LLVM 19.0.0git
X86InstrInfo.cpp
Go to the documentation of this file.
1//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86InstrInfo.h"
14#include "X86.h"
15#include "X86InstrBuilder.h"
16#include "X86InstrFoldTables.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Sequence.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/IR/Module.h"
40#include "llvm/MC/MCAsmInfo.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCInst.h"
44#include "llvm/Support/Debug.h"
48#include <optional>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "x86-instr-info"
53
54#define GET_INSTRINFO_CTOR_DTOR
55#include "X86GenInstrInfo.inc"
56
57static cl::opt<bool>
58 NoFusing("disable-spill-fusing",
59 cl::desc("Disable fusing of spill code into instructions"),
61static cl::opt<bool>
62 PrintFailedFusing("print-failed-fuse-candidates",
63 cl::desc("Print instructions that the allocator wants to"
64 " fuse, but the X86 backend currently can't"),
66static cl::opt<bool>
67 ReMatPICStubLoad("remat-pic-stub-load",
68 cl::desc("Re-materialize load from stub in PIC mode"),
69 cl::init(false), cl::Hidden);
71 PartialRegUpdateClearance("partial-reg-update-clearance",
72 cl::desc("Clearance between two register writes "
73 "for inserting XOR to avoid partial "
74 "register update"),
75 cl::init(64), cl::Hidden);
77 "undef-reg-clearance",
78 cl::desc("How many idle instructions we would like before "
79 "certain undef register reads"),
80 cl::init(128), cl::Hidden);
81
82// Pin the vtable to this file.
83void X86InstrInfo::anchor() {}
84
86 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
87 : X86::ADJCALLSTACKDOWN32),
88 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
89 : X86::ADJCALLSTACKUP32),
90 X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)),
91 Subtarget(STI), RI(STI.getTargetTriple()) {}
92
94X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
96 const MachineFunction &MF) const {
97 auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF);
98 // If the target does not have egpr, then r16-r31 will be resereved for all
99 // instructions.
100 if (!RC || !Subtarget.hasEGPR())
101 return RC;
102
104 return RC;
105
106 switch (RC->getID()) {
107 default:
108 return RC;
109 case X86::GR8RegClassID:
110 return &X86::GR8_NOREX2RegClass;
111 case X86::GR16RegClassID:
112 return &X86::GR16_NOREX2RegClass;
113 case X86::GR32RegClassID:
114 return &X86::GR32_NOREX2RegClass;
115 case X86::GR64RegClassID:
116 return &X86::GR64_NOREX2RegClass;
117 case X86::GR32_NOSPRegClassID:
118 return &X86::GR32_NOREX2_NOSPRegClass;
119 case X86::GR64_NOSPRegClassID:
120 return &X86::GR64_NOREX2_NOSPRegClass;
121 }
122}
123
125 Register &SrcReg, Register &DstReg,
126 unsigned &SubIdx) const {
127 switch (MI.getOpcode()) {
128 default:
129 break;
130 case X86::MOVSX16rr8:
131 case X86::MOVZX16rr8:
132 case X86::MOVSX32rr8:
133 case X86::MOVZX32rr8:
134 case X86::MOVSX64rr8:
135 if (!Subtarget.is64Bit())
136 // It's not always legal to reference the low 8-bit of the larger
137 // register in 32-bit mode.
138 return false;
139 [[fallthrough]];
140 case X86::MOVSX32rr16:
141 case X86::MOVZX32rr16:
142 case X86::MOVSX64rr16:
143 case X86::MOVSX64rr32: {
144 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
145 // Be conservative.
146 return false;
147 SrcReg = MI.getOperand(1).getReg();
148 DstReg = MI.getOperand(0).getReg();
149 switch (MI.getOpcode()) {
150 default:
151 llvm_unreachable("Unreachable!");
152 case X86::MOVSX16rr8:
153 case X86::MOVZX16rr8:
154 case X86::MOVSX32rr8:
155 case X86::MOVZX32rr8:
156 case X86::MOVSX64rr8:
157 SubIdx = X86::sub_8bit;
158 break;
159 case X86::MOVSX32rr16:
160 case X86::MOVZX32rr16:
161 case X86::MOVSX64rr16:
162 SubIdx = X86::sub_16bit;
163 break;
164 case X86::MOVSX64rr32:
165 SubIdx = X86::sub_32bit;
166 break;
167 }
168 return true;
169 }
170 }
171 return false;
172}
173
175 if (MI.mayLoad() || MI.mayStore())
176 return false;
177
178 // Some target-independent operations that trivially lower to data-invariant
179 // instructions.
180 if (MI.isCopyLike() || MI.isInsertSubreg())
181 return true;
182
183 unsigned Opcode = MI.getOpcode();
184 using namespace X86;
185 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
186 // However, they set flags and are perhaps the most surprisingly constant
187 // time operations so we call them out here separately.
188 if (isIMUL(Opcode))
189 return true;
190 // Bit scanning and counting instructions that are somewhat surprisingly
191 // constant time as they scan across bits and do other fairly complex
192 // operations like popcnt, but are believed to be constant time on x86.
193 // However, these set flags.
194 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) ||
195 isTZCNT(Opcode))
196 return true;
197 // Bit manipulation instructions are effectively combinations of basic
198 // arithmetic ops, and should still execute in constant time. These also
199 // set flags.
200 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) ||
201 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) ||
202 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) ||
203 isTZMSK(Opcode))
204 return true;
205 // Bit extracting and clearing instructions should execute in constant time,
206 // and set flags.
207 if (isBEXTR(Opcode) || isBZHI(Opcode))
208 return true;
209 // Shift and rotate.
210 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) ||
211 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode))
212 return true;
213 // Basic arithmetic is constant time on the input but does set flags.
214 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) ||
215 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode))
216 return true;
217 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
218 if (isANDN(Opcode))
219 return true;
220 // Unary arithmetic operations.
221 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode))
222 return true;
223 // Unlike other arithmetic, NOT doesn't set EFLAGS.
224 if (isNOT(Opcode))
225 return true;
226 // Various move instructions used to zero or sign extend things. Note that we
227 // intentionally don't support the _NOREX variants as we can't handle that
228 // register constraint anyways.
229 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode))
230 return true;
231 // Arithmetic instructions that are both constant time and don't set flags.
232 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode))
233 return true;
234 // LEA doesn't actually access memory, and its arithmetic is constant time.
235 if (isLEA(Opcode))
236 return true;
237 // By default, assume that the instruction is not data invariant.
238 return false;
239}
240
242 switch (MI.getOpcode()) {
243 default:
244 // By default, assume that the load will immediately leak.
245 return false;
246
247 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
248 // However, they set flags and are perhaps the most surprisingly constant
249 // time operations so we call them out here separately.
250 case X86::IMUL16rm:
251 case X86::IMUL16rmi:
252 case X86::IMUL32rm:
253 case X86::IMUL32rmi:
254 case X86::IMUL64rm:
255 case X86::IMUL64rmi32:
256
257 // Bit scanning and counting instructions that are somewhat surprisingly
258 // constant time as they scan across bits and do other fairly complex
259 // operations like popcnt, but are believed to be constant time on x86.
260 // However, these set flags.
261 case X86::BSF16rm:
262 case X86::BSF32rm:
263 case X86::BSF64rm:
264 case X86::BSR16rm:
265 case X86::BSR32rm:
266 case X86::BSR64rm:
267 case X86::LZCNT16rm:
268 case X86::LZCNT32rm:
269 case X86::LZCNT64rm:
270 case X86::POPCNT16rm:
271 case X86::POPCNT32rm:
272 case X86::POPCNT64rm:
273 case X86::TZCNT16rm:
274 case X86::TZCNT32rm:
275 case X86::TZCNT64rm:
276
277 // Bit manipulation instructions are effectively combinations of basic
278 // arithmetic ops, and should still execute in constant time. These also
279 // set flags.
280 case X86::BLCFILL32rm:
281 case X86::BLCFILL64rm:
282 case X86::BLCI32rm:
283 case X86::BLCI64rm:
284 case X86::BLCIC32rm:
285 case X86::BLCIC64rm:
286 case X86::BLCMSK32rm:
287 case X86::BLCMSK64rm:
288 case X86::BLCS32rm:
289 case X86::BLCS64rm:
290 case X86::BLSFILL32rm:
291 case X86::BLSFILL64rm:
292 case X86::BLSI32rm:
293 case X86::BLSI64rm:
294 case X86::BLSIC32rm:
295 case X86::BLSIC64rm:
296 case X86::BLSMSK32rm:
297 case X86::BLSMSK64rm:
298 case X86::BLSR32rm:
299 case X86::BLSR64rm:
300 case X86::TZMSK32rm:
301 case X86::TZMSK64rm:
302
303 // Bit extracting and clearing instructions should execute in constant time,
304 // and set flags.
305 case X86::BEXTR32rm:
306 case X86::BEXTR64rm:
307 case X86::BEXTRI32mi:
308 case X86::BEXTRI64mi:
309 case X86::BZHI32rm:
310 case X86::BZHI64rm:
311
312 // Basic arithmetic is constant time on the input but does set flags.
313 case X86::ADC8rm:
314 case X86::ADC16rm:
315 case X86::ADC32rm:
316 case X86::ADC64rm:
317 case X86::ADD8rm:
318 case X86::ADD16rm:
319 case X86::ADD32rm:
320 case X86::ADD64rm:
321 case X86::AND8rm:
322 case X86::AND16rm:
323 case X86::AND32rm:
324 case X86::AND64rm:
325 case X86::ANDN32rm:
326 case X86::ANDN64rm:
327 case X86::OR8rm:
328 case X86::OR16rm:
329 case X86::OR32rm:
330 case X86::OR64rm:
331 case X86::SBB8rm:
332 case X86::SBB16rm:
333 case X86::SBB32rm:
334 case X86::SBB64rm:
335 case X86::SUB8rm:
336 case X86::SUB16rm:
337 case X86::SUB32rm:
338 case X86::SUB64rm:
339 case X86::XOR8rm:
340 case X86::XOR16rm:
341 case X86::XOR32rm:
342 case X86::XOR64rm:
343
344 // Integer multiply w/o affecting flags is still believed to be constant
345 // time on x86. Called out separately as this is among the most surprising
346 // instructions to exhibit that behavior.
347 case X86::MULX32rm:
348 case X86::MULX64rm:
349
350 // Arithmetic instructions that are both constant time and don't set flags.
351 case X86::RORX32mi:
352 case X86::RORX64mi:
353 case X86::SARX32rm:
354 case X86::SARX64rm:
355 case X86::SHLX32rm:
356 case X86::SHLX64rm:
357 case X86::SHRX32rm:
358 case X86::SHRX64rm:
359
360 // Conversions are believed to be constant time and don't set flags.
361 case X86::CVTTSD2SI64rm:
362 case X86::VCVTTSD2SI64rm:
363 case X86::VCVTTSD2SI64Zrm:
364 case X86::CVTTSD2SIrm:
365 case X86::VCVTTSD2SIrm:
366 case X86::VCVTTSD2SIZrm:
367 case X86::CVTTSS2SI64rm:
368 case X86::VCVTTSS2SI64rm:
369 case X86::VCVTTSS2SI64Zrm:
370 case X86::CVTTSS2SIrm:
371 case X86::VCVTTSS2SIrm:
372 case X86::VCVTTSS2SIZrm:
373 case X86::CVTSI2SDrm:
374 case X86::VCVTSI2SDrm:
375 case X86::VCVTSI2SDZrm:
376 case X86::CVTSI2SSrm:
377 case X86::VCVTSI2SSrm:
378 case X86::VCVTSI2SSZrm:
379 case X86::CVTSI642SDrm:
380 case X86::VCVTSI642SDrm:
381 case X86::VCVTSI642SDZrm:
382 case X86::CVTSI642SSrm:
383 case X86::VCVTSI642SSrm:
384 case X86::VCVTSI642SSZrm:
385 case X86::CVTSS2SDrm:
386 case X86::VCVTSS2SDrm:
387 case X86::VCVTSS2SDZrm:
388 case X86::CVTSD2SSrm:
389 case X86::VCVTSD2SSrm:
390 case X86::VCVTSD2SSZrm:
391 // AVX512 added unsigned integer conversions.
392 case X86::VCVTTSD2USI64Zrm:
393 case X86::VCVTTSD2USIZrm:
394 case X86::VCVTTSS2USI64Zrm:
395 case X86::VCVTTSS2USIZrm:
396 case X86::VCVTUSI2SDZrm:
397 case X86::VCVTUSI642SDZrm:
398 case X86::VCVTUSI2SSZrm:
399 case X86::VCVTUSI642SSZrm:
400
401 // Loads to register don't set flags.
402 case X86::MOV8rm:
403 case X86::MOV8rm_NOREX:
404 case X86::MOV16rm:
405 case X86::MOV32rm:
406 case X86::MOV64rm:
407 case X86::MOVSX16rm8:
408 case X86::MOVSX32rm16:
409 case X86::MOVSX32rm8:
410 case X86::MOVSX32rm8_NOREX:
411 case X86::MOVSX64rm16:
412 case X86::MOVSX64rm32:
413 case X86::MOVSX64rm8:
414 case X86::MOVZX16rm8:
415 case X86::MOVZX32rm16:
416 case X86::MOVZX32rm8:
417 case X86::MOVZX32rm8_NOREX:
418 case X86::MOVZX64rm16:
419 case X86::MOVZX64rm8:
420 return true;
421 }
422}
423
425 const MachineFunction *MF = MI.getParent()->getParent();
427
428 if (isFrameInstr(MI)) {
429 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
430 SPAdj -= getFrameAdjustment(MI);
431 if (!isFrameSetup(MI))
432 SPAdj = -SPAdj;
433 return SPAdj;
434 }
435
436 // To know whether a call adjusts the stack, we need information
437 // that is bound to the following ADJCALLSTACKUP pseudo.
438 // Look for the next ADJCALLSTACKUP that follows the call.
439 if (MI.isCall()) {
440 const MachineBasicBlock *MBB = MI.getParent();
442 for (auto E = MBB->end(); I != E; ++I) {
443 if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall())
444 break;
445 }
446
447 // If we could not find a frame destroy opcode, then it has already
448 // been simplified, so we don't care.
449 if (I->getOpcode() != getCallFrameDestroyOpcode())
450 return 0;
451
452 return -(I->getOperand(1).getImm());
453 }
454
455 // Currently handle only PUSHes we can reasonably expect to see
456 // in call sequences
457 switch (MI.getOpcode()) {
458 default:
459 return 0;
460 case X86::PUSH32r:
461 case X86::PUSH32rmm:
462 case X86::PUSH32rmr:
463 case X86::PUSH32i:
464 return 4;
465 case X86::PUSH64r:
466 case X86::PUSH64rmm:
467 case X86::PUSH64rmr:
468 case X86::PUSH64i32:
469 return 8;
470 }
471}
472
473/// Return true and the FrameIndex if the specified
474/// operand and follow operands form a reference to the stack frame.
475bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
476 int &FrameIndex) const {
477 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
478 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
479 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
480 MI.getOperand(Op + X86::AddrDisp).isImm() &&
481 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
482 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
483 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
484 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
485 return true;
486 }
487 return false;
488}
489
490static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
491 switch (Opcode) {
492 default:
493 return false;
494 case X86::MOV8rm:
495 case X86::KMOVBkm:
496 case X86::KMOVBkm_EVEX:
497 MemBytes = 1;
498 return true;
499 case X86::MOV16rm:
500 case X86::KMOVWkm:
501 case X86::KMOVWkm_EVEX:
502 case X86::VMOVSHZrm:
503 case X86::VMOVSHZrm_alt:
504 MemBytes = 2;
505 return true;
506 case X86::MOV32rm:
507 case X86::MOVSSrm:
508 case X86::MOVSSrm_alt:
509 case X86::VMOVSSrm:
510 case X86::VMOVSSrm_alt:
511 case X86::VMOVSSZrm:
512 case X86::VMOVSSZrm_alt:
513 case X86::KMOVDkm:
514 case X86::KMOVDkm_EVEX:
515 MemBytes = 4;
516 return true;
517 case X86::MOV64rm:
518 case X86::LD_Fp64m:
519 case X86::MOVSDrm:
520 case X86::MOVSDrm_alt:
521 case X86::VMOVSDrm:
522 case X86::VMOVSDrm_alt:
523 case X86::VMOVSDZrm:
524 case X86::VMOVSDZrm_alt:
525 case X86::MMX_MOVD64rm:
526 case X86::MMX_MOVQ64rm:
527 case X86::KMOVQkm:
528 case X86::KMOVQkm_EVEX:
529 MemBytes = 8;
530 return true;
531 case X86::MOVAPSrm:
532 case X86::MOVUPSrm:
533 case X86::MOVAPDrm:
534 case X86::MOVUPDrm:
535 case X86::MOVDQArm:
536 case X86::MOVDQUrm:
537 case X86::VMOVAPSrm:
538 case X86::VMOVUPSrm:
539 case X86::VMOVAPDrm:
540 case X86::VMOVUPDrm:
541 case X86::VMOVDQArm:
542 case X86::VMOVDQUrm:
543 case X86::VMOVAPSZ128rm:
544 case X86::VMOVUPSZ128rm:
545 case X86::VMOVAPSZ128rm_NOVLX:
546 case X86::VMOVUPSZ128rm_NOVLX:
547 case X86::VMOVAPDZ128rm:
548 case X86::VMOVUPDZ128rm:
549 case X86::VMOVDQU8Z128rm:
550 case X86::VMOVDQU16Z128rm:
551 case X86::VMOVDQA32Z128rm:
552 case X86::VMOVDQU32Z128rm:
553 case X86::VMOVDQA64Z128rm:
554 case X86::VMOVDQU64Z128rm:
555 MemBytes = 16;
556 return true;
557 case X86::VMOVAPSYrm:
558 case X86::VMOVUPSYrm:
559 case X86::VMOVAPDYrm:
560 case X86::VMOVUPDYrm:
561 case X86::VMOVDQAYrm:
562 case X86::VMOVDQUYrm:
563 case X86::VMOVAPSZ256rm:
564 case X86::VMOVUPSZ256rm:
565 case X86::VMOVAPSZ256rm_NOVLX:
566 case X86::VMOVUPSZ256rm_NOVLX:
567 case X86::VMOVAPDZ256rm:
568 case X86::VMOVUPDZ256rm:
569 case X86::VMOVDQU8Z256rm:
570 case X86::VMOVDQU16Z256rm:
571 case X86::VMOVDQA32Z256rm:
572 case X86::VMOVDQU32Z256rm:
573 case X86::VMOVDQA64Z256rm:
574 case X86::VMOVDQU64Z256rm:
575 MemBytes = 32;
576 return true;
577 case X86::VMOVAPSZrm:
578 case X86::VMOVUPSZrm:
579 case X86::VMOVAPDZrm:
580 case X86::VMOVUPDZrm:
581 case X86::VMOVDQU8Zrm:
582 case X86::VMOVDQU16Zrm:
583 case X86::VMOVDQA32Zrm:
584 case X86::VMOVDQU32Zrm:
585 case X86::VMOVDQA64Zrm:
586 case X86::VMOVDQU64Zrm:
587 MemBytes = 64;
588 return true;
589 }
590}
591
592static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
593 switch (Opcode) {
594 default:
595 return false;
596 case X86::MOV8mr:
597 case X86::KMOVBmk:
598 case X86::KMOVBmk_EVEX:
599 MemBytes = 1;
600 return true;
601 case X86::MOV16mr:
602 case X86::KMOVWmk:
603 case X86::KMOVWmk_EVEX:
604 case X86::VMOVSHZmr:
605 MemBytes = 2;
606 return true;
607 case X86::MOV32mr:
608 case X86::MOVSSmr:
609 case X86::VMOVSSmr:
610 case X86::VMOVSSZmr:
611 case X86::KMOVDmk:
612 case X86::KMOVDmk_EVEX:
613 MemBytes = 4;
614 return true;
615 case X86::MOV64mr:
616 case X86::ST_FpP64m:
617 case X86::MOVSDmr:
618 case X86::VMOVSDmr:
619 case X86::VMOVSDZmr:
620 case X86::MMX_MOVD64mr:
621 case X86::MMX_MOVQ64mr:
622 case X86::MMX_MOVNTQmr:
623 case X86::KMOVQmk:
624 case X86::KMOVQmk_EVEX:
625 MemBytes = 8;
626 return true;
627 case X86::MOVAPSmr:
628 case X86::MOVUPSmr:
629 case X86::MOVAPDmr:
630 case X86::MOVUPDmr:
631 case X86::MOVDQAmr:
632 case X86::MOVDQUmr:
633 case X86::VMOVAPSmr:
634 case X86::VMOVUPSmr:
635 case X86::VMOVAPDmr:
636 case X86::VMOVUPDmr:
637 case X86::VMOVDQAmr:
638 case X86::VMOVDQUmr:
639 case X86::VMOVUPSZ128mr:
640 case X86::VMOVAPSZ128mr:
641 case X86::VMOVUPSZ128mr_NOVLX:
642 case X86::VMOVAPSZ128mr_NOVLX:
643 case X86::VMOVUPDZ128mr:
644 case X86::VMOVAPDZ128mr:
645 case X86::VMOVDQA32Z128mr:
646 case X86::VMOVDQU32Z128mr:
647 case X86::VMOVDQA64Z128mr:
648 case X86::VMOVDQU64Z128mr:
649 case X86::VMOVDQU8Z128mr:
650 case X86::VMOVDQU16Z128mr:
651 MemBytes = 16;
652 return true;
653 case X86::VMOVUPSYmr:
654 case X86::VMOVAPSYmr:
655 case X86::VMOVUPDYmr:
656 case X86::VMOVAPDYmr:
657 case X86::VMOVDQUYmr:
658 case X86::VMOVDQAYmr:
659 case X86::VMOVUPSZ256mr:
660 case X86::VMOVAPSZ256mr:
661 case X86::VMOVUPSZ256mr_NOVLX:
662 case X86::VMOVAPSZ256mr_NOVLX:
663 case X86::VMOVUPDZ256mr:
664 case X86::VMOVAPDZ256mr:
665 case X86::VMOVDQU8Z256mr:
666 case X86::VMOVDQU16Z256mr:
667 case X86::VMOVDQA32Z256mr:
668 case X86::VMOVDQU32Z256mr:
669 case X86::VMOVDQA64Z256mr:
670 case X86::VMOVDQU64Z256mr:
671 MemBytes = 32;
672 return true;
673 case X86::VMOVUPSZmr:
674 case X86::VMOVAPSZmr:
675 case X86::VMOVUPDZmr:
676 case X86::VMOVAPDZmr:
677 case X86::VMOVDQU8Zmr:
678 case X86::VMOVDQU16Zmr:
679 case X86::VMOVDQA32Zmr:
680 case X86::VMOVDQU32Zmr:
681 case X86::VMOVDQA64Zmr:
682 case X86::VMOVDQU64Zmr:
683 MemBytes = 64;
684 return true;
685 }
686 return false;
687}
688
690 int &FrameIndex) const {
691 unsigned Dummy;
692 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
693}
694
696 int &FrameIndex,
697 unsigned &MemBytes) const {
698 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
699 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
700 return MI.getOperand(0).getReg();
701 return 0;
702}
703
705 int &FrameIndex) const {
706 unsigned Dummy;
707 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
708 unsigned Reg;
709 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
710 return Reg;
711 // Check for post-frame index elimination operations
713 if (hasLoadFromStackSlot(MI, Accesses)) {
714 FrameIndex =
715 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
716 ->getFrameIndex();
717 return MI.getOperand(0).getReg();
718 }
719 }
720 return 0;
721}
722
724 int &FrameIndex) const {
725 unsigned Dummy;
726 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
727}
728
730 int &FrameIndex,
731 unsigned &MemBytes) const {
732 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
733 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
734 isFrameOperand(MI, 0, FrameIndex))
735 return MI.getOperand(X86::AddrNumOperands).getReg();
736 return 0;
737}
738
740 int &FrameIndex) const {
741 unsigned Dummy;
742 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
743 unsigned Reg;
744 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
745 return Reg;
746 // Check for post-frame index elimination operations
748 if (hasStoreToStackSlot(MI, Accesses)) {
749 FrameIndex =
750 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
751 ->getFrameIndex();
752 return MI.getOperand(X86::AddrNumOperands).getReg();
753 }
754 }
755 return 0;
756}
757
758/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
759static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
760 // Don't waste compile time scanning use-def chains of physregs.
761 if (!BaseReg.isVirtual())
762 return false;
763 bool isPICBase = false;
764 for (const MachineInstr &DefMI : MRI.def_instructions(BaseReg)) {
765 if (DefMI.getOpcode() != X86::MOVPC32r)
766 return false;
767 assert(!isPICBase && "More than one PIC base?");
768 isPICBase = true;
769 }
770 return isPICBase;
771}
772
774 const MachineInstr &MI) const {
775 switch (MI.getOpcode()) {
776 default:
777 // This function should only be called for opcodes with the ReMaterializable
778 // flag set.
779 llvm_unreachable("Unknown rematerializable operation!");
780 break;
781 case X86::IMPLICIT_DEF:
782 // Defer to generic logic.
783 break;
784 case X86::LOAD_STACK_GUARD:
785 case X86::LD_Fp032:
786 case X86::LD_Fp064:
787 case X86::LD_Fp080:
788 case X86::LD_Fp132:
789 case X86::LD_Fp164:
790 case X86::LD_Fp180:
791 case X86::AVX1_SETALLONES:
792 case X86::AVX2_SETALLONES:
793 case X86::AVX512_128_SET0:
794 case X86::AVX512_256_SET0:
795 case X86::AVX512_512_SET0:
796 case X86::AVX512_512_SETALLONES:
797 case X86::AVX512_FsFLD0SD:
798 case X86::AVX512_FsFLD0SH:
799 case X86::AVX512_FsFLD0SS:
800 case X86::AVX512_FsFLD0F128:
801 case X86::AVX_SET0:
802 case X86::FsFLD0SD:
803 case X86::FsFLD0SS:
804 case X86::FsFLD0SH:
805 case X86::FsFLD0F128:
806 case X86::KSET0D:
807 case X86::KSET0Q:
808 case X86::KSET0W:
809 case X86::KSET1D:
810 case X86::KSET1Q:
811 case X86::KSET1W:
812 case X86::MMX_SET0:
813 case X86::MOV32ImmSExti8:
814 case X86::MOV32r0:
815 case X86::MOV32r1:
816 case X86::MOV32r_1:
817 case X86::MOV32ri64:
818 case X86::MOV64ImmSExti8:
819 case X86::V_SET0:
820 case X86::V_SETALLONES:
821 case X86::MOV16ri:
822 case X86::MOV32ri:
823 case X86::MOV64ri:
824 case X86::MOV64ri32:
825 case X86::MOV8ri:
826 case X86::PTILEZEROV:
827 return true;
828
829 case X86::MOV8rm:
830 case X86::MOV8rm_NOREX:
831 case X86::MOV16rm:
832 case X86::MOV32rm:
833 case X86::MOV64rm:
834 case X86::MOVSSrm:
835 case X86::MOVSSrm_alt:
836 case X86::MOVSDrm:
837 case X86::MOVSDrm_alt:
838 case X86::MOVAPSrm:
839 case X86::MOVUPSrm:
840 case X86::MOVAPDrm:
841 case X86::MOVUPDrm:
842 case X86::MOVDQArm:
843 case X86::MOVDQUrm:
844 case X86::VMOVSSrm:
845 case X86::VMOVSSrm_alt:
846 case X86::VMOVSDrm:
847 case X86::VMOVSDrm_alt:
848 case X86::VMOVAPSrm:
849 case X86::VMOVUPSrm:
850 case X86::VMOVAPDrm:
851 case X86::VMOVUPDrm:
852 case X86::VMOVDQArm:
853 case X86::VMOVDQUrm:
854 case X86::VMOVAPSYrm:
855 case X86::VMOVUPSYrm:
856 case X86::VMOVAPDYrm:
857 case X86::VMOVUPDYrm:
858 case X86::VMOVDQAYrm:
859 case X86::VMOVDQUYrm:
860 case X86::MMX_MOVD64rm:
861 case X86::MMX_MOVQ64rm:
862 case X86::VBROADCASTSSrm:
863 case X86::VBROADCASTSSYrm:
864 case X86::VBROADCASTSDYrm:
865 // AVX-512
866 case X86::VPBROADCASTBZ128rm:
867 case X86::VPBROADCASTBZ256rm:
868 case X86::VPBROADCASTBZrm:
869 case X86::VBROADCASTF32X2Z256rm:
870 case X86::VBROADCASTF32X2Zrm:
871 case X86::VBROADCASTI32X2Z128rm:
872 case X86::VBROADCASTI32X2Z256rm:
873 case X86::VBROADCASTI32X2Zrm:
874 case X86::VPBROADCASTWZ128rm:
875 case X86::VPBROADCASTWZ256rm:
876 case X86::VPBROADCASTWZrm:
877 case X86::VPBROADCASTDZ128rm:
878 case X86::VPBROADCASTDZ256rm:
879 case X86::VPBROADCASTDZrm:
880 case X86::VBROADCASTSSZ128rm:
881 case X86::VBROADCASTSSZ256rm:
882 case X86::VBROADCASTSSZrm:
883 case X86::VPBROADCASTQZ128rm:
884 case X86::VPBROADCASTQZ256rm:
885 case X86::VPBROADCASTQZrm:
886 case X86::VBROADCASTSDZ256rm:
887 case X86::VBROADCASTSDZrm:
888 case X86::VMOVSSZrm:
889 case X86::VMOVSSZrm_alt:
890 case X86::VMOVSDZrm:
891 case X86::VMOVSDZrm_alt:
892 case X86::VMOVSHZrm:
893 case X86::VMOVSHZrm_alt:
894 case X86::VMOVAPDZ128rm:
895 case X86::VMOVAPDZ256rm:
896 case X86::VMOVAPDZrm:
897 case X86::VMOVAPSZ128rm:
898 case X86::VMOVAPSZ256rm:
899 case X86::VMOVAPSZ128rm_NOVLX:
900 case X86::VMOVAPSZ256rm_NOVLX:
901 case X86::VMOVAPSZrm:
902 case X86::VMOVDQA32Z128rm:
903 case X86::VMOVDQA32Z256rm:
904 case X86::VMOVDQA32Zrm:
905 case X86::VMOVDQA64Z128rm:
906 case X86::VMOVDQA64Z256rm:
907 case X86::VMOVDQA64Zrm:
908 case X86::VMOVDQU16Z128rm:
909 case X86::VMOVDQU16Z256rm:
910 case X86::VMOVDQU16Zrm:
911 case X86::VMOVDQU32Z128rm:
912 case X86::VMOVDQU32Z256rm:
913 case X86::VMOVDQU32Zrm:
914 case X86::VMOVDQU64Z128rm:
915 case X86::VMOVDQU64Z256rm:
916 case X86::VMOVDQU64Zrm:
917 case X86::VMOVDQU8Z128rm:
918 case X86::VMOVDQU8Z256rm:
919 case X86::VMOVDQU8Zrm:
920 case X86::VMOVUPDZ128rm:
921 case X86::VMOVUPDZ256rm:
922 case X86::VMOVUPDZrm:
923 case X86::VMOVUPSZ128rm:
924 case X86::VMOVUPSZ256rm:
925 case X86::VMOVUPSZ128rm_NOVLX:
926 case X86::VMOVUPSZ256rm_NOVLX:
927 case X86::VMOVUPSZrm: {
928 // Loads from constant pools are trivially rematerializable.
929 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
930 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
931 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
932 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
933 MI.isDereferenceableInvariantLoad()) {
934 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
935 if (BaseReg == 0 || BaseReg == X86::RIP)
936 return true;
937 // Allow re-materialization of PIC load.
938 if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) {
939 const MachineFunction &MF = *MI.getParent()->getParent();
940 const MachineRegisterInfo &MRI = MF.getRegInfo();
941 if (regIsPICBase(BaseReg, MRI))
942 return true;
943 }
944 }
945 break;
946 }
947
948 case X86::LEA32r:
949 case X86::LEA64r: {
950 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
951 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
952 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
953 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
954 // lea fi#, lea GV, etc. are all rematerializable.
955 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
956 return true;
957 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
958 if (BaseReg == 0)
959 return true;
960 // Allow re-materialization of lea PICBase + x.
961 const MachineFunction &MF = *MI.getParent()->getParent();
962 const MachineRegisterInfo &MRI = MF.getRegInfo();
963 if (regIsPICBase(BaseReg, MRI))
964 return true;
965 }
966 break;
967 }
968 }
970}
971
974 Register DestReg, unsigned SubIdx,
975 const MachineInstr &Orig,
976 const TargetRegisterInfo &TRI) const {
977 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
978 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
980 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
981 // effects.
982 int Value;
983 switch (Orig.getOpcode()) {
984 case X86::MOV32r0:
985 Value = 0;
986 break;
987 case X86::MOV32r1:
988 Value = 1;
989 break;
990 case X86::MOV32r_1:
991 Value = -1;
992 break;
993 default:
994 llvm_unreachable("Unexpected instruction!");
995 }
996
997 const DebugLoc &DL = Orig.getDebugLoc();
998 BuildMI(MBB, I, DL, get(X86::MOV32ri))
999 .add(Orig.getOperand(0))
1000 .addImm(Value);
1001 } else {
1003 MBB.insert(I, MI);
1004 }
1005
1006 MachineInstr &NewMI = *std::prev(I);
1007 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1008}
1009
1010/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1012 for (const MachineOperand &MO : MI.operands()) {
1013 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS &&
1014 !MO.isDead()) {
1015 return true;
1016 }
1017 }
1018 return false;
1019}
1020
1021/// Check whether the shift count for a machine operand is non-zero.
1022inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1023 unsigned ShiftAmtOperandIdx) {
1024 // The shift count is six bits with the REX.W prefix and five bits without.
1025 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1026 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1027 return Imm & ShiftCountMask;
1028}
1029
1030/// Check whether the given shift count is appropriate
1031/// can be represented by a LEA instruction.
1032inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1033 // Left shift instructions can be transformed into load-effective-address
1034 // instructions if we can encode them appropriately.
1035 // A LEA instruction utilizes a SIB byte to encode its scale factor.
1036 // The SIB.scale field is two bits wide which means that we can encode any
1037 // shift amount less than 4.
1038 return ShAmt < 4 && ShAmt > 0;
1039}
1040
1042 MachineInstr &CmpValDefInstr,
1043 const MachineRegisterInfo *MRI,
1044 MachineInstr **AndInstr,
1045 const TargetRegisterInfo *TRI,
1046 bool &NoSignFlag, bool &ClearsOverflowFlag) {
1047 if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG &&
1048 CmpInstr.getOpcode() == X86::TEST64rr) &&
1049 !(CmpValDefInstr.getOpcode() == X86::COPY &&
1050 CmpInstr.getOpcode() == X86::TEST16rr))
1051 return false;
1052
1053 // CmpInstr is a TEST16rr/TEST64rr instruction, and
1054 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
1055 // registers are identical.
1056 assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) &&
1057 "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1058 "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1059 "same.");
1060
1061 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
1062 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
1063 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
1064 // redundant.
1065 assert(
1066 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) &&
1067 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1068 "is a user of COPY sub16bit.");
1069 MachineInstr *VregDefInstr = nullptr;
1070 if (CmpInstr.getOpcode() == X86::TEST16rr) {
1071 if (!CmpValDefInstr.getOperand(1).getReg().isVirtual())
1072 return false;
1073 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg());
1074 if (!VregDefInstr)
1075 return false;
1076 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1077 // size, others 32/64 bit ops would test higher bits which test16rr don't
1078 // want to.
1079 if (!((VregDefInstr->getOpcode() == X86::AND32ri ||
1080 VregDefInstr->getOpcode() == X86::AND64ri32) &&
1081 isUInt<16>(VregDefInstr->getOperand(2).getImm())))
1082 return false;
1083 }
1084
1085 if (CmpInstr.getOpcode() == X86::TEST64rr) {
1086 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1087 // typically 0.
1088 if (CmpValDefInstr.getOperand(1).getImm() != 0)
1089 return false;
1090
1091 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1092 // sub_32bit or sub_xmm.
1093 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit)
1094 return false;
1095
1096 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg());
1097 }
1098
1099 assert(VregDefInstr && "Must have a definition (SSA)");
1100
1101 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1102 // to simplify the subsequent analysis.
1103 //
1104 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1105 // `CmpValDefInstr.getParent()`, this could be handled.
1106 if (VregDefInstr->getParent() != CmpValDefInstr.getParent())
1107 return false;
1108
1109 if (X86::isAND(VregDefInstr->getOpcode())) {
1110 // Get a sequence of instructions like
1111 // %reg = and* ... // Set EFLAGS
1112 // ... // EFLAGS not changed
1113 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1114 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1115 // or
1116 // %reg = and32* ...
1117 // ... // EFLAGS not changed.
1118 // %src_reg = copy %reg.sub_16bit:gr32
1119 // test16rr %src_reg, %src_reg, implicit-def $eflags
1120 //
1121 // If subsequent readers use a subset of bits that don't change
1122 // after `and*` instructions, it's likely that the test64rr could
1123 // be optimized away.
1124 for (const MachineInstr &Instr :
1125 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)),
1126 MachineBasicBlock::iterator(CmpValDefInstr))) {
1127 // There are instructions between 'VregDefInstr' and
1128 // 'CmpValDefInstr' that modifies EFLAGS.
1129 if (Instr.modifiesRegister(X86::EFLAGS, TRI))
1130 return false;
1131 }
1132
1133 *AndInstr = VregDefInstr;
1134
1135 // AND instruction will essentially update SF and clear OF, so
1136 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1137 //
1138 // However, the implementation artifically sets `NoSignFlag` to true
1139 // to poison the SF bit; that is to say, if SF is looked at later, the
1140 // optimization (to erase TEST64rr) will be disabled.
1141 //
1142 // The reason to poison SF bit is that SF bit value could be different
1143 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1144 // and is known to be 0 as a result of `TEST64rr`.
1145 //
1146 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1147 // the AND instruction and using the static information to guide peephole
1148 // optimization if possible. For example, it's possible to fold a
1149 // conditional move into a copy if the relevant EFLAG bits could be deduced
1150 // from an immediate operand of and operation.
1151 //
1152 NoSignFlag = true;
1153 // ClearsOverflowFlag is true for AND operation (no surprise).
1154 ClearsOverflowFlag = true;
1155 return true;
1156 }
1157 return false;
1158}
1159
1161 unsigned Opc, bool AllowSP, Register &NewSrc,
1162 bool &isKill, MachineOperand &ImplicitOp,
1163 LiveVariables *LV, LiveIntervals *LIS) const {
1164 MachineFunction &MF = *MI.getParent()->getParent();
1165 const TargetRegisterClass *RC;
1166 if (AllowSP) {
1167 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1168 } else {
1169 RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1170 }
1171 Register SrcReg = Src.getReg();
1172 isKill = MI.killsRegister(SrcReg, /*TRI=*/nullptr);
1173
1174 // For both LEA64 and LEA32 the register already has essentially the right
1175 // type (32-bit or 64-bit) we may just need to forbid SP.
1176 if (Opc != X86::LEA64_32r) {
1177 NewSrc = SrcReg;
1178 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1179
1180 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1181 return false;
1182
1183 return true;
1184 }
1185
1186 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1187 // another we need to add 64-bit registers to the final MI.
1188 if (SrcReg.isPhysical()) {
1189 ImplicitOp = Src;
1190 ImplicitOp.setImplicit();
1191
1192 NewSrc = getX86SubSuperRegister(SrcReg, 64);
1193 assert(NewSrc.isValid() && "Invalid Operand");
1194 assert(!Src.isUndef() && "Undef op doesn't need optimization");
1195 } else {
1196 // Virtual register of the wrong class, we have to create a temporary 64-bit
1197 // vreg to feed into the LEA.
1198 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1199 MachineInstr *Copy =
1200 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1201 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1202 .addReg(SrcReg, getKillRegState(isKill));
1203
1204 // Which is obviously going to be dead after we're done with it.
1205 isKill = true;
1206
1207 if (LV)
1208 LV->replaceKillInstruction(SrcReg, MI, *Copy);
1209
1210 if (LIS) {
1211 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy);
1213 LiveInterval &LI = LIS->getInterval(SrcReg);
1215 if (S->end.getBaseIndex() == Idx)
1216 S->end = CopyIdx.getRegSlot();
1217 }
1218 }
1219
1220 // We've set all the parameters without issue.
1221 return true;
1222}
1223
1224MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1226 LiveVariables *LV,
1227 LiveIntervals *LIS,
1228 bool Is8BitOp) const {
1229 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1230 MachineBasicBlock &MBB = *MI.getParent();
1232 assert((Is8BitOp ||
1234 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1235 "Unexpected type for LEA transform");
1236
1237 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1238 // something like this:
1239 // Opcode = X86::LEA32r;
1240 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1241 // OutRegLEA =
1242 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1243 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1244 if (!Subtarget.is64Bit())
1245 return nullptr;
1246
1247 unsigned Opcode = X86::LEA64_32r;
1248 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1249 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1250 Register InRegLEA2;
1251
1252 // Build and insert into an implicit UNDEF value. This is OK because
1253 // we will be shifting and then extracting the lower 8/16-bits.
1254 // This has the potential to cause partial register stall. e.g.
1255 // movw (%rbp,%rcx,2), %dx
1256 // leal -65(%rdx), %esi
1257 // But testing has shown this *does* help performance in 64-bit mode (at
1258 // least on modern x86 machines).
1259 MachineBasicBlock::iterator MBBI = MI.getIterator();
1260 Register Dest = MI.getOperand(0).getReg();
1261 Register Src = MI.getOperand(1).getReg();
1262 Register Src2;
1263 bool IsDead = MI.getOperand(0).isDead();
1264 bool IsKill = MI.getOperand(1).isKill();
1265 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1266 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1267 MachineInstr *ImpDef =
1268 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1269 MachineInstr *InsMI =
1270 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1271 .addReg(InRegLEA, RegState::Define, SubReg)
1272 .addReg(Src, getKillRegState(IsKill));
1273 MachineInstr *ImpDef2 = nullptr;
1274 MachineInstr *InsMI2 = nullptr;
1275
1277 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1278 switch (MIOpc) {
1279 default:
1280 llvm_unreachable("Unreachable!");
1281 case X86::SHL8ri:
1282 case X86::SHL16ri: {
1283 unsigned ShAmt = MI.getOperand(2).getImm();
1284 MIB.addReg(0)
1285 .addImm(1LL << ShAmt)
1286 .addReg(InRegLEA, RegState::Kill)
1287 .addImm(0)
1288 .addReg(0);
1289 break;
1290 }
1291 case X86::INC8r:
1292 case X86::INC16r:
1293 addRegOffset(MIB, InRegLEA, true, 1);
1294 break;
1295 case X86::DEC8r:
1296 case X86::DEC16r:
1297 addRegOffset(MIB, InRegLEA, true, -1);
1298 break;
1299 case X86::ADD8ri:
1300 case X86::ADD8ri_DB:
1301 case X86::ADD16ri:
1302 case X86::ADD16ri_DB:
1303 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1304 break;
1305 case X86::ADD8rr:
1306 case X86::ADD8rr_DB:
1307 case X86::ADD16rr:
1308 case X86::ADD16rr_DB: {
1309 Src2 = MI.getOperand(2).getReg();
1310 bool IsKill2 = MI.getOperand(2).isKill();
1311 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1312 if (Src == Src2) {
1313 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1314 // just a single insert_subreg.
