LLVM 20.0.0git
ARMLegalizerInfo.cpp
Go to the documentation of this file.
1//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the Machinelegalizer class for ARM.
10/// \todo This should be generated by TableGen.
11//===----------------------------------------------------------------------===//
12
13#include "ARMLegalizerInfo.h"
14#include "ARMCallLowering.h"
15#include "ARMSubtarget.h"
23#include "llvm/IR/Type.h"
24
25using namespace llvm;
26using namespace LegalizeActions;
27
28static bool AEABI(const ARMSubtarget &ST) {
29 return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
30}
31
33 using namespace TargetOpcode;
34
35 const LLT p0 = LLT::pointer(0, 32);
36
37 const LLT s1 = LLT::scalar(1);
38 const LLT s8 = LLT::scalar(8);
39 const LLT s16 = LLT::scalar(16);
40 const LLT s32 = LLT::scalar(32);
41 const LLT s64 = LLT::scalar(64);
42
43 auto &LegacyInfo = getLegacyLegalizerInfo();
44 if (ST.isThumb1Only()) {
45 // Thumb1 is not supported yet.
46 LegacyInfo.computeTables();
47 verify(*ST.getInstrInfo());
48 return;
49 }
50
51 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
52 .legalForCartesianProduct({s8, s16, s32}, {s1, s8, s16});
53
54 getActionDefinitionsBuilder(G_SEXT_INREG).lower();
55
56 getActionDefinitionsBuilder({G_MUL, G_AND, G_OR, G_XOR})
57 .legalFor({s32})
58 .clampScalar(0, s32, s32);
59
60 if (ST.hasNEON())
61 getActionDefinitionsBuilder({G_ADD, G_SUB})
62 .legalFor({s32, s64})
63 .minScalar(0, s32);
64 else
65 getActionDefinitionsBuilder({G_ADD, G_SUB})
66 .legalFor({s32})
67 .minScalar(0, s32);
68
69 getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
70 .legalFor({{s32, s32}})
71 .minScalar(0, s32)
72 .clampScalar(1, s32, s32);
73
74 bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) ||
75 (ST.isThumb() && ST.hasDivideInThumbMode());
76 if (HasHWDivide)
77 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
78 .legalFor({s32})
79 .clampScalar(0, s32, s32);
80 else
81 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
82 .libcallFor({s32})
83 .clampScalar(0, s32, s32);
84
85 auto &REMBuilder =
86 getActionDefinitionsBuilder({G_SREM, G_UREM}).minScalar(0, s32);
87 if (HasHWDivide)
88 REMBuilder.lowerFor({s32});
89 else if (AEABI(ST))
90 REMBuilder.customFor({s32});
91 else
92 REMBuilder.libcallFor({s32});
93
95 .legalFor({{p0, s32}})
96 .minScalar(1, s32);
98 .legalFor({{s32, p0}})
99 .minScalar(0, s32);
100
102 .customFor({s32, p0})
103 .clampScalar(0, s32, s32);
104
105 getActionDefinitionsBuilder(G_CONSTANT_POOL).legalFor({p0});
106
108 .legalForCartesianProduct({s1}, {s32, p0})
109 .minScalar(1, s32);
110
112 .legalForCartesianProduct({s32, p0}, {s1})
113 .minScalar(0, s32);
114
115 // We're keeping these builders around because we'll want to add support for
116 // floating point to them.
