LLVM  7.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
122  const Module &M;
124  const DataLayout &DL;
126 
127  /// Track the brokenness of the module while recursively visiting.
128  bool Broken = false;
129  /// Broken debug info can be "recovered" from by stripping the debug info.
130  bool BrokenDebugInfo = false;
131  /// Whether to treat broken debug info as an error.
133 
134  explicit VerifierSupport(raw_ostream *OS, const Module &M)
135  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
138  void Write(const Module *M) {
139  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140  }
141 
142  void Write(const Value *V) {
143  if (!V)
144  return;
145  if (isa<Instruction>(V)) {
146  V->print(*OS, MST);
147  *OS << '\n';
148  } else {
149  V->printAsOperand(*OS, true, MST);
150  *OS << '\n';
151  }
152  }
153 
154  void Write(ImmutableCallSite CS) {
155  Write(CS.getInstruction());
156  }
157 
158  void Write(const Metadata *MD) {
159  if (!MD)
160  return;
161  MD->print(*OS, MST, &M);
162  *OS << '\n';
163  }
164 
165  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166  Write(MD.get());
167  }
168 
169  void Write(const NamedMDNode *NMD) {
170  if (!NMD)
171  return;
172  NMD->print(*OS, MST);
173  *OS << '\n';
174  }
175 
176  void Write(Type *T) {
177  if (!T)
178  return;
179  *OS << ' ' << *T;
180  }
181 
182  void Write(const Comdat *C) {
183  if (!C)
184  return;
185  *OS << *C;
186  }
187 
188  void Write(const APInt *AI) {
189  if (!AI)
190  return;
191  *OS << *AI << '\n';
192  }
193 
194  void Write(const unsigned i) { *OS << i << '\n'; }
195 
196  template <typename T> void Write(ArrayRef<T> Vs) {
197  for (const T &V : Vs)
198  Write(V);
199  }
200 
201  template <typename T1, typename... Ts>
202  void WriteTs(const T1 &V1, const Ts &... Vs) {
203  Write(V1);
204  WriteTs(Vs...);
205  }
206 
207  template <typename... Ts> void WriteTs() {}
208 
209 public:
210  /// A check failed, so printout out the condition and the message.
211  ///
212  /// This provides a nice place to put a breakpoint if you want to see why
213  /// something is not correct.
214  void CheckFailed(const Twine &Message) {
215  if (OS)
216  *OS << Message << '\n';
217  Broken = true;
218  }
219 
220  /// A check failed (with values to print).
221  ///
222  /// This calls the Message-only version so that the above is easier to set a
223  /// breakpoint on.
224  template <typename T1, typename... Ts>
225  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226  CheckFailed(Message);
227  if (OS)
228  WriteTs(V1, Vs...);
229  }
230 
231  /// A debug info check failed.
232  void DebugInfoCheckFailed(const Twine &Message) {
233  if (OS)
234  *OS << Message << '\n';
235  Broken |= TreatBrokenDebugInfoAsError;
236  BrokenDebugInfo = true;
237  }
238 
239  /// A debug info check failed (with values to print).
240  template <typename T1, typename... Ts>
241  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242  const Ts &... Vs) {
243  DebugInfoCheckFailed(Message);
244  if (OS)
245  WriteTs(V1, Vs...);
246  }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254  friend class InstVisitor<Verifier>;
255 
256  DominatorTree DT;
257 
258  /// When verifying a basic block, keep track of all of the
259  /// instructions we have seen so far.
260  ///
261  /// This allows us to do efficient dominance checks for the case when an
262  /// instruction has an operand that is an instruction in the same block.
263  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265  /// Keep track of the metadata nodes that have been checked already.
267 
268  /// Keep track which DISubprogram is attached to which function.
269  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271  /// Track all DICompileUnits visited.
273 
274  /// The result type for a landingpad.
275  Type *LandingPadResultTy;
276 
277  /// Whether we've seen a call to @llvm.localescape in this function
278  /// already.
279  bool SawFrameEscape;
280 
281  /// Whether the current function has a DISubprogram attached to it.
282  bool HasDebugInfo = false;
283 
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
287 
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
291 
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304  // Keeps track of duplicate function argument debug info.
306 
307  TBAAVerifier TBAAVerifyHelper;
308 
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313  const Module &M)
314  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315  SawFrameEscape(false), TBAAVerifyHelper(this) {
316  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318 
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321  bool verify(const Function &F) {
322  assert(F.getParent() == &M &&
323  "An instance of this class only works with a specific module!");
324 
325  // First ensure the function is well-enough formed to compute dominance
326  // information, and directly compute a dominance tree. We don't rely on the
327  // pass manager to provide this as it isolates us from a potentially
328  // out-of-date dominator tree and makes it significantly more complex to run
329  // this code outside of a pass manager.
330  // FIXME: It's really gross that we have to cast away constness here.
331  if (!F.empty())
332  DT.recalculate(const_cast<Function &>(F));
333 
334  for (const BasicBlock &BB : F) {
335  if (!BB.empty() && BB.back().isTerminator())
336  continue;
337 
338  if (OS) {
339  *OS << "Basic Block in function '" << F.getName()
340  << "' does not have terminator!\n";
341  BB.printAsOperand(*OS, true, MST);
342  *OS << "\n";
343  }
344  return false;
345  }
346 
347  Broken = false;
348  // FIXME: We strip const here because the inst visitor strips const.
349  visit(const_cast<Function &>(F));
350  verifySiblingFuncletUnwinds();
351  InstsInThisBlock.clear();
352  DebugFnArgs.clear();
353  LandingPadResultTy = nullptr;
354  SawFrameEscape = false;
355  SiblingFuncletInfo.clear();
356 
357  return !Broken;
358  }
359 
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362  Broken = false;
363 
364  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365  for (const Function &F : M)
366  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367  DeoptimizeDeclarations.push_back(&F);
368 
369  // Now that we've visited every function, verify that we never asked to
370  // recover a frame index that wasn't escaped.
371  verifyFrameRecoverIndices();
372  for (const GlobalVariable &GV : M.globals())
373  visitGlobalVariable(GV);
374 
375  for (const GlobalAlias &GA : M.aliases())
376  visitGlobalAlias(GA);
377 
378  for (const NamedMDNode &NMD : M.named_metadata())
379  visitNamedMDNode(NMD);
380 
381  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382  visitComdat(SMEC.getValue());
383 
384  visitModuleFlags(M);
385  visitModuleIdents(M);
386 
387  verifyCompileUnits();
388 
389  verifyDeoptimizeCallingConvs();
390  DISubprogramAttachments.clear();
391  return !Broken;
392  }
393 
394 private:
395  // Verification methods...
396  void visitGlobalValue(const GlobalValue &GV);
397  void visitGlobalVariable(const GlobalVariable &GV);
398  void visitGlobalAlias(const GlobalAlias &GA);
399  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401  const GlobalAlias &A, const Constant &C);
402  void visitNamedMDNode(const NamedMDNode &NMD);
403  void visitMDNode(const MDNode &MD);
404  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406  void visitComdat(const Comdat &C);
407  void visitModuleIdents(const Module &M);
408  void visitModuleFlags(const Module &M);
409  void visitModuleFlag(const MDNode *Op,
411  SmallVectorImpl<const MDNode *> &Requirements);
412  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
413  void visitFunction(const Function &F);
414  void visitBasicBlock(BasicBlock &BB);
415  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
416  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
417 
418  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
419 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
420 #include "llvm/IR/Metadata.def"
421  void visitDIScope(const DIScope &N);
422  void visitDIVariable(const DIVariable &N);
423  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
424  void visitDITemplateParameter(const DITemplateParameter &N);
425 
426  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
427 
428  // InstVisitor overrides...
430  void visit(Instruction &I);
431 
432  void visitTruncInst(TruncInst &I);
433  void visitZExtInst(ZExtInst &I);
434  void visitSExtInst(SExtInst &I);
435  void visitFPTruncInst(FPTruncInst &I);
436  void visitFPExtInst(FPExtInst &I);
437  void visitFPToUIInst(FPToUIInst &I);
438  void visitFPToSIInst(FPToSIInst &I);
439  void visitUIToFPInst(UIToFPInst &I);
440  void visitSIToFPInst(SIToFPInst &I);
441  void visitIntToPtrInst(IntToPtrInst &I);
442  void visitPtrToIntInst(PtrToIntInst &I);
443  void visitBitCastInst(BitCastInst &I);
444  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
445  void visitPHINode(PHINode &PN);
446  void visitBinaryOperator(BinaryOperator &B);
447  void visitICmpInst(ICmpInst &IC);
448  void visitFCmpInst(FCmpInst &FC);
449  void visitExtractElementInst(ExtractElementInst &EI);
450  void visitInsertElementInst(InsertElementInst &EI);
451  void visitShuffleVectorInst(ShuffleVectorInst &EI);
452  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
453  void visitCallInst(CallInst &CI);
454  void visitInvokeInst(InvokeInst &II);
455  void visitGetElementPtrInst(GetElementPtrInst &GEP);
456  void visitLoadInst(LoadInst &LI);
457  void visitStoreInst(StoreInst &SI);
458  void verifyDominatesUse(Instruction &I, unsigned i);
459  void visitInstruction(Instruction &I);
460  void visitTerminatorInst(TerminatorInst &I);
461  void visitBranchInst(BranchInst &BI);
462  void visitReturnInst(ReturnInst &RI);
463  void visitSwitchInst(SwitchInst &SI);
464  void visitIndirectBrInst(IndirectBrInst &BI);
465  void visitSelectInst(SelectInst &SI);
466  void visitUserOp1(Instruction &I);
467  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
468  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
469  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
470  void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
471  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
472  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
473  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
474  void visitFenceInst(FenceInst &FI);
475  void visitAllocaInst(AllocaInst &AI);
476  void visitExtractValueInst(ExtractValueInst &EVI);
477  void visitInsertValueInst(InsertValueInst &IVI);
478  void visitEHPadPredecessors(Instruction &I);
479  void visitLandingPadInst(LandingPadInst &LPI);
480  void visitResumeInst(ResumeInst &RI);
481  void visitCatchPadInst(CatchPadInst &CPI);
482  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
483  void visitCleanupPadInst(CleanupPadInst &CPI);
484  void visitFuncletPadInst(FuncletPadInst &FPI);
485  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
486  void visitCleanupReturnInst(CleanupReturnInst &CRI);
487 
488  void verifyCallSite(CallSite CS);
489  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
490  void verifySwiftErrorValue(const Value *SwiftErrorVal);
491  void verifyMustTailCall(CallInst &CI);
492  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
493  unsigned ArgNo, std::string &Suffix);
494  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
495  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
496  const Value *V);
497  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
498  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
499  const Value *V);
500  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
501 
502  void visitConstantExprsRecursively(const Constant *EntryC);
503  void visitConstantExpr(const ConstantExpr *CE);
504  void verifyStatepoint(ImmutableCallSite CS);
505  void verifyFrameRecoverIndices();
506  void verifySiblingFuncletUnwinds();
507 
508  void verifyFragmentExpression(const DbgInfoIntrinsic &I);
509  template <typename ValueOrMetadata>
510  void verifyFragmentExpression(const DIVariable &V,
512  ValueOrMetadata *Desc);
513  void verifyFnArgs(const DbgInfoIntrinsic &I);
514 
515  /// Module-level debug info verification...
516  void verifyCompileUnits();
517 
518  /// Module-level verification that all @llvm.experimental.deoptimize
519  /// declarations share the same calling convention.
520  void verifyDeoptimizeCallingConvs();
521 };
522 
523 } // end anonymous namespace
524 
525 /// We know that cond should be true, if not print an error message.
526 #define Assert(C, ...) \
527  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
528 
529 /// We know that a debug info condition should be true, if not print
530 /// an error message.
531 #define AssertDI(C, ...) \
532  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
533 
534 void Verifier::visit(Instruction &I) {
535  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
536  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
538 }
539 
540 // Helper to recursively iterate over indirect users. By
541 // returning false, the callback can ask to stop recursing
542 // further.
543 static void forEachUser(const Value *User,
545  llvm::function_ref<bool(const Value *)> Callback) {
546  if (!Visited.insert(User).second)
547  return;
548  for (const Value *TheNextUser : User->materialized_users())
549  if (Callback(TheNextUser))
550  forEachUser(TheNextUser, Visited, Callback);
551 }
552 
553 void Verifier::visitGlobalValue(const GlobalValue &GV) {
555  "Global is external, but doesn't have external or weak linkage!", &GV);
556 
558  "huge alignment values are unsupported", &GV);
559  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
560  "Only global variables can have appending linkage!", &GV);
561 
562  if (GV.hasAppendingLinkage()) {
563  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
564  Assert(GVar && GVar->getValueType()->isArrayTy(),
565  "Only global arrays can have appending linkage!", GVar);
566  }
567 
568  if (GV.isDeclarationForLinker())
569  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
570 
571  if (GV.hasDLLImportStorageClass()) {
572  Assert(!GV.isDSOLocal(),
573  "GlobalValue with DLLImport Storage is dso_local!", &GV);
574 
575  Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
577  "Global is marked as dllimport, but not external", &GV);
578  }
579 
580  if (GV.hasLocalLinkage())
581  Assert(GV.isDSOLocal(),
582  "GlobalValue with private or internal linkage must be dso_local!",
583  &GV);
584 
585  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
586  Assert(GV.isDSOLocal(),
587  "GlobalValue with non default visibility must be dso_local!", &GV);
588 
589  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
590  if (const Instruction *I = dyn_cast<Instruction>(V)) {
591  if (!I->getParent() || !I->getParent()->getParent())
592  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
593  I);
594  else if (I->getParent()->getParent()->getParent() != &M)
595  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
596  I->getParent()->getParent(),
597  I->getParent()->getParent()->getParent());
598  return false;
599  } else if (const Function *F = dyn_cast<Function>(V)) {
600  if (F->getParent() != &M)
601  CheckFailed("Global is used by function in a different module", &GV, &M,
602  F, F->getParent());
603  return false;
604  }
605  return true;
606  });
607 }
608 
609 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
610  if (GV.hasInitializer()) {
611  Assert(GV.getInitializer()->getType() == GV.getValueType(),
612  "Global variable initializer type does not match global "
613  "variable type!",
614  &GV);
615  // If the global has common linkage, it must have a zero initializer and
616  // cannot be constant.
617  if (GV.hasCommonLinkage()) {
619  "'common' global must have a zero initializer!", &GV);
620  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
621  &GV);
622  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
623  }
624  }
625 
626  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
627  GV.getName() == "llvm.global_dtors")) {
629  "invalid linkage for intrinsic global variable", &GV);
630  // Don't worry about emitting an error for it not being an array,
631  // visitGlobalValue will complain on appending non-array.
632  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
633  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
634  PointerType *FuncPtrTy =
636  // FIXME: Reject the 2-field form in LLVM 4.0.
637  Assert(STy &&
638  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
639  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
640  STy->getTypeAtIndex(1) == FuncPtrTy,
641  "wrong type for intrinsic global variable", &GV);
642  if (STy->getNumElements() == 3) {
643  Type *ETy = STy->getTypeAtIndex(2);
644  Assert(ETy->isPointerTy() &&
645  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
646  "wrong type for intrinsic global variable", &GV);
647  }
648  }
649  }
650 
651  if (GV.hasName() && (GV.getName() == "llvm.used" ||
652  GV.getName() == "llvm.compiler.used")) {
654  "invalid linkage for intrinsic global variable", &GV);
655  Type *GVType = GV.getValueType();
656  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
657  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
658  Assert(PTy, "wrong type for intrinsic global variable", &GV);
659  if (GV.hasInitializer()) {
660  const Constant *Init = GV.getInitializer();
661  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
662  Assert(InitArray, "wrong initalizer for intrinsic global variable",
663  Init);
664  for (Value *Op : InitArray->operands()) {
665  Value *V = Op->stripPointerCastsNoFollowAliases();
666  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
667  isa<GlobalAlias>(V),
668  "invalid llvm.used member", V);
669  Assert(V->hasName(), "members of llvm.used must be named", V);
670  }
671  }
672  }
673  }
674 
675  // Visit any debug info attachments.
678  for (auto *MD : MDs) {
679  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
680  visitDIGlobalVariableExpression(*GVE);
681  else
682  AssertDI(false, "!dbg attachment of global variable must be a "
683  "DIGlobalVariableExpression");
684  }
685 
686  if (!GV.hasInitializer()) {
687  visitGlobalValue(GV);
688  return;
689  }
690 
691  // Walk any aggregate initializers looking for bitcasts between address spaces
692  visitConstantExprsRecursively(GV.getInitializer());
693 
694  visitGlobalValue(GV);
695 }
696 
697 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
699  Visited.insert(&GA);
700  visitAliaseeSubExpr(Visited, GA, C);
701 }
702 
703 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
704  const GlobalAlias &GA, const Constant &C) {
705  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
706  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
707  &GA);
708 
709  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
710  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
711 
712  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
713  &GA);
714  } else {
715  // Only continue verifying subexpressions of GlobalAliases.
716  // Do not recurse into global initializers.
717  return;
718  }
719  }
720 
721  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
722  visitConstantExprsRecursively(CE);
723 
724  for (const Use &U : C.operands()) {
725  Value *V = &*U;
726  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
727  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
728  else if (const auto *C2 = dyn_cast<Constant>(V))
729  visitAliaseeSubExpr(Visited, GA, *C2);
730  }
731 }
732 
733 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
735  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
736  "weak_odr, or external linkage!",
737  &GA);
738  const Constant *Aliasee = GA.getAliasee();
739  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
740  Assert(GA.getType() == Aliasee->getType(),
741  "Alias and aliasee types should match!", &GA);
742 
743  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
744  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
745 
746  visitAliaseeSubExpr(GA, *Aliasee);
747 
748  visitGlobalValue(GA);
749 }
750 
751 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
752  // There used to be various other llvm.dbg.* nodes, but we don't support
753  // upgrading them and we want to reserve the namespace for future uses.
754  if (NMD.getName().startswith("llvm.dbg."))
755  AssertDI(NMD.getName() == "llvm.dbg.cu",
756  "unrecognized named metadata node in the llvm.dbg namespace",
757  &NMD);
758  for (const MDNode *MD : NMD.operands()) {
759  if (NMD.getName() == "llvm.dbg.cu")
760  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
761 
762  if (!MD)
763  continue;
764 
765  visitMDNode(*MD);
766  }
767 }
768 
769 void Verifier::visitMDNode(const MDNode &MD) {
770  // Only visit each node once. Metadata can be mutually recursive, so this
771  // avoids infinite recursion here, as well as being an optimization.
772  if (!MDNodes.insert(&MD).second)
773  return;
774 
775  switch (MD.getMetadataID()) {
776  default:
777  llvm_unreachable("Invalid MDNode subclass");
778  case Metadata::MDTupleKind:
779  break;
780 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
781  case Metadata::CLASS##Kind: \
782  visit##CLASS(cast<CLASS>(MD)); \
783  break;
784 #include "llvm/IR/Metadata.def"
785  }
786 
787  for (const Metadata *Op : MD.operands()) {
788  if (!Op)
789  continue;
790  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
791  &MD, Op);
792  if (auto *N = dyn_cast<MDNode>(Op)) {
793  visitMDNode(*N);
794  continue;
795  }
796  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
797  visitValueAsMetadata(*V, nullptr);
798  continue;
799  }
800  }
801 
802  // Check these last, so we diagnose problems in operands first.