1315 addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1316 } else {
1317 if (Subtarget.is64Bit())
1318 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1319 else
1320 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1321 // Build and insert into an implicit UNDEF value. This is OK because
1322 // we will be shifting and then extracting the lower 8/16-bits.
1323 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF),
1324 InRegLEA2);
1325 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1326 .addReg(InRegLEA2, RegState::Define, SubReg)
1327 .addReg(Src2, getKillRegState(IsKill2));
1328 addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1329 }
1330 if (LV && IsKill2 && InsMI2)
1331 LV->replaceKillInstruction(Src2, MI, *InsMI2);
1332 break;
1333 }
1334 }
1335
1336 MachineInstr *NewMI = MIB;
1337 MachineInstr *ExtMI =
1338 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1340 .addReg(OutRegLEA, RegState::Kill, SubReg);
1341
1342 if (LV) {
1343 // Update live variables.
1344 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1345 if (InRegLEA2)
1346 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI);
1347 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1348 if (IsKill)
1349 LV->replaceKillInstruction(Src, MI, *InsMI);
1350 if (IsDead)
1351 LV->replaceKillInstruction(Dest, MI, *ExtMI);
1352 }
1353
1354 if (LIS) {
1355 LIS->InsertMachineInstrInMaps(*ImpDef);
1356 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI);
1357 if (ImpDef2)
1358 LIS->InsertMachineInstrInMaps(*ImpDef2);
1359 SlotIndex Ins2Idx;
1360 if (InsMI2)
1361 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2);
1362 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
1363 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI);
1364 LIS->getInterval(InRegLEA);
1365 LIS->getInterval(OutRegLEA);
1366 if (InRegLEA2)
1367 LIS->getInterval(InRegLEA2);
1368
1369 // Move the use of Src up to InsMI.
1370 LiveInterval &SrcLI = LIS->getInterval(Src);
1371 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx);
1372 if (SrcSeg->end == NewIdx.getRegSlot())
1373 SrcSeg->end = InsIdx.getRegSlot();
1374
1375 if (InsMI2) {
1376 // Move the use of Src2 up to InsMI2.
1377 LiveInterval &Src2LI = LIS->getInterval(Src2);
1378 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx);
1379 if (Src2Seg->end == NewIdx.getRegSlot())
1380 Src2Seg->end = Ins2Idx.getRegSlot();
1381 }
1382
1383 // Move the definition of Dest down to ExtMI.
1384 LiveInterval &DestLI = LIS->getInterval(Dest);
1385 LiveRange::Segment *DestSeg =
1386 DestLI.getSegmentContaining(NewIdx.getRegSlot());
1387 assert(DestSeg->start == NewIdx.getRegSlot() &&
1388 DestSeg->valno->def == NewIdx.getRegSlot());
1389 DestSeg->start = ExtIdx.getRegSlot();
1390 DestSeg->valno->def = ExtIdx.getRegSlot();
1391 }
1392
1393 return ExtMI;
1394}
1395
1396/// This method must be implemented by targets that
1397/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1398/// may be able to convert a two-address instruction into a true
1399/// three-address instruction on demand. This allows the X86 target (for
1400/// example) to convert ADD and SHL instructions into LEA instructions if they
1401/// would require register copies due to two-addressness.
1402///
1403/// This method returns a null pointer if the transformation cannot be
1404/// performed, otherwise it returns the new instruction.
1405///
1407 LiveVariables *LV,
1408 LiveIntervals *LIS) const {
1409 // The following opcodes also sets the condition code register(s). Only
1410 // convert them to equivalent lea if the condition code register def's
1411 // are dead!
1413 return nullptr;
1414
1415 MachineFunction &MF = *MI.getParent()->getParent();
1416 // All instructions input are two-addr instructions. Get the known operands.
1417 const MachineOperand &Dest = MI.getOperand(0);
1418 const MachineOperand &Src = MI.getOperand(1);
1419
1420 // Ideally, operations with undef should be folded before we get here, but we
1421 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1422 // Without this, we have to forward undef state to new register operands to
1423 // avoid machine verifier errors.
1424 if (Src.isUndef())
1425 return nullptr;
1426 if (MI.getNumOperands() > 2)
1427 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1428 return nullptr;
1429
1430 MachineInstr *NewMI = nullptr;
1431 Register SrcReg, SrcReg2;
1432 bool Is64Bit = Subtarget.is64Bit();
1433
1434 bool Is8BitOp = false;
1435 unsigned NumRegOperands = 2;
1436 unsigned MIOpc = MI.getOpcode();
1437 switch (MIOpc) {
1438 default:
1439 llvm_unreachable("Unreachable!");
1440 case X86::SHL64ri: {
1441 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1442 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1443 if (!isTruncatedShiftCountForLEA(ShAmt))
1444 return nullptr;
1445
1446 // LEA can't handle RSP.
1447 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1448 Src.getReg(), &X86::GR64_NOSPRegClass))
1449 return nullptr;
1450
1451 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1452 .add(Dest)
1453 .addReg(0)
1454 .addImm(1LL << ShAmt)
1455 .add(Src)
1456 .addImm(0)
1457 .addReg(0);
1458 break;
1459 }
1460 case X86::SHL32ri: {
1461 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1462 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1463 if (!isTruncatedShiftCountForLEA(ShAmt))
1464 return nullptr;
1465
1466 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1467
1468 // LEA can't handle ESP.
1469 bool isKill;
1470 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1471 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1472 ImplicitOp, LV, LIS))
1473 return nullptr;
1474
1475 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1476 .add(Dest)
1477 .addReg(0)
1478 .addImm(1LL << ShAmt)
1479 .addReg(SrcReg, getKillRegState(isKill))
1480 .addImm(0)
1481 .addReg(0);
1482 if (ImplicitOp.getReg() != 0)
1483 MIB.add(ImplicitOp);
1484 NewMI = MIB;
1485
1486 // Add kills if classifyLEAReg created a new register.
1487 if (LV && SrcReg != Src.getReg())
1488 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1489 break;
1490 }
1491 case X86::SHL8ri:
1492 Is8BitOp = true;
1493 [[fallthrough]];
1494 case X86::SHL16ri: {
1495 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1496 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1497 if (!isTruncatedShiftCountForLEA(ShAmt))
1498 return nullptr;
1499 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1500 }
1501 case X86::INC64r:
1502 case X86::INC32r: {
1503 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1504 unsigned Opc = MIOpc == X86::INC64r
1505 ? X86::LEA64r
1506 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1507 bool isKill;
1508 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1509 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1510 ImplicitOp, LV, LIS))
1511 return nullptr;
1512
1513 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1514 .add(Dest)
1515 .addReg(SrcReg, getKillRegState(isKill));
1516 if (ImplicitOp.getReg() != 0)
1517 MIB.add(ImplicitOp);
1518
1519 NewMI = addOffset(MIB, 1);
1520
1521 // Add kills if classifyLEAReg created a new register.
1522 if (LV && SrcReg != Src.getReg())
1523 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1524 break;
1525 }
1526 case X86::DEC64r:
1527 case X86::DEC32r: {
1528 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1529 unsigned Opc = MIOpc == X86::DEC64r
1530 ? X86::LEA64r
1531 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1532
1533 bool isKill;
1534 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1535 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill,
1536 ImplicitOp, LV, LIS))
1537 return nullptr;
1538
1539 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1540 .add(Dest)
1541 .addReg(SrcReg, getKillRegState(isKill));
1542 if (ImplicitOp.getReg() != 0)
1543 MIB.add(ImplicitOp);
1544
1545 NewMI = addOffset(MIB, -1);
1546
1547 // Add kills if classifyLEAReg created a new register.
1548 if (LV && SrcReg != Src.getReg())
1549 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1550 break;
1551 }
1552 case X86::DEC8r:
1553 case X86::INC8r:
1554 Is8BitOp = true;
1555 [[fallthrough]];
1556 case X86::DEC16r:
1557 case X86::INC16r:
1558 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1559 case X86::ADD64rr:
1560 case X86::ADD64rr_DB:
1561 case X86::ADD32rr:
1562 case X86::ADD32rr_DB: {
1563 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1564 unsigned Opc;
1565 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1566 Opc = X86::LEA64r;
1567 else
1568 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1569
1570 const MachineOperand &Src2 = MI.getOperand(2);
1571 bool isKill2;
1572 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1573 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2,
1574 ImplicitOp2, LV, LIS))
1575 return nullptr;
1576
1577 bool isKill;
1578 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1579 if (Src.getReg() == Src2.getReg()) {
1580 // Don't call classify LEAReg a second time on the same register, in case
1581 // the first call inserted a COPY from Src2 and marked it as killed.
1582 isKill = isKill2;
1583 SrcReg = SrcReg2;
1584 } else {
1585 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1586 ImplicitOp, LV, LIS))
1587 return nullptr;
1588 }
1589
1590 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1591 if (ImplicitOp.getReg() != 0)
1592 MIB.add(ImplicitOp);
1593 if (ImplicitOp2.getReg() != 0)
1594 MIB.add(ImplicitOp2);
1595
1596 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1597
1598 // Add kills if classifyLEAReg created a new register.
1599 if (LV) {
1600 if (SrcReg2 != Src2.getReg())
1601 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI);
1602 if (SrcReg != SrcReg2 && SrcReg != Src.getReg())
1603 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1604 }
1605 NumRegOperands = 3;
1606 break;
1607 }
1608 case X86::ADD8rr:
1609 case X86::ADD8rr_DB:
1610 Is8BitOp = true;
1611 [[fallthrough]];
1612 case X86::ADD16rr:
1613 case X86::ADD16rr_DB:
1614 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1615 case X86::ADD64ri32:
1616 case X86::ADD64ri32_DB:
1617 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1618 NewMI = addOffset(
1619 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1620 MI.getOperand(2));
1621 break;
1622 case X86::ADD32ri:
1623 case X86::ADD32ri_DB: {
1624 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1625 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1626
1627 bool isKill;
1628 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1629 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1630 ImplicitOp, LV, LIS))
1631 return nullptr;
1632
1633 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1634 .add(Dest)
1635 .addReg(SrcReg, getKillRegState(isKill));
1636 if (ImplicitOp.getReg() != 0)
1637 MIB.add(ImplicitOp);
1638
1639 NewMI = addOffset(MIB, MI.getOperand(2));
1640
1641 // Add kills if classifyLEAReg created a new register.
1642 if (LV && SrcReg != Src.getReg())
1643 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1644 break;
1645 }
1646 case X86::ADD8ri:
1647 case X86::ADD8ri_DB:
1648 Is8BitOp = true;
1649 [[fallthrough]];
1650 case X86::ADD16ri:
1651 case X86::ADD16ri_DB:
1652 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp);
1653 case X86::SUB8ri:
1654 case X86::SUB16ri:
1655 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1656 return nullptr;
1657 case X86::SUB32ri: {
1658 if (!MI.getOperand(2).isImm())
1659 return nullptr;
1660 int64_t Imm = MI.getOperand(2).getImm();
1661 if (!isInt<32>(-Imm))
1662 return nullptr;
1663
1664 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1665 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1666
1667 bool isKill;
1668 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1669 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill,
1670 ImplicitOp, LV, LIS))
1671 return nullptr;
1672
1673 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1674 .add(Dest)
1675 .addReg(SrcReg, getKillRegState(isKill));
1676 if (ImplicitOp.getReg() != 0)
1677 MIB.add(ImplicitOp);
1678
1679 NewMI = addOffset(MIB, -Imm);
1680
1681 // Add kills if classifyLEAReg created a new register.
1682 if (LV && SrcReg != Src.getReg())
1683 LV->getVarInfo(SrcReg).Kills.push_back(NewMI);
1684 break;
1685 }
1686
1687 case X86::SUB64ri32: {
1688 if (!MI.getOperand(2).isImm())
1689 return nullptr;
1690 int64_t Imm = MI.getOperand(2).getImm();
1691 if (!isInt<32>(-Imm))
1692 return nullptr;
1693
1694 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1695
1697 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src);
1698 NewMI = addOffset(MIB, -Imm);
1699 break;
1700 }
1701
1702 case X86::VMOVDQU8Z128rmk:
1703 case X86::VMOVDQU8Z256rmk:
1704 case X86::VMOVDQU8Zrmk:
1705 case X86::VMOVDQU16Z128rmk:
1706 case X86::VMOVDQU16Z256rmk:
1707 case X86::VMOVDQU16Zrmk:
1708 case X86::VMOVDQU32Z128rmk:
1709 case X86::VMOVDQA32Z128rmk:
1710 case X86::VMOVDQU32Z256rmk:
1711 case X86::VMOVDQA32Z256rmk:
1712 case X86::VMOVDQU32Zrmk:
1713 case X86::VMOVDQA32Zrmk:
1714 case X86::VMOVDQU64Z128rmk:
1715 case X86::VMOVDQA64Z128rmk:
1716 case X86::VMOVDQU64Z256rmk:
1717 case X86::VMOVDQA64Z256rmk:
1718 case X86::VMOVDQU64Zrmk:
1719 case X86::VMOVDQA64Zrmk:
1720 case X86::VMOVUPDZ128rmk:
1721 case X86::VMOVAPDZ128rmk:
1722 case X86::VMOVUPDZ256rmk:
1723 case X86::VMOVAPDZ256rmk:
1724 case X86::VMOVUPDZrmk:
1725 case X86::VMOVAPDZrmk:
1726 case X86::VMOVUPSZ128rmk:
1727 case X86::VMOVAPSZ128rmk:
1728 case X86::VMOVUPSZ256rmk:
1729 case X86::VMOVAPSZ256rmk:
1730 case X86::VMOVUPSZrmk:
1731 case X86::VMOVAPSZrmk:
1732 case X86::VBROADCASTSDZ256rmk:
1733 case X86::VBROADCASTSDZrmk:
1734 case X86::VBROADCASTSSZ128rmk:
1735 case X86::VBROADCASTSSZ256rmk:
1736 case X86::VBROADCASTSSZrmk:
1737 case X86::VPBROADCASTDZ128rmk:
1738 case X86::VPBROADCASTDZ256rmk:
1739 case X86::VPBROADCASTDZrmk:
1740 case X86::VPBROADCASTQZ128rmk:
1741 case X86::VPBROADCASTQZ256rmk:
1742 case X86::VPBROADCASTQZrmk: {
1743 unsigned Opc;
1744 switch (MIOpc) {
1745 default:
1746 llvm_unreachable("Unreachable!");
1747 case X86::VMOVDQU8Z128rmk:
1748 Opc = X86::VPBLENDMBZ128rmk;
1749 break;
1750 case X86::VMOVDQU8Z256rmk:
1751 Opc = X86::VPBLENDMBZ256rmk;
1752 break;
1753 case X86::VMOVDQU8Zrmk:
1754 Opc = X86::VPBLENDMBZrmk;
1755 break;
1756 case X86::VMOVDQU16Z128rmk:
1757 Opc = X86::VPBLENDMWZ128rmk;
1758 break;
1759 case X86::VMOVDQU16Z256rmk:
1760 Opc = X86::VPBLENDMWZ256rmk;
1761 break;
1762 case X86::VMOVDQU16Zrmk:
1763 Opc = X86::VPBLENDMWZrmk;
1764 break;
1765 case X86::VMOVDQU32Z128rmk:
1766 Opc = X86::VPBLENDMDZ128rmk;
1767 break;
1768 case X86::VMOVDQU32Z256rmk:
1769 Opc = X86::VPBLENDMDZ256rmk;
1770 break;
1771 case X86::VMOVDQU32Zrmk:
1772 Opc = X86::VPBLENDMDZrmk;
1773 break;
1774 case X86::VMOVDQU64Z128rmk:
1775 Opc = X86::VPBLENDMQZ128rmk;
1776 break;
1777 case X86::VMOVDQU64Z256rmk:
1778 Opc = X86::VPBLENDMQZ256rmk;
1779 break;
1780 case X86::VMOVDQU64Zrmk:
1781 Opc = X86::VPBLENDMQZrmk;
1782 break;
1783 case X86::VMOVUPDZ128rmk:
1784 Opc = X86::VBLENDMPDZ128rmk;
1785 break;
1786 case X86::VMOVUPDZ256rmk:
1787 Opc = X86::VBLENDMPDZ256rmk;
1788 break;
1789 case X86::VMOVUPDZrmk:
1790 Opc = X86::VBLENDMPDZrmk;
1791 break;
1792 case X86::VMOVUPSZ128rmk:
1793 Opc = X86::VBLENDMPSZ128rmk;
1794 break;
1795 case X86::VMOVUPSZ256rmk:
1796 Opc = X86::VBLENDMPSZ256rmk;
1797 break;
1798 case X86::VMOVUPSZrmk:
1799 Opc = X86::VBLENDMPSZrmk;
1800 break;
1801 case X86::VMOVDQA32Z128rmk:
1802 Opc = X86::VPBLENDMDZ128rmk;
1803 break;
1804 case X86::VMOVDQA32Z256rmk:
1805 Opc = X86::VPBLENDMDZ256rmk;
1806 break;
1807 case X86::VMOVDQA32Zrmk:
1808 Opc = X86::VPBLENDMDZrmk;
1809 break;
1810 case X86::VMOVDQA64Z128rmk:
1811 Opc = X86::VPBLENDMQZ128rmk;
1812 break;
1813 case X86::VMOVDQA64Z256rmk:
1814 Opc = X86::VPBLENDMQZ256rmk;
1815 break;
1816 case X86::VMOVDQA64Zrmk:
1817 Opc = X86::VPBLENDMQZrmk;
1818 break;
1819 case X86::VMOVAPDZ128rmk:
1820 Opc = X86::VBLENDMPDZ128rmk;
1821 break;
1822 case X86::VMOVAPDZ256rmk:
1823 Opc = X86::VBLENDMPDZ256rmk;
1824 break;
1825 case X86::VMOVAPDZrmk:
1826 Opc = X86::VBLENDMPDZrmk;
1827 break;
1828 case X86::VMOVAPSZ128rmk:
1829 Opc = X86::VBLENDMPSZ128rmk;
1830 break;
1831 case X86::VMOVAPSZ256rmk:
1832 Opc = X86::VBLENDMPSZ256rmk;
1833 break;
1834 case X86::VMOVAPSZrmk:
1835 Opc = X86::VBLENDMPSZrmk;
1836 break;
1837 case X86::VBROADCASTSDZ256rmk:
1838 Opc = X86::VBLENDMPDZ256rmbk;
1839 break;
1840 case X86::VBROADCASTSDZrmk:
1841 Opc = X86::VBLENDMPDZrmbk;
1842 break;
1843 case X86::VBROADCASTSSZ128rmk:
1844 Opc = X86::VBLENDMPSZ128rmbk;
1845 break;
1846 case X86::VBROADCASTSSZ256rmk:
1847 Opc = X86::VBLENDMPSZ256rmbk;
1848 break;
1849 case X86::VBROADCASTSSZrmk:
1850 Opc = X86::VBLENDMPSZrmbk;
1851 break;
1852 case X86::VPBROADCASTDZ128rmk:
1853 Opc = X86::VPBLENDMDZ128rmbk;
1854 break;
1855 case X86::VPBROADCASTDZ256rmk:
1856 Opc = X86::VPBLENDMDZ256rmbk;
1857 break;
1858 case X86::VPBROADCASTDZrmk:
1859 Opc = X86::VPBLENDMDZrmbk;
1860 break;
1861 case X86::VPBROADCASTQZ128rmk:
1862 Opc = X86::VPBLENDMQZ128rmbk;
1863 break;
1864 case X86::VPBROADCASTQZ256rmk:
1865 Opc = X86::VPBLENDMQZ256rmbk;
1866 break;
1867 case X86::VPBROADCASTQZrmk:
1868 Opc = X86::VPBLENDMQZrmbk;
1869 break;
1870 }
1871
1872 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1873 .add(Dest)
1874 .add(MI.getOperand(2))
1875 .add(Src)
1876 .add(MI.getOperand(3))
1877 .add(MI.getOperand(4))
1878 .add(MI.getOperand(5))
1879 .add(MI.getOperand(6))
1880 .add(MI.getOperand(7));
1881 NumRegOperands = 4;
1882 break;
1883 }
1884
1885 case X86::VMOVDQU8Z128rrk:
1886 case X86::VMOVDQU8Z256rrk:
1887 case X86::VMOVDQU8Zrrk:
1888 case X86::VMOVDQU16Z128rrk:
1889 case X86::VMOVDQU16Z256rrk:
1890 case X86::VMOVDQU16Zrrk:
1891 case X86::VMOVDQU32Z128rrk:
1892 case X86::VMOVDQA32Z128rrk:
1893 case X86::VMOVDQU32Z256rrk:
1894 case X86::VMOVDQA32Z256rrk:
1895 case X86::VMOVDQU32Zrrk:
1896 case X86::VMOVDQA32Zrrk:
1897 case X86::VMOVDQU64Z128rrk:
1898 case X86::VMOVDQA64Z128rrk:
1899 case X86::VMOVDQU64Z256rrk:
1900 case X86::VMOVDQA64Z256rrk:
1901 case X86::VMOVDQU64Zrrk:
1902 case X86::VMOVDQA64Zrrk:
1903 case X86::VMOVUPDZ128rrk:
1904 case X86::VMOVAPDZ128rrk:
1905 case X86::VMOVUPDZ256rrk:
1906 case X86::VMOVAPDZ256rrk:
1907 case X86::VMOVUPDZrrk:
1908 case X86::VMOVAPDZrrk:
1909 case X86::VMOVUPSZ128rrk:
1910 case X86::VMOVAPSZ128rrk:
1911 case X86::VMOVUPSZ256rrk:
1912 case X86::VMOVAPSZ256rrk:
1913 case X86::VMOVUPSZrrk:
1914 case X86::VMOVAPSZrrk: {
1915 unsigned Opc;
1916 switch (MIOpc) {
1917 default:
1918 llvm_unreachable("Unreachable!");
1919 case X86::VMOVDQU8Z128rrk:
1920 Opc = X86::VPBLENDMBZ128rrk;
1921 break;
1922 case X86::VMOVDQU8Z256rrk:
1923 Opc = X86::VPBLENDMBZ256rrk;
1924 break;
1925 case X86::VMOVDQU8Zrrk:
1926 Opc = X86::VPBLENDMBZrrk;
1927 break;
1928 case X86::VMOVDQU16Z128rrk:
1929 Opc = X86::VPBLENDMWZ128rrk;
1930 break;
1931 case X86::VMOVDQU16Z256rrk:
1932 Opc = X86::VPBLENDMWZ256rrk;
1933 break;
1934 case X86::VMOVDQU16Zrrk:
1935 Opc = X86::VPBLENDMWZrrk;
1936 break;
1937 case X86::VMOVDQU32Z128rrk:
1938 Opc = X86::VPBLENDMDZ128rrk;
1939 break;
1940 case X86::VMOVDQU32Z256rrk:
1941 Opc = X86::VPBLENDMDZ256rrk;
1942 break;
1943 case X86::VMOVDQU32Zrrk:
1944 Opc = X86::VPBLENDMDZrrk;
1945 break;
1946 case X86::VMOVDQU64Z128rrk:
1947 Opc = X86::VPBLENDMQZ128rrk;
1948 break;
1949 case X86::VMOVDQU64Z256rrk:
1950 Opc = X86::VPBLENDMQZ256rrk;
1951 break;
1952 case X86::VMOVDQU64Zrrk:
1953 Opc = X86::VPBLENDMQZrrk;
1954 break;
1955 case X86::VMOVUPDZ128rrk:
1956 Opc = X86::VBLENDMPDZ128rrk;
1957 break;
1958 case X86::VMOVUPDZ256rrk:
1959 Opc = X86::VBLENDMPDZ256rrk;
1960 break;
1961 case X86::VMOVUPDZrrk:
1962 Opc = X86::VBLENDMPDZrrk;
1963 break;
1964 case X86::VMOVUPSZ128rrk:
1965 Opc = X86::VBLENDMPSZ128rrk;
1966 break;
1967 case X86::VMOVUPSZ256rrk:
1968 Opc = X86::VBLENDMPSZ256rrk;
1969 break;
1970 case X86::VMOVUPSZrrk:
1971 Opc = X86::VBLENDMPSZrrk;
1972 break;
1973 case X86::VMOVDQA32Z128rrk:
1974 Opc = X86::VPBLENDMDZ128rrk;
1975 break;
1976 case X86::VMOVDQA32Z256rrk:
1977 Opc = X86::VPBLENDMDZ256rrk;
1978 break;
1979 case X86::VMOVDQA32Zrrk:
1980 Opc = X86::VPBLENDMDZrrk;
1981 break;
1982 case X86::VMOVDQA64Z128rrk:
1983 Opc = X86::VPBLENDMQZ128rrk;
1984 break;
1985 case X86::VMOVDQA64Z256rrk:
1986 Opc = X86::VPBLENDMQZ256rrk;
1987 break;
1988 case X86::VMOVDQA64Zrrk:
1989 Opc = X86::VPBLENDMQZrrk;
1990 break;
1991 case X86::VMOVAPDZ128rrk:
1992 Opc = X86::VBLENDMPDZ128rrk;
1993 break;
1994 case X86::VMOVAPDZ256rrk:
1995 Opc = X86::VBLENDMPDZ256rrk;
1996 break;
1997 case X86::VMOVAPDZrrk:
1998 Opc = X86::VBLENDMPDZrrk;
1999 break;
2000 case X86::VMOVAPSZ128rrk:
2001 Opc = X86::VBLENDMPSZ128rrk;
2002 break;
2003 case X86::VMOVAPSZ256rrk:
2004 Opc = X86::VBLENDMPSZ256rrk;
2005 break;
2006 case X86::VMOVAPSZrrk:
2007 Opc = X86::VBLENDMPSZrrk;
2008 break;
2009 }
2010
2011 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
2012 .add(Dest)
2013 .add(MI.getOperand(2))
2014 .add(Src)
2015 .add(MI.getOperand(3));
2016 NumRegOperands = 4;
2017 break;
2018 }
2019 }
2020
2021 if (!NewMI)
2022 return nullptr;
2023
2024 if (LV) { // Update live variables
2025 for (unsigned I = 0; I < NumRegOperands; ++I) {
2026 MachineOperand &Op = MI.getOperand(I);
2027 if (Op.isReg() && (Op.isDead() || Op.isKill()))
2028 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI);
2029 }
2030 }
2031
2032 MachineBasicBlock &MBB = *MI.getParent();
2033 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
2034
2035 if (LIS) {
2036 LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
2037 if (SrcReg)
2038 LIS->getInterval(SrcReg);
2039 if (SrcReg2)
2040 LIS->getInterval(SrcReg2);
2041 }
2042
2043 return NewMI;
2044}
2045
2046/// This determines which of three possible cases of a three source commute
2047/// the source indexes correspond to taking into account any mask operands.
2048/// All prevents commuting a passthru operand. Returns -1 if the commute isn't
2049/// possible.
2050/// Case 0 - Possible to commute the first and second operands.
2051/// Case 1 - Possible to commute the first and third operands.
2052/// Case 2 - Possible to commute the second and third operands.
2053static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
2054 unsigned SrcOpIdx2) {
2055 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
2056 if (SrcOpIdx1 > SrcOpIdx2)
2057 std::swap(SrcOpIdx1, SrcOpIdx2);
2058
2059 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
2060 if (X86II::isKMasked(TSFlags)) {
2061 Op2++;
2062 Op3++;
2063 }
2064
2065 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
2066 return 0;
2067 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
2068 return 1;
2069 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
2070 return 2;
2071 llvm_unreachable("Unknown three src commute case.");
2072}
2073
2075 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
2076 const X86InstrFMA3Group &FMA3Group) const {
2077
2078 unsigned Opc = MI.getOpcode();
2079
2080 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
2081 // analysis. The commute optimization is legal only if all users of FMA*_Int
2082 // use only the lowest element of the FMA*_Int instruction. Such analysis are
2083 // not implemented yet. So, just return 0 in that case.
2084 // When such analysis are available this place will be the right place for
2085 // calling it.
2086 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
2087 "Intrinsic instructions can't commute operand 1");
2088
2089 // Determine which case this commute is or if it can't be done.
2090 unsigned Case =
2091 getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2092 assert(Case < 3 && "Unexpected case number!");
2093
2094 // Define the FMA forms mapping array that helps to map input FMA form
2095 // to output FMA form to preserve the operation semantics after
2096 // commuting the operands.
2097 const unsigned Form132Index = 0;
2098 const unsigned Form213Index = 1;
2099 const unsigned Form231Index = 2;
2100 static const unsigned FormMapping[][3] = {
2101 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
2102 // FMA132 A, C, b; ==> FMA231 C, A, b;
2103 // FMA213 B, A, c; ==> FMA213 A, B, c;
2104 // FMA231 C, A, b; ==> FMA132 A, C, b;
2105 {Form231Index, Form213Index, Form132Index},
2106 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
2107 // FMA132 A, c, B; ==> FMA132 B, c, A;
2108 // FMA213 B, a, C; ==> FMA231 C, a, B;
2109 // FMA231 C, a, B; ==> FMA213 B, a, C;
2110 {Form132Index, Form231Index, Form213Index},
2111 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
2112 // FMA132 a, C, B; ==> FMA213 a, B, C;
2113 // FMA213 b, A, C; ==> FMA132 b, C, A;
2114 // FMA231 c, A, B; ==> FMA231 c, B, A;
2115 {Form213Index, Form132Index, Form231Index}};
2116
2117 unsigned FMAForms[3];
2118 FMAForms[0] = FMA3Group.get132Opcode();
2119 FMAForms[1] = FMA3Group.get213Opcode();
2120 FMAForms[2] = FMA3Group.get231Opcode();
2121
2122 // Everything is ready, just adjust the FMA opcode and return it.
2123 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++)
2124 if (Opc == FMAForms[FormIndex])
2125 return FMAForms[FormMapping[Case][FormIndex]];
2126
2127 llvm_unreachable("Illegal FMA3 format");
2128}
2129
2130static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
2131 unsigned SrcOpIdx2) {
2132 // Determine which case this commute is or if it can't be done.
2133 unsigned Case =
2134 getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2);
2135 assert(Case < 3 && "Unexpected case value!");
2136
2137 // For each case we need to swap two pairs of bits in the final immediate.
2138 static const uint8_t SwapMasks[3][4] = {
2139 {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5.
2140 {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6.
2141 {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6.
2142 };
2143
2144 uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2145 // Clear out the bits we are swapping.
2146 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
2147 SwapMasks[Case][2] | SwapMasks[Case][3]);
2148 // If the immediate had a bit of the pair set, then set the opposite bit.
2149 if (Imm & SwapMasks[Case][0])
2150 NewImm |= SwapMasks[Case][1];
2151 if (Imm & SwapMasks[Case][1])
2152 NewImm |= SwapMasks[Case][0];
2153 if (Imm & SwapMasks[Case][2])
2154 NewImm |= SwapMasks[Case][3];
2155 if (Imm & SwapMasks[Case][3])
2156 NewImm |= SwapMasks[Case][2];
2157 MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm);
2158}
2159
2160// Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
2161// commuted.
2162static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
2163#define VPERM_CASES(Suffix) \
2164 case X86::VPERMI2##Suffix##Z128rr: \
2165 case X86::VPERMT2##Suffix##Z128rr: \
2166 case X86::VPERMI2##Suffix##Z256rr: \
2167 case X86::VPERMT2##Suffix##Z256rr: \
2168 case X86::VPERMI2##Suffix##Zrr: \
2169 case X86::VPERMT2##Suffix##Zrr: \
2170 case X86::VPERMI2##Suffix##Z128rm: \
2171 case X86::VPERMT2##Suffix##Z128rm: \
2172 case X86::VPERMI2##Suffix##Z256rm: \
2173 case X86::VPERMT2##Suffix##Z256rm: \
2174 case X86::VPERMI2##Suffix##Zrm: \
2175 case X86::VPERMT2##Suffix##Zrm: \
2176 case X86::VPERMI2##Suffix##Z128rrkz: \
2177 case X86::VPERMT2##Suffix##Z128rrkz: \
2178 case X86::VPERMI2##Suffix##Z256rrkz: \
2179 case X86::VPERMT2##Suffix##Z256rrkz: \
2180 case X86::VPERMI2##Suffix##Zrrkz: \
2181 case X86::VPERMT2##Suffix##Zrrkz: \
2182 case X86::VPERMI2##Suffix##Z128rmkz: \
2183 case X86::VPERMT2##Suffix##Z128rmkz: \
2184 case X86::VPERMI2##Suffix##Z256rmkz: \
2185 case X86::VPERMT2##Suffix##Z256rmkz: \
2186 case X86::VPERMI2##Suffix##Zrmkz: \
2187 case X86::VPERMT2##Suffix##Zrmkz:
2188
2189#define VPERM_CASES_BROADCAST(Suffix) \
2190 VPERM_CASES(Suffix) \
2191 case X86::VPERMI2##Suffix##Z128rmb: \
2192 case X86::VPERMT2##Suffix##Z128rmb: \
2193 case X86::VPERMI2##Suffix##Z256rmb: \
2194 case X86::VPERMT2##Suffix##Z256rmb: \
2195 case X86::VPERMI2##Suffix##Zrmb: \
2196 case X86::VPERMT2##Suffix##Zrmb: \
2197 case X86::VPERMI2##Suffix##Z128rmbkz: \
2198 case X86::VPERMT2##Suffix##Z128rmbkz: \
2199 case X86::VPERMI2##Suffix##Z256rmbkz: \
2200 case X86::VPERMT2##Suffix##Z256rmbkz: \
2201 case X86::VPERMI2##Suffix##Zrmbkz: \
2202 case X86::VPERMT2##Suffix##Zrmbkz:
2203
2204 switch (Opcode) {
2205 default:
2206 return false;
2207 VPERM_CASES(B)
2212 VPERM_CASES(W)
2213 return true;
2214 }
2215#undef VPERM_CASES_BROADCAST
2216#undef VPERM_CASES
2217}
2218
2219// Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2220// from the I opcode to the T opcode and vice versa.
2221static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
2222#define VPERM_CASES(Orig, New) \
2223 case X86::Orig##Z128rr: \
2224 return X86::New##Z128rr; \
2225 case X86::Orig##Z128rrkz: \
2226 return X86::New##Z128rrkz; \
2227 case X86::Orig##Z128rm: \
2228 return X86::New##Z128rm; \
2229 case X86::Orig##Z128rmkz: \
2230 return X86::New##Z128rmkz; \
2231 case X86::Orig##Z256rr: \
2232 return X86::New##Z256rr; \
2233 case X86::Orig##Z256rrkz: \
2234 return X86::New##Z256rrkz; \
2235 case X86::Orig##Z256rm: \
2236 return X86::New##Z256rm; \
2237 case X86::Orig##Z256rmkz: \
2238 return X86::New##Z256rmkz; \
2239 case X86::Orig##Zrr: \
2240 return X86::New##Zrr; \
2241 case X86::Orig##Zrrkz: \
2242 return X86::New##Zrrkz; \
2243 case X86::Orig##Zrm: \
2244 return X86::New##Zrm; \
2245 case X86::Orig##Zrmkz: \
2246 return X86::New##Zrmkz;
2247
2248#define VPERM_CASES_BROADCAST(Orig, New) \
2249 VPERM_CASES(Orig, New) \
2250 case X86::Orig##Z128rmb: \
2251 return X86::New##Z128rmb; \
2252 case X86::Orig##Z128rmbkz: \
2253 return X86::New##Z128rmbkz; \
2254 case X86::Orig##Z256rmb: \
2255 return X86::New##Z256rmb; \
2256 case X86::Orig##Z256rmbkz: \
2257 return X86::New##Z256rmbkz; \
2258 case X86::Orig##Zrmb: \
2259 return X86::New##Zrmb; \
2260 case X86::Orig##Zrmbkz: \
2261 return X86::New##Zrmbkz;
2262
2263 switch (Opcode) {
2264 VPERM_CASES(VPERMI2B, VPERMT2B)
2265 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
2266 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2267 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2268 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
2269 VPERM_CASES(VPERMI2W, VPERMT2W)
2270 VPERM_CASES(VPERMT2B, VPERMI2B)
2271 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
2272 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2273 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2274 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
2275 VPERM_CASES(VPERMT2W, VPERMI2W)
2276 }
2277
2278 llvm_unreachable("Unreachable!");
2279#undef VPERM_CASES_BROADCAST
2280#undef VPERM_CASES
2281}
2282
2284 unsigned OpIdx1,
2285 unsigned OpIdx2) const {
2286 auto CloneIfNew = [&](MachineInstr &MI) {
2287 return std::exchange(NewMI, false)
2288 ? MI.getParent()->getParent()->CloneMachineInstr(&MI)
2289 : &MI;
2290 };
2291 MachineInstr *WorkingMI = nullptr;
2292 unsigned Opc = MI.getOpcode();
2293
2294#define CASE_ND(OP) \
2295 case X86::OP: \
2296 case X86::OP##_ND:
2297
2298 switch (Opc) {
2299 // SHLD B, C, I <-> SHRD C, B, (BitWidth - I)
2300 CASE_ND(SHRD16rri8)
2301 CASE_ND(SHLD16rri8)
2302 CASE_ND(SHRD32rri8)
2303 CASE_ND(SHLD32rri8)
2304 CASE_ND(SHRD64rri8)
2305 CASE_ND(SHLD64rri8) {
2306 unsigned Size;
2307 switch (Opc) {
2308 default:
2309 llvm_unreachable("Unreachable!");
2310#define FROM_TO_SIZE(A, B, S) \
2311 case X86::A: \
2312 Opc = X86::B; \
2313 Size = S; \
2314 break; \
2315 case X86::A##_ND: \
2316 Opc = X86::B##_ND; \
2317 Size = S; \
2318 break; \
2319 case X86::B: \
2320 Opc = X86::A; \
2321 Size = S; \
2322 break; \
2323 case X86::B##_ND: \
2324 Opc = X86::A##_ND; \
2325 Size = S; \
2326 break;
2327
2328 FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16)
2329 FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32)
2330 FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64)
2331#undef FROM_TO_SIZE
2332 }
2333 WorkingMI = CloneIfNew(MI);
2334 WorkingMI->setDesc(get(Opc));
2335 WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm());
2336 break;
2337 }
2338 case X86::PFSUBrr:
2339 case X86::PFSUBRrr:
2340 // PFSUB x, y: x = x - y
2341 // PFSUBR x, y: x = y - x
2342 WorkingMI = CloneIfNew(MI);
2343 WorkingMI->setDesc(
2344 get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr));
2345 break;
2346 case X86::BLENDPDrri:
2347 case X86::BLENDPSrri:
2348 case X86::VBLENDPDrri:
2349 case X86::VBLENDPSrri:
2350 // If we're optimizing for size, try to use MOVSD/MOVSS.
2351 if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2352 unsigned Mask = (Opc == X86::BLENDPDrri || Opc == X86::VBLENDPDrri) ? 0x03: 0x0F;
2353 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2354#define FROM_TO(FROM, TO) \
2355 case X86::FROM: \
2356 Opc = X86::TO; \
2357 break;
2358 switch (Opc) {
2359 default:
2360 llvm_unreachable("Unreachable!");
2361 FROM_TO(BLENDPDrri, MOVSDrr)
2362 FROM_TO(BLENDPSrri, MOVSSrr)
2363 FROM_TO(VBLENDPDrri, VMOVSDrr)
2364 FROM_TO(VBLENDPSrri, VMOVSSrr)
2365 }
2366 WorkingMI = CloneIfNew(MI);
2367 WorkingMI->setDesc(get(Opc));
2368 WorkingMI->removeOperand(3);
2369 break;
2370 }
2371#undef FROM_TO
2372 }
2373 [[fallthrough]];
2374 case X86::PBLENDWrri:
2375 case X86::VBLENDPDYrri:
2376 case X86::VBLENDPSYrri:
2377 case X86::VPBLENDDrri:
2378 case X86::VPBLENDWrri:
2379 case X86::VPBLENDDYrri:
2380 case X86::VPBLENDWYrri: {
2381 int8_t Mask;
2382 switch (Opc) {
2383 default:
2384 llvm_unreachable("Unreachable!");
2385 case X86::BLENDPDrri:
2386 Mask = (int8_t)0x03;
2387 break;
2388 case X86::BLENDPSrri:
2389 Mask = (int8_t)0x0F;
2390 break;
2391 case X86::PBLENDWrri:
2392 Mask = (int8_t)0xFF;
2393 break;
2394 case X86::VBLENDPDrri:
2395 Mask = (int8_t)0x03;
2396 break;
2397 case X86::VBLENDPSrri:
2398 Mask = (int8_t)0x0F;
2399 break;
2400 case X86::VBLENDPDYrri:
2401 Mask = (int8_t)0x0F;
2402 break;
2403 case X86::VBLENDPSYrri:
2404 Mask = (int8_t)0xFF;
2405 break;
2406 case X86::VPBLENDDrri:
2407 Mask = (int8_t)0x0F;
2408 break;
2409 case X86::VPBLENDWrri:
2410 Mask = (int8_t)0xFF;
2411 break;
2412 case X86::VPBLENDDYrri:
2413 Mask = (int8_t)0xFF;
2414 break;
2415 case X86::VPBLENDWYrri:
2416 Mask = (int8_t)0xFF;
2417 break;
2418 }
2419 // Only the least significant bits of Imm are used.
2420 // Using int8_t to ensure it will be sign extended to the int64_t that
2421 // setImm takes in order to match isel behavior.
2422 int8_t Imm = MI.getOperand(3).getImm() & Mask;
2423 WorkingMI = CloneIfNew(MI);
2424 WorkingMI->getOperand(3).setImm(Mask ^ Imm);
2425 break;
2426 }
2427 case X86::INSERTPSrr:
2428 case X86::VINSERTPSrr:
2429 case X86::VINSERTPSZrr: {
2430 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2431 unsigned ZMask = Imm & 15;
2432 unsigned DstIdx = (Imm >> 4) & 3;
2433 unsigned SrcIdx = (Imm >> 6) & 3;
2434
2435 // We can commute insertps if we zero 2 of the elements, the insertion is
2436 // "inline" and we don't override the insertion with a zero.