117 auto &LoadStoreBuilder = getActionDefinitionsBuilder({G_LOAD, G_STORE})
118 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
119 {s16, p0, s16, 8},
120 {s32, p0, s32, 8},
121 {p0, p0, p0, 8}})
122 .unsupportedIfMemSizeNotPow2();
123
124 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
125 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
126
127 auto &PhiBuilder =
129 .legalFor({s32, p0})
130 .minScalar(0, s32);
131
133 .legalFor({{p0, s32}})
134 .minScalar(1, s32);
135
137
138 if (!ST.useSoftFloat() && ST.hasVFP2Base()) {
140 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
141 .legalFor({s32, s64});
142
143 LoadStoreBuilder
144 .legalForTypesWithMemDesc({{s64, p0, s64, 32}})
145 .maxScalar(0, s32);
146 PhiBuilder.legalFor({s64});
147
149 {s32, s64});
150
151 getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
152 getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
153
154 getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
155 getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
156
157 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
158 .legalForCartesianProduct({s32}, {s32, s64});
159 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
160 .legalForCartesianProduct({s32, s64}, {s32});
161
162 getActionDefinitionsBuilder({G_GET_FPENV, G_SET_FPENV, G_GET_FPMODE})
163 .legalFor({s32});
165 getActionDefinitionsBuilder(G_SET_FPMODE).customFor({s32});
166 getActionDefinitionsBuilder(G_RESET_FPMODE).custom();
167 } else {
168 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
169 .libcallFor({s32, s64});
170
171 LoadStoreBuilder.maxScalar(0, s32);
172
173 getActionDefinitionsBuilder(G_FNEG).lowerFor({s32, s64});
174
175 getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
176
178 {s32, s64});
179
180 if (AEABI(ST))
181 setFCmpLibcallsAEABI();
182 else
183 setFCmpLibcallsGNU();
184
185 getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
186 getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
187
188 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
189 .libcallForCartesianProduct({s32}, {s32, s64});
190 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
191 .libcallForCartesianProduct({s32, s64}, {s32});
192
193 getActionDefinitionsBuilder({G_GET_FPENV, G_SET_FPENV, G_RESET_FPENV})
194 .libcall();
195 getActionDefinitionsBuilder({G_GET_FPMODE, G_SET_FPMODE, G_RESET_FPMODE})
196 .libcall();
197 }
198
199 // Just expand whatever loads and stores are left.
200 LoadStoreBuilder.lower();
201
202 if (!ST.useSoftFloat() && ST.hasVFP4Base())
203 getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
204 else
205 getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
206
207 getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
208
209 if (ST.hasV5TOps()) {
211 .legalFor({s32, s32})
212 .clampScalar(1, s32, s32)
213 .clampScalar(0, s32, s32);
214 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
215 .lowerFor({s32, s32})
216 .clampScalar(1, s32, s32)
217 .clampScalar(0, s32, s32);
218 } else {
219 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
220 .libcallFor({s32, s32})
221 .clampScalar(1, s32, s32)
222 .clampScalar(0, s32, s32);
224 .lowerFor({s32, s32})
225 .clampScalar(1, s32, s32)
226 .clampScalar(0, s32, s32);
227 }
228
229 LegacyInfo.computeTables();
230 verify(*ST.getInstrInfo());
231}
232
233void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
234 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
235 // default-initialized.
236 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
237 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
238 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
239 FCmp32Libcalls[CmpInst::FCMP_OGE] = {
240 {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
241 FCmp32Libcalls[CmpInst::FCMP_OGT] = {
242 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
243 FCmp32Libcalls[CmpInst::FCMP_OLE] = {
244 {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
245 FCmp32Libcalls[CmpInst::FCMP_OLT] = {
246 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
247 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}};
248 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
249 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
250 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
251 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
252 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
253 FCmp32Libcalls[CmpInst::FCMP_UNO] = {
254 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
255 FCmp32Libcalls[CmpInst::FCMP_ONE] = {
256 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
257 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
258 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
259 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
260 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
261
262 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
263 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
264 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
265 FCmp64Libcalls[CmpInst::FCMP_OGE] = {
266 {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
267 FCmp64Libcalls[CmpInst::FCMP_OGT] = {
268 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
269 FCmp64Libcalls[CmpInst::FCMP_OLE] = {
270 {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
271 FCmp64Libcalls[CmpInst::FCMP_OLT] = {
272 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
273 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}};
274 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
275 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
276 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
277 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
278 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
279 FCmp64Libcalls[CmpInst::FCMP_UNO] = {
280 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
281 FCmp64Libcalls[CmpInst::FCMP_ONE] = {
282 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
283 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
284 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
285 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
286 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
287}
288
289void ARMLegalizerInfo::setFCmpLibcallsGNU() {
290 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
291 // default-initialized.