803  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
804  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
805 }
806 
807 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
808  Assert(MD.getValue(), "Expected valid value", &MD);
809  Assert(!MD.getValue()->getType()->isMetadataTy(),
810  "Unexpected metadata round-trip through values", &MD, MD.getValue());
811 
812  auto *L = dyn_cast<LocalAsMetadata>(&MD);
813  if (!L)
814  return;
815 
816  Assert(F, "function-local metadata used outside a function", L);
817 
818  // If this was an instruction, bb, or argument, verify that it is in the
819  // function that we expect.
820  Function *ActualF = nullptr;
821  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
822  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
823  ActualF = I->getParent()->getParent();
824  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
825  ActualF = BB->getParent();
826  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
827  ActualF = A->getParent();
828  assert(ActualF && "Unimplemented function local metadata case!");
829 
830  Assert(ActualF == F, "function-local metadata used in wrong function", L);
831 }
832 
833 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
834  Metadata *MD = MDV.getMetadata();
835  if (auto *N = dyn_cast<MDNode>(MD)) {
836  visitMDNode(*N);
837  return;
838  }
839 
840  // Only visit each node once. Metadata can be mutually recursive, so this
841  // avoids infinite recursion here, as well as being an optimization.
842  if (!MDNodes.insert(MD).second)
843  return;
844 
845  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
846  visitValueAsMetadata(*V, F);
847 }
848 
849 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
850 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
851 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
852 
853 void Verifier::visitDILocation(const DILocation &N) {
854  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
855  "location requires a valid scope", &N, N.getRawScope());
856  if (auto *IA = N.getRawInlinedAt())
857  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
858  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
859  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
860 }
861 
862 void Verifier::visitGenericDINode(const GenericDINode &N) {
863  AssertDI(N.getTag(), "invalid tag", &N);
864 }
865 
866 void Verifier::visitDIScope(const DIScope &N) {
867  if (auto *F = N.getRawFile())
868  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
869 }
870 
871 void Verifier::visitDISubrange(const DISubrange &N) {
872  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
873  auto Count = N.getCount();
874  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
875  &N);
876  AssertDI(!Count.is<ConstantInt*>() ||
877  Count.get<ConstantInt*>()->getSExtValue() >= -1,
878  "invalid subrange count", &N);
879 }
880 
881 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
882  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
883 }
884 
885 void Verifier::visitDIBasicType(const DIBasicType &N) {
886  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
887  N.getTag() == dwarf::DW_TAG_unspecified_type,
888  "invalid tag", &N);
889 }
890 
891 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
892  // Common scope checks.
893  visitDIScope(N);
894 
895  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
896  N.getTag() == dwarf::DW_TAG_pointer_type ||
897  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
898  N.getTag() == dwarf::DW_TAG_reference_type ||
899  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
900  N.getTag() == dwarf::DW_TAG_const_type ||
901  N.getTag() == dwarf::DW_TAG_volatile_type ||
902  N.getTag() == dwarf::DW_TAG_restrict_type ||
903  N.getTag() == dwarf::DW_TAG_atomic_type ||
904  N.getTag() == dwarf::DW_TAG_member ||
905  N.getTag() == dwarf::DW_TAG_inheritance ||
906  N.getTag() == dwarf::DW_TAG_friend,
907  "invalid tag", &N);
908  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
909  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
910  N.getRawExtraData());
911  }
912 
913  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
914  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
915  N.getRawBaseType());
916 
917  if (N.getDWARFAddressSpace()) {
918  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
919  N.getTag() == dwarf::DW_TAG_reference_type,
920  "DWARF address space only applies to pointer or reference types",
921  &N);
922  }
923 }
924 
925 /// Detect mutually exclusive flags.
926 static bool hasConflictingReferenceFlags(unsigned Flags) {
927  return ((Flags & DINode::FlagLValueReference) &&
928  (Flags & DINode::FlagRValueReference)) ||
929  ((Flags & DINode::FlagTypePassByValue) &&
930  (Flags & DINode::FlagTypePassByReference));
931 }
932 
933 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
934  auto *Params = dyn_cast<MDTuple>(&RawParams);
935  AssertDI(Params, "invalid template params", &N, &RawParams);
936  for (Metadata *Op : Params->operands()) {
937  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
938  &N, Params, Op);
939  }
940 }
941 
942 void Verifier::visitDICompositeType(const DICompositeType &N) {
943  // Common scope checks.
944  visitDIScope(N);
945 
946  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
947  N.getTag() == dwarf::DW_TAG_structure_type ||
948  N.getTag() == dwarf::DW_TAG_union_type ||
949  N.getTag() == dwarf::DW_TAG_enumeration_type ||
950  N.getTag() == dwarf::DW_TAG_class_type ||
951  N.getTag() == dwarf::DW_TAG_variant_part,
952  "invalid tag", &N);
953 
954  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
955  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
956  N.getRawBaseType());
957 
958  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
959  "invalid composite elements", &N, N.getRawElements());
960  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
961  N.getRawVTableHolder());
963  "invalid reference flags", &N);
964 
965  if (N.isVector()) {
966  const DINodeArray Elements = N.getElements();
967  AssertDI(Elements.size() == 1 &&
968  Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
969  "invalid vector, expected one element of type subrange", &N);
970  }
971 
972  if (auto *Params = N.getRawTemplateParams())
973  visitTemplateParams(N, *Params);
974 
975  if (N.getTag() == dwarf::DW_TAG_class_type ||
976  N.getTag() == dwarf::DW_TAG_union_type) {
977  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
978  "class/union requires a filename", &N, N.getFile());
979  }
980 
981  if (auto *D = N.getRawDiscriminator()) {
982  AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
983  "discriminator can only appear on variant part");
984  }
985 }
986 
987 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
988  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
989  if (auto *Types = N.getRawTypeArray()) {
990  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
991  for (Metadata *Ty : N.getTypeArray()->operands()) {
992  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
993  }
994  }
996  "invalid reference flags", &N);
997 }
998 
999 void Verifier::visitDIFile(const DIFile &N) {
1000  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1001  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1002  if (Checksum) {
1003  AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1004  "invalid checksum kind", &N);
1005  size_t Size;
1006  switch (Checksum->Kind) {
1007  case DIFile::CSK_MD5:
1008  Size = 32;
1009  break;
1010  case DIFile::CSK_SHA1:
1011  Size = 40;
1012  break;
1013  }
1014  AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1015  AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1016  "invalid checksum", &N);
1017  }
1018 }
1019 
1020 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1021  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1022  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1023 
1024  // Don't bother verifying the compilation directory or producer string
1025  // as those could be empty.
1026  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1027  N.getRawFile());
1028  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1029  N.getFile());
1030 
1032  "invalid emission kind", &N);
1033 
1034  if (auto *Array = N.getRawEnumTypes()) {
1035  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1036  for (Metadata *Op : N.getEnumTypes()->operands()) {
1037  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1038  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1039  "invalid enum type", &N, N.getEnumTypes(), Op);
1040  }
1041  }
1042  if (auto *Array = N.getRawRetainedTypes()) {
1043  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1044  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1045  AssertDI(Op && (isa<DIType>(Op) ||
1046  (isa<DISubprogram>(Op) &&
1047  !cast<DISubprogram>(Op)->isDefinition())),
1048  "invalid retained type", &N, Op);
1049  }
1050  }
1051  if (auto *Array = N.getRawGlobalVariables()) {
1052  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1053  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1054  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1055  "invalid global variable ref", &N, Op);
1056  }
1057  }
1058  if (auto *Array = N.getRawImportedEntities()) {
1059  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1060  for (Metadata *Op : N.getImportedEntities()->operands()) {
1061  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1062  &N, Op);
1063  }
1064  }
1065  if (auto *Array = N.getRawMacros()) {
1066  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1067  for (Metadata *Op : N.getMacros()->operands()) {
1068  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1069  }
1070  }
1071  CUVisited.insert(&N);
1072 }
1073 
1074 void Verifier::visitDISubprogram(const DISubprogram &N) {
1075  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1076  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1077  if (auto *F = N.getRawFile())
1078  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1079  else
1080  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1081  if (auto *T = N.getRawType())
1082  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1083  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1084  N.getRawContainingType());
1085  if (auto *Params = N.getRawTemplateParams())
1086  visitTemplateParams(N, *Params);
1087  if (auto *S = N.getRawDeclaration())
1088  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1089  "invalid subprogram declaration", &N, S);
1090  if (auto *RawNode = N.getRawRetainedNodes()) {
1091  auto *Node = dyn_cast<MDTuple>(RawNode);
1092  AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1093  for (Metadata *Op : Node->operands()) {
1094  AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1095  "invalid retained nodes, expected DILocalVariable or DILabel",
1096  &N, Node, Op);
1097  }
1098  }
1099  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1100  "invalid reference flags", &N);
1101 
1102  auto *Unit = N.getRawUnit();
1103  if (N.isDefinition()) {
1104  // Subprogram definitions (not part of the type hierarchy).
1105  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1106  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1107  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1108  } else {
1109  // Subprogram declarations (part of the type hierarchy).
1110  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1111  }
1112 
1113  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1114  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1115  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1116  for (Metadata *Op : ThrownTypes->operands())
1117  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1118  Op);
1119  }
1120 }
1121 
1122 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1123  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1124  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1125  "invalid local scope", &N, N.getRawScope());
1126  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1127  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1128 }
1129 
1130 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1131  visitDILexicalBlockBase(N);
1132 
1133  AssertDI(N.getLine() || !N.getColumn(),
1134  "cannot have column info without line info", &N);
1135 }
1136 
1137 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1138  visitDILexicalBlockBase(N);
1139 }
1140 
1141 void Verifier::visitDINamespace(const DINamespace &N) {
1142  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1143  if (auto *S = N.getRawScope())
1144  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1145 }
1146 
1147 void Verifier::visitDIMacro(const DIMacro &N) {
1150  "invalid macinfo type", &N);
1151  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1152  if (!N.getValue().empty()) {
1153  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1154  }
1155 }
1156 
1157 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1159  "invalid macinfo type", &N);
1160  if (auto *F = N.getRawFile())
1161  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1162 
1163  if (auto *Array = N.getRawElements()) {
1164  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1165  for (Metadata *Op : N.getElements()->operands()) {
1166  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1167  }
1168  }
1169 }
1170 
1171 void Verifier::visitDIModule(const DIModule &N) {
1172  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1173  AssertDI(!N.getName().empty(), "anonymous module", &N);
1174 }
1175 
1176 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1177  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1178 }
1179 
1180 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1181  visitDITemplateParameter(N);
1182 
1183  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1184  &N);
1185 }
1186 
1187 void Verifier::visitDITemplateValueParameter(
1188  const DITemplateValueParameter &N) {
1189  visitDITemplateParameter(N);
1190 
1191  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1192  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1193  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1194  "invalid tag", &N);
1195 }
1196 
1197 void Verifier::visitDIVariable(const DIVariable &N) {
1198  if (auto *S = N.getRawScope())
1199  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1200  if (auto *F = N.getRawFile())
1201  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1202 }
1203 
1204 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1205  // Checks common to all variables.
1206  visitDIVariable(N);
1207 
1208  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1209  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1210  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1211  AssertDI(N.getType(), "missing global variable type", &N);
1212  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1213  AssertDI(isa<DIDerivedType>(Member),
1214  "invalid static data member declaration", &N, Member);
1215  }
1216 }
1217 
1218 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1219  // Checks common to all variables.
1220  visitDIVariable(N);
1221 
1222  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1223  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1224  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1225  "local variable requires a valid scope", &N, N.getRawScope());
1226 }
1227 
1228 void Verifier::visitDILabel(const DILabel &N) {
1229  if (auto *S = N.getRawScope())
1230  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1231  if (auto *F = N.getRawFile())
1232  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1233 
1234  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1235  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1236  "label requires a valid scope", &N, N.getRawScope());
1237 }
1238 
1239 void Verifier::visitDIExpression(const DIExpression &N) {
1240  AssertDI(N.isValid(), "invalid expression", &N);
1241 }
1242 
1243 void Verifier::visitDIGlobalVariableExpression(
1244  const DIGlobalVariableExpression &GVE) {
1245  AssertDI(GVE.getVariable(), "missing variable");
1246  if (auto *Var = GVE.getVariable())
1247  visitDIGlobalVariable(*Var);
1248  if (auto *Expr = GVE.getExpression()) {
1249  visitDIExpression(*Expr);
1250  if (auto Fragment = Expr->getFragmentInfo())
1251  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1252  }
1253 }
1254 
1255 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1256  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1257  if (auto *T = N.getRawType())
1258  AssertDI(isType(T), "invalid type ref", &N, T);
1259  if (auto *F = N.getRawFile())
1260  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1261 }
1262 
1263 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1264  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1265  N.getTag() == dwarf::DW_TAG_imported_declaration,
1266  "invalid tag", &N);
1267  if (auto *S = N.getRawScope())
1268  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1269  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1270  N.getRawEntity());
1271 }
1272 
1273 void Verifier::visitComdat(const Comdat &C) {
1274  // The Module is invalid if the GlobalValue has private linkage. Entities
1275  // with private linkage don't have entries in the symbol table.
1276  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1277  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1278  GV);
1279 }
1280 
1281 void Verifier::visitModuleIdents(const Module &M) {
1282  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1283  if (!Idents)
1284  return;
1285 
1286  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1287  // Scan each llvm.ident entry and make sure that this requirement is met.
1288  for (const MDNode *N : Idents->operands()) {
1289  Assert(N->getNumOperands() == 1,
1290  "incorrect number of operands in llvm.ident metadata", N);
1291  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1292  ("invalid value for llvm.ident metadata entry operand"
1293  "(the operand should be a string)"),
1294  N->getOperand(0));
1295  }
1296 }
1297 
1298 void Verifier::visitModuleFlags(const Module &M) {
1299  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1300  if (!Flags) return;
1301 
1302  // Scan each flag, and track the flags and requirements.
1304  SmallVector<const MDNode*, 16> Requirements;
1305  for (const MDNode *MDN : Flags->operands())
1306  visitModuleFlag(MDN, SeenIDs, Requirements);
1307 
1308  // Validate that the requirements in the module are valid.
1309  for (const MDNode *Requirement : Requirements) {
1310  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1311  const Metadata *ReqValue = Requirement->getOperand(1);
1312 
1313  const MDNode *Op = SeenIDs.lookup(Flag);
1314  if (!Op) {
1315  CheckFailed("invalid requirement on flag, flag is not present in module",
1316  Flag);
1317  continue;
1318  }
1319 
1320  if (Op->getOperand(2) != ReqValue) {
1321  CheckFailed(("invalid requirement on flag, "
1322  "flag does not have the required value"),
1323  Flag);
1324  continue;
1325  }
1326  }
1327 }
1328 
1329 void
1330 Verifier::visitModuleFlag(const MDNode *Op,
1332  SmallVectorImpl<const MDNode *> &Requirements) {
1333  // Each module flag should have three arguments, the merge behavior (a
1334  // constant int), the flag ID (an MDString), and the value.
1335  Assert(Op->getNumOperands() == 3,
1336  "incorrect number of operands in module flag", Op);
1338  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1339  Assert(
1340  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1341  "invalid behavior operand in module flag (expected constant integer)",
1342  Op->getOperand(0));
1343  Assert(false,
1344  "invalid behavior operand in module flag (unexpected constant)",
1345  Op->getOperand(0));
1346  }
1347  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1348  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1349  Op->getOperand(1));
1350 
1351  // Sanity check the values for behaviors with additional requirements.
1352  switch (MFB) {
1353  case Module::Error:
1354  case Module::Warning:
1355  case Module::Override:
1356  // These behavior types accept any value.
1357  break;
1358 
1359  case Module::Max: {
1360  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1361  "invalid value for 'max' module flag (expected constant integer)",
1362  Op->getOperand(2));
1363  break;
1364  }
1365 
1366  case Module::Require: {
1367  // The value should itself be an MDNode with two operands, a flag ID (an
1368  // MDString), and a value.
1369  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1370  Assert(Value && Value->getNumOperands() == 2,
1371  "invalid value for 'require' module flag (expected metadata pair)",
1372  Op->getOperand(2));
1373  Assert(isa<MDString>(Value->getOperand(0)),
1374  ("invalid value for 'require' module flag "
1375  "(first value operand should be a string)"),
1376  Value->getOperand(0));
1377 
1378  // Append it to the list of requirements, to check once all module flags are
1379  // scanned.
1380  Requirements.push_back(Value);
1381  break;
1382  }
1383 
1384  case Module::Append:
1385  case Module::AppendUnique: {
1386  // These behavior types require the operand be an MDNode.
1387  Assert(isa<MDNode>(Op->getOperand(2)),
1388  "invalid value for 'append'-type module flag "
1389  "(expected a metadata node)",
1390  Op->getOperand(2));
1391  break;
1392  }
1393  }
1394 
1395  // Unless this is a "requires" flag, check the ID is unique.
1396  if (MFB != Module::Require) {
1397  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1398  Assert(Inserted,
1399  "module flag identifiers must be unique (or of 'require' type)", ID);
1400  }
1401 
1402  if (ID->getString() == "wchar_size") {
1404  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1405  Assert(Value, "wchar_size metadata requires constant integer argument");
1406  }
1407 
1408  if (ID->getString() == "Linker Options") {
1409  // If the llvm.linker.options named metadata exists, we assume that the
1410  // bitcode reader has upgraded the module flag. Otherwise the flag might
1411  // have been created by a client directly.
1412  Assert(M.getNamedMetadata("llvm.linker.options"),
1413  "'Linker Options' named metadata no longer supported");
1414  }
1415 
1416  if (ID->getString() == "CG Profile") {
1417  for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1418  visitModuleFlagCGProfileEntry(MDO);
1419  }
1420 }
1421 
1422 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1423  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1424  if (!FuncMDO)
1425  return;
1426  auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1427  Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1428  FuncMDO);
1429  };
1430  auto Node = dyn_cast_or_null<MDNode>(MDO);
1431  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1432  CheckFunction(Node->getOperand(0));
1433  CheckFunction(Node->getOperand(1));
1434  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1435  Assert(Count && Count->getType()->isIntegerTy(),
1436  "expected an integer constant", Node->getOperand(2));
1437 }
1438 
1439 /// Return true if this attribute kind only applies to functions.
