE->getOpcode() == Instruction::IntToPtr ||
1748  CE->getOpcode() == Instruction::PtrToInt) {
1749  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1750  ? CE->getType()
1751  : CE->getOperand(0)->getType();
1752  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1753  ? "inttoptr not supported for non-integral pointers"
1754  : "ptrtoint not supported for non-integral pointers";
1755  Assert(
1756  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1757  Msg);
1758  }
1759 }
1760 
1761 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1762  // There shouldn't be more attribute sets than there are parameters plus the
1763  // function and return value.
1764  return Attrs.getNumAttrSets() <= Params + 2;
1765 }
1766 
1767 /// Verify that statepoint intrinsic is well formed.
1768 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1769  assert(CS.getCalledFunction() &&
1771  Intrinsic::experimental_gc_statepoint);
1772 
1773  const Instruction &CI = *CS.getInstruction();
1774 
1775  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1776  !CS.onlyAccessesArgMemory(),
1777  "gc.statepoint must read and write all memory to preserve "
1778  "reordering restrictions required by safepoint semantics",
1779  &CI);
1780 
1781  const Value *IDV = CS.getArgument(0);
1782  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1783  &CI);
1784 
1785  const Value *NumPatchBytesV = CS.getArgument(1);
1786  Assert(isa<ConstantInt>(NumPatchBytesV),
1787  "gc.statepoint number of patchable bytes must be a constant integer",
1788  &CI);
1789  const int64_t NumPatchBytes =
1790  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1791  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1792  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1793  "positive",
1794  &CI);
1795 
1796  const Value *Target = CS.getArgument(2);
1797  auto *PT = dyn_cast<PointerType>(Target->getType());
1798  Assert(PT && PT->getElementType()->isFunctionTy(),
1799  "gc.statepoint callee must be of function pointer type", &CI, Target);
1800  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1801 
1802  const Value *NumCallArgsV = CS.getArgument(3);
1803  Assert(isa<ConstantInt>(NumCallArgsV),
1804  "gc.statepoint number of arguments to underlying call "
1805  "must be constant integer",
1806  &CI);
1807  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1808  Assert(NumCallArgs >= 0,
1809  "gc.statepoint number of arguments to underlying call "
1810  "must be positive",
1811  &CI);
1812  const int NumParams = (int)TargetFuncType->getNumParams();
1813  if (TargetFuncType->isVarArg()) {
1814  Assert(NumCallArgs >= NumParams,
1815  "gc.statepoint mismatch in number of vararg call args", &CI);
1816 
1817  // TODO: Remove this limitation
1818  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1819  "gc.statepoint doesn't support wrapping non-void "
1820  "vararg functions yet",
1821  &CI);
1822  } else
1823  Assert(NumCallArgs == NumParams,
1824  "gc.statepoint mismatch in number of call args", &CI);
1825 
1826  const Value *FlagsV = CS.getArgument(4);
1827  Assert(isa<ConstantInt>(FlagsV),
1828  "gc.statepoint flags must be constant integer", &CI);
1829  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1830  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1831  "unknown flag used in gc.statepoint flags argument", &CI);
1832 
1833  // Verify that the types of the call parameter arguments match
1834  // the type of the wrapped callee.
1835  for (int i = 0; i < NumParams; i++) {
1836  Type *ParamType = TargetFuncType->getParamType(i);
1837  Type *ArgType = CS.getArgument(5 + i)->getType();
1838  Assert(ArgType == ParamType,
1839  "gc.statepoint call argument does not match wrapped "
1840  "function type",
1841  &CI);
1842  }
1843 
1844  const int EndCallArgsInx = 4 + NumCallArgs;
1845 
1846  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1847  Assert(isa<ConstantInt>(NumTransitionArgsV),
1848  "gc.statepoint number of transition arguments "
1849  "must be constant integer",
1850  &CI);
1851  const int NumTransitionArgs =
1852  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1853  Assert(NumTransitionArgs >= 0,
1854  "gc.statepoint number of transition arguments must be positive", &CI);
1855  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1856 
1857  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1858  Assert(isa<ConstantInt>(NumDeoptArgsV),
1859  "gc.statepoint number of deoptimization arguments "
1860  "must be constant integer",
1861  &CI);
1862  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1863  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1864  "must be positive",
1865  &CI);
1866 
1867  const int ExpectedNumArgs =
1868  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1869  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1870  "gc.statepoint too few arguments according to length fields", &CI);
1871 
1872  // Check that the only uses of this gc.statepoint are gc.result or
1873  // gc.relocate calls which are tied to this statepoint and thus part
1874  // of the same statepoint sequence
1875  for (const User *U : CI.users()) {
1876  const CallInst *Call = dyn_cast<const CallInst>(U);
1877  Assert(Call, "illegal use of statepoint token", &CI, U);
1878  if (!Call) continue;
1879  Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1880  "gc.result or gc.relocate are the only value uses "
1881  "of a gc.statepoint",
1882  &CI, U);
1883  if (isa<GCResultInst>(Call)) {
1884  Assert(Call->getArgOperand(0) == &CI,
1885  "gc.result connected to wrong gc.statepoint", &CI, Call);
1886  } else if (isa<GCRelocateInst>(Call)) {
1887  Assert(Call->getArgOperand(0) == &CI,
1888  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1889  }
1890  }
1891 
1892  // Note: It is legal for a single derived pointer to be listed multiple
1893  // times. It's non-optimal, but it is legal. It can also happen after
1894  // insertion if we strip a bitcast away.
1895  // Note: It is really tempting to check that each base is relocated and
1896  // that a derived pointer is never reused as a base pointer. This turns
1897  // out to be problematic since optimizations run after safepoint insertion
1898  // can recognize equality properties that the insertion logic doesn't know
1899  // about. See example statepoint.ll in the verifier subdirectory
1900 }
1901 
1902 void Verifier::verifyFrameRecoverIndices() {
1903  for (auto &Counts : FrameEscapeInfo) {
1904  Function *F = Counts.first;
1905  unsigned EscapedObjectCount = Counts.second.first;
1906  unsigned MaxRecoveredIndex = Counts.second.second;
1907  Assert(MaxRecoveredIndex <= EscapedObjectCount,
1908  "all indices passed to llvm.localrecover must be less than the "
1909  "number of arguments passed ot llvm.localescape in the parent "
1910  "function",
1911  F);
1912  }
1913 }
1914 
1916  BasicBlock *UnwindDest;
1917  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1918  UnwindDest = II->getUnwindDest();
1919  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1920  UnwindDest = CSI->getUnwindDest();
1921  else
1922  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1923  return UnwindDest->getFirstNonPHI();
1924 }
1925 
1926 void Verifier::verifySiblingFuncletUnwinds() {
1929  for (const auto &Pair : SiblingFuncletInfo) {
1930  Instruction *PredPad = Pair.first;
1931  if (Visited.count(PredPad))
1932  continue;
1933  Active.insert(PredPad);
1934  TerminatorInst *Terminator = Pair.second;
1935  do {
1936  Instruction *SuccPad = getSuccPad(Terminator);
1937  if (Active.count(SuccPad)) {
1938  // Found a cycle; report error
1939  Instruction *CyclePad = SuccPad;
1940  SmallVector<Instruction *, 8> CycleNodes;
1941  do {
1942  CycleNodes.push_back(CyclePad);
1943  TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1944  if (CycleTerminator != CyclePad)
1945  CycleNodes.push_back(CycleTerminator);
1946  CyclePad = getSuccPad(CycleTerminator);
1947  } while (CyclePad != SuccPad);
1948  Assert(false, "EH pads can't handle each other's exceptions",
1949  ArrayRef<Instruction *>(CycleNodes));
1950  }
1951  // Don't re-walk a node we've already checked
1952  if (!Visited.insert(SuccPad).second)
1953  break;
1954  // Walk to this successor if it has a map entry.
1955  PredPad = SuccPad;
1956  auto TermI = SiblingFuncletInfo.find(PredPad);
1957  if (TermI == SiblingFuncletInfo.end())
1958  break;
1959  Terminator = TermI->second;
1960  Active.insert(PredPad);
1961  } while (true);
1962  // Each node only has one successor, so we've walked all the active
1963  // nodes' successors.
1964  Active.clear();
1965  }
1966 }
1967 
1968 // visitFunction - Verify that a function is ok.
1969 //
1970 void Verifier::visitFunction(const Function &F) {
1971  visitGlobalValue(F);
1972 
1973  // Check function arguments.
1974  FunctionType *FT = F.getFunctionType();
1975  unsigned NumArgs = F.arg_size();
1976 
1977  Assert(&Context == &F.getContext(),
1978  "Function context does not match Module context!", &F);
1979 
1980  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1981  Assert(FT->getNumParams() == NumArgs,
1982  "# formal arguments must match # of arguments for function type!", &F,
1983  FT);
1984  Assert(F.getReturnType()->isFirstClassType() ||
1985  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1986  "Functions cannot return aggregate values!", &F);
1987 
1988  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1989  "Invalid struct return type!", &F);
1990 
1991  AttributeList Attrs = F.getAttributes();
1992 
1993  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
1994  "Attribute after last parameter!", &F);
1995 
1996  // Check function attributes.
1997  verifyFunctionAttrs(FT, Attrs, &F);
1998 
1999  // On function declarations/definitions, we do not support the builtin
2000  // attribute. We do not check this in VerifyFunctionAttrs since that is
2001  // checking for Attributes that can/can not ever be on functions.
2002  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2003  "Attribute 'builtin' can only be applied to a callsite.", &F);
2004 
2005  // Check that this function meets the restrictions on this calling convention.
2006  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2007  // restrictions can be lifted.
2008  switch (F.getCallingConv()) {
2009  default:
2010  case CallingConv::C:
2011  break;
2014  Assert(F.getReturnType()->isVoidTy(),
2015  "Calling convention requires void return type", &F);
2022  Assert(!F.hasStructRetAttr(),
2023  "Calling convention does not allow sret", &F);
2025  case CallingConv::Fast:
2026  case CallingConv::Cold:
2030  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2031  "perfect forwarding!",
2032  &F);
2033  break;
2034  }
2035 
2036  bool isLLVMdotName = F.getName().size() >= 5 &&
2037  F.getName().substr(0, 5) == "llvm.";
2038 
2039  // Check that the argument values match the function type for this function...
2040  unsigned i = 0;
2041  for (const Argument &Arg : F.args()) {
2042  Assert(Arg.getType() == FT->getParamType(i),
2043  "Argument value does not match function argument type!", &Arg,
2044  FT->getParamType(i));
2046  "Function arguments must have first-class types!", &Arg);
2047  if (!isLLVMdotName) {
2049  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2050  Assert(!Arg.getType()->isTokenTy(),
2051  "Function takes token but isn't an intrinsic", &Arg, &F);
2052  }
2053 
2054  // Check that swifterror argument is only used by loads and stores.
2055  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2056  verifySwiftErrorValue(&Arg);
2057  }
2058  ++i;
2059  }
2060 
2061  if (!isLLVMdotName)
2062  Assert(!F.getReturnType()->isTokenTy(),
2063  "Functions returns a token but isn't an intrinsic", &F);
2064 
2065  // Get the function metadata attachments.
2067  F.getAllMetadata(MDs);
2068  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2069  verifyFunctionMetadata(MDs);
2070 
2071  // Check validity of the personality function
2072  if (F.hasPersonalityFn()) {
2073  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2074  if (Per)
2075  Assert(Per->getParent() == F.getParent(),
2076  "Referencing personality function in another module!",
2077  &F, F.getParent(), Per, Per->getParent());
2078  }
2079 
2080  if (F.isMaterializable()) {
2081  // Function has a body somewhere we can't see.
2082  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2083  MDs.empty() ? nullptr : MDs.front().second);
2084  } else if (F.isDeclaration()) {
2085  for (const auto &I : MDs) {
2086  AssertDI(I.first != LLVMContext::MD_dbg,
2087  "function declaration may not have a !dbg attachment", &F);
2088  Assert(I.first != LLVMContext::MD_prof,
2089  "function declaration may not have a !prof attachment", &F);
2090 
2091  // Verify the metadata itself.
2092  visitMDNode(*I.second);
2093  }
2094  Assert(!F.hasPersonalityFn(),
2095  "Function declaration shouldn't have a personality routine", &F);
2096  } else {
2097  // Verify that this function (which has a body) is not named "llvm.*". It
2098  // is not legal to define intrinsics.
2099  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2100 
2101  // Check the entry node
2102  const BasicBlock *Entry = &F.getEntryBlock();
2103  Assert(pred_empty(Entry),
2104  "Entry block to function must not have predecessors!", Entry);
2105 
2106  // The address of the entry block cannot be taken, unless it is dead.
2107  if (Entry->hasAddressTaken()) {
2108  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2109  "blockaddress may not be used with the entry block!", Entry);
2110  }
2111 
2112  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2113  // Visit metadata attachments.
2114  for (const auto &I : MDs) {
2115  // Verify that the attachment is legal.
2116  switch (I.first) {
2117  default:
2118  break;
2119  case LLVMContext::MD_dbg: {
2120  ++NumDebugAttachments;
2121  AssertDI(NumDebugAttachments == 1,
2122  "function must have a single !dbg attachment", &F, I.second);
2123  AssertDI(isa<DISubprogram>(I.second),
2124  "function !dbg attachment must be a subprogram", &F, I.second);
2125  auto *SP = cast<DISubprogram>(I.second);
2126  const Function *&AttachedTo = DISubprogramAttachments[SP];
2127  AssertDI(!AttachedTo || AttachedTo == &F,
2128  "DISubprogram attached to more than one function", SP, &F);
2129  AttachedTo = &F;
2130  break;
2131  }
2132  case LLVMContext::MD_prof:
2133  ++NumProfAttachments;
2134  Assert(NumProfAttachments == 1,
2135  "function must have a single !prof attachment", &F, I.second);
2136  break;
2137  }
2138 
2139  // Verify the metadata itself.