2437 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2438 llvm::popcount(ZMask) == 2) {
2439 unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15);
2440 assert(AltIdx < 4 && "Illegal insertion index");
2441 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2442 WorkingMI = CloneIfNew(MI);
2443 WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2444 break;
2445 }
2446 return nullptr;
2447 }
2448 case X86::MOVSDrr:
2449 case X86::MOVSSrr:
2450 case X86::VMOVSDrr:
2451 case X86::VMOVSSrr: {
2452 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2453 if (Subtarget.hasSSE41()) {
2454 unsigned Mask;
2455 switch (Opc) {
2456 default:
2457 llvm_unreachable("Unreachable!");
2458 case X86::MOVSDrr:
2459 Opc = X86::BLENDPDrri;
2460 Mask = 0x02;
2461 break;
2462 case X86::MOVSSrr:
2463 Opc = X86::BLENDPSrri;
2464 Mask = 0x0E;
2465 break;
2466 case X86::VMOVSDrr:
2467 Opc = X86::VBLENDPDrri;
2468 Mask = 0x02;
2469 break;
2470 case X86::VMOVSSrr:
2471 Opc = X86::VBLENDPSrri;
2472 Mask = 0x0E;
2473 break;
2474 }
2475
2476 WorkingMI = CloneIfNew(MI);
2477 WorkingMI->setDesc(get(Opc));
2478 WorkingMI->addOperand(MachineOperand::CreateImm(Mask));
2479 break;
2480 }
2481
2482 WorkingMI = CloneIfNew(MI);
2483 WorkingMI->setDesc(get(X86::SHUFPDrri));
2484 WorkingMI->addOperand(MachineOperand::CreateImm(0x02));
2485 break;
2486 }
2487 case X86::SHUFPDrri: {
2488 // Commute to MOVSD.
2489 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2490 WorkingMI = CloneIfNew(MI);
2491 WorkingMI->setDesc(get(X86::MOVSDrr));
2492 WorkingMI->removeOperand(3);
2493 break;
2494 }
2495 case X86::PCLMULQDQrri:
2496 case X86::VPCLMULQDQrri:
2497 case X86::VPCLMULQDQYrri:
2498 case X86::VPCLMULQDQZrri:
2499 case X86::VPCLMULQDQZ128rri:
2500 case X86::VPCLMULQDQZ256rri: {
2501 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2502 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2503 unsigned Imm = MI.getOperand(3).getImm();
2504 unsigned Src1Hi = Imm & 0x01;
2505 unsigned Src2Hi = Imm & 0x10;
2506 WorkingMI = CloneIfNew(MI);
2507 WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2508 break;
2509 }
2510 case X86::VPCMPBZ128rri:
2511 case X86::VPCMPUBZ128rri:
2512 case X86::VPCMPBZ256rri:
2513 case X86::VPCMPUBZ256rri:
2514 case X86::VPCMPBZrri:
2515 case X86::VPCMPUBZrri:
2516 case X86::VPCMPDZ128rri:
2517 case X86::VPCMPUDZ128rri:
2518 case X86::VPCMPDZ256rri:
2519 case X86::VPCMPUDZ256rri:
2520 case X86::VPCMPDZrri:
2521 case X86::VPCMPUDZrri:
2522 case X86::VPCMPQZ128rri:
2523 case X86::VPCMPUQZ128rri:
2524 case X86::VPCMPQZ256rri:
2525 case X86::VPCMPUQZ256rri:
2526 case X86::VPCMPQZrri:
2527 case X86::VPCMPUQZrri:
2528 case X86::VPCMPWZ128rri:
2529 case X86::VPCMPUWZ128rri:
2530 case X86::VPCMPWZ256rri:
2531 case X86::VPCMPUWZ256rri:
2532 case X86::VPCMPWZrri:
2533 case X86::VPCMPUWZrri:
2534 case X86::VPCMPBZ128rrik:
2535 case X86::VPCMPUBZ128rrik:
2536 case X86::VPCMPBZ256rrik:
2537 case X86::VPCMPUBZ256rrik:
2538 case X86::VPCMPBZrrik:
2539 case X86::VPCMPUBZrrik:
2540 case X86::VPCMPDZ128rrik:
2541 case X86::VPCMPUDZ128rrik:
2542 case X86::VPCMPDZ256rrik:
2543 case X86::VPCMPUDZ256rrik:
2544 case X86::VPCMPDZrrik:
2545 case X86::VPCMPUDZrrik:
2546 case X86::VPCMPQZ128rrik:
2547 case X86::VPCMPUQZ128rrik:
2548 case X86::VPCMPQZ256rrik:
2549 case X86::VPCMPUQZ256rrik:
2550 case X86::VPCMPQZrrik:
2551 case X86::VPCMPUQZrrik:
2552 case X86::VPCMPWZ128rrik:
2553 case X86::VPCMPUWZ128rrik:
2554 case X86::VPCMPWZ256rrik:
2555 case X86::VPCMPUWZ256rrik:
2556 case X86::VPCMPWZrrik:
2557 case X86::VPCMPUWZrrik:
2558 WorkingMI = CloneIfNew(MI);
2559 // Flip comparison mode immediate (if necessary).
2560 WorkingMI->getOperand(MI.getNumOperands() - 1)
2562 MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7));
2563 break;
2564 case X86::VPCOMBri:
2565 case X86::VPCOMUBri:
2566 case X86::VPCOMDri:
2567 case X86::VPCOMUDri:
2568 case X86::VPCOMQri:
2569 case X86::VPCOMUQri:
2570 case X86::VPCOMWri:
2571 case X86::VPCOMUWri:
2572 WorkingMI = CloneIfNew(MI);
2573 // Flip comparison mode immediate (if necessary).
2574 WorkingMI->getOperand(3).setImm(
2575 X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7));
2576 break;
2577 case X86::VCMPSDZrri:
2578 case X86::VCMPSSZrri:
2579 case X86::VCMPPDZrri:
2580 case X86::VCMPPSZrri:
2581 case X86::VCMPSHZrri:
2582 case X86::VCMPPHZrri:
2583 case X86::VCMPPHZ128rri:
2584 case X86::VCMPPHZ256rri:
2585 case X86::VCMPPDZ128rri:
2586 case X86::VCMPPSZ128rri:
2587 case X86::VCMPPDZ256rri:
2588 case X86::VCMPPSZ256rri:
2589 case X86::VCMPPDZrrik:
2590 case X86::VCMPPSZrrik:
2591 case X86::VCMPPDZ128rrik:
2592 case X86::VCMPPSZ128rrik:
2593 case X86::VCMPPDZ256rrik:
2594 case X86::VCMPPSZ256rrik:
2595 WorkingMI = CloneIfNew(MI);
2596 WorkingMI->getOperand(MI.getNumExplicitOperands() - 1)
2598 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f));
2599 break;
2600 case X86::VPERM2F128rr:
2601 case X86::VPERM2I128rr:
2602 // Flip permute source immediate.
2603 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2604 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2605 WorkingMI = CloneIfNew(MI);
2606 WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22);
2607 break;
2608 case X86::MOVHLPSrr:
2609 case X86::UNPCKHPDrr:
2610 case X86::VMOVHLPSrr:
2611 case X86::VUNPCKHPDrr:
2612 case X86::VMOVHLPSZrr:
2613 case X86::VUNPCKHPDZ128rr:
2614 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2615
2616 switch (Opc) {
2617 default:
2618 llvm_unreachable("Unreachable!");
2619 case X86::MOVHLPSrr:
2620 Opc = X86::UNPCKHPDrr;
2621 break;
2622 case X86::UNPCKHPDrr:
2623 Opc = X86::MOVHLPSrr;
2624 break;
2625 case X86::VMOVHLPSrr:
2626 Opc = X86::VUNPCKHPDrr;
2627 break;
2628 case X86::VUNPCKHPDrr:
2629 Opc = X86::VMOVHLPSrr;
2630 break;
2631 case X86::VMOVHLPSZrr:
2632 Opc = X86::VUNPCKHPDZ128rr;
2633 break;
2634 case X86::VUNPCKHPDZ128rr:
2635 Opc = X86::VMOVHLPSZrr;
2636 break;
2637 }
2638 WorkingMI = CloneIfNew(MI);
2639 WorkingMI->setDesc(get(Opc));
2640 break;
2641 CASE_ND(CMOV16rr)
2642 CASE_ND(CMOV32rr)
2643 CASE_ND(CMOV64rr) {
2644 WorkingMI = CloneIfNew(MI);
2645 unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2646 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2648 break;
2649 }
2650 case X86::VPTERNLOGDZrri:
2651 case X86::VPTERNLOGDZrmi:
2652 case X86::VPTERNLOGDZ128rri:
2653 case X86::VPTERNLOGDZ128rmi:
2654 case X86::VPTERNLOGDZ256rri:
2655 case X86::VPTERNLOGDZ256rmi:
2656 case X86::VPTERNLOGQZrri:
2657 case X86::VPTERNLOGQZrmi:
2658 case X86::VPTERNLOGQZ128rri:
2659 case X86::VPTERNLOGQZ128rmi:
2660 case X86::VPTERNLOGQZ256rri:
2661 case X86::VPTERNLOGQZ256rmi:
2662 case X86::VPTERNLOGDZrrik:
2663 case X86::VPTERNLOGDZ128rrik:
2664 case X86::VPTERNLOGDZ256rrik:
2665 case X86::VPTERNLOGQZrrik:
2666 case X86::VPTERNLOGQZ128rrik:
2667 case X86::VPTERNLOGQZ256rrik:
2668 case X86::VPTERNLOGDZrrikz:
2669 case X86::VPTERNLOGDZrmikz:
2670 case X86::VPTERNLOGDZ128rrikz:
2671 case X86::VPTERNLOGDZ128rmikz:
2672 case X86::VPTERNLOGDZ256rrikz:
2673 case X86::VPTERNLOGDZ256rmikz:
2674 case X86::VPTERNLOGQZrrikz:
2675 case X86::VPTERNLOGQZrmikz:
2676 case X86::VPTERNLOGQZ128rrikz:
2677 case X86::VPTERNLOGQZ128rmikz:
2678 case X86::VPTERNLOGQZ256rrikz:
2679 case X86::VPTERNLOGQZ256rmikz:
2680 case X86::VPTERNLOGDZ128rmbi:
2681 case X86::VPTERNLOGDZ256rmbi:
2682 case X86::VPTERNLOGDZrmbi:
2683 case X86::VPTERNLOGQZ128rmbi:
2684 case X86::VPTERNLOGQZ256rmbi:
2685 case X86::VPTERNLOGQZrmbi:
2686 case X86::VPTERNLOGDZ128rmbikz:
2687 case X86::VPTERNLOGDZ256rmbikz:
2688 case X86::VPTERNLOGDZrmbikz:
2689 case X86::VPTERNLOGQZ128rmbikz:
2690 case X86::VPTERNLOGQZ256rmbikz:
2691 case X86::VPTERNLOGQZrmbikz: {
2692 WorkingMI = CloneIfNew(MI);
2693 commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2);
2694 break;
2695 }
2696 default:
2698 WorkingMI = CloneIfNew(MI);
2699 WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opc)));
2700 break;
2701 }
2702
2703 if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) {
2704 WorkingMI = CloneIfNew(MI);
2705 WorkingMI->setDesc(
2706 get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group)));
2707 break;
2708 }
2709 }
2710 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2711}
2712
2713bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2714 unsigned &SrcOpIdx1,
2715 unsigned &SrcOpIdx2,
2716 bool IsIntrinsic) const {
2717 uint64_t TSFlags = MI.getDesc().TSFlags;
2718
2719 unsigned FirstCommutableVecOp = 1;
2720 unsigned LastCommutableVecOp = 3;
2721 unsigned KMaskOp = -1U;
2722 if (X86II::isKMasked(TSFlags)) {
2723 // For k-zero-masked operations it is Ok to commute the first vector
2724 // operand. Unless this is an intrinsic instruction.
2725 // For regular k-masked operations a conservative choice is done as the
2726 // elements of the first vector operand, for which the corresponding bit
2727 // in the k-mask operand is set to 0, are copied to the result of the
2728 // instruction.
2729 // TODO/FIXME: The commute still may be legal if it is known that the
2730 // k-mask operand is set to either all ones or all zeroes.
2731 // It is also Ok to commute the 1st operand if all users of MI use only
2732 // the elements enabled by the k-mask operand. For example,
2733 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2734 // : v1[i];
2735 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2736 // // Ok, to commute v1 in FMADD213PSZrk.
2737
2738 // The k-mask operand has index = 2 for masked and zero-masked operations.
2739 KMaskOp = 2;
2740
2741 // The operand with index = 1 is used as a source for those elements for
2742 // which the corresponding bit in the k-mask is set to 0.
2743 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2744 FirstCommutableVecOp = 3;
2745
2746 LastCommutableVecOp++;
2747 } else if (IsIntrinsic) {
2748 // Commuting the first operand of an intrinsic instruction isn't possible
2749 // unless we can prove that only the lowest element of the result is used.
2750 FirstCommutableVecOp = 2;
2751 }
2752
2753 if (isMem(MI, LastCommutableVecOp))
2754 LastCommutableVecOp--;
2755
2756 // Only the first RegOpsNum operands are commutable.
2757 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2758 // that the operand is not specified/fixed.
2759 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2760 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2761 SrcOpIdx1 == KMaskOp))
2762 return false;
2763 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2764 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2765 SrcOpIdx2 == KMaskOp))
2766 return false;
2767
2768 // Look for two different register operands assumed to be commutable
2769 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2770 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2771 SrcOpIdx2 == CommuteAnyOperandIndex) {
2772 unsigned CommutableOpIdx2 = SrcOpIdx2;
2773
2774 // At least one of operands to be commuted is not specified and
2775 // this method is free to choose appropriate commutable operands.
2776 if (SrcOpIdx1 == SrcOpIdx2)
2777 // Both of operands are not fixed. By default set one of commutable
2778 // operands to the last register operand of the instruction.
2779 CommutableOpIdx2 = LastCommutableVecOp;
2780 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2781 // Only one of operands is not fixed.
2782 CommutableOpIdx2 = SrcOpIdx1;
2783
2784 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2785 // operand and assign its index to CommutableOpIdx1.
2786 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2787
2788 unsigned CommutableOpIdx1;
2789 for (CommutableOpIdx1 = LastCommutableVecOp;
2790 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2791 // Just ignore and skip the k-mask operand.
2792 if (CommutableOpIdx1 == KMaskOp)
2793 continue;
2794
2795 // The commuted operands must have different registers.
2796 // Otherwise, the commute transformation does not change anything and
2797 // is useless then.
2798 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2799 break;
2800 }
2801
2802 // No appropriate commutable operands were found.
2803 if (CommutableOpIdx1 < FirstCommutableVecOp)
2804 return false;
2805
2806 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2807 // to return those values.
2808 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2809 CommutableOpIdx2))
2810 return false;
2811 }
2812
2813 return true;
2814}
2815
2817 unsigned &SrcOpIdx1,
2818 unsigned &SrcOpIdx2) const {
2819 const MCInstrDesc &Desc = MI.getDesc();
2820 if (!Desc.isCommutable())
2821 return false;
2822
2823 switch (MI.getOpcode()) {
2824 case X86::CMPSDrri:
2825 case X86::CMPSSrri:
2826 case X86::CMPPDrri:
2827 case X86::CMPPSrri:
2828 case X86::VCMPSDrri:
2829 case X86::VCMPSSrri:
2830 case X86::VCMPPDrri:
2831 case X86::VCMPPSrri:
2832 case X86::VCMPPDYrri:
2833 case X86::VCMPPSYrri:
2834 case X86::VCMPSDZrri:
2835 case X86::VCMPSSZrri:
2836 case X86::VCMPPDZrri:
2837 case X86::VCMPPSZrri:
2838 case X86::VCMPSHZrri:
2839 case X86::VCMPPHZrri:
2840 case X86::VCMPPHZ128rri:
2841 case X86::VCMPPHZ256rri:
2842 case X86::VCMPPDZ128rri:
2843 case X86::VCMPPSZ128rri:
2844 case X86::VCMPPDZ256rri:
2845 case X86::VCMPPSZ256rri:
2846 case X86::VCMPPDZrrik:
2847 case X86::VCMPPSZrrik:
2848 case X86::VCMPPDZ128rrik:
2849 case X86::VCMPPSZ128rrik:
2850 case X86::VCMPPDZ256rrik:
2851 case X86::VCMPPSZ256rrik: {
2852 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2853
2854 // Float comparison can be safely commuted for
2855 // Ordered/Unordered/Equal/NotEqual tests
2856 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2857 switch (Imm) {
2858 default:
2859 // EVEX versions can be commuted.
2860 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2861 break;
2862 return false;
2863 case 0x00: // EQUAL
2864 case 0x03: // UNORDERED
2865 case 0x04: // NOT EQUAL
2866 case 0x07: // ORDERED
2867 break;
2868 }
2869
2870 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2871 // when masked).
2872 // Assign them to the returned operand indices here.
2873 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2874 2 + OpOffset);
2875 }
2876 case X86::MOVSSrr:
2877 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2878 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2879 // AVX implies sse4.1.
2880 if (Subtarget.hasSSE41())
2881 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2882 return false;
2883 case X86::SHUFPDrri:
2884 // We can commute this to MOVSD.
2885 if (MI.getOperand(3).getImm() == 0x02)
2886 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2887 return false;
2888 case X86::MOVHLPSrr:
2889 case X86::UNPCKHPDrr:
2890 case X86::VMOVHLPSrr:
2891 case X86::VUNPCKHPDrr:
2892 case X86::VMOVHLPSZrr:
2893 case X86::VUNPCKHPDZ128rr:
2894 if (Subtarget.hasSSE2())
2895 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2896 return false;
2897 case X86::VPTERNLOGDZrri:
2898 case X86::VPTERNLOGDZrmi:
2899 case X86::VPTERNLOGDZ128rri:
2900 case X86::VPTERNLOGDZ128rmi:
2901 case X86::VPTERNLOGDZ256rri:
2902 case X86::VPTERNLOGDZ256rmi:
2903 case X86::VPTERNLOGQZrri:
2904 case X86::VPTERNLOGQZrmi:
2905 case X86::VPTERNLOGQZ128rri:
2906 case X86::VPTERNLOGQZ128rmi:
2907 case X86::VPTERNLOGQZ256rri:
2908 case X86::VPTERNLOGQZ256rmi:
2909 case X86::VPTERNLOGDZrrik:
2910 case X86::VPTERNLOGDZ128rrik:
2911 case X86::VPTERNLOGDZ256rrik:
2912 case X86::VPTERNLOGQZrrik:
2913 case X86::VPTERNLOGQZ128rrik:
2914 case X86::VPTERNLOGQZ256rrik:
2915 case X86::VPTERNLOGDZrrikz:
2916 case X86::VPTERNLOGDZrmikz:
2917 case X86::VPTERNLOGDZ128rrikz:
2918 case X86::VPTERNLOGDZ128rmikz:
2919 case X86::VPTERNLOGDZ256rrikz:
2920 case X86::VPTERNLOGDZ256rmikz:
2921 case X86::VPTERNLOGQZrrikz:
2922 case X86::VPTERNLOGQZrmikz:
2923 case X86::VPTERNLOGQZ128rrikz:
2924 case X86::VPTERNLOGQZ128rmikz:
2925 case X86::VPTERNLOGQZ256rrikz:
2926 case X86::VPTERNLOGQZ256rmikz:
2927 case X86::VPTERNLOGDZ128rmbi:
2928 case X86::VPTERNLOGDZ256rmbi:
2929 case X86::VPTERNLOGDZrmbi:
2930 case X86::VPTERNLOGQZ128rmbi:
2931 case X86::VPTERNLOGQZ256rmbi:
2932 case X86::VPTERNLOGQZrmbi:
2933 case X86::VPTERNLOGDZ128rmbikz:
2934 case X86::VPTERNLOGDZ256rmbikz:
2935 case X86::VPTERNLOGDZrmbikz:
2936 case X86::VPTERNLOGQZ128rmbikz:
2937 case X86::VPTERNLOGQZ256rmbikz:
2938 case X86::VPTERNLOGQZrmbikz:
2939 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2940 case X86::VPDPWSSDYrr:
2941 case X86::VPDPWSSDrr:
2942 case X86::VPDPWSSDSYrr:
2943 case X86::VPDPWSSDSrr:
2944 case X86::VPDPWUUDrr:
2945 case X86::VPDPWUUDYrr:
2946 case X86::VPDPWUUDSrr:
2947 case X86::VPDPWUUDSYrr:
2948 case X86::VPDPBSSDSrr:
2949 case X86::VPDPBSSDSYrr:
2950 case X86::VPDPBSSDrr:
2951 case X86::VPDPBSSDYrr:
2952 case X86::VPDPBUUDSrr:
2953 case X86::VPDPBUUDSYrr:
2954 case X86::VPDPBUUDrr:
2955 case X86::VPDPBUUDYrr:
2956 case X86::VPDPWSSDZ128r:
2957 case X86::VPDPWSSDZ128rk:
2958 case X86::VPDPWSSDZ128rkz:
2959 case X86::VPDPWSSDZ256r:
2960 case X86::VPDPWSSDZ256rk:
2961 case X86::VPDPWSSDZ256rkz:
2962 case X86::VPDPWSSDZr:
2963 case X86::VPDPWSSDZrk:
2964 case X86::VPDPWSSDZrkz:
2965 case X86::VPDPWSSDSZ128r:
2966 case X86::VPDPWSSDSZ128rk:
2967 case X86::VPDPWSSDSZ128rkz:
2968 case X86::VPDPWSSDSZ256r:
2969 case X86::VPDPWSSDSZ256rk:
2970 case X86::VPDPWSSDSZ256rkz:
2971 case X86::VPDPWSSDSZr:
2972 case X86::VPDPWSSDSZrk:
2973 case X86::VPDPWSSDSZrkz:
2974 case X86::VPMADD52HUQrr:
2975 case X86::VPMADD52HUQYrr:
2976 case X86::VPMADD52HUQZ128r:
2977 case X86::VPMADD52HUQZ128rk:
2978 case X86::VPMADD52HUQZ128rkz:
2979 case X86::VPMADD52HUQZ256r:
2980 case X86::VPMADD52HUQZ256rk:
2981 case X86::VPMADD52HUQZ256rkz:
2982 case X86::VPMADD52HUQZr:
2983 case X86::VPMADD52HUQZrk:
2984 case X86::VPMADD52HUQZrkz:
2985 case X86::VPMADD52LUQrr:
2986 case X86::VPMADD52LUQYrr:
2987 case X86::VPMADD52LUQZ128r:
2988 case X86::VPMADD52LUQZ128rk:
2989 case X86::VPMADD52LUQZ128rkz:
2990 case X86::VPMADD52LUQZ256r:
2991 case X86::VPMADD52LUQZ256rk:
2992 case X86::VPMADD52LUQZ256rkz:
2993 case X86::VPMADD52LUQZr:
2994 case X86::VPMADD52LUQZrk:
2995 case X86::VPMADD52LUQZrkz:
2996 case X86::VFMADDCPHZr:
2997 case X86::VFMADDCPHZrk:
2998 case X86::VFMADDCPHZrkz:
2999 case X86::VFMADDCPHZ128r:
3000 case X86::VFMADDCPHZ128rk:
3001 case X86::VFMADDCPHZ128rkz:
3002 case X86::VFMADDCPHZ256r:
3003 case X86::VFMADDCPHZ256rk:
3004 case X86::VFMADDCPHZ256rkz:
3005 case X86::VFMADDCSHZr:
3006 case X86::VFMADDCSHZrk:
3007 case X86::VFMADDCSHZrkz: {
3008 unsigned CommutableOpIdx1 = 2;
3009 unsigned CommutableOpIdx2 = 3;
3010 if (X86II::isKMasked(Desc.TSFlags)) {
3011 // Skip the mask register.
3012 ++CommutableOpIdx1;
3013 ++CommutableOpIdx2;
3014 }
3015 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3016 CommutableOpIdx2))
3017 return false;
3018 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
3019 // No idea.
3020 return false;
3021 return true;
3022 }
3023
3024 default:
3025 const X86InstrFMA3Group *FMA3Group =
3026 getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags);
3027 if (FMA3Group)
3028 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
3029 FMA3Group->isIntrinsic());
3030
3031 // Handled masked instructions since we need to skip over the mask input
3032 // and the preserved input.
3033 if (X86II::isKMasked(Desc.TSFlags)) {
3034 // First assume that the first input is the mask operand and skip past it.
3035 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
3036 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
3037 // Check if the first input is tied. If there isn't one then we only
3038 // need to skip the mask operand which we did above.
3039 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
3040 MCOI::TIED_TO) != -1)) {
3041 // If this is zero masking instruction with a tied operand, we need to
3042 // move the first index back to the first input since this must
3043 // be a 3 input instruction and we want the first two non-mask inputs.
3044 // Otherwise this is a 2 input instruction with a preserved input and
3045 // mask, so we need to move the indices to skip one more input.
3046 if (X86II::isKMergeMasked(Desc.TSFlags)) {
3047 ++CommutableOpIdx1;
3048 ++CommutableOpIdx2;
3049 } else {
3050 --CommutableOpIdx1;
3051 }
3052 }
3053
3054 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3055 CommutableOpIdx2))
3056 return false;
3057
3058 if (!MI.getOperand(SrcOpIdx1).isReg() ||
3059 !MI.getOperand(SrcOpIdx2).isReg())
3060 // No idea.
3061 return false;
3062 return true;
3063 }
3064
3065 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3066 }
3067 return false;
3068}
3069
3071 unsigned Opcode = MI->getOpcode();
3072 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
3073 Opcode != X86::LEA64_32r)
3074 return false;
3075
3076 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
3077 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
3078 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
3079
3080 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
3081 Scale.getImm() > 1)
3082 return false;
3083
3084 return true;
3085}
3086
3088 // Currently we're interested in following sequence only.
3089 // r3 = lea r1, r2
3090 // r5 = add r3, r4
3091 // Both r3 and r4 are killed in add, we hope the add instruction has the
3092 // operand order
3093 // r5 = add r4, r3
3094 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
3095 unsigned Opcode = MI.getOpcode();
3096 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
3097 return false;
3098
3099 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3100 Register Reg1 = MI.getOperand(1).getReg();
3101 Register Reg2 = MI.getOperand(2).getReg();
3102
3103 // Check if Reg1 comes from LEA in the same MBB.
3104 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
3105 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3106 Commute = true;
3107 return true;
3108 }
3109 }
3110
3111 // Check if Reg2 comes from LEA in the same MBB.
3112 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
3113 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
3114 Commute = false;
3115 return true;
3116 }
3117 }
3118
3119 return false;
3120}
3121
3123 unsigned Opcode = MCID.getOpcode();
3124 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode) ||
3125 X86::isCFCMOVCC(Opcode) || X86::isCCMPCC(Opcode) ||
3126 X86::isCTESTCC(Opcode)))
3127 return -1;
3128 // Assume that condition code is always the last use operand.
3129 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs();
3130 return NumUses - 1;
3131}
3132
3134 const MCInstrDesc &MCID = MI.getDesc();
3135 int CondNo = getCondSrcNoFromDesc(MCID);
3136 if (CondNo < 0)
3137 return X86::COND_INVALID;
3138 CondNo += MCID.getNumDefs();
3139 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm());
3140}
3141
3143 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3145}
3146
3148 return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3150}
3151
3153 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3155}
3156
3158 return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI)
3160}
3161
3163 return X86::isCCMPCC(MI.getOpcode()) || X86::isCTESTCC(MI.getOpcode())
3166}
3167
3169 // CCMP/CTEST has two conditional operands:
3170 // - SCC: source conditonal code (same as CMOV)
3171 // - DCF: destination conditional flags, which has 4 valid bits
3172 //
3173 // +----+----+----+----+
3174 // | OF | SF | ZF | CF |
3175 // +----+----+----+----+
3176 //
3177 // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates
3178 // the conditional flags by as follows:
3179 //
3180 // OF = DCF.OF
3181 // SF = DCF.SF
3182 // ZF = DCF.ZF
3183 // CF = DCF.CF
3184 // PF = DCF.CF
3185 // AF = 0 (Auxiliary Carry Flag)
3186 //
3187 // Otherwise, the CMP or TEST is executed and it updates the
3188 // CSPAZO flags normally.
3189 //
3190 // NOTE:
3191 // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value.
3192 // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value.
3193
3194 enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF };
3195
3196 switch (CC) {
3197 default:
3198 llvm_unreachable("Illegal condition code!");
3199 case X86::COND_NO:
3200 case X86::COND_NE:
3201 case X86::COND_GE:
3202 case X86::COND_G:
3203 case X86::COND_AE:
3204 case X86::COND_A:
3205 case X86::COND_NS:
3206 case X86::COND_NP:
3207 return 0;
3208 case X86::COND_O:
3209 return OF;
3210 case X86::COND_B:
3211 case X86::COND_BE:
3212 return CF;
3213 break;
3214 case X86::COND_E:
3215 case X86::COND_LE:
3216 return ZF;
3217 case X86::COND_S:
3218 case X86::COND_L:
3219 return SF;
3220 case X86::COND_P:
3221 return PF;
3222 }
3223}
3224
3225#define GET_X86_NF_TRANSFORM_TABLE
3226#define GET_X86_ND2NONND_TABLE
3227#include "X86GenInstrMapping.inc"
3228
3230 unsigned Opc) {
3231 const auto I = llvm::lower_bound(Table, Opc);
3232 return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc;
3233}
3234unsigned X86::getNFVariant(unsigned Opc) {
3235 return getNewOpcFromTable(X86NFTransformTable, Opc);
3236}
3237
3238unsigned X86::getNonNDVariant(unsigned Opc) {
3239 return getNewOpcFromTable(X86ND2NonNDTable, Opc);
3240}
3241
3242/// Return the inverse of the specified condition,
3243/// e.g. turning COND_E to COND_NE.
3245 switch (CC) {
3246 default:
3247 llvm_unreachable("Illegal condition code!");
3248 case X86::COND_E:
3249 return X86::COND_NE;
3250 case X86::COND_NE:
3251 return X86::COND_E;
3252 case X86::COND_L:
3253 return X86::COND_GE;
3254 case X86::COND_LE:
3255 return X86::COND_G;
3256 case X86::COND_G:
3257 return X86::COND_LE;
3258 case X86::COND_GE:
3259 return X86::COND_L;
3260 case X86::COND_B:
3261 return X86::COND_AE;
3262 case X86::COND_BE:
3263 return X86::COND_A;
3264 case X86::COND_A:
3265 return X86::COND_BE;
3266 case X86::COND_AE:
3267 return X86::COND_B;
3268 case X86::COND_S:
3269 return X86::COND_NS;
3270 case X86::COND_NS:
3271 return X86::COND_S;
3272 case X86::COND_P:
3273 return X86::COND_NP;
3274 case X86::COND_NP:
3275 return X86::COND_P;
3276 case X86::COND_O:
3277 return X86::COND_NO;
3278 case X86::COND_NO:
3279 return X86::COND_O;
3280 case X86::COND_NE_OR_P:
3281 return X86::COND_E_AND_NP;
3282 case X86::COND_E_AND_NP:
3283 return X86::COND_NE_OR_P;
3284 }
3285}
3286
3287/// Assuming the flags are set by MI(a,b), return the condition code if we
3288/// modify the instructions such that flags are set by MI(b,a).
3290 switch (CC) {
3291 default:
3292 return X86::COND_INVALID;
3293 case X86::COND_E:
3294 return X86::COND_E;
3295 case X86::COND_NE:
3296 return X86::COND_NE;
3297 case X86::COND_L:
3298 return X86::COND_G;
3299 case X86::COND_LE:
3300 return X86::COND_GE;
3301 case X86::COND_G:
3302 return X86::COND_L;
3303 case X86::COND_GE:
3304 return X86::COND_LE;
3305 case X86::COND_B:
3306 return X86::COND_A;
3307 case X86::COND_BE:
3308 return X86::COND_AE;
3309 case X86::COND_A:
3310 return X86::COND_B;
3311 case X86::COND_AE:
3312 return X86::COND_BE;
3313 }
3314}
3315
3316std::pair<X86::CondCode, bool>
3319 bool NeedSwap = false;
3320 switch (Predicate) {
3321 default:
3322 break;
3323 // Floating-point Predicates
3324 case CmpInst::FCMP_UEQ:
3325 CC = X86::COND_E;
3326 break;
3327 case CmpInst::FCMP_OLT:
3328 NeedSwap = true;
3329 [[fallthrough]];
3330 case CmpInst::FCMP_OGT:
3331 CC = X86::COND_A;
3332 break;
3333 case CmpInst::FCMP_OLE:
3334 NeedSwap = true;
3335 [[fallthrough]];
3336 case CmpInst::FCMP_OGE:
3337 CC = X86::COND_AE;
3338 break;
3339 case CmpInst::FCMP_UGT:
3340 NeedSwap = true;
3341 [[fallthrough]];
3342 case CmpInst::FCMP_ULT:
3343 CC = X86::COND_B;
3344 break;
3345 case CmpInst::FCMP_UGE:
3346 NeedSwap = true;
3347 [[fallthrough]];
3348 case CmpInst::FCMP_ULE:
3349 CC = X86::COND_BE;
3350 break;
3351 case CmpInst::FCMP_ONE:
3352 CC = X86::COND_NE;
3353 break;
3354 case CmpInst::FCMP_UNO:
3355 CC = X86::COND_P;
3356 break;
3357 case CmpInst::FCMP_ORD:
3358 CC = X86::COND_NP;
3359 break;
3360 case CmpInst::FCMP_OEQ:
3361 [[fallthrough]];
3362 case CmpInst::FCMP_UNE:
3364 break;
3365
3366 // Integer Predicates
3367 case CmpInst::ICMP_EQ:
3368 CC = X86::COND_E;
3369 break;
3370 case CmpInst::ICMP_NE:
3371 CC = X86::COND_NE;
3372 break;
3373 case CmpInst::ICMP_UGT:
3374 CC = X86::COND_A;
3375 break;
3376 case CmpInst::ICMP_UGE:
3377 CC = X86::COND_AE;
3378 break;
3379 case CmpInst::ICMP_ULT:
3380 CC = X86::COND_B;
3381 break;
3382 case CmpInst::ICMP_ULE:
3383 CC = X86::COND_BE;
3384 break;
3385 case CmpInst::ICMP_SGT:
3386 CC = X86::COND_G;
3387 break;
3388 case CmpInst::ICMP_SGE:
3389 CC = X86::COND_GE;
3390 break;
3391 case CmpInst::ICMP_SLT:
3392 CC = X86::COND_L;
3393 break;
3394 case CmpInst::ICMP_SLE:
3395 CC = X86::COND_LE;
3396 break;
3397 }
3398
3399 return std::make_pair(CC, NeedSwap);
3400}
3401
3402/// Return a cmov opcode for the given register size in bytes, and operand type.
3403unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand,
3404 bool HasNDD) {
3405 switch (RegBytes) {
3406 default:
3407 llvm_unreachable("Illegal register size!");
3408#define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC)
3409 case 2:
3410 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm)
3411 : GET_ND_IF_ENABLED(X86::CMOV16rr);
3412 case 4:
3413 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm)
3414 : GET_ND_IF_ENABLED(X86::CMOV32rr);
3415 case 8:
3416 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm)
3417 : GET_ND_IF_ENABLED(X86::CMOV64rr);
3418 }
3419}
3420
3421/// Get the VPCMP immediate for the given condition.
3423 switch (CC) {
3424 default:
3425 llvm_unreachable("Unexpected SETCC condition");
3426 case ISD::SETNE:
3427 return 4;
3428 case ISD::SETEQ:
3429 return 0;
3430 case ISD::SETULT:
3431 case ISD::SETLT:
3432 return 1;
3433 case ISD::SETUGT:
3434 case ISD::SETGT:
3435 return 6;
3436 case ISD::SETUGE:
3437 case ISD::SETGE:
3438 return 5;
3439 case ISD::SETULE:
3440 case ISD::SETLE:
3441 return 2;
3442 }
3443}
3444
3445/// Get the VPCMP immediate if the operands are swapped.
3446unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
3447 switch (Imm) {
3448 default:
3449 llvm_unreachable("Unreachable!");
3450 case 0x01:
3451 Imm = 0x06;
3452 break; // LT -> NLE
3453 case 0x02:
3454 Imm = 0x05;
3455 break; // LE -> NLT
3456 case 0x05:
3457 Imm = 0x02;
3458 break; // NLT -> LE
3459 case 0x06:
3460 Imm = 0x01;
3461 break; // NLE -> LT
3462 case 0x00: // EQ
3463 case 0x03: // FALSE
3464 case 0x04: // NE
3465 case 0x07: // TRUE
3466 break;
3467 }
3468
3469 return Imm;
3470}
3471
3472/// Get the VPCOM immediate if the operands are swapped.
3473unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
3474 switch (Imm) {
3475 default:
3476 llvm_unreachable("Unreachable!");
3477 case 0x00:
3478 Imm = 0x02;
3479 break; // LT -> GT
3480 case 0x01:
3481 Imm = 0x03;
3482 break; // LE -> GE
3483 case 0x02:
3484 Imm = 0x00;
3485 break; // GT -> LT
3486 case 0x03:
3487 Imm = 0x01;
3488 break; // GE -> LE
3489 case 0x04: // EQ
3490 case 0x05: // NE
3491 case 0x06: // FALSE
3492 case 0x07: // TRUE
3493 break;
3494 }
3495
3496 return Imm;
3497}
3498
3499/// Get the VCMP immediate if the operands are swapped.
3500unsigned X86::getSwappedVCMPImm(unsigned Imm) {
3501 // Only need the lower 2 bits to distinquish.
3502 switch (Imm & 0x3) {
3503 default:
3504 llvm_unreachable("Unreachable!");
3505 case 0x00:
3506 case 0x03:
3507 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
3508 break;
3509 case 0x01:
3510 case 0x02:
3511 // Need to toggle bits 3:0. Bit 4 stays the same.
3512 Imm ^= 0xf;
3513 break;
3514 }
3515
3516 return Imm;
3517}
3518
3520 if (Info.RegClass == X86::VR128RegClassID ||
3521 Info.RegClass == X86::VR128XRegClassID)
3522 return 128;
3523 if (Info.RegClass == X86::VR256RegClassID ||
3524 Info.RegClass == X86::VR256XRegClassID)
3525 return 256;
3526 if (Info.RegClass == X86::VR512RegClassID)
3527 return 512;
3528 llvm_unreachable("Unknown register class!");
3529}
3530
3531/// Return true if the Reg is X87 register.
3532static bool isX87Reg(unsigned Reg) {
3533 return (Reg == X86::FPCW || Reg == X86::FPSW ||
3534 (Reg >= X86::ST0 && Reg <= X86::ST7));
3535}
3536
3537/// check if the instruction is X87 instruction
3539 // Call defs X87 register, so we special case it here because
3540 // otherwise calls are incorrectly flagged as x87 instructions
3541 // as a result.
3542 if (MI.isCall())
3543 return false;
3544 for (const MachineOperand &MO : MI.operands()) {
3545 if (!MO.isReg())
3546 continue;
3547 if (isX87Reg(MO.getReg()))
3548 return true;
3549 }
3550 return false;
3551}
3552
3554 auto IsMemOp = [](const MCOperandInfo &OpInfo) {
3555 return OpInfo.OperandType == MCOI::OPERAND_MEMORY;
3556 };
3557
3558 const MCInstrDesc &Desc = MI.getDesc();
3559
3560 // Directly invoke the MC-layer routine for real (i.e., non-pseudo)
3561 // instructions (fast case).
3562 if (!X86II::isPseudo(Desc.TSFlags)) {
3563 int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
3564 if (MemRefIdx >= 0)
3565 return MemRefIdx + X86II::getOperandBias(Desc);
3566#ifdef EXPENSIVE_CHECKS
3567 assert(none_of(Desc.operands(), IsMemOp) &&
3568 "Got false negative from X86II::getMemoryOperandNo()!");
3569#endif
3570 return -1;
3571 }
3572
3573 // Otherwise, handle pseudo instructions by examining the type of their
3574 // operands (slow case). An instruction cannot have a memory reference if it
3575 // has fewer than AddrNumOperands (= 5) explicit operands.
3576 unsigned NumOps = Desc.getNumOperands();
3577 if (NumOps < X86::AddrNumOperands) {
3578#ifdef EXPENSIVE_CHECKS
3579 assert(none_of(Desc.operands(), IsMemOp) &&
3580 "Expected no operands to have OPERAND_MEMORY type!");
3581#endif
3582 return -1;
3583 }
3584
3585 // The first operand with type OPERAND_MEMORY indicates the start of a memory
3586 // reference. We expect the following AddrNumOperand-1 operands to also have
3587 // OPERAND_MEMORY type.
3588 for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) {
3589 if (IsMemOp(Desc.operands()[I])) {
3590#ifdef EXPENSIVE_CHECKS
3591 assert(std::all_of(Desc.operands().begin() + I,
3592 Desc.operands().begin() + I + X86::AddrNumOperands,
3593 IsMemOp) &&
3594 "Expected all five operands in the memory reference to have "
3595 "OPERAND_MEMORY type!");
3596#endif
3597 return I;
3598 }
3599 }
3600
3601 return -1;
3602}
3603
3605 unsigned OpNo) {
3606 assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) &&
3607 "Unexpected number of operands!");
3608
3609 const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg);
3610 if (!Index.isReg() || Index.getReg() != X86::NoRegister)
3611 return nullptr;
3612
3613 const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp);
3614 if (!Disp.isCPI() || Disp.getOffset() != 0)
3615 return nullptr;
3616
3618 MI.getParent()->getParent()->getConstantPool()->getConstants();
3619 const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()];
3620
3621 // Bail if this is a machine constant pool entry, we won't be able to dig out
3622 // anything useful.
3623 if (ConstantEntry.isMachineConstantPoolEntry())
3624 return nullptr;
3625
3626 return ConstantEntry.Val.ConstVal;
3627}
3628
3630 switch (MI.getOpcode()) {
3631 case X86::TCRETURNdi:
3632 case X86::TCRETURNri:
3633 case X86::TCRETURNmi:
3634 case X86::TCRETURNdi64:
3635 case X86::TCRETURNri64:
3636 case X86::TCRETURNmi64:
3637 return true;
3638 default:
3639 return false;
3640 }
3641}
3642
3645 const MachineInstr &TailCall) const {
3646
3647 const MachineFunction *MF = TailCall.getMF();
3648
3649 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) {
3650 // Kernel patches thunk calls in runtime, these should never be conditional.
3651 const MachineOperand &Target = TailCall.getOperand(0);
3652 if (Target.isSymbol()) {
3653 StringRef Symbol(Target.getSymbolName());
3654 // this is currently only relevant to r11/kernel indirect thunk.
3655 if (Symbol == "__x86_indirect_thunk_r11")
3656 return false;
3657 }
3658 }
3659
3660 if (TailCall.getOpcode() != X86::TCRETURNdi &&
3661 TailCall.getOpcode() != X86::TCRETURNdi64) {
3662 // Only direct calls can be done with a conditional branch.
3663 return false;
3664 }
3665
3666 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
3667 // Conditional tail calls confuse the Win64 unwinder.