1441  switch (Kind) {
1442  case Attribute::NoReturn:
1443  case Attribute::NoCfCheck:
1444  case Attribute::NoUnwind:
1445  case Attribute::NoInline:
1446  case Attribute::AlwaysInline:
1447  case Attribute::OptimizeForSize:
1448  case Attribute::StackProtect:
1449  case Attribute::StackProtectReq:
1450  case Attribute::StackProtectStrong:
1451  case Attribute::SafeStack:
1452  case Attribute::ShadowCallStack:
1453  case Attribute::NoRedZone:
1454  case Attribute::NoImplicitFloat:
1455  case Attribute::Naked:
1456  case Attribute::InlineHint:
1457  case Attribute::StackAlignment:
1458  case Attribute::UWTable:
1459  case Attribute::NonLazyBind:
1460  case Attribute::ReturnsTwice:
1461  case Attribute::SanitizeAddress:
1462  case Attribute::SanitizeHWAddress:
1463  case Attribute::SanitizeThread:
1464  case Attribute::SanitizeMemory:
1465  case Attribute::MinSize:
1466  case Attribute::NoDuplicate:
1467  case Attribute::Builtin:
1468  case Attribute::NoBuiltin:
1469  case Attribute::Cold:
1470  case Attribute::OptForFuzzing:
1471  case Attribute::OptimizeNone:
1472  case Attribute::JumpTable:
1473  case Attribute::Convergent:
1474  case Attribute::ArgMemOnly:
1475  case Attribute::NoRecurse:
1476  case Attribute::InaccessibleMemOnly:
1477  case Attribute::InaccessibleMemOrArgMemOnly:
1478  case Attribute::AllocSize:
1479  case Attribute::Speculatable:
1480  case Attribute::StrictFP:
1481  return true;
1482  default:
1483  break;
1484  }
1485  return false;
1486 }
1487 
1488 /// Return true if this is a function attribute that can also appear on
1489 /// arguments.
1491  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1492  Kind == Attribute::ReadNone;
1493 }
1494 
1495 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1496  const Value *V) {
1497  for (Attribute A : Attrs) {
1498  if (A.isStringAttribute())
1499  continue;
1500 
1501  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1502  if (!IsFunction) {
1503  CheckFailed("Attribute '" + A.getAsString() +
1504  "' only applies to functions!",
1505  V);
1506  return;
1507  }
1508  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1509  CheckFailed("Attribute '" + A.getAsString() +
1510  "' does not apply to functions!",
1511  V);
1512  return;
1513  }
1514  }
1515 }
1516 
1517 // VerifyParameterAttrs - Check the given attributes for an argument or return
1518 // value of the specified type. The value V is printed in error messages.
1519 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1520  const Value *V) {
1521  if (!Attrs.hasAttributes())
1522  return;
1523 
1524  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1525 
1526  // Check for mutually incompatible attributes. Only inreg is compatible with
1527  // sret.
1528  unsigned AttrCount = 0;
1529  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1530  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1531  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1532  Attrs.hasAttribute(Attribute::InReg);
1533  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1534  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1535  "and 'sret' are incompatible!",
1536  V);
1537 
1538  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1539  Attrs.hasAttribute(Attribute::ReadOnly)),
1540  "Attributes "
1541  "'inalloca and readonly' are incompatible!",
1542  V);
1543 
1544  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1545  Attrs.hasAttribute(Attribute::Returned)),
1546  "Attributes "
1547  "'sret and returned' are incompatible!",
1548  V);
1549 
1550  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1551  Attrs.hasAttribute(Attribute::SExt)),
1552  "Attributes "
1553  "'zeroext and signext' are incompatible!",
1554  V);
1555 
1556  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1557  Attrs.hasAttribute(Attribute::ReadOnly)),
1558  "Attributes "
1559  "'readnone and readonly' are incompatible!",
1560  V);
1561 
1562  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1563  Attrs.hasAttribute(Attribute::WriteOnly)),
1564  "Attributes "
1565  "'readnone and writeonly' are incompatible!",
1566  V);
1567 
1568  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1569  Attrs.hasAttribute(Attribute::WriteOnly)),
1570  "Attributes "
1571  "'readonly and writeonly' are incompatible!",
1572  V);
1573 
1574  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1575  Attrs.hasAttribute(Attribute::AlwaysInline)),
1576  "Attributes "
1577  "'noinline and alwaysinline' are incompatible!",
1578  V);
1579 
1580  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1581  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1582  "Wrong types for attribute: " +
1583  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1584  V);
1585 
1586  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1587  SmallPtrSet<Type*, 4> Visited;
1588  if (!PTy->getElementType()->isSized(&Visited)) {
1589  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1590  !Attrs.hasAttribute(Attribute::InAlloca),
1591  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1592  V);
1593  }
1594  if (!isa<PointerType>(PTy->getElementType()))
1595  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1596  "Attribute 'swifterror' only applies to parameters "
1597  "with pointer to pointer type!",
1598  V);
1599  } else {
1600  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1601  "Attribute 'byval' only applies to parameters with pointer type!",
1602  V);
1603  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1604  "Attribute 'swifterror' only applies to parameters "
1605  "with pointer type!",
1606  V);
1607  }
1608 }
1609 
1610 // Check parameter attributes against a function type.
1611 // The value V is printed in error messages.
1612 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1613  const Value *V) {
1614  if (Attrs.isEmpty())
1615  return;
1616 
1617  bool SawNest = false;
1618  bool SawReturned = false;
1619  bool SawSRet = false;
1620  bool SawSwiftSelf = false;
1621  bool SawSwiftError = false;
1622 
1623  // Verify return value attributes.
1624  AttributeSet RetAttrs = Attrs.getRetAttributes();
1625  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1626  !RetAttrs.hasAttribute(Attribute::Nest) &&
1627  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1628  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1629  !RetAttrs.hasAttribute(Attribute::Returned) &&
1630  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1631  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1632  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1633  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1634  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1635  "values!",
1636  V);
1637  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1638  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1639  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1640  "Attribute '" + RetAttrs.getAsString() +
1641  "' does not apply to function returns",
1642  V);
1643  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1644 
1645  // Verify parameter attributes.
1646  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1647  Type *Ty = FT->getParamType(i);
1648  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1649 
1650  verifyParameterAttrs(ArgAttrs, Ty, V);
1651 
1652  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1653  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1654  SawNest = true;
1655  }
1656 
1657  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1658  Assert(!SawReturned, "More than one parameter has attribute returned!",
1659  V);
1661  "Incompatible argument and return types for 'returned' attribute",
1662  V);
1663  SawReturned = true;
1664  }
1665 
1666  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1667  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1668  Assert(i == 0 || i == 1,
1669  "Attribute 'sret' is not on first or second parameter!", V);
1670  SawSRet = true;
1671  }
1672 
1673  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1674  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1675  SawSwiftSelf = true;
1676  }
1677 
1678  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1679  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1680  V);
1681  SawSwiftError = true;
1682  }
1683 
1684  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1685  Assert(i == FT->getNumParams() - 1,
1686  "inalloca isn't on the last parameter!", V);
1687  }
1688  }
1689 
1691  return;
1692 
1693  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1694 
1695  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1696  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1697  "Attributes 'readnone and readonly' are incompatible!", V);
1698 
1699  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1700  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1701  "Attributes 'readnone and writeonly' are incompatible!", V);
1702 
1703  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1704  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1705  "Attributes 'readonly and writeonly' are incompatible!", V);
1706 
1707  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1708  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1709  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1710  "incompatible!",
1711  V);
1712 
1713  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1714  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1715  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1716 
1717  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1718  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1719  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1720 
1721  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1722  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1723  "Attribute 'optnone' requires 'noinline'!", V);
1724 
1725  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1726  "Attributes 'optsize and optnone' are incompatible!", V);
1727 
1728  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1729  "Attributes 'minsize and optnone' are incompatible!", V);
1730  }
1731 
1732  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1733  const GlobalValue *GV = cast<GlobalValue>(V);
1735  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1736  }
1737 
1738  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1739  std::pair<unsigned, Optional<unsigned>> Args =
1741 
1742  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1743  if (ParamNo >= FT->getNumParams()) {
1744  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1745  return false;
1746  }
1747 
1748  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1749  CheckFailed("'allocsize' " + Name +
1750  " argument must refer to an integer parameter",
1751  V);
1752  return false;
1753  }
1754 
1755  return true;
1756  };
1757 
1758  if (!CheckParam("element size", Args.first))
1759  return;
1760 
1761  if (Args.second && !CheckParam("number of elements", *Args.second))
1762  return;
1763  }
1764 }
1765 
1766 void Verifier::verifyFunctionMetadata(
1767  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1768  for (const auto &Pair : MDs) {
1769  if (Pair.first == LLVMContext::MD_prof) {
1770  MDNode *MD = Pair.second;
1771  Assert(MD->getNumOperands() >= 2,
1772  "!prof annotations should have no less than 2 operands", MD);
1773 
1774  // Check first operand.
1775  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1776  MD);
1777  Assert(isa<MDString>(MD->getOperand(0)),
1778  "expected string with name of the !prof annotation", MD);
1779  MDString *MDS = cast<MDString>(MD->getOperand(0));
1780  StringRef ProfName = MDS->getString();
1781  Assert(ProfName.equals("function_entry_count") ||
1782  ProfName.equals("synthetic_function_entry_count"),
1783  "first operand should be 'function_entry_count'"
1784  " or 'synthetic_function_entry_count'",
1785  MD);
1786 
1787  // Check second operand.
1788  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1789  MD);
1790  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1791  "expected integer argument to function_entry_count", MD);
1792  }
1793  }
1794 }
1795 
1796 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1797  if (!ConstantExprVisited.insert(EntryC).second)
1798  return;
1799 
1801  Stack.push_back(EntryC);
1802 
1803  while (!Stack.empty()) {
1804  const Constant *C = Stack.pop_back_val();
1805 
1806  // Check this constant expression.
1807  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1808  visitConstantExpr(CE);
1809 
1810  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1811  // Global Values get visited separately, but we do need to make sure
1812  // that the global value is in the correct module
1813  Assert(GV->getParent() == &M, "Referencing global in another module!",
1814  EntryC, &M, GV, GV->getParent());
1815  continue;
1816  }
1817 
1818  // Visit all sub-expressions.
1819  for (const Use &U : C->operands()) {
1820  const auto *OpC = dyn_cast<Constant>(U);
1821  if (!OpC)
1822  continue;
1823  if (!ConstantExprVisited.insert(OpC).second)
1824  continue;
1825  Stack.push_back(OpC);
1826  }
1827  }
1828 }
1829 
1830 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1831  if (CE->getOpcode() == Instruction::BitCast)
1832  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1833  CE->getType()),
1834  "Invalid bitcast", CE);
1835 
1836  if (CE->getOpcode() == Instruction::IntToPtr ||
1837  CE->getOpcode() == Instruction::PtrToInt) {
1838  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1839  ? CE->getType()
1840  : CE->getOperand(0)->getType();
1841  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1842  ? "inttoptr not supported for non-integral pointers"
1843  : "ptrtoint not supported for non-integral pointers";
1844  Assert(
1845  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1846  Msg);
1847  }
1848 }
1849 
1850 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1851  // There shouldn't be more attribute sets than there are parameters plus the
1852  // function and return value.
1853  return Attrs.getNumAttrSets() <= Params + 2;
1854 }
1855 
1856 /// Verify that statepoint intrinsic is well formed.
1857 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1858  assert(CS.getCalledFunction() &&
1860  Intrinsic::experimental_gc_statepoint);
1861 
1862  const Instruction &CI = *CS.getInstruction();
1863 
1864  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1865  !CS.onlyAccessesArgMemory(),
1866  "gc.statepoint must read and write all memory to preserve "
1867  "reordering restrictions required by safepoint semantics",
1868  &CI);
1869 
1870  const Value *IDV = CS.getArgument(0);
1871  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1872  &CI);
1873 
1874  const Value *NumPatchBytesV = CS.getArgument(1);
1875  Assert(isa<ConstantInt>(NumPatchBytesV),
1876  "gc.statepoint number of patchable bytes must be a constant integer",
1877  &CI);
1878  const int64_t NumPatchBytes =
1879  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1880  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1881  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1882  "positive",
1883  &CI);
1884 
1885  const Value *Target = CS.getArgument(2);
1886  auto *PT = dyn_cast<PointerType>(Target->getType());
1887  Assert(PT && PT->getElementType()->isFunctionTy(),
1888  "gc.statepoint callee must be of function pointer type", &CI, Target);
1889  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1890 
1891  const Value *NumCallArgsV = CS.getArgument(3);
1892  Assert(isa<ConstantInt>(NumCallArgsV),
1893  "gc.statepoint number of arguments to underlying call "
1894  "must be constant integer",
1895  &CI);
1896  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1897  Assert(NumCallArgs >= 0,
1898  "gc.statepoint number of arguments to underlying call "
1899  "must be positive",
1900  &CI);
1901  const int NumParams = (int)TargetFuncType->getNumParams();
1902  if (TargetFuncType->isVarArg()) {
1903  Assert(NumCallArgs >= NumParams,
1904  "gc.statepoint mismatch in number of vararg call args", &CI);
1905 
1906  // TODO: Remove this limitation
1907  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1908  "gc.statepoint doesn't support wrapping non-void "
1909  "vararg functions yet",
1910  &CI);
1911  } else
1912  Assert(NumCallArgs == NumParams,
1913  "gc.statepoint mismatch in number of call args", &CI);
1914 
1915  const Value *FlagsV = CS.getArgument(4);
1916  Assert(isa<ConstantInt>(FlagsV),
1917  "gc.statepoint flags must be constant integer", &CI);
1918  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1919  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1920  "unknown flag used in gc.statepoint flags argument", &CI);
1921 
1922  // Verify that the types of the call parameter arguments match
1923  // the type of the wrapped callee.
1924  for (int i = 0; i < NumParams; i++) {
1925  Type *ParamType = TargetFuncType->getParamType(i);
1926  Type *ArgType = CS.getArgument(5 + i)->getType();
1927  Assert(ArgType == ParamType,
1928  "gc.statepoint call argument does not match wrapped "
1929  "function type",
1930  &CI);
1931  }
1932 
1933  const int EndCallArgsInx = 4 + NumCallArgs;
1934 
1935  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1936  Assert(isa<ConstantInt>(NumTransitionArgsV),
1937  "gc.statepoint number of transition arguments "
1938  "must be constant integer",
1939  &CI);
1940  const int NumTransitionArgs =
1941  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1942  Assert(NumTransitionArgs >= 0,
1943  "gc.statepoint number of transition arguments must be positive", &CI);
1944  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1945 
1946  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1947  Assert(isa<ConstantInt>(NumDeoptArgsV),
1948  "gc.statepoint number of deoptimization arguments "
1949  "must be constant integer",
1950  &CI);
1951  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1952  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1953  "must be positive",
1954  &CI);
1955 
1956  const int ExpectedNumArgs =
1957  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1958  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1959  "gc.statepoint too few arguments according to length fields", &CI);
1960 
1961  // Check that the only uses of this gc.statepoint are gc.result or
1962  // gc.relocate calls which are tied to this statepoint and thus part
1963  // of the same statepoint sequence
1964  for (const User *U : CI.users()) {
1965  const CallInst *Call = dyn_cast<const CallInst>(U);
1966  Assert(Call, "illegal use of statepoint token", &CI, U);
1967  if (!Call) continue;
1968  Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1969  "gc.result or gc.relocate are the only value uses "
1970  "of a gc.statepoint",
1971  &CI, U);
1972  if (isa<GCResultInst>(Call)) {
1973  Assert(Call->getArgOperand(0) == &CI,
1974  "gc.result connected to wrong gc.statepoint", &CI, Call);
1975  } else if (isa<GCRelocateInst>(Call)) {
1976  Assert(Call->getArgOperand(0) == &CI,
1977  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1978  }
1979  }
1980 
1981  // Note: It is legal for a single derived pointer to be listed multiple
1982  // times. It's non-optimal, but it is legal. It can also happen after
1983  // insertion if we strip a bitcast away.
1984  // Note: It is really tempting to check that each base is relocated and
1985  // that a derived pointer is never reused as a base pointer. This turns
1986  // out to be problematic since optimizations run after safepoint insertion
1987  // can recognize equality properties that the insertion logic doesn't know
1988  // about. See example statepoint.ll in the verifier subdirectory
1989 }
1990 
1991 void Verifier::verifyFrameRecoverIndices() {
1992  for (auto &Counts : FrameEscapeInfo) {
1993  Function *F = Counts.first;
1994  unsigned EscapedObjectCount = Counts.second.first;
1995  unsigned MaxRecoveredIndex = Counts.second.second;
1996  Assert(MaxRecoveredIndex <= EscapedObjectCount,
1997  "all indices passed to llvm.localrecover must be less than the "
1998  "number of arguments passed ot llvm.localescape in the parent "
1999  "function",
2000  F);
2001  }
2002 }
2003 
2005  BasicBlock *UnwindDest;
2006  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2007  UnwindDest = II->getUnwindDest();
2008  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2009  UnwindDest = CSI->getUnwindDest();
2010  else
2011  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2012  return UnwindDest->getFirstNonPHI();
2013 }
2014 
2015 void Verifier::verifySiblingFuncletUnwinds() {
2018  for (const auto &Pair : SiblingFuncletInfo) {
2019  Instruction *PredPad = Pair.first;
2020  if (Visited.count(PredPad))
2021  continue;
2022  Active.insert(PredPad);
2023  TerminatorInst *Terminator = Pair.second;
2024  do {
2025  Instruction *SuccPad = getSuccPad(Terminator);
2026  if (Active.count(SuccPad)) {
2027  // Found a cycle; report error
2028  Instruction *CyclePad = SuccPad;
2029  SmallVector<Instruction *, 8> CycleNodes;
2030  do {
2031  CycleNodes.push_back(CyclePad);
2032  TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
2033  if (CycleTerminator != CyclePad)
2034  CycleNodes.push_back(CycleTerminator);
2035  CyclePad = getSuccPad(CycleTerminator);
2036  } while (CyclePad != SuccPad);
2037  Assert(false, "EH pads can't handle each other's exceptions",
2038  ArrayRef<Instruction *>(CycleNodes));
2039  }
2040  // Don't re-walk a node we've already checked
2041  if (!Visited.insert(SuccPad).second)
2042  break;
2043  // Walk to this successor if it has a map entry.
2044  PredPad = SuccPad;
2045  auto TermI = SiblingFuncletInfo.find(PredPad);
2046  if (TermI == SiblingFuncletInfo.end())
2047  break;
2048  Terminator = TermI->second;
2049  Active.insert(PredPad);
2050  } while (true);
2051  // Each node only has one successor, so we've walked all the active
2052  // nodes' successors.
2053  Active.clear();
2054  }
2055 }
2056 
2057 // visitFunction - Verify that a function is ok.
2058 //
2059 void Verifier::visitFunction(const Function &F) {
2060  visitGlobalValue(F);
2061 
2062  // Check function arguments.
2063  FunctionType *FT = F.getFunctionType();
2064  unsigned NumArgs = F.arg_size();
2065 
2066  Assert(&Context == &F.getContext(),
2067  "Function context does not match Module context!", &F);
2068 
2069  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2070  Assert(FT->getNumParams() == NumArgs,
2071  "# formal arguments must match # of arguments for function type!", &F,
2072  FT);
2073  Assert(F.getReturnType()->isFirstClassType() ||
2074  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2075  "Functions cannot return aggregate values!", &F);
2076 
2077  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2078  "Invalid struct return type!", &F);
2079 
2080  AttributeList Attrs = F.getAttributes();
2081 
2082  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2083  "Attribute after last parameter!", &F);
2084 
2085  // Check function attributes.
2086  verifyFunctionAttrs(FT, Attrs, &F);
2087 
2088  // On function declarations/definitions, we do not support the builtin
2089  // attribute. We do not check this in VerifyFunctionAttrs since that is
2090  // checking for Attributes that can/can not ever be on functions.
2091  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2092  "Attribute 'builtin' can only be applied to a callsite.", &F);
2093 
2094  // Check that this function meets the restrictions on this calling convention.
2095  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2096  // restrictions can be lifted.