2140  visitMDNode(*I.second);
2141  }
2142  }
2143 
2144  // If this function is actually an intrinsic, verify that it is only used in
2145  // direct call/invokes, never having its "address taken".
2146  // Only do this if the module is materialized, otherwise we don't have all the
2147  // uses.
2148  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2149  const User *U;
2150  if (F.hasAddressTaken(&U))
2151  Assert(false, "Invalid user of intrinsic instruction!", U);
2152  }
2153 
2154  Assert(!F.hasDLLImportStorageClass() ||
2155  (F.isDeclaration() && F.hasExternalLinkage()) ||
2156  F.hasAvailableExternallyLinkage(),
2157  "Function is marked as dllimport, but not external.", &F);
2158 
2159  auto *N = F.getSubprogram();
2160  HasDebugInfo = (N != nullptr);
2161  if (!HasDebugInfo)
2162  return;
2163 
2164  // Check that all !dbg attachments lead to back to N (or, at least, another
2165  // subprogram that describes the same function).
2166  //
2167  // FIXME: Check this incrementally while visiting !dbg attachments.
2168  // FIXME: Only check when N is the canonical subprogram for F.
2170  for (auto &BB : F)
2171  for (auto &I : BB) {
2172  // Be careful about using DILocation here since we might be dealing with
2173  // broken code (this is the Verifier after all).
2174  DILocation *DL =
2175  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2176  if (!DL)
2177  continue;
2178  if (!Seen.insert(DL).second)
2179  continue;
2180 
2181  DILocalScope *Scope = DL->getInlinedAtScope();
2182  if (Scope && !Seen.insert(Scope).second)
2183  continue;
2184 
2185  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2186 
2187  // Scope and SP could be the same MDNode and we don't want to skip
2188  // validation in that case
2189  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2190  continue;
2191 
2192  // FIXME: Once N is canonical, check "SP == &N".
2193  AssertDI(SP->describes(&F),
2194  "!dbg attachment points at wrong subprogram for function", N, &F,
2195  &I, DL, Scope, SP);
2196  }
2197 }
2198 
2199 // verifyBasicBlock - Verify that a basic block is well formed...
2200 //
2201 void Verifier::visitBasicBlock(BasicBlock &BB) {
2202  InstsInThisBlock.clear();
2203 
2204  // Ensure that basic blocks have terminators!
2205  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2206 
2207  // Check constraints that this basic block imposes on all of the PHI nodes in
2208  // it.
2209  if (isa<PHINode>(BB.front())) {
2212  std::sort(Preds.begin(), Preds.end());
2213  PHINode *PN;
2214  for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2215  // Ensure that PHI nodes have at least one entry!
2216  Assert(PN->getNumIncomingValues() != 0,
2217  "PHI nodes must have at least one entry. If the block is dead, "
2218  "the PHI should be removed!",
2219  PN);
2220  Assert(PN->getNumIncomingValues() == Preds.size(),
2221  "PHINode should have one entry for each predecessor of its "
2222  "parent basic block!",
2223  PN);
2224 
2225  // Get and sort all incoming values in the PHI node...
2226  Values.clear();
2227  Values.reserve(PN->getNumIncomingValues());
2228  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2229  Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2230  PN->getIncomingValue(i)));
2231  std::sort(Values.begin(), Values.end());
2232 
2233  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2234  // Check to make sure that if there is more than one entry for a
2235  // particular basic block in this PHI node, that the incoming values are
2236  // all identical.
2237  //
2238  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2239  Values[i].second == Values[i - 1].second,
2240  "PHI node has multiple entries for the same basic block with "
2241  "different incoming values!",
2242  PN, Values[i].first, Values[i].second, Values[i - 1].second);
2243 
2244  // Check to make sure that the predecessors and PHI node entries are
2245  // matched up.
2246  Assert(Values[i].first == Preds[i],
2247  "PHI node entries do not match predecessors!", PN,
2248  Values[i].first, Preds[i]);
2249  }
2250  }
2251  }
2252 
2253  // Check that all instructions have their parent pointers set up correctly.
2254  for (auto &I : BB)
2255  {
2256  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2257  }
2258 }
2259 
2260 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2261  // Ensure that terminators only exist at the end of the basic block.
2262  Assert(&I == I.getParent()->getTerminator(),
2263  "Terminator found in the middle of a basic block!", I.getParent());
2264  visitInstruction(I);
2265 }
2266 
2267 void Verifier::visitBranchInst(BranchInst &BI) {
2268  if (BI.isConditional()) {
2269  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2270  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2271  }
2272  visitTerminatorInst(BI);
2273 }
2274 
2275 void Verifier::visitReturnInst(ReturnInst &RI) {
2276  Function *F = RI.getParent()->getParent();
2277  unsigned N = RI.getNumOperands();
2278  if (F->getReturnType()->isVoidTy())
2279  Assert(N == 0,
2280  "Found return instr that returns non-void in Function of void "
2281  "return type!",
2282  &RI, F->getReturnType());
2283  else
2284  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2285  "Function return type does not match operand "
2286  "type of return inst!",
2287  &RI, F->getReturnType());
2288 
2289  // Check to make sure that the return value has necessary properties for
2290  // terminators...
2291  visitTerminatorInst(RI);
2292 }
2293 
2294 void Verifier::visitSwitchInst(SwitchInst &SI) {
2295  // Check to make sure that all of the constants in the switch instruction
2296  // have the same type as the switched-on value.
2297  Type *SwitchTy = SI.getCondition()->getType();
2299  for (auto &Case : SI.cases()) {
2300  Assert(Case.getCaseValue()->getType() == SwitchTy,
2301  "Switch constants must all be same type as switch value!", &SI);
2302  Assert(Constants.insert(Case.getCaseValue()).second,
2303  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2304  }
2305 
2306  visitTerminatorInst(SI);
2307 }
2308 
2309 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2310  Assert(BI.getAddress()->getType()->isPointerTy(),
2311  "Indirectbr operand must have pointer type!", &BI);
2312  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2313  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2314  "Indirectbr destinations must all have pointer type!", &BI);
2315 
2316  visitTerminatorInst(BI);
2317 }
2318 
2319 void Verifier::visitSelectInst(SelectInst &SI) {
2321  SI.getOperand(2)),
2322  "Invalid operands for select instruction!", &SI);
2323 
2324  Assert(SI.getTrueValue()->getType() == SI.getType(),
2325  "Select values must have same type as select instruction!", &SI);
2326  visitInstruction(SI);
2327 }
2328 
2329 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2330 /// a pass, if any exist, it's an error.
2331 ///
2332 void Verifier::visitUserOp1(Instruction &I) {
2333  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2334 }
2335 
2336 void Verifier::visitTruncInst(TruncInst &I) {
2337  // Get the source and destination types
2338  Type *SrcTy = I.getOperand(0)->getType();
2339  Type *DestTy = I.getType();
2340 
2341  // Get the size of the types in bits, we'll need this later
2342  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2343  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2344 
2345  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2346  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2347  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2348  "trunc source and destination must both be a vector or neither", &I);
2349  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2350 
2351  visitInstruction(I);
2352 }
2353 
2354 void Verifier::visitZExtInst(ZExtInst &I) {
2355  // Get the source and destination types
2356  Type *SrcTy = I.getOperand(0)->getType();
2357  Type *DestTy = I.getType();
2358 
2359  // Get the size of the types in bits, we'll need this later
2360  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2361  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2362  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2363  "zext source and destination must both be a vector or neither", &I);
2364  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2365  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2366 
2367  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2368 
2369  visitInstruction(I);
2370 }
2371 
2372 void Verifier::visitSExtInst(SExtInst &I) {
2373  // Get the source and destination types
2374  Type *SrcTy = I.getOperand(0)->getType();
2375  Type *DestTy = I.getType();
2376 
2377  // Get the size of the types in bits, we'll need this later
2378  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2379  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2380 
2381  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2382  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2383  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2384  "sext source and destination must both be a vector or neither", &I);
2385  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2386 
2387  visitInstruction(I);
2388 }
2389 
2390 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2391  // Get the source and destination types
2392  Type *SrcTy = I.getOperand(0)->getType();
2393  Type *DestTy = I.getType();
2394  // Get the size of the types in bits, we'll need this later
2395  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2396  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2397 
2398  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2399  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2400  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2401  "fptrunc source and destination must both be a vector or neither", &I);
2402  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2403 
2404  visitInstruction(I);
2405 }
2406 
2407 void Verifier::visitFPExtInst(FPExtInst &I) {
2408  // Get the source and destination types
2409  Type *SrcTy = I.getOperand(0)->getType();
2410  Type *DestTy = I.getType();
2411 
2412  // Get the size of the types in bits, we'll need this later
2413  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2414  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2415 
2416  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2417  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2418  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2419  "fpext source and destination must both be a vector or neither", &I);
2420  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2421 
2422  visitInstruction(I);
2423 }
2424 
2425 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2426  // Get the source and destination types
2427  Type *SrcTy = I.getOperand(0)->getType();
2428  Type *DestTy = I.getType();
2429 
2430  bool SrcVec = SrcTy->isVectorTy();
2431  bool DstVec = DestTy->isVectorTy();
2432 
2433  Assert(SrcVec == DstVec,
2434  "UIToFP source and dest must both be vector or scalar", &I);
2435  Assert(SrcTy->isIntOrIntVectorTy(),
2436  "UIToFP source must be integer or integer vector", &I);
2437  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2438  &I);
2439 
2440  if (SrcVec && DstVec)
2441  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2442  cast<VectorType>(DestTy)->getNumElements(),
2443  "UIToFP source and dest vector length mismatch", &I);
2444 
2445  visitInstruction(I);
2446 }
2447 
2448 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2449  // Get the source and destination types
2450  Type *SrcTy = I.getOperand(0)->getType();
2451  Type *DestTy = I.getType();
2452 
2453  bool SrcVec = SrcTy->isVectorTy();
2454  bool DstVec = DestTy->isVectorTy();
2455 
2456  Assert(SrcVec == DstVec,
2457  "SIToFP source and dest must both be vector or scalar", &I);
2458  Assert(SrcTy->isIntOrIntVectorTy(),
2459  "SIToFP source must be integer or integer vector", &I);
2460  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2461  &I);
2462 
2463  if (SrcVec && DstVec)
2464  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2465  cast<VectorType>(DestTy)->getNumElements(),
2466  "SIToFP source and dest vector length mismatch", &I);
2467 
2468  visitInstruction(I);
2469 }
2470 
2471 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2472  // Get the source and destination types
2473  Type *SrcTy = I.getOperand(0)->getType();
2474  Type *DestTy = I.getType();
2475 
2476  bool SrcVec = SrcTy->isVectorTy();
2477  bool DstVec = DestTy->isVectorTy();
2478 
2479  Assert(SrcVec == DstVec,
2480  "FPToUI source and dest must both be vector or scalar", &I);
2481  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2482  &I);
2483  Assert(DestTy->isIntOrIntVectorTy(),
2484  "FPToUI result must be integer or integer vector", &I);
2485 
2486  if (SrcVec && DstVec)
2487  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2488  cast<VectorType>(DestTy)->getNumElements(),
2489  "FPToUI source and dest vector length mismatch", &I);
2490 
2491  visitInstruction(I);
2492 }
2493 
2494 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2495  // Get the source and destination types
2496  Type *SrcTy = I.getOperand(0)->getType();
2497  Type *DestTy = I.getType();
2498 
2499  bool SrcVec = SrcTy->isVectorTy();
2500  bool DstVec = DestTy->isVectorTy();
2501 
2502  Assert(SrcVec == DstVec,
2503  "FPToSI source and dest must both be vector or scalar", &I);
2504  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2505  &I);
2506  Assert(DestTy->isIntOrIntVectorTy(),
2507  "FPToSI result must be integer or integer vector", &I);
2508 
2509  if (SrcVec && DstVec)
2510  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2511  cast<VectorType>(DestTy)->getNumElements(),
2512  "FPToSI source and dest vector length mismatch", &I);
2513 
2514  visitInstruction(I);
2515 }
2516 
2517 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2518  // Get the source and destination types
2519  Type *SrcTy = I.getOperand(0)->getType();
2520  Type *DestTy = I.getType();
2521 
2522  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2523 
2524  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2526  "ptrtoint not supported for non-integral pointers");
2527 
2528  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2529  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2530  &I);
2531 
2532  if (SrcTy->isVectorTy()) {
2533  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2534  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2535  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2536  "PtrToInt Vector width mismatch", &I);
2537  }
2538 
2539  visitInstruction(I);
2540 }
2541 
2542 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2543  // Get the source and destination types
2544  Type *SrcTy = I.getOperand(0)->getType();
2545  Type *DestTy = I.getType();
2546 
2547  Assert(SrcTy->isIntOrIntVectorTy(),
2548  "IntToPtr source must be an integral", &I);
2549  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2550 
2551  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2553  "inttoptr not supported for non-integral pointers");
2554 
2555  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2556  &I);
2557  if (SrcTy->isVectorTy()) {
2558  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2559  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2560  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2561  "IntToPtr Vector width mismatch", &I);
2562  }
2563  visitInstruction(I);
2564 }
2565 
2566 void Verifier::visitBitCastInst(BitCastInst &I) {
2567  Assert(
2568  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2569  "Invalid bitcast", &I);
2570  visitInstruction(I);
2571 }
2572 
2573 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2574  Type *SrcTy = I.getOperand(0)->getType();
2575  Type *DestTy = I.getType();
2576 
2577  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2578  &I);
2579  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2580  &I);
2582  "AddrSpaceCast must be between different address spaces", &I);
2583  if (SrcTy->isVectorTy())
2584  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2585  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2586  visitInstruction(I);
2587 }
2588 
2589 /// visitPHINode - Ensure that a PHI node is well formed.