3668 return false;
3669 }
3670
3671 assert(BranchCond.size() == 1);
3672 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
3673 // Can't make a conditional tail call with this condition.
3674 return false;
3675 }
3676
3678 if (X86FI->getTCReturnAddrDelta() != 0 ||
3679 TailCall.getOperand(1).getImm() != 0) {
3680 // A conditional tail call cannot do any stack adjustment.
3681 return false;
3682 }
3683
3684 return true;
3685}
3686
3689 const MachineInstr &TailCall) const {
3690 assert(canMakeTailCallConditional(BranchCond, TailCall));
3691
3693 while (I != MBB.begin()) {
3694 --I;
3695 if (I->isDebugInstr())
3696 continue;
3697 if (!I->isBranch())
3698 assert(0 && "Can't find the branch to replace!");
3699
3701 assert(BranchCond.size() == 1);
3702 if (CC != BranchCond[0].getImm())
3703 continue;
3704
3705 break;
3706 }
3707
3708 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3709 : X86::TCRETURNdi64cc;
3710
3711 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3712 MIB->addOperand(TailCall.getOperand(0)); // Destination.
3713 MIB.addImm(0); // Stack offset (not used).
3714 MIB->addOperand(BranchCond[0]); // Condition.
3715 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3716
3717 // Add implicit uses and defs of all live regs potentially clobbered by the
3718 // call. This way they still appear live across the call.
3719 LivePhysRegs LiveRegs(getRegisterInfo());
3720 LiveRegs.addLiveOuts(MBB);
3722 LiveRegs.stepForward(*MIB, Clobbers);
3723 for (const auto &C : Clobbers) {
3724 MIB.addReg(C.first, RegState::Implicit);
3726 }
3727
3728 I->eraseFromParent();
3729}
3730
3731// Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3732// not be a fallthrough MBB now due to layout changes). Return nullptr if the
3733// fallthrough MBB cannot be identified.
3736 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3737 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3738 // and fallthrough MBB. If we find more than one, we cannot identify the
3739 // fallthrough MBB and should return nullptr.
3740 MachineBasicBlock *FallthroughBB = nullptr;
3741 for (MachineBasicBlock *Succ : MBB->successors()) {
3742 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB))
3743 continue;
3744 // Return a nullptr if we found more than one fallthrough successor.
3745 if (FallthroughBB && FallthroughBB != TBB)
3746 return nullptr;
3747 FallthroughBB = Succ;
3748 }
3749 return FallthroughBB;
3750}
3751
3752bool X86InstrInfo::analyzeBranchImpl(
3755 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3756
3757 // Start from the bottom of the block and work up, examining the
3758 // terminator instructions.
3760 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3761 while (I != MBB.begin()) {
3762 --I;
3763 if (I->isDebugInstr())
3764 continue;
3765
3766 // Working from the bottom, when we see a non-terminator instruction, we're
3767 // done.
3768 if (!isUnpredicatedTerminator(*I))
3769 break;
3770
3771 // A terminator that isn't a branch can't easily be handled by this
3772 // analysis.
3773 if (!I->isBranch())
3774 return true;
3775
3776 // Handle unconditional branches.
3777 if (I->getOpcode() == X86::JMP_1) {
3778 UnCondBrIter = I;
3779
3780 if (!AllowModify) {
3781 TBB = I->getOperand(0).getMBB();
3782 continue;
3783 }
3784
3785 // If the block has any instructions after a JMP, delete them.
3786 MBB.erase(std::next(I), MBB.end());
3787
3788 Cond.clear();
3789 FBB = nullptr;
3790
3791 // Delete the JMP if it's equivalent to a fall-through.
3792 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3793 TBB = nullptr;
3794 I->eraseFromParent();
3795 I = MBB.end();
3796 UnCondBrIter = MBB.end();
3797 continue;
3798 }
3799
3800 // TBB is used to indicate the unconditional destination.
3801 TBB = I->getOperand(0).getMBB();
3802 continue;
3803 }
3804
3805 // Handle conditional branches.
3806 X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3807 if (BranchCode == X86::COND_INVALID)
3808 return true; // Can't handle indirect branch.
3809
3810 // In practice we should never have an undef eflags operand, if we do
3811 // abort here as we are not prepared to preserve the flag.
3812 if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef())
3813 return true;
3814
3815 // Working from the bottom, handle the first conditional branch.
3816 if (Cond.empty()) {
3817 FBB = TBB;
3818 TBB = I->getOperand(0).getMBB();
3819 Cond.push_back(MachineOperand::CreateImm(BranchCode));
3820 CondBranches.push_back(&*I);
3821 continue;
3822 }
3823
3824 // Handle subsequent conditional branches. Only handle the case where all
3825 // conditional branches branch to the same destination and their condition
3826 // opcodes fit one of the special multi-branch idioms.
3827 assert(Cond.size() == 1);
3828 assert(TBB);
3829
3830 // If the conditions are the same, we can leave them alone.
3831 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3832 auto NewTBB = I->getOperand(0).getMBB();
3833 if (OldBranchCode == BranchCode && TBB == NewTBB)
3834 continue;
3835
3836 // If they differ, see if they fit one of the known patterns. Theoretically,
3837 // we could handle more patterns here, but we shouldn't expect to see them
3838 // if instruction selection has done a reasonable job.
3839 if (TBB == NewTBB &&
3840 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3841 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3842 BranchCode = X86::COND_NE_OR_P;
3843 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3844 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3845 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3846 return true;
3847
3848 // X86::COND_E_AND_NP usually has two different branch destinations.
3849 //
3850 // JP B1
3851 // JE B2
3852 // JMP B1
3853 // B1:
3854 // B2:
3855 //
3856 // Here this condition branches to B2 only if NP && E. It has another
3857 // equivalent form:
3858 //
3859 // JNE B1
3860 // JNP B2
3861 // JMP B1
3862 // B1:
3863 // B2:
3864 //
3865 // Similarly it branches to B2 only if E && NP. That is why this condition
3866 // is named with COND_E_AND_NP.
3867 BranchCode = X86::COND_E_AND_NP;
3868 } else
3869 return true;
3870
3871 // Update the MachineOperand.
3872 Cond[0].setImm(BranchCode);
3873 CondBranches.push_back(&*I);
3874 }
3875
3876 return false;
3877}
3878
3881 MachineBasicBlock *&FBB,
3883 bool AllowModify) const {
3884 SmallVector<MachineInstr *, 4> CondBranches;
3885 return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3886}
3887
3889 const MCInstrDesc &Desc = MI.getDesc();
3890 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3891 assert(MemRefBegin >= 0 && "instr should have memory operand");
3892 MemRefBegin += X86II::getOperandBias(Desc);
3893
3894 const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp);
3895 if (!MO.isJTI())
3896 return -1;
3897
3898 return MO.getIndex();
3899}
3900
3902 Register Reg) {
3903 if (!Reg.isVirtual())
3904 return -1;
3905 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
3906 if (MI == nullptr)
3907 return -1;
3908 unsigned Opcode = MI->getOpcode();
3909 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r)
3910 return -1;
3912}
3913
3915 unsigned Opcode = MI.getOpcode();
3916 // Switch-jump pattern for non-PIC code looks like:
3917 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3918 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) {
3920 }
3921 // The pattern for PIC code looks like:
3922 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3923 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3924 // %2 = ADD64rr %1, %0
3925 // JMP64r %2
3926 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) {
3927 Register Reg = MI.getOperand(0).getReg();
3928 if (!Reg.isVirtual())
3929 return -1;
3930 const MachineFunction &MF = *MI.getParent()->getParent();
3931 const MachineRegisterInfo &MRI = MF.getRegInfo();
3932 MachineInstr *Add = MRI.getUniqueVRegDef(Reg);
3933 if (Add == nullptr)
3934 return -1;
3935 if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr)
3936 return -1;
3937 int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg());
3938 if (JTI1 >= 0)
3939 return JTI1;
3940 int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg());
3941 if (JTI2 >= 0)
3942 return JTI2;
3943 }
3944 return -1;
3945}
3946
3948 MachineBranchPredicate &MBP,
3949 bool AllowModify) const {
3950 using namespace std::placeholders;
3951
3953 SmallVector<MachineInstr *, 4> CondBranches;
3954 if (analyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3955 AllowModify))
3956 return true;
3957
3958 if (Cond.size() != 1)
3959 return true;
3960
3961 assert(MBP.TrueDest && "expected!");
3962
3963 if (!MBP.FalseDest)
3964 MBP.FalseDest = MBB.getNextNode();
3965
3967
3968 MachineInstr *ConditionDef = nullptr;
3969 bool SingleUseCondition = true;
3970
3972 if (MI.modifiesRegister(X86::EFLAGS, TRI)) {
3973 ConditionDef = &MI;
3974 break;
3975 }
3976
3977 if (MI.readsRegister(X86::EFLAGS, TRI))
3978 SingleUseCondition = false;
3979 }
3980
3981 if (!ConditionDef)
3982 return true;
3983
3984 if (SingleUseCondition) {
3985 for (auto *Succ : MBB.successors())
3986 if (Succ->isLiveIn(X86::EFLAGS))
3987 SingleUseCondition = false;
3988 }
3989
3990 MBP.ConditionDef = ConditionDef;
3991 MBP.SingleUseCondition = SingleUseCondition;
3992
3993 // Currently we only recognize the simple pattern:
3994 //
3995 // test %reg, %reg
3996 // je %label
3997 //
3998 const unsigned TestOpcode =
3999 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
4000
4001 if (ConditionDef->getOpcode() == TestOpcode &&
4002 ConditionDef->getNumOperands() == 3 &&
4003 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
4004 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
4005 MBP.LHS = ConditionDef->getOperand(0);
4006 MBP.RHS = MachineOperand::CreateImm(0);
4007 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
4008 ? MachineBranchPredicate::PRED_NE
4009 : MachineBranchPredicate::PRED_EQ;
4010 return false;
4011 }
4012
4013 return true;
4014}
4015
4017 int *BytesRemoved) const {
4018 assert(!BytesRemoved && "code size not handled");
4019
4021 unsigned Count = 0;
4022
4023 while (I != MBB.begin()) {
4024 --I;
4025 if (I->isDebugInstr())
4026 continue;
4027 if (I->getOpcode() != X86::JMP_1 &&
4029 break;
4030 // Remove the branch.
4031 I->eraseFromParent();
4032 I = MBB.end();
4033 ++Count;
4034 }
4035
4036 return Count;
4037}
4038
4041 MachineBasicBlock *FBB,
4043 const DebugLoc &DL, int *BytesAdded) const {
4044 // Shouldn't be a fall through.
4045 assert(TBB && "insertBranch must not be told to insert a fallthrough");
4046 assert((Cond.size() == 1 || Cond.size() == 0) &&
4047 "X86 branch conditions have one component!");
4048 assert(!BytesAdded && "code size not handled");
4049
4050 if (Cond.empty()) {
4051 // Unconditional branch?
4052 assert(!FBB && "Unconditional branch with multiple successors!");
4053 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
4054 return 1;
4055 }
4056
4057 // If FBB is null, it is implied to be a fall-through block.
4058 bool FallThru = FBB == nullptr;
4059
4060 // Conditional branch.
4061 unsigned Count = 0;
4062 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
4063 switch (CC) {
4064 case X86::COND_NE_OR_P:
4065 // Synthesize NE_OR_P with two branches.
4066 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
4067 ++Count;
4068 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
4069 ++Count;
4070 break;
4071 case X86::COND_E_AND_NP:
4072 // Use the next block of MBB as FBB if it is null.
4073 if (FBB == nullptr) {
4074 FBB = getFallThroughMBB(&MBB, TBB);
4075 assert(FBB && "MBB cannot be the last block in function when the false "
4076 "body is a fall-through.");
4077 }
4078 // Synthesize COND_E_AND_NP with two branches.
4079 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
4080 ++Count;
4081 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
4082 ++Count;
4083 break;
4084 default: {
4085 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
4086 ++Count;
4087 }
4088 }
4089 if (!FallThru) {
4090 // Two-way Conditional branch. Insert the second branch.
4091 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
4092 ++Count;
4093 }
4094 return Count;
4095}
4096
4099 Register DstReg, Register TrueReg,
4100 Register FalseReg, int &CondCycles,
4101 int &TrueCycles, int &FalseCycles) const {
4102 // Not all subtargets have cmov instructions.
4103 if (!Subtarget.canUseCMOV())
4104 return false;
4105 if (Cond.size() != 1)
4106 return false;
4107 // We cannot do the composite conditions, at least not in SSA form.
4108 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
4109 return false;
4110
4111 // Check register classes.
4113 const TargetRegisterClass *RC =
4114 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
4115 if (!RC)
4116 return false;
4117
4118 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4119 if (X86::GR16RegClass.hasSubClassEq(RC) ||
4120 X86::GR32RegClass.hasSubClassEq(RC) ||
4121 X86::GR64RegClass.hasSubClassEq(RC)) {
4122 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4123 // Bridge. Probably Ivy Bridge as well.
4124 CondCycles = 2;
4125 TrueCycles = 2;
4126 FalseCycles = 2;
4127 return true;
4128 }
4129
4130 // Can't do vectors.
4131 return false;
4132}
4133
4136 const DebugLoc &DL, Register DstReg,
4138 Register FalseReg) const {
4140 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4141 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
4142 assert(Cond.size() == 1 && "Invalid Cond array");
4143 unsigned Opc =
4144 X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
4145 false /*HasMemoryOperand*/, Subtarget.hasNDD());
4146 BuildMI(MBB, I, DL, get(Opc), DstReg)
4147 .addReg(FalseReg)
4148 .addReg(TrueReg)
4149 .addImm(Cond[0].getImm());
4150}
4151
4152/// Test if the given register is a physical h register.
4153static bool isHReg(unsigned Reg) {
4154 return X86::GR8_ABCD_HRegClass.contains(Reg);
4155}
4156
4157// Try and copy between VR128/VR64 and GR64 registers.
4158static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
4159 const X86Subtarget &Subtarget) {
4160 bool HasAVX = Subtarget.hasAVX();
4161 bool HasAVX512 = Subtarget.hasAVX512();
4162 bool HasEGPR = Subtarget.hasEGPR();
4163
4164 // SrcReg(MaskReg) -> DestReg(GR64)
4165 // SrcReg(MaskReg) -> DestReg(GR32)
4166
4167 // All KMASK RegClasses hold the same k registers, can be tested against
4168 // anyone.
4169 if (X86::VK16RegClass.contains(SrcReg)) {
4170 if (X86::GR64RegClass.contains(DestReg)) {
4171 assert(Subtarget.hasBWI());
4172 return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk;
4173 }
4174 if (X86::GR32RegClass.contains(DestReg))
4175 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk)
4176 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk);
4177 }
4178
4179 // SrcReg(GR64) -> DestReg(MaskReg)
4180 // SrcReg(GR32) -> DestReg(MaskReg)
4181
4182 // All KMASK RegClasses hold the same k registers, can be tested against
4183 // anyone.
4184 if (X86::VK16RegClass.contains(DestReg)) {
4185 if (X86::GR64RegClass.contains(SrcReg)) {
4186 assert(Subtarget.hasBWI());
4187 return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr;
4188 }
4189 if (X86::GR32RegClass.contains(SrcReg))
4190 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr)
4191 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr);
4192 }
4193
4194 // SrcReg(VR128) -> DestReg(GR64)
4195 // SrcReg(VR64) -> DestReg(GR64)
4196 // SrcReg(GR64) -> DestReg(VR128)
4197 // SrcReg(GR64) -> DestReg(VR64)
4198
4199 if (X86::GR64RegClass.contains(DestReg)) {
4200 if (X86::VR128XRegClass.contains(SrcReg))
4201 // Copy from a VR128 register to a GR64 register.
4202 return HasAVX512 ? X86::VMOVPQIto64Zrr
4203 : HasAVX ? X86::VMOVPQIto64rr
4204 : X86::MOVPQIto64rr;
4205 if (X86::VR64RegClass.contains(SrcReg))
4206 // Copy from a VR64 register to a GR64 register.
4207 return X86::MMX_MOVD64from64rr;
4208 } else if (X86::GR64RegClass.contains(SrcReg)) {
4209 // Copy from a GR64 register to a VR128 register.
4210 if (X86::VR128XRegClass.contains(DestReg))
4211 return HasAVX512 ? X86::VMOV64toPQIZrr
4212 : HasAVX ? X86::VMOV64toPQIrr
4213 : X86::MOV64toPQIrr;
4214 // Copy from a GR64 register to a VR64 register.
4215 if (X86::VR64RegClass.contains(DestReg))
4216 return X86::MMX_MOVD64to64rr;
4217 }
4218
4219 // SrcReg(VR128) -> DestReg(GR32)
4220 // SrcReg(GR32) -> DestReg(VR128)
4221
4222 if (X86::GR32RegClass.contains(DestReg) &&
4223 X86::VR128XRegClass.contains(SrcReg))
4224 // Copy from a VR128 register to a GR32 register.
4225 return HasAVX512 ? X86::VMOVPDI2DIZrr
4226 : HasAVX ? X86::VMOVPDI2DIrr
4227 : X86::MOVPDI2DIrr;
4228
4229 if (X86::VR128XRegClass.contains(DestReg) &&
4230 X86::GR32RegClass.contains(SrcReg))
4231 // Copy from a VR128 register to a VR128 register.
4232 return HasAVX512 ? X86::VMOVDI2PDIZrr
4233 : HasAVX ? X86::VMOVDI2PDIrr
4234 : X86::MOVDI2PDIrr;
4235 return 0;
4236}
4237
4240 const DebugLoc &DL, MCRegister DestReg,
4241 MCRegister SrcReg, bool KillSrc) const {
4242 // First deal with the normal symmetric copies.
4243 bool HasAVX = Subtarget.hasAVX();
4244 bool HasVLX = Subtarget.hasVLX();
4245 bool HasEGPR = Subtarget.hasEGPR();
4246 unsigned Opc = 0;
4247 if (X86::GR64RegClass.contains(DestReg, SrcReg))
4248 Opc = X86::MOV64rr;
4249 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
4250 Opc = X86::MOV32rr;
4251 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
4252 Opc = X86::MOV16rr;
4253 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
4254 // Copying to or from a physical H register on x86-64 requires a NOREX
4255 // move. Otherwise use a normal move.
4256 if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) {
4257 Opc = X86::MOV8rr_NOREX;
4258 // Both operands must be encodable without an REX prefix.
4259 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
4260 "8-bit H register can not be copied outside GR8_NOREX");
4261 } else
4262 Opc = X86::MOV8rr;
4263 } else if (X86::VR64RegClass.contains(DestReg, SrcReg))
4264 Opc = X86::MMX_MOVQ64rr;
4265 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
4266 if (HasVLX)
4267 Opc = X86::VMOVAPSZ128rr;
4268 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
4269 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
4270 else {
4271 // If this an extended register and we don't have VLX we need to use a
4272 // 512-bit move.
4273 Opc = X86::VMOVAPSZrr;
4275 DestReg =
4276 TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass);
4277 SrcReg =
4278 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4279 }
4280 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
4281 if (HasVLX)
4282 Opc = X86::VMOVAPSZ256rr;
4283 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
4284 Opc = X86::VMOVAPSYrr;
4285 else {
4286 // If this an extended register and we don't have VLX we need to use a
4287 // 512-bit move.
4288 Opc = X86::VMOVAPSZrr;
4290 DestReg =
4291 TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass);
4292 SrcReg =
4293 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4294 }
4295 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
4296 Opc = X86::VMOVAPSZrr;
4297 // All KMASK RegClasses hold the same k registers, can be tested against
4298 // anyone.
4299 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
4300 Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk)
4301 : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk);
4302 if (!Opc)
4303 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
4304
4305 if (Opc) {
4306 BuildMI(MBB, MI, DL, get(Opc), DestReg)
4307 .addReg(SrcReg, getKillRegState(KillSrc));
4308 return;
4309 }
4310
4311 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
4312 // FIXME: We use a fatal error here because historically LLVM has tried
4313 // lower some of these physreg copies and we want to ensure we get
4314 // reasonable bug reports if someone encounters a case no other testing
4315 // found. This path should be removed after the LLVM 7 release.
4316 report_fatal_error("Unable to copy EFLAGS physical register!");
4317 }
4318
4319 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
4320 << RI.getName(DestReg) << '\n');
4321 report_fatal_error("Cannot emit physreg copy instruction");
4322}
4323
4324std::optional<DestSourcePair>
4326 if (MI.isMoveReg()) {
4327 // FIXME: Dirty hack for apparent invariant that doesn't hold when
4328 // subreg_to_reg is coalesced with ordinary copies, such that the bits that
4329 // were asserted as 0 are now undef.
4330 if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg())
4331 return std::nullopt;
4332
4333 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
4334 }
4335 return std::nullopt;
4336}
4337
4338static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) {
4339 if (STI.hasFP16())
4340 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
4341 if (Load)
4342 return STI.hasAVX512() ? X86::VMOVSSZrm
4343 : STI.hasAVX() ? X86::VMOVSSrm
4344 : X86::MOVSSrm;
4345 else
4346 return STI.hasAVX512() ? X86::VMOVSSZmr
4347 : STI.hasAVX() ? X86::VMOVSSmr
4348 : X86::MOVSSmr;
4349}
4350
4352 const TargetRegisterClass *RC,
4353 bool IsStackAligned,
4354 const X86Subtarget &STI, bool Load) {
4355 bool HasAVX = STI.hasAVX();
4356 bool HasAVX512 = STI.hasAVX512();
4357 bool HasVLX = STI.hasVLX();
4358 bool HasEGPR = STI.hasEGPR();
4359
4360 assert(RC != nullptr && "Invalid target register class");
4361 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
4362 default:
4363 llvm_unreachable("Unknown spill size");
4364 case 1:
4365 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
4366 if (STI.is64Bit())
4367 // Copying to or from a physical H register on x86-64 requires a NOREX
4368 // move. Otherwise use a normal move.
4369 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
4370 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
4371 return Load ? X86::MOV8rm : X86::MOV8mr;
4372 case 2:
4373 if (X86::VK16RegClass.hasSubClassEq(RC))
4374 return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm)
4375 : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk);
4376 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
4377 return Load ? X86::MOV16rm : X86::MOV16mr;
4378 case 4:
4379 if (X86::GR32RegClass.hasSubClassEq(RC))
4380 return Load ? X86::MOV32rm : X86::MOV32mr;
4381 if (X86::FR32XRegClass.hasSubClassEq(RC))
4382 return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt
4383 : HasAVX ? X86::VMOVSSrm_alt
4384 : X86::MOVSSrm_alt)
4385 : (HasAVX512 ? X86::VMOVSSZmr
4386 : HasAVX ? X86::VMOVSSmr
4387 : X86::MOVSSmr);
4388 if (X86::RFP32RegClass.hasSubClassEq(RC))
4389 return Load ? X86::LD_Fp32m : X86::ST_Fp32m;
4390 if (X86::VK32RegClass.hasSubClassEq(RC)) {
4391 assert(STI.hasBWI() && "KMOVD requires BWI");
4392 return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm)
4393 : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk);
4394 }
4395 // All of these mask pair classes have the same spill size, the same kind
4396 // of kmov instructions can be used with all of them.
4397 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
4398 X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
4399 X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
4400 X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
4401 X86::VK16PAIRRegClass.hasSubClassEq(RC))
4402 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
4403 if (X86::FR16RegClass.hasSubClassEq(RC) ||
4404 X86::FR16XRegClass.hasSubClassEq(RC))
4405 return getLoadStoreOpcodeForFP16(Load, STI);
4406 llvm_unreachable("Unknown 4-byte regclass");
4407 case 8:
4408 if (X86::GR64RegClass.hasSubClassEq(RC))
4409 return Load ? X86::MOV64rm : X86::MOV64mr;
4410 if (X86::FR64XRegClass.hasSubClassEq(RC))
4411 return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt
4412 : HasAVX ? X86::VMOVSDrm_alt
4413 : X86::MOVSDrm_alt)
4414 : (HasAVX512 ? X86::VMOVSDZmr
4415 : HasAVX ? X86::VMOVSDmr
4416 : X86::MOVSDmr);
4417 if (X86::VR64RegClass.hasSubClassEq(RC))
4418 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
4419 if (X86::RFP64RegClass.hasSubClassEq(RC))
4420 return Load ? X86::LD_Fp64m : X86::ST_Fp64m;
4421 if (X86::VK64RegClass.hasSubClassEq(RC)) {
4422 assert(STI.hasBWI() && "KMOVQ requires BWI");
4423 return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm)
4424 : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk);
4425 }
4426 llvm_unreachable("Unknown 8-byte regclass");
4427 case 10:
4428 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
4429 return Load ? X86::LD_Fp80m : X86::ST_FpP80m;
4430 case 16: {
4431 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
4432 // If stack is realigned we can use aligned stores.
4433 if (IsStackAligned)
4434 return Load ? (HasVLX ? X86::VMOVAPSZ128rm
4435 : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX
4436 : HasAVX ? X86::VMOVAPSrm
4437 : X86::MOVAPSrm)
4438 : (HasVLX ? X86::VMOVAPSZ128mr
4439 : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX
4440 : HasAVX ? X86::VMOVAPSmr
4441 : X86::MOVAPSmr);
4442 else
4443 return Load ? (HasVLX ? X86::VMOVUPSZ128rm
4444 : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX
4445 : HasAVX ? X86::VMOVUPSrm
4446 : X86::MOVUPSrm)
4447 : (HasVLX ? X86::VMOVUPSZ128mr
4448 : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX
4449 : HasAVX ? X86::VMOVUPSmr
4450 : X86::MOVUPSmr);
4451 }
4452 llvm_unreachable("Unknown 16-byte regclass");
4453 }
4454 case 32:
4455 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
4456 // If stack is realigned we can use aligned stores.
4457 if (IsStackAligned)
4458 return Load ? (HasVLX ? X86::VMOVAPSZ256rm
4459 : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
4460 : X86::VMOVAPSYrm)
4461 : (HasVLX ? X86::VMOVAPSZ256mr
4462 : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
4463 : X86::VMOVAPSYmr);
4464 else
4465 return Load ? (HasVLX ? X86::VMOVUPSZ256rm
4466 : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
4467 : X86::VMOVUPSYrm)
4468 : (HasVLX ? X86::VMOVUPSZ256mr
4469 : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
4470 : X86::VMOVUPSYmr);
4471 case 64:
4472 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
4473 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
4474 if (IsStackAligned)
4475 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
4476 else
4477 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
4478 case 1024:
4479 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass");
4480 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
4481#define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4482 return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
4483 : GET_EGPR_IF_ENABLED(X86::TILESTORED);
4484#undef GET_EGPR_IF_ENABLED
4485 }
4486}
4487
4488std::optional<ExtAddrMode>
4490 const TargetRegisterInfo *TRI) const {
4491 const MCInstrDesc &Desc = MemI.getDesc();
4492 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4493 if (MemRefBegin < 0)
4494 return std::nullopt;
4495
4496 MemRefBegin += X86II::getOperandBias(Desc);
4497
4498 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
4499 if (!BaseOp.isReg()) // Can be an MO_FrameIndex
4500 return std::nullopt;
4501
4502 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
4503 // Displacement can be symbolic
4504 if (!DispMO.isImm())
4505 return std::nullopt;
4506
4507 ExtAddrMode AM;
4508 AM.BaseReg = BaseOp.getReg();
4509 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
4510 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
4511 AM.Displacement = DispMO.getImm();
4512 return AM;
4513}
4514
4516 StringRef &ErrInfo) const {
4517 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr);
4518 if (!AMOrNone)
4519 return true;
4520
4521 ExtAddrMode AM = *AMOrNone;
4523 if (AM.ScaledReg != X86::NoRegister) {
4524 switch (AM.Scale) {
4525 case 1:
4526 case 2:
4527 case 4:
4528 case 8:
4529 break;
4530 default:
4531 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8";
4532 return false;
4533 }
4534 }
4535 if (!isInt<32>(AM.Displacement)) {
4536 ErrInfo = "Displacement in address must fit into 32-bit signed "
4537 "integer";
4538 return false;
4539 }
4540
4541 return true;
4542}
4543
4545 const Register Reg,
4546 int64_t &ImmVal) const {
4547 Register MovReg = Reg;
4548 const MachineInstr *MovMI = &MI;
4549
4550 // Follow use-def for SUBREG_TO_REG to find the real move immediate
4551 // instruction. It is quite common for x86-64.
4552 if (MI.isSubregToReg()) {
4553 // We use following pattern to setup 64b immediate.
4554 // %8:gr32 = MOV32r0 implicit-def dead $eflags
4555 // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit
4556 if (!MI.getOperand(1).isImm())
4557 return false;
4558 unsigned FillBits = MI.getOperand(1).getImm();
4559 unsigned SubIdx = MI.getOperand(3).getImm();
4560 MovReg = MI.getOperand(2).getReg();
4561 if (SubIdx != X86::sub_32bit || FillBits != 0)
4562 return false;
4563 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4564 MovMI = MRI.getUniqueVRegDef(MovReg);
4565 if (!MovMI)
4566 return false;
4567 }
4568
4569 if (MovMI->getOpcode() == X86::MOV32r0 &&
4570 MovMI->getOperand(0).getReg() == MovReg) {
4571 ImmVal = 0;
4572 return true;
4573 }
4574
4575 if (MovMI->getOpcode() != X86::MOV32ri &&
4576 MovMI->getOpcode() != X86::MOV64ri &&
4577 MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri)
4578 return false;
4579 // Mov Src can be a global address.
4580 if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg)
4581 return false;
4582 ImmVal = MovMI->getOperand(1).getImm();
4583 return true;
4584}
4585
4587 const MachineInstr *MI, const Register NullValueReg,
4588 const TargetRegisterInfo *TRI) const {
4589 if (!MI->modifiesRegister(NullValueReg, TRI))
4590 return true;
4591 switch (MI->getOpcode()) {
4592 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
4593 // X.
4594 case X86::SHR64ri:
4595 case X86::SHR32ri:
4596 case X86::SHL64ri:
4597 case X86::SHL32ri:
4598 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
4599 "expected for shift opcode!");
4600 return MI->getOperand(0).getReg() == NullValueReg &&
4601 MI->getOperand(1).getReg() == NullValueReg;
4602 // Zero extend of a sub-reg of NullValueReg into itself does not change the
4603 // null value.
4604 case X86::MOV32rr:
4605 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
4606 return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
4607 });
4608 default:
4609 return false;
4610 }
4611 llvm_unreachable("Should be handled above!");
4612}
4613
4616 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
4617 const TargetRegisterInfo *TRI) const {
4618 const MCInstrDesc &Desc = MemOp.getDesc();
4619 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
4620 if (MemRefBegin < 0)
4621 return false;
4622
4623 MemRefBegin += X86II::getOperandBias(Desc);
4624
4625 const MachineOperand *BaseOp =
4626 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
4627 if (!BaseOp->isReg()) // Can be an MO_FrameIndex
4628 return false;
4629
4630 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
4631 return false;
4632
4633 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
4634 X86::NoRegister)
4635 return false;
4636
4637 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
4638
4639 // Displacement can be symbolic
4640 if (!DispMO.isImm())
4641 return false;
4642
4643 Offset = DispMO.getImm();
4644
4645 if (!BaseOp->isReg())
4646 return false;
4647
4648 OffsetIsScalable = false;
4649 // FIXME: Relying on memoperands() may not be right thing to do here. Check
4650 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
4651 // there is no use of `Width` for X86 back-end at the moment.
4652 Width =
4653 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
4654 BaseOps.push_back(BaseOp);
4655 return true;
4656}
4657
4658static unsigned getStoreRegOpcode(Register SrcReg,
4659 const TargetRegisterClass *RC,
4660 bool IsStackAligned,
4661 const X86Subtarget &STI) {
4662 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
4663}
4664
4665static unsigned getLoadRegOpcode(Register DestReg,
4666 const TargetRegisterClass *RC,
4667 bool IsStackAligned, const X86Subtarget &STI) {
4668 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
4669}
4670
4671static bool isAMXOpcode(unsigned Opc) {
4672 switch (Opc) {
4673 default:
4674 return false;
4675 case X86::TILELOADD:
4676 case X86::TILESTORED:
4677 case X86::TILELOADD_EVEX:
4678 case X86::TILESTORED_EVEX:
4679 return true;
4680 }
4681}
4682
4685 unsigned Opc, Register Reg, int FrameIdx,
4686 bool isKill) const {
4687 switch (Opc) {
4688 default:
4689 llvm_unreachable("Unexpected special opcode!");
4690 case X86::TILESTORED:
4691 case X86::TILESTORED_EVEX: {
4692 // tilestored %tmm, (%sp, %idx)
4694 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4695 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4696 MachineInstr *NewMI =
4697 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4698 .addReg(Reg, getKillRegState(isKill));
4700 MO.setReg(VirtReg);
4701 MO.setIsKill(true);
4702 break;
4703 }
4704 case X86::TILELOADD:
4705 case X86::TILELOADD_EVEX: {
4706 // tileloadd (%sp, %idx), %tmm
4708 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
4709 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
4711 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx);
4713 MO.setReg(VirtReg);
4714 MO.setIsKill(true);
4715 break;
4716 }
4717 }
4718}
4719
4722 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
4723 const TargetRegisterInfo *TRI, Register VReg) const {
4724 const MachineFunction &MF = *MBB.getParent();
4725 const MachineFrameInfo &MFI = MF.getFrameInfo();
4726 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4727 "Stack slot too small for store");
4728
4729 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4730 bool isAligned =
4731 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4732 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4733
4734 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
4735 if (isAMXOpcode(Opc))
4736 loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill);
4737 else
4738 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
4739 .addReg(SrcReg, getKillRegState(isKill));
4740}
4741
4744 Register DestReg, int FrameIdx,
4745 const TargetRegisterClass *RC,
4746 const TargetRegisterInfo *TRI,
4747 Register VReg) const {
4748 const MachineFunction &MF = *MBB.getParent();
4749 const MachineFrameInfo &MFI = MF.getFrameInfo();
4750 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
4751 "Load size exceeds stack slot");
4752 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
4753 bool isAligned =
4754 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
4755 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
4756
4757 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
4758 if (isAMXOpcode(Opc))
4759 loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx);
4760 else
4761 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
4762 FrameIdx);
4763}
4764
4766 Register &SrcReg2, int64_t &CmpMask,
4767 int64_t &CmpValue) const {
4768 switch (MI.getOpcode()) {
4769 default:
4770 break;
4771 case X86::CMP64ri32:
4772 case X86::CMP32ri:
4773 case X86::CMP16ri:
4774 case X86::CMP8ri:
4775 SrcReg = MI.getOperand(0).getReg();
4776 SrcReg2 = 0;
4777 if (MI.getOperand(1).isImm()) {
4778 CmpMask = ~0;
4779 CmpValue = MI.getOperand(1).getImm();
4780 } else {
4781 CmpMask = CmpValue = 0;
4782 }
4783 return true;
4784 // A SUB can be used to perform comparison.
4785 CASE_ND(SUB64rm)
4786 CASE_ND(SUB32rm)
4787 CASE_ND(SUB16rm)
4788 CASE_ND(SUB8rm)
4789 SrcReg = MI.getOperand(1).getReg();
4790 SrcReg2 = 0;
4791 CmpMask = 0;
4792 CmpValue = 0;
4793 return true;
4794 CASE_ND(SUB64rr)
4795 CASE_ND(SUB32rr)
4796 CASE_ND(SUB16rr)
4797 CASE_ND(SUB8rr)
4798 SrcReg = MI.getOperand(1).getReg();
4799 SrcReg2 = MI.getOperand(2).getReg();
4800 CmpMask = 0;
4801 CmpValue = 0;
4802 return true;
4803 CASE_ND(SUB64ri32)
4804 CASE_ND(SUB32ri)
4805 CASE_ND(SUB16ri)
4806 CASE_ND(SUB8ri)
4807 SrcReg = MI.getOperand(1).getReg();
4808 SrcReg2 = 0;
4809 if (MI.getOperand(2).isImm()) {
4810 CmpMask = ~0;
4811 CmpValue = MI.getOperand(2).getImm();
4812 } else {
4813 CmpMask = CmpValue = 0;
4814 }
4815 return true;
4816 case X86::CMP64rr:
4817 case X86::CMP32rr:
4818 case X86::CMP16rr:
4819 case X86::CMP8rr:
4820 SrcReg = MI.getOperand(0).getReg();
4821 SrcReg2 = MI.getOperand(1).getReg();
4822 CmpMask = 0;
4823 CmpValue = 0;
4824 return true;
4825 case X86::TEST8rr:
4826 case X86::TEST16rr:
4827 case X86::TEST32rr:
4828 case X86::TEST64rr:
4829 SrcReg = MI.getOperand(0).getReg();
4830 if (MI.getOperand(1).getReg() != SrcReg)
4831 return false;
4832 // Compare against zero.
4833 SrcReg2 = 0;
4834 CmpMask = ~0;
4835 CmpValue = 0;
4836 return true;
4837 }
4838 return false;
4839}
4840
4841bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI,
4842 Register SrcReg, Register SrcReg2,
4843 int64_t ImmMask, int64_t ImmValue,
4844 const MachineInstr &OI, bool *IsSwapped,
4845 int64_t *ImmDelta) const {
4846 switch (OI.getOpcode()) {
4847 case X86::CMP64rr:
4848 case X86::CMP32rr:
4849 case X86::CMP16rr:
4850 case X86::CMP8rr:
4851 CASE_ND(SUB64rr)
4852 CASE_ND(SUB32rr)
4853 CASE_ND(SUB16rr)
4854 CASE_ND(SUB8rr) {
4855 Register OISrcReg;
4856 Register OISrcReg2;
4857 int64_t OIMask;
4858 int64_t OIValue;
4859 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) ||
4860 OIMask != ImmMask || OIValue != ImmValue)
4861 return false;
4862 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) {
4863 *IsSwapped = false;
4864 return true;
4865 }
4866 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) {
4867 *IsSwapped = true;
4868 return true;
4869 }
4870 return false;
4871 }
4872 case X86::CMP64ri32:
4873 case X86::CMP32ri:
4874 case X86::CMP16ri:
4875 case X86::CMP8ri:
4876 CASE_ND(SUB64ri32)
4877 CASE_ND(SUB32ri)
4878 CASE_ND(SUB16ri)
4879 CASE_ND(SUB8ri)
4880 case X86::TEST64rr:
4881 case X86::TEST32rr:
4882 case X86::TEST16rr:
4883 case X86::TEST8rr: {
4884 if (ImmMask != 0) {
4885 Register OISrcReg;
4886 Register OISrcReg2;
4887 int64_t OIMask;
4888 int64_t OIValue;
4889 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) &&
4890 SrcReg == OISrcReg && ImmMask == OIMask) {
4891 if (OIValue == ImmValue) {
4892 *ImmDelta = 0;
4893 return true;
4894 } else if (static_cast<uint64_t>(ImmValue) ==
4895 static_cast<uint64_t>(OIValue) - 1) {
4896 *ImmDelta = -1;
4897 return true;
4898 } else if (static_cast<uint64_t>(ImmValue) ==
4899 static_cast<uint64_t>(OIValue) + 1) {
4900 *ImmDelta = 1;
4901 return true;
4902 } else {
4903 return false;
4904 }
4905 }
4906 }
4907 return FlagI.isIdenticalTo(OI);
4908 }
4909 default:
4910 return false;
4911 }
4912}
4913
4914/// Check whether the definition can be converted
4915/// to remove a comparison against zero.
4916inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4917 bool &ClearsOverflowFlag) {
4918 NoSignFlag = false;
4919 ClearsOverflowFlag = false;
4920
4921 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4922 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4923 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4924 // on the EFLAGS modification of ADD actually happening in the final binary.
4925 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) {
4926 unsigned Flags = MI.getOperand(5).getTargetFlags();
4927 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF ||
4928 Flags == X86II::MO_GOTNTPOFF)
4929 return false;
4930 }
4931
4932 switch (MI.getOpcode()) {
4933 default:
4934 return false;
4935
4936 // The shift instructions only modify ZF if their shift count is non-zero.
4937 // N.B.: The processor truncates the shift count depending on the encoding.
4938 CASE_ND(SAR8ri)
4939 CASE_ND(SAR16ri)
4940 CASE_ND(SAR32ri)
4941 CASE_ND(SAR64ri)
4942 CASE_ND(SHR8ri)
4943 CASE_ND(SHR16ri)
4944 CASE_ND(SHR32ri)
4945 CASE_ND(SHR64ri)
4946 return getTruncatedShiftCount(MI, 2) != 0;
4947
4948 // Some left shift instructions can be turned into LEA instructions but only
4949 // if their flags aren't used. Avoid transforming such instructions.
