LLVM 20.0.0git
X86CompressEVEX.cpp
Go to the documentation of this file.
1//===- X86CompressEVEX.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
10// when possible in order to reduce code size or facilitate HW decoding.
11//
12// Possible compression:
13// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
14// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
15// c. NDD (EVEX) -> non-NDD (legacy)
16// d. NF_ND (EVEX) -> NF (EVEX)
17// e. NonNF (EVEX) -> NF (EVEX)
18//
19// Compression a, b and c can always reduce code size, with some exceptions
20// such as promoted 16-bit CRC32 which is as long as the legacy version.
21//
22// legacy:
23// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
24// promoted:
25// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
26//
27// From performance perspective, these should be same (same uops and same EXE
28// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
29// can execute in more places (broader HW install base). So we will still do
30// the compression.
31//
32// Compression d can help hardware decode (HW may skip reading the NDD
33// register) although the instruction length remains unchanged.
34//
35// Compression e can help hardware skip updating EFLAGS although the instruction
36// length remains unchanged.
37//===----------------------------------------------------------------------===//
38
41#include "X86.h"
42#include "X86InstrInfo.h"
43#include "X86Subtarget.h"
44#include "llvm/ADT/StringRef.h"
49#include "llvm/MC/MCInstrDesc.h"
50#include "llvm/Pass.h"
51#include <atomic>
52#include <cassert>
53#include <cstdint>
54
55using namespace llvm;
56
57#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
58#define COMP_EVEX_NAME "x86-compress-evex"
59
60#define DEBUG_TYPE COMP_EVEX_NAME
61
62namespace {
63// Including the generated EVEX compression tables.
64#define GET_X86_COMPRESS_EVEX_TABLE
65#include "X86GenInstrMapping.inc"
66
67class CompressEVEXPass : public MachineFunctionPass {
68public:
69 static char ID;
70 CompressEVEXPass() : MachineFunctionPass(ID) {}
71 StringRef getPassName() const override { return COMP_EVEX_DESC; }
72
73 bool runOnMachineFunction(MachineFunction &MF) override;
74
75 // This pass runs after regalloc and doesn't support VReg operands.
78 MachineFunctionProperties::Property::NoVRegs);
79 }
80};
81
82} // end anonymous namespace
83
84char CompressEVEXPass::ID = 0;
85
87 auto isHiRegIdx = [](unsigned Reg) {
88 // Check for XMM register with indexes between 16 - 31.
89 if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
90 return true;
91 // Check for YMM register with indexes between 16 - 31.
92 if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
93 return true;
94 // Check for GPR with indexes between 16 - 31.
96 return true;
97 return false;
98 };
99
100 // Check that operands are not ZMM regs or
101 // XMM/YMM regs with hi indexes between 16 - 31.
102 for (const MachineOperand &MO : MI.explicit_operands()) {
103 if (!MO.isReg())
104 continue;
105
106 Register Reg = MO.getReg();
107 assert(!X86II::isZMMReg(Reg) &&
108 "ZMM instructions should not be in the EVEX->VEX tables");
109 if (isHiRegIdx(Reg))
110 return true;
111 }
112
113 return false;
114}
115
116// Do any custom cleanup needed to finalize the conversion.
117static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
118 (void)NewOpc;
119 unsigned Opc = MI.getOpcode();
120 switch (Opc) {
121 case X86::VALIGNDZ128rri:
122 case X86::VALIGNDZ128rmi:
123 case X86::VALIGNQZ128rri:
124 case X86::VALIGNQZ128rmi: {
125 assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
126 "Unexpected new opcode!");
127 unsigned Scale =
128 (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
129 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
130 Imm.setImm(Imm.getImm() * Scale);
131 break;
132 }
133 case X86::VSHUFF32X4Z256rmi:
134 case X86::VSHUFF32X4Z256rri:
135 case X86::VSHUFF64X2Z256rmi:
136 case X86::VSHUFF64X2Z256rri:
137 case X86::VSHUFI32X4Z256rmi:
138 case X86::VSHUFI32X4Z256rri:
139 case X86::VSHUFI64X2Z256rmi:
140 case X86::VSHUFI64X2Z256rri: {
141 assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
142 NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
143 "Unexpected new opcode!");
144 MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
145 int64_t ImmVal = Imm.getImm();
146 // Set bit 5, move bit 1 to bit 4, copy bit 0.
147 Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
148 break;
149 }
150 case X86::VRNDSCALEPDZ128rri:
151 case X86::VRNDSCALEPDZ128rmi:
152 case X86::VRNDSCALEPSZ128rri:
153 case X86::VRNDSCALEPSZ128rmi:
154 case X86::VRNDSCALEPDZ256rri:
155 case X86::VRNDSCALEPDZ256rmi:
156 case X86::VRNDSCALEPSZ256rri:
157 case X86::VRNDSCALEPSZ256rmi:
158 case X86::VRNDSCALESDZr:
159 case X86::VRNDSCALESDZm:
160 case X86::VRNDSCALESSZr:
161 case X86::VRNDSCALESSZm:
162 case X86::VRNDSCALESDZr_Int:
163 case X86::VRNDSCALESDZm_Int:
164 case X86::VRNDSCALESSZr_Int:
165 case X86::VRNDSCALESSZm_Int:
166 const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
167 int64_t ImmVal = Imm.getImm();
168 // Ensure that only bits 3:0 of the immediate are used.