2590 ///
2591 void Verifier::visitPHINode(PHINode &PN) {
2592  // Ensure that the PHI nodes are all grouped together at the top of the block.
2593  // This can be tested by checking whether the instruction before this is
2594  // either nonexistent (because this is begin()) or is a PHI node. If not,
2595  // then there is some other instruction before a PHI.
2596  Assert(&PN == &PN.getParent()->front() ||
2597  isa<PHINode>(--BasicBlock::iterator(&PN)),
2598  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2599 
2600  // Check that a PHI doesn't yield a Token.
2601  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2602 
2603  // Check that all of the values of the PHI node have the same type as the
2604  // result, and that the incoming blocks are really basic blocks.
2605  for (Value *IncValue : PN.incoming_values()) {
2606  Assert(PN.getType() == IncValue->getType(),
2607  "PHI node operands are not the same type as the result!", &PN);
2608  }
2609 
2610  // All other PHI node constraints are checked in the visitBasicBlock method.
2611 
2612  visitInstruction(PN);
2613 }
2614 
2615 void Verifier::verifyCallSite(CallSite CS) {
2616  Instruction *I = CS.getInstruction();
2617 
2619  "Called function must be a pointer!", I);
2620  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2621 
2622  Assert(FPTy->getElementType()->isFunctionTy(),
2623  "Called function is not pointer to function type!", I);
2624 
2625  Assert(FPTy->getElementType() == CS.getFunctionType(),
2626  "Called function is not the same type as the call!", I);
2627 
2628  FunctionType *FTy = CS.getFunctionType();
2629 
2630  // Verify that the correct number of arguments are being passed
2631  if (FTy->isVarArg())
2632  Assert(CS.arg_size() >= FTy->getNumParams(),
2633  "Called function requires more parameters than were provided!", I);
2634  else
2635  Assert(CS.arg_size() == FTy->getNumParams(),
2636  "Incorrect number of arguments passed to called function!", I);
2637 
2638  // Verify that all arguments to the call match the function type.
2639  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2640  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2641  "Call parameter type does not match function signature!",
2642  CS.getArgument(i), FTy->getParamType(i), I);
2643 
2644  AttributeList Attrs = CS.getAttributes();
2645 
2646  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2647  "Attribute after last parameter!", I);
2648 
2649  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2650  // Don't allow speculatable on call sites, unless the underlying function
2651  // declaration is also speculatable.
2652  Function *Callee
2654  Assert(Callee && Callee->isSpeculatable(),
2655  "speculatable attribute may not apply to call sites", I);
2656  }
2657 
2658  // Verify call attributes.
2659  verifyFunctionAttrs(FTy, Attrs, I);
2660 
2661  // Conservatively check the inalloca argument.
2662  // We have a bug if we can find that there is an underlying alloca without
2663  // inalloca.
2664  if (CS.hasInAllocaArgument()) {
2665  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2666  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2667  Assert(AI->isUsedWithInAlloca(),
2668  "inalloca argument for call has mismatched alloca", AI, I);
2669  }
2670 
2671  // For each argument of the callsite, if it has the swifterror argument,
2672  // make sure the underlying alloca/parameter it comes from has a swifterror as
2673  // well.
2674  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2675  if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2676  Value *SwiftErrorArg = CS.getArgument(i);
2677  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2678  Assert(AI->isSwiftError(),
2679  "swifterror argument for call has mismatched alloca", AI, I);
2680  continue;
2681  }
2682  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2683  Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2684  Assert(ArgI->hasSwiftErrorAttr(),
2685  "swifterror argument for call has mismatched parameter", ArgI, I);
2686  }
2687 
2688  if (FTy->isVarArg()) {
2689  // FIXME? is 'nest' even legal here?
2690  bool SawNest = false;
2691  bool SawReturned = false;
2692 
2693  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2694  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2695  SawNest = true;
2696  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2697  SawReturned = true;
2698  }
2699 
2700  // Check attributes on the varargs part.
2701  for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2702  Type *Ty = CS.getArgument(Idx)->getType();
2703  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2704  verifyParameterAttrs(ArgAttrs, Ty, I);
2705 
2706  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2707  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2708  SawNest = true;
2709  }
2710 
2711  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2712  Assert(!SawReturned, "More than one parameter has attribute returned!",
2713  I);
2714  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2715  "Incompatible argument and return types for 'returned' "
2716  "attribute",
2717  I);
2718  SawReturned = true;
2719  }
2720 
2721  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2722  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2723 
2724  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2725  Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2726  I);
2727  }
2728  }
2729 
2730  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2731  if (CS.getCalledFunction() == nullptr ||
2732  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2733  for (Type *ParamTy : FTy->params()) {
2734  Assert(!ParamTy->isMetadataTy(),
2735  "Function has metadata parameter but isn't an intrinsic", I);
2736  Assert(!ParamTy->isTokenTy(),
2737  "Function has token parameter but isn't an intrinsic", I);
2738  }
2739  }
2740 
2741  // Verify that indirect calls don't return tokens.
2742  if (CS.getCalledFunction() == nullptr)
2743  Assert(!FTy->getReturnType()->isTokenTy(),
2744  "Return type cannot be token for indirect call!");
2745 
2746  if (Function *F = CS.getCalledFunction())
2748  visitIntrinsicCallSite(ID, CS);
2749 
2750  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2751  // at most one "gc-transition" operand bundle.
2752  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2753  FoundGCTransitionBundle = false;
2754  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2756  uint32_t Tag = BU.getTagID();
2757  if (Tag == LLVMContext::OB_deopt) {
2758  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2759  FoundDeoptBundle = true;
2760  } else if (Tag == LLVMContext::OB_gc_transition) {
2761  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2762  I);
2763  FoundGCTransitionBundle = true;
2764  } else if (Tag == LLVMContext::OB_funclet) {
2765  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2766  FoundFuncletBundle = true;
2767  Assert(BU.Inputs.size() == 1,
2768  "Expected exactly one funclet bundle operand", I);
2769  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2770  "Funclet bundle operands should correspond to a FuncletPadInst",
2771  I);
2772  }
2773  }
2774 
2775  // Verify that each inlinable callsite of a debug-info-bearing function in a
2776  // debug-info-bearing function has a debug location attached to it. Failure to
2777  // do so causes assertion failures when the inliner sets up inline scope info.
2778  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2780  AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2781  "debug info must have a !dbg location",
2782  I);
2783 
2784  visitInstruction(*I);
2785 }
2786 
2787 /// Two types are "congruent" if they are identical, or if they are both pointer
2788 /// types with different pointee types and the same address space.
2789 static bool isTypeCongruent(Type *L, Type *R) {
2790  if (L == R)
2791  return true;
2794  if (!PL || !PR)
2795  return false;
2796  return PL->getAddressSpace() == PR->getAddressSpace();
2797 }
2798 
2800  static const Attribute::AttrKind ABIAttrs[] = {
2801  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2802  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2803  Attribute::SwiftError};
2804  AttrBuilder Copy;
2805  for (auto AK : ABIAttrs) {
2806  if (Attrs.hasParamAttribute(I, AK))
2807  Copy.addAttribute(AK);
2808  }
2809  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2810  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2811  return Copy;
2812 }
2813 
2814 void Verifier::verifyMustTailCall(CallInst &CI) {
2815  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2816 
2817  // - The caller and callee prototypes must match. Pointer types of
2818  // parameters or return types may differ in pointee type, but not
2819  // address space.
2820  Function *F = CI.getParent()->getParent();
2821  FunctionType *CallerTy = F->getFunctionType();
2822  FunctionType *CalleeTy = CI.getFunctionType();
2823  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2824  "cannot guarantee tail call due to mismatched parameter counts", &CI);
2825  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2826  "cannot guarantee tail call due to mismatched varargs", &CI);
2827  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2828  "cannot guarantee tail call due to mismatched return types", &CI);
2829  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2830  Assert(
2831  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2832  "cannot guarantee tail call due to mismatched parameter types", &CI);
2833  }
2834 
2835  // - The calling conventions of the caller and callee must match.
2836  Assert(F->getCallingConv() == CI.getCallingConv(),
2837  "cannot guarantee tail call due to mismatched calling conv", &CI);
2838 
2839  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2840  // returned, and inalloca, must match.
2841  AttributeList CallerAttrs = F->getAttributes();
2842  AttributeList CalleeAttrs = CI.getAttributes();
2843  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2844  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2845  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2846  Assert(CallerABIAttrs == CalleeABIAttrs,
2847  "cannot guarantee tail call due to mismatched ABI impacting "
2848  "function attributes",
2849  &CI, CI.getOperand(I));
2850  }
2851 
2852  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2853  // or a pointer bitcast followed by a ret instruction.
2854  // - The ret instruction must return the (possibly bitcasted) value
2855  // produced by the call or void.
2856  Value *RetVal = &CI;
2857  Instruction *Next = CI.getNextNode();
2858 
2859  // Handle the optional bitcast.
2860  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2861  Assert(BI->getOperand(0) == RetVal,
2862  "bitcast following musttail call must use the call", BI);
2863  RetVal = BI;
2864  Next = BI->getNextNode();
2865  }
2866 
2867  // Check the return.
2868  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2869  Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2870  &CI);
2871  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2872  "musttail call result must be returned", Ret);
2873 }
2874 
2875 void Verifier::visitCallInst(CallInst &CI) {
2876  verifyCallSite(&CI);
2877 
2878  if (CI.isMustTailCall())
2879  verifyMustTailCall(CI);
2880 }
2881 
2882 void Verifier::visitInvokeInst(InvokeInst &II) {
2883  verifyCallSite(&II);
2884 
2885  // Verify that the first non-PHI instruction of the unwind destination is an
2886  // exception handling instruction.
2887  Assert(
2888  II.getUnwindDest()->isEHPad(),
2889  "The unwind destination does not have an exception handling instruction!",
2890  &II);
2891 
2892  visitTerminatorInst(II);
2893 }
2894 
2895 /// visitBinaryOperator - Check that both arguments to the binary operator are
2896 /// of the same type!
2897 ///
2898 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2899  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2900  "Both operands to a binary operator are not of the same type!", &B);
2901 
2902  switch (B.getOpcode()) {
2903  // Check that integer arithmetic operators are only used with
2904  // integral operands.
2905  case Instruction::Add:
2906  case Instruction::Sub:
2907  case Instruction::Mul:
2908  case Instruction::SDiv:
2909  case Instruction::UDiv:
2910  case Instruction::SRem:
2911  case Instruction::URem:
2913  "Integer arithmetic operators only work with integral types!", &B);
2914  Assert(B.getType() == B.getOperand(0)->getType(),
2915  "Integer arithmetic operators must have same type "
2916  "for operands and result!",
2917  &B);
2918  break;
2919  // Check that floating-point arithmetic operators are only used with
2920  // floating-point operands.
2921  case Instruction::FAdd:
2922  case Instruction::FSub:
2923  case Instruction::FMul:
2924  case Instruction::FDiv:
2925  case Instruction::FRem:
2927  "Floating-point arithmetic operators only work with "
2928  "floating-point types!",
2929  &B);
2930  Assert(B.getType() == B.getOperand(0)->getType(),
2931  "Floating-point arithmetic operators must have same type "
2932  "for operands and result!",
2933  &B);
2934  break;
2935  // Check that logical operators are only used with integral operands.
2936  case Instruction::And:
2937  case Instruction::Or:
2938  case Instruction::Xor:
2940  "Logical operators only work with integral types!", &B);
2941  Assert(B.getType() == B.getOperand(0)->getType(),
2942  "Logical operators must have same type for operands and result!",
2943  &B);
2944  break;
2945  case Instruction::Shl:
2946  case Instruction::LShr:
2947  case Instruction::AShr:
2949  "Shifts only work with integral types!", &B);
2950  Assert(B.getType() == B.getOperand(0)->getType(),
2951  "Shift return type must be same as operands!", &B);
2952  break;
2953  default:
2954  llvm_unreachable("Unknown BinaryOperator opcode!");
2955  }
2956 
2957  visitInstruction(B);
2958 }
2959 
2960 void Verifier::visitICmpInst(ICmpInst &IC) {
2961  // Check that the operands are the same type
2962  Type *Op0Ty = IC.getOperand(0)->getType();
2963  Type *Op1Ty = IC.getOperand(1)->getType();
2964  Assert(Op0Ty == Op1Ty,
2965  "Both operands to ICmp instruction are not of the same type!", &IC);
2966  // Check that the operands are the right type
2967  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
2968  "Invalid operand types for ICmp instruction", &IC);
2969  // Check that the predicate is valid.
2970  Assert(IC.isIntPredicate(),
2971  "Invalid predicate in ICmp instruction!", &IC);
2972 
2973  visitInstruction(IC);
2974 }
2975 
2976 void Verifier::visitFCmpInst(FCmpInst &FC) {
2977  // Check that the operands are the same type
2978  Type *Op0Ty = FC.getOperand(0)->getType();
2979  Type *Op1Ty = FC.getOperand(1)->getType();
2980  Assert(Op0Ty == Op1Ty,
2981  "Both operands to FCmp instruction are not of the same type!", &FC);
2982  // Check that the operands are the right type
2983  Assert(Op0Ty->isFPOrFPVectorTy(),
2984  "Invalid operand types for FCmp instruction", &FC);
2985  // Check that the predicate is valid.
