LLVM  7.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/APFloat.h"
49 #include "llvm/ADT/APInt.h"
50 #include "llvm/ADT/ArrayRef.h"
51 #include "llvm/ADT/DenseMap.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/SmallSet.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringMap.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/ilist.h"
64 #include "llvm/IR/Argument.h"
65 #include "llvm/IR/Attributes.h"
66 #include "llvm/IR/BasicBlock.h"
67 #include "llvm/IR/CFG.h"
68 #include "llvm/IR/CallSite.h"
69 #include "llvm/IR/CallingConv.h"
70 #include "llvm/IR/Comdat.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfo.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalValue.h"
83 #include "llvm/IR/GlobalVariable.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/Use.h"
99 #include "llvm/IR/User.h"
100 #include "llvm/IR/Value.h"
101 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/MathExtras.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
122  const Module &M;
124  const DataLayout &DL;
126 
127  /// Track the brokenness of the module while recursively visiting.
128  bool Broken = false;
129  /// Broken debug info can be "recovered" from by stripping the debug info.
130  bool BrokenDebugInfo = false;
131  /// Whether to treat broken debug info as an error.
133 
134  explicit VerifierSupport(raw_ostream *OS, const Module &M)
135  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
136 
137 private:
138  void Write(const Module *M) {
139  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140  }
141 
142  void Write(const Value *V) {
143  if (!V)
144  return;
145  if (isa<Instruction>(V)) {
146  V->print(*OS, MST);
147  *OS << '\n';
148  } else {
149  V->printAsOperand(*OS, true, MST);
150  *OS << '\n';
151  }
152  }
153 
154  void Write(ImmutableCallSite CS) {
155  Write(CS.getInstruction());
156  }
157 
158  void Write(const Metadata *MD) {
159  if (!MD)
160  return;
161  MD->print(*OS, MST, &M);
162  *OS << '\n';
163  }
164 
165  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
166  Write(MD.get());
167  }
168 
169  void Write(const NamedMDNode *NMD) {
170  if (!NMD)
171  return;
172  NMD->print(*OS, MST);
173  *OS << '\n';
174  }
175 
176  void Write(Type *T) {
177  if (!T)
178  return;
179  *OS << ' ' << *T;
180  }
181 
182  void Write(const Comdat *C) {
183  if (!C)
184  return;
185  *OS << *C;
186  }
187 
188  void Write(const APInt *AI) {
189  if (!AI)
190  return;
191  *OS << *AI << '\n';
192  }
193 
194  void Write(const unsigned i) { *OS << i << '\n'; }
195 
196  template <typename T> void Write(ArrayRef<T> Vs) {
197  for (const T &V : Vs)
198  Write(V);
199  }
200 
201  template <typename T1, typename... Ts>
202  void WriteTs(const T1 &V1, const Ts &... Vs) {
203  Write(V1);
204  WriteTs(Vs...);
205  }
206 
207  template <typename... Ts> void WriteTs() {}
208 
209 public:
210  /// \brief A check failed, so printout out the condition and the message.
211  ///
212  /// This provides a nice place to put a breakpoint if you want to see why
213  /// something is not correct.
214  void CheckFailed(const Twine &Message) {
215  if (OS)
216  *OS << Message << '\n';
217  Broken = true;
218  }
219 
220  /// \brief A check failed (with values to print).
221  ///
222  /// This calls the Message-only version so that the above is easier to set a
223  /// breakpoint on.
224  template <typename T1, typename... Ts>
225  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
226  CheckFailed(Message);
227  if (OS)
228  WriteTs(V1, Vs...);
229  }
230 
231  /// A debug info check failed.
232  void DebugInfoCheckFailed(const Twine &Message) {
233  if (OS)
234  *OS << Message << '\n';
235  Broken |= TreatBrokenDebugInfoAsError;
236  BrokenDebugInfo = true;
237  }
238 
239  /// A debug info check failed (with values to print).
240  template <typename T1, typename... Ts>
241  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
242  const Ts &... Vs) {
243  DebugInfoCheckFailed(Message);
244  if (OS)
245  WriteTs(V1, Vs...);
246  }
247 };
248 
249 } // namespace llvm
250 
251 namespace {
252 
253 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
254  friend class InstVisitor<Verifier>;
255 
256  DominatorTree DT;
257 
258  /// \brief When verifying a basic block, keep track of all of the
259  /// instructions we have seen so far.
260  ///
261  /// This allows us to do efficient dominance checks for the case when an
262  /// instruction has an operand that is an instruction in the same block.
263  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
264 
265  /// \brief Keep track of the metadata nodes that have been checked already.
267 
268  /// Keep track which DISubprogram is attached to which function.
269  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
270 
271  /// Track all DICompileUnits visited.
273 
274  /// \brief The result type for a landingpad.
275  Type *LandingPadResultTy;
276 
277  /// \brief Whether we've seen a call to @llvm.localescape in this function
278  /// already.
279  bool SawFrameEscape;
280 
281  /// Whether the current function has a DISubprogram attached to it.
282  bool HasDebugInfo = false;
283 
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
287 
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
291 
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304  // Keeps track of duplicate function argument debug info.
306 
307  TBAAVerifier TBAAVerifyHelper;
308 
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313  const Module &M)
314  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315  SawFrameEscape(false), TBAAVerifyHelper(this) {
316  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318 
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321  bool verify(const Function &F) {
322  assert(F.getParent() == &M &&
323  "An instance of this class only works with a specific module!");
324 
325  // First ensure the function is well-enough formed to compute dominance
326  // information, and directly compute a dominance tree. We don't rely on the
327  // pass manager to provide this as it isolates us from a potentially
328  // out-of-date dominator tree and makes it significantly more complex to run
329  // this code outside of a pass manager.
330  // FIXME: It's really gross that we have to cast away constness here.
331  if (!F.empty())
332  DT.recalculate(const_cast<Function &>(F));
333 
334  for (const BasicBlock &BB : F) {
335  if (!BB.empty() && BB.back().isTerminator())
336  continue;
337 
338  if (OS) {
339  *OS << "Basic Block in function '" << F.getName()
340  << "' does not have terminator!\n";
341  BB.printAsOperand(*OS, true, MST);
342  *OS << "\n";
343  }
344  return false;
345  }
346 
347  Broken = false;
348  // FIXME: We strip const here because the inst visitor strips const.
349  visit(const_cast<Function &>(F));
350  verifySiblingFuncletUnwinds();
351  InstsInThisBlock.clear();
352  DebugFnArgs.clear();
353  LandingPadResultTy = nullptr;
354  SawFrameEscape = false;
355  SiblingFuncletInfo.clear();
356 
357  return !Broken;
358  }
359 
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362  Broken = false;
363 
364  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365  for (const Function &F : M)
366  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367  DeoptimizeDeclarations.push_back(&F);
368 
369  // Now that we've visited every function, verify that we never asked to
370  // recover a frame index that wasn't escaped.
371  verifyFrameRecoverIndices();
372  for (const GlobalVariable &GV : M.globals())
373  visitGlobalVariable(GV);
374 
375  for (const GlobalAlias &GA : M.aliases())
376  visitGlobalAlias(GA);
377 
378  for (const NamedMDNode &NMD : M.named_metadata())
379  visitNamedMDNode(NMD);
380 
381  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382  visitComdat(SMEC.getValue());
383 
384  visitModuleFlags(M);
385  visitModuleIdents(M);
386 
387  verifyCompileUnits();
388 
389  verifyDeoptimizeCallingConvs();
390  DISubprogramAttachments.clear();
391  return !Broken;
392  }
393 
394 private:
395  // Verification methods...
396  void visitGlobalValue(const GlobalValue &GV);
397  void visitGlobalVariable(const GlobalVariable &GV);
398  void visitGlobalAlias(const GlobalAlias &GA);
399  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
400  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
401  const GlobalAlias &A, const Constant &C);
402  void visitNamedMDNode(const NamedMDNode &NMD);
403  void visitMDNode(const MDNode &MD);
404  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
405  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
406  void visitComdat(const Comdat &C);
407  void visitModuleIdents(const Module &M);
408  void visitModuleFlags(const Module &M);
409  void visitModuleFlag(const MDNode *Op,
411  SmallVectorImpl<const MDNode *> &Requirements);
412  void visitFunction(const Function &F);
413  void visitBasicBlock(BasicBlock &BB);
414  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
415  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
416 
417  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
418 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
419 #include "llvm/IR/Metadata.def"
420  void visitDIScope(const DIScope &N);
421  void visitDIVariable(const DIVariable &N);
422  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
423  void visitDITemplateParameter(const DITemplateParameter &N);
424 
425  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
426 
427  // InstVisitor overrides...
429  void visit(Instruction &I);
430 
431  void visitTruncInst(TruncInst &I);
432  void visitZExtInst(ZExtInst &I);
433  void visitSExtInst(SExtInst &I);
434  void visitFPTruncInst(FPTruncInst &I);
435  void visitFPExtInst(FPExtInst &I);
436  void visitFPToUIInst(FPToUIInst &I);
437  void visitFPToSIInst(FPToSIInst &I);
438  void visitUIToFPInst(UIToFPInst &I);
439  void visitSIToFPInst(SIToFPInst &I);
440  void visitIntToPtrInst(IntToPtrInst &I);
441  void visitPtrToIntInst(PtrToIntInst &I);
442  void visitBitCastInst(BitCastInst &I);
443  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
444  void visitPHINode(PHINode &PN);
445  void visitBinaryOperator(BinaryOperator &B);
446  void visitICmpInst(ICmpInst &IC);
447  void visitFCmpInst(FCmpInst &FC);
448  void visitExtractElementInst(ExtractElementInst &EI);
449  void visitInsertElementInst(InsertElementInst &EI);
450  void visitShuffleVectorInst(ShuffleVectorInst &EI);
451  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
452  void visitCallInst(CallInst &CI);
453  void visitInvokeInst(InvokeInst &II);
454  void visitGetElementPtrInst(GetElementPtrInst &GEP);
455  void visitLoadInst(LoadInst &LI);
456  void visitStoreInst(StoreInst &SI);
457  void verifyDominatesUse(Instruction &I, unsigned i);
458  void visitInstruction(Instruction &I);
459  void visitTerminatorInst(TerminatorInst &I);
460  void visitBranchInst(BranchInst &BI);
461  void visitReturnInst(ReturnInst &RI);
462  void visitSwitchInst(SwitchInst &SI);
463  void visitIndirectBrInst(IndirectBrInst &BI);
464  void visitSelectInst(SelectInst &SI);
465  void visitUserOp1(Instruction &I);
466  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
467  void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
468  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
469  void visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII);
470  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472  void visitFenceInst(FenceInst &FI);
473  void visitAllocaInst(AllocaInst &AI);
474  void visitExtractValueInst(ExtractValueInst &EVI);
475  void visitInsertValueInst(InsertValueInst &IVI);
476  void visitEHPadPredecessors(Instruction &I);
477  void visitLandingPadInst(LandingPadInst &LPI);
478  void visitResumeInst(ResumeInst &RI);
479  void visitCatchPadInst(CatchPadInst &CPI);
480  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481  void visitCleanupPadInst(CleanupPadInst &CPI);
482  void visitFuncletPadInst(FuncletPadInst &FPI);
483  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484  void visitCleanupReturnInst(CleanupReturnInst &CRI);
485 
486  void verifyCallSite(CallSite CS);
487  void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488  void verifySwiftErrorValue(const Value *SwiftErrorVal);
489  void verifyMustTailCall(CallInst &CI);
490  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491  unsigned ArgNo, std::string &Suffix);
492  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
494  const Value *V);
495  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
496  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
497  const Value *V);
498  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
499 
500  void visitConstantExprsRecursively(const Constant *EntryC);
501  void visitConstantExpr(const ConstantExpr *CE);
502  void verifyStatepoint(ImmutableCallSite CS);
503  void verifyFrameRecoverIndices();
504  void verifySiblingFuncletUnwinds();
505 
506  void verifyFragmentExpression(const DbgInfoIntrinsic &I);
507  template <typename ValueOrMetadata>
508  void verifyFragmentExpression(const DIVariable &V,
510  ValueOrMetadata *Desc);
511  void verifyFnArgs(const DbgInfoIntrinsic &I);
512 
513  /// Module-level debug info verification...
514  void verifyCompileUnits();
515 
516  /// Module-level verification that all @llvm.experimental.deoptimize
517  /// declarations share the same calling convention.
518  void verifyDeoptimizeCallingConvs();
519 };
520 
521 } // end anonymous namespace
522 
523 /// We know that cond should be true, if not print an error message.
524 #define Assert(C, ...) \
525  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
526 
527 /// We know that a debug info condition should be true, if not print
528 /// an error message.
529 #define AssertDI(C, ...) \
530  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
531 
532 void Verifier::visit(Instruction &I) {
533  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
534  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
536 }
537 
538 // Helper to recursively iterate over indirect users. By
539 // returning false, the callback can ask to stop recursing
540 // further.
541 static void forEachUser(const Value *User,
543  llvm::function_ref<bool(const Value *)> Callback) {
544  if (!Visited.insert(User).second)
545  return;
546  for (const Value *TheNextUser : User->materialized_users())
547  if (Callback(TheNextUser))
548  forEachUser(TheNextUser, Visited, Callback);
549 }
550 
551 void Verifier::visitGlobalValue(const GlobalValue &GV) {
553  "Global is external, but doesn't have external or weak linkage!", &GV);
554 
556  "huge alignment values are unsupported", &GV);
557  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
558  "Only global variables can have appending linkage!", &GV);
559 
560  if (GV.hasAppendingLinkage()) {
561  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
562  Assert(GVar && GVar->getValueType()->isArrayTy(),
563  "Only global arrays can have appending linkage!", GVar);
564  }
565 
566  if (GV.isDeclarationForLinker())
567  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
568 
569  if (GV.hasDLLImportStorageClass()) {
570  Assert(!GV.isDSOLocal(),
571  "GlobalValue with DLLImport Storage is dso_local!", &GV);
572 
573  Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
575  "Global is marked as dllimport, but not external", &GV);
576  }
577 
578  if (GV.hasLocalLinkage())
579  Assert(GV.isDSOLocal(),
580  "GlobalValue with private or internal linkage must be dso_local!",
581  &GV);
582 
583  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
584  Assert(GV.isDSOLocal(),
585  "GlobalValue with non default visibility must be dso_local!", &GV);
586 
587  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
588  if (const Instruction *I = dyn_cast<Instruction>(V)) {
589  if (!I->getParent() || !I->getParent()->getParent())
590  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
591  I);
592  else if (I->getParent()->getParent()->getParent() != &M)
593  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
594  I->getParent()->getParent(),
595  I->getParent()->getParent()->getParent());
596  return false;
597  } else if (const Function *F = dyn_cast<Function>(V)) {
598  if (F->getParent() != &M)
599  CheckFailed("Global is used by function in a different module", &GV, &M,
600  F, F->getParent());
601  return false;
602  }
603  return true;
604  });
605 }
606 
607 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
608  if (GV.hasInitializer()) {
609  Assert(GV.getInitializer()->getType() == GV.getValueType(),
610  "Global variable initializer type does not match global "
611  "variable type!",
612  &GV);
613  // If the global has common linkage, it must have a zero initializer and
614  // cannot be constant.
615  if (GV.hasCommonLinkage()) {
617  "'common' global must have a zero initializer!", &GV);
618  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
619  &GV);
620  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
621  }
622  }
623 
624  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
625  GV.getName() == "llvm.global_dtors")) {
627  "invalid linkage for intrinsic global variable", &GV);
628  // Don't worry about emitting an error for it not being an array,
629  // visitGlobalValue will complain on appending non-array.
630  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
631  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
632  PointerType *FuncPtrTy =
634  // FIXME: Reject the 2-field form in LLVM 4.0.
635  Assert(STy &&
636  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
637  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
638  STy->getTypeAtIndex(1) == FuncPtrTy,
639  "wrong type for intrinsic global variable", &GV);
640  if (STy->getNumElements() == 3) {
641  Type *ETy = STy->getTypeAtIndex(2);
642  Assert(ETy->isPointerTy() &&
643  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
644  "wrong type for intrinsic global variable", &GV);
645  }
646  }
647  }
648 
649  if (GV.hasName() && (GV.getName() == "llvm.used" ||
650  GV.getName() == "llvm.compiler.used")) {
652  "invalid linkage for intrinsic global variable", &GV);
653  Type *GVType = GV.getValueType();
654  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
655  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
656  Assert(PTy, "wrong type for intrinsic global variable", &GV);
657  if (GV.hasInitializer()) {
658  const Constant *Init = GV.getInitializer();
659  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
660  Assert(InitArray, "wrong initalizer for intrinsic global variable",
661  Init);
662  for (Value *Op : InitArray->operands()) {
663  Value *V = Op->stripPointerCastsNoFollowAliases();
664  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
665  isa<GlobalAlias>(V),
666  "invalid llvm.used member", V);
667  Assert(V->hasName(), "members of llvm.used must be named", V);
668  }
669  }
670  }
671  }
672 
673  // Visit any debug info attachments.
676  for (auto *MD : MDs) {
677  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
678  visitDIGlobalVariableExpression(*GVE);
679  else
680  AssertDI(false, "!dbg attachment of global variable must be a "
681  "DIGlobalVariableExpression");
682  }
683 
684  if (!GV.hasInitializer()) {
685  visitGlobalValue(GV);
686  return;
687  }
688 
689  // Walk any aggregate initializers looking for bitcasts between address spaces
690  visitConstantExprsRecursively(GV.getInitializer());
691 
692  visitGlobalValue(GV);
693 }
694 
695 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
697  Visited.insert(&GA);
698  visitAliaseeSubExpr(Visited, GA, C);
699 }
700 
701 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
702  const GlobalAlias &GA, const Constant &C) {
703  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
704  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
705  &GA);
706 
707  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
708  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
709 
710  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
711  &GA);
712  } else {
713  // Only continue verifying subexpressions of GlobalAliases.
714  // Do not recurse into global initializers.
715  return;
716  }
717  }
718 
719  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
720  visitConstantExprsRecursively(CE);
721 
722  for (const Use &U : C.operands()) {
723  Value *V = &*U;
724  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
725  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
726  else if (const auto *C2 = dyn_cast<Constant>(V))
727  visitAliaseeSubExpr(Visited, GA, *C2);
728  }
729 }
730 
731 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
733  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
734  "weak_odr, or external linkage!",
735  &GA);
736  const Constant *Aliasee = GA.getAliasee();
737  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
738  Assert(GA.getType() == Aliasee->getType(),
739  "Alias and aliasee types should match!", &GA);
740 
741  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
742  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
743 
744  visitAliaseeSubExpr(GA, *Aliasee);
745 
746  visitGlobalValue(GA);
747 }
748 
749 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
750  // There used to be various other llvm.dbg.* nodes, but we don't support
751  // upgrading them and we want to reserve the namespace for future uses.
752  if (NMD.getName().startswith("llvm.dbg."))
753  AssertDI(NMD.getName() == "llvm.dbg.cu",
754  "unrecognized named metadata node in the llvm.dbg namespace",
755  &NMD);
756  for (const MDNode *MD : NMD.operands()) {
757  if (NMD.getName() == "llvm.dbg.cu")
758  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
759 
760  if (!MD)
761  continue;
762 
763  visitMDNode(*MD);
764  }
765 }
766 
767 void Verifier::visitMDNode(const MDNode &MD) {
768  // Only visit each node once. Metadata can be mutually recursive, so this
769  // avoids infinite recursion here, as well as being an optimization.