2097  switch (F.getCallingConv()) {
2098  default:
2099  case CallingConv::C:
2100  break;
2103  Assert(F.getReturnType()->isVoidTy(),
2104  "Calling convention requires void return type", &F);
2111  Assert(!F.hasStructRetAttr(),
2112  "Calling convention does not allow sret", &F);
2114  case CallingConv::Fast:
2115  case CallingConv::Cold:
2119  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2120  "perfect forwarding!",
2121  &F);
2122  break;
2123  }
2124 
2125  bool isLLVMdotName = F.getName().size() >= 5 &&
2126  F.getName().substr(0, 5) == "llvm.";
2127 
2128  // Check that the argument values match the function type for this function...
2129  unsigned i = 0;
2130  for (const Argument &Arg : F.args()) {
2131  Assert(Arg.getType() == FT->getParamType(i),
2132  "Argument value does not match function argument type!", &Arg,
2133  FT->getParamType(i));
2135  "Function arguments must have first-class types!", &Arg);
2136  if (!isLLVMdotName) {
2138  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2139  Assert(!Arg.getType()->isTokenTy(),
2140  "Function takes token but isn't an intrinsic", &Arg, &F);
2141  }
2142 
2143  // Check that swifterror argument is only used by loads and stores.
2144  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2145  verifySwiftErrorValue(&Arg);
2146  }
2147  ++i;
2148  }
2149 
2150  if (!isLLVMdotName)
2151  Assert(!F.getReturnType()->isTokenTy(),
2152  "Functions returns a token but isn't an intrinsic", &F);
2153 
2154  // Get the function metadata attachments.
2156  F.getAllMetadata(MDs);
2157  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2158  verifyFunctionMetadata(MDs);
2159 
2160  // Check validity of the personality function
2161  if (F.hasPersonalityFn()) {
2162  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2163  if (Per)
2164  Assert(Per->getParent() == F.getParent(),
2165  "Referencing personality function in another module!",
2166  &F, F.getParent(), Per, Per->getParent());
2167  }
2168 
2169  if (F.isMaterializable()) {
2170  // Function has a body somewhere we can't see.
2171  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2172  MDs.empty() ? nullptr : MDs.front().second);
2173  } else if (F.isDeclaration()) {
2174  for (const auto &I : MDs) {
2175  AssertDI(I.first != LLVMContext::MD_dbg,
2176  "function declaration may not have a !dbg attachment", &F);
2177  Assert(I.first != LLVMContext::MD_prof,
2178  "function declaration may not have a !prof attachment", &F);
2179 
2180  // Verify the metadata itself.
2181  visitMDNode(*I.second);
2182  }
2183  Assert(!F.hasPersonalityFn(),
2184  "Function declaration shouldn't have a personality routine", &F);
2185  } else {
2186  // Verify that this function (which has a body) is not named "llvm.*". It
2187  // is not legal to define intrinsics.
2188  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2189 
2190  // Check the entry node
2191  const BasicBlock *Entry = &F.getEntryBlock();
2192  Assert(pred_empty(Entry),
2193  "Entry block to function must not have predecessors!", Entry);
2194 
2195  // The address of the entry block cannot be taken, unless it is dead.
2196  if (Entry->hasAddressTaken()) {
2197  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2198  "blockaddress may not be used with the entry block!", Entry);
2199  }
2200 
2201  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2202  // Visit metadata attachments.
2203  for (const auto &I : MDs) {
2204  // Verify that the attachment is legal.
2205  switch (I.first) {
2206  default:
2207  break;
2208  case LLVMContext::MD_dbg: {
2209  ++NumDebugAttachments;
2210  AssertDI(NumDebugAttachments == 1,
2211  "function must have a single !dbg attachment", &F, I.second);
2212  AssertDI(isa<DISubprogram>(I.second),
2213  "function !dbg attachment must be a subprogram", &F, I.second);
2214  auto *SP = cast<DISubprogram>(I.second);
2215  const Function *&AttachedTo = DISubprogramAttachments[SP];
2216  AssertDI(!AttachedTo || AttachedTo == &F,
2217  "DISubprogram attached to more than one function", SP, &F);
2218  AttachedTo = &F;
2219  break;
2220  }
2221  case LLVMContext::MD_prof:
2222  ++NumProfAttachments;
2223  Assert(NumProfAttachments == 1,
2224  "function must have a single !prof attachment", &F, I.second);
2225  break;
2226  }
2227 
2228  // Verify the metadata itself.
2229  visitMDNode(*I.second);
2230  }
2231  }
2232 
2233  // If this function is actually an intrinsic, verify that it is only used in
2234  // direct call/invokes, never having its "address taken".
2235  // Only do this if the module is materialized, otherwise we don't have all the
2236  // uses.
2237  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2238  const User *U;
2239  if (F.hasAddressTaken(&U))
2240  Assert(false, "Invalid user of intrinsic instruction!", U);
2241  }
2242 
2243  auto *N = F.getSubprogram();
2244  HasDebugInfo = (N != nullptr);
2245  if (!HasDebugInfo)
2246  return;
2247 
2248  // Check that all !dbg attachments lead to back to N (or, at least, another
2249  // subprogram that describes the same function).
2250  //
2251  // FIXME: Check this incrementally while visiting !dbg attachments.
2252  // FIXME: Only check when N is the canonical subprogram for F.
2254  for (auto &BB : F)
2255  for (auto &I : BB) {
2256  // Be careful about using DILocation here since we might be dealing with
2257  // broken code (this is the Verifier after all).
2258  DILocation *DL =
2259  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2260  if (!DL)
2261  continue;
2262  if (!Seen.insert(DL).second)
2263  continue;
2264 
2265  DILocalScope *Scope = DL->getInlinedAtScope();
2266  if (Scope && !Seen.insert(Scope).second)
2267  continue;
2268 
2269  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2270 
2271  // Scope and SP could be the same MDNode and we don't want to skip
2272  // validation in that case
2273  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2274  continue;
2275 
2276  // FIXME: Once N is canonical, check "SP == &N".
2277  AssertDI(SP->describes(&F),
2278  "!dbg attachment points at wrong subprogram for function", N, &F,
2279  &I, DL, Scope, SP);
2280  }
2281 }
2282 
2283 // verifyBasicBlock - Verify that a basic block is well formed...
2284 //
2285 void Verifier::visitBasicBlock(BasicBlock &BB) {
2286  InstsInThisBlock.clear();
2287 
2288  // Ensure that basic blocks have terminators!
2289  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2290 
2291  // Check constraints that this basic block imposes on all of the PHI nodes in
2292  // it.
2293  if (isa<PHINode>(BB.front())) {
2296  llvm::sort(Preds.begin(), Preds.end());
2297  for (const PHINode &PN : BB.phis()) {
2298  // Ensure that PHI nodes have at least one entry!
2299  Assert(PN.getNumIncomingValues() != 0,
2300  "PHI nodes must have at least one entry. If the block is dead, "
2301  "the PHI should be removed!",
2302  &PN);
2303  Assert(PN.getNumIncomingValues() == Preds.size(),
2304  "PHINode should have one entry for each predecessor of its "
2305  "parent basic block!",
2306  &PN);
2307 
2308  // Get and sort all incoming values in the PHI node...
2309  Values.clear();
2310  Values.reserve(PN.getNumIncomingValues());
2311  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2312  Values.push_back(
2313  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2314  llvm::sort(Values.begin(), Values.end());
2315 
2316  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2317  // Check to make sure that if there is more than one entry for a
2318  // particular basic block in this PHI node, that the incoming values are
2319  // all identical.
2320  //
2321  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2322  Values[i].second == Values[i - 1].second,
2323  "PHI node has multiple entries for the same basic block with "
2324  "different incoming values!",
2325  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2326 
2327  // Check to make sure that the predecessors and PHI node entries are
2328  // matched up.
2329  Assert(Values[i].first == Preds[i],
2330  "PHI node entries do not match predecessors!", &PN,
2331  Values[i].first, Preds[i]);
2332  }
2333  }
2334  }
2335 
2336  // Check that all instructions have their parent pointers set up correctly.
2337  for (auto &I : BB)
2338  {
2339  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2340  }
2341 }
2342 
2343 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2344  // Ensure that terminators only exist at the end of the basic block.
2345  Assert(&I == I.getParent()->getTerminator(),
2346  "Terminator found in the middle of a basic block!", I.getParent());
2347  visitInstruction(I);
2348 }
2349 
2350 void Verifier::visitBranchInst(BranchInst &BI) {
2351  if (BI.isConditional()) {
2352  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2353  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2354  }
2355  visitTerminatorInst(BI);
2356 }
2357 
2358 void Verifier::visitReturnInst(ReturnInst &RI) {
2359  Function *F = RI.getParent()->getParent();
2360  unsigned N = RI.getNumOperands();
2361  if (F->getReturnType()->isVoidTy())
2362  Assert(N == 0,
2363  "Found return instr that returns non-void in Function of void "
2364  "return type!",
2365  &RI, F->getReturnType());
2366  else
2367  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2368  "Function return type does not match operand "
2369  "type of return inst!",
2370  &RI, F->getReturnType());
2371 
2372  // Check to make sure that the return value has necessary properties for
2373  // terminators...
2374  visitTerminatorInst(RI);
2375 }
2376 
2377 void Verifier::visitSwitchInst(SwitchInst &SI) {
2378  // Check to make sure that all of the constants in the switch instruction
2379  // have the same type as the switched-on value.
2380  Type *SwitchTy = SI.getCondition()->getType();
2382  for (auto &Case : SI.cases()) {
2383  Assert(Case.getCaseValue()->getType() == SwitchTy,
2384  "Switch constants must all be same type as switch value!", &SI);
2385  Assert(Constants.insert(Case.getCaseValue()).second,
2386  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2387  }
2388 
2389  visitTerminatorInst(SI);
2390 }
2391 
2392 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2393  Assert(BI.getAddress()->getType()->isPointerTy(),
2394  "Indirectbr operand must have pointer type!", &BI);
2395  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2396  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2397  "Indirectbr destinations must all have pointer type!", &BI);
2398 
2399  visitTerminatorInst(BI);
2400 }
2401 
2402 void Verifier::visitSelectInst(SelectInst &SI) {
2404  SI.getOperand(2)),
2405  "Invalid operands for select instruction!", &SI);
2406 
2407  Assert(SI.getTrueValue()->getType() == SI.getType(),
2408  "Select values must have same type as select instruction!", &SI);
2409  visitInstruction(SI);
2410 }
2411 
2412 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2413 /// a pass, if any exist, it's an error.
2414 ///
2415 void Verifier::visitUserOp1(Instruction &I) {
2416  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2417 }
2418 
2419 void Verifier::visitTruncInst(TruncInst &I) {
2420  // Get the source and destination types
2421  Type *SrcTy = I.getOperand(0)->getType();
2422  Type *DestTy = I.getType();
2423 
2424  // Get the size of the types in bits, we'll need this later
2425  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427 
2428  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2429  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2430  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2431  "trunc source and destination must both be a vector or neither", &I);
2432  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2433 
2434  visitInstruction(I);
2435 }
2436 
2437 void Verifier::visitZExtInst(ZExtInst &I) {
2438  // Get the source and destination types
2439  Type *SrcTy = I.getOperand(0)->getType();
2440  Type *DestTy = I.getType();
2441 
2442  // Get the size of the types in bits, we'll need this later
2443  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2444  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2445  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2446  "zext source and destination must both be a vector or neither", &I);
2447  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2448  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2449 
2450  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2451 
2452  visitInstruction(I);
2453 }
2454 
2455 void Verifier::visitSExtInst(SExtInst &I) {
2456  // Get the source and destination types
2457  Type *SrcTy = I.getOperand(0)->getType();
2458  Type *DestTy = I.getType();
2459 
2460  // Get the size of the types in bits, we'll need this later
2461  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2462  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2463 
2464  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2465  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2466  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2467  "sext source and destination must both be a vector or neither", &I);
2468  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2469 
2470  visitInstruction(I);
2471 }
2472 
2473 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2474  // Get the source and destination types
2475  Type *SrcTy = I.getOperand(0)->getType();
2476  Type *DestTy = I.getType();
2477  // Get the size of the types in bits, we'll need this later
2478  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2479  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2480 
2481  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2482  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2483  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2484  "fptrunc source and destination must both be a vector or neither", &I);
2485  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2486 
2487  visitInstruction(I);
2488 }
2489 
2490 void Verifier::visitFPExtInst(FPExtInst &I) {
2491  // Get the source and destination types
2492  Type *SrcTy = I.getOperand(0)->getType();
2493  Type *DestTy = I.getType();
2494 
2495  // Get the size of the types in bits, we'll need this later
2496  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2497  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2498 
2499  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2500  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2501  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2502  "fpext source and destination must both be a vector or neither", &I);
2503  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2504 
2505  visitInstruction(I);
2506 }
2507 
2508 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2509  // Get the source and destination types
2510  Type *SrcTy = I.getOperand(0)->getType();
2511  Type *DestTy = I.getType();
2512 
2513  bool SrcVec = SrcTy->isVectorTy();
2514  bool DstVec = DestTy->isVectorTy();
2515 
2516  Assert(SrcVec == DstVec,
2517  "UIToFP source and dest must both be vector or scalar", &I);
2518  Assert(SrcTy->isIntOrIntVectorTy(),
2519  "UIToFP source must be integer or integer vector", &I);
2520  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2521  &I);
2522 
2523  if (SrcVec && DstVec)
2524  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2525  cast<VectorType>(DestTy)->getNumElements(),
2526  "UIToFP source and dest vector length mismatch", &I);
2527 
2528  visitInstruction(I);
2529 }
2530 
2531 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2532  // Get the source and destination types
2533  Type *SrcTy = I.getOperand(0)->getType();
2534  Type *DestTy = I.getType();
2535 
2536  bool SrcVec = SrcTy->isVectorTy();
2537  bool DstVec = DestTy->isVectorTy();
2538 
2539  Assert(SrcVec == DstVec,
2540  "SIToFP source and dest must both be vector or scalar", &I);
2541  Assert(SrcTy->isIntOrIntVectorTy(),
2542  "SIToFP source must be integer or integer vector", &I);
2543  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2544  &I);
2545 
2546  if (SrcVec && DstVec)
2547  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2548  cast<VectorType>(DestTy)->getNumElements(),
2549  "SIToFP source and dest vector length mismatch", &I);
2550 
2551  visitInstruction(I);
2552 }
2553 
2554 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2555  // Get the source and destination types
2556  Type *SrcTy = I.getOperand(0)->getType();
2557  Type *DestTy = I.getType();
2558 
2559  bool SrcVec = SrcTy->isVectorTy();
2560  bool DstVec = DestTy->isVectorTy();
2561 
2562  Assert(SrcVec == DstVec,
2563  "FPToUI source and dest must both be vector or scalar", &I);
2564  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2565  &I);
2566  Assert(DestTy->isIntOrIntVectorTy(),
2567  "FPToUI result must be integer or integer vector", &I);
2568 
2569  if (SrcVec && DstVec)
2570  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2571  cast<VectorType>(DestTy)->getNumElements(),
2572  "FPToUI source and dest vector length mismatch", &I);
2573 
2574  visitInstruction(I);
2575 }
2576 
2577 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2578  // Get the source and destination types
2579  Type *SrcTy = I.getOperand(0)->getType();
2580  Type *DestTy = I.getType();
2581 
2582  bool SrcVec = SrcTy->isVectorTy();
2583  bool DstVec = DestTy->isVectorTy();
2584 
2585  Assert(SrcVec == DstVec,
2586  "FPToSI source and dest must both be vector or scalar", &I);
2587  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2588  &I);
2589  Assert(DestTy->isIntOrIntVectorTy(),
2590  "FPToSI result must be integer or integer vector", &I);
2591 
2592  if (SrcVec && DstVec)
2593  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2594  cast<VectorType>(DestTy)->getNumElements(),
2595  "FPToSI source and dest vector length mismatch", &I);
2596 
2597  visitInstruction(I);
2598 }
2599 
2600 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2601  // Get the source and destination types
2602  Type *SrcTy = I.getOperand(0)->getType();
2603  Type *DestTy = I.getType();
2604 
2605  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2606 
2607  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2609  "ptrtoint not supported for non-integral pointers");
2610 
2611  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2612  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2613  &I);
2614 
2615  if (SrcTy->isVectorTy()) {
2616  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2617  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2618  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2619  "PtrToInt Vector width mismatch", &I);
2620  }
2621 
2622  visitInstruction(I);
2623 }
2624 
2625 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2626  // Get the source and destination types
2627  Type *SrcTy = I.getOperand(0)->getType();
2628  Type *DestTy = I.getType();
2629 
2630  Assert(SrcTy->isIntOrIntVectorTy(),
2631  "IntToPtr source must be an integral", &I);
2632  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2633 
2634  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2636  "inttoptr not supported for non-integral pointers");
2637 
2638  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2639  &I);
2640  if (SrcTy->isVectorTy()) {
2641  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2642  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2643  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2644  "IntToPtr Vector width mismatch", &I);
2645  }
2646  visitInstruction(I);
2647 }
2648 
2649 void Verifier::visitBitCastInst(BitCastInst &I) {
2650  Assert(
2651  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2652  "Invalid bitcast", &I);
2653  visitInstruction(I);
2654 }
2655 
2656 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2657  Type *SrcTy = I.getOperand(0)->getType();
2658  Type *DestTy = I.getType();
2659 
2660  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2661  &I);
2662  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2663  &I);
2665  "AddrSpaceCast must be between different address spaces", &I);
2666  if (SrcTy->isVectorTy())
2667  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2668  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2669  visitInstruction(I);
2670 }
2671 
2672 /// visitPHINode - Ensure that a PHI node is well formed.
2673 ///
2674 void Verifier::visitPHINode(PHINode &PN) {
2675  // Ensure that the PHI nodes are all grouped together at the top of the block.
2676  // This can be tested by checking whether the instruction before this is
2677  // either nonexistent (because this is begin()) or is a PHI node. If not,
2678  // then there is some other instruction before a PHI.
2679  Assert(&PN == &PN.getParent()->front() ||
2680  isa<PHINode>(--BasicBlock::iterator(&PN)),
2681  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2682 
2683  // Check that a PHI doesn't yield a Token.
2684  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2685 
2686  // Check that all of the values of the PHI node have the same type as the
2687  // result, and that the incoming blocks are really basic blocks.
2688  for (Value *IncValue : PN.incoming_values()) {
2689  Assert(PN.getType() == IncValue->getType(),
2690  "PHI node operands are not the same type as the result!", &PN);
2691  }
2692 
2693  // All other PHI node constraints are checked in the visitBasicBlock method.
2694 
2695  visitInstruction(PN);
2696 }
2697 
2698 void Verifier::verifyCallSite(CallSite CS) {
2699  Instruction *I = CS.getInstruction();
2700 
2702  "Called function must be a pointer!", I);
2703  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2704 
2705  Assert(FPTy->getElementType()->isFunctionTy(),
2706  "Called function is not pointer to function type!", I);
2707 
2708  Assert(FPTy->getElementType() == CS.getFunctionType(),
2709  "Called function is not the same type as the call!", I);
2710 
2711  FunctionType *FTy = CS.getFunctionType();
2712 
2713  // Verify that the correct number of arguments are being passed
2714  if (FTy->isVarArg())
2715  Assert(CS.arg_size() >= FTy->getNumParams(),
2716  "Called function requires more parameters than were provided!", I);
2717  else
2718  Assert(CS.arg_size() == FTy->getNumParams(),
2719  "Incorrect number of arguments passed to called function!", I);
2720 
2721  // Verify that all arguments to the call match the function type.