2986  Assert(FC.isFPPredicate(),
2987  "Invalid predicate in FCmp instruction!", &FC);
2988 
2989  visitInstruction(FC);
2990 }
2991 
2992 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2993  Assert(
2995  "Invalid extractelement operands!", &EI);
2996  visitInstruction(EI);
2997 }
2998 
2999 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3001  IE.getOperand(2)),
3002  "Invalid insertelement operands!", &IE);
3003  visitInstruction(IE);
3004 }
3005 
3006 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3008  SV.getOperand(2)),
3009  "Invalid shufflevector operands!", &SV);
3010  visitInstruction(SV);
3011 }
3012 
3013 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3014  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3015 
3016  Assert(isa<PointerType>(TargetTy),
3017  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3018  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3019  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3020  Type *ElTy =
3022  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3023 
3024  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3025  GEP.getResultElementType() == ElTy,
3026  "GEP is not of right type for indices!", &GEP, ElTy);
3027 
3028  if (GEP.getType()->isVectorTy()) {
3029  // Additional checks for vector GEPs.
3030  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3031  if (GEP.getPointerOperandType()->isVectorTy())
3032  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3033  "Vector GEP result width doesn't match operand's", &GEP);
3034  for (Value *Idx : Idxs) {
3035  Type *IndexTy = Idx->getType();
3036  if (IndexTy->isVectorTy()) {
3037  unsigned IndexWidth = IndexTy->getVectorNumElements();
3038  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3039  }
3040  Assert(IndexTy->isIntOrIntVectorTy(),
3041  "All GEP indices should be of integer type");
3042  }
3043  }
3044  visitInstruction(GEP);
3045 }
3046 
3047 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3048  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3049 }
3050 
3051 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3052  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3053  "precondition violation");
3054 
3055  unsigned NumOperands = Range->getNumOperands();
3056  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3057  unsigned NumRanges = NumOperands / 2;
3058  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3059 
3060  ConstantRange LastRange(1); // Dummy initial value
3061  for (unsigned i = 0; i < NumRanges; ++i) {
3062  ConstantInt *Low =
3063  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3064  Assert(Low, "The lower limit must be an integer!", Low);
3065  ConstantInt *High =
3066  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3067  Assert(High, "The upper limit must be an integer!", High);
3068  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3069  "Range types must match instruction type!", &I);
3070 
3071  APInt HighV = High->getValue();
3072  APInt LowV = Low->getValue();
3073  ConstantRange CurRange(LowV, HighV);
3074  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3075  "Range must not be empty!", Range);
3076  if (i != 0) {
3077  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3078  "Intervals are overlapping", Range);
3079  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3080  Range);
3081  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3082  Range);
3083  }
3084  LastRange = ConstantRange(LowV, HighV);
3085  }
3086  if (NumRanges > 2) {
3087  APInt FirstLow =
3088  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3089  APInt FirstHigh =
3090  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3091  ConstantRange FirstRange(FirstLow, FirstHigh);
3092  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3093  "Intervals are overlapping", Range);
3094  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3095  Range);
3096  }
3097 }
3098 
3099 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3100  unsigned Size = DL.getTypeSizeInBits(Ty);
3101  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3102  Assert(!(Size & (Size - 1)),
3103  "atomic memory access' operand must have a power-of-two size", Ty, I);
3104 }
3105 
3106 void Verifier::visitLoadInst(LoadInst &LI) {
3108  Assert(PTy, "Load operand must be a pointer.", &LI);
3109  Type *ElTy = LI.getType();
3111  "huge alignment values are unsupported", &LI);
3112  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3113  if (LI.isAtomic()) {
3116  "Load cannot have Release ordering", &LI);
3117  Assert(LI.getAlignment() != 0,
3118  "Atomic load must specify explicit alignment", &LI);
3119  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3120  ElTy->isFloatingPointTy(),
3121  "atomic load operand must have integer, pointer, or floating point "
3122  "type!",
3123  ElTy, &LI);
3124  checkAtomicMemAccessSize(ElTy, &LI);
3125  } else {
3127  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3128  }
3129 
3130  visitInstruction(LI);
3131 }
3132 
3133 void Verifier::visitStoreInst(StoreInst &SI) {
3135  Assert(PTy, "Store operand must be a pointer.", &SI);
3136  Type *ElTy = PTy->getElementType();
3137  Assert(ElTy == SI.getOperand(0)->getType(),
3138  "Stored value type does not match pointer operand type!", &SI, ElTy);
3140  "huge alignment values are unsupported", &SI);
3141  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3142  if (SI.isAtomic()) {
3145  "Store cannot have Acquire ordering", &SI);
3146  Assert(SI.getAlignment() != 0,
3147  "Atomic store must specify explicit alignment", &SI);
3148  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3149  ElTy->isFloatingPointTy(),
3150  "atomic store operand must have integer, pointer, or floating point "
3151  "type!",
3152  ElTy, &SI);
3153  checkAtomicMemAccessSize(ElTy, &SI);
3154  } else {
3156  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3157  }
3158  visitInstruction(SI);
3159 }
3160 
3161 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3162 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3163  const Value *SwiftErrorVal) {
3164  unsigned Idx = 0;
3165  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3166  I != E; ++I, ++Idx) {
3167  if (*I == SwiftErrorVal) {
3168  Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3169  "swifterror value when used in a callsite should be marked "
3170  "with swifterror attribute",
3171  SwiftErrorVal, CS);
3172  }
3173  }
3174 }
3175 
3176 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3177  // Check that swifterror value is only used by loads, stores, or as
3178  // a swifterror argument.
3179  for (const User *U : SwiftErrorVal->users()) {
3180  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3181  isa<InvokeInst>(U),
3182  "swifterror value can only be loaded and stored from, or "
3183  "as a swifterror argument!",
3184  SwiftErrorVal, U);
3185  // If it is used by a store, check it is the second operand.
3186  if (auto StoreI = dyn_cast<StoreInst>(U))
3187  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3188  "swifterror value should be the second operand when used "
3189  "by stores", SwiftErrorVal, U);
3190  if (auto CallI = dyn_cast<CallInst>(U))
3191  verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3192  if (auto II = dyn_cast<InvokeInst>(U))
3193  verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3194  }
3195 }
3196 
3197 void Verifier::visitAllocaInst(AllocaInst &AI) {
3198  SmallPtrSet<Type*, 4> Visited;
3199  PointerType *PTy = AI.getType();
3200  // TODO: Relax this restriction?
3202  "Allocation instruction pointer not in the stack address space!",
3203  &AI);
3204  Assert(AI.getAllocatedType()->isSized(&Visited),
3205  "Cannot allocate unsized type", &AI);
3207  "Alloca array size must have integer type", &AI);
3209  "huge alignment values are unsupported", &AI);
3210 
3211  if (AI.isSwiftError()) {
3212  verifySwiftErrorValue(&AI);
3213  }
3214 
3215  visitInstruction(AI);
3216 }
3217 
3218 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3219 
3220  // FIXME: more conditions???
3222  "cmpxchg instructions must be atomic.", &CXI);
3224  "cmpxchg instructions must be atomic.", &CXI);
3226  "cmpxchg instructions cannot be unordered.", &CXI);
3228  "cmpxchg instructions cannot be unordered.", &CXI);
3230  "cmpxchg instructions failure argument shall be no stronger than the "
3231  "success argument",
3232  &CXI);
3235  "cmpxchg failure ordering cannot include release semantics", &CXI);
3236 
3237  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3238  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3239  Type *ElTy = PTy->getElementType();
3240  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3241  "cmpxchg operand must have integer or pointer type",
3242  ElTy, &CXI);
3243  checkAtomicMemAccessSize(ElTy, &CXI);
3244  Assert(ElTy == CXI.getOperand(1)->getType(),
3245  "Expected value type does not match pointer operand type!", &CXI,
3246  ElTy);
3247  Assert(ElTy == CXI.getOperand(2)->getType(),
3248  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3249  visitInstruction(CXI);
3250 }
3251 
3252 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3254  "atomicrmw instructions must be atomic.", &RMWI);
3256  "atomicrmw instructions cannot be unordered.", &RMWI);
3257  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3258  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3259  Type *ElTy = PTy->getElementType();
3260  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3261  &RMWI, ElTy);
3262  checkAtomicMemAccessSize(ElTy, &RMWI);
3263  Assert(ElTy == RMWI.getOperand(1)->getType(),
3264  "Argument value type does not match pointer operand type!", &RMWI,
3265  ElTy);
3268  "Invalid binary operation!", &RMWI);
3269  visitInstruction(RMWI);
3270 }
3271 
3272 void Verifier::visitFenceInst(FenceInst &FI) {
3273  const AtomicOrdering Ordering = FI.getOrdering();
3274  Assert(Ordering == AtomicOrdering::Acquire ||
3275  Ordering == AtomicOrdering::Release ||
3276  Ordering == AtomicOrdering::AcquireRelease ||
3278  "fence instructions may only have acquire, release, acq_rel, or "
3279  "seq_cst ordering.",
3280  &FI);
3281  visitInstruction(FI);
3282 }
3283 
3284 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3286  EVI.getIndices()) == EVI.getType(),
3287  "Invalid ExtractValueInst operands!", &EVI);
3288 
3289  visitInstruction(EVI);
3290 }
3291 
3292 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3294  IVI.getIndices()) ==
3295  IVI.getOperand(1)->getType(),
3296  "Invalid InsertValueInst operands!", &IVI);
3297 
3298  visitInstruction(IVI);
3299 }
3300 
3301 static Value *getParentPad(Value *EHPad) {
3302  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3303  return FPI->getParentPad();
3304 
3305  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3306 }
3307 
3308 void Verifier::visitEHPadPredecessors(Instruction &I) {
3309  assert(I.isEHPad());
3310 
3311  BasicBlock *BB = I.getParent();
3312  Function *F = BB->getParent();
3313 
3314  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3315 
3316  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3317  // The landingpad instruction defines its parent as a landing pad block. The
3318  // landing pad block may be branched to only by the unwind edge of an
3319  // invoke.
3320  for (BasicBlock *PredBB : predecessors(BB)) {
3321  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3322  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3323  "Block containing LandingPadInst must be jumped to "
3324  "only by the unwind edge of an invoke.",
3325  LPI);
3326  }
3327  return;
3328  }
3329  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3330  if (!pred_empty(BB))
3331  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3332  "Block containg CatchPadInst must be jumped to "
3333  "only by its catchswitch.",
3334  CPI);
3335  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3336  "Catchswitch cannot unwind to one of its catchpads",
3337  CPI->getCatchSwitch(), CPI);
3338  return;
3339  }
3340 
3341  // Verify that each pred has a legal terminator with a legal to/from EH
3342  // pad relationship.
3343  Instruction *ToPad = &I;
3344  Value *ToPadParent = getParentPad(ToPad);
3345  for (BasicBlock *PredBB : predecessors(BB)) {
3346  TerminatorInst *TI = PredBB->getTerminator();
3347  Value *FromPad;
3348  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3349  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3350  "EH pad must be jumped to via an unwind edge", ToPad, II);
3351  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3352  FromPad = Bundle->Inputs[0];
3353  else
3354  FromPad = ConstantTokenNone::get(II->getContext());
3355  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3356  FromPad = CRI->getOperand(0);
3357  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3358  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3359  FromPad = CSI;
3360  } else {
3361  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3362  }
3363 
3364  // The edge may exit from zero or more nested pads.
3365  SmallSet<Value *, 8> Seen;
3366  for (;; FromPad = getParentPad(FromPad)) {
3367  Assert(FromPad != ToPad,
3368  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3369  if (FromPad == ToPadParent) {
3370  // This is a legal unwind edge.
3371  break;
3372  }
3373  Assert(!isa<ConstantTokenNone>(FromPad),
3374  "A single unwind edge may only enter one EH pad", TI);
3375  Assert(Seen.insert(FromPad).second,
3376  "EH pad jumps through a cycle of pads", FromPad);
3377  }
3378  }
3379 }
3380 
3381 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3382  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3383  // isn't a cleanup.
3384  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3385  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3386 
3387  visitEHPadPredecessors(LPI);
3388 
3389  if (!LandingPadResultTy)
3390  LandingPadResultTy = LPI.getType();
3391  else
3392  Assert(LandingPadResultTy == LPI.getType(),
3393  "The landingpad instruction should have a consistent result type "
3394  "inside a function.",
3395  &LPI);
3396 
3397  Function *F = LPI.getParent()->getParent();
3398  Assert(F->hasPersonalityFn(),
3399  "LandingPadInst needs to be in a function with a personality.", &LPI);
3400 
3401  // The landingpad instruction must be the first non-PHI instruction in the
3402  // block.
3403  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3404  "LandingPadInst not the first non-PHI instruction in the block.",
3405  &LPI);
3406 
3407  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3408  Constant *Clause = LPI.getClause(i);
3409  if (LPI.isCatch(i)) {
3410  Assert(isa<PointerType>(Clause->getType()),
3411  "Catch operand does not have pointer type!", &LPI);
3412  } else {
3413  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3414  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3415  "Filter operand is not an array of constants!", &LPI);
3416  }
3417  }
3418 
3419  visitInstruction(LPI);
3420 }
3421 
3422 void Verifier::visitResumeInst(ResumeInst &RI) {
3424  "ResumeInst needs to be in a function with a personality.", &RI);
3425 
3426  if (!LandingPadResultTy)
3427  LandingPadResultTy = RI.getValue()->getType();
3428  else
3429  Assert(LandingPadResultTy == RI.getValue()->getType(),
3430  "The resume instruction should have a consistent result type "
3431  "inside a function.",
3432  &RI);
3433 
3434  visitTerminatorInst(RI);
3435 }
3436 
3437 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3438  BasicBlock *BB = CPI.getParent();
3439 
3440  Function *F = BB->getParent();
3441  Assert(F->hasPersonalityFn(),
3442  "CatchPadInst needs to be in a function with a personality.", &CPI);
3443 
3444  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3445  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3446  CPI.getParentPad());
3447 
3448  // The catchpad instruction must be the first non-PHI instruction in the
3449  // block.