770  if (!MDNodes.insert(&MD).second)
771  return;
772 
773  switch (MD.getMetadataID()) {
774  default:
775  llvm_unreachable("Invalid MDNode subclass");
776  case Metadata::MDTupleKind:
777  break;
778 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
779  case Metadata::CLASS##Kind: \
780  visit##CLASS(cast<CLASS>(MD)); \
781  break;
782 #include "llvm/IR/Metadata.def"
783  }
784 
785  for (const Metadata *Op : MD.operands()) {
786  if (!Op)
787  continue;
788  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
789  &MD, Op);
790  if (auto *N = dyn_cast<MDNode>(Op)) {
791  visitMDNode(*N);
792  continue;
793  }
794  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
795  visitValueAsMetadata(*V, nullptr);
796  continue;
797  }
798  }
799 
800  // Check these last, so we diagnose problems in operands first.
801  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
802  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
803 }
804 
805 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
806  Assert(MD.getValue(), "Expected valid value", &MD);
807  Assert(!MD.getValue()->getType()->isMetadataTy(),
808  "Unexpected metadata round-trip through values", &MD, MD.getValue());
809 
810  auto *L = dyn_cast<LocalAsMetadata>(&MD);
811  if (!L)
812  return;
813 
814  Assert(F, "function-local metadata used outside a function", L);
815 
816  // If this was an instruction, bb, or argument, verify that it is in the
817  // function that we expect.
818  Function *ActualF = nullptr;
819  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
820  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
821  ActualF = I->getParent()->getParent();
822  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
823  ActualF = BB->getParent();
824  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
825  ActualF = A->getParent();
826  assert(ActualF && "Unimplemented function local metadata case!");
827 
828  Assert(ActualF == F, "function-local metadata used in wrong function", L);
829 }
830 
831 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
832  Metadata *MD = MDV.getMetadata();
833  if (auto *N = dyn_cast<MDNode>(MD)) {
834  visitMDNode(*N);
835  return;
836  }
837 
838  // Only visit each node once. Metadata can be mutually recursive, so this
839  // avoids infinite recursion here, as well as being an optimization.
840  if (!MDNodes.insert(MD).second)
841  return;
842 
843  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
844  visitValueAsMetadata(*V, F);
845 }
846 
847 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
848 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
849 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
850 
851 void Verifier::visitDILocation(const DILocation &N) {
852  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
853  "location requires a valid scope", &N, N.getRawScope());
854  if (auto *IA = N.getRawInlinedAt())
855  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
856  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
857  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
858 }
859 
860 void Verifier::visitGenericDINode(const GenericDINode &N) {
861  AssertDI(N.getTag(), "invalid tag", &N);
862 }
863 
864 void Verifier::visitDIScope(const DIScope &N) {
865  if (auto *F = N.getRawFile())
866  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
867 }
868 
869 void Verifier::visitDISubrange(const DISubrange &N) {
870  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
871  auto Count = N.getCount();
872  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
873  &N);
874  AssertDI(!Count.is<ConstantInt*>() ||
875  Count.get<ConstantInt*>()->getSExtValue() >= -1,
876  "invalid subrange count", &N);
877 }
878 
879 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
880  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
881 }
882 
883 void Verifier::visitDIBasicType(const DIBasicType &N) {
884  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
885  N.getTag() == dwarf::DW_TAG_unspecified_type,
886  "invalid tag", &N);
887 }
888 
889 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
890  // Common scope checks.
891  visitDIScope(N);
892 
893  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
894  N.getTag() == dwarf::DW_TAG_pointer_type ||
895  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
896  N.getTag() == dwarf::DW_TAG_reference_type ||
897  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
898  N.getTag() == dwarf::DW_TAG_const_type ||
899  N.getTag() == dwarf::DW_TAG_volatile_type ||
900  N.getTag() == dwarf::DW_TAG_restrict_type ||
901  N.getTag() == dwarf::DW_TAG_atomic_type ||
902  N.getTag() == dwarf::DW_TAG_member ||
903  N.getTag() == dwarf::DW_TAG_inheritance ||
904  N.getTag() == dwarf::DW_TAG_friend,
905  "invalid tag", &N);
906  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
907  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
908  N.getRawExtraData());
909  }
910 
911  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
912  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
913  N.getRawBaseType());
914 
915  if (N.getDWARFAddressSpace()) {
916  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
917  N.getTag() == dwarf::DW_TAG_reference_type,
918  "DWARF address space only applies to pointer or reference types",
919  &N);
920  }
921 }
922 
923 /// Detect mutually exclusive flags.
924 static bool hasConflictingReferenceFlags(unsigned Flags) {
925  return ((Flags & DINode::FlagLValueReference) &&
926  (Flags & DINode::FlagRValueReference)) ||
927  ((Flags & DINode::FlagTypePassByValue) &&
928  (Flags & DINode::FlagTypePassByReference));
929 }
930 
931 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
932  auto *Params = dyn_cast<MDTuple>(&RawParams);
933  AssertDI(Params, "invalid template params", &N, &RawParams);
934  for (Metadata *Op : Params->operands()) {
935  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
936  &N, Params, Op);
937  }
938 }
939 
940 void Verifier::visitDICompositeType(const DICompositeType &N) {
941  // Common scope checks.
942  visitDIScope(N);
943 
944  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
945  N.getTag() == dwarf::DW_TAG_structure_type ||
946  N.getTag() == dwarf::DW_TAG_union_type ||
947  N.getTag() == dwarf::DW_TAG_enumeration_type ||
948  N.getTag() == dwarf::DW_TAG_class_type ||
949  N.getTag() == dwarf::DW_TAG_variant_part,
950  "invalid tag", &N);
951 
952  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
953  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
954  N.getRawBaseType());
955 
956  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
957  "invalid composite elements", &N, N.getRawElements());
958  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
959  N.getRawVTableHolder());
961  "invalid reference flags", &N);
962 
963  if (N.isVector()) {
964  const DINodeArray Elements = N.getElements();
965  AssertDI(Elements.size() == 1 &&
966  Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
967  "invalid vector, expected one element of type subrange", &N);
968  }
969 
970  if (auto *Params = N.getRawTemplateParams())
971  visitTemplateParams(N, *Params);
972 
973  if (N.getTag() == dwarf::DW_TAG_class_type ||
974  N.getTag() == dwarf::DW_TAG_union_type) {
975  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
976  "class/union requires a filename", &N, N.getFile());
977  }
978 
979  if (auto *D = N.getRawDiscriminator()) {
980  AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
981  "discriminator can only appear on variant part");
982  }
983 }
984 
985 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
986  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
987  if (auto *Types = N.getRawTypeArray()) {
988  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
989  for (Metadata *Ty : N.getTypeArray()->operands()) {
990  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
991  }
992  }
994  "invalid reference flags", &N);
995 }
996 
997 void Verifier::visitDIFile(const DIFile &N) {
998  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
999  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1000  if (Checksum) {
1001  AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1002  "invalid checksum kind", &N);
1003  size_t Size;
1004  switch (Checksum->Kind) {
1005  case DIFile::CSK_MD5:
1006  Size = 32;
1007  break;
1008  case DIFile::CSK_SHA1:
1009  Size = 40;
1010  break;
1011  }
1012  AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1013  AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1014  "invalid checksum", &N);
1015  }
1016 }
1017 
1018 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1019  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1020  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1021 
1022  // Don't bother verifying the compilation directory or producer string
1023  // as those could be empty.
1024  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1025  N.getRawFile());
1026  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1027  N.getFile());
1028 
1030  "invalid emission kind", &N);
1031 
1032  if (auto *Array = N.getRawEnumTypes()) {
1033  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1034  for (Metadata *Op : N.getEnumTypes()->operands()) {
1035  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1036  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1037  "invalid enum type", &N, N.getEnumTypes(), Op);
1038  }
1039  }
1040  if (auto *Array = N.getRawRetainedTypes()) {
1041  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1042  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1043  AssertDI(Op && (isa<DIType>(Op) ||
1044  (isa<DISubprogram>(Op) &&
1045  !cast<DISubprogram>(Op)->isDefinition())),
1046  "invalid retained type", &N, Op);
1047  }
1048  }
1049  if (auto *Array = N.getRawGlobalVariables()) {
1050  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1051  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1052  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1053  "invalid global variable ref", &N, Op);
1054  }
1055  }
1056  if (auto *Array = N.getRawImportedEntities()) {
1057  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1058  for (Metadata *Op : N.getImportedEntities()->operands()) {
1059  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1060  &N, Op);
1061  }
1062  }
1063  if (auto *Array = N.getRawMacros()) {
1064  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1065  for (Metadata *Op : N.getMacros()->operands()) {
1066  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1067  }
1068  }
1069  CUVisited.insert(&N);
1070 }
1071 
1072 void Verifier::visitDISubprogram(const DISubprogram &N) {
1073  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1074  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1075  if (auto *F = N.getRawFile())
1076  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1077  else
1078  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1079  if (auto *T = N.getRawType())
1080  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1081  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1082  N.getRawContainingType());
1083  if (auto *Params = N.getRawTemplateParams())
1084  visitTemplateParams(N, *Params);
1085  if (auto *S = N.getRawDeclaration())
1086  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1087  "invalid subprogram declaration", &N, S);
1088  if (auto *RawVars = N.getRawVariables()) {
1089  auto *Vars = dyn_cast<MDTuple>(RawVars);
1090  AssertDI(Vars, "invalid variable list", &N, RawVars);
1091  for (Metadata *Op : Vars->operands()) {
1092  AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
1093  Vars, Op);
1094  }
1095  }
1096  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1097  "invalid reference flags", &N);
1098 
1099  auto *Unit = N.getRawUnit();
1100  if (N.isDefinition()) {
1101  // Subprogram definitions (not part of the type hierarchy).
1102  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1103  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1104  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1105  } else {
1106  // Subprogram declarations (part of the type hierarchy).
1107  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1108  }
1109 
1110  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1111  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1112  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1113  for (Metadata *Op : ThrownTypes->operands())
1114  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1115  Op);
1116  }
1117 }
1118 
1119 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1120  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1121  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1122  "invalid local scope", &N, N.getRawScope());
1123  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1124  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1125 }
1126 
1127 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1128  visitDILexicalBlockBase(N);
1129 
1130  AssertDI(N.getLine() || !N.getColumn(),
1131  "cannot have column info without line info", &N);
1132 }
1133 
1134 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1135  visitDILexicalBlockBase(N);
1136 }
1137 
1138 void Verifier::visitDINamespace(const DINamespace &N) {
1139  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1140  if (auto *S = N.getRawScope())
1141  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1142 }
1143 
1144 void Verifier::visitDIMacro(const DIMacro &N) {
1147  "invalid macinfo type", &N);
1148  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1149  if (!N.getValue().empty()) {
1150  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1151  }
1152 }
1153 
1154 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1156  "invalid macinfo type", &N);
1157  if (auto *F = N.getRawFile())
1158  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1159 
1160  if (auto *Array = N.getRawElements()) {
1161  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1162  for (Metadata *Op : N.getElements()->operands()) {
1163  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1164  }
1165  }
1166 }
1167 
1168 void Verifier::visitDIModule(const DIModule &N) {
1169  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1170  AssertDI(!N.getName().empty(), "anonymous module", &N);
1171 }
1172 
1173 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1174  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1175 }
1176 
1177 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1178  visitDITemplateParameter(N);
1179 
1180  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1181  &N);
1182 }
1183 
1184 void Verifier::visitDITemplateValueParameter(
1185  const DITemplateValueParameter &N) {
1186  visitDITemplateParameter(N);
1187 
1188  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1189  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1190  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1191  "invalid tag", &N);
1192 }
1193 
1194 void Verifier::visitDIVariable(const DIVariable &N) {
1195  if (auto *S = N.getRawScope())
1196  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1197  if (auto *F = N.getRawFile())
1198  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1199 }
1200 
1201 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1202  // Checks common to all variables.
1203  visitDIVariable(N);
1204 
1205  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1206  AssertDI(!N.getName().empty(), "missing global variable name", &N);
1207  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1208  AssertDI(N.getType(), "missing global variable type", &N);
1209  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1210  AssertDI(isa<DIDerivedType>(Member),
1211  "invalid static data member declaration", &N, Member);
1212  }
1213 }
1214 
1215 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1216  // Checks common to all variables.
1217  visitDIVariable(N);
1218 
1219  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1220  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1221  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1222  "local variable requires a valid scope", &N, N.getRawScope());
1223 }
1224 
1225 void Verifier::visitDIExpression(const DIExpression &N) {
1226  AssertDI(N.isValid(), "invalid expression", &N);
1227 }
1228 
1229 void Verifier::visitDIGlobalVariableExpression(
1230  const DIGlobalVariableExpression &GVE) {
1231  AssertDI(GVE.getVariable(), "missing variable");
1232  if (auto *Var = GVE.getVariable())
1233  visitDIGlobalVariable(*Var);
1234  if (auto *Expr = GVE.getExpression()) {
1235  visitDIExpression(*Expr);
1236  if (auto Fragment = Expr->getFragmentInfo())
1237  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1238  }
1239 }
1240 
1241 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1242  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1243  if (auto *T = N.getRawType())
1244  AssertDI(isType(T), "invalid type ref", &N, T);
1245  if (auto *F = N.getRawFile())
1246  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1247 }
1248 
1249 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1250  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1251  N.getTag() == dwarf::DW_TAG_imported_declaration,
1252  "invalid tag", &N);
1253  if (auto *S = N.getRawScope())
1254  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1255  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1256  N.getRawEntity());
1257 }
1258 
1259 void Verifier::visitComdat(const Comdat &C) {
1260  // The Module is invalid if the GlobalValue has private linkage. Entities
1261  // with private linkage don't have entries in the symbol table.
1262  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1263  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1264  GV);
1265 }
1266 
1267 void Verifier::visitModuleIdents(const Module &M) {
1268  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1269  if (!Idents)
1270  return;
1271 
1272  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1273  // Scan each llvm.ident entry and make sure that this requirement is met.
1274  for (const MDNode *N : Idents->operands()) {
1275  Assert(N->getNumOperands() == 1,
1276  "incorrect number of operands in llvm.ident metadata", N);
1277  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1278  ("invalid value for llvm.ident metadata entry operand"
1279  "(the operand should be a string)"),
1280  N->getOperand(0));
1281  }
1282 }
1283 
1284 void Verifier::visitModuleFlags(const Module &M) {
1285  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1286  if (!Flags) return;
1287 
1288  // Scan each flag, and track the flags and requirements.
1290  SmallVector<const MDNode*, 16> Requirements;
1291  for (const MDNode *MDN : Flags->operands())
1292  visitModuleFlag(MDN, SeenIDs, Requirements);
1293 
1294  // Validate that the requirements in the module are valid.
1295  for (const MDNode *Requirement : Requirements) {
1296  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1297  const Metadata *ReqValue = Requirement->getOperand(1);
1298 
1299  const MDNode *Op = SeenIDs.lookup(Flag);
1300  if (!Op) {
1301  CheckFailed("invalid requirement on flag, flag is not present in module",
1302  Flag);
1303  continue;
1304  }
1305 
1306  if (Op->getOperand(2) != ReqValue) {
1307  CheckFailed(("invalid requirement on flag, "
1308  "flag does not have the required value"),
1309  Flag);
1310  continue;
1311  }
1312  }
1313 }
1314 
1315 void
1316 Verifier::visitModuleFlag(const MDNode *Op,
1318  SmallVectorImpl<const MDNode *> &Requirements) {
1319  // Each module flag should have three arguments, the merge behavior (a
1320  // constant int), the flag ID (an MDString), and the value.
1321  Assert(Op->getNumOperands() == 3,
1322  "incorrect number of operands in module flag", Op);
1324  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1325  Assert(
1326  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1327  "invalid behavior operand in module flag (expected constant integer)",
1328  Op->getOperand(0));
1329  Assert(false,
1330  "invalid behavior operand in module flag (unexpected constant)",
1331  Op->getOperand(0));
1332  }
1333  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1334  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1335  Op->getOperand(1));
1336 
1337  // Sanity check the values for behaviors with additional requirements.
1338  switch (MFB) {
1339  case Module::Error:
1340  case Module::Warning:
1341  case Module::Override:
1342  // These behavior types accept any value.
1343  break;
1344 
1345  case Module::Max: {
1346  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1347  "invalid value for 'max' module flag (expected constant integer)",
1348  Op->getOperand(2));
1349  break;
1350  }
1351 
1352  case Module::Require: {
1353  // The value should itself be an MDNode with two operands, a flag ID (an
1354  // MDString), and a value.
1355  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1356  Assert(Value && Value->getNumOperands() == 2,
1357  "invalid value for 'require' module flag (expected metadata pair)",
1358  Op->getOperand(2));
1359  Assert(isa<MDString>(Value->getOperand(0)),
1360  ("invalid value for 'require' module flag "
1361  "(first value operand should be a string)"),
1362  Value->getOperand(0));
1363 
1364  // Append it to the list of requirements, to check once all module flags are
1365  // scanned.
1366  Requirements.push_back(Value);
1367  break;
1368  }
1369 
1370  case Module::Append:
1371  case Module::AppendUnique: {
1372  // These behavior types require the operand be an MDNode.
1373  Assert(isa<MDNode>(Op->getOperand(2)),
1374  "invalid value for 'append'-type module flag "
1375  "(expected a metadata node)",
1376  Op->getOperand(2));
1377  break;
1378  }
1379  }
1380 
1381  // Unless this is a "requires" flag, check the ID is unique.
1382  if (MFB != Module::Require) {
1383  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1384  Assert(Inserted,
1385  "module flag identifiers must be unique (or of 'require' type)", ID);
1386  }
1387 
1388  if (ID->getString() == "wchar_size") {
1390  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1391  Assert(Value, "wchar_size metadata requires constant integer argument");
1392  }
1393 
1394  if (ID->getString() == "Linker Options") {
1395  // If the llvm.linker.options named metadata exists, we assume that the
1396  // bitcode reader has upgraded the module flag. Otherwise the flag might
1397  // have been created by a client directly.
1398  Assert(M.getNamedMetadata("llvm.linker.options"),
1399  "'Linker Options' named metadata no longer supported");
1400  }
1401 }
1402 
1403 /// Return true if this attribute kind only applies to functions.
1405  switch (Kind) {
1406  case Attribute::NoReturn:
1407  case Attribute::NoCfCheck:
1408  case Attribute::NoUnwind:
1409  case Attribute::NoInline:
1410  case Attribute::AlwaysInline:
1411  case Attribute::OptimizeForSize:
1412  case Attribute::StackProtect:
1413  case Attribute::StackProtectReq:
1414  case Attribute::StackProtectStrong:
1415  case Attribute::SafeStack:
1416  case Attribute::ShadowCallStack:
1417  case Attribute::NoRedZone:
1418  case Attribute::NoImplicitFloat:
1419  case Attribute::Naked:
1420  case Attribute::InlineHint:
1421  case Attribute::StackAlignment:
1422  case Attribute::UWTable:
1423  case Attribute::NonLazyBind:
1424  case Attribute::ReturnsTwice:
1425  case Attribute::SanitizeAddress:
1426  case Attribute::SanitizeHWAddress:
1427  case Attribute::SanitizeThread:
1428  case Attribute::SanitizeMemory:
1429  case Attribute::MinSize:
1430  case Attribute::NoDuplicate:
1431  case Attribute::Builtin:
1432  case Attribute::NoBuiltin:
1433  case Attribute::Cold:
1434  case Attribute::OptForFuzzing:
1435  case Attribute::OptimizeNone:
1436  case Attribute::JumpTable:
1437  case Attribute::Convergent:
1438  case Attribute::ArgMemOnly:
1439  case Attribute::NoRecurse:
1440  case Attribute::InaccessibleMemOnly:
1441  case Attribute::InaccessibleMemOrArgMemOnly:
1442  case Attribute::AllocSize:
1443  case Attribute::Speculatable:
1444  case Attribute::StrictFP:
1445  return true;
1446  default:
1447  break;
1448  }
1449  return false;
1450 }
1451 
1452 /// Return true if this is a function attribute that can also appear on
1453 /// arguments.