2722  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2723  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2724  "Call parameter type does not match function signature!",
2725  CS.getArgument(i), FTy->getParamType(i), I);
2726 
2727  AttributeList Attrs = CS.getAttributes();
2728 
2729  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2730  "Attribute after last parameter!", I);
2731 
2732  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2733  // Don't allow speculatable on call sites, unless the underlying function
2734  // declaration is also speculatable.
2735  Function *Callee
2737  Assert(Callee && Callee->isSpeculatable(),
2738  "speculatable attribute may not apply to call sites", I);
2739  }
2740 
2741  // Verify call attributes.
2742  verifyFunctionAttrs(FTy, Attrs, I);
2743 
2744  // Conservatively check the inalloca argument.
2745  // We have a bug if we can find that there is an underlying alloca without
2746  // inalloca.
2747  if (CS.hasInAllocaArgument()) {
2748  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2749  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2750  Assert(AI->isUsedWithInAlloca(),
2751  "inalloca argument for call has mismatched alloca", AI, I);
2752  }
2753 
2754  // For each argument of the callsite, if it has the swifterror argument,
2755  // make sure the underlying alloca/parameter it comes from has a swifterror as
2756  // well.
2757  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2758  if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2759  Value *SwiftErrorArg = CS.getArgument(i);
2760  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2761  Assert(AI->isSwiftError(),
2762  "swifterror argument for call has mismatched alloca", AI, I);
2763  continue;
2764  }
2765  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2766  Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2767  Assert(ArgI->hasSwiftErrorAttr(),
2768  "swifterror argument for call has mismatched parameter", ArgI, I);
2769  }
2770 
2771  if (FTy->isVarArg()) {
2772  // FIXME? is 'nest' even legal here?
2773  bool SawNest = false;
2774  bool SawReturned = false;
2775 
2776  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2777  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2778  SawNest = true;
2779  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2780  SawReturned = true;
2781  }
2782 
2783  // Check attributes on the varargs part.
2784  for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2785  Type *Ty = CS.getArgument(Idx)->getType();
2786  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2787  verifyParameterAttrs(ArgAttrs, Ty, I);
2788 
2789  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2790  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2791  SawNest = true;
2792  }
2793 
2794  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2795  Assert(!SawReturned, "More than one parameter has attribute returned!",
2796  I);
2797  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2798  "Incompatible argument and return types for 'returned' "
2799  "attribute",
2800  I);
2801  SawReturned = true;
2802  }
2803 
2804  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2805  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2806 
2807  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2808  Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2809  I);
2810  }
2811  }
2812 
2813  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2814  if (CS.getCalledFunction() == nullptr ||
2815  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2816  for (Type *ParamTy : FTy->params()) {
2817  Assert(!ParamTy->isMetadataTy(),
2818  "Function has metadata parameter but isn't an intrinsic", I);
2819  Assert(!ParamTy->isTokenTy(),
2820  "Function has token parameter but isn't an intrinsic", I);
2821  }
2822  }
2823 
2824  // Verify that indirect calls don't return tokens.
2825  if (CS.getCalledFunction() == nullptr)
2826  Assert(!FTy->getReturnType()->isTokenTy(),
2827  "Return type cannot be token for indirect call!");
2828 
2829  if (Function *F = CS.getCalledFunction())
2831  visitIntrinsicCallSite(ID, CS);
2832 
2833  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2834  // at most one "gc-transition" operand bundle.
2835  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2836  FoundGCTransitionBundle = false;
2837  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2839  uint32_t Tag = BU.getTagID();
2840  if (Tag == LLVMContext::OB_deopt) {
2841  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2842  FoundDeoptBundle = true;
2843  } else if (Tag == LLVMContext::OB_gc_transition) {
2844  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2845  I);
2846  FoundGCTransitionBundle = true;
2847  } else if (Tag == LLVMContext::OB_funclet) {
2848  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2849  FoundFuncletBundle = true;
2850  Assert(BU.Inputs.size() == 1,
2851  "Expected exactly one funclet bundle operand", I);
2852  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2853  "Funclet bundle operands should correspond to a FuncletPadInst",
2854  I);
2855  }
2856  }
2857 
2858  // Verify that each inlinable callsite of a debug-info-bearing function in a
2859  // debug-info-bearing function has a debug location attached to it. Failure to
2860  // do so causes assertion failures when the inliner sets up inline scope info.
2861  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2863  AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2864  "debug info must have a !dbg location",
2865  I);
2866 
2867  visitInstruction(*I);
2868 }
2869 
2870 /// Two types are "congruent" if they are identical, or if they are both pointer
2871 /// types with different pointee types and the same address space.
2872 static bool isTypeCongruent(Type *L, Type *R) {
2873  if (L == R)
2874  return true;
2877  if (!PL || !PR)
2878  return false;
2879  return PL->getAddressSpace() == PR->getAddressSpace();
2880 }
2881 
2883  static const Attribute::AttrKind ABIAttrs[] = {
2884  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2885  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2886  Attribute::SwiftError};
2887  AttrBuilder Copy;
2888  for (auto AK : ABIAttrs) {
2889  if (Attrs.hasParamAttribute(I, AK))
2890  Copy.addAttribute(AK);
2891  }
2892  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2893  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2894  return Copy;
2895 }
2896 
2897 void Verifier::verifyMustTailCall(CallInst &CI) {
2898  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2899 
2900  // - The caller and callee prototypes must match. Pointer types of
2901  // parameters or return types may differ in pointee type, but not
2902  // address space.
2903  Function *F = CI.getParent()->getParent();
2904  FunctionType *CallerTy = F->getFunctionType();
2905  FunctionType *CalleeTy = CI.getFunctionType();
2906  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2907  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2908  "cannot guarantee tail call due to mismatched parameter counts",
2909  &CI);
2910  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2911  Assert(
2912  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2913  "cannot guarantee tail call due to mismatched parameter types", &CI);
2914  }
2915  }
2916  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2917  "cannot guarantee tail call due to mismatched varargs", &CI);
2918  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2919  "cannot guarantee tail call due to mismatched return types", &CI);
2920 
2921  // - The calling conventions of the caller and callee must match.
2922  Assert(F->getCallingConv() == CI.getCallingConv(),
2923  "cannot guarantee tail call due to mismatched calling conv", &CI);
2924 
2925  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2926  // returned, and inalloca, must match.
2927  AttributeList CallerAttrs = F->getAttributes();
2928  AttributeList CalleeAttrs = CI.getAttributes();
2929  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2930  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2931  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2932  Assert(CallerABIAttrs == CalleeABIAttrs,
2933  "cannot guarantee tail call due to mismatched ABI impacting "
2934  "function attributes",
2935  &CI, CI.getOperand(I));
2936  }
2937 
2938  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2939  // or a pointer bitcast followed by a ret instruction.
2940  // - The ret instruction must return the (possibly bitcasted) value
2941  // produced by the call or void.
2942  Value *RetVal = &CI;
2943  Instruction *Next = CI.getNextNode();
2944 
2945  // Handle the optional bitcast.
2946  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2947  Assert(BI->getOperand(0) == RetVal,
2948  "bitcast following musttail call must use the call", BI);
2949  RetVal = BI;
2950  Next = BI->getNextNode();
2951  }
2952 
2953  // Check the return.
2954  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2955  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2956  &CI);
2957  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2958  "musttail call result must be returned", Ret);
2959 }
2960 
2961 void Verifier::visitCallInst(CallInst &CI) {
2962  verifyCallSite(&CI);
2963 
2964  if (CI.isMustTailCall())
2965  verifyMustTailCall(CI);
2966 }
2967 
2968 void Verifier::visitInvokeInst(InvokeInst &II) {
2969  verifyCallSite(&II);
2970 
2971  // Verify that the first non-PHI instruction of the unwind destination is an
2972  // exception handling instruction.
2973  Assert(
2974  II.getUnwindDest()->isEHPad(),
2975  "The unwind destination does not have an exception handling instruction!",
2976  &II);
2977 
2978  visitTerminatorInst(II);
2979 }
2980 
2981 /// visitBinaryOperator - Check that both arguments to the binary operator are
2982 /// of the same type!
2983 ///
2984 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2985  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2986  "Both operands to a binary operator are not of the same type!", &B);
2987 
2988  switch (B.getOpcode()) {
2989  // Check that integer arithmetic operators are only used with
2990  // integral operands.
2991  case Instruction::Add:
2992  case Instruction::Sub:
2993  case Instruction::Mul:
2994  case Instruction::SDiv:
2995  case Instruction::UDiv:
2996  case Instruction::SRem:
2997  case Instruction::URem:
2999  "Integer arithmetic operators only work with integral types!", &B);
3000  Assert(B.getType() == B.getOperand(0)->getType(),
3001  "Integer arithmetic operators must have same type "
3002  "for operands and result!",
3003  &B);
3004  break;
3005  // Check that floating-point arithmetic operators are only used with
3006  // floating-point operands.
3007  case Instruction::FAdd:
3008  case Instruction::FSub:
3009  case Instruction::FMul:
3010  case Instruction::FDiv:
3011  case Instruction::FRem:
3013  "Floating-point arithmetic operators only work with "
3014  "floating-point types!",
3015  &B);
3016  Assert(B.getType() == B.getOperand(0)->getType(),
3017  "Floating-point arithmetic operators must have same type "
3018  "for operands and result!",
3019  &B);
3020  break;
3021  // Check that logical operators are only used with integral operands.
3022  case Instruction::And:
3023  case Instruction::Or:
3024  case Instruction::Xor:
3026  "Logical operators only work with integral types!", &B);
3027  Assert(B.getType() == B.getOperand(0)->getType(),
3028  "Logical operators must have same type for operands and result!",
3029  &B);
3030  break;
3031  case Instruction::Shl:
3032  case Instruction::LShr:
3033  case Instruction::AShr:
3035  "Shifts only work with integral types!", &B);
3036  Assert(B.getType() == B.getOperand(0)->getType(),
3037  "Shift return type must be same as operands!", &B);
3038  break;
3039  default:
3040  llvm_unreachable("Unknown BinaryOperator opcode!");
3041  }
3042 
3043  visitInstruction(B);
3044 }
3045 
3046 void Verifier::visitICmpInst(ICmpInst &IC) {
3047  // Check that the operands are the same type
3048  Type *Op0Ty = IC.getOperand(0)->getType();
3049  Type *Op1Ty = IC.getOperand(1)->getType();
3050  Assert(Op0Ty == Op1Ty,
3051  "Both operands to ICmp instruction are not of the same type!", &IC);
3052  // Check that the operands are the right type
3053  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3054  "Invalid operand types for ICmp instruction", &IC);
3055  // Check that the predicate is valid.
3056  Assert(IC.isIntPredicate(),
3057  "Invalid predicate in ICmp instruction!", &IC);
3058 
3059  visitInstruction(IC);
3060 }
3061 
3062 void Verifier::visitFCmpInst(FCmpInst &FC) {
3063  // Check that the operands are the same type
3064  Type *Op0Ty = FC.getOperand(0)->getType();
3065  Type *Op1Ty = FC.getOperand(1)->getType();
3066  Assert(Op0Ty == Op1Ty,
3067  "Both operands to FCmp instruction are not of the same type!", &FC);
3068  // Check that the operands are the right type
3069  Assert(Op0Ty->isFPOrFPVectorTy(),
3070  "Invalid operand types for FCmp instruction", &FC);
3071  // Check that the predicate is valid.
3072  Assert(FC.isFPPredicate(),
3073  "Invalid predicate in FCmp instruction!", &FC);
3074 
3075  visitInstruction(FC);
3076 }
3077 
3078 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3079  Assert(
3081  "Invalid extractelement operands!", &EI);
3082  visitInstruction(EI);
3083 }
3084 
3085 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3087  IE.getOperand(2)),
3088  "Invalid insertelement operands!", &IE);
3089  visitInstruction(IE);
3090 }
3091 
3092 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3094  SV.getOperand(2)),
3095  "Invalid shufflevector operands!", &SV);
3096  visitInstruction(SV);
3097 }
3098 
3099 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3100  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3101 
3102  Assert(isa<PointerType>(TargetTy),
3103  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3104  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3105 
3106  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3107  Assert(all_of(
3108  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3109  "GEP indexes must be integers", &GEP);
3110  Type *ElTy =
3112  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3113 
3114  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3115  GEP.getResultElementType() == ElTy,
3116  "GEP is not of right type for indices!", &GEP, ElTy);
3117 
3118  if (GEP.getType()->isVectorTy()) {
3119  // Additional checks for vector GEPs.
3120  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3121  if (GEP.getPointerOperandType()->isVectorTy())
3122  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3123  "Vector GEP result width doesn't match operand's", &GEP);
3124  for (Value *Idx : Idxs) {
3125  Type *IndexTy = Idx->getType();
3126  if (IndexTy->isVectorTy()) {
3127  unsigned IndexWidth = IndexTy->getVectorNumElements();
3128  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3129  }
3130  Assert(IndexTy->isIntOrIntVectorTy(),
3131  "All GEP indices should be of integer type");
3132  }
3133  }
3134  visitInstruction(GEP);
3135 }
3136 
3137 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3138  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3139 }
3140 
3141 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3142  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3143  "precondition violation");
3144 
3145  unsigned NumOperands = Range->getNumOperands();
3146  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3147  unsigned NumRanges = NumOperands / 2;
3148  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3149 
3150  ConstantRange LastRange(1); // Dummy initial value
3151  for (unsigned i = 0; i < NumRanges; ++i) {
3152  ConstantInt *Low =
3153  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3154  Assert(Low, "The lower limit must be an integer!", Low);
3155  ConstantInt *High =
3156  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3157  Assert(High, "The upper limit must be an integer!", High);
3158  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3159  "Range types must match instruction type!", &I);
3160 
3161  APInt HighV = High->getValue();
3162  APInt LowV = Low->getValue();
3163  ConstantRange CurRange(LowV, HighV);
3164  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3165  "Range must not be empty!", Range);
3166  if (i != 0) {
3167  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3168  "Intervals are overlapping", Range);
3169  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3170  Range);
3171  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3172  Range);
3173  }
3174  LastRange = ConstantRange(LowV, HighV);
3175  }
3176  if (NumRanges > 2) {
3177  APInt FirstLow =
3178  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3179  APInt FirstHigh =
3180  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3181  ConstantRange FirstRange(FirstLow, FirstHigh);
3182  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3183  "Intervals are overlapping", Range);
3184  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3185  Range);
3186  }
3187 }
3188 
3189 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3190  unsigned Size = DL.getTypeSizeInBits(Ty);
3191  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3192  Assert(!(Size & (Size - 1)),
3193  "atomic memory access' operand must have a power-of-two size", Ty, I);
3194 }
3195 
3196 void Verifier::visitLoadInst(LoadInst &LI) {
3198  Assert(PTy, "Load operand must be a pointer.", &LI);
3199  Type *ElTy = LI.getType();
3201  "huge alignment values are unsupported", &LI);
3202  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3203  if (LI.isAtomic()) {
3206  "Load cannot have Release ordering", &LI);
3207  Assert(LI.getAlignment() != 0,
3208  "Atomic load must specify explicit alignment", &LI);
3209  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3210  "atomic load operand must have integer, pointer, or floating point "
3211  "type!",
3212  ElTy, &LI);
3213  checkAtomicMemAccessSize(ElTy, &LI);
3214  } else {
3216  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3217  }
3218 
3219  visitInstruction(LI);
3220 }
3221 
3222 void Verifier::visitStoreInst(StoreInst &SI) {
3224  Assert(PTy, "Store operand must be a pointer.", &SI);
3225  Type *ElTy = PTy->getElementType();
3226  Assert(ElTy == SI.getOperand(0)->getType(),
3227  "Stored value type does not match pointer operand type!", &SI, ElTy);
3229  "huge alignment values are unsupported", &SI);
3230  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3231  if (SI.isAtomic()) {
3234  "Store cannot have Acquire ordering", &SI);
3235  Assert(SI.getAlignment() != 0,
3236  "Atomic store must specify explicit alignment", &SI);
3237  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3238  "atomic store operand must have integer, pointer, or floating point "
3239  "type!",
3240  ElTy, &SI);
3241  checkAtomicMemAccessSize(ElTy, &SI);
3242  } else {
3244  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3245  }
3246  visitInstruction(SI);
3247 }
3248 
3249 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3250 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3251  const Value *SwiftErrorVal) {
3252  unsigned Idx = 0;
3253  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3254  I != E; ++I, ++Idx) {
3255  if (*I == SwiftErrorVal) {
3256  Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3257  "swifterror value when used in a callsite should be marked "
3258  "with swifterror attribute",
3259  SwiftErrorVal, CS);
3260  }
3261  }
3262 }
3263 
3264 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3265  // Check that swifterror value is only used by loads, stores, or as
3266  // a swifterror argument.
3267  for (const User *U : SwiftErrorVal->users()) {
3268  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3269  isa<InvokeInst>(U),
3270  "swifterror value can only be loaded and stored from, or "
3271  "as a swifterror argument!",
3272  SwiftErrorVal, U);
3273  // If it is used by a store, check it is the second operand.
3274  if (auto StoreI = dyn_cast<StoreInst>(U))
3275  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3276  "swifterror value should be the second operand when used "
3277  "by stores", SwiftErrorVal, U);
3278  if (auto CallI = dyn_cast<CallInst>(U))
3279  verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3280  if (auto II = dyn_cast<InvokeInst>(U))
3281  verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3282  }
3283 }
3284 
3285 void Verifier::visitAllocaInst(AllocaInst &AI) {
3286  SmallPtrSet<Type*, 4> Visited;
3287  PointerType *PTy = AI.getType();
3288  // TODO: Relax this restriction?
3290  "Allocation instruction pointer not in the stack address space!",
3291  &AI);
3292  Assert(AI.getAllocatedType()->isSized(&Visited),
3293  "Cannot allocate unsized type", &AI);
3295  "Alloca array size must have integer type", &AI);
3297  "huge alignment values are unsupported", &AI);
3298 
3299  if (AI.isSwiftError()) {
3300  verifySwiftErrorValue(&AI);
3301  }
3302 
3303  visitInstruction(AI);
3304 }
3305 
3306 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3307 
3308  // FIXME: more conditions???