4950 CASE_ND(SHL8ri)
4951 CASE_ND(SHL16ri)
4952 CASE_ND(SHL32ri)
4953 CASE_ND(SHL64ri) {
4954 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4955 if (isTruncatedShiftCountForLEA(ShAmt))
4956 return false;
4957 return ShAmt != 0;
4958 }
4959
4960 CASE_ND(SHRD16rri8)
4961 CASE_ND(SHRD32rri8)
4962 CASE_ND(SHRD64rri8)
4963 CASE_ND(SHLD16rri8)
4964 CASE_ND(SHLD32rri8)
4965 CASE_ND(SHLD64rri8)
4966 return getTruncatedShiftCount(MI, 3) != 0;
4967
4968 CASE_ND(SUB64ri32)
4969 CASE_ND(SUB32ri)
4970 CASE_ND(SUB16ri)
4971 CASE_ND(SUB8ri)
4972 CASE_ND(SUB64rr)
4973 CASE_ND(SUB32rr)
4974 CASE_ND(SUB16rr)
4975 CASE_ND(SUB8rr)
4976 CASE_ND(SUB64rm)
4977 CASE_ND(SUB32rm)
4978 CASE_ND(SUB16rm)
4979 CASE_ND(SUB8rm)
4980 CASE_ND(DEC64r)
4981 CASE_ND(DEC32r)
4982 CASE_ND(DEC16r)
4983 CASE_ND(DEC8r)
4984 CASE_ND(ADD64ri32)
4985 CASE_ND(ADD32ri)
4986 CASE_ND(ADD16ri)
4987 CASE_ND(ADD8ri)
4988 CASE_ND(ADD64rr)
4989 CASE_ND(ADD32rr)
4990 CASE_ND(ADD16rr)
4991 CASE_ND(ADD8rr)
4992 CASE_ND(ADD64rm)
4993 CASE_ND(ADD32rm)
4994 CASE_ND(ADD16rm)
4995 CASE_ND(ADD8rm)
4996 CASE_ND(INC64r)
4997 CASE_ND(INC32r)
4998 CASE_ND(INC16r)
4999 CASE_ND(INC8r)
5000 CASE_ND(ADC64ri32)
5001 CASE_ND(ADC32ri)
5002 CASE_ND(ADC16ri)
5003 CASE_ND(ADC8ri)
5004 CASE_ND(ADC64rr)
5005 CASE_ND(ADC32rr)
5006 CASE_ND(ADC16rr)
5007 CASE_ND(ADC8rr)
5008 CASE_ND(ADC64rm)
5009 CASE_ND(ADC32rm)
5010 CASE_ND(ADC16rm)
5011 CASE_ND(ADC8rm)
5012 CASE_ND(SBB64ri32)
5013 CASE_ND(SBB32ri)
5014 CASE_ND(SBB16ri)
5015 CASE_ND(SBB8ri)
5016 CASE_ND(SBB64rr)
5017 CASE_ND(SBB32rr)
5018 CASE_ND(SBB16rr)
5019 CASE_ND(SBB8rr)
5020 CASE_ND(SBB64rm)
5021 CASE_ND(SBB32rm)
5022 CASE_ND(SBB16rm)
5023 CASE_ND(SBB8rm)
5024 CASE_ND(NEG8r)
5025 CASE_ND(NEG16r)
5026 CASE_ND(NEG32r)
5027 CASE_ND(NEG64r)
5028 case X86::LZCNT16rr:
5029 case X86::LZCNT16rm:
5030 case X86::LZCNT32rr:
5031 case X86::LZCNT32rm:
5032 case X86::LZCNT64rr:
5033 case X86::LZCNT64rm:
5034 case X86::POPCNT16rr:
5035 case X86::POPCNT16rm:
5036 case X86::POPCNT32rr:
5037 case X86::POPCNT32rm:
5038 case X86::POPCNT64rr:
5039 case X86::POPCNT64rm:
5040 case X86::TZCNT16rr:
5041 case X86::TZCNT16rm:
5042 case X86::TZCNT32rr:
5043 case X86::TZCNT32rm:
5044 case X86::TZCNT64rr:
5045 case X86::TZCNT64rm:
5046 return true;
5047 CASE_ND(AND64ri32)
5048 CASE_ND(AND32ri)
5049 CASE_ND(AND16ri)
5050 CASE_ND(AND8ri)
5051 CASE_ND(AND64rr)
5052 CASE_ND(AND32rr)
5053 CASE_ND(AND16rr)
5054 CASE_ND(AND8rr)
5055 CASE_ND(AND64rm)
5056 CASE_ND(AND32rm)
5057 CASE_ND(AND16rm)
5058 CASE_ND(AND8rm)
5059 CASE_ND(XOR64ri32)
5060 CASE_ND(XOR32ri)
5061 CASE_ND(XOR16ri)
5062 CASE_ND(XOR8ri)
5063 CASE_ND(XOR64rr)
5064 CASE_ND(XOR32rr)
5065 CASE_ND(XOR16rr)
5066 CASE_ND(XOR8rr)
5067 CASE_ND(XOR64rm)
5068 CASE_ND(XOR32rm)
5069 CASE_ND(XOR16rm)
5070 CASE_ND(XOR8rm)
5071 CASE_ND(OR64ri32)
5072 CASE_ND(OR32ri)
5073 CASE_ND(OR16ri)
5074 CASE_ND(OR8ri)
5075 CASE_ND(OR64rr)
5076 CASE_ND(OR32rr)
5077 CASE_ND(OR16rr)
5078 CASE_ND(OR8rr)
5079 CASE_ND(OR64rm)
5080 CASE_ND(OR32rm)
5081 CASE_ND(OR16rm)
5082 CASE_ND(OR8rm)
5083 case X86::ANDN32rr:
5084 case X86::ANDN32rm:
5085 case X86::ANDN64rr:
5086 case X86::ANDN64rm:
5087 case X86::BLSI32rr:
5088 case X86::BLSI32rm:
5089 case X86::BLSI64rr:
5090 case X86::BLSI64rm:
5091 case X86::BLSMSK32rr:
5092 case X86::BLSMSK32rm:
5093 case X86::BLSMSK64rr:
5094 case X86::BLSMSK64rm:
5095 case X86::BLSR32rr:
5096 case X86::BLSR32rm:
5097 case X86::BLSR64rr:
5098 case X86::BLSR64rm:
5099 case X86::BLCFILL32rr:
5100 case X86::BLCFILL32rm:
5101 case X86::BLCFILL64rr:
5102 case X86::BLCFILL64rm:
5103 case X86::BLCI32rr:
5104 case X86::BLCI32rm:
5105 case X86::BLCI64rr:
5106 case X86::BLCI64rm:
5107 case X86::BLCIC32rr:
5108 case X86::BLCIC32rm:
5109 case X86::BLCIC64rr:
5110 case X86::BLCIC64rm:
5111 case X86::BLCMSK32rr:
5112 case X86::BLCMSK32rm:
5113 case X86::BLCMSK64rr:
5114 case X86::BLCMSK64rm:
5115 case X86::BLCS32rr:
5116 case X86::BLCS32rm:
5117 case X86::BLCS64rr:
5118 case X86::BLCS64rm:
5119 case X86::BLSFILL32rr:
5120 case X86::BLSFILL32rm:
5121 case X86::BLSFILL64rr:
5122 case X86::BLSFILL64rm:
5123 case X86::BLSIC32rr:
5124 case X86::BLSIC32rm:
5125 case X86::BLSIC64rr:
5126 case X86::BLSIC64rm:
5127 case X86::BZHI32rr:
5128 case X86::BZHI32rm:
5129 case X86::BZHI64rr:
5130 case X86::BZHI64rm:
5131 case X86::T1MSKC32rr:
5132 case X86::T1MSKC32rm:
5133 case X86::T1MSKC64rr:
5134 case X86::T1MSKC64rm:
5135 case X86::TZMSK32rr:
5136 case X86::TZMSK32rm:
5137 case X86::TZMSK64rr:
5138 case X86::TZMSK64rm:
5139 // These instructions clear the overflow flag just like TEST.
5140 // FIXME: These are not the only instructions in this switch that clear the
5141 // overflow flag.
5142 ClearsOverflowFlag = true;
5143 return true;
5144 case X86::BEXTR32rr:
5145 case X86::BEXTR64rr:
5146 case X86::BEXTR32rm:
5147 case X86::BEXTR64rm:
5148 case X86::BEXTRI32ri:
5149 case X86::BEXTRI32mi:
5150 case X86::BEXTRI64ri:
5151 case X86::BEXTRI64mi:
5152 // BEXTR doesn't update the sign flag so we can't use it. It does clear
5153 // the overflow flag, but that's not useful without the sign flag.
5154 NoSignFlag = true;
5155 return true;
5156 }
5157}
5158
5159/// Check whether the use can be converted to remove a comparison against zero.
5161 switch (MI.getOpcode()) {
5162 default:
5163 return X86::COND_INVALID;
5164 CASE_ND(NEG8r)
5165 CASE_ND(NEG16r)
5166 CASE_ND(NEG32r)
5167 CASE_ND(NEG64r)
5168 return X86::COND_AE;
5169 case X86::LZCNT16rr:
5170 case X86::LZCNT32rr:
5171 case X86::LZCNT64rr:
5172 return X86::COND_B;
5173 case X86::POPCNT16rr:
5174 case X86::POPCNT32rr:
5175 case X86::POPCNT64rr:
5176 return X86::COND_E;
5177 case X86::TZCNT16rr:
5178 case X86::TZCNT32rr:
5179 case X86::TZCNT64rr:
5180 return X86::COND_B;
5181 case X86::BSF16rr:
5182 case X86::BSF32rr:
5183 case X86::BSF64rr:
5184 case X86::BSR16rr:
5185 case X86::BSR32rr:
5186 case X86::BSR64rr:
5187 return X86::COND_E;
5188 case X86::BLSI32rr:
5189 case X86::BLSI64rr:
5190 return X86::COND_AE;
5191 case X86::BLSR32rr:
5192 case X86::BLSR64rr:
5193 case X86::BLSMSK32rr:
5194 case X86::BLSMSK64rr:
5195 return X86::COND_B;
5196 // TODO: TBM instructions.
5197 }
5198}
5199
5200/// Check if there exists an earlier instruction that
5201/// operates on the same source operands and sets flags in the same way as
5202/// Compare; remove Compare if possible.
5204 Register SrcReg2, int64_t CmpMask,
5205 int64_t CmpValue,
5206 const MachineRegisterInfo *MRI) const {
5207 // Check whether we can replace SUB with CMP.
5208 switch (CmpInstr.getOpcode()) {
5209 default:
5210 break;
5211 CASE_ND(SUB64ri32)
5212 CASE_ND(SUB32ri)
5213 CASE_ND(SUB16ri)
5214 CASE_ND(SUB8ri)
5215 CASE_ND(SUB64rm)
5216 CASE_ND(SUB32rm)
5217 CASE_ND(SUB16rm)
5218 CASE_ND(SUB8rm)
5219 CASE_ND(SUB64rr)
5220 CASE_ND(SUB32rr)
5221 CASE_ND(SUB16rr)
5222 CASE_ND(SUB8rr) {
5223 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
5224 return false;
5225 // There is no use of the destination register, we can replace SUB with CMP.
5226 unsigned NewOpcode = 0;
5227#define FROM_TO(A, B) \
5228 CASE_ND(A) NewOpcode = X86::B; \
5229 break;
5230 switch (CmpInstr.getOpcode()) {
5231 default:
5232 llvm_unreachable("Unreachable!");
5233 FROM_TO(SUB64rm, CMP64rm)
5234 FROM_TO(SUB32rm, CMP32rm)
5235 FROM_TO(SUB16rm, CMP16rm)
5236 FROM_TO(SUB8rm, CMP8rm)
5237 FROM_TO(SUB64rr, CMP64rr)
5238 FROM_TO(SUB32rr, CMP32rr)
5239 FROM_TO(SUB16rr, CMP16rr)
5240 FROM_TO(SUB8rr, CMP8rr)
5241 FROM_TO(SUB64ri32, CMP64ri32)
5242 FROM_TO(SUB32ri, CMP32ri)
5243 FROM_TO(SUB16ri, CMP16ri)
5244 FROM_TO(SUB8ri, CMP8ri)
5245 }
5246#undef FROM_TO
5247 CmpInstr.setDesc(get(NewOpcode));
5248 CmpInstr.removeOperand(0);
5249 // Mutating this instruction invalidates any debug data associated with it.
5250 CmpInstr.dropDebugNumber();
5251 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
5252 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
5253 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
5254 return false;
5255 }
5256 }
5257
5258 // The following code tries to remove the comparison by re-using EFLAGS
5259 // from earlier instructions.
5260
5261 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
5262
5263 // Transformation currently requires SSA values.
5264 if (SrcReg2.isPhysical())
5265 return false;
5266 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
5267 assert(SrcRegDef && "Must have a definition (SSA)");
5268
5269 MachineInstr *MI = nullptr;
5270 MachineInstr *Sub = nullptr;
5271 MachineInstr *Movr0Inst = nullptr;
5272 bool NoSignFlag = false;
5273 bool ClearsOverflowFlag = false;
5274 bool ShouldUpdateCC = false;
5275 bool IsSwapped = false;
5277 int64_t ImmDelta = 0;
5278
5279 // Search backward from CmpInstr for the next instruction defining EFLAGS.
5281 MachineBasicBlock &CmpMBB = *CmpInstr.getParent();
5283 std::next(MachineBasicBlock::reverse_iterator(CmpInstr));
5284 for (MachineBasicBlock *MBB = &CmpMBB;;) {
5285 for (MachineInstr &Inst : make_range(From, MBB->rend())) {
5286 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
5287 // %eax = addl ...
5288 // ... // EFLAGS not changed
5289 // testl %eax, %eax // <-- can be removed
5290 if (&Inst == SrcRegDef) {
5291 if (IsCmpZero &&
5292 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) {
5293 MI = &Inst;
5294 break;
5295 }
5296
5297 // Look back for the following pattern, in which case the
5298 // test16rr/test64rr instruction could be erased.
5299 //
5300 // Example for test16rr:
5301 // %reg = and32ri %in_reg, 5
5302 // ... // EFLAGS not changed.
5303 // %src_reg = copy %reg.sub_16bit:gr32
5304 // test16rr %src_reg, %src_reg, implicit-def $eflags
5305 // Example for test64rr:
5306 // %reg = and32ri %in_reg, 5
5307 // ... // EFLAGS not changed.
5308 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
5309 // test64rr %src_reg, %src_reg, implicit-def $eflags
5310 MachineInstr *AndInstr = nullptr;
5311 if (IsCmpZero &&
5312 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI,
5313 NoSignFlag, ClearsOverflowFlag)) {
5314 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode()));
5315 MI = AndInstr;
5316 break;
5317 }
5318 // Cannot find other candidates before definition of SrcReg.
5319 return false;
5320 }
5321
5322 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) {
5323 // Try to use EFLAGS produced by an instruction reading %SrcReg.
5324 // Example:
5325 // %eax = ...
5326 // ...
5327 // popcntl %eax
5328 // ... // EFLAGS not changed
5329 // testl %eax, %eax // <-- can be removed
5330 if (IsCmpZero) {
5331 NewCC = isUseDefConvertible(Inst);
5332 if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() &&
5333 Inst.getOperand(1).getReg() == SrcReg) {
5334 ShouldUpdateCC = true;
5335 MI = &Inst;
5336 break;
5337 }
5338 }
5339
5340 // Try to use EFLAGS from an instruction with similar flag results.
5341 // Example:
5342 // sub x, y or cmp x, y
5343 // ... // EFLAGS not changed
5344 // cmp x, y // <-- can be removed
5345 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue,
5346 Inst, &IsSwapped, &ImmDelta)) {
5347 Sub = &Inst;
5348 break;
5349 }
5350
5351 // MOV32r0 is implemented with xor which clobbers condition code. It is
5352 // safe to move up, if the definition to EFLAGS is dead and earlier
5353 // instructions do not read or write EFLAGS.
5354 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 &&
5355 Inst.registerDefIsDead(X86::EFLAGS, TRI)) {
5356 Movr0Inst = &Inst;
5357 continue;
5358 }
5359
5360 // Cannot do anything for any other EFLAG changes.
5361 return false;
5362 }
5363 }
5364
5365 if (MI || Sub)
5366 break;
5367
5368 // Reached begin of basic block. Continue in predecessor if there is
5369 // exactly one.
5370 if (MBB->pred_size() != 1)
5371 return false;
5372 MBB = *MBB->pred_begin();
5373 From = MBB->rbegin();
5374 }
5375
5376 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5377 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5378 // If we are done with the basic block, we need to check whether EFLAGS is
5379 // live-out.
5380 bool FlagsMayLiveOut = true;
5382 MachineBasicBlock::iterator AfterCmpInstr =
5383 std::next(MachineBasicBlock::iterator(CmpInstr));
5384 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) {
5385 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
5386 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
5387 // We should check the usage if this instruction uses and updates EFLAGS.
5388 if (!UseEFLAGS && ModifyEFLAGS) {
5389 // It is safe to remove CmpInstr if EFLAGS is updated again.
5390 FlagsMayLiveOut = false;
5391 break;
5392 }
5393 if (!UseEFLAGS && !ModifyEFLAGS)
5394 continue;
5395
5396 // EFLAGS is used by this instruction.
5397 X86::CondCode OldCC = X86::getCondFromMI(Instr);
5398 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID)
5399 return false;
5400
5401 X86::CondCode ReplacementCC = X86::COND_INVALID;
5402 if (MI) {
5403 switch (OldCC) {
5404 default:
5405 break;
5406 case X86::COND_A:
5407 case X86::COND_AE:
5408 case X86::COND_B:
5409 case X86::COND_BE:
5410 // CF is used, we can't perform this optimization.
5411 return false;
5412 case X86::COND_G:
5413 case X86::COND_GE:
5414 case X86::COND_L:
5415 case X86::COND_LE:
5416 // If SF is used, but the instruction doesn't update the SF, then we
5417 // can't do the optimization.
5418 if (NoSignFlag)
5419 return false;
5420 [[fallthrough]];
5421 case X86::COND_O:
5422 case X86::COND_NO:
5423 // If OF is used, the instruction needs to clear it like CmpZero does.
5424 if (!ClearsOverflowFlag)
5425 return false;
5426 break;
5427 case X86::COND_S:
5428 case X86::COND_NS:
5429 // If SF is used, but the instruction doesn't update the SF, then we
5430 // can't do the optimization.
5431 if (NoSignFlag)
5432 return false;
5433 break;
5434 }
5435
5436 // If we're updating the condition code check if we have to reverse the
5437 // condition.
5438 if (ShouldUpdateCC)
5439 switch (OldCC) {
5440 default:
5441 return false;
5442 case X86::COND_E:
5443 ReplacementCC = NewCC;
5444 break;
5445 case X86::COND_NE:
5446 ReplacementCC = GetOppositeBranchCondition(NewCC);
5447 break;
5448 }
5449 } else if (IsSwapped) {
5450 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5451 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5452 // We swap the condition code and synthesize the new opcode.
5453 ReplacementCC = getSwappedCondition(OldCC);
5454 if (ReplacementCC == X86::COND_INVALID)
5455 return false;
5456 ShouldUpdateCC = true;
5457 } else if (ImmDelta != 0) {
5458 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg));
5459 // Shift amount for min/max constants to adjust for 8/16/32 instruction
5460 // sizes.
5461 switch (OldCC) {
5462 case X86::COND_L: // x <s (C + 1) --> x <=s C
5463 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5464 return false;
5465 ReplacementCC = X86::COND_LE;
5466 break;
5467 case X86::COND_B: // x <u (C + 1) --> x <=u C
5468 if (ImmDelta != 1 || CmpValue == 0)
5469 return false;
5470 ReplacementCC = X86::COND_BE;
5471 break;
5472 case X86::COND_GE: // x >=s (C + 1) --> x >s C
5473 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue)
5474 return false;
5475 ReplacementCC = X86::COND_G;
5476 break;
5477 case X86::COND_AE: // x >=u (C + 1) --> x >u C
5478 if (ImmDelta != 1 || CmpValue == 0)
5479 return false;
5480 ReplacementCC = X86::COND_A;
5481 break;
5482 case X86::COND_G: // x >s (C - 1) --> x >=s C
5483 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5484 return false;
5485 ReplacementCC = X86::COND_GE;
5486 break;
5487 case X86::COND_A: // x >u (C - 1) --> x >=u C
5488 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5489 return false;
5490 ReplacementCC = X86::COND_AE;
5491 break;
5492 case X86::COND_LE: // x <=s (C - 1) --> x <s C
5493 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue)
5494 return false;
5495 ReplacementCC = X86::COND_L;
5496 break;
5497 case X86::COND_BE: // x <=u (C - 1) --> x <u C
5498 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue)
5499 return false;
5500 ReplacementCC = X86::COND_B;
5501 break;
5502 default:
5503 return false;
5504 }
5505 ShouldUpdateCC = true;
5506 }
5507
5508 if (ShouldUpdateCC && ReplacementCC != OldCC) {
5509 // Push the MachineInstr to OpsToUpdate.
5510 // If it is safe to remove CmpInstr, the condition code of these
5511 // instructions will be modified.
5512 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC));
5513 }
5514 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
5515 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5516 FlagsMayLiveOut = false;
5517 break;
5518 }
5519 }
5520
5521 // If we have to update users but EFLAGS is live-out abort, since we cannot
5522 // easily find all of the users.
5523 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) {
5524 for (MachineBasicBlock *Successor : CmpMBB.successors())
5525 if (Successor->isLiveIn(X86::EFLAGS))
5526 return false;
5527 }
5528
5529 // The instruction to be updated is either Sub or MI.
5530 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set");
5531 Sub = MI != nullptr ? MI : Sub;
5532 MachineBasicBlock *SubBB = Sub->getParent();
5533 // Move Movr0Inst to the appropriate place before Sub.
5534 if (Movr0Inst) {
5535 // Only move within the same block so we don't accidentally move to a
5536 // block with higher execution frequency.
5537 if (&CmpMBB != SubBB)
5538 return false;
5539 // Look backwards until we find a def that doesn't use the current EFLAGS.
5541 InsertE = Sub->getParent()->rend();
5542 for (; InsertI != InsertE; ++InsertI) {
5543 MachineInstr *Instr = &*InsertI;
5544 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
5545 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
5546 Movr0Inst->getParent()->remove(Movr0Inst);
5547 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
5548 Movr0Inst);
5549 break;
5550 }
5551 }
5552 if (InsertI == InsertE)
5553 return false;
5554 }
5555
5556 // Make sure Sub instruction defines EFLAGS and mark the def live.
5557 MachineOperand *FlagDef =
5558 Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
5559 assert(FlagDef && "Unable to locate a def EFLAGS operand");
5560 FlagDef->setIsDead(false);
5561
5562 CmpInstr.eraseFromParent();
5563
5564 // Modify the condition code of instructions in OpsToUpdate.
5565 for (auto &Op : OpsToUpdate) {
5566 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
5567 .setImm(Op.second);
5568 }
5569 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
5570 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB;
5571 MBB = *MBB->pred_begin()) {
5572 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor");
5573 if (!MBB->isLiveIn(X86::EFLAGS))
5574 MBB->addLiveIn(X86::EFLAGS);
5575 }
5576 return true;
5577}
5578
5579/// Try to remove the load by folding it to a register
5580/// operand at the use. We fold the load instructions if load defines a virtual
5581/// register, the virtual register is used once in the same BB, and the
5582/// instructions in-between do not load or store, and have no side effects.
5584 const MachineRegisterInfo *MRI,
5585 Register &FoldAsLoadDefReg,
5586 MachineInstr *&DefMI) const {
5587 // Check whether we can move DefMI here.
5588 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
5589 assert(DefMI);
5590 bool SawStore = false;
5591 if (!DefMI->isSafeToMove(nullptr, SawStore))
5592 return nullptr;
5593
5594 // Collect information about virtual register operands of MI.
5595 SmallVector<unsigned, 1> SrcOperandIds;
5596 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5597 MachineOperand &MO = MI.getOperand(i);
5598 if (!MO.isReg())
5599 continue;
5600 Register Reg = MO.getReg();
5601 if (Reg != FoldAsLoadDefReg)
5602 continue;
5603 // Do not fold if we have a subreg use or a def.
5604 if (MO.getSubReg() || MO.isDef())
5605 return nullptr;
5606 SrcOperandIds.push_back(i);
5607 }
5608 if (SrcOperandIds.empty())
5609 return nullptr;
5610
5611 // Check whether we can fold the def into SrcOperandId.
5612 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
5613 FoldAsLoadDefReg = 0;
5614 return FoldMI;
5615 }
5616
5617 return nullptr;
5618}
5619
5620/// \returns true if the instruction can be changed to COPY when imm is 0.
5621static bool canConvert2Copy(unsigned Opc) {
5622 switch (Opc) {
5623 default:
5624 return false;
5625 CASE_ND(ADD64ri32)
5626 CASE_ND(SUB64ri32)
5627 CASE_ND(OR64ri32)
5628 CASE_ND(XOR64ri32)
5629 CASE_ND(ADD32ri)
5630 CASE_ND(SUB32ri)
5631 CASE_ND(OR32ri)
5632 CASE_ND(XOR32ri)
5633 return true;
5634 }
5635}
5636
5637/// Convert an ALUrr opcode to corresponding ALUri opcode. Such as
5638/// ADD32rr ==> ADD32ri
5639static unsigned convertALUrr2ALUri(unsigned Opc) {
5640 switch (Opc) {
5641 default:
5642 return 0;
5643#define FROM_TO(FROM, TO) \
5644 case X86::FROM: \
5645 return X86::TO; \
5646 case X86::FROM##_ND: \
5647 return X86::TO##_ND;
5648 FROM_TO(ADD64rr, ADD64ri32)
5649 FROM_TO(ADC64rr, ADC64ri32)
5650 FROM_TO(SUB64rr, SUB64ri32)
5651 FROM_TO(SBB64rr, SBB64ri32)
5652 FROM_TO(AND64rr, AND64ri32)
5653 FROM_TO(OR64rr, OR64ri32)
5654 FROM_TO(XOR64rr, XOR64ri32)
5655 FROM_TO(SHR64rCL, SHR64ri)
5656 FROM_TO(SHL64rCL, SHL64ri)
5657 FROM_TO(SAR64rCL, SAR64ri)
5658 FROM_TO(ROL64rCL, ROL64ri)
5659 FROM_TO(ROR64rCL, ROR64ri)
5660 FROM_TO(RCL64rCL, RCL64ri)
5661 FROM_TO(RCR64rCL, RCR64ri)
5662 FROM_TO(ADD32rr, ADD32ri)
5663 FROM_TO(ADC32rr, ADC32ri)
5664 FROM_TO(SUB32rr, SUB32ri)
5665 FROM_TO(SBB32rr, SBB32ri)
5666 FROM_TO(AND32rr, AND32ri)
5667 FROM_TO(OR32rr, OR32ri)
5668 FROM_TO(XOR32rr, XOR32ri)
5669 FROM_TO(SHR32rCL, SHR32ri)
5670 FROM_TO(SHL32rCL, SHL32ri)
5671 FROM_TO(SAR32rCL, SAR32ri)
5672 FROM_TO(ROL32rCL, ROL32ri)
5673 FROM_TO(ROR32rCL, ROR32ri)
5674 FROM_TO(RCL32rCL, RCL32ri)
5675 FROM_TO(RCR32rCL, RCR32ri)
5676#undef FROM_TO
5677#define FROM_TO(FROM, TO) \
5678 case X86::FROM: \
5679 return X86::TO;
5680 FROM_TO(TEST64rr, TEST64ri32)
5681 FROM_TO(CTEST64rr, CTEST64ri32)
5682 FROM_TO(CMP64rr, CMP64ri32)
5683 FROM_TO(CCMP64rr, CCMP64ri32)
5684 FROM_TO(TEST32rr, TEST32ri)
5685 FROM_TO(CTEST32rr, CTEST32ri)
5686 FROM_TO(CMP32rr, CMP32ri)
5687 FROM_TO(CCMP32rr, CCMP32ri)
5688#undef FROM_TO
5689 }
5690}
5691
5692/// Reg is assigned ImmVal in DefMI, and is used in UseMI.
5693/// If MakeChange is true, this function tries to replace Reg by ImmVal in
5694/// UseMI. If MakeChange is false, just check if folding is possible.
5695//
5696/// \returns true if folding is successful or possible.
5697bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI,
5698 Register Reg, int64_t ImmVal,
5700 bool MakeChange) const {
5701 bool Modified = false;
5702
5703 // 64 bit operations accept sign extended 32 bit immediates.
5704 // 32 bit operations accept all 32 bit immediates, so we don't need to check
5705 // them.
5706 const TargetRegisterClass *RC = nullptr;
5707 if (Reg.isVirtual())
5708 RC = MRI->getRegClass(Reg);
5709 if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) ||
5710 (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) {
5711 if (!isInt<32>(ImmVal))
5712 return false;
5713 }
5714
5715 if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg())
5716 return false;
5717 // Immediate has larger code size than register. So avoid folding the
5718 // immediate if it has more than 1 use and we are optimizing for size.
5719 if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() &&
5720 !MRI->hasOneNonDBGUse(Reg))
5721 return false;
5722
5723 unsigned Opc = UseMI.getOpcode();
5724 unsigned NewOpc;
5725 if (Opc == TargetOpcode::COPY) {
5726 Register ToReg = UseMI.getOperand(0).getReg();
5727 const TargetRegisterClass *RC = nullptr;
5728 if (ToReg.isVirtual())
5729 RC = MRI->getRegClass(ToReg);
5730 bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) ||
5731 (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg));
5732 bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) ||
5733 (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg));
5734 bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) ||
5735 (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg));
5736
5737 if (ImmVal == 0) {
5738 // We have MOV32r0 only.
5739 if (!GR32Reg)
5740 return false;
5741 }
5742
5743 if (GR64Reg) {
5744 if (isUInt<32>(ImmVal))
5745 NewOpc = X86::MOV32ri64;
5746 else
5747 NewOpc = X86::MOV64ri;
5748 } else if (GR32Reg) {
5749 NewOpc = X86::MOV32ri;
5750 if (ImmVal == 0) {
5751 // MOV32r0 clobbers EFLAGS.
5753 if (UseMI.getParent()->computeRegisterLiveness(
5754 TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead)
5755 return false;
5756
5757 // MOV32r0 is different than other cases because it doesn't encode the
5758 // immediate in the instruction. So we directly modify it here.
5759 if (!MakeChange)
5760 return true;
5761 UseMI.setDesc(get(X86::MOV32r0));
5762 UseMI.removeOperand(
5763 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5764 UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true,
5765 /*isImp=*/true,
5766 /*isKill=*/false,
5767 /*isDead=*/true));
5768 Modified = true;
5769 }
5770 } else if (GR8Reg)
5771 NewOpc = X86::MOV8ri;
5772 else
5773 return false;
5774 } else
5775 NewOpc = convertALUrr2ALUri(Opc);
5776
5777 if (!NewOpc)
5778 return false;
5779
5780 // For SUB instructions the immediate can only be the second source operand.
5781 if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri ||
5782 NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri ||
5783 NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND ||
5784 NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) &&
5785 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2)
5786 return false;
5787 // For CMP instructions the immediate can only be at index 1.
5788 if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) ||
5789 (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) &&
5790 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1)
5791 return false;
5792
5793 using namespace X86;
5794 if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) ||
5795 isRCL(Opc) || isRCR(Opc)) {
5796 unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
5797 if (RegIdx < 2)
5798 return false;
5799 if (!isInt<8>(ImmVal))
5800 return false;
5801 assert(Reg == X86::CL);
5802
5803 if (!MakeChange)
5804 return true;
5805 UseMI.setDesc(get(NewOpc));
5806 UseMI.removeOperand(RegIdx);
5807 UseMI.addOperand(MachineOperand::CreateImm(ImmVal));
5808 // Reg is physical register $cl, so we don't know if DefMI is dead through
5809 // MRI. Let the caller handle it, or pass dead-mi-elimination can delete
5810 // the dead physical register define instruction.
5811 return true;
5812 }
5813
5814 if (!MakeChange)
5815 return true;
5816
5817 if (!Modified) {
5818 // Modify the instruction.
5819 if (ImmVal == 0 && canConvert2Copy(NewOpc) &&
5820 UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) {
5821 // %100 = add %101, 0
5822 // ==>
5823 // %100 = COPY %101
5824 UseMI.setDesc(get(TargetOpcode::COPY));
5825 UseMI.removeOperand(
5826 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr));
5827 UseMI.removeOperand(
5828 UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr));
5829 UseMI.untieRegOperand(0);
5832 } else {
5833 unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
5834 unsigned ImmOpNum = 2;
5835 if (!UseMI.getOperand(0).isDef()) {
5836 Op1 = 0; // TEST, CMP, CTEST, CCMP
5837 ImmOpNum = 1;
5838 }
5839 if (Opc == TargetOpcode::COPY)
5840 ImmOpNum = 1;
5841 if (findCommutedOpIndices(UseMI, Op1, Op2) &&
5842 UseMI.getOperand(Op1).getReg() == Reg)
5843 commuteInstruction(UseMI);
5844
5845 assert(UseMI.getOperand(ImmOpNum).getReg() == Reg);
5846 UseMI.setDesc(get(NewOpc));
5847 UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal);
5848 }
5849 }
5850
5851 if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg))
5853
5854 return true;
5855}
5856
5857/// foldImmediate - 'Reg' is known to be defined by a move immediate
5858/// instruction, try to fold the immediate into the use instruction.
5860 Register Reg, MachineRegisterInfo *MRI) const {
5861 int64_t ImmVal;
5862 if (!getConstValDefinedInReg(DefMI, Reg, ImmVal))
5863 return false;
5864
5865 return foldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true);
5866}
5867
5868/// Expand a single-def pseudo instruction to a two-addr
5869/// instruction with two undef reads of the register being defined.
5870/// This is used for mapping:
5871/// %xmm4 = V_SET0
5872/// to:
5873/// %xmm4 = PXORrr undef %xmm4, undef %xmm4
5874///
5876 const MCInstrDesc &Desc) {
5877 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5878 Register Reg = MIB.getReg(0);
5879 MIB->setDesc(Desc);
5880
5881 // MachineInstr::addOperand() will insert explicit operands before any
5882 // implicit operands.
5884 // But we don't trust that.
5885 assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand");
5886 return true;
5887}
5888
5889/// Expand a single-def pseudo instruction to a two-addr
5890/// instruction with two %k0 reads.
5891/// This is used for mapping:
5892/// %k4 = K_SET1
5893/// to:
5894/// %k4 = KXNORrr %k0, %k0
5896 Register Reg) {
5897 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
5898 MIB->setDesc(Desc);
5900 return true;
5901}
5902
5904 bool MinusOne) {
5905 MachineBasicBlock &MBB = *MIB->getParent();
5906 const DebugLoc &DL = MIB->getDebugLoc();
5907 Register Reg = MIB.getReg(0);
5908
5909 // Insert the XOR.
5910 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
5911 .addReg(Reg, RegState::Undef)
5912 .addReg(Reg, RegState::Undef);
5913
5914 // Turn the pseudo into an INC or DEC.
5915 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
5916 MIB.addReg(Reg);
5917
5918 return true;
5919}
5920
5922 const TargetInstrInfo &TII,
5923 const X86Subtarget &Subtarget) {
5924 MachineBasicBlock &MBB = *MIB->getParent();
5925 const DebugLoc &DL = MIB->getDebugLoc();
5926 int64_t Imm = MIB->getOperand(1).getImm();
5927 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
5929
5930 int StackAdjustment;
5931
5932 if (Subtarget.is64Bit()) {
5933 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
5934 MIB->getOpcode() == X86::MOV32ImmSExti8);
5935
5936 // Can't use push/pop lowering if the function might write to the red zone.
5937 X86MachineFunctionInfo *X86FI =
5939 if (X86FI->getUsesRedZone()) {
5940 MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8
5941 ? X86::MOV32ri
5942 : X86::MOV64ri));
5943 return true;
5944 }
5945
5946 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
5947 // widen the register if necessary.
5948 StackAdjustment = 8;
5949 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm);
5950 MIB->setDesc(TII.get(X86::POP64r));
5951 MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
5952 } else {
5953 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
5954 StackAdjustment = 4;
5955 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm);
5956 MIB->setDesc(TII.get(X86::POP32r));
5957 }
5958 MIB->removeOperand(1);
5960
5961 // Build CFI if necessary.
5962 MachineFunction &MF = *MBB.getParent();
5963 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
5964 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
5965 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
5966 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
5967 if (EmitCFI) {
5968 TFL->BuildCFI(
5969 MBB, I, DL,
5970 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
5971 TFL->BuildCFI(
5972 MBB, std::next(I), DL,
5973 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
5974 }
5975
5976 return true;
5977}
5978
5979// LoadStackGuard has so far only been implemented for 64-bit MachO. Different
5980// code sequence is needed for other targets.
5982 const TargetInstrInfo &TII) {
5983 MachineBasicBlock &MBB = *MIB->getParent();
5984 const DebugLoc &DL = MIB->getDebugLoc();
5985 Register Reg = MIB.getReg(0);
5986 const GlobalValue *GV =
5987 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
5988 auto Flags = MachineMemOperand::MOLoad |
5992 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
5994
5995 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg)
5996 .addReg(X86::RIP)
5997 .addImm(1)
5998 .addReg(0)
6000 .addReg(0)
6001 .addMemOperand(MMO);
6002 MIB->setDebugLoc(DL);
6003 MIB->setDesc(TII.get(X86::MOV64rm));
6004 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
6005}
6006
6008 MachineBasicBlock &MBB = *MIB->getParent();
6009 MachineFunction &MF = *MBB.getParent();
6010 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
6011 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
6012 unsigned XorOp =
6013 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
6014 MIB->setDesc(TII.get(XorOp));
6015 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
6016 return true;
6017}
6018
6019// This is used to handle spills for 128/256-bit registers when we have AVX512,
6020// but not VLX. If it uses an extended register we need to use an instruction
6021// that loads the lower 128/256-bit, but is available with only AVX512F.
6023 const TargetRegisterInfo *TRI,
6024 const MCInstrDesc &LoadDesc,
6025 const MCInstrDesc &BroadcastDesc, unsigned SubIdx) {
6026 Register DestReg = MIB.getReg(0);
6027 // Check if DestReg is XMM16-31 or YMM16-31.
6028 if (TRI->getEncodingValue(DestReg) < 16) {
6029 // We can use a normal VEX encoded load.
6030 MIB->setDesc(LoadDesc);
6031 } else {
6032 // Use a 128/256-bit VBROADCAST instruction.
6033 MIB->setDesc(BroadcastDesc);
6034 // Change the destination to a 512-bit register.
6035 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
6036 MIB->getOperand(0).setReg(DestReg);
6037 }
6038 return true;
6039}
6040
6041// This is used to handle spills for 128/256-bit registers when we have AVX512,
6042// but not VLX. If it uses an extended register we need to use an instruction
6043// that stores the lower 128/256-bit, but is available with only AVX512F.
6045 const TargetRegisterInfo *TRI,
6046 const MCInstrDesc &StoreDesc,
6047 const MCInstrDesc &ExtractDesc, unsigned SubIdx) {
6048 Register SrcReg = MIB.getReg(X86::AddrNumOperands);
6049 // Check if DestReg is XMM16-31 or YMM16-31.
6050 if (TRI->getEncodingValue(SrcReg) < 16) {
6051 // We can use a normal VEX encoded store.
6052 MIB->setDesc(StoreDesc);
6053 } else {
6054 // Use a VEXTRACTF instruction.
6055 MIB->setDesc(ExtractDesc);
6056 // Change the destination to a 512-bit register.
6057 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
6059 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
6060 }
6061
6062 return true;
6063}
6064
6066 MIB->setDesc(Desc);
6067 int64_t ShiftAmt = MIB->getOperand(2).getImm();
6068 // Temporarily remove the immediate so we can add another source register.
6069 MIB->removeOperand(2);
6070 // Add the register. Don't copy the kill flag if there is one.
6071 MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef()));
6072 // Add back the immediate.
6073 MIB.addImm(ShiftAmt);
6074 return true;
6075}
6076
6078 bool HasAVX = Subtarget.hasAVX();
6079 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
6080 switch (MI.getOpcode()) {
6081 case X86::MOV32r0:
6082 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
6083 case X86::MOV32r1:
6084 return expandMOV32r1(MIB, *this, /*MinusOne=*/false);
6085 case X86::MOV32r_1:
6086 return expandMOV32r1(MIB, *this, /*MinusOne=*/true);
6087 case X86::MOV32ImmSExti8:
6088 case X86::MOV64ImmSExti8:
6089 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
6090 case X86::SETB_C32r:
6091 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
6092 case X86::SETB_C64r:
6093 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
6094 case X86::MMX_SET0:
6095 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr));
6096 case X86::V_SET0:
6097 case X86::FsFLD0SS:
6098 case X86::FsFLD0SD:
6099 case X86::FsFLD0SH:
6100 case X86::FsFLD0F128:
6101 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
6102 case X86::AVX_SET0: {
6103 assert(HasAVX && "AVX not supported");
6105 Register SrcReg = MIB.getReg(0);
6106 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6107 MIB->getOperand(0).setReg(XReg);
6108 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
6109 MIB.addReg(SrcReg, RegState::ImplicitDefine);
6110 return true;
6111 }
6112 case X86::AVX512_128_SET0:
6113 case X86::AVX512_FsFLD0SH:
6114 case X86::AVX512_FsFLD0SS:
6115 case X86::AVX512_FsFLD0SD:
6116 case X86::AVX512_FsFLD0F128: {
6117 bool HasVLX = Subtarget.hasVLX();
6118 Register SrcReg = MIB.getReg(0);
6120 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
6121 return Expand2AddrUndef(MIB,
6122 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6123 // Extended register without VLX. Use a larger XOR.
6124 SrcReg =
6125 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
6126 MIB->getOperand(0).setReg(SrcReg);
6127 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6128 }
6129 case X86::AVX512_256_SET0:
6130 case X86::AVX512_512_SET0: {
6131 bool HasVLX = Subtarget.hasVLX();
6132 Register SrcReg = MIB.getReg(0);
6134 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
6135 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
6136 MIB->getOperand(0).setReg(XReg);
6137 Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
6138 MIB.addReg(SrcReg, RegState::ImplicitDefine);
6139 return true;
6140 }
6141 if (MI.getOpcode() == X86::AVX512_256_SET0) {
6142 // No VLX so we must reference a zmm.
6143 unsigned ZReg =
6144 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
6145 MIB->getOperand(0).setReg(ZReg);
6146 }
6147 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
6148 }
6149 case X86::V_SETALLONES:
6150 return Expand2AddrUndef(MIB,
6151 get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
6152 case X86::AVX2_SETALLONES:
6153 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
6154 case X86::AVX1_SETALLONES: {
6155 Register Reg = MIB.getReg(0);
6156 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
6157 MIB->setDesc(get(X86::VCMPPSYrri));
6158 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
6159 return true;
6160 }
6161 case X86::AVX512_512_SETALLONES: {
6162 Register Reg = MIB.getReg(0);
6163 MIB->setDesc(get(X86::VPTERNLOGDZrri));
6164 // VPTERNLOGD needs 3 register inputs and an immediate.
6165 // 0xff will return 1s for any input.
6166 MIB.addReg(Reg, RegState::Undef)
6167 .addReg(Reg, RegState::Undef)
6168 .addReg(Reg, RegState::Undef)
6169 .addImm(0xff);
6170 return true;
6171 }
6172 case X86::AVX512_512_SEXT_MASK_32:
6173 case X86::AVX512_512_SEXT_MASK_64: {
6174 Register Reg = MIB.getReg(0);
6175 Register MaskReg = MIB.getReg(1);
6176 unsigned MaskState = getRegState(MIB->getOperand(1));
6177 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64)
6178 ? X86::VPTERNLOGQZrrikz
6179 : X86::VPTERNLOGDZrrikz;
6180 MI.removeOperand(1);
6181 MIB->setDesc(get(Opc));
6182 // VPTERNLOG needs 3 register inputs and an immediate.
6183 // 0xff will return 1s for any input.
6184 MIB.addReg(Reg, RegState::Undef)
6185 .addReg(MaskReg, MaskState)
6186 .addReg(Reg, RegState::Undef)
6187 .addReg(Reg, RegState::Undef)
6188 .addImm(0xff);
6189 return true;
6190 }
6191 case X86::VMOVAPSZ128rm_NOVLX:
6192 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
6193 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6194 case X86::VMOVUPSZ128rm_NOVLX:
6195 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
6196 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
6197 case X86::VMOVAPSZ256rm_NOVLX:
6198 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
6199 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6200 case X86::VMOVUPSZ256rm_NOVLX:
6201 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
6202 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
6203 case X86::VMOVAPSZ128mr_NOVLX:
6204 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
6205 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6206 case X86::VMOVUPSZ128mr_NOVLX:
6207 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
6208 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
6209 case X86::VMOVAPSZ256mr_NOVLX:
6210 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
6211 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6212 case X86::VMOVUPSZ256mr_NOVLX:
6213 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
6214 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
6215 case X86::MOV32ri64: {
6216 Register Reg = MIB.getReg(0);
6217 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
6218 MI.setDesc(get(X86::MOV32ri));
6219 MIB->getOperand(0).setReg(Reg32);
6221 return true;
6222 }
6223
6224 case X86::RDFLAGS32:
6225 case X86::RDFLAGS64: {
6226 unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64;
6227 MachineBasicBlock &MBB = *MIB->getParent();
6228
6229 MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(),
6230 get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32))
6231 .getInstr();
6232
6233 // Permit reads of the EFLAGS and DF registers without them being defined.