1455  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1456  Kind == Attribute::ReadNone;
1457 }
1458 
1459 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1460  const Value *V) {
1461  for (Attribute A : Attrs) {
1462  if (A.isStringAttribute())
1463  continue;
1464 
1465  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1466  if (!IsFunction) {
1467  CheckFailed("Attribute '" + A.getAsString() +
1468  "' only applies to functions!",
1469  V);
1470  return;
1471  }
1472  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1473  CheckFailed("Attribute '" + A.getAsString() +
1474  "' does not apply to functions!",
1475  V);
1476  return;
1477  }
1478  }
1479 }
1480 
1481 // VerifyParameterAttrs - Check the given attributes for an argument or return
1482 // value of the specified type. The value V is printed in error messages.
1483 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1484  const Value *V) {
1485  if (!Attrs.hasAttributes())
1486  return;
1487 
1488  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1489 
1490  // Check for mutually incompatible attributes. Only inreg is compatible with
1491  // sret.
1492  unsigned AttrCount = 0;
1493  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1494  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1495  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1496  Attrs.hasAttribute(Attribute::InReg);
1497  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1498  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1499  "and 'sret' are incompatible!",
1500  V);
1501 
1502  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1503  Attrs.hasAttribute(Attribute::ReadOnly)),
1504  "Attributes "
1505  "'inalloca and readonly' are incompatible!",
1506  V);
1507 
1508  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1509  Attrs.hasAttribute(Attribute::Returned)),
1510  "Attributes "
1511  "'sret and returned' are incompatible!",
1512  V);
1513 
1514  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1515  Attrs.hasAttribute(Attribute::SExt)),
1516  "Attributes "
1517  "'zeroext and signext' are incompatible!",
1518  V);
1519 
1520  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1521  Attrs.hasAttribute(Attribute::ReadOnly)),
1522  "Attributes "
1523  "'readnone and readonly' are incompatible!",
1524  V);
1525 
1526  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1527  Attrs.hasAttribute(Attribute::WriteOnly)),
1528  "Attributes "
1529  "'readnone and writeonly' are incompatible!",
1530  V);
1531 
1532  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1533  Attrs.hasAttribute(Attribute::WriteOnly)),
1534  "Attributes "
1535  "'readonly and writeonly' are incompatible!",
1536  V);
1537 
1538  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1539  Attrs.hasAttribute(Attribute::AlwaysInline)),
1540  "Attributes "
1541  "'noinline and alwaysinline' are incompatible!",
1542  V);
1543 
1544  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1545  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1546  "Wrong types for attribute: " +
1547  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1548  V);
1549 
1550  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1551  SmallPtrSet<Type*, 4> Visited;
1552  if (!PTy->getElementType()->isSized(&Visited)) {
1553  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1554  !Attrs.hasAttribute(Attribute::InAlloca),
1555  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1556  V);
1557  }
1558  if (!isa<PointerType>(PTy->getElementType()))
1559  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1560  "Attribute 'swifterror' only applies to parameters "
1561  "with pointer to pointer type!",
1562  V);
1563  } else {
1564  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1565  "Attribute 'byval' only applies to parameters with pointer type!",
1566  V);
1567  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1568  "Attribute 'swifterror' only applies to parameters "
1569  "with pointer type!",
1570  V);
1571  }
1572 }
1573 
1574 // Check parameter attributes against a function type.
1575 // The value V is printed in error messages.
1576 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1577  const Value *V) {
1578  if (Attrs.isEmpty())
1579  return;
1580 
1581  bool SawNest = false;
1582  bool SawReturned = false;
1583  bool SawSRet = false;
1584  bool SawSwiftSelf = false;
1585  bool SawSwiftError = false;
1586 
1587  // Verify return value attributes.
1588  AttributeSet RetAttrs = Attrs.getRetAttributes();
1589  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1590  !RetAttrs.hasAttribute(Attribute::Nest) &&
1591  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1592  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1593  !RetAttrs.hasAttribute(Attribute::Returned) &&
1594  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1595  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1596  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1597  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1598  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1599  "values!",
1600  V);
1601  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1602  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1603  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1604  "Attribute '" + RetAttrs.getAsString() +
1605  "' does not apply to function returns",
1606  V);
1607  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1608 
1609  // Verify parameter attributes.
1610  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1611  Type *Ty = FT->getParamType(i);
1612  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1613 
1614  verifyParameterAttrs(ArgAttrs, Ty, V);
1615 
1616  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1617  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1618  SawNest = true;
1619  }
1620 
1621  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1622  Assert(!SawReturned, "More than one parameter has attribute returned!",
1623  V);
1625  "Incompatible argument and return types for 'returned' attribute",
1626  V);
1627  SawReturned = true;
1628  }
1629 
1630  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1631  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1632  Assert(i == 0 || i == 1,
1633  "Attribute 'sret' is not on first or second parameter!", V);
1634  SawSRet = true;
1635  }
1636 
1637  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1638  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1639  SawSwiftSelf = true;
1640  }
1641 
1642  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1643  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1644  V);
1645  SawSwiftError = true;
1646  }
1647 
1648  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1649  Assert(i == FT->getNumParams() - 1,
1650  "inalloca isn't on the last parameter!", V);
1651  }
1652  }
1653 
1655  return;
1656 
1657  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1658 
1659  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1660  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1661  "Attributes 'readnone and readonly' are incompatible!", V);
1662 
1663  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1664  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1665  "Attributes 'readnone and writeonly' are incompatible!", V);
1666 
1667  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1668  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1669  "Attributes 'readonly and writeonly' are incompatible!", V);
1670 
1671  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1672  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1673  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1674  "incompatible!",
1675  V);
1676 
1677  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1678  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1679  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1680 
1681  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1682  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1683  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1684 
1685  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1686  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1687  "Attribute 'optnone' requires 'noinline'!", V);
1688 
1689  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1690  "Attributes 'optsize and optnone' are incompatible!", V);
1691 
1692  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1693  "Attributes 'minsize and optnone' are incompatible!", V);
1694  }
1695 
1696  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1697  const GlobalValue *GV = cast<GlobalValue>(V);
1699  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1700  }
1701 
1702  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1703  std::pair<unsigned, Optional<unsigned>> Args =
1705 
1706  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1707  if (ParamNo >= FT->getNumParams()) {
1708  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1709  return false;
1710  }
1711 
1712  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1713  CheckFailed("'allocsize' " + Name +
1714  " argument must refer to an integer parameter",
1715  V);
1716  return false;
1717  }
1718 
1719  return true;
1720  };
1721 
1722  if (!CheckParam("element size", Args.first))
1723  return;
1724 
1725  if (Args.second && !CheckParam("number of elements", *Args.second))
1726  return;
1727  }
1728 }
1729 
1730 void Verifier::verifyFunctionMetadata(
1731  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1732  for (const auto &Pair : MDs) {
1733  if (Pair.first == LLVMContext::MD_prof) {
1734  MDNode *MD = Pair.second;
1735  Assert(MD->getNumOperands() >= 2,
1736  "!prof annotations should have no less than 2 operands", MD);
1737 
1738  // Check first operand.
1739  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1740  MD);
1741  Assert(isa<MDString>(MD->getOperand(0)),
1742  "expected string with name of the !prof annotation", MD);
1743  MDString *MDS = cast<MDString>(MD->getOperand(0));
1744  StringRef ProfName = MDS->getString();
1745  Assert(ProfName.equals("function_entry_count") ||
1746  ProfName.equals("synthetic_function_entry_count"),
1747  "first operand should be 'function_entry_count'"
1748  " or 'synthetic_function_entry_count'",
1749  MD);
1750 
1751  // Check second operand.
1752  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1753  MD);
1754  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1755  "expected integer argument to function_entry_count", MD);
1756  }
1757  }
1758 }
1759 
1760 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1761  if (!ConstantExprVisited.insert(EntryC).second)
1762  return;
1763 
1765  Stack.push_back(EntryC);
1766 
1767  while (!Stack.empty()) {
1768  const Constant *C = Stack.pop_back_val();
1769 
1770  // Check this constant expression.
1771  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1772  visitConstantExpr(CE);
1773 
1774  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1775  // Global Values get visited separately, but we do need to make sure
1776  // that the global value is in the correct module
1777  Assert(GV->getParent() == &M, "Referencing global in another module!",
1778  EntryC, &M, GV, GV->getParent());
1779  continue;
1780  }
1781 
1782  // Visit all sub-expressions.
1783  for (const Use &U : C->operands()) {
1784  const auto *OpC = dyn_cast<Constant>(U);
1785  if (!OpC)
1786  continue;
1787  if (!ConstantExprVisited.insert(OpC).second)
1788  continue;
1789  Stack.push_back(OpC);
1790  }
1791  }
1792 }
1793 
1794 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1795  if (CE->getOpcode() == Instruction::BitCast)
1796  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1797  CE->getType()),
1798  "Invalid bitcast", CE);
1799 
1800  if (CE->getOpcode() == Instruction::IntToPtr ||
1801  CE->getOpcode() == Instruction::PtrToInt) {
1802  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1803  ? CE->getType()
1804  : CE->getOperand(0)->getType();
1805  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1806  ? "inttoptr not supported for non-integral pointers"
1807  : "ptrtoint not supported for non-integral pointers";
1808  Assert(
1809  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1810  Msg);
1811  }
1812 }
1813 
1814 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1815  // There shouldn't be more attribute sets than there are parameters plus the
1816  // function and return value.
1817  return Attrs.getNumAttrSets() <= Params + 2;
1818 }
1819 
1820 /// Verify that statepoint intrinsic is well formed.
1821 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1822  assert(CS.getCalledFunction() &&
1824  Intrinsic::experimental_gc_statepoint);
1825 
1826  const Instruction &CI = *CS.getInstruction();
1827 
1828  Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1829  !CS.onlyAccessesArgMemory(),
1830  "gc.statepoint must read and write all memory to preserve "
1831  "reordering restrictions required by safepoint semantics",
1832  &CI);
1833 
1834  const Value *IDV = CS.getArgument(0);
1835  Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1836  &CI);
1837 
1838  const Value *NumPatchBytesV = CS.getArgument(1);
1839  Assert(isa<ConstantInt>(NumPatchBytesV),
1840  "gc.statepoint number of patchable bytes must be a constant integer",
1841  &CI);
1842  const int64_t NumPatchBytes =
1843  cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1844  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1845  Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1846  "positive",
1847  &CI);
1848 
1849  const Value *Target = CS.getArgument(2);
1850  auto *PT = dyn_cast<PointerType>(Target->getType());
1851  Assert(PT && PT->getElementType()->isFunctionTy(),
1852  "gc.statepoint callee must be of function pointer type", &CI, Target);
1853  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1854 
1855  const Value *NumCallArgsV = CS.getArgument(3);
1856  Assert(isa<ConstantInt>(NumCallArgsV),
1857  "gc.statepoint number of arguments to underlying call "
1858  "must be constant integer",
1859  &CI);
1860  const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1861  Assert(NumCallArgs >= 0,
1862  "gc.statepoint number of arguments to underlying call "
1863  "must be positive",
1864  &CI);
1865  const int NumParams = (int)TargetFuncType->getNumParams();
1866  if (TargetFuncType->isVarArg()) {
1867  Assert(NumCallArgs >= NumParams,
1868  "gc.statepoint mismatch in number of vararg call args", &CI);
1869 
1870  // TODO: Remove this limitation
1871  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1872  "gc.statepoint doesn't support wrapping non-void "
1873  "vararg functions yet",
1874  &CI);
1875  } else
1876  Assert(NumCallArgs == NumParams,
1877  "gc.statepoint mismatch in number of call args", &CI);
1878 
1879  const Value *FlagsV = CS.getArgument(4);
1880  Assert(isa<ConstantInt>(FlagsV),
1881  "gc.statepoint flags must be constant integer", &CI);
1882  const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1883  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1884  "unknown flag used in gc.statepoint flags argument", &CI);
1885 
1886  // Verify that the types of the call parameter arguments match
1887  // the type of the wrapped callee.
1888  for (int i = 0; i < NumParams; i++) {
1889  Type *ParamType = TargetFuncType->getParamType(i);
1890  Type *ArgType = CS.getArgument(5 + i)->getType();
1891  Assert(ArgType == ParamType,
1892  "gc.statepoint call argument does not match wrapped "
1893  "function type",
1894  &CI);
1895  }
1896 
1897  const int EndCallArgsInx = 4 + NumCallArgs;
1898 
1899  const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1900  Assert(isa<ConstantInt>(NumTransitionArgsV),
1901  "gc.statepoint number of transition arguments "
1902  "must be constant integer",
1903  &CI);
1904  const int NumTransitionArgs =
1905  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1906  Assert(NumTransitionArgs >= 0,
1907  "gc.statepoint number of transition arguments must be positive", &CI);
1908  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1909 
1910  const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1911  Assert(isa<ConstantInt>(NumDeoptArgsV),
1912  "gc.statepoint number of deoptimization arguments "
1913  "must be constant integer",
1914  &CI);
1915  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1916  Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1917  "must be positive",
1918  &CI);
1919 
1920  const int ExpectedNumArgs =
1921  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1922  Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1923  "gc.statepoint too few arguments according to length fields", &CI);
1924 
1925  // Check that the only uses of this gc.statepoint are gc.result or
1926  // gc.relocate calls which are tied to this statepoint and thus part
1927  // of the same statepoint sequence
1928  for (const User *U : CI.users()) {
1929  const CallInst *Call = dyn_cast<const CallInst>(U);
1930  Assert(Call, "illegal use of statepoint token", &CI, U);
1931  if (!Call) continue;
1932  Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1933  "gc.result or gc.relocate are the only value uses "
1934  "of a gc.statepoint",
1935  &CI, U);
1936  if (isa<GCResultInst>(Call)) {
1937  Assert(Call->getArgOperand(0) == &CI,
1938  "gc.result connected to wrong gc.statepoint", &CI, Call);
1939  } else if (isa<GCRelocateInst>(Call)) {
1940  Assert(Call->getArgOperand(0) == &CI,
1941  "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1942  }
1943  }
1944 
1945  // Note: It is legal for a single derived pointer to be listed multiple
1946  // times. It's non-optimal, but it is legal. It can also happen after
1947  // insertion if we strip a bitcast away.
1948  // Note: It is really tempting to check that each base is relocated and
1949  // that a derived pointer is never reused as a base pointer. This turns
1950  // out to be problematic since optimizations run after safepoint insertion
1951  // can recognize equality properties that the insertion logic doesn't know
1952  // about. See example statepoint.ll in the verifier subdirectory
1953 }
1954 
1955 void Verifier::verifyFrameRecoverIndices() {
1956  for (auto &Counts : FrameEscapeInfo) {
1957  Function *F = Counts.first;
1958  unsigned EscapedObjectCount = Counts.second.first;
1959  unsigned MaxRecoveredIndex = Counts.second.second;
1960  Assert(MaxRecoveredIndex <= EscapedObjectCount,
1961  "all indices passed to llvm.localrecover must be less than the "
1962  "number of arguments passed ot llvm.localescape in the parent "
1963  "function",
1964  F);
1965  }
1966 }
1967 
1969  BasicBlock *UnwindDest;
1970  if (auto *II = dyn_cast<InvokeInst>(Terminator))
1971  UnwindDest = II->getUnwindDest();
1972  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1973  UnwindDest = CSI->getUnwindDest();
1974  else
1975  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1976  return UnwindDest->getFirstNonPHI();
1977 }
1978 
1979 void Verifier::verifySiblingFuncletUnwinds() {
1982  for (const auto &Pair : SiblingFuncletInfo) {
1983  Instruction *PredPad = Pair.first;
1984  if (Visited.count(PredPad))
1985  continue;
1986  Active.insert(PredPad);
1987  TerminatorInst *Terminator = Pair.second;
1988  do {
1989  Instruction *SuccPad = getSuccPad(Terminator);
1990  if (Active.count(SuccPad)) {
1991  // Found a cycle; report error
1992  Instruction *CyclePad = SuccPad;
1993  SmallVector<Instruction *, 8> CycleNodes;
1994  do {
1995  CycleNodes.push_back(CyclePad);
1996  TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1997  if (CycleTerminator != CyclePad)
1998  CycleNodes.push_back(CycleTerminator);
1999  CyclePad = getSuccPad(CycleTerminator);
2000  } while (CyclePad != SuccPad);
2001  Assert(false, "EH pads can't handle each other's exceptions",
2002  ArrayRef<Instruction *>(CycleNodes));
2003  }
2004  // Don't re-walk a node we've already checked
2005  if (!Visited.insert(SuccPad).second)
2006  break;
2007  // Walk to this successor if it has a map entry.
2008  PredPad = SuccPad;
2009  auto TermI = SiblingFuncletInfo.find(PredPad);
2010  if (TermI == SiblingFuncletInfo.end())
2011  break;
2012  Terminator = TermI->second;
2013  Active.insert(PredPad);
2014  } while (true);
2015  // Each node only has one successor, so we've walked all the active
2016  // nodes' successors.
2017  Active.clear();
2018  }
2019 }
2020 
2021 // visitFunction - Verify that a function is ok.
2022 //
2023 void Verifier::visitFunction(const Function &F) {
2024  visitGlobalValue(F);
2025 
2026  // Check function arguments.
2027  FunctionType *FT = F.getFunctionType();
2028  unsigned NumArgs = F.arg_size();
2029 
2030  Assert(&Context == &F.getContext(),
2031  "Function context does not match Module context!", &F);
2032 
2033  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2034  Assert(FT->getNumParams() == NumArgs,
2035  "# formal arguments must match # of arguments for function type!", &F,
2036  FT);
2037  Assert(F.getReturnType()->isFirstClassType() ||
2038  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2039  "Functions cannot return aggregate values!", &F);
2040 
2041  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2042  "Invalid struct return type!", &F);
2043 
2044  AttributeList Attrs = F.getAttributes();
2045 
2046  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2047  "Attribute after last parameter!", &F);
2048 
2049  // Check function attributes.
2050  verifyFunctionAttrs(FT, Attrs, &F);
2051 
2052  // On function declarations/definitions, we do not support the builtin
2053  // attribute. We do not check this in VerifyFunctionAttrs since that is
2054  // checking for Attributes that can/can not ever be on functions.
2055  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2056  "Attribute 'builtin' can only be applied to a callsite.", &F);
2057 
2058  // Check that this function meets the restrictions on this calling convention.
2059  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2060  // restrictions can be lifted.
2061  switch (F.getCallingConv()) {
2062  default:
2063  case CallingConv::C:
2064  break;
2067  Assert(F.getReturnType()->isVoidTy(),
2068  "Calling convention requires void return type", &F);
2075  Assert(!F.hasStructRetAttr(),
2076  "Calling convention does not allow sret", &F);
2078  case CallingConv::Fast:
2079  case CallingConv::Cold:
2083  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2084  "perfect forwarding!",
2085  &F);
2086  break;
2087  }
2088 
2089  bool isLLVMdotName = F.getName().size() >= 5 &&
2090  F.getName().substr(0, 5) == "llvm.";
2091 
2092  // Check that the argument values match the function type for this function...
2093  unsigned i = 0;
2094  for (const Argument &Arg : F.args()) {
2095  Assert(Arg.getType() == FT->getParamType(i),
2096  "Argument value does not match function argument type!", &Arg,
2097  FT->getParamType(i));
2099  "Function arguments must have first-class types!", &Arg);
2100  if (!isLLVMdotName) {
2102  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2103  Assert(!Arg.getType()->isTokenTy(),
2104  "Function takes token but isn't an intrinsic", &Arg, &F);
2105  }
2106 
2107  // Check that swifterror argument is only used by loads and stores.