169 if ((ImmVal & 0xf) != ImmVal)
170 return false;
171 break;
172 }
173
174 return true;
175}
176
178 uint64_t TSFlags = MI.getDesc().TSFlags;
179
180 // Check for EVEX instructions only.
181 if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
182 return false;
183
184 // Instructions with mask or 512-bit vector can't be converted to VEX.
185 if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
186 return false;
187
188 auto IsRedundantNewDataDest = [&](unsigned &Opc) {
189 // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
190 // ->
191 // $rbx = ADD64rr $rbx, $rax
192 const MCInstrDesc &Desc = MI.getDesc();
193 Register Reg0 = MI.getOperand(0).getReg();
194 const MachineOperand &Op1 = MI.getOperand(1);
195 if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 ||
196 X86::isCFCMOVCC(MI.getOpcode()))
197 return false;
198 Register Reg1 = Op1.getReg();
199 if (Reg1 == Reg0)
200 return true;
201
202 // Op1 and Op2 may be commutable for ND instructions.
203 if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
204 !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
205 return false;
206 // Opcode may change after commute, e.g. SHRD -> SHLD
207 ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
208 Opc = MI.getOpcode();
209 return true;
210 };
211
212 // EVEX_B has several meanings.
213 // AVX512:
214 // register form: rounding control or SAE
215 // memory form: broadcast
216 //
217 // APX:
218 // MAP4: NDD
219 //
220 // For AVX512 cases, EVEX prefix is needed in order to carry this information
221 // thus preventing the transformation to VEX encoding.
222 bool IsND = X86II::hasNewDataDest(TSFlags);
223 if (TSFlags & X86II::EVEX_B && !IsND)
224 return false;
225 unsigned Opc = MI.getOpcode();
226 // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B.
227 bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr;
228 bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false;
229
230 auto GetCompressedOpc = [&](unsigned Opc) -> unsigned {
231 ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable);
232 const auto I = llvm::lower_bound(Table, Opc);
233 if (I == Table.end() || I->OldOpc != Opc)
234 return 0;
235
236 if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
237 !performCustomAdjustments(MI, I->NewOpc))
238 return 0;
239 return I->NewOpc;
240 };
241 // NonNF -> NF only if it's not a compressible NDD instruction and eflags is
242 // dead.
243 unsigned NewOpc = IsRedundantNDD
245 : ((IsNDLike && ST.hasNF() &&
246 MI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr))
247 ? X86::getNFVariant(Opc)
248 : GetCompressedOpc(Opc));
249
250 if (!NewOpc)
251 return false;
252
253 const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(NewOpc);
254 MI.setDesc(NewDesc);
255 unsigned AsmComment;
256 switch (NewDesc.TSFlags & X86II::EncodingMask) {
257 case X86II::LEGACY:
258 AsmComment = X86::AC_EVEX_2_LEGACY;
259 break;
260 case X86II::VEX:
261 AsmComment = X86::AC_EVEX_2_VEX;
262 break;
263 case X86II::EVEX:
264 AsmComment = X86::AC_EVEX_2_EVEX;
265 assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
266 "Unknown EVEX2EVEX compression");
267 break;
268 default:
269 llvm_unreachable("Unknown EVEX compression");
270 }
271 MI.setAsmPrinterFlag(AsmComment);
272 if (IsRedundantNDD)
273 MI.tieOperands(0, 1);
274
275 return true;
276}
277
278bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
279#ifndef NDEBUG
280 // Make sure the tables are sorted.
281 static std::atomic<bool> TableChecked(false);
282 if (!TableChecked.load(std::memory_order_relaxed)) {
283 assert(llvm::is_sorted(X86CompressEVEXTable) &&
284 "X86CompressEVEXTable is not sorted!");
285 TableChecked.store(true, std::memory_order_relaxed);
286 }
287#endif
289 if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
290 return false;
291
292 bool Changed = false;
293
294 for (MachineBasicBlock &MBB : MF) {
295 // Traverse the basic block.
296 for (MachineInstr &MI : MBB)
297 Changed |= CompressEVEXImpl(MI, ST);
298 }
299
300 return Changed;
301}
302
303INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
304
306 return new CompressEVEXPass();
307}
MachineBasicBlock & MBB
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
#define COMP_EVEX_DESC
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc)
#define COMP_EVEX_NAME
static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST)
static bool usesExtendedRegister(const MachineInstr &MI)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:154
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
bool hasNewDataDest(uint64_t TSFlags)
Definition: X86BaseInfo.h:1001
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
Definition: X86BaseInfo.h:825
@ VEX
VEX - encoding using 0xC4/0xC5.
Definition: X86BaseInfo.h:818
@ LEGACY
LEGACY - encoding using REX/REX2 or w/o opcode prefix.
Definition: X86BaseInfo.h:816
bool isZMMReg(unsigned RegNo)
Definition: X86BaseInfo.h:1179
bool isApxExtendedReg(unsigned RegNo)
Definition: X86BaseInfo.h:1186
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
unsigned getNonNDVariant(unsigned Opc)
@ AC_EVEX_2_EVEX
Definition: X86InstrInfo.h:43
@ AC_EVEX_2_LEGACY
Definition: X86InstrInfo.h:39
unsigned getNFVariant(unsigned Opc)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
FunctionPass * createX86CompressEVEXPass()
This pass compress instructions from EVEX space to legacy/VEX/EVEX space when possible in order to re...
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition: STLExtras.h:1902
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1954
Description of the encoding of one expression Op.