292 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
293 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
294 FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
295 FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
296 FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
297 FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
298 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}};
299 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
300 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
301 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
302 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
303 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
304 FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
305 FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
306 {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
307 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
308 {RTLIB::UO_F32, CmpInst::ICMP_NE}};
309
310 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
311 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
312 FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
313 FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
314 FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
315 FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
316 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}};
317 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
318 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
319 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
320 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
321 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
322 FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
323 FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
324 {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
325 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
326 {RTLIB::UO_F64, CmpInst::ICMP_NE}};
327}
328
330ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
331 unsigned Size) const {
332 assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
333 if (Size == 32)
334 return FCmp32Libcalls[Predicate];
335 if (Size == 64)
336 return FCmp64Libcalls[Predicate];
337 llvm_unreachable("Unsupported size for FCmp predicate");
338}
339
341 LostDebugLocObserver &LocObserver) const {
342 using namespace TargetOpcode;
343
344 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
345 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
346 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
347
348 switch (MI.getOpcode()) {
349 default:
350 return false;
351 case G_SREM:
352 case G_UREM: {
353 Register OriginalResult = MI.getOperand(0).getReg();
354 auto Size = MRI.getType(OriginalResult).getSizeInBits();
355 if (Size != 32)
356 return false;
357
358 auto Libcall =
359 MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
360
361 // Our divmod libcalls return a struct containing the quotient and the
362 // remainder. Create a new, unused register for the quotient and use the
363 // destination of the original instruction for the remainder.
364 Type *ArgTy = Type::getInt32Ty(Ctx);
365 StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
366 Register RetRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
367 OriginalResult};
368 auto Status = createLibcall(MIRBuilder, Libcall, {RetRegs, RetTy, 0},
369 {{MI.getOperand(1).getReg(), ArgTy, 0},
370 {MI.getOperand(2).getReg(), ArgTy, 0}},
371 LocObserver, &MI);
373 return false;
374 break;
375 }
376 case G_FCMP: {
377 assert(MRI.getType(MI.getOperand(2).getReg()) ==
378 MRI.getType(MI.getOperand(3).getReg()) &&
379 "Mismatched operands for G_FCMP");
380 auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
381
382 auto OriginalResult = MI.getOperand(0).getReg();
383 auto Predicate =
384 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
385 auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
386
387 if (Libcalls.empty()) {
388 assert((Predicate == CmpInst::FCMP_TRUE ||
389 Predicate == CmpInst::FCMP_FALSE) &&
390 "Predicate needs libcalls, but none specified");
391 MIRBuilder.buildConstant(OriginalResult,
392 Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
393 MI.eraseFromParent();
394 return true;
395 }
396
397 assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
398 auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
399 auto *RetTy = Type::getInt32Ty(Ctx);
400
402 for (auto Libcall : Libcalls) {
403 auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
404 auto Status = createLibcall(MIRBuilder, Libcall.LibcallID,
405 {LibcallResult, RetTy, 0},
406 {{MI.getOperand(2).getReg(), ArgTy, 0},
407 {MI.getOperand(3).getReg(), ArgTy, 0}},
408 LocObserver, &MI);
409
411 return false;
412
413 auto ProcessedResult =
414 Libcalls.size() == 1
415 ? OriginalResult
416 : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
417
418 // We have a result, but we need to transform it into a proper 1-bit 0 or
419 // 1, taking into account the different peculiarities of the values
420 // returned by the comparison functions.
421 CmpInst::Predicate ResultPred = Libcall.Predicate;
422 if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
423 // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
424 // to keep the types consistent.
425 MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
426 } else {
427 // We need to compare against 0.
428 assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
429 auto Zero = MIRBuilder.buildConstant(LLT::scalar(32), 0);
430 MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
431 }
432 Results.push_back(ProcessedResult);
433 }
434
435 if (Results.size() != 1) {
436 assert(Results.size() == 2 && "Unexpected number of results");
437 MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
438 }
439 break;
440 }
441 case G_CONSTANT: {
442 const ConstantInt *ConstVal = MI.getOperand(1).getCImm();
443 uint64_t ImmVal = ConstVal->getZExtValue();
444 if (ConstantMaterializationCost(ImmVal, &ST) > 2 && !ST.genExecuteOnly())
446 return true;
447 }
448 case G_FCONSTANT: {
449 // Convert to integer constants, while preserving the binary representation.