2108  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2109  verifySwiftErrorValue(&Arg);
2110  }
2111  ++i;
2112  }
2113 
2114  if (!isLLVMdotName)
2115  Assert(!F.getReturnType()->isTokenTy(),
2116  "Functions returns a token but isn't an intrinsic", &F);
2117 
2118  // Get the function metadata attachments.
2120  F.getAllMetadata(MDs);
2121  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2122  verifyFunctionMetadata(MDs);
2123 
2124  // Check validity of the personality function
2125  if (F.hasPersonalityFn()) {
2126  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2127  if (Per)
2128  Assert(Per->getParent() == F.getParent(),
2129  "Referencing personality function in another module!",
2130  &F, F.getParent(), Per, Per->getParent());
2131  }
2132 
2133  if (F.isMaterializable()) {
2134  // Function has a body somewhere we can't see.
2135  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2136  MDs.empty() ? nullptr : MDs.front().second);
2137  } else if (F.isDeclaration()) {
2138  for (const auto &I : MDs) {
2139  AssertDI(I.first != LLVMContext::MD_dbg,
2140  "function declaration may not have a !dbg attachment", &F);
2141  Assert(I.first != LLVMContext::MD_prof,
2142  "function declaration may not have a !prof attachment", &F);
2143 
2144  // Verify the metadata itself.
2145  visitMDNode(*I.second);
2146  }
2147  Assert(!F.hasPersonalityFn(),
2148  "Function declaration shouldn't have a personality routine", &F);
2149  } else {
2150  // Verify that this function (which has a body) is not named "llvm.*". It
2151  // is not legal to define intrinsics.
2152  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2153 
2154  // Check the entry node
2155  const BasicBlock *Entry = &F.getEntryBlock();
2156  Assert(pred_empty(Entry),
2157  "Entry block to function must not have predecessors!", Entry);
2158 
2159  // The address of the entry block cannot be taken, unless it is dead.
2160  if (Entry->hasAddressTaken()) {
2161  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2162  "blockaddress may not be used with the entry block!", Entry);
2163  }
2164 
2165  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2166  // Visit metadata attachments.
2167  for (const auto &I : MDs) {
2168  // Verify that the attachment is legal.
2169  switch (I.first) {
2170  default:
2171  break;
2172  case LLVMContext::MD_dbg: {
2173  ++NumDebugAttachments;
2174  AssertDI(NumDebugAttachments == 1,
2175  "function must have a single !dbg attachment", &F, I.second);
2176  AssertDI(isa<DISubprogram>(I.second),
2177  "function !dbg attachment must be a subprogram", &F, I.second);
2178  auto *SP = cast<DISubprogram>(I.second);
2179  const Function *&AttachedTo = DISubprogramAttachments[SP];
2180  AssertDI(!AttachedTo || AttachedTo == &F,
2181  "DISubprogram attached to more than one function", SP, &F);
2182  AttachedTo = &F;
2183  break;
2184  }
2185  case LLVMContext::MD_prof:
2186  ++NumProfAttachments;
2187  Assert(NumProfAttachments == 1,
2188  "function must have a single !prof attachment", &F, I.second);
2189  break;
2190  }
2191 
2192  // Verify the metadata itself.
2193  visitMDNode(*I.second);
2194  }
2195  }
2196 
2197  // If this function is actually an intrinsic, verify that it is only used in
2198  // direct call/invokes, never having its "address taken".
2199  // Only do this if the module is materialized, otherwise we don't have all the
2200  // uses.
2201  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2202  const User *U;
2203  if (F.hasAddressTaken(&U))
2204  Assert(false, "Invalid user of intrinsic instruction!", U);
2205  }
2206 
2207  auto *N = F.getSubprogram();
2208  HasDebugInfo = (N != nullptr);
2209  if (!HasDebugInfo)
2210  return;
2211 
2212  // Check that all !dbg attachments lead to back to N (or, at least, another
2213  // subprogram that describes the same function).
2214  //
2215  // FIXME: Check this incrementally while visiting !dbg attachments.
2216  // FIXME: Only check when N is the canonical subprogram for F.
2218  for (auto &BB : F)
2219  for (auto &I : BB) {
2220  // Be careful about using DILocation here since we might be dealing with
2221  // broken code (this is the Verifier after all).
2222  DILocation *DL =
2223  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2224  if (!DL)
2225  continue;
2226  if (!Seen.insert(DL).second)
2227  continue;
2228 
2229  DILocalScope *Scope = DL->getInlinedAtScope();
2230  if (Scope && !Seen.insert(Scope).second)
2231  continue;
2232 
2233  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2234 
2235  // Scope and SP could be the same MDNode and we don't want to skip
2236  // validation in that case
2237  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2238  continue;
2239 
2240  // FIXME: Once N is canonical, check "SP == &N".
2241  AssertDI(SP->describes(&F),
2242  "!dbg attachment points at wrong subprogram for function", N, &F,
2243  &I, DL, Scope, SP);
2244  }
2245 }
2246 
2247 // verifyBasicBlock - Verify that a basic block is well formed...
2248 //
2249 void Verifier::visitBasicBlock(BasicBlock &BB) {
2250  InstsInThisBlock.clear();
2251 
2252  // Ensure that basic blocks have terminators!
2253  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2254 
2255  // Check constraints that this basic block imposes on all of the PHI nodes in
2256  // it.
2257  if (isa<PHINode>(BB.front())) {
2260  llvm::sort(Preds.begin(), Preds.end());
2261  for (const PHINode &PN : BB.phis()) {
2262  // Ensure that PHI nodes have at least one entry!
2263  Assert(PN.getNumIncomingValues() != 0,
2264  "PHI nodes must have at least one entry. If the block is dead, "
2265  "the PHI should be removed!",
2266  &PN);
2267  Assert(PN.getNumIncomingValues() == Preds.size(),
2268  "PHINode should have one entry for each predecessor of its "
2269  "parent basic block!",
2270  &PN);
2271 
2272  // Get and sort all incoming values in the PHI node...
2273  Values.clear();
2274  Values.reserve(PN.getNumIncomingValues());
2275  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2276  Values.push_back(
2277  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2278  llvm::sort(Values.begin(), Values.end());
2279 
2280  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2281  // Check to make sure that if there is more than one entry for a
2282  // particular basic block in this PHI node, that the incoming values are
2283  // all identical.
2284  //
2285  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2286  Values[i].second == Values[i - 1].second,
2287  "PHI node has multiple entries for the same basic block with "
2288  "different incoming values!",
2289  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2290 
2291  // Check to make sure that the predecessors and PHI node entries are
2292  // matched up.
2293  Assert(Values[i].first == Preds[i],
2294  "PHI node entries do not match predecessors!", &PN,
2295  Values[i].first, Preds[i]);
2296  }
2297  }
2298  }
2299 
2300  // Check that all instructions have their parent pointers set up correctly.
2301  for (auto &I : BB)
2302  {
2303  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2304  }
2305 }
2306 
2307 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2308  // Ensure that terminators only exist at the end of the basic block.
2309  Assert(&I == I.getParent()->getTerminator(),
2310  "Terminator found in the middle of a basic block!", I.getParent());
2311  visitInstruction(I);
2312 }
2313 
2314 void Verifier::visitBranchInst(BranchInst &BI) {
2315  if (BI.isConditional()) {
2316  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2317  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2318  }
2319  visitTerminatorInst(BI);
2320 }
2321 
2322 void Verifier::visitReturnInst(ReturnInst &RI) {
2323  Function *F = RI.getParent()->getParent();
2324  unsigned N = RI.getNumOperands();
2325  if (F->getReturnType()->isVoidTy())
2326  Assert(N == 0,
2327  "Found return instr that returns non-void in Function of void "
2328  "return type!",
2329  &RI, F->getReturnType());
2330  else
2331  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2332  "Function return type does not match operand "
2333  "type of return inst!",
2334  &RI, F->getReturnType());
2335 
2336  // Check to make sure that the return value has necessary properties for
2337  // terminators...
2338  visitTerminatorInst(RI);
2339 }
2340 
2341 void Verifier::visitSwitchInst(SwitchInst &SI) {
2342  // Check to make sure that all of the constants in the switch instruction
2343  // have the same type as the switched-on value.
2344  Type *SwitchTy = SI.getCondition()->getType();
2346  for (auto &Case : SI.cases()) {
2347  Assert(Case.getCaseValue()->getType() == SwitchTy,
2348  "Switch constants must all be same type as switch value!", &SI);
2349  Assert(Constants.insert(Case.getCaseValue()).second,
2350  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2351  }
2352 
2353  visitTerminatorInst(SI);
2354 }
2355 
2356 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2357  Assert(BI.getAddress()->getType()->isPointerTy(),
2358  "Indirectbr operand must have pointer type!", &BI);
2359  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2360  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2361  "Indirectbr destinations must all have pointer type!", &BI);
2362 
2363  visitTerminatorInst(BI);
2364 }
2365 
2366 void Verifier::visitSelectInst(SelectInst &SI) {
2368  SI.getOperand(2)),
2369  "Invalid operands for select instruction!", &SI);
2370 
2371  Assert(SI.getTrueValue()->getType() == SI.getType(),
2372  "Select values must have same type as select instruction!", &SI);
2373  visitInstruction(SI);
2374 }
2375 
2376 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2377 /// a pass, if any exist, it's an error.
2378 ///
2379 void Verifier::visitUserOp1(Instruction &I) {
2380  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2381 }
2382 
2383 void Verifier::visitTruncInst(TruncInst &I) {
2384  // Get the source and destination types
2385  Type *SrcTy = I.getOperand(0)->getType();
2386  Type *DestTy = I.getType();
2387 
2388  // Get the size of the types in bits, we'll need this later
2389  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2390  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2391 
2392  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2393  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2394  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2395  "trunc source and destination must both be a vector or neither", &I);
2396  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2397 
2398  visitInstruction(I);
2399 }
2400 
2401 void Verifier::visitZExtInst(ZExtInst &I) {
2402  // Get the source and destination types
2403  Type *SrcTy = I.getOperand(0)->getType();
2404  Type *DestTy = I.getType();
2405 
2406  // Get the size of the types in bits, we'll need this later
2407  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2408  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2409  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2410  "zext source and destination must both be a vector or neither", &I);
2411  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2412  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2413 
2414  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2415 
2416  visitInstruction(I);
2417 }
2418 
2419 void Verifier::visitSExtInst(SExtInst &I) {
2420  // Get the source and destination types
2421  Type *SrcTy = I.getOperand(0)->getType();
2422  Type *DestTy = I.getType();
2423 
2424  // Get the size of the types in bits, we'll need this later
2425  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2426  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2427 
2428  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2429  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2430  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2431  "sext source and destination must both be a vector or neither", &I);
2432  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2433 
2434  visitInstruction(I);
2435 }
2436 
2437 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2438  // Get the source and destination types
2439  Type *SrcTy = I.getOperand(0)->getType();
2440  Type *DestTy = I.getType();
2441  // Get the size of the types in bits, we'll need this later
2442  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2443  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2444 
2445  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2446  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2447  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2448  "fptrunc source and destination must both be a vector or neither", &I);
2449  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2450 
2451  visitInstruction(I);
2452 }
2453 
2454 void Verifier::visitFPExtInst(FPExtInst &I) {
2455  // Get the source and destination types
2456  Type *SrcTy = I.getOperand(0)->getType();
2457  Type *DestTy = I.getType();
2458 
2459  // Get the size of the types in bits, we'll need this later
2460  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2461  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2462 
2463  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2464  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2465  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2466  "fpext source and destination must both be a vector or neither", &I);
2467  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2468 
2469  visitInstruction(I);
2470 }
2471 
2472 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2473  // Get the source and destination types
2474  Type *SrcTy = I.getOperand(0)->getType();
2475  Type *DestTy = I.getType();
2476 
2477  bool SrcVec = SrcTy->isVectorTy();
2478  bool DstVec = DestTy->isVectorTy();
2479 
2480  Assert(SrcVec == DstVec,
2481  "UIToFP source and dest must both be vector or scalar", &I);
2482  Assert(SrcTy->isIntOrIntVectorTy(),
2483  "UIToFP source must be integer or integer vector", &I);
2484  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2485  &I);
2486 
2487  if (SrcVec && DstVec)
2488  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2489  cast<VectorType>(DestTy)->getNumElements(),
2490  "UIToFP source and dest vector length mismatch", &I);
2491 
2492  visitInstruction(I);
2493 }
2494 
2495 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2496  // Get the source and destination types
2497  Type *SrcTy = I.getOperand(0)->getType();
2498  Type *DestTy = I.getType();
2499 
2500  bool SrcVec = SrcTy->isVectorTy();
2501  bool DstVec = DestTy->isVectorTy();
2502 
2503  Assert(SrcVec == DstVec,
2504  "SIToFP source and dest must both be vector or scalar", &I);
2505  Assert(SrcTy->isIntOrIntVectorTy(),
2506  "SIToFP source must be integer or integer vector", &I);
2507  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2508  &I);
2509 
2510  if (SrcVec && DstVec)
2511  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2512  cast<VectorType>(DestTy)->getNumElements(),
2513  "SIToFP source and dest vector length mismatch", &I);
2514 
2515  visitInstruction(I);
2516 }
2517 
2518 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2519  // Get the source and destination types
2520  Type *SrcTy = I.getOperand(0)->getType();
2521  Type *DestTy = I.getType();
2522 
2523  bool SrcVec = SrcTy->isVectorTy();
2524  bool DstVec = DestTy->isVectorTy();
2525 
2526  Assert(SrcVec == DstVec,
2527  "FPToUI source and dest must both be vector or scalar", &I);
2528  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2529  &I);
2530  Assert(DestTy->isIntOrIntVectorTy(),
2531  "FPToUI result must be integer or integer vector", &I);
2532 
2533  if (SrcVec && DstVec)
2534  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2535  cast<VectorType>(DestTy)->getNumElements(),
2536  "FPToUI source and dest vector length mismatch", &I);
2537 
2538  visitInstruction(I);
2539 }
2540 
2541 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2542  // Get the source and destination types
2543  Type *SrcTy = I.getOperand(0)->getType();
2544  Type *DestTy = I.getType();
2545 
2546  bool SrcVec = SrcTy->isVectorTy();
2547  bool DstVec = DestTy->isVectorTy();
2548 
2549  Assert(SrcVec == DstVec,
2550  "FPToSI source and dest must both be vector or scalar", &I);
2551  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2552  &I);
2553  Assert(DestTy->isIntOrIntVectorTy(),
2554  "FPToSI result must be integer or integer vector", &I);
2555 
2556  if (SrcVec && DstVec)
2557  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2558  cast<VectorType>(DestTy)->getNumElements(),
2559  "FPToSI source and dest vector length mismatch", &I);
2560 
2561  visitInstruction(I);
2562 }
2563 
2564 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2565  // Get the source and destination types
2566  Type *SrcTy = I.getOperand(0)->getType();
2567  Type *DestTy = I.getType();
2568 
2569  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2570 
2571  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2573  "ptrtoint not supported for non-integral pointers");
2574 
2575  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2576  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2577  &I);
2578 
2579  if (SrcTy->isVectorTy()) {
2580  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2581  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2582  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2583  "PtrToInt Vector width mismatch", &I);
2584  }
2585 
2586  visitInstruction(I);
2587 }
2588 
2589 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2590  // Get the source and destination types
2591  Type *SrcTy = I.getOperand(0)->getType();
2592  Type *DestTy = I.getType();
2593 
2594  Assert(SrcTy->isIntOrIntVectorTy(),
2595  "IntToPtr source must be an integral", &I);
2596  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2597 
2598  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2600  "inttoptr not supported for non-integral pointers");
2601 
2602  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2603  &I);
2604  if (SrcTy->isVectorTy()) {
2605  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2606  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2607  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2608  "IntToPtr Vector width mismatch", &I);
2609  }
2610  visitInstruction(I);
2611 }
2612 
2613 void Verifier::visitBitCastInst(BitCastInst &I) {
2614  Assert(
2615  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2616  "Invalid bitcast", &I);
2617  visitInstruction(I);
2618 }
2619 
2620 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2621  Type *SrcTy = I.getOperand(0)->getType();
2622  Type *DestTy = I.getType();
2623 
2624  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2625  &I);
2626  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2627  &I);
2629  "AddrSpaceCast must be between different address spaces", &I);
2630  if (SrcTy->isVectorTy())
2631  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2632  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2633  visitInstruction(I);
2634 }
2635 
2636 /// visitPHINode - Ensure that a PHI node is well formed.
2637 ///
2638 void Verifier::visitPHINode(PHINode &PN) {
2639  // Ensure that the PHI nodes are all grouped together at the top of the block.
2640  // This can be tested by checking whether the instruction before this is
2641  // either nonexistent (because this is begin()) or is a PHI node. If not,
2642  // then there is some other instruction before a PHI.
2643  Assert(&PN == &PN.getParent()->front() ||
2644  isa<PHINode>(--BasicBlock::iterator(&PN)),
2645  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2646 
2647  // Check that a PHI doesn't yield a Token.
2648  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2649 
2650  // Check that all of the values of the PHI node have the same type as the
2651  // result, and that the incoming blocks are really basic blocks.
2652  for (Value *IncValue : PN.incoming_values()) {
2653  Assert(PN.getType() == IncValue->getType(),
2654  "PHI node operands are not the same type as the result!", &PN);
2655  }
2656 
2657  // All other PHI node constraints are checked in the visitBasicBlock method.
2658 
2659  visitInstruction(PN);
2660 }
2661 
2662 void Verifier::verifyCallSite(CallSite CS) {
2663  Instruction *I = CS.getInstruction();
2664 
2666  "Called function must be a pointer!", I);
2667  PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2668 
2669  Assert(FPTy->getElementType()->isFunctionTy(),
2670  "Called function is not pointer to function type!", I);
2671 
2672  Assert(FPTy->getElementType() == CS.getFunctionType(),
2673  "Called function is not the same type as the call!", I);
2674 
2675  FunctionType *FTy = CS.getFunctionType();
2676 
2677  // Verify that the correct number of arguments are being passed
2678  if (FTy->isVarArg())
2679  Assert(CS.arg_size() >= FTy->getNumParams(),
2680  "Called function requires more parameters than were provided!", I);
2681  else
2682  Assert(CS.arg_size() == FTy->getNumParams(),
2683  "Incorrect number of arguments passed to called function!", I);
2684 
2685  // Verify that all arguments to the call match the function type.
2686  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2687  Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2688  "Call parameter type does not match function signature!",
2689  CS.getArgument(i), FTy->getParamType(i), I);
2690 
2691  AttributeList Attrs = CS.getAttributes();
2692 
2693  Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2694  "Attribute after last parameter!", I);
2695 
2696  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2697  // Don't allow speculatable on call sites, unless the underlying function
2698  // declaration is also speculatable.
2699  Function *Callee
2701  Assert(Callee && Callee->isSpeculatable(),
2702  "speculatable attribute may not apply to call sites", I);
2703  }
2704 
2705  // Verify call attributes.
2706  verifyFunctionAttrs(FTy, Attrs, I);
2707 
2708  // Conservatively check the inalloca argument.
2709  // We have a bug if we can find that there is an underlying alloca without
2710  // inalloca.
2711  if (CS.hasInAllocaArgument()) {
2712  Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2713  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2714  Assert(AI->isUsedWithInAlloca(),
2715  "inalloca argument for call has mismatched alloca", AI, I);
2716  }
2717 
2718  // For each argument of the callsite, if it has the swifterror argument,
2719  // make sure the underlying alloca/parameter it comes from has a swifterror as
2720  // well.