3310  "cmpxchg instructions must be atomic.", &CXI);
3312  "cmpxchg instructions must be atomic.", &CXI);
3314  "cmpxchg instructions cannot be unordered.", &CXI);
3316  "cmpxchg instructions cannot be unordered.", &CXI);
3318  "cmpxchg instructions failure argument shall be no stronger than the "
3319  "success argument",
3320  &CXI);
3323  "cmpxchg failure ordering cannot include release semantics", &CXI);
3324 
3325  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3326  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3327  Type *ElTy = PTy->getElementType();
3328  Assert(ElTy->isIntOrPtrTy(),
3329  "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3330  checkAtomicMemAccessSize(ElTy, &CXI);
3331  Assert(ElTy == CXI.getOperand(1)->getType(),
3332  "Expected value type does not match pointer operand type!", &CXI,
3333  ElTy);
3334  Assert(ElTy == CXI.getOperand(2)->getType(),
3335  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3336  visitInstruction(CXI);
3337 }
3338 
3339 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3341  "atomicrmw instructions must be atomic.", &RMWI);
3343  "atomicrmw instructions cannot be unordered.", &RMWI);
3344  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3345  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3346  Type *ElTy = PTy->getElementType();
3347  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3348  &RMWI, ElTy);
3349  checkAtomicMemAccessSize(ElTy, &RMWI);
3350  Assert(ElTy == RMWI.getOperand(1)->getType(),
3351  "Argument value type does not match pointer operand type!", &RMWI,
3352  ElTy);
3355  "Invalid binary operation!", &RMWI);
3356  visitInstruction(RMWI);
3357 }
3358 
3359 void Verifier::visitFenceInst(FenceInst &FI) {
3360  const AtomicOrdering Ordering = FI.getOrdering();
3361  Assert(Ordering == AtomicOrdering::Acquire ||
3362  Ordering == AtomicOrdering::Release ||
3363  Ordering == AtomicOrdering::AcquireRelease ||
3365  "fence instructions may only have acquire, release, acq_rel, or "
3366  "seq_cst ordering.",
3367  &FI);
3368  visitInstruction(FI);
3369 }
3370 
3371 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3373  EVI.getIndices()) == EVI.getType(),
3374  "Invalid ExtractValueInst operands!", &EVI);
3375 
3376  visitInstruction(EVI);
3377 }
3378 
3379 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3381  IVI.getIndices()) ==
3382  IVI.getOperand(1)->getType(),
3383  "Invalid InsertValueInst operands!", &IVI);
3384 
3385  visitInstruction(IVI);
3386 }
3387 
3388 static Value *getParentPad(Value *EHPad) {
3389  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3390  return FPI->getParentPad();
3391 
3392  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3393 }
3394 
3395 void Verifier::visitEHPadPredecessors(Instruction &I) {
3396  assert(I.isEHPad());
3397 
3398  BasicBlock *BB = I.getParent();
3399  Function *F = BB->getParent();
3400 
3401  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3402 
3403  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3404  // The landingpad instruction defines its parent as a landing pad block. The
3405  // landing pad block may be branched to only by the unwind edge of an
3406  // invoke.
3407  for (BasicBlock *PredBB : predecessors(BB)) {
3408  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3409  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3410  "Block containing LandingPadInst must be jumped to "
3411  "only by the unwind edge of an invoke.",
3412  LPI);
3413  }
3414  return;
3415  }
3416  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3417  if (!pred_empty(BB))
3418  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3419  "Block containg CatchPadInst must be jumped to "
3420  "only by its catchswitch.",
3421  CPI);
3422  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3423  "Catchswitch cannot unwind to one of its catchpads",
3424  CPI->getCatchSwitch(), CPI);
3425  return;
3426  }
3427 
3428  // Verify that each pred has a legal terminator with a legal to/from EH
3429  // pad relationship.
3430  Instruction *ToPad = &I;
3431  Value *ToPadParent = getParentPad(ToPad);
3432  for (BasicBlock *PredBB : predecessors(BB)) {
3433  TerminatorInst *TI = PredBB->getTerminator();
3434  Value *FromPad;
3435  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3436  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3437  "EH pad must be jumped to via an unwind edge", ToPad, II);
3438  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3439  FromPad = Bundle->Inputs[0];
3440  else
3441  FromPad = ConstantTokenNone::get(II->getContext());
3442  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3443  FromPad = CRI->getOperand(0);
3444  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3445  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3446  FromPad = CSI;
3447  } else {
3448  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3449  }
3450 
3451  // The edge may exit from zero or more nested pads.
3452  SmallSet<Value *, 8> Seen;
3453  for (;; FromPad = getParentPad(FromPad)) {
3454  Assert(FromPad != ToPad,
3455  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3456  if (FromPad == ToPadParent) {
3457  // This is a legal unwind edge.
3458  break;
3459  }
3460  Assert(!isa<ConstantTokenNone>(FromPad),
3461  "A single unwind edge may only enter one EH pad", TI);
3462  Assert(Seen.insert(FromPad).second,
3463  "EH pad jumps through a cycle of pads", FromPad);
3464  }
3465  }
3466 }
3467 
3468 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3469  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3470  // isn't a cleanup.
3471  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3472  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3473 
3474  visitEHPadPredecessors(LPI);
3475 
3476  if (!LandingPadResultTy)
3477  LandingPadResultTy = LPI.getType();
3478  else
3479  Assert(LandingPadResultTy == LPI.getType(),
3480  "The landingpad instruction should have a consistent result type "
3481  "inside a function.",
3482  &LPI);
3483 
3484  Function *F = LPI.getParent()->getParent();
3485  Assert(F->hasPersonalityFn(),
3486  "LandingPadInst needs to be in a function with a personality.", &LPI);
3487 
3488  // The landingpad instruction must be the first non-PHI instruction in the
3489  // block.
3490  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3491  "LandingPadInst not the first non-PHI instruction in the block.",
3492  &LPI);
3493 
3494  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3495  Constant *Clause = LPI.getClause(i);
3496  if (LPI.isCatch(i)) {
3497  Assert(isa<PointerType>(Clause->getType()),
3498  "Catch operand does not have pointer type!", &LPI);
3499  } else {
3500  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3501  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3502  "Filter operand is not an array of constants!", &LPI);
3503  }
3504  }
3505 
3506  visitInstruction(LPI);
3507 }
3508 
3509 void Verifier::visitResumeInst(ResumeInst &RI) {
3511  "ResumeInst needs to be in a function with a personality.", &RI);
3512 
3513  if (!LandingPadResultTy)
3514  LandingPadResultTy = RI.getValue()->getType();
3515  else
3516  Assert(LandingPadResultTy == RI.getValue()->getType(),
3517  "The resume instruction should have a consistent result type "
3518  "inside a function.",
3519  &RI);
3520 
3521  visitTerminatorInst(RI);
3522 }
3523 
3524 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3525  BasicBlock *BB = CPI.getParent();
3526 
3527  Function *F = BB->getParent();
3528  Assert(F->hasPersonalityFn(),
3529  "CatchPadInst needs to be in a function with a personality.", &CPI);
3530 
3531  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3532  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3533  CPI.getParentPad());
3534 
3535  // The catchpad instruction must be the first non-PHI instruction in the
3536  // block.
3537  Assert(BB->getFirstNonPHI() == &CPI,
3538  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3539 
3540  visitEHPadPredecessors(CPI);
3541  visitFuncletPadInst(CPI);
3542 }
3543 
3544 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3545  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3546  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3547  CatchReturn.getOperand(0));
3548 
3549  visitTerminatorInst(CatchReturn);
3550 }
3551 
3552 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3553  BasicBlock *BB = CPI.getParent();
3554 
3555  Function *F = BB->getParent();
3556  Assert(F->hasPersonalityFn(),
3557  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3558 
3559  // The cleanuppad instruction must be the first non-PHI instruction in the
3560  // block.
3561  Assert(BB->getFirstNonPHI() == &CPI,
3562  "CleanupPadInst not the first non-PHI instruction in the block.",
3563  &CPI);
3564 
3565  auto *ParentPad = CPI.getParentPad();
3566  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3567  "CleanupPadInst has an invalid parent.", &CPI);
3568 
3569  visitEHPadPredecessors(CPI);
3570  visitFuncletPadInst(CPI);
3571 }
3572 
3573 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3574  User *FirstUser = nullptr;
3575  Value *FirstUnwindPad = nullptr;
3576  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3578 
3579  while (!Worklist.empty()) {
3580  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3581  Assert(Seen.insert(CurrentPad).second,
3582  "FuncletPadInst must not be nested within itself", CurrentPad);
3583  Value *UnresolvedAncestorPad = nullptr;
3584  for (User *U : CurrentPad->users()) {
3585  BasicBlock *UnwindDest;
3586  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3587  UnwindDest = CRI->getUnwindDest();
3588  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3589  // We allow catchswitch unwind to caller to nest
3590  // within an outer pad that unwinds somewhere else,
3591  // because catchswitch doesn't have a nounwind variant.
3592  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3593  if (CSI->unwindsToCaller())
3594  continue;
3595  UnwindDest = CSI->getUnwindDest();
3596  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3597  UnwindDest = II->getUnwindDest();
3598  } else if (isa<CallInst>(U)) {
3599  // Calls which don't unwind may be found inside funclet
3600  // pads that unwind somewhere else. We don't *require*
3601  // such calls to be annotated nounwind.
3602  continue;
3603  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3604  // The unwind dest for a cleanup can only be found by
3605  // recursive search. Add it to the worklist, and we'll
3606  // search for its first use that determines where it unwinds.
3607  Worklist.push_back(CPI);
3608  continue;
3609  } else {
3610  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3611  continue;
3612  }
3613 
3614  Value *UnwindPad;
3615  bool ExitsFPI;
3616  if (UnwindDest) {
3617  UnwindPad = UnwindDest->getFirstNonPHI();
3618  if (!cast<Instruction>(UnwindPad)->isEHPad())
3619  continue;
3620  Value *UnwindParent = getParentPad(UnwindPad);
3621  // Ignore unwind edges that don't exit CurrentPad.
3622  if (UnwindParent == CurrentPad)
3623  continue;
3624  // Determine whether the original funclet pad is exited,
3625  // and if we are scanning nested pads determine how many
3626  // of them are exited so we can stop searching their
3627  // children.
3628  Value *ExitedPad = CurrentPad;
3629  ExitsFPI = false;
3630  do {
3631  if (ExitedPad == &FPI) {
3632  ExitsFPI = true;
3633  // Now we can resolve any ancestors of CurrentPad up to
3634  // FPI, but not including FPI since we need to make sure
3635  // to check all direct users of FPI for consistency.
3636  UnresolvedAncestorPad = &FPI;
3637  break;
3638  }
3639  Value *ExitedParent = getParentPad(ExitedPad);
3640  if (ExitedParent == UnwindParent) {
3641  // ExitedPad is the ancestor-most pad which this unwind
3642  // edge exits, so we can resolve up to it, meaning that
3643  // ExitedParent is the first ancestor still unresolved.
3644  UnresolvedAncestorPad = ExitedParent;
3645  break;
3646  }
3647  ExitedPad = ExitedParent;
3648  } while (!isa<ConstantTokenNone>(ExitedPad));
3649  } else {
3650  // Unwinding to caller exits all pads.
3651  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3652  ExitsFPI = true;
3653  UnresolvedAncestorPad = &FPI;
3654  }
3655 
3656  if (ExitsFPI) {
3657  // This unwind edge exits FPI. Make sure it agrees with other
3658  // such edges.
3659  if (FirstUser) {
3660  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3661  "pad must have the same unwind "
3662  "dest",
3663  &FPI, U, FirstUser);
3664  } else {
3665  FirstUser = U;
3666  FirstUnwindPad = UnwindPad;
3667  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3668  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3669  getParentPad(UnwindPad) == getParentPad(&FPI))
3670  SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3671  }
3672  }
3673  // Make sure we visit all uses of FPI, but for nested pads stop as
3674  // soon as we know where they unwind to.
3675  if (CurrentPad != &FPI)
3676  break;
3677  }
3678  if (UnresolvedAncestorPad) {
3679  if (CurrentPad == UnresolvedAncestorPad) {
3680  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3681  // we've found an unwind edge that exits it, because we need to verify
3682  // all direct uses of FPI.
3683  assert(CurrentPad == &FPI);
3684  continue;
3685  }
3686  // Pop off the worklist any nested pads that we've found an unwind
3687  // destination for. The pads on the worklist are the uncles,
3688  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3689  // for all ancestors of CurrentPad up to but not including
3690  // UnresolvedAncestorPad.
3691  Value *ResolvedPad = CurrentPad;
3692  while (!Worklist.empty()) {
3693  Value *UnclePad = Worklist.back();
3694  Value *AncestorPad = getParentPad(UnclePad);
3695  // Walk ResolvedPad up the ancestor list until we either find the
3696  // uncle's parent or the last resolved ancestor.
3697  while (ResolvedPad != AncestorPad) {
3698  Value *ResolvedParent = getParentPad(ResolvedPad);
3699  if (ResolvedParent == UnresolvedAncestorPad) {
3700  break;
3701  }
3702  ResolvedPad = ResolvedParent;
3703  }
3704  // If the resolved ancestor search didn't find the uncle's parent,
3705  // then the uncle is not yet resolved.
3706  if (ResolvedPad != AncestorPad)
3707  break;
3708  // This uncle is resolved, so pop it from the worklist.
3709  Worklist.pop_back();
3710  }
3711  }
3712  }
3713 
3714  if (FirstUnwindPad) {
3715  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3716  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3717  Value *SwitchUnwindPad;
3718  if (SwitchUnwindDest)
3719  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3720  else
3721  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3722  Assert(SwitchUnwindPad == FirstUnwindPad,
3723  "Unwind edges out of a catch must have the same unwind dest as "
3724  "the parent catchswitch",
3725  &FPI, FirstUser, CatchSwitch);
3726  }
3727  }
3728 
3729  visitInstruction(FPI);
3730 }
3731 
3732 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3733  BasicBlock *BB = CatchSwitch.getParent();
3734 
3735  Function *F = BB->getParent();
3736  Assert(F->hasPersonalityFn(),
3737  "CatchSwitchInst needs to be in a function with a personality.",
3738  &CatchSwitch);
3739 
3740  // The catchswitch instruction must be the first non-PHI instruction in the
3741  // block.
3742  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3743  "CatchSwitchInst not the first non-PHI instruction in the block.",
3744  &CatchSwitch);
3745 
3746  auto *ParentPad = CatchSwitch.getParentPad();
3747  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3748  "CatchSwitchInst has an invalid parent.", ParentPad);
3749 
3750  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3751  Instruction *I = UnwindDest->getFirstNonPHI();
3752  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3753  "CatchSwitchInst must unwind to an EH block which is not a "
3754  "landingpad.",
3755  &CatchSwitch);
3756 
3757  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3758  if (getParentPad(I) == ParentPad)
3759  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3760  }
3761 
3762  Assert(CatchSwitch.getNumHandlers() != 0,
3763  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3764 
3765  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3766  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3767  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3768  }
3769 
3770  visitEHPadPredecessors(CatchSwitch);
3771  visitTerminatorInst(CatchSwitch);
3772 }
3773 
3774 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3775  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3776  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3777  CRI.getOperand(0));
3778 
3779  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3780  Instruction *I = UnwindDest->getFirstNonPHI();
3781  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3782  "CleanupReturnInst must unwind to an EH block which is not a "
3783  "landingpad.",
3784  &CRI);
3785  }
3786 
3787  visitTerminatorInst(CRI);
3788 }
3789 
3790 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3791  Instruction *Op = cast<Instruction>(I.getOperand(i));
3792  // If the we have an invalid invoke, don't try to compute the dominance.
3793  // We already reject it in the invoke specific checks and the dominance
3794  // computation doesn't handle multiple edges.
3795  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3796  if (II->getNormalDest() == II->getUnwindDest())
3797  return;
3798  }
3799 
3800  // Quick check whether the def has already been encountered in the same block.
3801  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3802  // uses are defined to happen on the incoming edge, not at the instruction.
3803  //
3804  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3805  // wrapping an SSA value, assert that we've already encountered it. See
3806  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3807  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3808  return;
3809 
3810  const Use &U = I.getOperandUse(i);
3811  Assert(DT.dominates(Op, U),
3812  "Instruction does not dominate all uses!", Op, &I);
3813 }
3814 
3815 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3816  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3817  "apply only to pointer types", &I);
3818  Assert(isa<LoadInst>(I),
3819  "dereferenceable, dereferenceable_or_null apply only to load"
3820  " instructions, use attributes for calls or invokes", &I);
3821  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3822  "take one operand!", &I);
3823  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3824  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3825  "dereferenceable_or_null metadata value must be an i64!", &I);
3826 }
3827 
3828 /// verifyInstruction - Verify that an instruction is well formed.
3829 ///
3830 void Verifier::visitInstruction(Instruction &I) {
3831  BasicBlock *BB = I.getParent();
3832  Assert(BB, "Instruction not embedded in basic block!", &I);
3833 
3834  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3835  for (User *U : I.users()) {
3836  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3837  "Only PHI nodes may reference their own value!", &I);
3838  }
3839  }
3840 
3841  // Check that void typed values don't have names
3842  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3843  "Instruction has a name, but provides a void value!", &I);
3844 
3845  // Check that the return value of the instruction is either void or a legal
3846  // value type.
3847  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3848  "Instruction returns a non-scalar type!", &I);
3849 
3850  // Check that the instruction doesn't produce metadata. Calls are already
3851  // checked against the callee type.
3852  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3853  "Invalid use of metadata!", &I);
3854 
3855  // Check that all uses of the instruction, if they are instructions
3856  // themselves, actually have parent basic blocks. If the use is not an
3857  // instruction, it is an error!
3858  for (Use &U : I.uses()) {
3859  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3860  Assert(Used->getParent() != nullptr,
3861  "Instruction referencing"
3862  " instruction not embedded in a basic block!",
3863  &I, Used);
3864  else {
3865  CheckFailed("Use of instruction is not an instruction!", U);
3866  return;
3867  }
3868  }
3869 
3870  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3871  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3872 
3873  // Check to make sure that only first-class-values are operands to
3874  // instructions.
3875  if (!I.getOperand(i)->getType()->isFirstClassType()) {
3876  Assert(false, "Instruction operands must be first-class values!", &I);
3877  }
3878 
3879  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3880  // Check to make sure that the "address of" an intrinsic function is never
3881  // taken.
3882  Assert(
3883  !F->isIntrinsic() ||
3884  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3885  "Cannot take the address of an intrinsic!", &I);
3886  Assert(
3887  !F->isIntrinsic() || isa<CallInst>(I) ||
3888  F->getIntrinsicID() == Intrinsic::donothing ||
3889  F->getIntrinsicID() == Intrinsic::coro_resume ||
3890  F->getIntrinsicID() == Intrinsic::coro_destroy ||
3891  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3892  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3893  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3894  "Cannot invoke an intrinsic other than donothing, patchpoint, "
3895  "statepoint, coro_resume or coro_destroy",
3896  &I);
3897  Assert(F->getParent() == &M, "Referencing function in another module!",
3898  &I, &M, F, F->getParent());
3899  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3900  Assert(OpBB->getParent() == BB->getParent(),
3901  "Referring to a basic block in another function!", &I);
3902  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3903  Assert(OpArg->getParent() == BB->getParent(),
3904  "Referring to an argument in another function!", &I);
3905  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3906  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3907  &M, GV, GV->getParent());
3908  } else if (isa<Instruction>(I.getOperand(i))) {
3909  verifyDominatesUse(I, i);
3910  } else if (isa<InlineAsm>(I.getOperand(i))) {
3911  Assert((i + 1 == e && isa<CallInst>(I)) ||
3912  (i + 3 == e && isa<InvokeInst>(I)),
3913  "Cannot take the address of an inline asm!", &I);
3914  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3915  if (CE->getType()->isPtrOrPtrVectorTy() ||
3917  // If we have a ConstantExpr pointer, we need to see if it came from an
3918  // illegal bitcast. If the datalayout string specifies non-integral
3919  // address spaces then we also need to check for illegal ptrtoint and
3920  // inttoptr expressions.