3450  Assert(BB->getFirstNonPHI() == &CPI,
3451  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3452 
3453  visitEHPadPredecessors(CPI);
3454  visitFuncletPadInst(CPI);
3455 }
3456 
3457 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3458  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3459  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3460  CatchReturn.getOperand(0));
3461 
3462  visitTerminatorInst(CatchReturn);
3463 }
3464 
3465 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3466  BasicBlock *BB = CPI.getParent();
3467 
3468  Function *F = BB->getParent();
3469  Assert(F->hasPersonalityFn(),
3470  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3471 
3472  // The cleanuppad instruction must be the first non-PHI instruction in the
3473  // block.
3474  Assert(BB->getFirstNonPHI() == &CPI,
3475  "CleanupPadInst not the first non-PHI instruction in the block.",
3476  &CPI);
3477 
3478  auto *ParentPad = CPI.getParentPad();
3479  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3480  "CleanupPadInst has an invalid parent.", &CPI);
3481 
3482  visitEHPadPredecessors(CPI);
3483  visitFuncletPadInst(CPI);
3484 }
3485 
3486 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3487  User *FirstUser = nullptr;
3488  Value *FirstUnwindPad = nullptr;
3489  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3491 
3492  while (!Worklist.empty()) {
3493  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3494  Assert(Seen.insert(CurrentPad).second,
3495  "FuncletPadInst must not be nested within itself", CurrentPad);
3496  Value *UnresolvedAncestorPad = nullptr;
3497  for (User *U : CurrentPad->users()) {
3498  BasicBlock *UnwindDest;
3499  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3500  UnwindDest = CRI->getUnwindDest();
3501  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3502  // We allow catchswitch unwind to caller to nest
3503  // within an outer pad that unwinds somewhere else,
3504  // because catchswitch doesn't have a nounwind variant.
3505  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3506  if (CSI->unwindsToCaller())
3507  continue;
3508  UnwindDest = CSI->getUnwindDest();
3509  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3510  UnwindDest = II->getUnwindDest();
3511  } else if (isa<CallInst>(U)) {
3512  // Calls which don't unwind may be found inside funclet
3513  // pads that unwind somewhere else. We don't *require*
3514  // such calls to be annotated nounwind.
3515  continue;
3516  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3517  // The unwind dest for a cleanup can only be found by
3518  // recursive search. Add it to the worklist, and we'll
3519  // search for its first use that determines where it unwinds.
3520  Worklist.push_back(CPI);
3521  continue;
3522  } else {
3523  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3524  continue;
3525  }
3526 
3527  Value *UnwindPad;
3528  bool ExitsFPI;
3529  if (UnwindDest) {
3530  UnwindPad = UnwindDest->getFirstNonPHI();
3531  if (!cast<Instruction>(UnwindPad)->isEHPad())
3532  continue;
3533  Value *UnwindParent = getParentPad(UnwindPad);
3534  // Ignore unwind edges that don't exit CurrentPad.
3535  if (UnwindParent == CurrentPad)
3536  continue;
3537  // Determine whether the original funclet pad is exited,
3538  // and if we are scanning nested pads determine how many
3539  // of them are exited so we can stop searching their
3540  // children.
3541  Value *ExitedPad = CurrentPad;
3542  ExitsFPI = false;
3543  do {
3544  if (ExitedPad == &FPI) {
3545  ExitsFPI = true;
3546  // Now we can resolve any ancestors of CurrentPad up to
3547  // FPI, but not including FPI since we need to make sure
3548  // to check all direct users of FPI for consistency.
3549  UnresolvedAncestorPad = &FPI;
3550  break;
3551  }
3552  Value *ExitedParent = getParentPad(ExitedPad);
3553  if (ExitedParent == UnwindParent) {
3554  // ExitedPad is the ancestor-most pad which this unwind
3555  // edge exits, so we can resolve up to it, meaning that
3556  // ExitedParent is the first ancestor still unresolved.
3557  UnresolvedAncestorPad = ExitedParent;
3558  break;
3559  }
3560  ExitedPad = ExitedParent;
3561  } while (!isa<ConstantTokenNone>(ExitedPad));
3562  } else {
3563  // Unwinding to caller exits all pads.
3564  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3565  ExitsFPI = true;
3566  UnresolvedAncestorPad = &FPI;
3567  }
3568 
3569  if (ExitsFPI) {
3570  // This unwind edge exits FPI. Make sure it agrees with other
3571  // such edges.
3572  if (FirstUser) {
3573  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3574  "pad must have the same unwind "
3575  "dest",
3576  &FPI, U, FirstUser);
3577  } else {
3578  FirstUser = U;
3579  FirstUnwindPad = UnwindPad;
3580  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3581  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3582  getParentPad(UnwindPad) == getParentPad(&FPI))
3583  SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3584  }
3585  }
3586  // Make sure we visit all uses of FPI, but for nested pads stop as
3587  // soon as we know where they unwind to.
3588  if (CurrentPad != &FPI)
3589  break;
3590  }
3591  if (UnresolvedAncestorPad) {
3592  if (CurrentPad == UnresolvedAncestorPad) {
3593  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3594  // we've found an unwind edge that exits it, because we need to verify
3595  // all direct uses of FPI.
3596  assert(CurrentPad == &FPI);
3597  continue;
3598  }
3599  // Pop off the worklist any nested pads that we've found an unwind
3600  // destination for. The pads on the worklist are the uncles,
3601  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3602  // for all ancestors of CurrentPad up to but not including
3603  // UnresolvedAncestorPad.
3604  Value *ResolvedPad = CurrentPad;
3605  while (!Worklist.empty()) {
3606  Value *UnclePad = Worklist.back();
3607  Value *AncestorPad = getParentPad(UnclePad);
3608  // Walk ResolvedPad up the ancestor list until we either find the
3609  // uncle's parent or the last resolved ancestor.
3610  while (ResolvedPad != AncestorPad) {
3611  Value *ResolvedParent = getParentPad(ResolvedPad);
3612  if (ResolvedParent == UnresolvedAncestorPad) {
3613  break;
3614  }
3615  ResolvedPad = ResolvedParent;
3616  }
3617  // If the resolved ancestor search didn't find the uncle's parent,
3618  // then the uncle is not yet resolved.
3619  if (ResolvedPad != AncestorPad)
3620  break;
3621  // This uncle is resolved, so pop it from the worklist.
3622  Worklist.pop_back();
3623  }
3624  }
3625  }
3626 
3627  if (FirstUnwindPad) {
3628  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3629  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3630  Value *SwitchUnwindPad;
3631  if (SwitchUnwindDest)
3632  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3633  else
3634  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3635  Assert(SwitchUnwindPad == FirstUnwindPad,
3636  "Unwind edges out of a catch must have the same unwind dest as "
3637  "the parent catchswitch",
3638  &FPI, FirstUser, CatchSwitch);
3639  }
3640  }
3641 
3642  visitInstruction(FPI);
3643 }
3644 
3645 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3646  BasicBlock *BB = CatchSwitch.getParent();
3647 
3648  Function *F = BB->getParent();
3649  Assert(F->hasPersonalityFn(),
3650  "CatchSwitchInst needs to be in a function with a personality.",
3651  &CatchSwitch);
3652 
3653  // The catchswitch instruction must be the first non-PHI instruction in the
3654  // block.
3655  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3656  "CatchSwitchInst not the first non-PHI instruction in the block.",
3657  &CatchSwitch);
3658 
3659  auto *ParentPad = CatchSwitch.getParentPad();
3660  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3661  "CatchSwitchInst has an invalid parent.", ParentPad);
3662 
3663  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3664  Instruction *I = UnwindDest->getFirstNonPHI();
3665  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3666  "CatchSwitchInst must unwind to an EH block which is not a "
3667  "landingpad.",
3668  &CatchSwitch);
3669 
3670  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3671  if (getParentPad(I) == ParentPad)
3672  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3673  }
3674 
3675  Assert(CatchSwitch.getNumHandlers() != 0,
3676  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3677 
3678  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3679  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3680  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3681  }
3682 
3683  visitEHPadPredecessors(CatchSwitch);
3684  visitTerminatorInst(CatchSwitch);
3685 }
3686 
3687 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3688  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3689  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3690  CRI.getOperand(0));
3691 
3692  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3693  Instruction *I = UnwindDest->getFirstNonPHI();
3694  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3695  "CleanupReturnInst must unwind to an EH block which is not a "
3696  "landingpad.",
3697  &CRI);
3698  }
3699 
3700  visitTerminatorInst(CRI);
3701 }
3702 
3703 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3704  Instruction *Op = cast<Instruction>(I.getOperand(i));
3705  // If the we have an invalid invoke, don't try to compute the dominance.
3706  // We already reject it in the invoke specific checks and the dominance
3707  // computation doesn't handle multiple edges.
3708  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3709  if (II->getNormalDest() == II->getUnwindDest())
3710  return;
3711  }
3712 
3713  // Quick check whether the def has already been encountered in the same block.
3714  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3715  // uses are defined to happen on the incoming edge, not at the instruction.
3716  //
3717  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3718  // wrapping an SSA value, assert that we've already encountered it. See
3719  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3720  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3721  return;
3722 
3723  const Use &U = I.getOperandUse(i);
3724  Assert(DT.dominates(Op, U),
3725  "Instruction does not dominate all uses!", Op, &I);
3726 }
3727 
3728 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3729  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3730  "apply only to pointer types", &I);
3731  Assert(isa<LoadInst>(I),
3732  "dereferenceable, dereferenceable_or_null apply only to load"
3733  " instructions, use attributes for calls or invokes", &I);
3734  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3735  "take one operand!", &I);
3736  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3737  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3738  "dereferenceable_or_null metadata value must be an i64!", &I);
3739 }
3740 
3741 /// verifyInstruction - Verify that an instruction is well formed.
3742 ///
3743 void Verifier::visitInstruction(Instruction &I) {
3744  BasicBlock *BB = I.getParent();
3745  Assert(BB, "Instruction not embedded in basic block!", &I);
3746 
3747  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3748  for (User *U : I.users()) {
3749  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3750  "Only PHI nodes may reference their own value!", &I);
3751  }
3752  }
3753 
3754  // Check that void typed values don't have names
3755  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3756  "Instruction has a name, but provides a void value!", &I);
3757 
3758  // Check that the return value of the instruction is either void or a legal
3759  // value type.
3760  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3761  "Instruction returns a non-scalar type!", &I);
3762 
3763  // Check that the instruction doesn't produce metadata. Calls are already
3764  // checked against the callee type.
3765  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3766  "Invalid use of metadata!", &I);
3767 
3768  // Check that all uses of the instruction, if they are instructions
3769  // themselves, actually have parent basic blocks. If the use is not an
3770  // instruction, it is an error!
3771  for (Use &U : I.uses()) {
3772  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3773  Assert(Used->getParent() != nullptr,
3774  "Instruction referencing"
3775  " instruction not embedded in a basic block!",
3776  &I, Used);
3777  else {
3778  CheckFailed("Use of instruction is not an instruction!", U);
3779  return;
3780  }
3781  }
3782 
3783  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3784  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3785 
3786  // Check to make sure that only first-class-values are operands to
3787  // instructions.
3788  if (!I.getOperand(i)->getType()->isFirstClassType()) {
3789  Assert(false, "Instruction operands must be first-class values!", &I);
3790  }
3791 
3792  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3793  // Check to make sure that the "address of" an intrinsic function is never
3794  // taken.
3795  Assert(
3796  !F->isIntrinsic() ||
3797  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3798  "Cannot take the address of an intrinsic!", &I);
3799  Assert(
3800  !F->isIntrinsic() || isa<CallInst>(I) ||
3801  F->getIntrinsicID() == Intrinsic::donothing ||
3802  F->getIntrinsicID() == Intrinsic::coro_resume ||
3803  F->getIntrinsicID() == Intrinsic::coro_destroy ||
3804  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3805  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3806  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3807  "Cannot invoke an intrinsic other than donothing, patchpoint, "
3808  "statepoint, coro_resume or coro_destroy",
3809  &I);
3810  Assert(F->getParent() == &M, "Referencing function in another module!",
3811  &I, &M, F, F->getParent());
3812  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3813  Assert(OpBB->getParent() == BB->getParent(),
3814  "Referring to a basic block in another function!", &I);
3815  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3816  Assert(OpArg->getParent() == BB->getParent(),
3817  "Referring to an argument in another function!", &I);
3818  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3819  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3820  &M, GV, GV->getParent());
3821  } else if (isa<Instruction>(I.getOperand(i))) {
3822  verifyDominatesUse(I, i);
3823  } else if (isa<InlineAsm>(I.getOperand(i))) {
3824  Assert((i + 1 == e && isa<CallInst>(I)) ||
3825  (i + 3 == e && isa<InvokeInst>(I)),
3826  "Cannot take the address of an inline asm!", &I);
3827  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3828  if (CE->getType()->isPtrOrPtrVectorTy() ||
3830  // If we have a ConstantExpr pointer, we need to see if it came from an
3831  // illegal bitcast. If the datalayout string specifies non-integral
3832  // address spaces then we also need to check for illegal ptrtoint and
3833  // inttoptr expressions.