2721  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2722  if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2723  Value *SwiftErrorArg = CS.getArgument(i);
2724  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2725  Assert(AI->isSwiftError(),
2726  "swifterror argument for call has mismatched alloca", AI, I);
2727  continue;
2728  }
2729  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2730  Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I);
2731  Assert(ArgI->hasSwiftErrorAttr(),
2732  "swifterror argument for call has mismatched parameter", ArgI, I);
2733  }
2734 
2735  if (FTy->isVarArg()) {
2736  // FIXME? is 'nest' even legal here?
2737  bool SawNest = false;
2738  bool SawReturned = false;
2739 
2740  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2741  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2742  SawNest = true;
2743  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2744  SawReturned = true;
2745  }
2746 
2747  // Check attributes on the varargs part.
2748  for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2749  Type *Ty = CS.getArgument(Idx)->getType();
2750  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2751  verifyParameterAttrs(ArgAttrs, Ty, I);
2752 
2753  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2754  Assert(!SawNest, "More than one parameter has attribute nest!", I);
2755  SawNest = true;
2756  }
2757 
2758  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2759  Assert(!SawReturned, "More than one parameter has attribute returned!",
2760  I);
2761  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2762  "Incompatible argument and return types for 'returned' "
2763  "attribute",
2764  I);
2765  SawReturned = true;
2766  }
2767 
2768  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2769  "Attribute 'sret' cannot be used for vararg call arguments!", I);
2770 
2771  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2772  Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",
2773  I);
2774  }
2775  }
2776 
2777  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2778  if (CS.getCalledFunction() == nullptr ||
2779  !CS.getCalledFunction()->getName().startswith("llvm.")) {
2780  for (Type *ParamTy : FTy->params()) {
2781  Assert(!ParamTy->isMetadataTy(),
2782  "Function has metadata parameter but isn't an intrinsic", I);
2783  Assert(!ParamTy->isTokenTy(),
2784  "Function has token parameter but isn't an intrinsic", I);
2785  }
2786  }
2787 
2788  // Verify that indirect calls don't return tokens.
2789  if (CS.getCalledFunction() == nullptr)
2790  Assert(!FTy->getReturnType()->isTokenTy(),
2791  "Return type cannot be token for indirect call!");
2792 
2793  if (Function *F = CS.getCalledFunction())
2795  visitIntrinsicCallSite(ID, CS);
2796 
2797  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2798  // at most one "gc-transition" operand bundle.
2799  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2800  FoundGCTransitionBundle = false;
2801  for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2803  uint32_t Tag = BU.getTagID();
2804  if (Tag == LLVMContext::OB_deopt) {
2805  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2806  FoundDeoptBundle = true;
2807  } else if (Tag == LLVMContext::OB_gc_transition) {
2808  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2809  I);
2810  FoundGCTransitionBundle = true;
2811  } else if (Tag == LLVMContext::OB_funclet) {
2812  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2813  FoundFuncletBundle = true;
2814  Assert(BU.Inputs.size() == 1,
2815  "Expected exactly one funclet bundle operand", I);
2816  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2817  "Funclet bundle operands should correspond to a FuncletPadInst",
2818  I);
2819  }
2820  }
2821 
2822  // Verify that each inlinable callsite of a debug-info-bearing function in a
2823  // debug-info-bearing function has a debug location attached to it. Failure to
2824  // do so causes assertion failures when the inliner sets up inline scope info.
2825  if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2827  AssertDI(I->getDebugLoc(), "inlinable function call in a function with "
2828  "debug info must have a !dbg location",
2829  I);
2830 
2831  visitInstruction(*I);
2832 }
2833 
2834 /// Two types are "congruent" if they are identical, or if they are both pointer
2835 /// types with different pointee types and the same address space.
2836 static bool isTypeCongruent(Type *L, Type *R) {
2837  if (L == R)
2838  return true;
2841  if (!PL || !PR)
2842  return false;
2843  return PL->getAddressSpace() == PR->getAddressSpace();
2844 }
2845 
2847  static const Attribute::AttrKind ABIAttrs[] = {
2848  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2849  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2850  Attribute::SwiftError};
2851  AttrBuilder Copy;
2852  for (auto AK : ABIAttrs) {
2853  if (Attrs.hasParamAttribute(I, AK))
2854  Copy.addAttribute(AK);
2855  }
2856  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2857  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2858  return Copy;
2859 }
2860 
2861 void Verifier::verifyMustTailCall(CallInst &CI) {
2862  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2863 
2864  // - The caller and callee prototypes must match. Pointer types of
2865  // parameters or return types may differ in pointee type, but not
2866  // address space.
2867  Function *F = CI.getParent()->getParent();
2868  FunctionType *CallerTy = F->getFunctionType();
2869  FunctionType *CalleeTy = CI.getFunctionType();
2870  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
2871  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2872  "cannot guarantee tail call due to mismatched parameter counts",
2873  &CI);
2874  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2875  Assert(
2876  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2877  "cannot guarantee tail call due to mismatched parameter types", &CI);
2878  }
2879  }
2880  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2881  "cannot guarantee tail call due to mismatched varargs", &CI);
2882  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2883  "cannot guarantee tail call due to mismatched return types", &CI);
2884 
2885  // - The calling conventions of the caller and callee must match.
2886  Assert(F->getCallingConv() == CI.getCallingConv(),
2887  "cannot guarantee tail call due to mismatched calling conv", &CI);
2888 
2889  // - All ABI-impacting function attributes, such as sret, byval, inreg,
2890  // returned, and inalloca, must match.
2891  AttributeList CallerAttrs = F->getAttributes();
2892  AttributeList CalleeAttrs = CI.getAttributes();
2893  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2894  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2895  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2896  Assert(CallerABIAttrs == CalleeABIAttrs,
2897  "cannot guarantee tail call due to mismatched ABI impacting "
2898  "function attributes",
2899  &CI, CI.getOperand(I));
2900  }
2901 
2902  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2903  // or a pointer bitcast followed by a ret instruction.
2904  // - The ret instruction must return the (possibly bitcasted) value
2905  // produced by the call or void.
2906  Value *RetVal = &CI;
2907  Instruction *Next = CI.getNextNode();
2908 
2909  // Handle the optional bitcast.
2910  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2911  Assert(BI->getOperand(0) == RetVal,
2912  "bitcast following musttail call must use the call", BI);
2913  RetVal = BI;
2914  Next = BI->getNextNode();
2915  }
2916 
2917  // Check the return.
2918  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2919  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
2920  &CI);
2921  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2922  "musttail call result must be returned", Ret);
2923 }
2924 
2925 void Verifier::visitCallInst(CallInst &CI) {
2926  verifyCallSite(&CI);
2927 
2928  if (CI.isMustTailCall())
2929  verifyMustTailCall(CI);
2930 }
2931 
2932 void Verifier::visitInvokeInst(InvokeInst &II) {
2933  verifyCallSite(&II);
2934 
2935  // Verify that the first non-PHI instruction of the unwind destination is an
2936  // exception handling instruction.
2937  Assert(
2938  II.getUnwindDest()->isEHPad(),
2939  "The unwind destination does not have an exception handling instruction!",
2940  &II);
2941 
2942  visitTerminatorInst(II);
2943 }
2944 
2945 /// visitBinaryOperator - Check that both arguments to the binary operator are
2946 /// of the same type!
2947 ///
2948 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2949  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2950  "Both operands to a binary operator are not of the same type!", &B);
2951 
2952  switch (B.getOpcode()) {
2953  // Check that integer arithmetic operators are only used with
2954  // integral operands.
2955  case Instruction::Add:
2956  case Instruction::Sub:
2957  case Instruction::Mul:
2958  case Instruction::SDiv:
2959  case Instruction::UDiv:
2960  case Instruction::SRem:
2961  case Instruction::URem:
2963  "Integer arithmetic operators only work with integral types!", &B);
2964  Assert(B.getType() == B.getOperand(0)->getType(),
2965  "Integer arithmetic operators must have same type "
2966  "for operands and result!",
2967  &B);
2968  break;
2969  // Check that floating-point arithmetic operators are only used with
2970  // floating-point operands.
2971  case Instruction::FAdd:
2972  case Instruction::FSub:
2973  case Instruction::FMul:
2974  case Instruction::FDiv:
2975  case Instruction::FRem:
2977  "Floating-point arithmetic operators only work with "
2978  "floating-point types!",
2979  &B);
2980  Assert(B.getType() == B.getOperand(0)->getType(),
2981  "Floating-point arithmetic operators must have same type "
2982  "for operands and result!",
2983  &B);
2984  break;
2985  // Check that logical operators are only used with integral operands.
2986  case Instruction::And:
2987  case Instruction::Or:
2988  case Instruction::Xor:
2990  "Logical operators only work with integral types!", &B);
2991  Assert(B.getType() == B.getOperand(0)->getType(),
2992  "Logical operators must have same type for operands and result!",
2993  &B);
2994  break;
2995  case Instruction::Shl:
2996  case Instruction::LShr:
2997  case Instruction::AShr:
2999  "Shifts only work with integral types!", &B);
3000  Assert(B.getType() == B.getOperand(0)->getType(),
3001  "Shift return type must be same as operands!", &B);
3002  break;
3003  default:
3004  llvm_unreachable("Unknown BinaryOperator opcode!");
3005  }
3006 
3007  visitInstruction(B);
3008 }
3009 
3010 void Verifier::visitICmpInst(ICmpInst &IC) {
3011  // Check that the operands are the same type
3012  Type *Op0Ty = IC.getOperand(0)->getType();
3013  Type *Op1Ty = IC.getOperand(1)->getType();
3014  Assert(Op0Ty == Op1Ty,
3015  "Both operands to ICmp instruction are not of the same type!", &IC);
3016  // Check that the operands are the right type
3017  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3018  "Invalid operand types for ICmp instruction", &IC);
3019  // Check that the predicate is valid.
3020  Assert(IC.isIntPredicate(),
3021  "Invalid predicate in ICmp instruction!", &IC);
3022 
3023  visitInstruction(IC);
3024 }
3025 
3026 void Verifier::visitFCmpInst(FCmpInst &FC) {
3027  // Check that the operands are the same type
3028  Type *Op0Ty = FC.getOperand(0)->getType();
3029  Type *Op1Ty = FC.getOperand(1)->getType();
3030  Assert(Op0Ty == Op1Ty,
3031  "Both operands to FCmp instruction are not of the same type!", &FC);
3032  // Check that the operands are the right type
3033  Assert(Op0Ty->isFPOrFPVectorTy(),
3034  "Invalid operand types for FCmp instruction", &FC);
3035  // Check that the predicate is valid.
3036  Assert(FC.isFPPredicate(),
3037  "Invalid predicate in FCmp instruction!", &FC);
3038 
3039  visitInstruction(FC);
3040 }
3041 
3042 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3043  Assert(
3045  "Invalid extractelement operands!", &EI);
3046  visitInstruction(EI);
3047 }
3048 
3049 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3051  IE.getOperand(2)),
3052  "Invalid insertelement operands!", &IE);
3053  visitInstruction(IE);
3054 }
3055 
3056 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3058  SV.getOperand(2)),
3059  "Invalid shufflevector operands!", &SV);
3060  visitInstruction(SV);
3061 }
3062 
3063 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3064  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3065 
3066  Assert(isa<PointerType>(TargetTy),
3067  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3068  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3069 
3070  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3071  Assert(all_of(
3072  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3073  "GEP indexes must be integers", &GEP);
3074  Type *ElTy =
3076  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3077 
3078  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3079  GEP.getResultElementType() == ElTy,
3080  "GEP is not of right type for indices!", &GEP, ElTy);
3081 
3082  if (GEP.getType()->isVectorTy()) {
3083  // Additional checks for vector GEPs.
3084  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3085  if (GEP.getPointerOperandType()->isVectorTy())
3086  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3087  "Vector GEP result width doesn't match operand's", &GEP);
3088  for (Value *Idx : Idxs) {
3089  Type *IndexTy = Idx->getType();
3090  if (IndexTy->isVectorTy()) {
3091  unsigned IndexWidth = IndexTy->getVectorNumElements();
3092  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3093  }
3094  Assert(IndexTy->isIntOrIntVectorTy(),
3095  "All GEP indices should be of integer type");
3096  }
3097  }
3098  visitInstruction(GEP);
3099 }
3100 
3101 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3102  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3103 }
3104 
3105 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3106  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3107  "precondition violation");
3108 
3109  unsigned NumOperands = Range->getNumOperands();
3110  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3111  unsigned NumRanges = NumOperands / 2;
3112  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3113 
3114  ConstantRange LastRange(1); // Dummy initial value
3115  for (unsigned i = 0; i < NumRanges; ++i) {
3116  ConstantInt *Low =
3117  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3118  Assert(Low, "The lower limit must be an integer!", Low);
3119  ConstantInt *High =
3120  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3121  Assert(High, "The upper limit must be an integer!", High);
3122  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3123  "Range types must match instruction type!", &I);
3124 
3125  APInt HighV = High->getValue();
3126  APInt LowV = Low->getValue();
3127  ConstantRange CurRange(LowV, HighV);
3128  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3129  "Range must not be empty!", Range);
3130  if (i != 0) {
3131  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3132  "Intervals are overlapping", Range);
3133  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3134  Range);
3135  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3136  Range);
3137  }
3138  LastRange = ConstantRange(LowV, HighV);
3139  }
3140  if (NumRanges > 2) {
3141  APInt FirstLow =
3142  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3143  APInt FirstHigh =
3144  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3145  ConstantRange FirstRange(FirstLow, FirstHigh);
3146  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3147  "Intervals are overlapping", Range);
3148  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3149  Range);
3150  }
3151 }
3152 
3153 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3154  unsigned Size = DL.getTypeSizeInBits(Ty);
3155  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3156  Assert(!(Size & (Size - 1)),
3157  "atomic memory access' operand must have a power-of-two size", Ty, I);
3158 }
3159 
3160 void Verifier::visitLoadInst(LoadInst &LI) {
3162  Assert(PTy, "Load operand must be a pointer.", &LI);
3163  Type *ElTy = LI.getType();
3165  "huge alignment values are unsupported", &LI);
3166  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3167  if (LI.isAtomic()) {
3170  "Load cannot have Release ordering", &LI);
3171  Assert(LI.getAlignment() != 0,
3172  "Atomic load must specify explicit alignment", &LI);
3173  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3174  ElTy->isFloatingPointTy(),
3175  "atomic load operand must have integer, pointer, or floating point "
3176  "type!",
3177  ElTy, &LI);
3178  checkAtomicMemAccessSize(ElTy, &LI);
3179  } else {
3181  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3182  }
3183 
3184  visitInstruction(LI);
3185 }
3186 
3187 void Verifier::visitStoreInst(StoreInst &SI) {
3189  Assert(PTy, "Store operand must be a pointer.", &SI);
3190  Type *ElTy = PTy->getElementType();
3191  Assert(ElTy == SI.getOperand(0)->getType(),
3192  "Stored value type does not match pointer operand type!", &SI, ElTy);
3194  "huge alignment values are unsupported", &SI);
3195  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3196  if (SI.isAtomic()) {
3199  "Store cannot have Acquire ordering", &SI);
3200  Assert(SI.getAlignment() != 0,
3201  "Atomic store must specify explicit alignment", &SI);
3202  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3203  ElTy->isFloatingPointTy(),
3204  "atomic store operand must have integer, pointer, or floating point "
3205  "type!",
3206  ElTy, &SI);
3207  checkAtomicMemAccessSize(ElTy, &SI);
3208  } else {
3210  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3211  }
3212  visitInstruction(SI);
3213 }
3214 
3215 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3216 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3217  const Value *SwiftErrorVal) {
3218  unsigned Idx = 0;
3219  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3220  I != E; ++I, ++Idx) {
3221  if (*I == SwiftErrorVal) {
3222  Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),
3223  "swifterror value when used in a callsite should be marked "
3224  "with swifterror attribute",
3225  SwiftErrorVal, CS);
3226  }
3227  }
3228 }
3229 
3230 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3231  // Check that swifterror value is only used by loads, stores, or as
3232  // a swifterror argument.
3233  for (const User *U : SwiftErrorVal->users()) {
3234  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3235  isa<InvokeInst>(U),
3236  "swifterror value can only be loaded and stored from, or "
3237  "as a swifterror argument!",
3238  SwiftErrorVal, U);
3239  // If it is used by a store, check it is the second operand.
3240  if (auto StoreI = dyn_cast<StoreInst>(U))
3241  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3242  "swifterror value should be the second operand when used "
3243  "by stores", SwiftErrorVal, U);
3244  if (auto CallI = dyn_cast<CallInst>(U))
3245  verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3246  if (auto II = dyn_cast<InvokeInst>(U))
3247  verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3248  }
3249 }
3250 
3251 void Verifier::visitAllocaInst(AllocaInst &AI) {
3252  SmallPtrSet<Type*, 4> Visited;
3253  PointerType *PTy = AI.getType();
3254  // TODO: Relax this restriction?
3256  "Allocation instruction pointer not in the stack address space!",
3257  &AI);
3258  Assert(AI.getAllocatedType()->isSized(&Visited),
3259  "Cannot allocate unsized type", &AI);
3261  "Alloca array size must have integer type", &AI);
3263  "huge alignment values are unsupported", &AI);
3264 
3265  if (AI.isSwiftError()) {
3266  verifySwiftErrorValue(&AI);
3267  }
3268 
3269  visitInstruction(AI);
3270 }
3271 
3272 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3273 
3274  // FIXME: more conditions???
3276  "cmpxchg instructions must be atomic.", &CXI);
3278  "cmpxchg instructions must be atomic.", &CXI);
3280  "cmpxchg instructions cannot be unordered.", &CXI);
3282  "cmpxchg instructions cannot be unordered.", &CXI);
3284  "cmpxchg instructions failure argument shall be no stronger than the "
3285  "success argument",
3286  &CXI);
3289  "cmpxchg failure ordering cannot include release semantics", &CXI);
3290 
3291  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3292  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3293  Type *ElTy = PTy->getElementType();
3294  Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3295  "cmpxchg operand must have integer or pointer type",
3296  ElTy, &CXI);
3297  checkAtomicMemAccessSize(ElTy, &CXI);
3298  Assert(ElTy == CXI.getOperand(1)->getType(),
3299  "Expected value type does not match pointer operand type!", &CXI,
3300  ElTy);
3301  Assert(ElTy == CXI.getOperand(2)->getType(),
3302  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3303  visitInstruction(CXI);
3304 }
3305 
3306 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3308  "atomicrmw instructions must be atomic.", &RMWI);
3310  "atomicrmw instructions cannot be unordered.", &RMWI);
3311  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3312  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3313  Type *ElTy = PTy->getElementType();
3314  Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3315  &RMWI, ElTy);
3316  checkAtomicMemAccessSize(ElTy, &RMWI);
3317  Assert(ElTy == RMWI.getOperand(1)->getType(),
3318  "Argument value type does not match pointer operand type!", &RMWI,
3319  ElTy);
3322  "Invalid binary operation!", &RMWI);
3323  visitInstruction(RMWI);
3324 }
3325 
3326 void Verifier::visitFenceInst(FenceInst &FI) {
3327  const AtomicOrdering Ordering = FI.getOrdering();
3328  Assert(Ordering == AtomicOrdering::Acquire ||
3329  Ordering == AtomicOrdering::Release ||
3330  Ordering == AtomicOrdering::AcquireRelease ||
3332  "fence instructions may only have acquire, release, acq_rel, or "
3333  "seq_cst ordering.",
3334  &FI);
3335  visitInstruction(FI);
3336 }
3337 
3338 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3340  EVI.getIndices()) == EVI.getType(),
3341  "Invalid ExtractValueInst operands!", &EVI);
3342 
3343  visitInstruction(EVI);
3344 }
3345 
3346 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3348  IVI.getIndices()) ==
3349  IVI.getOperand(1)->getType(),
3350  "Invalid InsertValueInst operands!", &IVI);
3351 
3352  visitInstruction(IVI);
3353 }
3354 
3355 static Value *getParentPad(Value *EHPad) {
3356  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3357  return FPI->getParentPad();
3358 
3359  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3360 }
3361 
3362 void Verifier::visitEHPadPredecessors(Instruction &I) {
3363  assert(I.isEHPad());
3364 
3365  BasicBlock *BB = I.getParent();
3366  Function *F = BB->getParent();
3367 
3368  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3369 
3370  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3371  // The landingpad instruction defines its parent as a landing pad block. The
3372  // landing pad block may be branched to only by the unwind edge of an
3373  // invoke.