6234 // This intrinsic exists to read external processor state in flags, such as
6235 // the trap flag, interrupt flag, and direction flag, none of which are
6236 // modeled by the backend.
6237 assert(NewMI->getOperand(2).getReg() == X86::EFLAGS &&
6238 "Unexpected register in operand! Should be EFLAGS.");
6239 NewMI->getOperand(2).setIsUndef();
6240 assert(NewMI->getOperand(3).getReg() == X86::DF &&
6241 "Unexpected register in operand! Should be DF.");
6242 NewMI->getOperand(3).setIsUndef();
6243
6244 MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r));
6245 return true;
6246 }
6247
6248 case X86::WRFLAGS32:
6249 case X86::WRFLAGS64: {
6250 unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64;
6251 MachineBasicBlock &MBB = *MIB->getParent();
6252
6253 BuildMI(MBB, MI, MIB->getDebugLoc(),
6254 get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
6255 .addReg(MI.getOperand(0).getReg());
6256 BuildMI(MBB, MI, MIB->getDebugLoc(),
6257 get(Is64Bit ? X86::POPF64 : X86::POPF32));
6258 MI.eraseFromParent();
6259 return true;
6260 }
6261
6262 // KNL does not recognize dependency-breaking idioms for mask registers,
6263 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
6264 // Using %k0 as the undef input register is a performance heuristic based
6265 // on the assumption that %k0 is used less frequently than the other mask
6266 // registers, since it is not usable as a write mask.
6267 // FIXME: A more advanced approach would be to choose the best input mask
6268 // register based on context.
6269 case X86::KSET0W:
6270 return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
6271 case X86::KSET0D:
6272 return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
6273 case X86::KSET0Q:
6274 return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
6275 case X86::KSET1W:
6276 return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
6277 case X86::KSET1D:
6278 return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
6279 case X86::KSET1Q:
6280 return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
6281 case TargetOpcode::LOAD_STACK_GUARD:
6282 expandLoadStackGuard(MIB, *this);
6283 return true;
6284 case X86::XOR64_FP:
6285 case X86::XOR32_FP:
6286 return expandXorFP(MIB, *this);
6287 case X86::SHLDROT32ri:
6288 return expandSHXDROT(MIB, get(X86::SHLD32rri8));
6289 case X86::SHLDROT64ri:
6290 return expandSHXDROT(MIB, get(X86::SHLD64rri8));
6291 case X86::SHRDROT32ri:
6292 return expandSHXDROT(MIB, get(X86::SHRD32rri8));
6293 case X86::SHRDROT64ri:
6294 return expandSHXDROT(MIB, get(X86::SHRD64rri8));
6295 case X86::ADD8rr_DB:
6296 MIB->setDesc(get(X86::OR8rr));
6297 break;
6298 case X86::ADD16rr_DB:
6299 MIB->setDesc(get(X86::OR16rr));
6300 break;
6301 case X86::ADD32rr_DB:
6302 MIB->setDesc(get(X86::OR32rr));
6303 break;
6304 case X86::ADD64rr_DB:
6305 MIB->setDesc(get(X86::OR64rr));
6306 break;
6307 case X86::ADD8ri_DB:
6308 MIB->setDesc(get(X86::OR8ri));
6309 break;
6310 case X86::ADD16ri_DB:
6311 MIB->setDesc(get(X86::OR16ri));
6312 break;
6313 case X86::ADD32ri_DB:
6314 MIB->setDesc(get(X86::OR32ri));
6315 break;
6316 case X86::ADD64ri32_DB:
6317 MIB->setDesc(get(X86::OR64ri32));
6318 break;
6319 }
6320 return false;
6321}
6322
6323/// Return true for all instructions that only update
6324/// the first 32 or 64-bits of the destination register and leave the rest
6325/// unmodified. This can be used to avoid folding loads if the instructions
6326/// only update part of the destination register, and the non-updated part is
6327/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
6328/// instructions breaks the partial register dependency and it can improve
6329/// performance. e.g.:
6330///
6331/// movss (%rdi), %xmm0
6332/// cvtss2sd %xmm0, %xmm0
6333///
6334/// Instead of
6335/// cvtss2sd (%rdi), %xmm0
6336///
6337/// FIXME: This should be turned into a TSFlags.
6338///
6339static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget,
6340 bool ForLoadFold = false) {
6341 switch (Opcode) {
6342 case X86::CVTSI2SSrr:
6343 case X86::CVTSI2SSrm:
6344 case X86::CVTSI642SSrr:
6345 case X86::CVTSI642SSrm:
6346 case X86::CVTSI2SDrr:
6347 case X86::CVTSI2SDrm:
6348 case X86::CVTSI642SDrr:
6349 case X86::CVTSI642SDrm:
6350 // Load folding won't effect the undef register update since the input is
6351 // a GPR.
6352 return !ForLoadFold;
6353 case X86::CVTSD2SSrr:
6354 case X86::CVTSD2SSrm:
6355 case X86::CVTSS2SDrr:
6356 case X86::CVTSS2SDrm:
6357 case X86::MOVHPDrm:
6358 case X86::MOVHPSrm:
6359 case X86::MOVLPDrm:
6360 case X86::MOVLPSrm:
6361 case X86::RCPSSr:
6362 case X86::RCPSSm:
6363 case X86::RCPSSr_Int:
6364 case X86::RCPSSm_Int:
6365 case X86::ROUNDSDri:
6366 case X86::ROUNDSDmi:
6367 case X86::ROUNDSSri:
6368 case X86::ROUNDSSmi:
6369 case X86::RSQRTSSr:
6370 case X86::RSQRTSSm:
6371 case X86::RSQRTSSr_Int:
6372 case X86::RSQRTSSm_Int:
6373 case X86::SQRTSSr:
6374 case X86::SQRTSSm:
6375 case X86::SQRTSSr_Int:
6376 case X86::SQRTSSm_Int:
6377 case X86::SQRTSDr:
6378 case X86::SQRTSDm:
6379 case X86::SQRTSDr_Int:
6380 case X86::SQRTSDm_Int:
6381 return true;
6382 case X86::VFCMULCPHZ128rm:
6383 case X86::VFCMULCPHZ128rmb:
6384 case X86::VFCMULCPHZ128rmbkz:
6385 case X86::VFCMULCPHZ128rmkz:
6386 case X86::VFCMULCPHZ128rr:
6387 case X86::VFCMULCPHZ128rrkz:
6388 case X86::VFCMULCPHZ256rm:
6389 case X86::VFCMULCPHZ256rmb:
6390 case X86::VFCMULCPHZ256rmbkz:
6391 case X86::VFCMULCPHZ256rmkz:
6392 case X86::VFCMULCPHZ256rr:
6393 case X86::VFCMULCPHZ256rrkz:
6394 case X86::VFCMULCPHZrm:
6395 case X86::VFCMULCPHZrmb:
6396 case X86::VFCMULCPHZrmbkz:
6397 case X86::VFCMULCPHZrmkz:
6398 case X86::VFCMULCPHZrr:
6399 case X86::VFCMULCPHZrrb:
6400 case X86::VFCMULCPHZrrbkz:
6401 case X86::VFCMULCPHZrrkz:
6402 case X86::VFMULCPHZ128rm:
6403 case X86::VFMULCPHZ128rmb:
6404 case X86::VFMULCPHZ128rmbkz:
6405 case X86::VFMULCPHZ128rmkz:
6406 case X86::VFMULCPHZ128rr:
6407 case X86::VFMULCPHZ128rrkz:
6408 case X86::VFMULCPHZ256rm:
6409 case X86::VFMULCPHZ256rmb:
6410 case X86::VFMULCPHZ256rmbkz:
6411 case X86::VFMULCPHZ256rmkz:
6412 case X86::VFMULCPHZ256rr:
6413 case X86::VFMULCPHZ256rrkz:
6414 case X86::VFMULCPHZrm:
6415 case X86::VFMULCPHZrmb:
6416 case X86::VFMULCPHZrmbkz:
6417 case X86::VFMULCPHZrmkz:
6418 case X86::VFMULCPHZrr:
6419 case X86::VFMULCPHZrrb:
6420 case X86::VFMULCPHZrrbkz:
6421 case X86::VFMULCPHZrrkz:
6422 case X86::VFCMULCSHZrm:
6423 case X86::VFCMULCSHZrmkz:
6424 case X86::VFCMULCSHZrr:
6425 case X86::VFCMULCSHZrrb:
6426 case X86::VFCMULCSHZrrbkz:
6427 case X86::VFCMULCSHZrrkz:
6428 case X86::VFMULCSHZrm:
6429 case X86::VFMULCSHZrmkz:
6430 case X86::VFMULCSHZrr:
6431 case X86::VFMULCSHZrrb:
6432 case X86::VFMULCSHZrrbkz:
6433 case X86::VFMULCSHZrrkz:
6434 return Subtarget.hasMULCFalseDeps();
6435 case X86::VPERMDYrm:
6436 case X86::VPERMDYrr:
6437 case X86::VPERMQYmi:
6438 case X86::VPERMQYri:
6439 case X86::VPERMPSYrm:
6440 case X86::VPERMPSYrr:
6441 case X86::VPERMPDYmi:
6442 case X86::VPERMPDYri:
6443 case X86::VPERMDZ256rm:
6444 case X86::VPERMDZ256rmb:
6445 case X86::VPERMDZ256rmbkz:
6446 case X86::VPERMDZ256rmkz:
6447 case X86::VPERMDZ256rr:
6448 case X86::VPERMDZ256rrkz:
6449 case X86::VPERMDZrm:
6450 case X86::VPERMDZrmb:
6451 case X86::VPERMDZrmbkz:
6452 case X86::VPERMDZrmkz:
6453 case X86::VPERMDZrr:
6454 case X86::VPERMDZrrkz:
6455 case X86::VPERMQZ256mbi:
6456 case X86::VPERMQZ256mbikz:
6457 case X86::VPERMQZ256mi:
6458 case X86::VPERMQZ256mikz:
6459 case X86::VPERMQZ256ri:
6460 case X86::VPERMQZ256rikz:
6461 case X86::VPERMQZ256rm:
6462 case X86::VPERMQZ256rmb:
6463 case X86::VPERMQZ256rmbkz:
6464 case X86::VPERMQZ256rmkz:
6465 case X86::VPERMQZ256rr:
6466 case X86::VPERMQZ256rrkz:
6467 case X86::VPERMQZmbi:
6468 case X86::VPERMQZmbikz:
6469 case X86::VPERMQZmi:
6470 case X86::VPERMQZmikz:
6471 case X86::VPERMQZri:
6472 case X86::VPERMQZrikz:
6473 case X86::VPERMQZrm:
6474 case X86::VPERMQZrmb:
6475 case X86::VPERMQZrmbkz:
6476 case X86::VPERMQZrmkz:
6477 case X86::VPERMQZrr:
6478 case X86::VPERMQZrrkz:
6479 case X86::VPERMPSZ256rm:
6480 case X86::VPERMPSZ256rmb:
6481 case X86::VPERMPSZ256rmbkz:
6482 case X86::VPERMPSZ256rmkz:
6483 case X86::VPERMPSZ256rr:
6484 case X86::VPERMPSZ256rrkz:
6485 case X86::VPERMPSZrm:
6486 case X86::VPERMPSZrmb:
6487 case X86::VPERMPSZrmbkz:
6488 case X86::VPERMPSZrmkz:
6489 case X86::VPERMPSZrr:
6490 case X86::VPERMPSZrrkz:
6491 case X86::VPERMPDZ256mbi:
6492 case X86::VPERMPDZ256mbikz:
6493 case X86::VPERMPDZ256mi:
6494 case X86::VPERMPDZ256mikz:
6495 case X86::VPERMPDZ256ri:
6496 case X86::VPERMPDZ256rikz:
6497 case X86::VPERMPDZ256rm:
6498 case X86::VPERMPDZ256rmb:
6499 case X86::VPERMPDZ256rmbkz:
6500 case X86::VPERMPDZ256rmkz:
6501 case X86::VPERMPDZ256rr:
6502 case X86::VPERMPDZ256rrkz:
6503 case X86::VPERMPDZmbi:
6504 case X86::VPERMPDZmbikz:
6505 case X86::VPERMPDZmi:
6506 case X86::VPERMPDZmikz:
6507 case X86::VPERMPDZri:
6508 case X86::VPERMPDZrikz:
6509 case X86::VPERMPDZrm:
6510 case X86::VPERMPDZrmb:
6511 case X86::VPERMPDZrmbkz:
6512 case X86::VPERMPDZrmkz:
6513 case X86::VPERMPDZrr:
6514 case X86::VPERMPDZrrkz:
6515 return Subtarget.hasPERMFalseDeps();
6516 case X86::VRANGEPDZ128rmbi:
6517 case X86::VRANGEPDZ128rmbikz:
6518 case X86::VRANGEPDZ128rmi:
6519 case X86::VRANGEPDZ128rmikz:
6520 case X86::VRANGEPDZ128rri:
6521 case X86::VRANGEPDZ128rrikz:
6522 case X86::VRANGEPDZ256rmbi:
6523 case X86::VRANGEPDZ256rmbikz:
6524 case X86::VRANGEPDZ256rmi:
6525 case X86::VRANGEPDZ256rmikz:
6526 case X86::VRANGEPDZ256rri:
6527 case X86::VRANGEPDZ256rrikz:
6528 case X86::VRANGEPDZrmbi:
6529 case X86::VRANGEPDZrmbikz:
6530 case X86::VRANGEPDZrmi:
6531 case X86::VRANGEPDZrmikz:
6532 case X86::VRANGEPDZrri:
6533 case X86::VRANGEPDZrrib:
6534 case X86::VRANGEPDZrribkz:
6535 case X86::VRANGEPDZrrikz:
6536 case X86::VRANGEPSZ128rmbi:
6537 case X86::VRANGEPSZ128rmbikz:
6538 case X86::VRANGEPSZ128rmi:
6539 case X86::VRANGEPSZ128rmikz:
6540 case X86::VRANGEPSZ128rri:
6541 case X86::VRANGEPSZ128rrikz:
6542 case X86::VRANGEPSZ256rmbi:
6543 case X86::VRANGEPSZ256rmbikz:
6544 case X86::VRANGEPSZ256rmi:
6545 case X86::VRANGEPSZ256rmikz:
6546 case X86::VRANGEPSZ256rri:
6547 case X86::VRANGEPSZ256rrikz:
6548 case X86::VRANGEPSZrmbi:
6549 case X86::VRANGEPSZrmbikz:
6550 case X86::VRANGEPSZrmi:
6551 case X86::VRANGEPSZrmikz:
6552 case X86::VRANGEPSZrri:
6553 case X86::VRANGEPSZrrib:
6554 case X86::VRANGEPSZrribkz:
6555 case X86::VRANGEPSZrrikz:
6556 case X86::VRANGESDZrmi:
6557 case X86::VRANGESDZrmikz:
6558 case X86::VRANGESDZrri:
6559 case X86::VRANGESDZrrib:
6560 case X86::VRANGESDZrribkz:
6561 case X86::VRANGESDZrrikz:
6562 case X86::VRANGESSZrmi:
6563 case X86::VRANGESSZrmikz:
6564 case X86::VRANGESSZrri:
6565 case X86::VRANGESSZrrib:
6566 case X86::VRANGESSZrribkz:
6567 case X86::VRANGESSZrrikz:
6568 return Subtarget.hasRANGEFalseDeps();
6569 case X86::VGETMANTSSZrmi:
6570 case X86::VGETMANTSSZrmikz:
6571 case X86::VGETMANTSSZrri:
6572 case X86::VGETMANTSSZrrib:
6573 case X86::VGETMANTSSZrribkz:
6574 case X86::VGETMANTSSZrrikz:
6575 case X86::VGETMANTSDZrmi:
6576 case X86::VGETMANTSDZrmikz:
6577 case X86::VGETMANTSDZrri:
6578 case X86::VGETMANTSDZrrib:
6579 case X86::VGETMANTSDZrribkz:
6580 case X86::VGETMANTSDZrrikz:
6581 case X86::VGETMANTSHZrmi:
6582 case X86::VGETMANTSHZrmikz:
6583 case X86::VGETMANTSHZrri:
6584 case X86::VGETMANTSHZrrib:
6585 case X86::VGETMANTSHZrribkz:
6586 case X86::VGETMANTSHZrrikz:
6587 case X86::VGETMANTPSZ128rmbi:
6588 case X86::VGETMANTPSZ128rmbikz:
6589 case X86::VGETMANTPSZ128rmi:
6590 case X86::VGETMANTPSZ128rmikz:
6591 case X86::VGETMANTPSZ256rmbi:
6592 case X86::VGETMANTPSZ256rmbikz:
6593 case X86::VGETMANTPSZ256rmi:
6594 case X86::VGETMANTPSZ256rmikz:
6595 case X86::VGETMANTPSZrmbi:
6596 case X86::VGETMANTPSZrmbikz:
6597 case X86::VGETMANTPSZrmi:
6598 case X86::VGETMANTPSZrmikz:
6599 case X86::VGETMANTPDZ128rmbi:
6600 case X86::VGETMANTPDZ128rmbikz:
6601 case X86::VGETMANTPDZ128rmi:
6602 case X86::VGETMANTPDZ128rmikz:
6603 case X86::VGETMANTPDZ256rmbi:
6604 case X86::VGETMANTPDZ256rmbikz:
6605 case X86::VGETMANTPDZ256rmi:
6606 case X86::VGETMANTPDZ256rmikz:
6607 case X86::VGETMANTPDZrmbi:
6608 case X86::VGETMANTPDZrmbikz:
6609 case X86::VGETMANTPDZrmi:
6610 case X86::VGETMANTPDZrmikz:
6611 return Subtarget.hasGETMANTFalseDeps();
6612 case X86::VPMULLQZ128rm:
6613 case X86::VPMULLQZ128rmb:
6614 case X86::VPMULLQZ128rmbkz:
6615 case X86::VPMULLQZ128rmkz:
6616 case X86::VPMULLQZ128rr:
6617 case X86::VPMULLQZ128rrkz:
6618 case X86::VPMULLQZ256rm:
6619 case X86::VPMULLQZ256rmb:
6620 case X86::VPMULLQZ256rmbkz:
6621 case X86::VPMULLQZ256rmkz:
6622 case X86::VPMULLQZ256rr:
6623 case X86::VPMULLQZ256rrkz:
6624 case X86::VPMULLQZrm:
6625 case X86::VPMULLQZrmb:
6626 case X86::VPMULLQZrmbkz:
6627 case X86::VPMULLQZrmkz:
6628 case X86::VPMULLQZrr:
6629 case X86::VPMULLQZrrkz:
6630 return Subtarget.hasMULLQFalseDeps();
6631 // GPR
6632 case X86::POPCNT32rm:
6633 case X86::POPCNT32rr:
6634 case X86::POPCNT64rm:
6635 case X86::POPCNT64rr:
6636 return Subtarget.hasPOPCNTFalseDeps();
6637 case X86::LZCNT32rm:
6638 case X86::LZCNT32rr:
6639 case X86::LZCNT64rm:
6640 case X86::LZCNT64rr:
6641 case X86::TZCNT32rm:
6642 case X86::TZCNT32rr:
6643 case X86::TZCNT64rm:
6644 case X86::TZCNT64rr:
6645 return Subtarget.hasLZCNTFalseDeps();
6646 }
6647
6648 return false;
6649}
6650
6651/// Inform the BreakFalseDeps pass how many idle
6652/// instructions we would like before a partial register update.
6654 const MachineInstr &MI, unsigned OpNum,
6655 const TargetRegisterInfo *TRI) const {
6656 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
6657 return 0;
6658
6659 // If MI is marked as reading Reg, the partial register update is wanted.
6660 const MachineOperand &MO = MI.getOperand(0);
6661 Register Reg = MO.getReg();
6662 if (Reg.isVirtual()) {
6663 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
6664 return 0;
6665 } else {
6666 if (MI.readsRegister(Reg, TRI))
6667 return 0;
6668 }
6669
6670 // If any instructions in the clearance range are reading Reg, insert a
6671 // dependency breaking instruction, which is inexpensive and is likely to
6672 // be hidden in other instruction's cycles.
6674}
6675
6676// Return true for any instruction the copies the high bits of the first source
6677// operand into the unused high bits of the destination operand.
6678// Also returns true for instructions that have two inputs where one may
6679// be undef and we want it to use the same register as the other input.
6680static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
6681 bool ForLoadFold = false) {
6682 // Set the OpNum parameter to the first source operand.
6683 switch (Opcode) {
6684 case X86::MMX_PUNPCKHBWrr:
6685 case X86::MMX_PUNPCKHWDrr:
6686 case X86::MMX_PUNPCKHDQrr:
6687 case X86::MMX_PUNPCKLBWrr:
6688 case X86::MMX_PUNPCKLWDrr:
6689 case X86::MMX_PUNPCKLDQrr:
6690 case X86::MOVHLPSrr:
6691 case X86::PACKSSWBrr:
6692 case X86::PACKUSWBrr:
6693 case X86::PACKSSDWrr:
6694 case X86::PACKUSDWrr:
6695 case X86::PUNPCKHBWrr:
6696 case X86::PUNPCKLBWrr:
6697 case X86::PUNPCKHWDrr:
6698 case X86::PUNPCKLWDrr:
6699 case X86::PUNPCKHDQrr:
6700 case X86::PUNPCKLDQrr:
6701 case X86::PUNPCKHQDQrr:
6702 case X86::PUNPCKLQDQrr:
6703 case X86::SHUFPDrri:
6704 case X86::SHUFPSrri:
6705 // These instructions are sometimes used with an undef first or second
6706 // source. Return true here so BreakFalseDeps will assign this source to the
6707 // same register as the first source to avoid a false dependency.
6708 // Operand 1 of these instructions is tied so they're separate from their
6709 // VEX counterparts.
6710 return OpNum == 2 && !ForLoadFold;
6711
6712 case X86::VMOVLHPSrr:
6713 case X86::VMOVLHPSZrr:
6714 case X86::VPACKSSWBrr:
6715 case X86::VPACKUSWBrr:
6716 case X86::VPACKSSDWrr:
6717 case X86::VPACKUSDWrr:
6718 case X86::VPACKSSWBZ128rr:
6719 case X86::VPACKUSWBZ128rr:
6720 case X86::VPACKSSDWZ128rr:
6721 case X86::VPACKUSDWZ128rr:
6722 case X86::VPERM2F128rr:
6723 case X86::VPERM2I128rr:
6724 case X86::VSHUFF32X4Z256rri:
6725 case X86::VSHUFF32X4Zrri:
6726 case X86::VSHUFF64X2Z256rri:
6727 case X86::VSHUFF64X2Zrri:
6728 case X86::VSHUFI32X4Z256rri:
6729 case X86::VSHUFI32X4Zrri:
6730 case X86::VSHUFI64X2Z256rri:
6731 case X86::VSHUFI64X2Zrri:
6732 case X86::VPUNPCKHBWrr:
6733 case X86::VPUNPCKLBWrr:
6734 case X86::VPUNPCKHBWYrr:
6735 case X86::VPUNPCKLBWYrr:
6736 case X86::VPUNPCKHBWZ128rr:
6737 case X86::VPUNPCKLBWZ128rr:
6738 case X86::VPUNPCKHBWZ256rr:
6739 case X86::VPUNPCKLBWZ256rr:
6740 case X86::VPUNPCKHBWZrr:
6741 case X86::VPUNPCKLBWZrr:
6742 case X86::VPUNPCKHWDrr:
6743 case X86::VPUNPCKLWDrr:
6744 case X86::VPUNPCKHWDYrr:
6745 case X86::VPUNPCKLWDYrr:
6746 case X86::VPUNPCKHWDZ128rr:
6747 case X86::VPUNPCKLWDZ128rr:
6748 case X86::VPUNPCKHWDZ256rr:
6749 case X86::VPUNPCKLWDZ256rr:
6750 case X86::VPUNPCKHWDZrr:
6751 case X86::VPUNPCKLWDZrr:
6752 case X86::VPUNPCKHDQrr:
6753 case X86::VPUNPCKLDQrr:
6754 case X86::VPUNPCKHDQYrr:
6755 case X86::VPUNPCKLDQYrr:
6756 case X86::VPUNPCKHDQZ128rr:
6757 case X86::VPUNPCKLDQZ128rr:
6758 case X86::VPUNPCKHDQZ256rr:
6759 case X86::VPUNPCKLDQZ256rr:
6760 case X86::VPUNPCKHDQZrr:
6761 case X86::VPUNPCKLDQZrr:
6762 case X86::VPUNPCKHQDQrr:
6763 case X86::VPUNPCKLQDQrr:
6764 case X86::VPUNPCKHQDQYrr:
6765 case X86::VPUNPCKLQDQYrr:
6766 case X86::VPUNPCKHQDQZ128rr:
6767 case X86::VPUNPCKLQDQZ128rr:
6768 case X86::VPUNPCKHQDQZ256rr:
6769 case X86::VPUNPCKLQDQZ256rr:
6770 case X86::VPUNPCKHQDQZrr:
6771 case X86::VPUNPCKLQDQZrr:
6772 // These instructions are sometimes used with an undef first or second
6773 // source. Return true here so BreakFalseDeps will assign this source to the
6774 // same register as the first source to avoid a false dependency.
6775 return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
6776
6777 case X86::VCVTSI2SSrr:
6778 case X86::VCVTSI2SSrm:
6779 case X86::VCVTSI2SSrr_Int:
6780 case X86::VCVTSI2SSrm_Int:
6781 case X86::VCVTSI642SSrr:
6782 case X86::VCVTSI642SSrm:
6783 case X86::VCVTSI642SSrr_Int:
6784 case X86::VCVTSI642SSrm_Int:
6785 case X86::VCVTSI2SDrr:
6786 case X86::VCVTSI2SDrm:
6787 case X86::VCVTSI2SDrr_Int:
6788 case X86::VCVTSI2SDrm_Int:
6789 case X86::VCVTSI642SDrr:
6790 case X86::VCVTSI642SDrm:
6791 case X86::VCVTSI642SDrr_Int:
6792 case X86::VCVTSI642SDrm_Int:
6793 // AVX-512
6794 case X86::VCVTSI2SSZrr:
6795 case X86::VCVTSI2SSZrm:
6796 case X86::VCVTSI2SSZrr_Int:
6797 case X86::VCVTSI2SSZrrb_Int:
6798 case X86::VCVTSI2SSZrm_Int:
6799 case X86::VCVTSI642SSZrr:
6800 case X86::VCVTSI642SSZrm:
6801 case X86::VCVTSI642SSZrr_Int:
6802 case X86::VCVTSI642SSZrrb_Int:
6803 case X86::VCVTSI642SSZrm_Int:
6804 case X86::VCVTSI2SDZrr:
6805 case X86::VCVTSI2SDZrm:
6806 case X86::VCVTSI2SDZrr_Int:
6807 case X86::VCVTSI2SDZrm_Int:
6808 case X86::VCVTSI642SDZrr:
6809 case X86::VCVTSI642SDZrm:
6810 case X86::VCVTSI642SDZrr_Int:
6811 case X86::VCVTSI642SDZrrb_Int:
6812 case X86::VCVTSI642SDZrm_Int:
6813 case X86::VCVTUSI2SSZrr:
6814 case X86::VCVTUSI2SSZrm:
6815 case X86::VCVTUSI2SSZrr_Int:
6816 case X86::VCVTUSI2SSZrrb_Int:
6817 case X86::VCVTUSI2SSZrm_Int:
6818 case X86::VCVTUSI642SSZrr:
6819 case X86::VCVTUSI642SSZrm:
6820 case X86::VCVTUSI642SSZrr_Int:
6821 case X86::VCVTUSI642SSZrrb_Int:
6822 case X86::VCVTUSI642SSZrm_Int:
6823 case X86::VCVTUSI2SDZrr:
6824 case X86::VCVTUSI2SDZrm:
6825 case X86::VCVTUSI2SDZrr_Int:
6826 case X86::VCVTUSI2SDZrm_Int:
6827 case X86::VCVTUSI642SDZrr:
6828 case X86::VCVTUSI642SDZrm:
6829 case X86::VCVTUSI642SDZrr_Int:
6830 case X86::VCVTUSI642SDZrrb_Int:
6831 case X86::VCVTUSI642SDZrm_Int:
6832 case X86::VCVTSI2SHZrr:
6833 case X86::VCVTSI2SHZrm:
6834 case X86::VCVTSI2SHZrr_Int:
6835 case X86::VCVTSI2SHZrrb_Int:
6836 case X86::VCVTSI2SHZrm_Int:
6837 case X86::VCVTSI642SHZrr:
6838 case X86::VCVTSI642SHZrm:
6839 case X86::VCVTSI642SHZrr_Int:
6840 case X86::VCVTSI642SHZrrb_Int:
6841 case X86::VCVTSI642SHZrm_Int:
6842 case X86::VCVTUSI2SHZrr:
6843 case X86::VCVTUSI2SHZrm:
6844 case X86::VCVTUSI2SHZrr_Int:
6845 case X86::VCVTUSI2SHZrrb_Int:
6846 case X86::VCVTUSI2SHZrm_Int:
6847 case X86::VCVTUSI642SHZrr:
6848 case X86::VCVTUSI642SHZrm:
6849 case X86::VCVTUSI642SHZrr_Int:
6850 case X86::VCVTUSI642SHZrrb_Int:
6851 case X86::VCVTUSI642SHZrm_Int:
6852 // Load folding won't effect the undef register update since the input is
6853 // a GPR.
6854 return OpNum == 1 && !ForLoadFold;
6855 case X86::VCVTSD2SSrr:
6856 case X86::VCVTSD2SSrm:
6857 case X86::VCVTSD2SSrr_Int:
6858 case X86::VCVTSD2SSrm_Int:
6859 case X86::VCVTSS2SDrr:
6860 case X86::VCVTSS2SDrm:
6861 case X86::VCVTSS2SDrr_Int:
6862 case X86::VCVTSS2SDrm_Int:
6863 case X86::VRCPSSr:
6864 case X86::VRCPSSr_Int:
6865 case X86::VRCPSSm:
6866 case X86::VRCPSSm_Int:
6867 case X86::VROUNDSDri:
6868 case X86::VROUNDSDmi:
6869 case X86::VROUNDSDri_Int:
6870 case X86::VROUNDSDmi_Int:
6871 case X86::VROUNDSSri:
6872 case X86::VROUNDSSmi:
6873 case X86::VROUNDSSri_Int:
6874 case X86::VROUNDSSmi_Int:
6875 case X86::VRSQRTSSr:
6876 case X86::VRSQRTSSr_Int:
6877 case X86::VRSQRTSSm:
6878 case X86::VRSQRTSSm_Int:
6879 case X86::VSQRTSSr:
6880 case X86::VSQRTSSr_Int:
6881 case X86::VSQRTSSm:
6882 case X86::VSQRTSSm_Int:
6883 case X86::VSQRTSDr:
6884 case X86::VSQRTSDr_Int:
6885 case X86::VSQRTSDm:
6886 case X86::VSQRTSDm_Int:
6887 // AVX-512
6888 case X86::VCVTSD2SSZrr:
6889 case X86::VCVTSD2SSZrr_Int:
6890 case X86::VCVTSD2SSZrrb_Int:
6891 case X86::VCVTSD2SSZrm:
6892 case X86::VCVTSD2SSZrm_Int:
6893 case X86::VCVTSS2SDZrr:
6894 case X86::VCVTSS2SDZrr_Int:
6895 case X86::VCVTSS2SDZrrb_Int:
6896 case X86::VCVTSS2SDZrm:
6897 case X86::VCVTSS2SDZrm_Int:
6898 case X86::VGETEXPSDZr:
6899 case X86::VGETEXPSDZrb:
6900 case X86::VGETEXPSDZm:
6901 case X86::VGETEXPSSZr:
6902 case X86::VGETEXPSSZrb:
6903 case X86::VGETEXPSSZm:
6904 case X86::VGETMANTSDZrri:
6905 case X86::VGETMANTSDZrrib:
6906 case X86::VGETMANTSDZrmi:
6907 case X86::VGETMANTSSZrri:
6908 case X86::VGETMANTSSZrrib:
6909 case X86::VGETMANTSSZrmi:
6910 case X86::VRNDSCALESDZr:
6911 case X86::VRNDSCALESDZr_Int:
6912 case X86::VRNDSCALESDZrb_Int:
6913 case X86::VRNDSCALESDZm:
6914 case X86::VRNDSCALESDZm_Int:
6915 case X86::VRNDSCALESSZr:
6916 case X86::VRNDSCALESSZr_Int:
6917 case X86::VRNDSCALESSZrb_Int:
6918 case X86::VRNDSCALESSZm:
6919 case X86::VRNDSCALESSZm_Int:
6920 case X86::VRCP14SDZrr:
6921 case X86::VRCP14SDZrm:
6922 case X86::VRCP14SSZrr:
6923 case X86::VRCP14SSZrm:
6924 case X86::VRCPSHZrr:
6925 case X86::VRCPSHZrm:
6926 case X86::VRSQRTSHZrr:
6927 case X86::VRSQRTSHZrm:
6928 case X86::VREDUCESHZrmi:
6929 case X86::VREDUCESHZrri:
6930 case X86::VREDUCESHZrrib:
6931 case X86::VGETEXPSHZr:
6932 case X86::VGETEXPSHZrb:
6933 case X86::VGETEXPSHZm:
6934 case X86::VGETMANTSHZrri:
6935 case X86::VGETMANTSHZrrib:
6936 case X86::VGETMANTSHZrmi:
6937 case X86::VRNDSCALESHZr:
6938 case X86::VRNDSCALESHZr_Int:
6939 case X86::VRNDSCALESHZrb_Int:
6940 case X86::VRNDSCALESHZm:
6941 case X86::VRNDSCALESHZm_Int:
6942 case X86::VSQRTSHZr:
6943 case X86::VSQRTSHZr_Int:
6944 case X86::VSQRTSHZrb_Int:
6945 case X86::VSQRTSHZm:
6946 case X86::VSQRTSHZm_Int:
6947 case X86::VRCP28SDZr:
6948 case X86::VRCP28SDZrb:
6949 case X86::VRCP28SDZm:
6950 case X86::VRCP28SSZr:
6951 case X86::VRCP28SSZrb:
6952 case X86::VRCP28SSZm:
6953 case X86::VREDUCESSZrmi:
6954 case X86::VREDUCESSZrri:
6955 case X86::VREDUCESSZrrib:
6956 case X86::VRSQRT14SDZrr:
6957 case X86::VRSQRT14SDZrm:
6958 case X86::VRSQRT14SSZrr:
6959 case X86::VRSQRT14SSZrm:
6960 case X86::VRSQRT28SDZr:
6961 case X86::VRSQRT28SDZrb:
6962 case X86::VRSQRT28SDZm:
6963 case X86::VRSQRT28SSZr:
6964 case X86::VRSQRT28SSZrb:
6965 case X86::VRSQRT28SSZm:
6966 case X86::VSQRTSSZr:
6967 case X86::VSQRTSSZr_Int:
6968 case X86::VSQRTSSZrb_Int:
6969 case X86::VSQRTSSZm:
6970 case X86::VSQRTSSZm_Int:
6971 case X86::VSQRTSDZr:
6972 case X86::VSQRTSDZr_Int:
6973 case X86::VSQRTSDZrb_Int:
6974 case X86::VSQRTSDZm:
6975 case X86::VSQRTSDZm_Int:
6976 case X86::VCVTSD2SHZrr:
6977 case X86::VCVTSD2SHZrr_Int:
6978 case X86::VCVTSD2SHZrrb_Int:
6979 case X86::VCVTSD2SHZrm:
6980 case X86::VCVTSD2SHZrm_Int:
6981 case X86::VCVTSS2SHZrr:
6982 case X86::VCVTSS2SHZrr_Int:
6983 case X86::VCVTSS2SHZrrb_Int:
6984 case X86::VCVTSS2SHZrm:
6985 case X86::VCVTSS2SHZrm_Int:
6986 case X86::VCVTSH2SDZrr:
6987 case X86::VCVTSH2SDZrr_Int:
6988 case X86::VCVTSH2SDZrrb_Int:
6989 case X86::VCVTSH2SDZrm:
6990 case X86::VCVTSH2SDZrm_Int:
6991 case X86::VCVTSH2SSZrr:
6992 case X86::VCVTSH2SSZrr_Int:
6993 case X86::VCVTSH2SSZrrb_Int:
6994 case X86::VCVTSH2SSZrm:
6995 case X86::VCVTSH2SSZrm_Int:
6996 return OpNum == 1;
6997 case X86::VMOVSSZrrk:
6998 case X86::VMOVSDZrrk:
6999 return OpNum == 3 && !ForLoadFold;
7000 case X86::VMOVSSZrrkz:
7001 case X86::VMOVSDZrrkz:
7002 return OpNum == 2 && !ForLoadFold;
7003 }
7004
7005 return false;
7006}
7007
7008/// Inform the BreakFalseDeps pass how many idle instructions we would like
7009/// before certain undef register reads.
7010///
7011/// This catches the VCVTSI2SD family of instructions:
7012///
7013/// vcvtsi2sdq %rax, undef %xmm0, %xmm14
7014///
7015/// We should to be careful *not* to catch VXOR idioms which are presumably
7016/// handled specially in the pipeline:
7017///
7018/// vxorps undef %xmm1, undef %xmm1, %xmm1
7019///
7020/// Like getPartialRegUpdateClearance, this makes a strong assumption that the
7021/// high bits that are passed-through are not live.
7022unsigned
7024 const TargetRegisterInfo *TRI) const {
7025 const MachineOperand &MO = MI.getOperand(OpNum);
7026 if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum))
7027 return UndefRegClearance;
7028
7029 return 0;
7030}
7031
7033 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
7034 Register Reg = MI.getOperand(OpNum).getReg();
7035 // If MI kills this register, the false dependence is already broken.
7036 if (MI.killsRegister(Reg, TRI))
7037 return;
7038
7039 if (X86::VR128RegClass.contains(Reg)) {
7040 // These instructions are all floating point domain, so xorps is the best
7041 // choice.
7042 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
7043 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
7044 .addReg(Reg, RegState::Undef)
7045 .addReg(Reg, RegState::Undef);
7046 MI.addRegisterKilled(Reg, TRI, true);
7047 } else if (X86::VR256RegClass.contains(Reg)) {
7048 // Use vxorps to clear the full ymm register.
7049 // It wants to read and write the xmm sub-register.
7050 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7051 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
7052 .addReg(XReg, RegState::Undef)
7053 .addReg(XReg, RegState::Undef)
7055 MI.addRegisterKilled(Reg, TRI, true);
7056 } else if (X86::VR128XRegClass.contains(Reg)) {
7057 // Only handle VLX targets.
7058 if (!Subtarget.hasVLX())
7059 return;
7060 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
7061 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg)
7062 .addReg(Reg, RegState::Undef)
7063 .addReg(Reg, RegState::Undef);
7064 MI.addRegisterKilled(Reg, TRI, true);
7065 } else if (X86::VR256XRegClass.contains(Reg) ||
7066 X86::VR512RegClass.contains(Reg)) {
7067 // Only handle VLX targets.
7068 if (!Subtarget.hasVLX())
7069 return;
7070 // Use vpxord to clear the full ymm/zmm register.
7071 // It wants to read and write the xmm sub-register.
7072 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
7073 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg)
7074 .addReg(XReg, RegState::Undef)
7075 .addReg(XReg, RegState::Undef)
7077 MI.addRegisterKilled(Reg, TRI, true);
7078 } else if (X86::GR64RegClass.contains(Reg)) {
7079 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
7080 // as well.
7081 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
7082 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
7083 .addReg(XReg, RegState::Undef)
7084 .addReg(XReg, RegState::Undef)
7086 MI.addRegisterKilled(Reg, TRI, true);
7087 } else if (X86::GR32RegClass.contains(Reg)) {
7088 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
7089 .addReg(Reg, RegState::Undef)
7090 .addReg(Reg, RegState::Undef);
7091 MI.addRegisterKilled(Reg, TRI, true);
7092 }
7093}
7094
7096 int PtrOffset = 0) {
7097 unsigned NumAddrOps = MOs.size();
7098
7099 if (NumAddrOps < 4) {
7100 // FrameIndex only - add an immediate offset (whether its zero or not).
7101 for (unsigned i = 0; i != NumAddrOps; ++i)
7102 MIB.add(MOs[i]);
7103 addOffset(MIB, PtrOffset);
7104 } else {
7105 // General Memory Addressing - we need to add any offset to an existing
7106 // offset.
7107 assert(MOs.size() == 5 && "Unexpected memory operand list length");
7108 for (unsigned i = 0; i != NumAddrOps; ++i) {
7109 const MachineOperand &MO = MOs[i];
7110 if (i == 3 && PtrOffset != 0) {
7111 MIB.addDisp(MO, PtrOffset);
7112 } else {
7113 MIB.add(MO);
7114 }
7115 }
7116 }
7117}
7118
7120 MachineInstr &NewMI,
7121 const TargetInstrInfo &TII) {
7123 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
7124
7125 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
7126 MachineOperand &MO = NewMI.getOperand(Idx);
7127 // We only need to update constraints on virtual register operands.
7128 if (!MO.isReg())
7129 continue;
7130 Register Reg = MO.getReg();
7131 if (!Reg.isVirtual())
7132 continue;
7133
7134 auto *NewRC = MRI.constrainRegClass(
7135 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
7136 if (!NewRC) {
7137 LLVM_DEBUG(
7138 dbgs() << "WARNING: Unable to update register constraint for operand "
7139 << Idx << " of instruction:\n";
7140 NewMI.dump(); dbgs() << "\n");
7141 }
7142 }
7143}
7144
7145static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
7149 const TargetInstrInfo &TII) {
7150 // Create the base instruction with the memory operand as the first part.
7151 // Omit the implicit operands, something BuildMI can't do.
7152 MachineInstr *NewMI =
7153 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7154 MachineInstrBuilder MIB(MF, NewMI);
7155 addOperands(MIB, MOs);
7156
7157 // Loop over the rest of the ri operands, converting them over.
7158 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
7159 for (unsigned i = 0; i != NumOps; ++i) {
7160 MachineOperand &MO = MI.getOperand(i + 2);
7161 MIB.add(MO);
7162 }
7163 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2))
7164 MIB.add(MO);
7165
7166 updateOperandRegConstraints(MF, *NewMI, TII);
7167
7168 MachineBasicBlock *MBB = InsertPt->getParent();
7169 MBB->insert(InsertPt, NewMI);
7170
7171 return MIB;
7172}
7173
7174static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode,
7175 unsigned OpNo, ArrayRef<MachineOperand> MOs,
7178 int PtrOffset = 0) {
7179 // Omit the implicit operands, something BuildMI can't do.