3834  visitConstantExprsRecursively(CE);
3835  }
3836  }
3837  }
3838 
3839  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3841  "fpmath requires a floating point result!", &I);
3842  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3843  if (ConstantFP *CFP0 =
3844  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3845  const APFloat &Accuracy = CFP0->getValueAPF();
3846  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3847  "fpmath accuracy must have float type", &I);
3848  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3849  "fpmath accuracy not a positive number!", &I);
3850  } else {
3851  Assert(false, "invalid fpmath accuracy!", &I);
3852  }
3853  }
3854 
3855  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3856  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3857  "Ranges are only for loads, calls and invokes!", &I);
3858  visitRangeMetadata(I, Range, I.getType());
3859  }
3860 
3862  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3863  &I);
3864  Assert(isa<LoadInst>(I),
3865  "nonnull applies only to load instructions, use attributes"
3866  " for calls or invokes",
3867  &I);
3868  }
3869 
3871  visitDereferenceableMetadata(I, MD);
3872 
3874  visitDereferenceableMetadata(I, MD);
3875 
3876  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3877  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3878 
3879  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3880  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3881  &I);
3882  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3883  "use attributes for calls or invokes", &I);
3884  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3885  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3886  Assert(CI && CI->getType()->isIntegerTy(64),
3887  "align metadata value must be an i64!", &I);
3888  uint64_t Align = CI->getZExtValue();
3889  Assert(isPowerOf2_64(Align),
3890  "align metadata value must be a power of 2!", &I);
3892  "alignment is larger that implementation defined limit", &I);
3893  }
3894 
3895  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3896  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3897  visitMDNode(*N);
3898  }
3899 
3900  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3901  verifyFragmentExpression(*DII);
3902 
3903  InstsInThisBlock.insert(&I);
3904 }
3905 
3906 /// Allow intrinsics to be verified in different ways.
3907 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3908  Function *IF = CS.getCalledFunction();
3909  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3910  IF);
3911 
3912  // Verify that the intrinsic prototype lines up with what the .td files
3913  // describe.
3914  FunctionType *IFTy = IF->getFunctionType();
3915  bool IsVarArg = IFTy->isVarArg();
3916 
3918  getIntrinsicInfoTableEntries(ID, Table);
3920 
3921  SmallVector<Type *, 4> ArgTys;
3922  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3923  TableRef, ArgTys),
3924  "Intrinsic has incorrect return type!", IF);
3925  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3926  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3927  TableRef, ArgTys),
3928  "Intrinsic has incorrect argument type!", IF);
3929 
3930  // Verify if the intrinsic call matches the vararg property.
3931  if (IsVarArg)
3932  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3933  "Intrinsic was not defined with variable arguments!", IF);
3934  else
3935  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3936  "Callsite was not defined with variable arguments!", IF);
3937 
3938  // All descriptors should be absorbed by now.
3939  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3940 
3941  // Now that we have the intrinsic ID and the actual argument types (and we
3942  // know they are legal for the intrinsic!) get the intrinsic name through the
3943  // usual means. This allows us to verify the mangling of argument types into
3944  // the name.
3945  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3946  Assert(ExpectedName == IF->getName(),
3947  "Intrinsic name not mangled correctly for type arguments! "
3948  "Should be: " +
3949  ExpectedName,
3950  IF);
3951 
3952  // If the intrinsic takes MDNode arguments, verify that they are either global
3953  // or are local to *this* function.
3954  for (Value *V : CS.args())
3955  if (auto *MD = dyn_cast<MetadataAsValue>(V))
3956  visitMetadataAsValue(*MD, CS.getCaller());
3957 
3958  switch (ID) {
3959  default:
3960  break;
3961  case Intrinsic::coro_id: {
3962  auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3963  if (isa<ConstantPointerNull>(InfoArg))
3964  break;
3965  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3966  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
3967  "info argument of llvm.coro.begin must refer to an initialized "
3968  "constant");
3969  Constant *Init = GV->getInitializer();
3970  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
3971  "info argument of llvm.coro.begin must refer to either a struct or "
3972  "an array");
3973  break;
3974  }
3975  case Intrinsic::ctlz: // llvm.ctlz
3976  case Intrinsic::cttz: // llvm.cttz
3977  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3978  "is_zero_undef argument of bit counting intrinsics must be a "
3979  "constant int",
3980  CS);
3981  break;
3982  case Intrinsic::experimental_constrained_fadd:
3983  case Intrinsic::experimental_constrained_fsub:
3984  case Intrinsic::experimental_constrained_fmul:
3985  case Intrinsic::experimental_constrained_fdiv:
3986  case Intrinsic::experimental_constrained_frem:
3987  case Intrinsic::experimental_constrained_fma:
3988  case Intrinsic::experimental_constrained_sqrt:
3989  case Intrinsic::experimental_constrained_pow:
3990  case Intrinsic::experimental_constrained_powi:
3991  case Intrinsic::experimental_constrained_sin:
3992  case Intrinsic::experimental_constrained_cos:
3993  case Intrinsic::experimental_constrained_exp:
3994  case Intrinsic::experimental_constrained_exp2:
3995  case Intrinsic::experimental_constrained_log:
3996  case Intrinsic::experimental_constrained_log10:
3997  case Intrinsic::experimental_constrained_log2:
3998  case Intrinsic::experimental_constrained_rint:
3999  case Intrinsic::experimental_constrained_nearbyint:
4000  visitConstrainedFPIntrinsic(
4001  cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4002  break;
4003  case Intrinsic::dbg_declare: // llvm.dbg.declare
4004  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4005  "invalid llvm.dbg.declare intrinsic call 1", CS);
4006  visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4007  break;
4008  case Intrinsic::dbg_addr: // llvm.dbg.addr
4009  visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4010  break;
4011  case Intrinsic::dbg_value: // llvm.dbg.value
4012  visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4013  break;
4014  case Intrinsic::memcpy:
4015  case Intrinsic::memmove:
4016  case Intrinsic::memset: {
4017  ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
4018  Assert(AlignCI,
4019  "alignment argument of memory intrinsics must be a constant int",
4020  CS);
4021  const APInt &AlignVal = AlignCI->getValue();
4022  Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
4023  "alignment argument of memory intrinsics must be a power of 2", CS);
4024  Assert(isa<ConstantInt>(CS.getArgOperand(4)),
4025  "isvolatile argument of memory intrinsics must be a constant int",
4026  CS);
4027  break;
4028  }
4029  case Intrinsic::memcpy_element_unordered_atomic: {
4030  const AtomicMemCpyInst *MI = cast<AtomicMemCpyInst>(CS.getInstruction());
4031 
4032  ConstantInt *ElementSizeCI =
4034  Assert(ElementSizeCI,
4035  "element size of the element-wise unordered atomic memory "
4036  "intrinsic must be a constant int",
4037  CS);
4038  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4039  Assert(ElementSizeVal.isPowerOf2(),
4040  "element size of the element-wise atomic memory intrinsic "
4041  "must be a power of 2",
4042  CS);
4043 
4044  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4045  uint64_t Length = LengthCI->getZExtValue();
4046  uint64_t ElementSize = MI->getElementSizeInBytes();
4047  Assert((Length % ElementSize) == 0,
4048  "constant length must be a multiple of the element size in the "
4049  "element-wise atomic memory intrinsic",
4050  CS);
4051  }
4052 
4053  auto IsValidAlignment = [&](uint64_t Alignment) {
4054  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4055  };
4056  uint64_t DstAlignment = CS.getParamAlignment(0),
4057  SrcAlignment = CS.getParamAlignment(1);
4058  Assert(IsValidAlignment(DstAlignment),
4059  "incorrect alignment of the destination argument", CS);
4060  Assert(IsValidAlignment(SrcAlignment),
4061  "incorrect alignment of the source argument", CS);
4062  break;
4063  }
4064  case Intrinsic::memmove_element_unordered_atomic: {
4065  auto *MI = cast<AtomicMemMoveInst>(CS.getInstruction());
4066 
4067  ConstantInt *ElementSizeCI =
4068  dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4069  Assert(ElementSizeCI,
4070  "element size of the element-wise unordered atomic memory "
4071  "intrinsic must be a constant int",
4072  CS);
4073  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4074  Assert(ElementSizeVal.isPowerOf2(),
4075  "element size of the element-wise atomic memory intrinsic "
4076  "must be a power of 2",
4077  CS);
4078 
4079  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4080  uint64_t Length = LengthCI->getZExtValue();
4081  uint64_t ElementSize = MI->getElementSizeInBytes();
4082  Assert((Length % ElementSize) == 0,
4083  "constant length must be a multiple of the element size in the "
4084  "element-wise atomic memory intrinsic",
4085  CS);
4086  }
4087 
4088  auto IsValidAlignment = [&](uint64_t Alignment) {
4089  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4090  };
4091  uint64_t DstAlignment = CS.getParamAlignment(0),
4092  SrcAlignment = CS.getParamAlignment(1);
4093  Assert(IsValidAlignment(DstAlignment),
4094  "incorrect alignment of the destination argument", CS);
4095  Assert(IsValidAlignment(SrcAlignment),
4096  "incorrect alignment of the source argument", CS);
4097  break;
4098  }
4099  case Intrinsic::memset_element_unordered_atomic: {
4100  auto *MI = cast<AtomicMemSetInst>(CS.getInstruction());
4101 
4102  ConstantInt *ElementSizeCI =
4103  dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes());
4104  Assert(ElementSizeCI,
4105  "element size of the element-wise unordered atomic memory "
4106  "intrinsic must be a constant int",
4107  CS);
4108  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4109  Assert(ElementSizeVal.isPowerOf2(),
4110  "element size of the element-wise atomic memory intrinsic "
4111  "must be a power of 2",
4112  CS);
4113 
4114  if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) {
4115  uint64_t Length = LengthCI->getZExtValue();
4116  uint64_t ElementSize = MI->getElementSizeInBytes();
4117  Assert((Length % ElementSize) == 0,
4118  "constant length must be a multiple of the element size in the "
4119  "element-wise atomic memory intrinsic",
4120  CS);
4121  }
4122 
4123  auto IsValidAlignment = [&](uint64_t Alignment) {
4124  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4125  };
4126  uint64_t DstAlignment = CS.getParamAlignment(0);
4127  Assert(IsValidAlignment(DstAlignment),
4128  "incorrect alignment of the destination argument", CS);
4129  break;
4130  }
4131  case Intrinsic::gcroot:
4132  case Intrinsic::gcwrite:
4133  case Intrinsic::gcread:
4134  if (ID == Intrinsic::gcroot) {
4135  AllocaInst *AI =
4137  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4138  Assert(isa<Constant>(CS.getArgOperand(1)),
4139  "llvm.gcroot parameter #2 must be a constant.", CS);
4140  if (!AI->getAllocatedType()->isPointerTy()) {
4141  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4142  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4143  "or argument #2 must be a non-null constant.",
4144  CS);
4145  }
4146  }
4147 
4148  Assert(CS.getParent()->getParent()->hasGC(),
4149  "Enclosing function does not use GC.", CS);
4150  break;
4151  case Intrinsic::init_trampoline:
4152  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4153  "llvm.init_trampoline parameter #2 must resolve to a function.",
4154  CS);
4155  break;
4156  case Intrinsic::prefetch:
4157  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4158  isa<ConstantInt>(CS.getArgOperand(2)) &&
4159  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4160  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4161  "invalid arguments to llvm.prefetch", CS);
4162  break;
4163  case Intrinsic::stackprotector:
4164  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4165  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4166  break;
4167  case Intrinsic::lifetime_start:
4168  case Intrinsic::lifetime_end:
4169  case Intrinsic::invariant_start:
4170  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4171  "size argument of memory use markers must be a constant integer",
4172  CS);
4173  break;
4174  case Intrinsic::invariant_end:
4175  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4176  "llvm.invariant.end parameter #2 must be a constant integer", CS);
4177  break;
4178 
4179  case Intrinsic::localescape: {
4180  BasicBlock *BB = CS.getParent();
4181  Assert(BB == &BB->getParent()->front(),
4182  "llvm.localescape used outside of entry block", CS);
4183  Assert(!SawFrameEscape,
4184  "multiple calls to llvm.localescape in one function", CS);
4185  for (Value *Arg : CS.args()) {
4186  if (isa<ConstantPointerNull>(Arg))
4187  continue; // Null values are allowed as placeholders.
4188  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4189  Assert(AI && AI->isStaticAlloca(),
4190  "llvm.localescape only accepts static allocas", CS);
4191  }
4192  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4193  SawFrameEscape = true;
4194  break;
4195  }
4196  case Intrinsic::localrecover: {
4197  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4198  Function *Fn = dyn_cast<Function>(FnArg);
4199  Assert(Fn && !Fn->isDeclaration(),
4200  "llvm.localrecover first "
4201  "argument must be function defined in this module",
4202  CS);
4203  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4204  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4205  CS);
4206  auto &Entry = FrameEscapeInfo[Fn];
4207  Entry.second = unsigned(
4208  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4209  break;
4210  }
4211 
4212  case Intrinsic::experimental_gc_statepoint:
4213  Assert(!CS.isInlineAsm(),
4214  "gc.statepoint support for inline assembly unimplemented", CS);
4215  Assert(CS.getParent()->getParent()->hasGC(),
4216  "Enclosing function does not use GC.", CS);
4217 
4218  verifyStatepoint(CS);
4219  break;
4220  case Intrinsic::experimental_gc_result: {
4221  Assert(CS.getParent()->getParent()->hasGC(),
4222  "Enclosing function does not use GC.", CS);
4223  // Are we tied to a statepoint properly?