3374  for (BasicBlock *PredBB : predecessors(BB)) {
3375  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3376  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3377  "Block containing LandingPadInst must be jumped to "
3378  "only by the unwind edge of an invoke.",
3379  LPI);
3380  }
3381  return;
3382  }
3383  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3384  if (!pred_empty(BB))
3385  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3386  "Block containg CatchPadInst must be jumped to "
3387  "only by its catchswitch.",
3388  CPI);
3389  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3390  "Catchswitch cannot unwind to one of its catchpads",
3391  CPI->getCatchSwitch(), CPI);
3392  return;
3393  }
3394 
3395  // Verify that each pred has a legal terminator with a legal to/from EH
3396  // pad relationship.
3397  Instruction *ToPad = &I;
3398  Value *ToPadParent = getParentPad(ToPad);
3399  for (BasicBlock *PredBB : predecessors(BB)) {
3400  TerminatorInst *TI = PredBB->getTerminator();
3401  Value *FromPad;
3402  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3403  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3404  "EH pad must be jumped to via an unwind edge", ToPad, II);
3405  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3406  FromPad = Bundle->Inputs[0];
3407  else
3408  FromPad = ConstantTokenNone::get(II->getContext());
3409  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3410  FromPad = CRI->getOperand(0);
3411  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3412  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3413  FromPad = CSI;
3414  } else {
3415  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3416  }
3417 
3418  // The edge may exit from zero or more nested pads.
3419  SmallSet<Value *, 8> Seen;
3420  for (;; FromPad = getParentPad(FromPad)) {
3421  Assert(FromPad != ToPad,
3422  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3423  if (FromPad == ToPadParent) {
3424  // This is a legal unwind edge.
3425  break;
3426  }
3427  Assert(!isa<ConstantTokenNone>(FromPad),
3428  "A single unwind edge may only enter one EH pad", TI);
3429  Assert(Seen.insert(FromPad).second,
3430  "EH pad jumps through a cycle of pads", FromPad);
3431  }
3432  }
3433 }
3434 
3435 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3436  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3437  // isn't a cleanup.
3438  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3439  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3440 
3441  visitEHPadPredecessors(LPI);
3442 
3443  if (!LandingPadResultTy)
3444  LandingPadResultTy = LPI.getType();
3445  else
3446  Assert(LandingPadResultTy == LPI.getType(),
3447  "The landingpad instruction should have a consistent result type "
3448  "inside a function.",
3449  &LPI);
3450 
3451  Function *F = LPI.getParent()->getParent();
3452  Assert(F->hasPersonalityFn(),
3453  "LandingPadInst needs to be in a function with a personality.", &LPI);
3454 
3455  // The landingpad instruction must be the first non-PHI instruction in the
3456  // block.
3457  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3458  "LandingPadInst not the first non-PHI instruction in the block.",
3459  &LPI);
3460 
3461  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3462  Constant *Clause = LPI.getClause(i);
3463  if (LPI.isCatch(i)) {
3464  Assert(isa<PointerType>(Clause->getType()),
3465  "Catch operand does not have pointer type!", &LPI);
3466  } else {
3467  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3468  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3469  "Filter operand is not an array of constants!", &LPI);
3470  }
3471  }
3472 
3473  visitInstruction(LPI);
3474 }
3475 
3476 void Verifier::visitResumeInst(ResumeInst &RI) {
3478  "ResumeInst needs to be in a function with a personality.", &RI);
3479 
3480  if (!LandingPadResultTy)
3481  LandingPadResultTy = RI.getValue()->getType();
3482  else
3483  Assert(LandingPadResultTy == RI.getValue()->getType(),
3484  "The resume instruction should have a consistent result type "
3485  "inside a function.",
3486  &RI);
3487 
3488  visitTerminatorInst(RI);
3489 }
3490 
3491 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3492  BasicBlock *BB = CPI.getParent();
3493 
3494  Function *F = BB->getParent();
3495  Assert(F->hasPersonalityFn(),
3496  "CatchPadInst needs to be in a function with a personality.", &CPI);
3497 
3498  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3499  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3500  CPI.getParentPad());
3501 
3502  // The catchpad instruction must be the first non-PHI instruction in the
3503  // block.
3504  Assert(BB->getFirstNonPHI() == &CPI,
3505  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3506 
3507  visitEHPadPredecessors(CPI);
3508  visitFuncletPadInst(CPI);
3509 }
3510 
3511 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3512  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3513  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3514  CatchReturn.getOperand(0));
3515 
3516  visitTerminatorInst(CatchReturn);
3517 }
3518 
3519 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3520  BasicBlock *BB = CPI.getParent();
3521 
3522  Function *F = BB->getParent();
3523  Assert(F->hasPersonalityFn(),
3524  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3525 
3526  // The cleanuppad instruction must be the first non-PHI instruction in the
3527  // block.
3528  Assert(BB->getFirstNonPHI() == &CPI,
3529  "CleanupPadInst not the first non-PHI instruction in the block.",
3530  &CPI);
3531 
3532  auto *ParentPad = CPI.getParentPad();
3533  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3534  "CleanupPadInst has an invalid parent.", &CPI);
3535 
3536  visitEHPadPredecessors(CPI);
3537  visitFuncletPadInst(CPI);
3538 }
3539 
3540 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3541  User *FirstUser = nullptr;
3542  Value *FirstUnwindPad = nullptr;
3543  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3545 
3546  while (!Worklist.empty()) {
3547  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3548  Assert(Seen.insert(CurrentPad).second,
3549  "FuncletPadInst must not be nested within itself", CurrentPad);
3550  Value *UnresolvedAncestorPad = nullptr;
3551  for (User *U : CurrentPad->users()) {
3552  BasicBlock *UnwindDest;
3553  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3554  UnwindDest = CRI->getUnwindDest();
3555  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3556  // We allow catchswitch unwind to caller to nest
3557  // within an outer pad that unwinds somewhere else,
3558  // because catchswitch doesn't have a nounwind variant.
3559  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3560  if (CSI->unwindsToCaller())
3561  continue;
3562  UnwindDest = CSI->getUnwindDest();
3563  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3564  UnwindDest = II->getUnwindDest();
3565  } else if (isa<CallInst>(U)) {
3566  // Calls which don't unwind may be found inside funclet
3567  // pads that unwind somewhere else. We don't *require*
3568  // such calls to be annotated nounwind.
3569  continue;
3570  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3571  // The unwind dest for a cleanup can only be found by
3572  // recursive search. Add it to the worklist, and we'll
3573  // search for its first use that determines where it unwinds.
3574  Worklist.push_back(CPI);
3575  continue;
3576  } else {
3577  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3578  continue;
3579  }
3580 
3581  Value *UnwindPad;
3582  bool ExitsFPI;
3583  if (UnwindDest) {
3584  UnwindPad = UnwindDest->getFirstNonPHI();
3585  if (!cast<Instruction>(UnwindPad)->isEHPad())
3586  continue;
3587  Value *UnwindParent = getParentPad(UnwindPad);
3588  // Ignore unwind edges that don't exit CurrentPad.
3589  if (UnwindParent == CurrentPad)
3590  continue;
3591  // Determine whether the original funclet pad is exited,
3592  // and if we are scanning nested pads determine how many
3593  // of them are exited so we can stop searching their
3594  // children.
3595  Value *ExitedPad = CurrentPad;
3596  ExitsFPI = false;
3597  do {
3598  if (ExitedPad == &FPI) {
3599  ExitsFPI = true;
3600  // Now we can resolve any ancestors of CurrentPad up to
3601  // FPI, but not including FPI since we need to make sure
3602  // to check all direct users of FPI for consistency.
3603  UnresolvedAncestorPad = &FPI;
3604  break;
3605  }
3606  Value *ExitedParent = getParentPad(ExitedPad);
3607  if (ExitedParent == UnwindParent) {
3608  // ExitedPad is the ancestor-most pad which this unwind
3609  // edge exits, so we can resolve up to it, meaning that
3610  // ExitedParent is the first ancestor still unresolved.
3611  UnresolvedAncestorPad = ExitedParent;
3612  break;
3613  }
3614  ExitedPad = ExitedParent;
3615  } while (!isa<ConstantTokenNone>(ExitedPad));
3616  } else {
3617  // Unwinding to caller exits all pads.
3618  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3619  ExitsFPI = true;
3620  UnresolvedAncestorPad = &FPI;
3621  }
3622 
3623  if (ExitsFPI) {
3624  // This unwind edge exits FPI. Make sure it agrees with other
3625  // such edges.
3626  if (FirstUser) {
3627  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3628  "pad must have the same unwind "
3629  "dest",
3630  &FPI, U, FirstUser);
3631  } else {
3632  FirstUser = U;
3633  FirstUnwindPad = UnwindPad;
3634  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3635  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3636  getParentPad(UnwindPad) == getParentPad(&FPI))
3637  SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3638  }
3639  }
3640  // Make sure we visit all uses of FPI, but for nested pads stop as
3641  // soon as we know where they unwind to.
3642  if (CurrentPad != &FPI)
3643  break;
3644  }
3645  if (UnresolvedAncestorPad) {
3646  if (CurrentPad == UnresolvedAncestorPad) {
3647  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3648  // we've found an unwind edge that exits it, because we need to verify
3649  // all direct uses of FPI.
3650  assert(CurrentPad == &FPI);
3651  continue;
3652  }
3653  // Pop off the worklist any nested pads that we've found an unwind
3654  // destination for. The pads on the worklist are the uncles,
3655  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3656  // for all ancestors of CurrentPad up to but not including
3657  // UnresolvedAncestorPad.
3658  Value *ResolvedPad = CurrentPad;
3659  while (!Worklist.empty()) {
3660  Value *UnclePad = Worklist.back();
3661  Value *AncestorPad = getParentPad(UnclePad);
3662  // Walk ResolvedPad up the ancestor list until we either find the
3663  // uncle's parent or the last resolved ancestor.
3664  while (ResolvedPad != AncestorPad) {
3665  Value *ResolvedParent = getParentPad(ResolvedPad);
3666  if (ResolvedParent == UnresolvedAncestorPad) {
3667  break;
3668  }
3669  ResolvedPad = ResolvedParent;
3670  }
3671  // If the resolved ancestor search didn't find the uncle's parent,
3672  // then the uncle is not yet resolved.
3673  if (ResolvedPad != AncestorPad)
3674  break;
3675  // This uncle is resolved, so pop it from the worklist.
3676  Worklist.pop_back();
3677  }
3678  }
3679  }
3680 
3681  if (FirstUnwindPad) {
3682  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3683  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3684  Value *SwitchUnwindPad;
3685  if (SwitchUnwindDest)
3686  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3687  else
3688  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3689  Assert(SwitchUnwindPad == FirstUnwindPad,
3690  "Unwind edges out of a catch must have the same unwind dest as "
3691  "the parent catchswitch",
3692  &FPI, FirstUser, CatchSwitch);
3693  }
3694  }
3695 
3696  visitInstruction(FPI);
3697 }
3698 
3699 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3700  BasicBlock *BB = CatchSwitch.getParent();
3701 
3702  Function *F = BB->getParent();
3703  Assert(F->hasPersonalityFn(),
3704  "CatchSwitchInst needs to be in a function with a personality.",
3705  &CatchSwitch);
3706 
3707  // The catchswitch instruction must be the first non-PHI instruction in the
3708  // block.
3709  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3710  "CatchSwitchInst not the first non-PHI instruction in the block.",
3711  &CatchSwitch);
3712 
3713  auto *ParentPad = CatchSwitch.getParentPad();
3714  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3715  "CatchSwitchInst has an invalid parent.", ParentPad);
3716 
3717  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3718  Instruction *I = UnwindDest->getFirstNonPHI();
3719  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3720  "CatchSwitchInst must unwind to an EH block which is not a "
3721  "landingpad.",
3722  &CatchSwitch);
3723 
3724  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3725  if (getParentPad(I) == ParentPad)
3726  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3727  }
3728 
3729  Assert(CatchSwitch.getNumHandlers() != 0,
3730  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3731 
3732  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3733  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3734  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3735  }
3736 
3737  visitEHPadPredecessors(CatchSwitch);
3738  visitTerminatorInst(CatchSwitch);
3739 }
3740 
3741 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3742  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3743  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3744  CRI.getOperand(0));
3745 
3746  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3747  Instruction *I = UnwindDest->getFirstNonPHI();
3748  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3749  "CleanupReturnInst must unwind to an EH block which is not a "
3750  "landingpad.",
3751  &CRI);
3752  }
3753 
3754  visitTerminatorInst(CRI);
3755 }
3756 
3757 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3758  Instruction *Op = cast<Instruction>(I.getOperand(i));
3759  // If the we have an invalid invoke, don't try to compute the dominance.
3760  // We already reject it in the invoke specific checks and the dominance
3761  // computation doesn't handle multiple edges.
3762  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3763  if (II->getNormalDest() == II->getUnwindDest())
3764  return;
3765  }
3766 
3767  // Quick check whether the def has already been encountered in the same block.
3768  // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3769  // uses are defined to happen on the incoming edge, not at the instruction.
3770  //
3771  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3772  // wrapping an SSA value, assert that we've already encountered it. See
3773  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3774  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3775  return;
3776 
3777  const Use &U = I.getOperandUse(i);
3778  Assert(DT.dominates(Op, U),
3779  "Instruction does not dominate all uses!", Op, &I);
3780 }
3781 
3782 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3783  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3784  "apply only to pointer types", &I);
3785  Assert(isa<LoadInst>(I),
3786  "dereferenceable, dereferenceable_or_null apply only to load"
3787  " instructions, use attributes for calls or invokes", &I);
3788  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3789  "take one operand!", &I);
3790  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3791  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3792  "dereferenceable_or_null metadata value must be an i64!", &I);
3793 }
3794 
3795 /// verifyInstruction - Verify that an instruction is well formed.
3796 ///
3797 void Verifier::visitInstruction(Instruction &I) {
3798  BasicBlock *BB = I.getParent();
3799  Assert(BB, "Instruction not embedded in basic block!", &I);
3800 
3801  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3802  for (User *U : I.users()) {
3803  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3804  "Only PHI nodes may reference their own value!", &I);
3805  }
3806  }
3807 
3808  // Check that void typed values don't have names
3809  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3810  "Instruction has a name, but provides a void value!", &I);
3811 
3812  // Check that the return value of the instruction is either void or a legal
3813  // value type.
3814  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3815  "Instruction returns a non-scalar type!", &I);
3816 
3817  // Check that the instruction doesn't produce metadata. Calls are already
3818  // checked against the callee type.
3819  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3820  "Invalid use of metadata!", &I);
3821 
3822  // Check that all uses of the instruction, if they are instructions
3823  // themselves, actually have parent basic blocks. If the use is not an
3824  // instruction, it is an error!
3825  for (Use &U : I.uses()) {
3826  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3827  Assert(Used->getParent() != nullptr,
3828  "Instruction referencing"
3829  " instruction not embedded in a basic block!",
3830  &I, Used);
3831  else {
3832  CheckFailed("Use of instruction is not an instruction!", U);
3833  return;
3834  }
3835  }
3836 
3837  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3838  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3839 
3840  // Check to make sure that only first-class-values are operands to
3841  // instructions.
3842  if (!I.getOperand(i)->getType()->isFirstClassType()) {
3843  Assert(false, "Instruction operands must be first-class values!", &I);
3844  }
3845 
3846  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3847  // Check to make sure that the "address of" an intrinsic function is never
3848  // taken.
3849  Assert(
3850  !F->isIntrinsic() ||
3851  i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3852  "Cannot take the address of an intrinsic!", &I);
3853  Assert(
3854  !F->isIntrinsic() || isa<CallInst>(I) ||
3855  F->getIntrinsicID() == Intrinsic::donothing ||
3856  F->getIntrinsicID() == Intrinsic::coro_resume ||
3857  F->getIntrinsicID() == Intrinsic::coro_destroy ||
3858  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3859  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3860  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3861  "Cannot invoke an intrinsic other than donothing, patchpoint, "
3862  "statepoint, coro_resume or coro_destroy",
3863  &I);
3864  Assert(F->getParent() == &M, "Referencing function in another module!",
3865  &I, &M, F, F->getParent());
3866  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3867  Assert(OpBB->getParent() == BB->getParent(),
3868  "Referring to a basic block in another function!", &I);
3869  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3870  Assert(OpArg->getParent() == BB->getParent(),
3871  "Referring to an argument in another function!", &I);
3872  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3873  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
3874  &M, GV, GV->getParent());
3875  } else if (isa<Instruction>(I.getOperand(i))) {
3876  verifyDominatesUse(I, i);
3877  } else if (isa<InlineAsm>(I.getOperand(i))) {
3878  Assert((i + 1 == e && isa<CallInst>(I)) ||
3879  (i + 3 == e && isa<InvokeInst>(I)),
3880  "Cannot take the address of an inline asm!", &I);
3881  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3882  if (CE->getType()->isPtrOrPtrVectorTy() ||
3884  // If we have a ConstantExpr pointer, we need to see if it came from an
3885  // illegal bitcast. If the datalayout string specifies non-integral
3886  // address spaces then we also need to check for illegal ptrtoint and
3887  // inttoptr expressions.
3888  visitConstantExprsRecursively(CE);
3889  }
3890  }
3891  }
3892 
3893  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3895  "fpmath requires a floating point result!", &I);
3896  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3897  if (ConstantFP *CFP0 =
3898  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3899  const APFloat &Accuracy = CFP0->getValueAPF();
3900  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
3901  "fpmath accuracy must have float type", &I);
3902  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3903  "fpmath accuracy not a positive number!", &I);
3904  } else {
3905  Assert(false, "invalid fpmath accuracy!", &I);
3906  }
3907  }
3908 
3909  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3910  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3911  "Ranges are only for loads, calls and invokes!", &I);
3912  visitRangeMetadata(I, Range, I.getType());
3913  }
3914 
3916  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3917  &I);
3918  Assert(isa<LoadInst>(I),
3919  "nonnull applies only to load instructions, use attributes"
3920  " for calls or invokes",
3921  &I);
3922  }
3923 
3925  visitDereferenceableMetadata(I, MD);
3926 
3928  visitDereferenceableMetadata(I, MD);
3929 
3930  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3931  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3932 
3933  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3934  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3935  &I);
3936  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3937  "use attributes for calls or invokes", &I);
3938  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3939  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3940  Assert(CI && CI->getType()->isIntegerTy(64),
3941  "align metadata value must be an i64!", &I);
3942  uint64_t Align = CI->getZExtValue();
3943  Assert(isPowerOf2_64(Align),
3944  "align metadata value must be a power of 2!", &I);
3946  "alignment is larger that implementation defined limit", &I);
3947  }
3948 
3949  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3950  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3951  visitMDNode(*N);
3952  }
3953 
3954  if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3955  verifyFragmentExpression(*DII);
3956 
3957  InstsInThisBlock.insert(&I);
3958 }
3959 
3960 /// Allow intrinsics to be verified in different ways.