7180 MachineInstr *NewMI =
7181 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
7182 MachineInstrBuilder MIB(MF, NewMI);
7183
7184 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
7185 MachineOperand &MO = MI.getOperand(i);
7186 if (i == OpNo) {
7187 assert(MO.isReg() && "Expected to fold into reg operand!");
7188 addOperands(MIB, MOs, PtrOffset);
7189 } else {
7190 MIB.add(MO);
7191 }
7192 }
7193
7194 updateOperandRegConstraints(MF, *NewMI, TII);
7195
7196 // Copy the NoFPExcept flag from the instruction we're fusing.
7199
7200 MachineBasicBlock *MBB = InsertPt->getParent();
7201 MBB->insert(InsertPt, NewMI);
7202
7203 return MIB;
7204}
7205
7206static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
7209 MachineInstr &MI) {
7210 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
7211 MI.getDebugLoc(), TII.get(Opcode));
7212 addOperands(MIB, MOs);
7213 return MIB.addImm(0);
7214}
7215
7216MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
7217 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7219 unsigned Size, Align Alignment) const {
7220 switch (MI.getOpcode()) {
7221 case X86::INSERTPSrr:
7222 case X86::VINSERTPSrr:
7223 case X86::VINSERTPSZrr:
7224 // Attempt to convert the load of inserted vector into a fold load
7225 // of a single float.
7226 if (OpNum == 2) {
7227 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
7228 unsigned ZMask = Imm & 15;
7229 unsigned DstIdx = (Imm >> 4) & 3;
7230 unsigned SrcIdx = (Imm >> 6) & 3;
7231
7233 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7234 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7235 if ((Size == 0 || Size >= 16) && RCSize >= 16 &&
7236 (MI.getOpcode() != X86::INSERTPSrr || Alignment >= Align(4))) {
7237 int PtrOffset = SrcIdx * 4;
7238 unsigned NewImm = (DstIdx << 4) | ZMask;
7239 unsigned NewOpCode =
7240 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm
7241 : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm
7242 : X86::INSERTPSrm;
7243 MachineInstr *NewMI =
7244 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
7245 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
7246 return NewMI;
7247 }
7248 }
7249 break;
7250 case X86::MOVHLPSrr:
7251 case X86::VMOVHLPSrr:
7252 case X86::VMOVHLPSZrr:
7253 // Move the upper 64-bits of the second operand to the lower 64-bits.
7254 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
7255 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
7256 if (OpNum == 2) {
7258 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7259 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7260 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
7261 unsigned NewOpCode =
7262 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm
7263 : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm
7264 : X86::MOVLPSrm;
7265 MachineInstr *NewMI =
7266 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
7267 return NewMI;
7268 }
7269 }
7270 break;
7271 case X86::UNPCKLPDrr:
7272 // If we won't be able to fold this to the memory form of UNPCKL, use
7273 // MOVHPD instead. Done as custom because we can't have this in the load
7274 // table twice.
7275 if (OpNum == 2) {
7277 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7278 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7279 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
7280 MachineInstr *NewMI =
7281 fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
7282 return NewMI;
7283 }
7284 }
7285 break;
7286 case X86::MOV32r0:
7287 if (auto *NewMI =
7288 makeM0Inst(*this, (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs,
7289 InsertPt, MI))
7290 return NewMI;
7291 break;
7292 }
7293
7294 return nullptr;
7295}
7296
7298 MachineInstr &MI) {
7299 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) ||
7300 !MI.getOperand(1).isReg())
7301 return false;
7302
7303 // The are two cases we need to handle depending on where in the pipeline
7304 // the folding attempt is being made.
7305 // -Register has the undef flag set.
7306 // -Register is produced by the IMPLICIT_DEF instruction.
7307
7308 if (MI.getOperand(1).isUndef())
7309 return true;
7310
7312 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
7313 return VRegDef && VRegDef->isImplicitDef();
7314}
7315
7316unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI,
7317 unsigned Idx1) const {
7318 unsigned Idx2 = CommuteAnyOperandIndex;
7319 if (!findCommutedOpIndices(MI, Idx1, Idx2))
7320 return Idx1;
7321
7322 bool HasDef = MI.getDesc().getNumDefs();
7323 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
7324 Register Reg1 = MI.getOperand(Idx1).getReg();
7325 Register Reg2 = MI.getOperand(Idx2).getReg();
7326 bool Tied1 = 0 == MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO);
7327 bool Tied2 = 0 == MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO);
7328
7329 // If either of the commutable operands are tied to the destination
7330 // then we can not commute + fold.
7331 if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2))
7332 return Idx1;
7333
7334 return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1;
7335}
7336
7337static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) {
7338 if (PrintFailedFusing && !MI.isCopy())
7339 dbgs() << "We failed to fuse operand " << Idx << " in " << MI;
7340}
7341
7343 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
7345 unsigned Size, Align Alignment, bool AllowCommute) const {
7346 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
7347 unsigned Opc = MI.getOpcode();
7348
7349 // For CPUs that favor the register form of a call or push,
7350 // do not fold loads into calls or pushes, unless optimizing for size
7351 // aggressively.
7352 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
7353 (Opc == X86::CALL32r || Opc == X86::CALL64r || Opc == X86::PUSH16r ||
7354 Opc == X86::PUSH32r || Opc == X86::PUSH64r))
7355 return nullptr;
7356
7357 // Avoid partial and undef register update stalls unless optimizing for size.
7358 if (!MF.getFunction().hasOptSize() &&
7359 (hasPartialRegUpdate(Opc, Subtarget, /*ForLoadFold*/ true) ||
7361 return nullptr;
7362
7363 unsigned NumOps = MI.getDesc().getNumOperands();
7364 bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(0).isReg() &&
7365 MI.getOperand(1).isReg() &&
7366 MI.getOperand(0).getReg() == MI.getOperand(1).getReg();
7367
7368 // FIXME: AsmPrinter doesn't know how to handle
7369 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
7370 if (Opc == X86::ADD32ri &&
7371 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
7372 return nullptr;
7373
7374 // GOTTPOFF relocation loads can only be folded into add instructions.
7375 // FIXME: Need to exclude other relocations that only support specific
7376 // instructions.
7377 if (MOs.size() == X86::AddrNumOperands &&
7378 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
7379 Opc != X86::ADD64rr)
7380 return nullptr;
7381
7382 // Don't fold loads into indirect calls that need a KCFI check as we'll
7383 // have to unfold these in X86TargetLowering::EmitKCFICheck anyway.
7384 if (MI.isCall() && MI.getCFIType())
7385 return nullptr;
7386
7387 // Attempt to fold any custom cases we have.
7388 if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt,
7389 Size, Alignment))
7390 return CustomMI;
7391
7392 // Folding a memory location into the two-address part of a two-address
7393 // instruction is different than folding it other places. It requires
7394 // replacing the *two* registers with the memory location.
7395 //
7396 // Utilize the mapping NonNDD -> RMW for the NDD variant.
7397 unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U;
7398 const X86FoldTableEntry *I =
7399 IsTwoAddr ? lookupTwoAddrFoldTable(NonNDOpc ? NonNDOpc : Opc)
7400 : lookupFoldTable(Opc, OpNum);
7401
7402 MachineInstr *NewMI = nullptr;
7403 if (I) {
7404 unsigned Opcode = I->DstOp;
7405 if (Alignment <
7406 Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)))
7407 return nullptr;
7408 bool NarrowToMOV32rm = false;
7409 if (Size) {
7411 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
7412 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
7413 // Check if it's safe to fold the load. If the size of the object is
7414 // narrower than the load width, then it's not.
7415 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
7416 if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) {
7417 // If this is a 64-bit load, but the spill slot is 32, then we can do
7418 // a 32-bit load which is implicitly zero-extended. This likely is
7419 // due to live interval analysis remat'ing a load from stack slot.
7420 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
7421 return nullptr;
7422 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
7423 return nullptr;
7424 Opcode = X86::MOV32rm;
7425 NarrowToMOV32rm = true;
7426 }
7427 // For stores, make sure the size of the object is equal to the size of
7428 // the store. If the object is larger, the extra bits would be garbage. If
7429 // the object is smaller we might overwrite another object or fault.
7430 if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize)
7431 return nullptr;
7432 }
7433
7434 NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this)
7435 : fuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
7436
7437 if (NarrowToMOV32rm) {
7438 // If this is the special case where we use a MOV32rm to load a 32-bit
7439 // value and zero-extend the top bits. Change the destination register
7440 // to a 32-bit one.
7441 Register DstReg = NewMI->getOperand(0).getReg();
7442 if (DstReg.isPhysical())
7443 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
7444 else
7445 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
7446 }
7447 return NewMI;
7448 }
7449
7450 if (AllowCommute) {
7451 // If the instruction and target operand are commutable, commute the
7452 // instruction and try again.
7453 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum);
7454 if (CommuteOpIdx2 == OpNum) {
7455 printFailMsgforFold(MI, OpNum);
7456 return nullptr;
7457 }
7458 // Attempt to fold with the commuted version of the instruction.
7459 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
7460 Alignment, /*AllowCommute=*/false);
7461 if (NewMI)
7462 return NewMI;
7463 // Folding failed again - undo the commute before returning.
7464 commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
7465 }
7466
7467 printFailMsgforFold(MI, OpNum);
7468 return nullptr;
7469}
7470
7473 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
7474 VirtRegMap *VRM) const {
7475 // Check switch flag
7476 if (NoFusing)
7477 return nullptr;
7478
7479 // Avoid partial and undef register update stalls unless optimizing for size.
7480 if (!MF.getFunction().hasOptSize() &&
7481 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
7483 return nullptr;
7484
7485 // Don't fold subreg spills, or reloads that use a high subreg.
7486 for (auto Op : Ops) {
7487 MachineOperand &MO = MI.getOperand(Op);
7488 auto SubReg = MO.getSubReg();
7489 // MOV32r0 is special b/c it's used to clear a 64-bit register too.
7490 // (See patterns for MOV32r0 in TD files).
7491 if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit)
7492 continue;
7493 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
7494 return nullptr;
7495 }
7496
7497 const MachineFrameInfo &MFI = MF.getFrameInfo();
7498 unsigned Size = MFI.getObjectSize(FrameIndex);
7499 Align Alignment = MFI.getObjectAlign(FrameIndex);
7500 // If the function stack isn't realigned we don't want to fold instructions
7501 // that need increased alignment.
7502 if (!RI.hasStackRealignment(MF))
7503 Alignment =
7504 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
7505
7506 auto Impl = [&]() {
7507 return foldMemoryOperandImpl(MF, MI, Ops[0],
7508 MachineOperand::CreateFI(FrameIndex), InsertPt,
7509 Size, Alignment, /*AllowCommute=*/true);
7510 };
7511 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
7512 unsigned NewOpc = 0;
7513 unsigned RCSize = 0;
7514 unsigned Opc = MI.getOpcode();
7515 switch (Opc) {
7516 default:
7517 // NDD can be folded into RMW though its Op0 and Op1 are not tied.
7518 return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl()
7519 : nullptr;
7520 case X86::TEST8rr:
7521 NewOpc = X86::CMP8ri;
7522 RCSize = 1;
7523 break;
7524 case X86::TEST16rr:
7525 NewOpc = X86::CMP16ri;
7526 RCSize = 2;
7527 break;
7528 case X86::TEST32rr:
7529 NewOpc = X86::CMP32ri;
7530 RCSize = 4;
7531 break;
7532 case X86::TEST64rr:
7533 NewOpc = X86::CMP64ri32;
7534 RCSize = 8;
7535 break;
7536 }
7537 // Check if it's safe to fold the load. If the size of the object is
7538 // narrower than the load width, then it's not.
7539 if (Size < RCSize)
7540 return nullptr;
7541 // Change to CMPXXri r, 0 first.
7542 MI.setDesc(get(NewOpc));
7543 MI.getOperand(1).ChangeToImmediate(0);
7544 } else if (Ops.size() != 1)
7545 return nullptr;
7546
7547 return Impl();
7548}
7549
7550/// Check if \p LoadMI is a partial register load that we can't fold into \p MI
7551/// because the latter uses contents that wouldn't be defined in the folded
7552/// version. For instance, this transformation isn't legal:
7553/// movss (%rdi), %xmm0
7554/// addps %xmm0, %xmm0
7555/// ->
7556/// addps (%rdi), %xmm0
7557///
7558/// But this one is:
7559/// movss (%rdi), %xmm0
7560/// addss %xmm0, %xmm0
7561/// ->
7562/// addss (%rdi), %xmm0
7563///
7565 const MachineInstr &UserMI,
7566 const MachineFunction &MF) {
7567 unsigned Opc = LoadMI.getOpcode();
7568 unsigned UserOpc = UserMI.getOpcode();
7570 const TargetRegisterClass *RC =
7571 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
7572 unsigned RegSize = TRI.getRegSizeInBits(*RC);
7573
7574 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
7575 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
7576 Opc == X86::VMOVSSZrm_alt) &&
7577 RegSize > 32) {
7578 // These instructions only load 32 bits, we can't fold them if the
7579 // destination register is wider than 32 bits (4 bytes), and its user
7580 // instruction isn't scalar (SS).
7581 switch (UserOpc) {
7582 case X86::CVTSS2SDrr_Int:
7583 case X86::VCVTSS2SDrr_Int:
7584 case X86::VCVTSS2SDZrr_Int:
7585 case X86::VCVTSS2SDZrr_Intk:
7586 case X86::VCVTSS2SDZrr_Intkz:
7587 case X86::CVTSS2SIrr_Int:
7588 case X86::CVTSS2SI64rr_Int:
7589 case X86::VCVTSS2SIrr_Int:
7590 case X86::VCVTSS2SI64rr_Int:
7591 case X86::VCVTSS2SIZrr_Int:
7592 case X86::VCVTSS2SI64Zrr_Int:
7593 case X86::CVTTSS2SIrr_Int:
7594 case X86::CVTTSS2SI64rr_Int:
7595 case X86::VCVTTSS2SIrr_Int:
7596 case X86::VCVTTSS2SI64rr_Int:
7597 case X86::VCVTTSS2SIZrr_Int:
7598 case X86::VCVTTSS2SI64Zrr_Int:
7599 case X86::VCVTSS2USIZrr_Int:
7600 case X86::VCVTSS2USI64Zrr_Int:
7601 case X86::VCVTTSS2USIZrr_Int:
7602 case X86::VCVTTSS2USI64Zrr_Int:
7603 case X86::RCPSSr_Int:
7604 case X86::VRCPSSr_Int:
7605 case X86::RSQRTSSr_Int:
7606 case X86::VRSQRTSSr_Int:
7607 case X86::ROUNDSSri_Int:
7608 case X86::VROUNDSSri_Int:
7609 case X86::COMISSrr_Int:
7610 case X86::VCOMISSrr_Int:
7611 case X86::VCOMISSZrr_Int:
7612 case X86::UCOMISSrr_Int:
7613 case X86::VUCOMISSrr_Int:
7614 case X86::VUCOMISSZrr_Int:
7615 case X86::ADDSSrr_Int:
7616 case X86::VADDSSrr_Int:
7617 case X86::VADDSSZrr_Int:
7618 case X86::CMPSSrri_Int:
7619 case X86::VCMPSSrri_Int:
7620 case X86::VCMPSSZrri_Int:
7621 case X86::DIVSSrr_Int:
7622 case X86::VDIVSSrr_Int:
7623 case X86::VDIVSSZrr_Int:
7624 case X86::MAXSSrr_Int:
7625 case X86::VMAXSSrr_Int:
7626 case X86::VMAXSSZrr_Int:
7627 case X86::MINSSrr_Int:
7628 case X86::VMINSSrr_Int:
7629 case X86::VMINSSZrr_Int:
7630 case X86::MULSSrr_Int:
7631 case X86::VMULSSrr_Int:
7632 case X86::VMULSSZrr_Int:
7633 case X86::SQRTSSr_Int:
7634 case X86::VSQRTSSr_Int:
7635 case X86::VSQRTSSZr_Int:
7636 case X86::SUBSSrr_Int:
7637 case X86::VSUBSSrr_Int:
7638 case X86::VSUBSSZrr_Int:
7639 case X86::VADDSSZrr_Intk:
7640 case X86::VADDSSZrr_Intkz:
7641 case X86::VCMPSSZrri_Intk:
7642 case X86::VDIVSSZrr_Intk:
7643 case X86::VDIVSSZrr_Intkz:
7644 case X86::VMAXSSZrr_Intk:
7645 case X86::VMAXSSZrr_Intkz:
7646 case X86::VMINSSZrr_Intk:
7647 case X86::VMINSSZrr_Intkz:
7648 case X86::VMULSSZrr_Intk:
7649 case X86::VMULSSZrr_Intkz:
7650 case X86::VSQRTSSZr_Intk:
7651 case X86::VSQRTSSZr_Intkz:
7652 case X86::VSUBSSZrr_Intk:
7653 case X86::VSUBSSZrr_Intkz:
7654 case X86::VFMADDSS4rr_Int:
7655 case X86::VFNMADDSS4rr_Int:
7656 case X86::VFMSUBSS4rr_Int:
7657 case X86::VFNMSUBSS4rr_Int:
7658 case X86::VFMADD132SSr_Int:
7659 case X86::VFNMADD132SSr_Int:
7660 case X86::VFMADD213SSr_Int:
7661 case X86::VFNMADD213SSr_Int:
7662 case X86::VFMADD231SSr_Int:
7663 case X86::VFNMADD231SSr_Int:
7664 case X86::VFMSUB132SSr_Int:
7665 case X86::VFNMSUB132SSr_Int:
7666 case X86::VFMSUB213SSr_Int:
7667 case X86::VFNMSUB213SSr_Int:
7668 case X86::VFMSUB231SSr_Int:
7669 case X86::VFNMSUB231SSr_Int:
7670 case X86::VFMADD132SSZr_Int:
7671 case X86::VFNMADD132SSZr_Int:
7672 case X86::VFMADD213SSZr_Int:
7673 case X86::VFNMADD213SSZr_Int:
7674 case X86::VFMADD231SSZr_Int:
7675 case X86::VFNMADD231SSZr_Int:
7676 case X86::VFMSUB132SSZr_Int:
7677 case X86::VFNMSUB132SSZr_Int:
7678 case X86::VFMSUB213SSZr_Int:
7679 case X86::VFNMSUB213SSZr_Int:
7680 case X86::VFMSUB231SSZr_Int:
7681 case X86::VFNMSUB231SSZr_Int:
7682 case X86::VFMADD132SSZr_Intk:
7683 case X86::VFNMADD132SSZr_Intk:
7684 case X86::VFMADD213SSZr_Intk:
7685 case X86::VFNMADD213SSZr_Intk:
7686 case X86::VFMADD231SSZr_Intk:
7687 case X86::VFNMADD231SSZr_Intk:
7688 case X86::VFMSUB132SSZr_Intk:
7689 case X86::VFNMSUB132SSZr_Intk:
7690 case X86::VFMSUB213SSZr_Intk:
7691 case X86::VFNMSUB213SSZr_Intk:
7692 case X86::VFMSUB231SSZr_Intk:
7693 case X86::VFNMSUB231SSZr_Intk:
7694 case X86::VFMADD132SSZr_Intkz:
7695 case X86::VFNMADD132SSZr_Intkz:
7696 case X86::VFMADD213SSZr_Intkz:
7697 case X86::VFNMADD213SSZr_Intkz:
7698 case X86::VFMADD231SSZr_Intkz:
7699 case X86::VFNMADD231SSZr_Intkz:
7700 case X86::VFMSUB132SSZr_Intkz:
7701 case X86::VFNMSUB132SSZr_Intkz:
7702 case X86::VFMSUB213SSZr_Intkz:
7703 case X86::VFNMSUB213SSZr_Intkz:
7704 case X86::VFMSUB231SSZr_Intkz:
7705 case X86::VFNMSUB231SSZr_Intkz:
7706 case X86::VFIXUPIMMSSZrri:
7707 case X86::VFIXUPIMMSSZrrik:
7708 case X86::VFIXUPIMMSSZrrikz:
7709 case X86::VFPCLASSSSZrr:
7710 case X86::VFPCLASSSSZrrk:
7711 case X86::VGETEXPSSZr:
7712 case X86::VGETEXPSSZrk:
7713 case X86::VGETEXPSSZrkz:
7714 case X86::VGETMANTSSZrri:
7715 case X86::VGETMANTSSZrrik:
7716 case X86::VGETMANTSSZrrikz:
7717 case X86::VRANGESSZrri:
7718 case X86::VRANGESSZrrik:
7719 case X86::VRANGESSZrrikz:
7720 case X86::VRCP14SSZrr:
7721 case X86::VRCP14SSZrrk:
7722 case X86::VRCP14SSZrrkz:
7723 case X86::VRCP28SSZr:
7724 case X86::VRCP28SSZrk:
7725 case X86::VRCP28SSZrkz:
7726 case X86::VREDUCESSZrri:
7727 case X86::VREDUCESSZrrik:
7728 case X86::VREDUCESSZrrikz:
7729 case X86::VRNDSCALESSZr_Int:
7730 case X86::VRNDSCALESSZr_Intk:
7731 case X86::VRNDSCALESSZr_Intkz:
7732 case X86::VRSQRT14SSZrr:
7733 case X86::VRSQRT14SSZrrk:
7734 case X86::VRSQRT14SSZrrkz:
7735 case X86::VRSQRT28SSZr:
7736 case X86::VRSQRT28SSZrk:
7737 case X86::VRSQRT28SSZrkz:
7738 case X86::VSCALEFSSZrr:
7739 case X86::VSCALEFSSZrrk:
7740 case X86::VSCALEFSSZrrkz:
7741 return false;
7742 default:
7743 return true;
7744 }
7745 }
7746
7747 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
7748 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
7749 Opc == X86::VMOVSDZrm_alt) &&
7750 RegSize > 64) {
7751 // These instructions only load 64 bits, we can't fold them if the
7752 // destination register is wider than 64 bits (8 bytes), and its user
7753 // instruction isn't scalar (SD).
7754 switch (UserOpc) {
7755 case X86::CVTSD2SSrr_Int:
7756 case X86::VCVTSD2SSrr_Int:
7757 case X86::VCVTSD2SSZrr_Int:
7758 case X86::VCVTSD2SSZrr_Intk:
7759 case X86::VCVTSD2SSZrr_Intkz:
7760 case X86::CVTSD2SIrr_Int:
7761 case X86::CVTSD2SI64rr_Int:
7762 case X86::VCVTSD2SIrr_Int:
7763 case X86::VCVTSD2SI64rr_Int:
7764 case X86::VCVTSD2SIZrr_Int:
7765 case X86::VCVTSD2SI64Zrr_Int:
7766 case X86::CVTTSD2SIrr_Int:
7767 case X86::CVTTSD2SI64rr_Int:
7768 case X86::VCVTTSD2SIrr_Int:
7769 case X86::VCVTTSD2SI64rr_Int:
7770 case X86::VCVTTSD2SIZrr_Int:
7771 case X86::VCVTTSD2SI64Zrr_Int:
7772 case X86::VCVTSD2USIZrr_Int:
7773 case X86::VCVTSD2USI64Zrr_Int:
7774 case X86::VCVTTSD2USIZrr_Int:
7775 case X86::VCVTTSD2USI64Zrr_Int:
7776 case X86::ROUNDSDri_Int:
7777 case X86::VROUNDSDri_Int:
7778 case X86::COMISDrr_Int:
7779 case X86::VCOMISDrr_Int:
7780 case X86::VCOMISDZrr_Int:
7781 case X86::UCOMISDrr_Int:
7782 case X86::VUCOMISDrr_Int:
7783 case X86::VUCOMISDZrr_Int:
7784 case X86::ADDSDrr_Int:
7785 case X86::VADDSDrr_Int:
7786 case X86::VADDSDZrr_Int:
7787 case X86::CMPSDrri_Int:
7788 case X86::VCMPSDrri_Int:
7789 case X86::VCMPSDZrri_Int:
7790 case X86::DIVSDrr_Int:
7791 case X86::VDIVSDrr_Int:
7792 case X86::VDIVSDZrr_Int:
7793 case X86::MAXSDrr_Int:
7794 case X86::VMAXSDrr_Int:
7795 case X86::VMAXSDZrr_Int:
7796 case X86::MINSDrr_Int:
7797 case X86::VMINSDrr_Int:
7798 case X86::VMINSDZrr_Int:
7799 case X86::MULSDrr_Int:
7800 case X86::VMULSDrr_Int:
7801 case X86::VMULSDZrr_Int:
7802 case X86::SQRTSDr_Int:
7803 case X86::VSQRTSDr_Int:
7804 case X86::VSQRTSDZr_Int:
7805 case X86::SUBSDrr_Int:
7806 case X86::VSUBSDrr_Int:
7807 case X86::VSUBSDZrr_Int:
7808 case X86::VADDSDZrr_Intk:
7809 case X86::VADDSDZrr_Intkz:
7810 case X86::VCMPSDZrri_Intk:
7811 case X86::VDIVSDZrr_Intk:
7812 case X86::VDIVSDZrr_Intkz:
7813 case X86::VMAXSDZrr_Intk:
7814 case X86::VMAXSDZrr_Intkz:
7815 case X86::VMINSDZrr_Intk:
7816 case X86::VMINSDZrr_Intkz:
7817 case X86::VMULSDZrr_Intk:
7818 case X86::VMULSDZrr_Intkz:
7819 case X86::VSQRTSDZr_Intk:
7820 case X86::VSQRTSDZr_Intkz:
7821 case X86::VSUBSDZrr_Intk:
7822 case X86::VSUBSDZrr_Intkz:
7823 case X86::VFMADDSD4rr_Int:
7824 case X86::VFNMADDSD4rr_Int:
7825 case X86::VFMSUBSD4rr_Int:
7826 case X86::VFNMSUBSD4rr_Int:
7827 case X86::VFMADD132SDr_Int:
7828 case X86::VFNMADD132SDr_Int:
7829 case X86::VFMADD213SDr_Int:
7830 case X86::VFNMADD213SDr_Int:
7831 case X86::VFMADD231SDr_Int:
7832 case X86::VFNMADD231SDr_Int:
7833 case X86::VFMSUB132SDr_Int:
7834 case X86::VFNMSUB132SDr_Int:
7835 case X86::VFMSUB213SDr_Int:
7836 case X86::VFNMSUB213SDr_Int:
7837 case X86::VFMSUB231SDr_Int:
7838 case X86::VFNMSUB231SDr_Int:
7839 case X86::VFMADD132SDZr_Int:
7840 case X86::VFNMADD132SDZr_Int:
7841 case X86::VFMADD213SDZr_Int:
7842 case X86::VFNMADD213SDZr_Int:
7843 case X86::VFMADD231SDZr_Int:
7844 case X86::VFNMADD231SDZr_Int:
7845 case X86::VFMSUB132SDZr_Int:
7846 case X86::VFNMSUB132SDZr_Int:
7847 case X86::VFMSUB213SDZr_Int:
7848 case X86::VFNMSUB213SDZr_Int:
7849 case X86::VFMSUB231SDZr_Int:
7850 case X86::VFNMSUB231SDZr_Int:
7851 case X86::VFMADD132SDZr_Intk:
7852 case X86::VFNMADD132SDZr_Intk:
7853 case X86::VFMADD213SDZr_Intk:
7854 case X86::VFNMADD213SDZr_Intk:
7855 case X86::VFMADD231SDZr_Intk:
7856 case X86::VFNMADD231SDZr_Intk:
7857 case X86::VFMSUB132SDZr_Intk:
7858 case X86::VFNMSUB132SDZr_Intk:
7859 case X86::VFMSUB213SDZr_Intk:
7860 case X86::VFNMSUB213SDZr_Intk:
7861 case X86::VFMSUB231SDZr_Intk:
7862 case X86::VFNMSUB231SDZr_Intk:
7863 case X86::VFMADD132SDZr_Intkz:
7864 case X86::VFNMADD132SDZr_Intkz:
7865 case X86::VFMADD213SDZr_Intkz:
7866 case X86::VFNMADD213SDZr_Intkz:
7867 case X86::VFMADD231SDZr_Intkz:
7868 case X86::VFNMADD231SDZr_Intkz:
7869 case X86::VFMSUB132SDZr_Intkz:
7870 case X86::VFNMSUB132SDZr_Intkz:
7871 case X86::VFMSUB213SDZr_Intkz:
7872 case X86::VFNMSUB213SDZr_Intkz:
7873 case X86::VFMSUB231SDZr_Intkz:
7874 case X86::VFNMSUB231SDZr_Intkz:
7875 case X86::VFIXUPIMMSDZrri:
7876 case X86::VFIXUPIMMSDZrrik:
7877 case X86::VFIXUPIMMSDZrrikz:
7878 case X86::VFPCLASSSDZrr:
7879 case X86::VFPCLASSSDZrrk:
7880 case X86::VGETEXPSDZr:
7881 case X86::VGETEXPSDZrk:
7882 case X86::VGETEXPSDZrkz:
7883 case X86::VGETMANTSDZrri:
7884 case X86::VGETMANTSDZrrik:
7885 case X86::VGETMANTSDZrrikz:
7886 case X86::VRANGESDZrri:
7887 case X86::VRANGESDZrrik:
7888 case X86::VRANGESDZrrikz:
7889 case X86::VRCP14SDZrr:
7890 case X86::VRCP14SDZrrk:
7891 case X86::VRCP14SDZrrkz:
7892 case X86::VRCP28SDZr:
7893 case X86::VRCP28SDZrk:
7894 case X86::VRCP28SDZrkz:
7895 case X86::VREDUCESDZrri:
7896 case X86::VREDUCESDZrrik:
7897 case X86::VREDUCESDZrrikz:
7898 case X86::VRNDSCALESDZr_Int:
7899 case X86::VRNDSCALESDZr_Intk:
7900 case X86::VRNDSCALESDZr_Intkz:
7901 case X86::VRSQRT14SDZrr:
7902 case X86::VRSQRT14SDZrrk:
7903 case X86::VRSQRT14SDZrrkz:
7904 case X86::VRSQRT28SDZr:
7905 case X86::VRSQRT28SDZrk:
7906 case X86::VRSQRT28SDZrkz:
7907 case X86::VSCALEFSDZrr:
7908 case X86::VSCALEFSDZrrk:
7909 case X86::VSCALEFSDZrrkz:
7910 return false;
7911 default:
7912 return true;
7913 }
7914 }
7915
7916 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
7917 // These instructions only load 16 bits, we can't fold them if the
7918 // destination register is wider than 16 bits (2 bytes), and its user
7919 // instruction isn't scalar (SH).
7920 switch (UserOpc) {
7921 case X86::VADDSHZrr_Int:
7922 case X86::VCMPSHZrri_Int:
7923 case X86::VDIVSHZrr_Int:
7924 case X86::VMAXSHZrr_Int:
7925 case X86::VMINSHZrr_Int:
7926 case X86::VMULSHZrr_Int:
7927 case X86::VSUBSHZrr_Int:
7928 case X86::VADDSHZrr_Intk:
7929 case X86::VADDSHZrr_Intkz:
7930 case X86::VCMPSHZrri_Intk:
7931 case X86::VDIVSHZrr_Intk:
7932 case X86::VDIVSHZrr_Intkz:
7933 case X86::VMAXSHZrr_Intk:
7934 case X86::VMAXSHZrr_Intkz:
7935 case X86::VMINSHZrr_Intk:
7936 case X86::VMINSHZrr_Intkz:
7937 case X86::VMULSHZrr_Intk:
7938 case X86::VMULSHZrr_Intkz:
7939 case X86::VSUBSHZrr_Intk:
7940 case X86::VSUBSHZrr_Intkz:
7941 case X86::VFMADD132SHZr_Int:
7942 case X86::VFNMADD132SHZr_Int:
7943 case X86::VFMADD213SHZr_Int:
7944 case X86::VFNMADD213SHZr_Int:
7945 case X86::VFMADD231SHZr_Int:
7946 case X86::VFNMADD231SHZr_Int:
7947 case X86::VFMSUB132SHZr_Int:
7948 case X86::VFNMSUB132SHZr_Int:
7949 case X86::VFMSUB213SHZr_Int:
7950 case X86::VFNMSUB213SHZr_Int:
7951 case X86::VFMSUB231SHZr_Int:
7952 case X86::VFNMSUB231SHZr_Int:
7953 case X86::VFMADD132SHZr_Intk:
7954 case X86::VFNMADD132SHZr_Intk:
7955 case X86::VFMADD213SHZr_Intk:
7956 case X86::VFNMADD213SHZr_Intk:
7957 case X86::VFMADD231SHZr_Intk:
7958 case X86::VFNMADD231SHZr_Intk:
7959 case X86::VFMSUB132SHZr_Intk:
7960 case X86::VFNMSUB132SHZr_Intk:
7961 case X86::VFMSUB213SHZr_Intk:
7962 case X86::VFNMSUB213SHZr_Intk:
7963 case X86::VFMSUB231SHZr_Intk:
7964 case X86::VFNMSUB231SHZr_Intk:
7965 case X86::VFMADD132SHZr_Intkz:
7966 case X86::VFNMADD132SHZr_Intkz:
7967 case X86::VFMADD213SHZr_Intkz:
7968 case X86::VFNMADD213SHZr_Intkz:
7969 case X86::VFMADD231SHZr_Intkz:
7970 case X86::VFNMADD231SHZr_Intkz:
7971 case X86::VFMSUB132SHZr_Intkz:
7972 case X86::VFNMSUB132SHZr_Intkz:
7973 case X86::VFMSUB213SHZr_Intkz:
7974 case X86::VFNMSUB213SHZr_Intkz:
7975 case X86::VFMSUB231SHZr_Intkz:
7976 case X86::VFNMSUB231SHZr_Intkz:
7977 return false;
7978 default:
7979 return true;
7980 }
7981 }
7982
7983 return false;
7984}
7985
7988 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
7989 LiveIntervals *LIS) const {
7990
7991 // TODO: Support the case where LoadMI loads a wide register, but MI
7992 // only uses a subreg.
7993 for (auto Op : Ops) {
7994 if (MI.getOperand(Op).getSubReg())
7995 return nullptr;
7996 }
7997
7998 // If loading from a FrameIndex, fold directly from the FrameIndex.
7999 unsigned NumOps = LoadMI.getDesc().getNumOperands();
8000 int FrameIndex;
8001 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
8002 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8003 return nullptr;
8004 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
8005 }
8006
8007 // Check switch flag
8008 if (NoFusing)
8009 return nullptr;
8010
8011 // Avoid partial and undef register update stalls unless optimizing for size.
8012 if (!MF.getFunction().hasOptSize() &&
8013 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) ||
8015 return nullptr;
8016
8017 // Determine the alignment of the load.
8018 Align Alignment;
8019 unsigned LoadOpc = LoadMI.getOpcode();
8020 if (LoadMI.hasOneMemOperand())
8021 Alignment = (*LoadMI.memoperands_begin())->getAlign();
8022 else
8023 switch (LoadOpc) {
8024 case X86::AVX512_512_SET0:
8025 case X86::AVX512_512_SETALLONES:
8026 Alignment = Align(64);
8027 break;
8028 case X86::AVX2_SETALLONES:
8029 case X86::AVX1_SETALLONES:
8030 case X86::AVX_SET0:
8031 case X86::AVX512_256_SET0:
8032 Alignment = Align(32);
8033 break;
8034 case X86::V_SET0:
8035 case X86::V_SETALLONES:
8036 case X86::AVX512_128_SET0:
8037 case X86::FsFLD0F128:
8038 case X86::AVX512_FsFLD0F128:
8039 Alignment = Align(16);
8040 break;
8041 case X86::MMX_SET0:
8042 case X86::FsFLD0SD:
8043 case X86::AVX512_FsFLD0SD:
8044 Alignment = Align(8);
8045 break;
8046 case X86::FsFLD0SS:
8047 case X86::AVX512_FsFLD0SS:
8048 Alignment = Align(4);
8049 break;
8050 case X86::FsFLD0SH:
8051 case X86::AVX512_FsFLD0SH:
8052 Alignment = Align(2);
8053 break;
8054 default:
8055 return nullptr;
8056 }
8057 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
8058 unsigned NewOpc = 0;
8059 switch (MI.getOpcode()) {
8060 default:
8061 return nullptr;
8062 case X86::TEST8rr:
8063 NewOpc = X86::CMP8ri;
8064 break;
8065 case X86::TEST16rr:
8066 NewOpc = X86::CMP16ri;
8067 break;
8068 case X86::TEST32rr:
8069 NewOpc = X86::CMP32ri;
8070 break;
8071 case X86::TEST64rr:
8072 NewOpc = X86::CMP64ri32;
8073 break;
8074 }
8075 // Change to CMPXXri r, 0 first.
8076 MI.setDesc(get(NewOpc));
8077 MI.getOperand(1).ChangeToImmediate(0);
8078 } else if (Ops.size() != 1)
8079 return nullptr;
8080
8081 // Make sure the subregisters match.
8082 // Otherwise we risk changing the size of the load.
8083 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
8084 return nullptr;
8085
8087 switch (LoadOpc) {
8088 case X86::MMX_SET0:
8089 case X86::V_SET0:
8090 case X86::V_SETALLONES:
8091 case X86::AVX2_SETALLONES:
8092 case X86::AVX1_SETALLONES:
8093 case X86::AVX_SET0:
8094 case X86::AVX512_128_SET0:
8095 case X86::AVX512_256_SET0:
8096 case X86::AVX512_512_SET0:
8097 case X86::AVX512_512_SETALLONES:
8098 case X86::FsFLD0SH:
8099 case X86::AVX512_FsFLD0SH:
8100 case X86::FsFLD0SD:
8101 case X86::AVX512_FsFLD0SD:
8102 case X86::FsFLD0SS:
8103 case X86::AVX512_FsFLD0SS:
8104 case X86::FsFLD0F128:
8105 case X86::AVX512_FsFLD0F128: {
8106 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8107 // Create a constant-pool entry and operands to load from it.
8108
8109 // Large code model can't fold loads this way.
8111 return nullptr;
8112
8113 // x86-32 PIC requires a PIC base register for constant pools.
8114 unsigned PICBase = 0;
8115 // Since we're using Small or Kernel code model, we can always use
8116 // RIP-relative addressing for a smaller encoding.
8117 if (Subtarget.is64Bit()) {
8118 PICBase = X86::RIP;
8119 } else if (MF.getTarget().isPositionIndependent()) {
8120 // FIXME: PICBase = getGlobalBaseReg(&MF);
8121 // This doesn't work for several reasons.
8122 // 1. GlobalBaseReg may have been spilled.
8123 // 2. It may not be live at MI.
8124 return nullptr;
8125 }
8126
8127 // Create a constant-pool entry.
8129 Type *Ty;
8130 bool IsAllOnes = false;
8131 switch (LoadOpc) {
8132 case X86::FsFLD0SS:
8133 case X86::AVX512_FsFLD0SS:
8135 break;
8136 case X86::FsFLD0SD:
8137 case X86::AVX512_FsFLD0SD:
8139 break;
8140 case X86::FsFLD0F128:
8141 case X86::AVX512_FsFLD0F128:
8143 break;
8144 case X86::FsFLD0SH:
8145 case X86::AVX512_FsFLD0SH:
8147 break;
8148 case X86::AVX512_512_SETALLONES:
8149 IsAllOnes = true;
8150 [[fallthrough]];
8151 case X86::AVX512_512_SET0:
8153 16);
8154 break;
8155 case X86::AVX1_SETALLONES:
8156 case X86::AVX2_SETALLONES:
8157 IsAllOnes = true;
8158 [[fallthrough]];
8159 case X86::AVX512_256_SET0:
8160 case X86::AVX_SET0:
8162 8);
8163
8164 break;
8165 case X86::MMX_SET0:
8167 2);
8168 break;
8169 case X86::V_SETALLONES:
8170 IsAllOnes = true;
8171 [[fallthrough]];
8172 case X86::V_SET0:
8173 case X86::AVX512_128_SET0:
8175 4);
8176 break;
8177 }
8178
8179 const Constant *C =
8181 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
8182
8183 // Create operands to load from the constant pool entry.
8184 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
8186 MOs.push_back(MachineOperand::CreateReg(0, false));
8188 MOs.push_back(MachineOperand::CreateReg(0, false));
8189 break;
8190 }
8191 case X86::VPBROADCASTBZ128rm:
8192 case X86::VPBROADCASTBZ256rm:
8193 case X86::VPBROADCASTBZrm:
8194 case X86::VBROADCASTF32X2Z256rm:
8195 case X86::VBROADCASTF32X2Zrm:
8196 case X86::VBROADCASTI32X2Z128rm:
8197 case X86::VBROADCASTI32X2Z256rm:
8198 case X86::VBROADCASTI32X2Zrm:
8199 // No instructions currently fuse with 8bits or 32bits x 2.
8200 return nullptr;
8201
8202#define FOLD_BROADCAST(SIZE) \
8203 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \
8204 LoadMI.operands_begin() + NumOps); \
8205 return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \
8206 /*AllowCommute=*/true);
8207 case X86::VPBROADCASTWZ128rm:
8208 case X86::VPBROADCASTWZ256rm:
8209 case X86::VPBROADCASTWZrm:
8210 FOLD_BROADCAST(16);
8211 case X86::VPBROADCASTDZ128rm:
8212 case X86::VPBROADCASTDZ256rm:
8213 case X86::VPBROADCASTDZrm:
8214 case X86::VBROADCASTSSZ128rm:
8215 case X86::VBROADCASTSSZ256rm:
8216 case X86::VBROADCASTSSZrm:
8217 FOLD_BROADCAST(32);
8218 case X86::VPBROADCASTQZ128rm:
8219 case X86::VPBROADCASTQZ256rm:
8220 case X86::VPBROADCASTQZrm:
8221 case X86::VBROADCASTSDZ256rm:
8222 case X86::VBROADCASTSDZrm:
8223 FOLD_BROADCAST(64);
8224 default: {
8225 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
8226 return nullptr;
8227
8228 // Folding a normal load. Just copy the load's address operands.
8229 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
8230 LoadMI.operands_begin() + NumOps);
8231 break;
8232 }
8233 }
8234 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
8235 /*Size=*/0, Alignment, /*AllowCommute=*/true);
8236}
8237
8239X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI,
8240 unsigned OpNum, ArrayRef<MachineOperand> MOs,
8242 unsigned BitsSize, bool AllowCommute) const {
8243
8244 if (auto *I = lookupBroadcastFoldTable(MI.getOpcode(), OpNum))
8245 return matchBroadcastSize(*I, BitsSize)
8246 ? fuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this)
8247 : nullptr;
8248
8249 if (AllowCommute) {
8250 // If the instruction and target operand are commutable, commute the
8251 // instruction and try again.