3921  visitConstantExprsRecursively(CE);
3922  }
3923  }
3924  }
3925 
3926  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3928  "fpmath requires a floating point result!", &I);
3929  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3930  if (ConstantFP *CFP0 =
3931  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3932  const APFloat &Accuracy = CFP0->getValueAPF();
3933  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3934  "fpmath accuracy must have float type", &I);
3935  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3936  "fpmath accuracy not a positive number!", &I);
3937  } else {
3938  Assert(false, "invalid fpmath accuracy!", &I);
3939  }
3940  }
3941 
3942  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3943  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3944  "Ranges are only for loads, calls and invokes!", &I);
3945  visitRangeMetadata(I, Range, I.getType());
3946  }
3947 
3949  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3950  &I);
3951  Assert(isa<LoadInst>(I),
3952  "nonnull applies only to load instructions, use attributes"
3953  " for calls or invokes",
3954  &I);
3955  }
3956 
3958  visitDereferenceableMetadata(I, MD);
3959 
3961  visitDereferenceableMetadata(I, MD);
3962 
3963  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3964  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3965 
3966  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3967  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3968  &I);
3969  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3970  "use attributes for calls or invokes", &I);
3971  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3972  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3973  Assert(CI && CI->getType()->isIntegerTy(64),
3974  "align metadata value must be an i64!", &I);
3975  uint64_t Align = CI->getZExtValue();
3976  Assert(isPowerOf2_64(Align),
3977  "align metadata value must be a power of 2!", &I);
3979  "alignment is larger that implementation defined limit", &I);
3980  }
3981 
3982  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3983  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3984  visitMDNode(*N);
3985  }
3986 
3987  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3988  verifyFragmentExpression(*DII);
3989 
3990  InstsInThisBlock.insert(&I);
3991 }
3992 
3993 /// Allow intrinsics to be verified in different ways.
3994 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3995  Function *IF = CS.getCalledFunction();
3996  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3997  IF);
3998 
3999  // Verify that the intrinsic prototype lines up with what the .td files
4000  // describe.
4001  FunctionType *IFTy = IF->getFunctionType();
4002  bool IsVarArg = IFTy->isVarArg();
4003 
4005  getIntrinsicInfoTableEntries(ID, Table);
4007 
4008  SmallVector<Type *, 4> ArgTys;
4009  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4010  TableRef, ArgTys),
4011  "Intrinsic has incorrect return type!", IF);
4012  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4013  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4014  TableRef, ArgTys),
4015  "Intrinsic has incorrect argument type!", IF);
4016 
4017  // Verify if the intrinsic call matches the vararg property.
4018  if (IsVarArg)
4019  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4020  "Intrinsic was not defined with variable arguments!", IF);
4021  else
4022  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4023  "Callsite was not defined with variable arguments!", IF);
4024 
4025  // All descriptors should be absorbed by now.
4026  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4027 
4028  // Now that we have the intrinsic ID and the actual argument types (and we
4029  // know they are legal for the intrinsic!) get the intrinsic name through the
4030  // usual means. This allows us to verify the mangling of argument types into
4031  // the name.
4032  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4033  Assert(ExpectedName == IF->getName(),
4034  "Intrinsic name not mangled correctly for type arguments! "
4035  "Should be: " +
4036  ExpectedName,
4037  IF);
4038 
4039  // If the intrinsic takes MDNode arguments, verify that they are either global
4040  // or are local to *this* function.
4041  for (Value *V : CS.args())
4042  if (auto *MD = dyn_cast<MetadataAsValue>(V))
4043  visitMetadataAsValue(*MD, CS.getCaller());
4044 
4045  switch (ID) {
4046  default:
4047  break;
4048  case Intrinsic::coro_id: {
4049  auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4050  if (isa<ConstantPointerNull>(InfoArg))
4051  break;
4052  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4053  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4054  "info argument of llvm.coro.begin must refer to an initialized "
4055  "constant");
4056  Constant *Init = GV->getInitializer();
4057  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4058  "info argument of llvm.coro.begin must refer to either a struct or "
4059  "an array");
4060  break;
4061  }
4062  case Intrinsic::ctlz: // llvm.ctlz
4063  case Intrinsic::cttz: // llvm.cttz
4064  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4065  "is_zero_undef argument of bit counting intrinsics must be a "
4066  "constant int",
4067  CS);
4068  break;
4069  case Intrinsic::experimental_constrained_fadd:
4070  case Intrinsic::experimental_constrained_fsub:
4071  case Intrinsic::experimental_constrained_fmul:
4072  case Intrinsic::experimental_constrained_fdiv:
4073  case Intrinsic::experimental_constrained_frem:
4074  case Intrinsic::experimental_constrained_fma:
4075  case Intrinsic::experimental_constrained_sqrt:
4076  case Intrinsic::experimental_constrained_pow:
4077  case Intrinsic::experimental_constrained_powi:
4078  case Intrinsic::experimental_constrained_sin:
4079  case Intrinsic::experimental_constrained_cos:
4080  case Intrinsic::experimental_constrained_exp:
4081  case Intrinsic::experimental_constrained_exp2:
4082  case Intrinsic::experimental_constrained_log:
4083  case Intrinsic::experimental_constrained_log10:
4084  case Intrinsic::experimental_constrained_log2:
4085  case Intrinsic::experimental_constrained_rint:
4086  case Intrinsic::experimental_constrained_nearbyint:
4087  visitConstrainedFPIntrinsic(
4088  cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4089  break;
4090  case Intrinsic::dbg_declare: // llvm.dbg.declare
4091  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4092  "invalid llvm.dbg.declare intrinsic call 1", CS);
4093  visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4094  break;
4095  case Intrinsic::dbg_addr: // llvm.dbg.addr
4096  visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4097  break;
4098  case Intrinsic::dbg_value: // llvm.dbg.value
4099  visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4100  break;
4101  case Intrinsic::dbg_label: // llvm.dbg.label
4102  visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(*CS.getInstruction()));
4103  break;
4104  case Intrinsic::memcpy:
4105  case Intrinsic::memmove:
4106  case Intrinsic::memset: {
4107  const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4108  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4109  return Alignment == 0 || isPowerOf2_32(Alignment);
4110  };
4111  Assert(IsValidAlignment(MI->getDestAlignment()),
4112  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4113  CS);
4114  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4115  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4116  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4117  CS);
4118  }
4119  Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4120  "isvolatile argument of memory intrinsics must be a constant int",
4121  CS);
4122  break;
4123  }
4124  case Intrinsic::memcpy_element_unordered_atomic:
4125  case Intrinsic::memmove_element_unordered_atomic:
4126  case Intrinsic::memset_element_unordered_atomic: {
4127  const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4128 
4129  ConstantInt *ElementSizeCI =
4130  dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4131  Assert(ElementSizeCI,
4132  "element size of the element-wise unordered atomic memory "
4133  "intrinsic must be a constant int",
4134  CS);
4135  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4136  Assert(ElementSizeVal.isPowerOf2(),
4137  "element size of the element-wise atomic memory intrinsic "
4138  "must be a power of 2",
4139  CS);
4140 
4141  if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4142  uint64_t Length = LengthCI->getZExtValue();
4143  uint64_t ElementSize = AMI->getElementSizeInBytes();
4144  Assert((Length % ElementSize) == 0,
4145  "constant length must be a multiple of the element size in the "
4146  "element-wise atomic memory intrinsic",
4147  CS);
4148  }
4149 
4150  auto IsValidAlignment = [&](uint64_t Alignment) {
4151  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4152  };
4153  uint64_t DstAlignment = AMI->getDestAlignment();
4154  Assert(IsValidAlignment(DstAlignment),
4155  "incorrect alignment of the destination argument", CS);
4156  if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4157  uint64_t SrcAlignment = AMT->getSourceAlignment();
4158  Assert(IsValidAlignment(SrcAlignment),
4159  "incorrect alignment of the source argument", CS);
4160  }
4161  break;
4162  }
4163  case Intrinsic::gcroot:
4164  case Intrinsic::gcwrite:
4165  case Intrinsic::gcread:
4166  if (ID == Intrinsic::gcroot) {
4167  AllocaInst *AI =
4169  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4170  Assert(isa<Constant>(CS.getArgOperand(1)),
4171  "llvm.gcroot parameter #2 must be a constant.", CS);
4172  if (!AI->getAllocatedType()->isPointerTy()) {
4173  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4174  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4175  "or argument #2 must be a non-null constant.",
4176  CS);
4177  }
4178  }
4179 
4180  Assert(CS.getParent()->getParent()->hasGC(),
4181  "Enclosing function does not use GC.", CS);
4182  break;
4183  case Intrinsic::init_trampoline:
4184  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4185  "llvm.init_trampoline parameter #2 must resolve to a function.",
4186  CS);
4187  break;
4188  case Intrinsic::prefetch:
4189  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4190  isa<ConstantInt>(CS.getArgOperand(2)) &&
4191  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4192  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4193  "invalid arguments to llvm.prefetch", CS);
4194  break;
4195  case Intrinsic::stackprotector:
4196  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4197  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4198  break;
4199  case Intrinsic::lifetime_start:
4200  case Intrinsic::lifetime_end:
4201  case Intrinsic::invariant_start:
4202  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4203  "size argument of memory use markers must be a constant integer",
4204  CS);
4205  break;
4206  case Intrinsic::invariant_end:
4207  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4208  "llvm.invariant.end parameter #2 must be a constant integer", CS);
4209  break;
4210 
4211  case Intrinsic::localescape: {
4212  BasicBlock *BB = CS.getParent();
4213  Assert(BB == &BB->getParent()->front(),
4214  "llvm.localescape used outside of entry block", CS);
4215  Assert(!SawFrameEscape,
4216  "multiple calls to llvm.localescape in one function", CS);
4217  for (Value *Arg : CS.args()) {
4218  if (isa<ConstantPointerNull>(Arg))
4219  continue; // Null values are allowed as placeholders.
4220  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4221  Assert(AI && AI->isStaticAlloca(),
4222  "llvm.localescape only accepts static allocas", CS);
4223  }
4224  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4225  SawFrameEscape = true;
4226  break;
4227  }
4228  case Intrinsic::localrecover: {
4229  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4230  Function *Fn = dyn_cast<Function>(FnArg);
4231  Assert(Fn && !Fn->isDeclaration(),
4232  "llvm.localrecover first "
4233  "argument must be function defined in this module",
4234  CS);
4235  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4236  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4237  CS);
4238  auto &Entry = FrameEscapeInfo[Fn];
4239  Entry.second = unsigned(
4240  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4241  break;
4242  }
4243 
4244  case Intrinsic::experimental_gc_statepoint:
4245  Assert(!CS.isInlineAsm(),
4246  "gc.statepoint support for inline assembly unimplemented", CS);
4247  Assert(CS.getParent()->getParent()->hasGC(),
4248  "Enclosing function does not use GC.", CS);
4249 
4250  verifyStatepoint(CS);
4251  break;
4252  case Intrinsic::experimental_gc_result: {
4253  Assert(CS.getParent()->getParent()->hasGC(),
4254  "Enclosing function does not use GC.", CS);
4255  // Are we tied to a statepoint properly?
4256  CallSite StatepointCS(CS.getArgOperand(0));
4257  const Function *StatepointFn =
4258  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4259  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4260  StatepointFn->getIntrinsicID() ==
4261  Intrinsic::experimental_gc_statepoint,
4262  "gc.result operand #1 must be from a statepoint", CS,
4263  CS.getArgOperand(0));
4264 
4265  // Assert that result type matches wrapped callee.
4266  const Value *Target = StatepointCS.getArgument(2);
4267  auto *PT = cast<PointerType>(Target->getType());
4268  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4269  Assert(CS.getType() == TargetFuncType->getReturnType(),
4270  "gc.result result type does not match wrapped callee", CS);
4271  break;
4272  }
4273  case Intrinsic::experimental_gc_relocate: {
4274  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4275 
4276  Assert(isa<PointerType>(CS.getType()->getScalarType()),
4277  "gc.relocate must return a pointer or a vector of pointers", CS);
4278 
4279  // Check that this relocate is correctly tied to the statepoint
4280 
4281  // This is case for relocate on the unwinding path of an invoke statepoint
4282  if (LandingPadInst *LandingPad =
4283  dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4284 
4285  const BasicBlock *InvokeBB =
4286  LandingPad->getParent()->getUniquePredecessor();
4287 
4288  // Landingpad relocates should have only one predecessor with invoke
4289  // statepoint terminator
4290  Assert(InvokeBB, "safepoints should have unique landingpads",
4291  LandingPad->getParent());
4292  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4293  InvokeBB);
4294  Assert(isStatepoint(InvokeBB->getTerminator()),
4295  "gc relocate should be linked to a statepoint", InvokeBB);
4296  }
4297  else {
4298  // In all other cases relocate should be tied to the statepoint directly.
4299  // This covers relocates on a normal return path of invoke statepoint and
4300  // relocates of a call statepoint.
4301  auto Token = CS.getArgOperand(0);
4302  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4303  "gc relocate is incorrectly tied to the statepoint", CS, Token);
4304  }
4305 
4306  // Verify rest of the relocate arguments.
4307 
4308  ImmutableCallSite StatepointCS(
4309  cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4310 
4311  // Both the base and derived must be piped through the safepoint.
4312  Value* Base = CS.getArgOperand(1);
4313  Assert(isa<ConstantInt>(Base),
4314  "gc.relocate operand #2 must be integer offset", CS);
4315 
4316  Value* Derived = CS.getArgOperand(2);
4317  Assert(isa<ConstantInt>(Derived),
4318  "gc.relocate operand #3 must be integer offset", CS);
4319 
4320  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4321  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4322  // Check the bounds
4323  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4324  "gc.relocate: statepoint base index out of bounds", CS);
4325  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4326  "gc.relocate: statepoint derived index out of bounds", CS);
4327 
4328  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4329  // section of the statepoint's argument.
4330  Assert(StatepointCS.arg_size() > 0,
4331  "gc.statepoint: insufficient arguments");
4332  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4333  "gc.statement: number of call arguments must be constant integer");
4334  const unsigned NumCallArgs =
4335  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4336  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4337  "gc.statepoint: mismatch in number of call arguments");
4338  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4339  "gc.statepoint: number of transition arguments must be "
4340  "a constant integer");
4341  const int NumTransitionArgs =
4342  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4343  ->getZExtValue();
4344  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4345  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4346  "gc.statepoint: number of deoptimization arguments must be "
4347  "a constant integer");
4348  const int NumDeoptArgs =
4349  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4350  ->getZExtValue();
4351  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4352  const int GCParamArgsEnd = StatepointCS.arg_size();
4353  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4354  "gc.relocate: statepoint base index doesn't fall within the "
4355  "'gc parameters' section of the statepoint call",
4356  CS);
4357  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4358  "gc.relocate: statepoint derived index doesn't fall within the "
4359  "'gc parameters' section of the statepoint call",
4360  CS);
4361 
4362  // Relocated value must be either a pointer type or vector-of-pointer type,
4363  // but gc_relocate does not need to return the same pointer type as the
4364  // relocated pointer. It can be casted to the correct type later if it's
4365  // desired. However, they must have the same address space and 'vectorness'
4366  GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4368  "gc.relocate: relocated value must be a gc pointer", CS);
4369 
4370  auto ResultType = CS.getType();
4371  auto DerivedType = Relocate.getDerivedPtr()->getType();
4372  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4373  "gc.relocate: vector relocates to vector and pointer to pointer",
4374  CS);
4375  Assert(
4376  ResultType->getPointerAddressSpace() ==
4377  DerivedType->getPointerAddressSpace(),
4378  "gc.relocate: relocating a pointer shouldn't change its address space",
4379  CS);
4380  break;
4381  }
4382  case Intrinsic::eh_exceptioncode:
4383  case Intrinsic::eh_exceptionpointer: {
4384  Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4385  "eh.exceptionpointer argument must be a catchpad", CS);
4386  break;
4387  }
4388  case Intrinsic::masked_load: {
4389  Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4390 
4391  Value *Ptr = CS.getArgOperand(0);
4392  //Value *Alignment = CS.getArgOperand(1);
4393  Value *Mask = CS.getArgOperand(2);
4394  Value *PassThru = CS.getArgOperand(3);
4395  Assert(Mask->getType()->isVectorTy(),
4396  "masked_load: mask must be vector", CS);
4397 
4398  // DataTy is the overloaded type
4399  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4400  Assert(DataTy == CS.getType(),
4401  "masked_load: return must match pointer type", CS);
4402  Assert(PassThru->getType() == DataTy,
4403  "masked_load: pass through and data type must match", CS);
4404  Assert(Mask->getType()->getVectorNumElements() ==
4405  DataTy->getVectorNumElements(),
4406  "masked_load: vector mask must be same length as data", CS);
4407  break;
4408  }
4409  case Intrinsic::masked_store: {
4410  Value *Val = CS.getArgOperand(0);
4411  Value *Ptr = CS.getArgOperand(1);
4412  //Value *Alignment = CS.getArgOperand(2);
4413  Value *Mask = CS.getArgOperand(3);
4414  Assert(Mask->getType()->isVectorTy(),
4415  "masked_store: mask must be vector", CS);
4416 
4417  // DataTy is the overloaded type
4418  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4419  Assert(DataTy == Val->getType(),
4420  "masked_store: storee must match pointer type", CS);
4421  Assert(Mask->getType()->getVectorNumElements() ==
4422  DataTy->getVectorNumElements(),
4423  "masked_store: vector mask must be same length as data", CS);
4424  break;
4425  }
4426 
4427  case Intrinsic::experimental_guard: {
4428  Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4430  "experimental_guard must have exactly one "
4431  "\"deopt\" operand bundle");
4432  break;
4433  }
4434 
4435  case Intrinsic::experimental_deoptimize: {
4436  Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4438  "experimental_deoptimize must have exactly one "
4439  "\"deopt\" operand bundle");
4441  "experimental_deoptimize return type must match caller return type");
4442 
4443  if (CS.isCall()) {
4444  auto *DeoptCI = CS.getInstruction();
4445  auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4446  Assert(RI,
4447  "calls to experimental_deoptimize must be followed by a return");
4448 
4449  if (!CS.getType()->isVoidTy() && RI)
4450  Assert(RI->getReturnValue() == DeoptCI,
4451  "calls to experimental_deoptimize must be followed by a return "
4452  "of the value computed by experimental_deoptimize");
4453  }
4454 
4455  break;
4456  }
4457  };
4458 }
4459 
4460 /// Carefully grab the subprogram from a local scope.
4461 ///
4462 /// This carefully grabs the subprogram from a local scope, avoiding the
4463 /// built-in assertions that would typically fire.
4464 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4465  if (!LocalScope)
4466  return nullptr;
4467 
4468  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4469  return SP;
4470 
4471  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4472  return getSubprogram(LB->getRawScope());
4473 
4474  // Just return null; broken scope chains are checked elsewhere.
4475  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4476  return nullptr;
4477 }
4478 
4479 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4480  unsigned NumOperands = FPI.getNumArgOperands();
4481  Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4482  (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4483  "invalid arguments for constrained FP intrinsic", &FPI);
4484  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4485  "invalid exception behavior argument", &FPI);
4486  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4487  "invalid rounding mode argument", &FPI);
4489  "invalid rounding mode argument", &FPI);
4491  "invalid exception behavior argument", &FPI);
4492 }
4493 
4494 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4495  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4496  AssertDI(isa<ValueAsMetadata>(MD) ||
4497  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4498  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4499  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4500  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4501  DII.getRawVariable());
4502  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4503  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4504  DII.getRawExpression());
4505 
4506  // Ignore broken !dbg attachments; they're checked elsewhere.