3961 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3962  Function *IF = CS.getCalledFunction();
3963  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3964  IF);
3965 
3966  // Verify that the intrinsic prototype lines up with what the .td files
3967  // describe.
3968  FunctionType *IFTy = IF->getFunctionType();
3969  bool IsVarArg = IFTy->isVarArg();
3970 
3972  getIntrinsicInfoTableEntries(ID, Table);
3974 
3975  SmallVector<Type *, 4> ArgTys;
3976  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3977  TableRef, ArgTys),
3978  "Intrinsic has incorrect return type!", IF);
3979  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3980  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3981  TableRef, ArgTys),
3982  "Intrinsic has incorrect argument type!", IF);
3983 
3984  // Verify if the intrinsic call matches the vararg property.
3985  if (IsVarArg)
3986  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3987  "Intrinsic was not defined with variable arguments!", IF);
3988  else
3989  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3990  "Callsite was not defined with variable arguments!", IF);
3991 
3992  // All descriptors should be absorbed by now.
3993  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3994 
3995  // Now that we have the intrinsic ID and the actual argument types (and we
3996  // know they are legal for the intrinsic!) get the intrinsic name through the
3997  // usual means. This allows us to verify the mangling of argument types into
3998  // the name.
3999  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4000  Assert(ExpectedName == IF->getName(),
4001  "Intrinsic name not mangled correctly for type arguments! "
4002  "Should be: " +
4003  ExpectedName,
4004  IF);
4005 
4006  // If the intrinsic takes MDNode arguments, verify that they are either global
4007  // or are local to *this* function.
4008  for (Value *V : CS.args())
4009  if (auto *MD = dyn_cast<MetadataAsValue>(V))
4010  visitMetadataAsValue(*MD, CS.getCaller());
4011 
4012  switch (ID) {
4013  default:
4014  break;
4015  case Intrinsic::coro_id: {
4016  auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
4017  if (isa<ConstantPointerNull>(InfoArg))
4018  break;
4019  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4020  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4021  "info argument of llvm.coro.begin must refer to an initialized "
4022  "constant");
4023  Constant *Init = GV->getInitializer();
4024  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4025  "info argument of llvm.coro.begin must refer to either a struct or "
4026  "an array");
4027  break;
4028  }
4029  case Intrinsic::ctlz: // llvm.ctlz
4030  case Intrinsic::cttz: // llvm.cttz
4031  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4032  "is_zero_undef argument of bit counting intrinsics must be a "
4033  "constant int",
4034  CS);
4035  break;
4036  case Intrinsic::experimental_constrained_fadd:
4037  case Intrinsic::experimental_constrained_fsub:
4038  case Intrinsic::experimental_constrained_fmul:
4039  case Intrinsic::experimental_constrained_fdiv:
4040  case Intrinsic::experimental_constrained_frem:
4041  case Intrinsic::experimental_constrained_fma:
4042  case Intrinsic::experimental_constrained_sqrt:
4043  case Intrinsic::experimental_constrained_pow:
4044  case Intrinsic::experimental_constrained_powi:
4045  case Intrinsic::experimental_constrained_sin:
4046  case Intrinsic::experimental_constrained_cos:
4047  case Intrinsic::experimental_constrained_exp:
4048  case Intrinsic::experimental_constrained_exp2:
4049  case Intrinsic::experimental_constrained_log:
4050  case Intrinsic::experimental_constrained_log10:
4051  case Intrinsic::experimental_constrained_log2:
4052  case Intrinsic::experimental_constrained_rint:
4053  case Intrinsic::experimental_constrained_nearbyint:
4054  visitConstrainedFPIntrinsic(
4055  cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
4056  break;
4057  case Intrinsic::dbg_declare: // llvm.dbg.declare
4058  Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
4059  "invalid llvm.dbg.declare intrinsic call 1", CS);
4060  visitDbgIntrinsic("declare", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4061  break;
4062  case Intrinsic::dbg_addr: // llvm.dbg.addr
4063  visitDbgIntrinsic("addr", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4064  break;
4065  case Intrinsic::dbg_value: // llvm.dbg.value
4066  visitDbgIntrinsic("value", cast<DbgInfoIntrinsic>(*CS.getInstruction()));
4067  break;
4068  case Intrinsic::memcpy:
4069  case Intrinsic::memmove:
4070  case Intrinsic::memset: {
4071  const auto *MI = cast<MemIntrinsic>(CS.getInstruction());
4072  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4073  return Alignment == 0 || isPowerOf2_32(Alignment);
4074  };
4075  Assert(IsValidAlignment(MI->getDestAlignment()),
4076  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4077  CS);
4078  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4079  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4080  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4081  CS);
4082  }
4083  Assert(isa<ConstantInt>(CS.getArgOperand(3)),
4084  "isvolatile argument of memory intrinsics must be a constant int",
4085  CS);
4086  break;
4087  }
4088  case Intrinsic::memcpy_element_unordered_atomic:
4089  case Intrinsic::memmove_element_unordered_atomic:
4090  case Intrinsic::memset_element_unordered_atomic: {
4091  const auto *AMI = cast<AtomicMemIntrinsic>(CS.getInstruction());
4092 
4093  ConstantInt *ElementSizeCI =
4094  dyn_cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4095  Assert(ElementSizeCI,
4096  "element size of the element-wise unordered atomic memory "
4097  "intrinsic must be a constant int",
4098  CS);
4099  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4100  Assert(ElementSizeVal.isPowerOf2(),
4101  "element size of the element-wise atomic memory intrinsic "
4102  "must be a power of 2",
4103  CS);
4104 
4105  if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4106  uint64_t Length = LengthCI->getZExtValue();
4107  uint64_t ElementSize = AMI->getElementSizeInBytes();
4108  Assert((Length % ElementSize) == 0,
4109  "constant length must be a multiple of the element size in the "
4110  "element-wise atomic memory intrinsic",
4111  CS);
4112  }
4113 
4114  auto IsValidAlignment = [&](uint64_t Alignment) {
4115  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4116  };
4117  uint64_t DstAlignment = AMI->getDestAlignment();
4118  Assert(IsValidAlignment(DstAlignment),
4119  "incorrect alignment of the destination argument", CS);
4120  if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4121  uint64_t SrcAlignment = AMT->getSourceAlignment();
4122  Assert(IsValidAlignment(SrcAlignment),
4123  "incorrect alignment of the source argument", CS);
4124  }
4125  break;
4126  }
4127  case Intrinsic::gcroot:
4128  case Intrinsic::gcwrite:
4129  case Intrinsic::gcread:
4130  if (ID == Intrinsic::gcroot) {
4131  AllocaInst *AI =
4133  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
4134  Assert(isa<Constant>(CS.getArgOperand(1)),
4135  "llvm.gcroot parameter #2 must be a constant.", CS);
4136  if (!AI->getAllocatedType()->isPointerTy()) {
4137  Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
4138  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4139  "or argument #2 must be a non-null constant.",
4140  CS);
4141  }
4142  }
4143 
4144  Assert(CS.getParent()->getParent()->hasGC(),
4145  "Enclosing function does not use GC.", CS);
4146  break;
4147  case Intrinsic::init_trampoline:
4148  Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
4149  "llvm.init_trampoline parameter #2 must resolve to a function.",
4150  CS);
4151  break;
4152  case Intrinsic::prefetch:
4153  Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
4154  isa<ConstantInt>(CS.getArgOperand(2)) &&
4155  cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
4156  cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
4157  "invalid arguments to llvm.prefetch", CS);
4158  break;
4159  case Intrinsic::stackprotector:
4160  Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
4161  "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
4162  break;
4163  case Intrinsic::lifetime_start:
4164  case Intrinsic::lifetime_end:
4165  case Intrinsic::invariant_start:
4166  Assert(isa<ConstantInt>(CS.getArgOperand(0)),
4167  "size argument of memory use markers must be a constant integer",
4168  CS);
4169  break;
4170  case Intrinsic::invariant_end:
4171  Assert(isa<ConstantInt>(CS.getArgOperand(1)),
4172  "llvm.invariant.end parameter #2 must be a constant integer", CS);
4173  break;
4174 
4175  case Intrinsic::localescape: {
4176  BasicBlock *BB = CS.getParent();
4177  Assert(BB == &BB->getParent()->front(),
4178  "llvm.localescape used outside of entry block", CS);
4179  Assert(!SawFrameEscape,
4180  "multiple calls to llvm.localescape in one function", CS);
4181  for (Value *Arg : CS.args()) {
4182  if (isa<ConstantPointerNull>(Arg))
4183  continue; // Null values are allowed as placeholders.
4184  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4185  Assert(AI && AI->isStaticAlloca(),
4186  "llvm.localescape only accepts static allocas", CS);
4187  }
4188  FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4189  SawFrameEscape = true;
4190  break;
4191  }
4192  case Intrinsic::localrecover: {
4193  Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4194  Function *Fn = dyn_cast<Function>(FnArg);
4195  Assert(Fn && !Fn->isDeclaration(),
4196  "llvm.localrecover first "
4197  "argument must be function defined in this module",
4198  CS);
4199  auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4200  Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
4201  CS);
4202  auto &Entry = FrameEscapeInfo[Fn];
4203  Entry.second = unsigned(
4204  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4205  break;
4206  }
4207 
4208  case Intrinsic::experimental_gc_statepoint:
4209  Assert(!CS.isInlineAsm(),
4210  "gc.statepoint support for inline assembly unimplemented", CS);
4211  Assert(CS.getParent()->getParent()->hasGC(),
4212  "Enclosing function does not use GC.", CS);
4213 
4214  verifyStatepoint(CS);
4215  break;
4216  case Intrinsic::experimental_gc_result: {
4217  Assert(CS.getParent()->getParent()->hasGC(),
4218  "Enclosing function does not use GC.", CS);
4219  // Are we tied to a statepoint properly?
4220  CallSite StatepointCS(CS.getArgOperand(0));
4221  const Function *StatepointFn =
4222  StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4223  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4224  StatepointFn->getIntrinsicID() ==
4225  Intrinsic::experimental_gc_statepoint,
4226  "gc.result operand #1 must be from a statepoint", CS,
4227  CS.getArgOperand(0));
4228 
4229  // Assert that result type matches wrapped callee.
4230  const Value *Target = StatepointCS.getArgument(2);
4231  auto *PT = cast<PointerType>(Target->getType());
4232  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4233  Assert(CS.getType() == TargetFuncType->getReturnType(),
4234  "gc.result result type does not match wrapped callee", CS);
4235  break;
4236  }
4237  case Intrinsic::experimental_gc_relocate: {
4238  Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
4239 
4240  Assert(isa<PointerType>(CS.getType()->getScalarType()),
4241  "gc.relocate must return a pointer or a vector of pointers", CS);
4242 
4243  // Check that this relocate is correctly tied to the statepoint
4244 
4245  // This is case for relocate on the unwinding path of an invoke statepoint
4246  if (LandingPadInst *LandingPad =
4247  dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4248 
4249  const BasicBlock *InvokeBB =
4250  LandingPad->getParent()->getUniquePredecessor();
4251 
4252  // Landingpad relocates should have only one predecessor with invoke
4253  // statepoint terminator
4254  Assert(InvokeBB, "safepoints should have unique landingpads",
4255  LandingPad->getParent());
4256  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4257  InvokeBB);
4258  Assert(isStatepoint(InvokeBB->getTerminator()),
4259  "gc relocate should be linked to a statepoint", InvokeBB);
4260  }
4261  else {
4262  // In all other cases relocate should be tied to the statepoint directly.
4263  // This covers relocates on a normal return path of invoke statepoint and
4264  // relocates of a call statepoint.
4265  auto Token = CS.getArgOperand(0);
4266  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4267  "gc relocate is incorrectly tied to the statepoint", CS, Token);
4268  }
4269 
4270  // Verify rest of the relocate arguments.
4271 
4272  ImmutableCallSite StatepointCS(
4273  cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4274 
4275  // Both the base and derived must be piped through the safepoint.
4276  Value* Base = CS.getArgOperand(1);
4277  Assert(isa<ConstantInt>(Base),
4278  "gc.relocate operand #2 must be integer offset", CS);
4279 
4280  Value* Derived = CS.getArgOperand(2);
4281  Assert(isa<ConstantInt>(Derived),
4282  "gc.relocate operand #3 must be integer offset", CS);
4283 
4284  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4285  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4286  // Check the bounds
4287  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
4288  "gc.relocate: statepoint base index out of bounds", CS);
4289  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
4290  "gc.relocate: statepoint derived index out of bounds", CS);
4291 
4292  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4293  // section of the statepoint's argument.
4294  Assert(StatepointCS.arg_size() > 0,
4295  "gc.statepoint: insufficient arguments");
4296  Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4297  "gc.statement: number of call arguments must be constant integer");
4298  const unsigned NumCallArgs =
4299  cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4300  Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4301  "gc.statepoint: mismatch in number of call arguments");
4302  Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4303  "gc.statepoint: number of transition arguments must be "
4304  "a constant integer");
4305  const int NumTransitionArgs =
4306  cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4307  ->getZExtValue();
4308  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4309  Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4310  "gc.statepoint: number of deoptimization arguments must be "
4311  "a constant integer");
4312  const int NumDeoptArgs =
4313  cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4314  ->getZExtValue();
4315  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4316  const int GCParamArgsEnd = StatepointCS.arg_size();
4317  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4318  "gc.relocate: statepoint base index doesn't fall within the "
4319  "'gc parameters' section of the statepoint call",
4320  CS);
4321  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4322  "gc.relocate: statepoint derived index doesn't fall within the "
4323  "'gc parameters' section of the statepoint call",
4324  CS);
4325 
4326  // Relocated value must be either a pointer type or vector-of-pointer type,
4327  // but gc_relocate does not need to return the same pointer type as the
4328  // relocated pointer. It can be casted to the correct type later if it's
4329  // desired. However, they must have the same address space and 'vectorness'
4330  GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4332  "gc.relocate: relocated value must be a gc pointer", CS);
4333 
4334  auto ResultType = CS.getType();
4335  auto DerivedType = Relocate.getDerivedPtr()->getType();
4336  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4337  "gc.relocate: vector relocates to vector and pointer to pointer",
4338  CS);
4339  Assert(
4340  ResultType->getPointerAddressSpace() ==
4341  DerivedType->getPointerAddressSpace(),
4342  "gc.relocate: relocating a pointer shouldn't change its address space",
4343  CS);
4344  break;
4345  }
4346  case Intrinsic::eh_exceptioncode:
4347  case Intrinsic::eh_exceptionpointer: {
4348  Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4349  "eh.exceptionpointer argument must be a catchpad", CS);
4350  break;
4351  }
4352  case Intrinsic::masked_load: {
4353  Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4354 
4355  Value *Ptr = CS.getArgOperand(0);
4356  //Value *Alignment = CS.getArgOperand(1);
4357  Value *Mask = CS.getArgOperand(2);
4358  Value *PassThru = CS.getArgOperand(3);
4359  Assert(Mask->getType()->isVectorTy(),
4360  "masked_load: mask must be vector", CS);
4361 
4362  // DataTy is the overloaded type
4363  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4364  Assert(DataTy == CS.getType(),
4365  "masked_load: return must match pointer type", CS);
4366  Assert(PassThru->getType() == DataTy,
4367  "masked_load: pass through and data type must match", CS);
4368  Assert(Mask->getType()->getVectorNumElements() ==
4369  DataTy->getVectorNumElements(),
4370  "masked_load: vector mask must be same length as data", CS);
4371  break;
4372  }
4373  case Intrinsic::masked_store: {
4374  Value *Val = CS.getArgOperand(0);
4375  Value *Ptr = CS.getArgOperand(1);
4376  //Value *Alignment = CS.getArgOperand(2);
4377  Value *Mask = CS.getArgOperand(3);
4378  Assert(Mask->getType()->isVectorTy(),
4379  "masked_store: mask must be vector", CS);
4380 
4381  // DataTy is the overloaded type
4382  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4383  Assert(DataTy == Val->getType(),
4384  "masked_store: storee must match pointer type", CS);
4385  Assert(Mask->getType()->getVectorNumElements() ==
4386  DataTy->getVectorNumElements(),
4387  "masked_store: vector mask must be same length as data", CS);
4388  break;
4389  }
4390 
4391  case Intrinsic::experimental_guard: {
4392  Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4394  "experimental_guard must have exactly one "
4395  "\"deopt\" operand bundle");
4396  break;
4397  }
4398 
4399  case Intrinsic::experimental_deoptimize: {
4400  Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4402  "experimental_deoptimize must have exactly one "
4403  "\"deopt\" operand bundle");
4405  "experimental_deoptimize return type must match caller return type");
4406 
4407  if (CS.isCall()) {
4408  auto *DeoptCI = CS.getInstruction();
4409  auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4410  Assert(RI,
4411  "calls to experimental_deoptimize must be followed by a return");
4412 
4413  if (!CS.getType()->isVoidTy() && RI)
4414  Assert(RI->getReturnValue() == DeoptCI,
4415  "calls to experimental_deoptimize must be followed by a return "
4416  "of the value computed by experimental_deoptimize");
4417  }
4418 
4419  break;
4420  }
4421  };
4422 }
4423 
4424 /// \brief Carefully grab the subprogram from a local scope.
4425 ///
4426 /// This carefully grabs the subprogram from a local scope, avoiding the
4427 /// built-in assertions that would typically fire.
4428 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4429  if (!LocalScope)
4430  return nullptr;
4431 
4432  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4433  return SP;
4434 
4435  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4436  return getSubprogram(LB->getRawScope());
4437 
4438  // Just return null; broken scope chains are checked elsewhere.
4439  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4440  return nullptr;
4441 }
4442 
4443 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4444  unsigned NumOperands = FPI.getNumArgOperands();
4445  Assert(((NumOperands == 5 && FPI.isTernaryOp()) ||
4446  (NumOperands == 3 && FPI.isUnaryOp()) || (NumOperands == 4)),
4447  "invalid arguments for constrained FP intrinsic", &FPI);
4448  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-1)),
4449  "invalid exception behavior argument", &FPI);
4450  Assert(isa<MetadataAsValue>(FPI.getArgOperand(NumOperands-2)),
4451  "invalid rounding mode argument", &FPI);
4453  "invalid rounding mode argument", &FPI);
4455  "invalid exception behavior argument", &FPI);
4456 }
4457 
4458 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgInfoIntrinsic &DII) {
4459  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4460  AssertDI(isa<ValueAsMetadata>(MD) ||
4461  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4462  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4463  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4464  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4465  DII.getRawVariable());
4466  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4467  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4468  DII.getRawExpression());
4469 
4470  // Ignore broken !dbg attachments; they're checked elsewhere.
4471  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4472  if (!isa<DILocation>(N))
4473  return;
4474 
4475  BasicBlock *BB = DII.getParent();
4476  Function *F = BB ? BB->getParent() : nullptr;
4477 
4478  // The scopes for variables and !dbg attachments must agree.
4479  DILocalVariable *Var = DII.getVariable();
4480  DILocation *Loc = DII.getDebugLoc();
4481  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4482  &DII, BB, F);
4483 
4484  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4485  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4486  if (!VarSP || !LocSP)
4487  return; // Broken scope chains are checked elsewhere.
4488 
4489  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4490  " variable and !dbg attachment",
4491  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4492  Loc->getScope()->getSubprogram());
4493 
4494  verifyFnArgs(DII);
4495 }
4496 
4497 void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4498  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4499  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4500 
4501  // We don't know whether this intrinsic verified correctly.