4224  CallSite StatepointCS(CS.getArgOperand(0));
4225  const Function *StatepointFn =
4226  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4227  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4228  StatepointFn->getIntrinsicID() ==
4229  Intrinsic::experimental_gc_statepoint,
4230  "gc.result operand #1 must be from a statepoint", CS,
4231  CS.getArgOperand(0));
4232 
4233  // Assert that result type matches wrapped callee.
4234  const Value *Target = StatepointCS.getArgument(2);
4235  auto *PT = cast<PointerType>(Target->getType());
4236  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4237  Assert(CS.getType() == TargetFuncType->getReturnType(),
4238  "gc.result result type does not match wrapped callee", CS);
4239  break;
4240  }
4241  case Intrinsic::experimental_gc_relocate: {
4242  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4243 
4244  Assert(isa<PointerType>(CS.getType()->getScalarType()),
4245  "gc.relocate must return a pointer or a vector of pointers", CS);
4246 
4247  // Check that this relocate is correctly tied to the statepoint
4248 
4249  // This is case for relocate on the unwinding path of an invoke statepoint
4250  if (LandingPadInst *LandingPad =
4251  dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4252 
4253  const BasicBlock *InvokeBB =
4254  LandingPad->getParent()->getUniquePredecessor();
4255 
4256  // Landingpad relocates should have only one predecessor with invoke
4257  // statepoint terminator
4258  Assert(InvokeBB, "safepoints should have unique landingpads",
4259  LandingPad->getParent());
4260  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4261  InvokeBB);
4262  Assert(isStatepoint(InvokeBB->getTerminator()),
4263  "gc relocate should be linked to a statepoint", InvokeBB);
4264  }
4265  else {
4266  // In all other cases relocate should be tied to the statepoint directly.
4267  // This covers relocates on a normal return path of invoke statepoint and
4268  // relocates of a call statepoint.
4269  auto Token = CS.getArgOperand(0);
4270  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4271  "gc relocate is incorrectly tied to the statepoint", CS, Token);
4272  }
4273 
4274  // Verify rest of the relocate arguments.
4275 
4276  ImmutableCallSite StatepointCS(
4277  cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4278 
4279  // Both the base and derived must be piped through the safepoint.
4280  Value* Base = CS.getArgOperand(1);
4281  Assert(isa<ConstantInt>(Base),
4282  "gc.relocate operand #2 must be integer offset", CS);
4283 
4284  Value* Derived = CS.getArgOperand(2);
4285  Assert(isa<ConstantInt>(Derived),
4286  "gc.relocate operand #3 must be integer offset", CS);
4287 
4288  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4289  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4290  // Check the bounds
4291  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4292  "gc.relocate: statepoint base index out of bounds", CS);
4293  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4294  "gc.relocate: statepoint derived index out of bounds", CS);
4295 
4296  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4297  // section of the statepoint's argument.
4298  Assert(StatepointCS.arg_size() > 0,
4299  "gc.statepoint: insufficient arguments");
4300  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4301  "gc.statement: number of call arguments must be constant integer");
4302  const unsigned NumCallArgs =
4303  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4304  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4305  "gc.statepoint: mismatch in number of call arguments");
4306  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4307  "gc.statepoint: number of transition arguments must be "
4308  "a constant integer");
4309  const int NumTransitionArgs =
4310  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4311  ->getZExtValue();
4312  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4313  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4314  "gc.statepoint: number of deoptimization arguments must be "
4315  "a constant integer");
4316  const int NumDeoptArgs =
4317  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4318  ->getZExtValue();
4319  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4320  const int GCParamArgsEnd = StatepointCS.arg_size();
4321  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4322  "gc.relocate: statepoint base index doesn't fall within the "
4323  "'gc parameters' section of the statepoint call",
4324  CS);
4325  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4326  "gc.relocate: statepoint derived index doesn't fall within the "
4327  "'gc parameters' section of the statepoint call",
4328  CS);
4329 
4330  // Relocated value must be either a pointer type or vector-of-pointer type,
4331  // but gc_relocate does not need to return the same pointer type as the
4332  // relocated pointer. It can be casted to the correct type later if it's
4333  // desired. However, they must have the same address space and 'vectorness'
4334  GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4336  "gc.relocate: relocated value must be a gc pointer", CS);
4337 
4338  auto ResultType = CS.getType();
4339  auto DerivedType = Relocate.getDerivedPtr()->getType();
4340  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4341  "gc.relocate: vector relocates to vector and pointer to pointer",
4342  CS);
4343  Assert(
4344  ResultType->getPointerAddressSpace() ==
4345  DerivedType->getPointerAddressSpace(),
4346  "gc.relocate: relocating a pointer shouldn't change its address space",
4347  CS);
4348  break;
4349  }
4350  case Intrinsic::eh_exceptioncode:
4351  case Intrinsic::eh_exceptionpointer: {
4352  Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4353  "eh.exceptionpointer argument must be a catchpad", CS);
4354  break;
4355  }
4356  case Intrinsic::masked_load: {
4357  Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4358 
4359  Value *Ptr = CS.getArgOperand(0);
4360  //Value *Alignment = CS.getArgOperand(1);
4361  Value *Mask = CS.getArgOperand(2);
4362  Value *PassThru = CS.getArgOperand(3);
4363  Assert(Mask->getType()->isVectorTy(),
4364  "masked_load: mask must be vector", CS);
4365 
4366  // DataTy is the overloaded type
4367  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4368  Assert(DataTy == CS.getType(),
4369  "masked_load: return must match pointer type", CS);
4370  Assert(PassThru->getType() == DataTy,
4371  "masked_load: pass through and data type must match", CS);
4372  Assert(Mask->getType()->getVectorNumElements() ==
4373  DataTy->getVectorNumElements(),
4374  "masked_load: vector mask must be same length as data", CS);
4375  break;
4376  }
4377  case Intrinsic::masked_store: {
4378  Value *Val = CS.getArgOperand(0);
4379  Value *Ptr = CS.getArgOperand(1);
4380  //Value *Alignment = CS.getArgOperand(2);
4381  Value *Mask = CS.getArgOperand(3);
4382  Assert(Mask->getType()->isVectorTy(),
4383  "masked_store: mask must be vector", CS);
4384 
4385  // DataTy is the overloaded type
4386  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4387  Assert(DataTy == Val->getType(),
4388  "masked_store: storee must match pointer type", CS);
4389  Assert(Mask->getType()->getVectorNumElements() ==
4390  DataTy->getVectorNumElements(),
4391  "masked_store: vector mask must be same length as data", CS);
4392  break;
4393  }
4394 
4395  case Intrinsic::experimental_guard: {
4396  Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4398  "experimental_guard must have exactly one "
4399  "\"deopt\" operand bundle");
4400  break;
4401  }
4402 
4403  case Intrinsic::experimental_deoptimize: {
4404  Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4406  "experimental_deoptimize must have exactly one "
4407  "\"deopt\" operand bundle");
4409  "experimental_deoptimize return type must match caller return type");
4410 
4411  if (CS.isCall()) {
4412  auto *DeoptCI = CS.getInstruction();
4413  auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4414  Assert(RI,
4415  "calls to experimental_deoptimize must be followed by a return");
4416 
4417  if (!CS.getType()->isVoidTy() && RI)
4418  Assert(RI->getReturnValue() == DeoptCI,
4419  "calls to experimental_deoptimize must be followed by a return "
4420  "of the value computed by experimental_deoptimize");
4421  }
4422 
4423  break;
4424  }
4425  };
4426 }
4427 
4428 /// \brief Carefully grab the subprogram from a local scope.
4429 ///
4430 /// This carefully grabs the subprogram from a local scope, avoiding the
4431 /// built-in assertions that would typically fire.
4432 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4433  if (!LocalScope)
4434  return nullptr;
4435 
4436  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4437  return SP;
4438 
4439  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4440  return getSubprogram(LB->getRawScope());
4441 
4442  // Just return null; broken scope chains are checked elsewhere.
4443  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4444  return nullptr;
4445 }
4446 
4447 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4448  unsigned NumOperands = FPI.getNumArgOperands();
4449  Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4450  (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4451  "invalid arguments for constrained FP intrinsic", &FPI);
4452  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4453  "invalid exception behavior argument", &FPI);
4454  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4455  "invalid rounding mode argument", &FPI);
4457  "invalid rounding mode argument", &FPI);
4459  "invalid exception behavior argument", &FPI);
4460 }
4461 
4462 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4463  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4464  AssertDI(isa<ValueAsMetadata>(MD) ||
4465  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4466  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4467  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4468  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4469  DII.getRawVariable());
4470  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4471  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4472  DII.getRawExpression());
4473 
4474  // Ignore broken !dbg attachments; they're checked elsewhere.
4475  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4476  if (!isa<DILocation>(N))
4477  return;
4478 
4479  BasicBlock *BB = DII.getParent();
4480  Function *F = BB ? BB->getParent() : nullptr;
4481 
4482  // The scopes for variables and !dbg attachments must agree.
4483  DILocalVariable *Var = DII.getVariable();
4484  DILocation *Loc = DII.getDebugLoc();
4485  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4486  &DII, BB, F);
4487 
4488  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4489  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4490  if (!VarSP || !LocSP)
4491  return; // Broken scope chains are checked elsewhere.
4492 
4493  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4494  " variable and !dbg attachment",
4495  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4496  Loc->getScope()->getSubprogram());
4497 
4498  verifyFnArgs(DII);
4499 }
4500 
4501 static uint64_t getVariableSize(const DIVariable &V) {
4502  // Be careful of broken types (checked elsewhere).
4503  const Metadata *RawType = V.getRawType();
4504  while (RawType) {
4505  // Try to get the size directly.
4506  if (auto *T = dyn_cast<DIType>(RawType))
4507  if (uint64_t Size = T->getSizeInBits())
4508  return Size;
4509 
4510  if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4511  // Look at the base type.
4512  RawType = DT->getRawBaseType();
4513  continue;
4514  }
4515 
4516  // Missing type or size.
4517  break;
4518  }
4519 
4520  // Fail gracefully.
4521  return 0;
4522 }
4523 
4524 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4525  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4526  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4527 
4528  // We don't know whether this intrinsic verified correctly.
4529  if (!V || !E || !E->isValid())
4530  return;
4531 
4532  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4533  auto Fragment = E->getFragmentInfo();
4534  if (!Fragment)
4535  return;
4536 
4537  // The frontend helps out GDB by emitting the members of local anonymous
4538  // unions as artificial local variables with shared storage. When SROA splits
4539  // the storage for artificial local variables that are smaller than the entire
4540  // union, the overhang piece will be outside of the allotted space for the
4541  // variable and this check fails.
4542  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4543  if (V->isArtificial())
4544  return;
4545 
4546  verifyFragmentExpression(*V, *Fragment, &I);
4547 }
4548 
4549 template <typename ValueOrMetadata>
4550 void Verifier::verifyFragmentExpression(const DIVariable &V,
4551  DIExpression::FragmentInfo Fragment,
4552  ValueOrMetadata *Desc) {
4553  // If there's no size, the type is broken, but that should be checked
4554  // elsewhere.
4555  uint64_t VarSize = getVariableSize(V);
4556  if (!VarSize)
4557  return;
4558 
4559  unsigned FragSize = Fragment.SizeInBits;
4560  unsigned FragOffset = Fragment.OffsetInBits;
4561  AssertDI(FragSize + FragOffset <= VarSize,
4562  "fragment is larger than or outside of variable", Desc, &V);
4563  AssertDI(FragSize != VarSize, "fragment covers entire variable", Desc, &V);
4564 }
4565 
4566 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4567  // This function does not take the scope of noninlined function arguments into
4568  // account. Don't run it if current function is nodebug, because it may
4569  // contain inlined debug intrinsics.
4570  if (!HasDebugInfo)
4571  return;
4572 
4573  // For performance reasons only check non-inlined ones.
4574  if (I.getDebugLoc()->getInlinedAt())
4575  return;
4576 
4577  DILocalVariable *Var = I.getVariable();
4578  AssertDI(Var, "dbg intrinsic without variable");
4579 
4580  unsigned ArgNo = Var->getArg();
4581  if (!ArgNo)
4582  return;
4583 
4584  // Verify there are no duplicate function argument debug info entries.
4585  // These will cause hard-to-debug assertions in the DWARF backend.
4586  if (DebugFnArgs.size() < ArgNo)
4587  DebugFnArgs.resize(ArgNo, nullptr);
4588 
4589  auto *Prev = DebugFnArgs[ArgNo - 1];
4590  DebugFnArgs[ArgNo - 1] = Var;
4591  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4592  Prev, Var);
4593 }
4594 
4595 void Verifier::verifyCompileUnits() {
4596  // When more than one Module is imported into the same context, such as during
4597  // an LTO build before linking the modules, ODR type uniquing may cause types
4598  // to point to a different CU. This check does not make sense in this case.
4600  return;
4601  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4603  if (CUs)
4604  Listed.insert(CUs->op_begin(), CUs->op_end());
4605  for (auto *CU : CUVisited)
4606  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4607  CUVisited.clear();
4608 }
4609 
4610 void Verifier::verifyDeoptimizeCallingConvs() {
4611  if (DeoptimizeDeclarations.empty())
4612  return;
4613 
4614  const Function *First = DeoptimizeDeclarations[0];
4615  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4616  Assert(First->getCallingConv() == F->getCallingConv(),
4617  "All llvm.experimental.deoptimize declarations must have the same "
4618  "calling convention",
4619  First, F);
4620  }
4621 }
4622 
4623 //===----------------------------------------------------------------------===//
4624 // Implement the public interfaces to this file...