450 auto AsInteger =
451 MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
452 MIRBuilder.buildConstant(MI.getOperand(0),
453 *ConstantInt::get(Ctx, AsInteger));
454 break;
455 }
456 case G_SET_FPMODE: {
457 // New FPSCR = (FPSCR & FPStatusBits) | (Modes & ~FPStatusBits)
458 LLT FPEnvTy = LLT::scalar(32);
459 auto FPEnv = MRI.createGenericVirtualRegister(FPEnvTy);
460 Register Modes = MI.getOperand(0).getReg();
461 MIRBuilder.buildGetFPEnv(FPEnv);
462 auto StatusBitMask = MIRBuilder.buildConstant(FPEnvTy, ARM::FPStatusBits);
463 auto StatusBits = MIRBuilder.buildAnd(FPEnvTy, FPEnv, StatusBitMask);
464 auto NotStatusBitMask =
465 MIRBuilder.buildConstant(FPEnvTy, ~ARM::FPStatusBits);
466 auto FPModeBits = MIRBuilder.buildAnd(FPEnvTy, Modes, NotStatusBitMask);
467 auto NewFPSCR = MIRBuilder.buildOr(FPEnvTy, StatusBits, FPModeBits);
468 MIRBuilder.buildSetFPEnv(NewFPSCR);
469 break;
470 }
471 case G_RESET_FPMODE: {
472 // To get the default FP mode all control bits are cleared:
473 // FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
474 LLT FPEnvTy = LLT::scalar(32);
475 auto FPEnv = MIRBuilder.buildGetFPEnv(FPEnvTy);
476 auto NotModeBitMask = MIRBuilder.buildConstant(
478 auto NewFPSCR = MIRBuilder.buildAnd(FPEnvTy, FPEnv, NotModeBitMask);
479 MIRBuilder.buildSetFPEnv(NewFPSCR);
480 break;
481 }
482 }
483
484 MI.eraseFromParent();
485 return true;
486}
unsigned const MachineRegisterInfo * MRI
This file describes how to lower LLVM calls to machine code calls.
static bool AEABI(const ARMSubtarget &ST)
This file declares the targeting of the Machinelegalizer class for ARM.
Function Alias Analysis Results
return RetTy
uint64_t Size
IRTranslator LLVM IR MI
Implement a low-level type suitable for MachineInstr level instruction selection.
This file declares the MachineIRBuilder class.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
ppc ctr loops verify
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
ARMLegalizerInfo(const ARMSubtarget &ST)
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:676
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:690
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:702
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:703
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:679
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:688
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:677
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:678
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:700
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:687
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:681
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:684
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:685
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:680
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:682
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
@ ICMP_NE
not equal
Definition: InstrTypes.h:695
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:701
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:689
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:686
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:675
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:683
bool isFPPredicate() const
Definition: InstrTypes.h:780
bool isIntPredicate() const
Definition: InstrTypes.h:781
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:157
size_t size() const
Definition: Function.h:858
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:369
void resize(typename StorageT::size_type s)
Definition: IndexedMap.h:61
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
Definition: LowLevelType.h:57
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalForTypesWithMemDesc(std::initializer_list< LegalityPredicates::TypePairAndMemDesc > TypesAndMemDesc)
The instruction is legal when type indexes 0 and 1 along with the memory size and minimum alignment i...
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
@ Legalized
Instruction has been legalized and the MachineFunction changed.
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LegalizeResult lowerConstant(MachineInstr &MI)
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1)
Build and insert Res = G_AND Op0, Op1.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
MachineInstrBuilder buildGetFPEnv(const DstOp &Dst)
Build and insert Dst = G_GET_FPENV.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_OR Op0, Op1.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
MachineInstrBuilder buildSetFPEnv(const SrcOp &Src)
Build and insert G_SET_FPENV Src.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Class to represent struct types.
Definition: DerivedTypes.h:218
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:406
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static Type * getDoubleTy(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const unsigned FPStatusBits
const unsigned FPReservedBits
@ Libcall
The operation should be implemented as a call to some kind of runtime support library.
Definition: LegalizerInfo.h:83
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LegalizerHelper::LegalizeResult createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, const CallLowering::ArgInfo &Result, ArrayRef< CallLowering::ArgInfo > Args, CallingConv::ID CC, LostDebugLocObserver &LocObserver, MachineInstr *MI=nullptr)
Helper function that creates a libcall to the given Name using the given calling convention CC.
unsigned ConstantMaterializationCost(unsigned Val, const ARMSubtarget *Subtarget, bool ForCodesize=false)
Returns the number of instructions required to materialize the given constant in a register,...