4502  if (!V || !E || !E->isValid())
4503  return;
4504 
4505  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4506  auto Fragment = E->getFragmentInfo();
4507  if (!Fragment)
4508  return;
4509 
4510  // The frontend helps out GDB by emitting the members of local anonymous
4511  // unions as artificial local variables with shared storage. When SROA splits
4512  // the storage for artificial local variables that are smaller than the entire
4513  // union, the overhang piece will be outside of the allotted space for the
4514  // variable and this check fails.
4515  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4516  if (V->isArtificial())
4517  return;
4518 
4519  verifyFragmentExpression(*V, *Fragment, &I);
4520 }
4521 
4522 template <typename ValueOrMetadata>
4523 void Verifier::verifyFragmentExpression(const DIVariable &V,
4524  DIExpression::FragmentInfo Fragment,
4525  ValueOrMetadata *Desc) {
4526  // If there's no size, the type is broken, but that should be checked
4527  // elsewhere.
4528  auto VarSize = V.getSizeInBits();
4529  if (!VarSize)
4530  return;
4531 
4532  unsigned FragSize = Fragment.SizeInBits;
4533  unsigned FragOffset = Fragment.OffsetInBits;
4534  AssertDI(FragSize + FragOffset <= *VarSize,
4535  "fragment is larger than or outside of variable", Desc, &V);
4536  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4537 }
4538 
4539 void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4540  // This function does not take the scope of noninlined function arguments into
4541  // account. Don't run it if current function is nodebug, because it may
4542  // contain inlined debug intrinsics.
4543  if (!HasDebugInfo)
4544  return;
4545 
4546  // For performance reasons only check non-inlined ones.
4547  if (I.getDebugLoc()->getInlinedAt())
4548  return;
4549 
4550  DILocalVariable *Var = I.getVariable();
4551  AssertDI(Var, "dbg intrinsic without variable");
4552 
4553  unsigned ArgNo = Var->getArg();
4554  if (!ArgNo)
4555  return;
4556 
4557  // Verify there are no duplicate function argument debug info entries.
4558  // These will cause hard-to-debug assertions in the DWARF backend.
4559  if (DebugFnArgs.size() < ArgNo)
4560  DebugFnArgs.resize(ArgNo, nullptr);
4561 
4562  auto *Prev = DebugFnArgs[ArgNo - 1];
4563  DebugFnArgs[ArgNo - 1] = Var;
4564  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4565  Prev, Var);
4566 }
4567 
4568 void Verifier::verifyCompileUnits() {
4569  // When more than one Module is imported into the same context, such as during
4570  // an LTO build before linking the modules, ODR type uniquing may cause types
4571  // to point to a different CU. This check does not make sense in this case.
4573  return;
4574  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4576  if (CUs)
4577  Listed.insert(CUs->op_begin(), CUs->op_end());
4578  for (auto *CU : CUVisited)
4579  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4580  CUVisited.clear();
4581 }
4582 
4583 void Verifier::verifyDeoptimizeCallingConvs() {
4584  if (DeoptimizeDeclarations.empty())
4585  return;
4586 
4587  const Function *First = DeoptimizeDeclarations[0];
4588  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4589  Assert(First->getCallingConv() == F->getCallingConv(),
4590  "All llvm.experimental.deoptimize declarations must have the same "
4591  "calling convention",
4592  First, F);
4593  }
4594 }
4595 
4596 //===----------------------------------------------------------------------===//
4597 // Implement the public interfaces to this file...
4598 //===----------------------------------------------------------------------===//
4599 
4601  Function &F = const_cast<Function &>(f);
4602 
4603  // Don't use a raw_null_ostream. Printing IR is expensive.
4604  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4605 
4606  // Note that this function's return value is inverted from what you would
4607  // expect of a function called "verify".
4608  return !V.verify(F);
4609 }
4610 
4612  bool *BrokenDebugInfo) {
4613  // Don't use a raw_null_ostream. Printing IR is expensive.
4614  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4615 
4616  bool Broken = false;
4617  for (const Function &F : M)
4618  Broken |= !V.verify(F);
4619 
4620  Broken |= !V.verify();
4621  if (BrokenDebugInfo)
4622  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4623  // Note that this function's return value is inverted from what you would
4624  // expect of a function called "verify".
4625  return Broken;
4626 }
4627 
4628 namespace {
4629 
4630 struct VerifierLegacyPass : public FunctionPass {
4631  static char ID;
4632 
4633  std::unique_ptr<Verifier> V;
4634  bool FatalErrors = true;
4635 
4636  VerifierLegacyPass() : FunctionPass(ID) {
4638  }
4639  explicit VerifierLegacyPass(bool FatalErrors)
4640  : FunctionPass(ID),
4641  FatalErrors(FatalErrors) {
4643  }
4644 
4645  bool doInitialization(Module &M) override {
4646  V = llvm::make_unique<Verifier>(
4647  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4648  return false;
4649  }
4650 
4651  bool runOnFunction(Function &F) override {
4652  if (!V->verify(F) && FatalErrors)
4653  report_fatal_error("Broken function found, compilation aborted!");
4654 
4655  return false;
4656  }
4657 
4658  bool doFinalization(Module &M) override {
4659  bool HasErrors = false;
4660  for (Function &F : M)
4661  if (F.isDeclaration())
4662  HasErrors |= !V->verify(F);
4663 
4664  HasErrors |= !V->verify();
4665  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
4666  report_fatal_error("Broken module found, compilation aborted!");
4667  return false;
4668  }
4669 
4670  void getAnalysisUsage(AnalysisUsage &AU) const override {
4671  AU.setPreservesAll();
4672  }
4673 };
4674 
4675 } // end anonymous namespace
4676 
4677 /// Helper to issue failure from the TBAA verification
4678 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4679  if (Diagnostic)
4680  return Diagnostic->CheckFailed(Args...);
4681 }
4682 
4683 #define AssertTBAA(C, ...) \
4684  do { \
4685  if (!(C)) { \
4686  CheckFailed(__VA_ARGS__); \
4687  return false; \
4688  } \
4689  } while (false)
4690 
4691 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
4692 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4693 /// struct-type node describing an aggregate data structure (like a struct).
4694 TBAAVerifier::TBAABaseNodeSummary
4695 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
4696  bool IsNewFormat) {
4697  if (BaseNode->getNumOperands() < 2) {
4698  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4699  return {true, ~0u};
4700  }
4701 
4702  auto Itr = TBAABaseNodes.find(BaseNode);
4703  if (Itr != TBAABaseNodes.end())
4704  return Itr->second;
4705 
4706  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
4707  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4708  (void)InsertResult;
4709  assert(InsertResult.second && "We just checked!");
4710  return Result;
4711 }
4712 
4713 TBAAVerifier::TBAABaseNodeSummary
4714 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
4715  bool IsNewFormat) {
4716  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4717 
4718  if (BaseNode->getNumOperands() == 2) {
4719  // Scalar nodes can only be accessed at offset 0.
4720  return isValidScalarTBAANode(BaseNode)
4721  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4722  : InvalidNode;
4723  }
4724 
4725  if (IsNewFormat) {
4726  if (BaseNode->getNumOperands() % 3 != 0) {
4727  CheckFailed("Access tag nodes must have the number of operands that is a "
4728  "multiple of 3!", BaseNode);
4729  return InvalidNode;
4730  }
4731  } else {
4732  if (BaseNode->getNumOperands() % 2 != 1) {
4733  CheckFailed("Struct tag nodes must have an odd number of operands!",
4734  BaseNode);
4735  return InvalidNode;
4736  }
4737  }
4738 
4739  // Check the type size field.
4740  if (IsNewFormat) {
4741  auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4742  BaseNode->getOperand(1));
4743  if (!TypeSizeNode) {
4744  CheckFailed("Type size nodes must be constants!", &I, BaseNode);
4745  return InvalidNode;
4746  }
4747  }
4748 
4749  // Check the type name field. In the new format it can be anything.
4750  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
4751  CheckFailed("Struct tag nodes have a string as their first operand",
4752  BaseNode);
4753  return InvalidNode;
4754  }
4755 
4756  bool Failed = false;
4757 
4758  Optional<APInt> PrevOffset;
4759  unsigned BitWidth = ~0u;
4760 
4761  // We've already checked that BaseNode is not a degenerate root node with one
4762  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4763  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4764  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4765  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4766  Idx += NumOpsPerField) {
4767  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4768  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4769  if (!isa<MDNode>(FieldTy)) {
4770  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4771  Failed = true;
4772  continue;
4773  }
4774 
4775  auto *OffsetEntryCI =
4776  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4777  if (!OffsetEntryCI) {
4778  CheckFailed("Offset entries must be constants!", &I, BaseNode);
4779  Failed = true;
4780  continue;
4781  }
4782 
4783  if (BitWidth == ~0u)
4784  BitWidth = OffsetEntryCI->getBitWidth();
4785 
4786  if (OffsetEntryCI->getBitWidth() != BitWidth) {
4787  CheckFailed(
4788  "Bitwidth between the offsets and struct type entries must match", &I,
4789  BaseNode);
4790  Failed = true;
4791  continue;
4792  }
4793 
4794  // NB! As far as I can tell, we generate a non-strictly increasing offset
4795  // sequence only from structs that have zero size bit fields. When
4796  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4797  // pick the field lexically the latest in struct type metadata node. This
4798  // mirrors the actual behavior of the alias analysis implementation.
4799  bool IsAscending =
4800  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4801 
4802  if (!IsAscending) {
4803  CheckFailed("Offsets must be increasing!", &I, BaseNode);
4804  Failed = true;
4805  }
4806 
4807  PrevOffset = OffsetEntryCI->getValue();
4808 
4809  if (IsNewFormat) {
4810  auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4811  BaseNode->getOperand(Idx + 2));
4812  if (!MemberSizeNode) {
4813  CheckFailed("Member size entries must be constants!", &I, BaseNode);
4814  Failed = true;
4815  continue;
4816  }
4817  }
4818  }
4819 
4820  return Failed ? InvalidNode
4821  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4822 }
4823 
4824 static bool IsRootTBAANode(const MDNode *MD) {
4825  return MD->getNumOperands() < 2;
4826 }
4827 
4828 static bool IsScalarTBAANodeImpl(const MDNode *MD,
4830  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4831  return false;
4832 
4833  if (!isa<MDString>(MD->getOperand(0)))
4834  return false;
4835 
4836  if (MD->getNumOperands() == 3) {
4837  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4838  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4839  return false;
4840  }
4841 
4842  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4843  return Parent && Visited.insert(Parent).second &&
4844  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4845 }
4846 
4847 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4848  auto ResultIt = TBAAScalarNodes.find(MD);
4849  if (ResultIt != TBAAScalarNodes.end())
4850  return ResultIt->second;
4851 
4853  bool Result = IsScalarTBAANodeImpl(MD, Visited);
4854  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4855  (void)InsertResult;
4856  assert(InsertResult.second && "Just checked!");
4857 
4858  return Result;
4859 }
4860 
4861 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4862 /// Offset in place to be the offset within the field node returned.
4863 ///
4864 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4865 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4866  const MDNode *BaseNode,
4867  APInt &Offset,
4868  bool IsNewFormat) {
4869  assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
4870 
4871  // Scalar nodes have only one possible "field" -- their parent in the access
4872  // hierarchy. Offset must be zero at this point, but our caller is supposed
4873  // to Assert that.
4874  if (BaseNode->getNumOperands() == 2)
4875  return cast<MDNode>(BaseNode->getOperand(1));
4876 
4877  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
4878  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
4879  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
4880  Idx += NumOpsPerField) {
4881  auto *OffsetEntryCI =
4882  mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4883  if (OffsetEntryCI->getValue().ugt(Offset)) {
4884  if (Idx == FirstFieldOpNo) {
4885  CheckFailed("Could not find TBAA parent in struct type node", &I,
4886  BaseNode, &Offset);
4887  return nullptr;
4888  }
4889 
4890  unsigned PrevIdx = Idx - NumOpsPerField;
4891  auto *PrevOffsetEntryCI =
4892  mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
4893  Offset -= PrevOffsetEntryCI->getValue();
4894  return cast<MDNode>(BaseNode->getOperand(PrevIdx));
4895  }
4896  }
4897 
4898  unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
4899  auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4900  BaseNode->getOperand(LastIdx + 1));
4901  Offset -= LastOffsetEntryCI->getValue();
4902  return cast<MDNode>(BaseNode->getOperand(LastIdx));
4903 }
4904 
4906  if (!Type || Type->getNumOperands() < 3)
4907  return false;
4908 
4909  // In the new format type nodes shall have a reference to the parent type as
4910  // its first operand.
4911  MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
4912  if (!Parent)
4913  return false;
4914 
4915  return true;
4916 }
4917 
4919  AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
4920  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
4921  isa<AtomicCmpXchgInst>(I),
4922  "This instruction shall not have a TBAA access tag!", &I);
4923 
4924  bool IsStructPathTBAA =
4925  isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4926 
4927  AssertTBAA(
4928  IsStructPathTBAA,
4929  "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
4930 
4931  MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4932  MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4933 
4934  bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
4935 
4936  if (IsNewFormat) {
4937  AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
4938  "Access tag metadata must have either 4 or 5 operands", &I, MD);
4939  } else {
4940  AssertTBAA(MD->getNumOperands() < 5,
4941  "Struct tag metadata must have either 3 or 4 operands", &I, MD);
4942  }
4943 
4944  // Check the access size field.
4945  if (IsNewFormat) {
4946  auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
4947  MD->getOperand(3));
4948  AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
4949  }
4950 
4951  // Check the immutability flag.
4952  unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
4953  if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
4954  auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
4955  MD->getOperand(ImmutabilityFlagOpNo));
4956  AssertTBAA(IsImmutableCI,
4957  "Immutability tag on struct tag metadata must be a constant",
4958  &I, MD);
4959  AssertTBAA(
4960  IsImmutableCI->isZero() || IsImmutableCI->isOne(),
4961  "Immutability part of the struct tag metadata must be either 0 or 1",
4962  &I, MD);
4963  }
4964 
4965  AssertTBAA(BaseNode && AccessType,
4966  "Malformed struct tag metadata: base and access-type "
4967  "should be non-null and point to Metadata nodes",
4968  &I, MD, BaseNode, AccessType);
4969 
4970  if (!IsNewFormat) {
4971  AssertTBAA(isValidScalarTBAANode(AccessType),
4972  "Access type node must be a valid scalar type", &I, MD,
4973  AccessType);
4974  }
4975 
4976  auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4977  AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
4978 
4979  APInt Offset = OffsetCI->getValue();
4980  bool SeenAccessTypeInPath = false;
4981 
4982  SmallPtrSet<MDNode *, 4> StructPath;
4983 
4984  for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4985  BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
4986  IsNewFormat)) {
4987  if (!StructPath.insert(BaseNode).second) {
4988  CheckFailed("Cycle detected in struct path", &I, MD);
4989  return false;
4990  }
4991 
4992  bool Invalid;
4993  unsigned BaseNodeBitWidth;
4994  std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
4995  IsNewFormat);
4996 
4997  // If the base node is invalid in itself, then we've already printed all the
4998  // errors we wanted to print.
4999  if (Invalid)
5000  return false;
5001 
5002  SeenAccessTypeInPath |= BaseNode == AccessType;
5003 
5004  if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5005  AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5006  &I, MD, &Offset);
5007 
5008  AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5009  (BaseNodeBitWidth == 0 && Offset == 0) ||
5010  (IsNewFormat && BaseNodeBitWidth == ~0u),
5011  "Access bit-width not the same as description bit-width", &I, MD,
5012  BaseNodeBitWidth, Offset.getBitWidth());
5013 
5014  if (IsNewFormat && SeenAccessTypeInPath)
5015  break;
5016  }
5017 
5018  AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5019  &I, MD);
5020  return true;
5021 }
5022 
5023 char VerifierLegacyPass::ID = 0;
5024 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5025 
5026 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5027  return new VerifierLegacyPass(FatalErrors);
5028 }
5029 
5030 AnalysisKey VerifierAnalysis::Key;
5033  Result Res;
5034  Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5035  return Res;
5036 }
5037 
5040  return { llvm::verifyFunction(F, &dbgs()), false };
5041 }
5042 
5044  auto Res = AM.getResult<VerifierAnalysis>(M);
5045  if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5046  report_fatal_error("Broken module found, compilation aborted!");
5047 
5048  return PreservedAnalyses::all();
5049 }
5050 
5052  auto res = AM.getResult<VerifierAnalysis>(F);
5053  if (res.IRBroken && FatalErrors)
5054  report_fatal_error("Broken function found, compilation aborted!");
5055 
5056  return PreservedAnalyses::all();
5057 }
DIFlags getFlags() const
bool isDeclarationForLinker() const
Definition: GlobalValue.h:523
Metadata * getRawRetainedTypes() const
uint64_t CallInst * C
Return a value (possibly void), from a function.
User::op_iterator arg_iterator
The type of iterator to use when looping over actual arguments at this call site. ...
Definition: CallSite.h:213
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:180
static bool isScope(const Metadata *MD)
Definition: Verifier.cpp:848
IntegerType * getType() const
getType - Specialize the getType() method to always return an IntegerType, which reduces the amount o...
Definition: Constants.h:172
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:709
Function * getCalledFunction() const
Return the function called, or null if this is an indirect function invocation.
static Value * getParentPad(Value *EHPad)
Definition: Verifier.cpp:3355
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
iterator_range< use_iterator > uses()
Definition: Value.h:360
bool empty() const
Definition: Function.h:643
bool isDistinct() const
Definition: Metadata.h:941
bool hasLocalLinkage() const
Definition: GlobalValue.h:435
void clear()
Definition: MapVector.h:89
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1184
This instruction extracts a struct member or array element value from an aggregate value...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
unsigned getLine() const
bool isInlineAsm() const
Definition: CallSite.h:305
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:219
bool isSpeculatable() const
Determine if the call has sideeffects.
Definition: Function.h:528
const Value * stripInBoundsOffsets() const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:627
Atomic ordering constants.
Takes the max of the two values, which are required to be integers.
Definition: Module.h:143
StringRef getName() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
bool hasPrivateLinkage() const
Definition: GlobalValue.h:434
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:687
bool isMetadataTy() const
Return true if this is &#39;metadata&#39;.
Definition: Type.h:191
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:115
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:555
const APInt & getUpper() const
Return the upper value for this range.
bool isAtomic() const
Return true if this instruction has an AtomicOrdering of unordered or higher.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Metadata * getRawGlobalVariables() const
Calling convention used for Mesa/AMDPAL compute shaders.
Definition: CallingConv.h:198
Metadata * getRawVTableHolder() const
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
Metadata * getRawVariable() const
Definition: IntrinsicInst.h:88
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:262
#define LLVM_FALLTHROUGH
LLVM_FALLTHROUGH - Mark fallthrough cases in switch statements.
Definition: Compiler.h:235
LLVM_ATTRIBUTE_ALWAYS_INLINE size_type size() const
Definition: SmallVector.h:136
Result run(Module &M, ModuleAnalysisManager &)
Definition: Verifier.cpp:5031
An instruction for ordering other memory operations.
Definition: Instructions.h:440
Calling convention used for Mesa/AMDPAL pixel shaders.
Definition: CallingConv.h:195
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:514
bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
Definition: CallSite.h:471
C - The default llvm calling convention, compatible with C.
Definition: CallingConv.h:35
This class represents zero extension of integer types.
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:313
DIFile * getFile() const
Metadata * getMetadata() const
Definition: Metadata.h:189
ModuleSlotTracker MST
Definition: Verifier.cpp:123