4625 //===----------------------------------------------------------------------===//
4626 
4628  Function &F = const_cast<Function &>(f);
4629 
4630  // Don't use a raw_null_ostream. Printing IR is expensive.
4631  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4632 
4633  // Note that this function's return value is inverted from what you would
4634  // expect of a function called "verify".
4635  return !V.verify(F);
4636 }
4637 
4639  bool *BrokenDebugInfo) {
4640  // Don't use a raw_null_ostream. Printing IR is expensive.
4641  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4642 
4643  bool Broken = false;
4644  for (const Function &F : M)
4645  Broken |= !V.verify(F);
4646 
4647  Broken |= !V.verify();
4648  if (BrokenDebugInfo)
4649  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4650  // Note that this function's return value is inverted from what you would
4651  // expect of a function called "verify".
4652  return Broken;
4653 }
4654 
4655 namespace {
4656 
4657 struct VerifierLegacyPass : public FunctionPass {
4658  static char ID;
4659 
4660  std::unique_ptr<Verifier> V;
4661  bool FatalErrors = true;
4662 
4663  VerifierLegacyPass() : FunctionPass(ID) {
4665  }
4666  explicit VerifierLegacyPass(bool FatalErrors)
4667  : FunctionPass(ID),
4668  FatalErrors(FatalErrors) {
4670  }
4671 
4672  bool doInitialization(Module &M) override {
4673  V = llvm::make_unique<Verifier>(
4674  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4675  return false;
4676  }
4677 
4678  bool runOnFunction(Function &F) override {
4679  if (!V->verify(F) && FatalErrors)
4680  report_fatal_error("Broken function found, compilation aborted!");
4681 
4682  return false;
4683  }
4684 
4685  bool doFinalization(Module &M) override {
4686  bool HasErrors = false;
4687  for (Function &F : M)
4688  if (F.isDeclaration())
4689  HasErrors |= !V->verify(F);
4690 
4691  HasErrors |= !V->verify();
4692  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4693  report_fatal_error("Broken module found, compilation aborted!");
4694  return false;
4695  }
4696 
4697  void getAnalysisUsage(AnalysisUsage &AU) const override {
4698  AU.setPreservesAll();
4699  }
4700 };
4701 
4702 } // end anonymous namespace
4703 
4704 /// Helper to issue failure from the TBAA verification
4705 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4706  if (Diagnostic)
4707  return Diagnostic->CheckFailed(Args...);
4708 }
4709 
4710 #define AssertTBAA(C, ...) \
4711  do { \
4712  if (!(C)) { \
4713  CheckFailed(__VA_ARGS__); \
4714  return false; \
4715  } \
4716  } while (false)
4717 
4718 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4719 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4720 /// struct-type node describing an aggregate data structure (like a struct).
4721 TBAAVerifier::TBAABaseNodeSummary
4722 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4723  if (BaseNode->getNumOperands() < 2) {
4724  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4725  return {true, ~0u};
4726  }
4727 
4728  auto Itr = TBAABaseNodes.find(BaseNode);
4729  if (Itr != TBAABaseNodes.end())
4730  return Itr->second;
4731 
4732  auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4733  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4734  (void)InsertResult;
4735  assert(InsertResult.second && "We just checked!");
4736  return Result;
4737 }
4738 
4739 TBAAVerifier::TBAABaseNodeSummary
4740 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4741  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4742 
4743  if (BaseNode->getNumOperands() == 2) {
4744  // Scalar nodes can only be accessed at offset 0.
4745  return isValidScalarTBAANode(BaseNode)
4746  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4747  : InvalidNode;
4748  }
4749 
4750  if (BaseNode->getNumOperands() % 2 != 1) {
4751  CheckFailed("Struct tag nodes must have an odd number of operands!",
4752  BaseNode);
4753  return InvalidNode;
4754  }
4755 
4756  if (!isa<MDString>(BaseNode->getOperand(0))) {
4757  CheckFailed("Struct tag nodes have a string as their first operand",
4758  BaseNode);
4759  return InvalidNode;
4760  }
4761 
4762  bool Failed = false;
4763 
4764  Optional<APInt> PrevOffset;
4765  unsigned BitWidth = ~0u;
4766 
4767  // We've already checked that BaseNode is not a degenerate root node with one
4768  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4769  for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4770  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4771  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4772  if (!isa<MDNode>(FieldTy)) {
4773  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4774  Failed = true;
4775  continue;
4776  }
4777 
4778  auto *OffsetEntryCI =
4779  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4780  if (!OffsetEntryCI) {
4781  CheckFailed("Offset entries must be constants!", &I, BaseNode);
4782  Failed = true;
4783  continue;
4784  }
4785 
4786  if (BitWidth == ~0u)
4787  BitWidth = OffsetEntryCI->getBitWidth();
4788 
4789  if (OffsetEntryCI->getBitWidth() != BitWidth) {
4790  CheckFailed(
4791  "Bitwidth between the offsets and struct type entries must match", &I,
4792  BaseNode);
4793  Failed = true;
4794  continue;
4795  }
4796 
4797  // NB! As far as I can tell, we generate a non-strictly increasing offset
4798  // sequence only from structs that have zero size bit fields. When
4799  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4800  // pick the field lexically the latest in struct type metadata node. This
4801  // mirrors the actual behavior of the alias analysis implementation.
4802  bool IsAscending =
4803  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4804 
4805  if (!IsAscending) {
4806  CheckFailed("Offsets must be increasing!", &I, BaseNode);
4807  Failed = true;
4808  }
4809 
4810  PrevOffset = OffsetEntryCI->getValue();
4811  }
4812 
4813  return Failed ? InvalidNode
4814  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4815 }
4816 
4817 static bool IsRootTBAANode(const MDNode *MD) {
4818  return MD->getNumOperands() < 2;
4819 }
4820 
4821 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4823  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4824  return false;
4825 
4826  if (!isa<MDString>(MD->getOperand(0)))
4827  return false;
4828 
4829  if (MD->getNumOperands() == 3) {
4830  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4831  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4832  return false;
4833  }
4834 
4835  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4836  return Parent && Visited.insert(Parent).second &&
4837  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4838 }
4839 
4840 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4841  auto ResultIt = TBAAScalarNodes.find(MD);
4842  if (ResultIt != TBAAScalarNodes.end())
4843  return ResultIt->second;
4844 
4846  bool Result = IsScalarTBAANodeImpl(MD, Visited);
4847  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4848  (void)InsertResult;
4849  assert(InsertResult.second && "Just checked!");
4850 
4851  return Result;
4852 }
4853 
4854 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4855 /// Offset in place to be the offset within the field node returned.
4856 ///
4857 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4858 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4859  const MDNode *BaseNode,
4860  APInt &Offset) {
4861  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4862 
4863  // Scalar nodes have only one possible "field" -- their parent in the access
4864  // hierarchy. Offset must be zero at this point, but our caller is supposed
4865  // to Assert that.
4866  if (BaseNode->getNumOperands() == 2)
4867  return cast<MDNode>(BaseNode->getOperand(1));
4868 
4869  for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4870  auto *OffsetEntryCI =
4871  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4872  if (OffsetEntryCI->getValue().ugt(Offset)) {
4873  if (Idx == 1) {
4874  CheckFailed("Could not find TBAA parent in struct type node", &I,
4875  BaseNode, &Offset);
4876  return nullptr;
4877  }
4878 
4879  auto *PrevOffsetEntryCI =
4880  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4881  Offset -= PrevOffsetEntryCI->getValue();
4882  return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4883  }
4884  }
4885 
4886  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4887  BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4888 
4889  Offset -= LastOffsetEntryCI->getValue();
4890  return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4891 }
4892 
4894  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4895  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4896  isa<AtomicCmpXchgInst>(I),
4897  "TBAA is only for loads, stores and calls!", &I);
4898 
4899  bool IsStructPathTBAA =
4900  isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4901 
4902  AssertTBAA(
4903  IsStructPathTBAA,
4904  "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4905 
4906  AssertTBAA(MD->getNumOperands() < 5,
4907  "Struct tag metadata must have either 3 or 4 operands", &I, MD);
4908 
4909  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4910  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4911 
4912  if (MD->getNumOperands() == 4) {
4913  auto *IsImmutableCI =
4914  mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4915  AssertTBAA(IsImmutableCI,
4916  "Immutability tag on struct tag metadata must be a constant", &I,
4917  MD);
4918  AssertTBAA(
4919  IsImmutableCI->isZero() || IsImmutableCI->isOne(),
4920  "Immutability part of the struct tag metadata must be either 0 or 1",
4921  &I, MD);
4922  }
4923 
4924  AssertTBAA(BaseNode && AccessType,
4925  "Malformed struct tag metadata: base and access-type "
4926  "should be non-null and point to Metadata nodes",
4927  &I, MD, BaseNode, AccessType);
4928 
4929  AssertTBAA(isValidScalarTBAANode(AccessType),
4930  "Access type node must be a valid scalar type", &I, MD,
4931  AccessType);
4932 
4933  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4934  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
4935 
4936  APInt Offset = OffsetCI->getValue();
4937  bool SeenAccessTypeInPath = false;
4938 
4939  SmallPtrSet<MDNode *, 4> StructPath;
4940 
4941  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4942  BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4943  if (!StructPath.insert(BaseNode).second) {
4944  CheckFailed("Cycle detected in struct path", &I, MD);
4945  return false;
4946  }
4947 
4948  bool Invalid;
4949  unsigned BaseNodeBitWidth;
4950  std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4951 
4952  // If the base node is invalid in itself, then we've already printed all the
4953  // errors we wanted to print.
4954  if (Invalid)
4955  return false;
4956 
4957  SeenAccessTypeInPath |= BaseNode == AccessType;
4958 
4959  if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4960  AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
4961  &I, MD, &Offset);
4962 
4963  AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
4964  (BaseNodeBitWidth == 0 && Offset == 0),
4965  "Access bit-width not the same as description bit-width", &I, MD,
4966  BaseNodeBitWidth, Offset.getBitWidth());
4967  }
4968 
4969  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
4970  &I, MD);
4971  return true;
4972 }
4973 
4974 char VerifierLegacyPass::ID = 0;
4975 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4976 
4977 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4978  return new VerifierLegacyPass(FatalErrors);
4979 }
4980 
4981 AnalysisKey VerifierAnalysis::Key;
4984  Result Res;
4985  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4986  return Res;
4987 }
4988 
4991  return { llvm::verifyFunction(F, &dbgs()), false };
4992 }
4993 
4995  auto Res = AM.getResult<VerifierAnalysis>(M);
4996  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
4997  report_fatal_error("Broken module found, compilation aborted!");
4998 
4999  return PreservedAnalyses::all();
5000 }
5001 
5003  auto res = AM.getResult<VerifierAnalysis>(F);
5004  if (res.IRBroken && FatalErrors)
5005  report_fatal_error("Broken function found, compilation aborted!");
5006 
5007  return PreservedAnalyses::all();
5008 }
DIFlags getFlags() const
bool isDeclarationForLinker() const
Definition: GlobalValue.h:514
Fast - This calling convention attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:43
Metadata * getRawRetainedTypes() const
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:180
static bool isScope(const Metadata *MD)
Definition: Verifier.cpp:839
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:709
static Value * getParentPad(Value *EHPad)
Definition: Verifier.cpp:3301
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:356
bool empty() const
Definition: Function.h:594
bool isDistinct() const
Definition: Metadata.h:941
void clear()
Definition: MapVector.h:85
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1171
This instruction extracts a struct member or array element value from an aggregate value...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
unsigned getLine() const
bool isInlineAsm() const
Definition: CallSite.h:305
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:219
bool isSpeculatable() const
Determine if the call has sideeffects.
Definition: Function.h:479
const Value * stripInBoundsOffsets() const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:618
Atomic ordering constants.
Takes the max of the two values, which are required to be integers.
Definition: Module.h:143
StringRef getName() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
bool hasPrivateLinkage() const
Definition: GlobalValue.h:426
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:687
bool isMetadataTy() const
Return true if this is &#39;metadata&#39;.
Definition: Type.h:191
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:115
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:523
unsigned getParamAlignment(unsigned ArgNo) const
Extract the alignment for a call or parameter (0=unknown).
Definition: CallSite.h:406
const APInt & getUpper() const
Return the upper value for this range.
bool isAtomic() const
Return true if this instruction has an AtomicOrdering of unordered or higher.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Metadata * getRawGlobalVariables() const
Value * getRawElementSizeInBytes() const
Metadata * getRawVTableHolder() const
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
Metadata * getRawVariable() const
Definition: IntrinsicInst.h:88
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:262
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:136
Result run(Module &M, ModuleAnalysisManager &)
Definition: Verifier.cpp:4982
An instruction for ordering other memory operations.
Definition: Instructions.h:440
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:514
bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
Definition: CallSite.h:471
This class represents zero extension of integer types.
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:313
DIFile * getFile() const
Metadata * getMetadata() const
Definition: Metadata.h:189
ModuleSlotTracker MST
Definition: Verifier.cpp:123
Metadata * getRawFile() const
Return the raw underlying file.
This class represents a function call, abstracting a target machine&#39;s calling convention.
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:414
This file contains the declarations for metadata subclasses.
Metadata * getRawInlinedAt() const
Value * getCondition() const
iterator_range< IterTy > args() const
Definition: CallSite.h:215
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
Definition: Instructions.h:370
FunctionPass * createVerifierPass(bool FatalErrors=true)
Definition: Verifier.cpp:4977
const Value * getTrueValue() const
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:89
This class represents the atomic memcpy intrinsic i.e.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:132
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Definition: Instructions.h:233
This instruction constructs a fixed permutation of two input vectors.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:728
DICompositeTypeArray getEnumTypes() const