4507  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4508  if (!isa<DILocation>(N))
4509  return;
4510 
4511  BasicBlock *BB = DII.getParent();
4512  Function *F = BB ? BB->getParent() : nullptr;
4513 
4514  // The scopes for variables and !dbg attachments must agree.
4515  DILocalVariable *Var = DII.getVariable();
4516  DILocation *Loc = DII.getDebugLoc();
4517  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4518  &DII, BB, F);
4519 
4520  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4521  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4522  if (!VarSP || !LocSP)
4523  return; // Broken scope chains are checked elsewhere.
4524 
4525  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4526  " variable and !dbg attachment",
4527  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4528  Loc->getScope()->getSubprogram());
4529 
4530  verifyFnArgs(DII);
4531 }
4532 
4533 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4534  AssertDI(isa<DILabel>(DLI.getRawVariable()),
4535  "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4536  DLI.getRawVariable());
4537 
4538  // Ignore broken !dbg attachments; they're checked elsewhere.
4539  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4540  if (!isa<DILocation>(N))
4541  return;
4542 
4543  BasicBlock *BB = DLI.getParent();
4544  Function *F = BB ? BB->getParent() : nullptr;
4545 
4546  // The scopes for variables and !dbg attachments must agree.
4547  DILabel *Label = DLI.getLabel();
4548  DILocation *Loc = DLI.getDebugLoc();
4549  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4550  &DLI, BB, F);
4551 
4552  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4553  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4554  if (!LabelSP || !LocSP)
4555  return;
4556 
4557  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4558  " label and !dbg attachment",
4559  &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4560  Loc->getScope()->getSubprogram());
4561 }
4562 
4563 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4564  if (dyn_cast<DbgLabelInst>(&I))
4565  return;
4566 
4567  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4568  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4569 
4570  // We don't know whether this intrinsic verified correctly.
4571  if (!V || !E || !E->isValid())
4572  return;
4573 
4574  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4575  auto Fragment = E->getFragmentInfo();
4576  if (!Fragment)
4577  return;
4578 
4579  // The frontend helps out GDB by emitting the members of local anonymous
4580  // unions as artificial local variables with shared storage. When SROA splits
4581  // the storage for artificial local variables that are smaller than the entire
4582  // union, the overhang piece will be outside of the allotted space for the
4583  // variable and this check fails.
4584  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4585  if (V->isArtificial())
4586  return;
4587 
4588  verifyFragmentExpression(*V, *Fragment, &I);
4589 }
4590 
4591 template <typename ValueOrMetadata>
4592 void Verifier::verifyFragmentExpression(const DIVariable &V,
4593  DIExpression::FragmentInfo Fragment,
4594  ValueOrMetadata *Desc) {
4595  // If there's no size, the type is broken, but that should be checked
4596  // elsewhere.
4597  auto VarSize = V.getSizeInBits();
4598  if (!VarSize)
4599  return;
4600 
4601  unsigned FragSize = Fragment.SizeInBits;
4602  unsigned FragOffset = Fragment.OffsetInBits;
4603  AssertDI(FragSize + FragOffset <= *VarSize,
4604  "fragment is larger than or outside of variable", Desc, &V);
4605  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4606 }
4607 
4608 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4609  // This function does not take the scope of noninlined function arguments into
4610  // account. Don't run it if current function is nodebug, because it may
4611  // contain inlined debug intrinsics.
4612  if (!HasDebugInfo)
4613  return;
4614 
4615  // For performance reasons only check non-inlined ones.
4616  if (I.getDebugLoc()->getInlinedAt())
4617  return;
4618 
4619  DILocalVariable *Var = I.getVariable();
4620  AssertDI(Var, "dbg intrinsic without variable");
4621 
4622  unsigned ArgNo = Var->getArg();
4623  if (!ArgNo)
4624  return;
4625 
4626  // Verify there are no duplicate function argument debug info entries.
4627  // These will cause hard-to-debug assertions in the DWARF backend.
4628  if (DebugFnArgs.size() < ArgNo)
4629  DebugFnArgs.resize(ArgNo, nullptr);
4630 
4631  auto *Prev = DebugFnArgs[ArgNo - 1];
4632  DebugFnArgs[ArgNo - 1] = Var;
4633  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4634  Prev, Var);
4635 }
4636 
4637 void Verifier::verifyCompileUnits() {
4638  // When more than one Module is imported into the same context, such as during
4639  // an LTO build before linking the modules, ODR type uniquing may cause types
4640  // to point to a different CU. This check does not make sense in this case.
4642  return;
4643  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4645  if (CUs)
4646  Listed.insert(CUs->op_begin(), CUs->op_end());
4647  for (auto *CU : CUVisited)
4648  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4649  CUVisited.clear();
4650 }
4651 
4652 void Verifier::verifyDeoptimizeCallingConvs() {
4653  if (DeoptimizeDeclarations.empty())
4654  return;
4655 
4656  const Function *First = DeoptimizeDeclarations[0];
4657  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4658  Assert(First->getCallingConv() == F->getCallingConv(),
4659  "All llvm.experimental.deoptimize declarations must have the same "
4660  "calling convention",
4661  First, F);
4662  }
4663 }
4664 
4665 //===----------------------------------------------------------------------===//
4666 // Implement the public interfaces to this file...
4667 //===----------------------------------------------------------------------===//
4668 
4670  Function &F = const_cast<Function &>(f);
4671 
4672  // Don't use a raw_null_ostream. Printing IR is expensive.
4673  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4674 
4675  // Note that this function's return value is inverted from what you would
4676  // expect of a function called "verify".
4677  return !V.verify(F);
4678 }
4679 
4681  bool *BrokenDebugInfo) {
4682  // Don't use a raw_null_ostream. Printing IR is expensive.
4683  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4684 
4685  bool Broken = false;
4686  for (const Function &F : M)
4687  Broken |= !V.verify(F);
4688 
4689  Broken |= !V.verify();
4690  if (BrokenDebugInfo)
4691  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4692  // Note that this function's return value is inverted from what you would
4693  // expect of a function called "verify".
4694  return Broken;
4695 }
4696 
4697 namespace {
4698 
4699 struct VerifierLegacyPass : public FunctionPass {
4700  static char ID;
4701 
4702  std::unique_ptr<Verifier> V;
4703  bool FatalErrors = true;
4704 
4705  VerifierLegacyPass() : FunctionPass(ID) {
4707  }
4708  explicit VerifierLegacyPass(bool FatalErrors)
4709  : FunctionPass(ID),
4710  FatalErrors(FatalErrors) {
4712  }
4713 
4714  bool doInitialization(Module &M) override {
4715  V = llvm::make_unique<Verifier>(
4716  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4717  return false;
4718  }
4719 
4720  bool runOnFunction(Function &F) override {
4721  if (!V->verify(F) && FatalErrors)
4722  report_fatal_error("Broken function found, compilation aborted!");
4723 
4724  return false;
4725  }
4726 
4727  bool doFinalization(Module &M) override {
4728  bool HasErrors = false;
4729  for (Function &F : M)
4730  if (F.isDeclaration())
4731  HasErrors |= !V->verify(F);
4732 
4733  HasErrors |= !V->verify();
4734  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4735  report_fatal_error("Broken module found, compilation aborted!");
4736  return false;
4737  }
4738 
4739  void getAnalysisUsage(AnalysisUsage &AU) const override {
4740  AU.setPreservesAll();
4741  }
4742 };
4743 
4744 } // end anonymous namespace
4745 
4746 /// Helper to issue failure from the TBAA verification
4747 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4748  if (Diagnostic)
4749  return Diagnostic->CheckFailed(Args...);
4750 }
4751 
4752 #define AssertTBAA(C, ...) \
4753  do { \
4754  if (!(C)) { \
4755  CheckFailed(__VA_ARGS__); \
4756  return false; \
4757  } \
4758  } while (false)
4759 
4760 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4761 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4762 /// struct-type node describing an aggregate data structure (like a struct).
4763 TBAAVerifier::TBAABaseNodeSummary
4764 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4765  bool IsNewFormat) {
4766  if (BaseNode->getNumOperands() < 2) {
4767  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4768  return {true, ~0u};
4769  }
4770 
4771  auto Itr = TBAABaseNodes.find(BaseNode);
4772  if (Itr != TBAABaseNodes.end())
4773  return Itr->second;
4774 
4775  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4776  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4777  (void)InsertResult;
4778  assert(InsertResult.second && "We just checked!");
4779  return Result;
4780 }
4781 
4782 TBAAVerifier::TBAABaseNodeSummary
4783 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4784  bool IsNewFormat) {
4785  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4786 
4787  if (BaseNode->getNumOperands() == 2) {
4788  // Scalar nodes can only be accessed at offset 0.
4789  return isValidScalarTBAANode(BaseNode)
4790  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4791  : InvalidNode;
4792  }
4793 
4794  if (IsNewFormat) {
4795  if (BaseNode->getNumOperands() % 3 != 0) {
4796  CheckFailed("Access tag nodes must have the number of operands that is a "
4797  "multiple of 3!", BaseNode);
4798  return InvalidNode;
4799  }
4800  } else {
4801  if (BaseNode->getNumOperands() % 2 != 1) {
4802  CheckFailed("Struct tag nodes must have an odd number of operands!",
4803  BaseNode);
4804  return InvalidNode;
4805  }
4806  }
4807 
4808  // Check the type size field.
4809  if (IsNewFormat) {
4810  auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4811  BaseNode->getOperand(1));
4812  if (!TypeSizeNode) {
4813  CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4814  return InvalidNode;
4815  }
4816  }
4817 
4818  // Check the type name field. In the new format it can be anything.
4819  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4820  CheckFailed("Struct tag nodes have a string as their first operand",
4821  BaseNode);
4822  return InvalidNode;
4823  }
4824 
4825  bool Failed = false;
4826 
4827  Optional<APInt> PrevOffset;
4828  unsigned BitWidth = ~0u;
4829 
4830  // We've already checked that BaseNode is not a degenerate root node with one
4831  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4832  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4833  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4834  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4835  Idx += NumOpsPerField) {
4836  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4837  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4838  if (!isa<MDNode>(FieldTy)) {
4839  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4840  Failed = true;
4841  continue;
4842  }
4843 
4844  auto *OffsetEntryCI =
4845  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4846  if (!OffsetEntryCI) {
4847  CheckFailed("Offset entries must be constants!", &I, BaseNode);
4848  Failed = true;
4849  continue;
4850  }
4851 
4852  if (BitWidth == ~0u)
4853  BitWidth = OffsetEntryCI->getBitWidth();
4854 
4855  if (OffsetEntryCI->getBitWidth() != BitWidth) {
4856  CheckFailed(
4857  "Bitwidth between the offsets and struct type entries must match", &I,
4858  BaseNode);
4859  Failed = true;
4860  continue;
4861  }
4862 
4863  // NB! As far as I can tell, we generate a non-strictly increasing offset
4864  // sequence only from structs that have zero size bit fields. When
4865  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4866  // pick the field lexically the latest in struct type metadata node. This
4867  // mirrors the actual behavior of the alias analysis implementation.
4868  bool IsAscending =
4869  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4870 
4871  if (!IsAscending) {
4872  CheckFailed("Offsets must be increasing!", &I, BaseNode);
4873  Failed = true;
4874  }
4875 
4876  PrevOffset = OffsetEntryCI->getValue();
4877 
4878  if (IsNewFormat) {
4879  auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4880  BaseNode->getOperand(Idx + 2));
4881  if (!MemberSizeNode) {
4882  CheckFailed("Member size entries must be constants!", &I, BaseNode);
4883  Failed = true;
4884  continue;
4885  }
4886  }
4887  }
4888 
4889  return Failed ? InvalidNode
4890  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4891 }
4892 
4893 static bool IsRootTBAANode(const MDNode *MD) {
4894  return MD->getNumOperands() < 2;
4895 }
4896 
4897 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4899  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4900  return false;
4901 
4902  if (!isa<MDString>(MD->getOperand(0)))
4903  return false;
4904 
4905  if (MD->getNumOperands() == 3) {
4906  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4907  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4908  return false;
4909  }
4910 
4911  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4912  return Parent && Visited.insert(Parent).second &&
4913  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4914 }
4915 
4916 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4917  auto ResultIt = TBAAScalarNodes.find(MD);
4918  if (ResultIt != TBAAScalarNodes.end())
4919  return ResultIt->second;
4920 
4922  bool Result = IsScalarTBAANodeImpl(MD, Visited);
4923  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4924  (void)InsertResult;
4925  assert(InsertResult.second && "Just checked!");
4926 
4927  return Result;
4928 }
4929 
4930 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4931 /// Offset in place to be the offset within the field node returned.
4932 ///
4933 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4934 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4935  const MDNode *BaseNode,
4936  APInt &Offset,
4937  bool IsNewFormat) {
4938  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4939 
4940  // Scalar nodes have only one possible "field" -- their parent in the access
4941  // hierarchy. Offset must be zero at this point, but our caller is supposed
4942  // to Assert that.
4943  if (BaseNode->getNumOperands() == 2)
4944  return cast<MDNode>(BaseNode->getOperand(1));
4945 
4946  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4947  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4948  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4949  Idx += NumOpsPerField) {
4950  auto *OffsetEntryCI =
4951  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4952  if (OffsetEntryCI->getValue().ugt(Offset)) {
4953  if (Idx == FirstFieldOpNo) {
4954  CheckFailed("Could not find TBAA parent in struct type node", &I,
4955  BaseNode, &Offset);
4956  return nullptr;
4957  }
4958 
4959  unsigned PrevIdx = Idx - NumOpsPerField;
4960  auto *PrevOffsetEntryCI =
4961  mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4962  Offset -= PrevOffsetEntryCI->getValue();
4963  return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4964  }
4965  }
4966 
4967  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4968  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4969  BaseNode->getOperand(LastIdx + 1));
4970  Offset -= LastOffsetEntryCI->getValue();
4971  return cast<MDNode>(BaseNode->getOperand(LastIdx));
4972 }
4973 
4975  if (!Type || Type->getNumOperands() < 3)
4976  return false;
4977 
4978  // In the new format type nodes shall have a reference to the parent type as
4979  // its first operand.
4980  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4981  if (!Parent)
4982  return false;
4983 
4984  return true;
4985 }
4986 
4988  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4989  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4990  isa<AtomicCmpXchgInst>(I),
4991  "This instruction shall not have a TBAA access tag!", &I);
4992 
4993  bool IsStructPathTBAA =
4994  isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4995 
4996  AssertTBAA(
4997  IsStructPathTBAA,
4998  "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4999 
5000  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5001  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5002 
5003  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5004 
5005  if (IsNewFormat) {
5006  AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5007  "Access tag metadata must have either 4 or 5 operands", &I, MD);
5008  } else {
5009  AssertTBAA(MD->getNumOperands() < 5,
5010  "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5011  }
5012 
5013  // Check the access size field.
5014  if (IsNewFormat) {
5015  auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5016  MD->getOperand(3));
5017  AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5018  }
5019 
5020  // Check the immutability flag.
5021  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5022  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5023  auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5024  MD->getOperand(ImmutabilityFlagOpNo));
5025  AssertTBAA(IsImmutableCI,
5026  "Immutability tag on struct tag metadata must be a constant",
5027  &I, MD);
5028  AssertTBAA(
5029  IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5030  "Immutability part of the struct tag metadata must be either 0 or 1",
5031  &I, MD);
5032  }
5033 
5034  AssertTBAA(BaseNode && AccessType,
5035  "Malformed struct tag metadata: base and access-type "
5036  "should be non-null and point to Metadata nodes",
5037  &I, MD, BaseNode, AccessType);
5038 
5039  if (!IsNewFormat) {
5040  AssertTBAA(isValidScalarTBAANode(AccessType),
5041  "Access type node must be a valid scalar type", &I, MD,
5042  AccessType);
5043  }
5044 
5045  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5046  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5047 
5048  APInt Offset = OffsetCI->getValue();
5049  bool SeenAccessTypeInPath = false;
5050 
5051  SmallPtrSet<MDNode *, 4> StructPath;
5052 
5053  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5054  BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5055  IsNewFormat)) {
5056  if (!StructPath.insert(BaseNode).second) {
5057  CheckFailed("Cycle detected in struct path", &I, MD);
5058  return false;
5059  }
5060 
5061  bool Invalid;
5062  unsigned BaseNodeBitWidth;
5063  std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5064  IsNewFormat);
5065 
5066  // If the base node is invalid in itself, then we've already printed all the
5067  // errors we wanted to print.
5068  if (Invalid)
5069  return false;
5070 
5071  SeenAccessTypeInPath |= BaseNode == AccessType;
5072 
5073  if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5074  AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5075  &I, MD, &Offset);
5076 
5077  AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5078  (BaseNodeBitWidth == 0 && Offset == 0) ||
5079  (IsNewFormat && BaseNodeBitWidth == ~0u),
5080  "Access bit-width not the same as description bit-width", &I, MD,
5081  BaseNodeBitWidth, Offset.getBitWidth());
5082 
5083  if (IsNewFormat && SeenAccessTypeInPath)
5084  break;
5085  }
5086 
5087  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5088  &I, MD);
5089  return true;
5090 }
5091 
5092 char VerifierLegacyPass::ID = 0;
5093 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5094 
5095 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5096  return new VerifierLegacyPass(FatalErrors);
5097 }
5098 
5099 AnalysisKey VerifierAnalysis::Key;
5102  Result Res;
5103  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5104  return Res;
5105 }
5106 
5109  return { llvm::verifyFunction(F, &dbgs()), false };
5110 }
5111 
5113  auto Res = AM.getResult<VerifierAnalysis>(M);
5114  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5115  report_fatal_error("Broken module found, compilation aborted!");
5116 
5117  return PreservedAnalyses::all();
5118 }
5119 
5121  auto res = AM.getResult<VerifierAnalysis>(F);
5122  if (res.IRBroken && FatalErrors)
5123  report_fatal_error("Broken function found, compilation aborted!");
5124 
5125  return PreservedAnalyses::all();
5126 }
DIFlags getFlags() const
bool isDeclarationForLinker() const
Definition: GlobalValue.h:523
Metadata * getRawRetainedTypes() const
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:185
static bool isScope(const Metadata *MD)
Definition: Verifier.cpp:850
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:709
Function * getCalledFunction() const
Return the function called, or null if this is an indirect function invocation.
static Value * getParentPad(Value *EHPad)
Definition: Verifier.cpp:3388
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:354
bool empty() const
Definition: Function.h:648
bool isDistinct() const
Definition: Metadata.h:941
bool hasLocalLinkage() const
Definition: GlobalValue.h:435
void clear()
Definition: MapVector.h:89
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1199
This instruction extracts a struct member or array element value from an aggregate value...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
unsigned getLine() const
bool isInlineAsm() const
Definition: CallSite.h:305
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:219
bool isSpeculatable() const
Determine if the call has sideeffects.
Definition: Function.h:533
const Value * stripInBoundsOffsets() const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:599
This represents the llvm.dbg.label instruction.
<