8252 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum);
8253 if (CommuteOpIdx2 == OpNum) {
8254 printFailMsgforFold(MI, OpNum);
8255 return nullptr;
8256 }
8257 MachineInstr *NewMI =
8258 foldMemoryBroadcast(MF, MI, CommuteOpIdx2, MOs, InsertPt, BitsSize,
8259 /*AllowCommute=*/false);
8260 if (NewMI)
8261 return NewMI;
8262 // Folding failed again - undo the commute before returning.
8263 commuteInstruction(MI, false, OpNum, CommuteOpIdx2);
8264 }
8265
8266 printFailMsgforFold(MI, OpNum);
8267 return nullptr;
8268}
8269
8273
8274 for (MachineMemOperand *MMO : MMOs) {
8275 if (!MMO->isLoad())
8276 continue;
8277
8278 if (!MMO->isStore()) {
8279 // Reuse the MMO.
8280 LoadMMOs.push_back(MMO);
8281 } else {
8282 // Clone the MMO and unset the store flag.
8283 LoadMMOs.push_back(MF.getMachineMemOperand(
8284 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
8285 }
8286 }
8287
8288 return LoadMMOs;
8289}
8290
8294
8295 for (MachineMemOperand *MMO : MMOs) {
8296 if (!MMO->isStore())
8297 continue;
8298
8299 if (!MMO->isLoad()) {
8300 // Reuse the MMO.
8301 StoreMMOs.push_back(MMO);
8302 } else {
8303 // Clone the MMO and unset the load flag.
8304 StoreMMOs.push_back(MF.getMachineMemOperand(
8305 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
8306 }
8307 }
8308
8309 return StoreMMOs;
8310}
8311
8313 const TargetRegisterClass *RC,
8314 const X86Subtarget &STI) {
8315 assert(STI.hasAVX512() && "Expected at least AVX512!");
8316 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
8317 assert((SpillSize == 64 || STI.hasVLX()) &&
8318 "Can't broadcast less than 64 bytes without AVX512VL!");
8319
8320#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \
8321 case TYPE: \
8322 switch (SpillSize) { \
8323 default: \
8324 llvm_unreachable("Unknown spill size"); \
8325 case 16: \
8326 return X86::OP16; \
8327 case 32: \
8328 return X86::OP32; \
8329 case 64: \
8330 return X86::OP64; \
8331 } \
8332 break;
8333
8334 switch (I->Flags & TB_BCAST_MASK) {
8335 default:
8336 llvm_unreachable("Unexpected broadcast type!");
8337 CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8338 VPBROADCASTWZrm)
8339 CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm,
8340 VPBROADCASTDZrm)
8341 CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm,
8342 VPBROADCASTQZrm)
8343 CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm,
8344 VPBROADCASTWZrm)
8345 CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm,
8346 VBROADCASTSSZrm)
8347 CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm,
8348 VBROADCASTSDZrm)
8349 }
8350}
8351
8353 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
8354 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
8355 const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
8356 if (I == nullptr)
8357 return false;
8358 unsigned Opc = I->DstOp;
8359 unsigned Index = I->Flags & TB_INDEX_MASK;
8360 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8361 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8362 if (UnfoldLoad && !FoldedLoad)
8363 return false;
8364 UnfoldLoad &= FoldedLoad;
8365 if (UnfoldStore && !FoldedStore)
8366 return false;
8367 UnfoldStore &= FoldedStore;
8368
8369 const MCInstrDesc &MCID = get(Opc);
8370
8371 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8373 // TODO: Check if 32-byte or greater accesses are slow too?
8374 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
8375 Subtarget.isUnalignedMem16Slow())
8376 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8377 // conservatively assume the address is unaligned. That's bad for
8378 // performance.
8379 return false;
8384 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
8385 MachineOperand &Op = MI.getOperand(i);
8386 if (i >= Index && i < Index + X86::AddrNumOperands)
8387 AddrOps.push_back(Op);
8388 else if (Op.isReg() && Op.isImplicit())
8389 ImpOps.push_back(Op);
8390 else if (i < Index)
8391 BeforeOps.push_back(Op);
8392 else if (i > Index)
8393 AfterOps.push_back(Op);
8394 }
8395
8396 // Emit the load or broadcast instruction.
8397 if (UnfoldLoad) {
8398 auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
8399
8400 unsigned Opc;
8401 if (I->Flags & TB_BCAST_MASK) {
8402 Opc = getBroadcastOpcode(I, RC, Subtarget);
8403 } else {
8404 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8405 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8406 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
8407 }
8408
8409 DebugLoc DL;
8410 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
8411 for (const MachineOperand &AddrOp : AddrOps)
8412 MIB.add(AddrOp);
8413 MIB.setMemRefs(MMOs);
8414 NewMIs.push_back(MIB);
8415
8416 if (UnfoldStore) {
8417 // Address operands cannot be marked isKill.
8418 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
8419 MachineOperand &MO = NewMIs[0]->getOperand(i);
8420 if (MO.isReg())
8421 MO.setIsKill(false);
8422 }
8423 }
8424 }
8425
8426 // Emit the data processing instruction.
8427 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
8428 MachineInstrBuilder MIB(MF, DataMI);
8429
8430 if (FoldedStore)
8431 MIB.addReg(Reg, RegState::Define);
8432 for (MachineOperand &BeforeOp : BeforeOps)
8433 MIB.add(BeforeOp);
8434 if (FoldedLoad)
8435 MIB.addReg(Reg);
8436 for (MachineOperand &AfterOp : AfterOps)
8437 MIB.add(AfterOp);
8438 for (MachineOperand &ImpOp : ImpOps) {
8439 MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) |
8441 getKillRegState(ImpOp.isKill()) |
8442 getDeadRegState(ImpOp.isDead()) |
8443 getUndefRegState(ImpOp.isUndef()));
8444 }
8445 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8446 switch (DataMI->getOpcode()) {
8447 default:
8448 break;
8449 case X86::CMP64ri32:
8450 case X86::CMP32ri:
8451 case X86::CMP16ri:
8452 case X86::CMP8ri: {
8453 MachineOperand &MO0 = DataMI->getOperand(0);
8454 MachineOperand &MO1 = DataMI->getOperand(1);
8455 if (MO1.isImm() && MO1.getImm() == 0) {
8456 unsigned NewOpc;
8457 switch (DataMI->getOpcode()) {
8458 default:
8459 llvm_unreachable("Unreachable!");
8460 case X86::CMP64ri32:
8461 NewOpc = X86::TEST64rr;
8462 break;
8463 case X86::CMP32ri:
8464 NewOpc = X86::TEST32rr;
8465 break;
8466 case X86::CMP16ri:
8467 NewOpc = X86::TEST16rr;
8468 break;
8469 case X86::CMP8ri:
8470 NewOpc = X86::TEST8rr;
8471 break;
8472 }
8473 DataMI->setDesc(get(NewOpc));
8474 MO1.ChangeToRegister(MO0.getReg(), false);
8475 }
8476 }
8477 }
8478 NewMIs.push_back(DataMI);
8479
8480 // Emit the store instruction.
8481 if (UnfoldStore) {
8482 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
8483 auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
8484 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
8485 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8486 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
8487 DebugLoc DL;
8488 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
8489 for (const MachineOperand &AddrOp : AddrOps)
8490 MIB.add(AddrOp);
8491 MIB.addReg(Reg, RegState::Kill);
8492 MIB.setMemRefs(MMOs);
8493 NewMIs.push_back(MIB);
8494 }
8495
8496 return true;
8497}
8498
8500 SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const {
8501 if (!N->isMachineOpcode())
8502 return false;
8503
8504 const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
8505 if (I == nullptr)
8506 return false;
8507 unsigned Opc = I->DstOp;
8508 unsigned Index = I->Flags & TB_INDEX_MASK;
8509 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8510 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8511 const MCInstrDesc &MCID = get(Opc);
8514 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
8515 unsigned NumDefs = MCID.NumDefs;
8516 std::vector<SDValue> AddrOps;
8517 std::vector<SDValue> BeforeOps;
8518 std::vector<SDValue> AfterOps;
8519 SDLoc dl(N);
8520 unsigned NumOps = N->getNumOperands();
8521 for (unsigned i = 0; i != NumOps - 1; ++i) {
8522 SDValue Op = N->getOperand(i);
8523 if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands)
8524 AddrOps.push_back(Op);
8525 else if (i < Index - NumDefs)
8526 BeforeOps.push_back(Op);
8527 else if (i > Index - NumDefs)
8528 AfterOps.push_back(Op);
8529 }
8530 SDValue Chain = N->getOperand(NumOps - 1);
8531 AddrOps.push_back(Chain);
8532
8533 // Emit the load instruction.
8534 SDNode *Load = nullptr;
8535 if (FoldedLoad) {
8536 EVT VT = *TRI.legalclasstypes_begin(*RC);
8537 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8538 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8539 Subtarget.isUnalignedMem16Slow())
8540 // Do not introduce a slow unaligned load.
8541 return false;
8542 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8543 // memory access is slow above.
8544
8545 unsigned Opc;
8546 if (I->Flags & TB_BCAST_MASK) {
8547 Opc = getBroadcastOpcode(I, RC, Subtarget);
8548 } else {
8549 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8550 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8551 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
8552 }
8553
8554 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
8555 NewNodes.push_back(Load);
8556
8557 // Preserve memory reference information.
8558 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
8559 }
8560
8561 // Emit the data processing instruction.
8562 std::vector<EVT> VTs;
8563 const TargetRegisterClass *DstRC = nullptr;
8564 if (MCID.getNumDefs() > 0) {
8565 DstRC = getRegClass(MCID, 0, &RI, MF);
8566 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
8567 }
8568 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
8569 EVT VT = N->getValueType(i);
8570 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
8571 VTs.push_back(VT);
8572 }
8573 if (Load)
8574 BeforeOps.push_back(SDValue(Load, 0));
8575 llvm::append_range(BeforeOps, AfterOps);
8576 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8577 switch (Opc) {
8578 default:
8579 break;
8580 case X86::CMP64ri32:
8581 case X86::CMP32ri:
8582 case X86::CMP16ri:
8583 case X86::CMP8ri:
8584 if (isNullConstant(BeforeOps[1])) {
8585 switch (Opc) {
8586 default:
8587 llvm_unreachable("Unreachable!");
8588 case X86::CMP64ri32:
8589 Opc = X86::TEST64rr;
8590 break;
8591 case X86::CMP32ri:
8592 Opc = X86::TEST32rr;
8593 break;
8594 case X86::CMP16ri:
8595 Opc = X86::TEST16rr;
8596 break;
8597 case X86::CMP8ri:
8598 Opc = X86::TEST8rr;
8599 break;
8600 }
8601 BeforeOps[1] = BeforeOps[0];
8602 }
8603 }
8604 SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
8605 NewNodes.push_back(NewNode);
8606
8607 // Emit the store instruction.
8608 if (FoldedStore) {
8609 AddrOps.pop_back();
8610 AddrOps.push_back(SDValue(NewNode, 0));
8611 AddrOps.push_back(Chain);
8612 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
8613 if (MMOs.empty() && RC == &X86::VR128RegClass &&
8614 Subtarget.isUnalignedMem16Slow())
8615 // Do not introduce a slow unaligned store.
8616 return false;
8617 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8618 // memory access is slow above.
8619 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
8620 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
8621 SDNode *Store =
8622 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
8623 dl, MVT::Other, AddrOps);
8624 NewNodes.push_back(Store);
8625
8626 // Preserve memory reference information.
8627 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
8628 }
8629
8630 return true;
8631}
8632
8633unsigned
8634X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad,
8635 bool UnfoldStore,
8636 unsigned *LoadRegIndex) const {
8638 if (I == nullptr)
8639 return 0;
8640 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
8641 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
8642 if (UnfoldLoad && !FoldedLoad)
8643 return 0;
8644 if (UnfoldStore && !FoldedStore)
8645 return 0;
8646 if (LoadRegIndex)
8647 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
8648 return I->DstOp;
8649}
8650
8652 int64_t &Offset1,
8653 int64_t &Offset2) const {
8654 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
8655 return false;
8656
8657 auto IsLoadOpcode = [&](unsigned Opcode) {
8658 switch (Opcode) {
8659 default:
8660 return false;
8661 case X86::MOV8rm:
8662 case X86::MOV16rm:
8663 case X86::MOV32rm:
8664 case X86::MOV64rm:
8665 case X86::LD_Fp32m:
8666 case X86::LD_Fp64m:
8667 case X86::LD_Fp80m:
8668 case X86::MOVSSrm:
8669 case X86::MOVSSrm_alt:
8670 case X86::MOVSDrm:
8671 case X86::MOVSDrm_alt:
8672 case X86::MMX_MOVD64rm:
8673 case X86::MMX_MOVQ64rm:
8674 case X86::MOVAPSrm:
8675 case X86::MOVUPSrm:
8676 case X86::MOVAPDrm:
8677 case X86::MOVUPDrm:
8678 case X86::MOVDQArm:
8679 case X86::MOVDQUrm:
8680 // AVX load instructions
8681 case X86::VMOVSSrm:
8682 case X86::VMOVSSrm_alt:
8683 case X86::VMOVSDrm:
8684 case X86::VMOVSDrm_alt:
8685 case X86::VMOVAPSrm:
8686 case X86::VMOVUPSrm:
8687 case X86::VMOVAPDrm:
8688 case X86::VMOVUPDrm:
8689 case X86::VMOVDQArm:
8690 case X86::VMOVDQUrm:
8691 case X86::VMOVAPSYrm:
8692 case X86::VMOVUPSYrm:
8693 case X86::VMOVAPDYrm:
8694 case X86::VMOVUPDYrm:
8695 case X86::VMOVDQAYrm:
8696 case X86::VMOVDQUYrm:
8697 // AVX512 load instructions
8698 case X86::VMOVSSZrm:
8699 case X86::VMOVSSZrm_alt:
8700 case X86::VMOVSDZrm:
8701 case X86::VMOVSDZrm_alt:
8702 case X86::VMOVAPSZ128rm:
8703 case X86::VMOVUPSZ128rm:
8704 case X86::VMOVAPSZ128rm_NOVLX:
8705 case X86::VMOVUPSZ128rm_NOVLX:
8706 case X86::VMOVAPDZ128rm:
8707 case X86::VMOVUPDZ128rm:
8708 case X86::VMOVDQU8Z128rm:
8709 case X86::VMOVDQU16Z128rm:
8710 case X86::VMOVDQA32Z128rm:
8711 case X86::VMOVDQU32Z128rm:
8712 case X86::VMOVDQA64Z128rm:
8713 case X86::VMOVDQU64Z128rm:
8714 case X86::VMOVAPSZ256rm:
8715 case X86::VMOVUPSZ256rm:
8716 case X86::VMOVAPSZ256rm_NOVLX:
8717 case X86::VMOVUPSZ256rm_NOVLX:
8718 case X86::VMOVAPDZ256rm:
8719 case X86::VMOVUPDZ256rm:
8720 case X86::VMOVDQU8Z256rm:
8721 case X86::VMOVDQU16Z256rm:
8722 case X86::VMOVDQA32Z256rm:
8723 case X86::VMOVDQU32Z256rm:
8724 case X86::VMOVDQA64Z256rm:
8725 case X86::VMOVDQU64Z256rm:
8726 case X86::VMOVAPSZrm:
8727 case X86::VMOVUPSZrm:
8728 case X86::VMOVAPDZrm:
8729 case X86::VMOVUPDZrm:
8730 case X86::VMOVDQU8Zrm:
8731 case X86::VMOVDQU16Zrm:
8732 case X86::VMOVDQA32Zrm:
8733 case X86::VMOVDQU32Zrm:
8734 case X86::VMOVDQA64Zrm:
8735 case X86::VMOVDQU64Zrm:
8736 case X86::KMOVBkm:
8737 case X86::KMOVBkm_EVEX:
8738 case X86::KMOVWkm:
8739 case X86::KMOVWkm_EVEX:
8740 case X86::KMOVDkm:
8741 case X86::KMOVDkm_EVEX:
8742 case X86::KMOVQkm:
8743 case X86::KMOVQkm_EVEX:
8744 return true;
8745 }
8746 };
8747
8748 if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
8749 !IsLoadOpcode(Load2->getMachineOpcode()))
8750 return false;
8751
8752 // Lambda to check if both the loads have the same value for an operand index.
8753 auto HasSameOp = [&](int I) {
8754 return Load1->getOperand(I) == Load2->getOperand(I);
8755 };
8756
8757 // All operands except the displacement should match.
8758 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
8759 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
8760 return false;
8761
8762 // Chain Operand must be the same.
8763 if (!HasSameOp(5))
8764 return false;
8765
8766 // Now let's examine if the displacements are constants.
8767 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
8768 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
8769 if (!Disp1 || !Disp2)
8770 return false;
8771
8772 Offset1 = Disp1->getSExtValue();
8773 Offset2 = Disp2->getSExtValue();
8774 return true;
8775}
8776
8778 int64_t Offset1, int64_t Offset2,
8779 unsigned NumLoads) const {
8780 assert(Offset2 > Offset1);
8781 if ((Offset2 - Offset1) / 8 > 64)
8782 return false;
8783
8784 unsigned Opc1 = Load1->getMachineOpcode();
8785 unsigned Opc2 = Load2->getMachineOpcode();
8786 if (Opc1 != Opc2)
8787 return false; // FIXME: overly conservative?
8788
8789 switch (Opc1) {
8790 default:
8791 break;
8792 case X86::LD_Fp32m:
8793 case X86::LD_Fp64m:
8794 case X86::LD_Fp80m:
8795 case X86::MMX_MOVD64rm:
8796 case X86::MMX_MOVQ64rm:
8797 return false;
8798 }
8799
8800 EVT VT = Load1->getValueType(0);
8801 switch (VT.getSimpleVT().SimpleTy) {
8802 default:
8803 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
8804 // have 16 of them to play with.
8805 if (Subtarget.is64Bit()) {
8806 if (NumLoads >= 3)
8807 return false;
8808 } else if (NumLoads) {
8809 return false;
8810 }
8811 break;
8812 case MVT::i8:
8813 case MVT::i16:
8814 case MVT::i32:
8815 case MVT::i64:
8816 case MVT::f32:
8817 case MVT::f64:
8818 if (NumLoads)
8819 return false;
8820 break;
8821 }
8822
8823 return true;
8824}
8825
8827 const MachineBasicBlock *MBB,
8828 const MachineFunction &MF) const {
8829
8830 // ENDBR instructions should not be scheduled around.
8831 unsigned Opcode = MI.getOpcode();
8832 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
8833 Opcode == X86::PLDTILECFGV)
8834 return true;
8835
8836 // Frame setup and destory can't be scheduled around.
8837 if (MI.getFlag(MachineInstr::FrameSetup) ||
8839 return true;
8840
8842}
8843
8846 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
8847 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
8849 return false;
8850}
8851
8853 const TargetRegisterClass *RC) const {
8854 // FIXME: Return false for x87 stack register classes for now. We can't
8855 // allow any loads of these registers before FpGet_ST0_80.
8856 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
8857 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
8858 RC == &X86::RFP80RegClass);
8859}
8860
8861/// Return a virtual register initialized with the
8862/// the global base register value. Output instructions required to
8863/// initialize the register in the function entry block, if necessary.
8864///
8865/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
8866///
8869 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8870 if (GlobalBaseReg != 0)
8871 return GlobalBaseReg;
8872
8873 // Create the register. The code to initialize it is inserted
8874 // later, by the CGBR pass (below).
8875 MachineRegisterInfo &RegInfo = MF->getRegInfo();
8876 GlobalBaseReg = RegInfo.createVirtualRegister(
8877 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
8878 X86FI->setGlobalBaseReg(GlobalBaseReg);
8879 return GlobalBaseReg;
8880}
8881
8882// FIXME: Some shuffle and unpack instructions have equivalents in different
8883// domains, but they require a bit more work than just switching opcodes.
8884
8885static const uint16_t *lookup(unsigned opcode, unsigned domain,
8886 ArrayRef<uint16_t[3]> Table) {
8887 for (const uint16_t(&Row)[3] : Table)
8888 if (Row[domain - 1] == opcode)
8889 return Row;
8890 return nullptr;
8891}
8892
8893static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
8894 ArrayRef<uint16_t[4]> Table) {
8895 // If this is the integer domain make sure to check both integer columns.
8896 for (const uint16_t(&Row)[4] : Table)
8897 if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode))
8898 return Row;
8899 return nullptr;
8900}
8901
8902// Helper to attempt to widen/narrow blend masks.
8903static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
8904 unsigned NewWidth, unsigned *pNewMask = nullptr) {
8905 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
8906 "Illegal blend mask scale");
8907 unsigned NewMask = 0;
8908
8909 if ((OldWidth % NewWidth) == 0) {
8910 unsigned Scale = OldWidth / NewWidth;
8911 unsigned SubMask = (1u << Scale) - 1;
8912 for (unsigned i = 0; i != NewWidth; ++i) {
8913 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
8914 if (Sub == SubMask)
8915 NewMask |= (1u << i);
8916 else if (Sub != 0x0)
8917 return false;
8918 }
8919 } else {
8920 unsigned Scale = NewWidth / OldWidth;
8921 unsigned SubMask = (1u << Scale) - 1;
8922 for (unsigned i = 0; i != OldWidth; ++i) {
8923 if (OldMask & (1 << i)) {
8924 NewMask |= (SubMask << (i * Scale));
8925 }
8926 }
8927 }
8928
8929 if (pNewMask)
8930 *pNewMask = NewMask;
8931 return true;
8932}
8933
8935 unsigned Opcode = MI.getOpcode();
8936 unsigned NumOperands = MI.getDesc().getNumOperands();
8937
8938 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
8939 uint16_t validDomains = 0;
8940 if (MI.getOperand(NumOperands - 1).isImm()) {
8941 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
8942 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
8943 validDomains |= 0x2; // PackedSingle
8944 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
8945 validDomains |= 0x4; // PackedDouble
8946 if (!Is256 || Subtarget.hasAVX2())
8947 validDomains |= 0x8; // PackedInt
8948 }
8949 return validDomains;
8950 };
8951
8952 switch (Opcode) {
8953 case X86::BLENDPDrmi:
8954 case X86::BLENDPDrri:
8955 case X86::VBLENDPDrmi:
8956 case X86::VBLENDPDrri:
8957 return GetBlendDomains(2, false);
8958 case X86::VBLENDPDYrmi:
8959 case X86::VBLENDPDYrri:
8960 return GetBlendDomains(4, true);
8961 case X86::BLENDPSrmi:
8962 case X86::BLENDPSrri:
8963 case X86::VBLENDPSrmi:
8964 case X86::VBLENDPSrri:
8965 case X86::VPBLENDDrmi:
8966 case X86::VPBLENDDrri:
8967 return GetBlendDomains(4, false);
8968 case X86::VBLENDPSYrmi:
8969 case X86::VBLENDPSYrri:
8970 case X86::VPBLENDDYrmi:
8971 case X86::VPBLENDDYrri:
8972 return GetBlendDomains(8, true);
8973 case X86::PBLENDWrmi:
8974 case X86::PBLENDWrri:
8975 case X86::VPBLENDWrmi:
8976 case X86::VPBLENDWrri:
8977 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
8978 case X86::VPBLENDWYrmi:
8979 case X86::VPBLENDWYrri:
8980 return GetBlendDomains(8, false);
8981 case X86::VPANDDZ128rr:
8982 case X86::VPANDDZ128rm:
8983 case X86::VPANDDZ256rr:
8984 case X86::VPANDDZ256rm:
8985 case X86::VPANDQZ128rr:
8986 case X86::VPANDQZ128rm:
8987 case X86::VPANDQZ256rr:
8988 case X86::VPANDQZ256rm:
8989 case X86::VPANDNDZ128rr:
8990 case X86::VPANDNDZ128rm:
8991 case X86::VPANDNDZ256rr:
8992 case X86::VPANDNDZ256rm:
8993 case X86::VPANDNQZ128rr:
8994 case X86::VPANDNQZ128rm:
8995 case X86::VPANDNQZ256rr:
8996 case X86::VPANDNQZ256rm:
8997 case X86::VPORDZ128rr:
8998 case X86::VPORDZ128rm:
8999 case X86::VPORDZ256rr:
9000 case X86::VPORDZ256rm:
9001 case X86::VPORQZ128rr:
9002 case X86::VPORQZ128rm:
9003 case X86::VPORQZ256rr:
9004 case X86::VPORQZ256rm:
9005 case X86::VPXORDZ128rr:
9006 case X86::VPXORDZ128rm:
9007 case X86::VPXORDZ256rr:
9008 case X86::VPXORDZ256rm:
9009 case X86::VPXORQZ128rr:
9010 case X86::VPXORQZ128rm:
9011 case X86::VPXORQZ256rr:
9012 case X86::VPXORQZ256rm:
9013 // If we don't have DQI see if we can still switch from an EVEX integer
9014 // instruction to a VEX floating point instruction.
9015 if (Subtarget.hasDQI())
9016 return 0;
9017
9018 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
9019 return 0;
9020 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
9021 return 0;
9022 // Register forms will have 3 operands. Memory form will have more.
9023 if (NumOperands == 3 &&
9024 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
9025 return 0;
9026
9027 // All domains are valid.
9028 return 0xe;
9029 case X86::MOVHLPSrr:
9030 // We can swap domains when both inputs are the same register.
9031 // FIXME: This doesn't catch all the cases we would like. If the input
9032 // register isn't KILLed by the instruction, the two address instruction
9033 // pass puts a COPY on one input. The other input uses the original
9034 // register. This prevents the same physical register from being used by
9035 // both inputs.
9036 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9037 MI.getOperand(0).getSubReg() == 0 &&
9038 MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0)
9039 return 0x6;
9040 return 0;
9041 case X86::SHUFPDrri:
9042 return 0x6;
9043 }
9044 return 0;
9045}
9046
9047#include "X86ReplaceableInstrs.def"
9048
9050 unsigned Domain) const {
9051 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9052 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9053 assert(dom && "Not an SSE instruction");
9054
9055 unsigned Opcode = MI.getOpcode();
9056 unsigned NumOperands = MI.getDesc().getNumOperands();
9057
9058 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
9059 if (MI.getOperand(NumOperands - 1).isImm()) {
9060 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
9061 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
9062 unsigned NewImm = Imm;
9063
9064 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
9065 if (!table)
9066 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9067
9068 if (Domain == 1) { // PackedSingle
9069 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
9070 } else if (Domain == 2) { // PackedDouble
9071 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
9072 } else if (Domain == 3) { // PackedInt
9073 if (Subtarget.hasAVX2()) {
9074 // If we are already VPBLENDW use that, else use VPBLENDD.
9075 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
9076 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
9077 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
9078 }
9079 } else {
9080 assert(!Is256 && "128-bit vector expected");
9081 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
9082 }
9083 }
9084
9085 assert(table && table[Domain - 1] && "Unknown domain op");
9086 MI.setDesc(get(table[Domain - 1]));
9087 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
9088 }
9089 return true;
9090 };
9091
9092 switch (Opcode) {
9093 case X86::BLENDPDrmi:
9094 case X86::BLENDPDrri:
9095 case X86::VBLENDPDrmi:
9096 case X86::VBLENDPDrri:
9097 return SetBlendDomain(2, false);
9098 case X86::VBLENDPDYrmi:
9099 case X86::VBLENDPDYrri:
9100 return SetBlendDomain(4, true);
9101 case X86::BLENDPSrmi:
9102 case X86::BLENDPSrri:
9103 case X86::VBLENDPSrmi:
9104 case X86::VBLENDPSrri:
9105 case X86::VPBLENDDrmi:
9106 case X86::VPBLENDDrri:
9107 return SetBlendDomain(4, false);
9108 case X86::VBLENDPSYrmi:
9109 case X86::VBLENDPSYrri:
9110 case X86::VPBLENDDYrmi:
9111 case X86::VPBLENDDYrri:
9112 return SetBlendDomain(8, true);
9113 case X86::PBLENDWrmi:
9114 case X86::PBLENDWrri:
9115 case X86::VPBLENDWrmi:
9116 case X86::VPBLENDWrri:
9117 return SetBlendDomain(8, false);
9118 case X86::VPBLENDWYrmi:
9119 case X86::VPBLENDWYrri:
9120 return SetBlendDomain(16, true);
9121 case X86::VPANDDZ128rr:
9122 case X86::VPANDDZ128rm:
9123 case X86::VPANDDZ256rr:
9124 case X86::VPANDDZ256rm:
9125 case X86::VPANDQZ128rr:
9126 case X86::VPANDQZ128rm:
9127 case X86::VPANDQZ256rr:
9128 case X86::VPANDQZ256rm:
9129 case X86::VPANDNDZ128rr:
9130 case X86::VPANDNDZ128rm:
9131 case X86::VPANDNDZ256rr:
9132 case X86::VPANDNDZ256rm:
9133 case X86::VPANDNQZ128rr:
9134 case X86::VPANDNQZ128rm:
9135 case X86::VPANDNQZ256rr:
9136 case X86::VPANDNQZ256rm:
9137 case X86::VPORDZ128rr:
9138 case X86::VPORDZ128rm:
9139 case X86::VPORDZ256rr:
9140 case X86::VPORDZ256rm:
9141 case X86::VPORQZ128rr:
9142 case X86::VPORQZ128rm:
9143 case X86::VPORQZ256rr:
9144 case X86::VPORQZ256rm:
9145 case X86::VPXORDZ128rr:
9146 case X86::VPXORDZ128rm:
9147 case X86::VPXORDZ256rr:
9148 case X86::VPXORDZ256rm:
9149 case X86::VPXORQZ128rr:
9150 case X86::VPXORQZ128rm:
9151 case X86::VPXORQZ256rr:
9152 case X86::VPXORQZ256rm: {
9153 // Without DQI, convert EVEX instructions to VEX instructions.
9154 if (Subtarget.hasDQI())
9155 return false;
9156
9157 const uint16_t *table =
9158 lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs);
9159 assert(table && "Instruction not found in table?");
9160 // Don't change integer Q instructions to D instructions and
9161 // use D intructions if we started with a PS instruction.
9162 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9163 Domain = 4;
9164 MI.setDesc(get(table[Domain - 1]));
9165 return true;
9166 }
9167 case X86::UNPCKHPDrr:
9168 case X86::MOVHLPSrr:
9169 // We just need to commute the instruction which will switch the domains.
9170 if (Domain != dom && Domain != 3 &&
9171 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
9172 MI.getOperand(0).getSubReg() == 0 &&
9173 MI.getOperand(1).getSubReg() == 0 &&
9174 MI.getOperand(2).getSubReg() == 0) {
9175 commuteInstruction(MI, false);
9176 return true;
9177 }
9178 // We must always return true for MOVHLPSrr.
9179 if (Opcode == X86::MOVHLPSrr)
9180 return true;
9181 break;
9182 case X86::SHUFPDrri: {
9183 if (Domain == 1) {
9184 unsigned Imm = MI.getOperand(3).getImm();
9185 unsigned NewImm = 0x44;
9186 if (Imm & 1)
9187 NewImm |= 0x0a;
9188 if (Imm & 2)
9189 NewImm |= 0xa0;
9190 MI.getOperand(3).setImm(NewImm);
9191 MI.setDesc(get(X86::SHUFPSrri));
9192 }
9193 return true;
9194 }
9195 }
9196 return false;
9197}
9198
9199std::pair<uint16_t, uint16_t>
9201 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9202 unsigned opcode = MI.getOpcode();
9203 uint16_t validDomains = 0;
9204 if (domain) {
9205 // Attempt to match for custom instructions.
9206 validDomains = getExecutionDomainCustom(MI);
9207 if (validDomains)
9208 return std::make_pair(domain, validDomains);
9209
9210 if (lookup(opcode, domain, ReplaceableInstrs)) {
9211 validDomains = 0xe;
9212 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
9213 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
9214 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
9215 validDomains = 0x6;
9216 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
9217 // Insert/extract instructions should only effect domain if AVX2
9218 // is enabled.
9219 if (!Subtarget.hasAVX2())
9220 return std::make_pair(0, 0);
9221 validDomains = 0xe;
9222 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
9223 validDomains = 0xe;
9224 } else if (Subtarget.hasDQI() &&
9225 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) {
9226 validDomains = 0xe;
9227 } else if (Subtarget.hasDQI()) {
9228 if (const uint16_t *table =
9229 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) {
9230 if (domain == 1 || (domain == 3 && table[3] == opcode))
9231 validDomains = 0xa;
9232 else
9233 validDomains = 0xc;
9234 }
9235 }
9236 }
9237 return std::make_pair(domain, validDomains);
9238}
9239
9241 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
9242 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
9243 assert(dom && "Not an SSE instruction");
9244
9245 // Attempt to match for custom instructions.
9247 return;
9248
9249 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
9250 if (!table) { // try the other table
9251 assert((Subtarget.hasAVX2() || Domain < 3) &&
9252 "256-bit vector operations only available in AVX2");
9253 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
9254 }
9255 if (!table) { // try the FP table
9256 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
9257 assert((!table || Domain < 3) &&
9258 "Can only select PackedSingle or PackedDouble");
9259 }
9260 if (!table) { // try the other table
9261 assert(Subtarget.hasAVX2() &&
9262 "256-bit insert/extract only available in AVX2");
9263 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
9264 }
9265 if (!table) { // try the AVX512 table
9266 assert(Subtarget.hasAVX512() && "Requires AVX-512");
9267 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
9268 // Don't change integer Q instructions to D instructions.
9269 if (table && Domain == 3 && table[3] == MI.getOpcode())
9270 Domain = 4;
9271 }
9272 if (!table) { // try the AVX512DQ table
9273 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9274 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
9275 // Don't change integer Q instructions to D instructions and
9276 // use D instructions if we started with a PS instruction.
9277 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9278 Domain = 4;
9279 }
9280 if (!table) { // try the AVX512DQMasked table
9281 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
9282 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
9283 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
9284 Domain = 4;
9285 }
9286 assert(table && "Cannot change domain");
9287 MI.setDesc(get(table[Domain - 1]));
9288}
9289
9292 DebugLoc DL;
9293 BuildMI(MBB, MI, DL, get(X86::NOOP));
9294}
9295
9296/// Return the noop instruction to use for a noop.
9298 MCInst Nop;
9299 Nop.setOpcode(X86::NOOP);
9300 return Nop;
9301}
9302
9304 switch (opc) {
9305 default:
9306 return false;
9307 case X86::DIVPDrm:
9308 case X86::DIVPDrr:
9309 case X86::DIVPSrm:
9310 case X86::DIVPSrr:
9311 case X86::DIVSDrm:
9312 case X86::DIVSDrm_Int:
9313 case X86::DIVSDrr:
9314 case X86::DIVSDrr_Int:
9315 case X86::DIVSSrm:
9316 case X86::DIVSSrm_Int:
9317 case X86::DIVSSrr:
9318 case X86::DIVSSrr_Int:
9319 case X86::SQRTPDm:
9320 case X86::SQRTPDr:
9321 case X86::SQRTPSm:
9322 case X86::SQRTPSr:
9323 case X86::SQRTSDm:
9324 case X86::SQRTSDm_Int:
9325 case X86::SQRTSDr:
9326 case X86::SQRTSDr_Int:
9327 case X86::SQRTSSm:
9328 case X86::SQRTSSm_Int:
9329 case X86::SQRTSSr:
9330 case X86::SQRTSSr_Int:
9331 // AVX instructions with high latency
9332 case X86::VDIVPDrm:
9333 case X86::VDIVPDrr:
9334 case X86::VDIVPDYrm:
9335 case X86::VDIVPDYrr:
9336 case X86::VDIVPSrm:
9337 case X86::VDIVPSrr:
9338 case X86::VDIVPSYrm:
9339 case X86::VDIVPSYrr:
9340 case X86::VDIVSDrm:
9341 case X86::VDIVSDrm_Int:
9342 case X86::VDIVSDrr:
9343 case X86::VDIVSDrr_Int:
9344 case X86::VDIVSSrm:
9345 case X86::VDIVSSrm_Int:
9346 case X86::VDIVSSrr:
9347 case X86::VDIVSSrr_Int:
9348 case X86::VSQRTPDm:
9349 case X86::VSQRTPDr:
9350 case X86::VSQRTPDYm:
9351 case X86::VSQRTPDYr:
9352 case X86::VSQRTPSm:
9353 case X86::VSQRTPSr:
9354 case X86::VSQRTPSYm:
9355 case X86::VSQRTPSYr:
9356 case X86::VSQRTSDm:
9357 case X86::VSQRTSDm_Int:
9358 case X86::VSQRTSDr:
9359 case X86::VSQRTSDr_Int:
9360 case X86::VSQRTSSm:
9361 case X86::VSQRTSSm_Int:
9362 case X86::VSQRTSSr:
9363 case X86::VSQRTSSr_Int:
9364 // AVX512 instructions with high latency
9365 case X86::VDIVPDZ128rm:
9366 case X86::VDIVPDZ128rmb:
9367 case X86::VDIVPDZ128rmbk:
9368 case X86::VDIVPDZ128rmbkz:
9369 case X86::VDIVPDZ128rmk:
9370 case X86::VDIVPDZ128rmkz:
9371 case X86::VDIVPDZ128rr:
9372 case X86::VDIVPDZ128rrk:
9373 case X86::VDIVPDZ128rrkz:
9374 case X86::VDIVPDZ256rm:
9375 case X86::VDIVPDZ256rmb:
9376 case X86::VDIVPDZ256rmbk:
9377 case X86::VDIVPDZ256rmbkz:
9378 case X86::VDIVPDZ256rmk:
9379 case X86::VDIVPDZ256rmkz:
9380 case X86::VDIVPDZ256rr:
9381 case X86::VDIVPDZ256rrk:
9382 case X86::VDIVPDZ256rrkz:
9383 case X86::VDIVPDZrrb:
9384 case X86::VDIVPDZrrbk:
9385 case X86::VDIVPDZrrbkz:
9386 case X86::VDIVPDZrm:
9387 case X86::VDIVPDZrmb:
9388 case X86::VDIVPDZrmbk:
9389 case X86::VDIVPDZrmbkz:
9390 case X86::VDIVPDZrmk:
9391 case X86::VDIVPDZrmkz:
9392 case X86::VDIVPDZrr:
9393 case X86::VDIVPDZrrk:
9394 case X86::VDIVPDZrrkz:
9395 case X86::VDIVPSZ128rm:
9396 case X86::VDIVPSZ128rmb:
9397 case X86::VDIVPSZ128rmbk:
9398 case X86::VDIVPSZ128rmbkz:
9399 case X86::VDIVPSZ128rmk:
9400 case X86::VDIVPSZ128rmkz:
9401 case X86::VDIVPSZ128rr:
9402 case X86::VDIVPSZ128rrk:
9403 case X86::VDIVPSZ128rrkz:
9404 case X86::VDIVPSZ256rm:
9405 case X86::VDIVPSZ256rmb:
9406 case X86::VDIVPSZ256rmbk:
9407 case X86::VDIVPSZ256rmbkz:
9408 case X86::VDIVPSZ256rmk:
9409 case X86::VDIVPSZ256rmkz:
9410 case X86::VDIVPSZ256rr:
9411 case X86::VDIVPSZ256rrk:
9412 case X86::VDIVPSZ256rrkz:
9413 case X86::VDIVPSZrrb:
9414 case X86::VDIVPSZrrbk:
9415 case X86::VDIVPSZrrbkz:
9416 case X86::VDIVPSZrm:
9417 case X86::VDIVPSZrmb:
9418 case X86::VDIVPSZrmbk:
9419 case X86::VDIVPSZrmbkz:
9420 case X86::VDIVPSZrmk:
9421 case X86::VDIVPSZrmkz:
9422 case X86::VDIVPSZrr:
9423 case X86::VDIVPSZrrk:
9424 case X86::VDIVPSZrrkz:
9425 case X86::VDIVSDZrm:
9426 case X86::VDIVSDZrr:
9427 case X86::VDIVSDZrm_Int:
9428 case X86::VDIVSDZrm_Intk:
9429 case X86::VDIVSDZrm_Intkz:
9430 case X86::VDIVSDZrr_Int:
9431 case X86::VDIVSDZrr_Intk:
9432 case X86::VDIVSDZrr_Intkz:
9433 case X86::VDIVSDZrrb_Int:
9434 case X86::VDIVSDZrrb_Intk:
9435 case X86::VDIVSDZrrb_Intkz:
9436 case X86::VDIVSSZrm:
9437 case X86::VDIVSSZrr:
9438 case X86::VDIVSSZrm_Int:
9439 case X86::VDIVSSZrm_Intk:
9440 case X86::VDIVSSZrm_Intkz:
9441 case X86::VDIVSSZrr_Int:
9442 case X86::VDIVSSZrr_Intk:
9443 case X86::VDIVSSZrr_Intkz:
9444 case X86::VDIVSSZrrb_Int:
9445 case X86::VDIVSSZrrb_Intk:
9446 case X86::VDIVSSZrrb_Intkz:
9447 case X86::VSQRTPDZ128m:
9448 case X86::VSQRTPDZ128mb:
9449 case X86::VSQRTPDZ128mbk:
9450 case X86::VSQRTPDZ128mbkz:
9451 case X86::VSQRTPDZ128mk:
9452 case X86::VSQRTPDZ128mkz:
9453 case X86::VSQRTPDZ128r:
9454 case X86::VSQRTPDZ128rk:
9455 case X86::VSQRTPDZ128rkz:
9456 case X86::VSQRTPDZ256m:
9457 case X86::VSQRTPDZ256mb:
9458 case X86::VSQRTPDZ256mbk:
9459 case X86::VSQRTPDZ256mbkz:
9460 case X86::VSQRTPDZ256mk:
9461 case X86::VSQRTPDZ256mkz:
9462 case X86::VSQRTPDZ256r:
9463 case X86::VSQRTPDZ256rk:
9464 case X86::VSQRTPDZ256rkz:
9465 case X86::VSQRTPDZm:
9466 case X86::VSQRTPDZmb:
9467 case X86::VSQRTPDZmbk:
9468 case X86::VSQRTPDZmbkz:
9469 case X86::VSQRTPDZmk:
9470 case X86::VSQRTPDZmkz:
9471 case X86::VSQRTPDZr:
9472 case X86::VSQRTPDZrb:
9473 case X86::VSQRTPDZrbk:
9474 case X86::VSQRTPDZrbkz:
9475 case X86::VSQRTPDZrk:
9476 case X86::VSQRTPDZrkz:
9477 case X86::VSQRTPSZ128m:
9478 case X86::VSQRTPSZ128mb:
9479 case X86::VSQRTPSZ128mbk:
9480 case X86::VSQRTPSZ128mbkz:
9481 case X86::VSQRTPSZ128mk:
9482 case X86::VSQRTPSZ128mkz:
9483 case X86::VSQRTPSZ128r:
9484 case X86::VSQRTPSZ128rk:
9485 case X86::VSQRTPSZ128rkz:
9486 case X86::VSQRTPSZ256m:
9487 case X86::VSQRTPSZ256mb:
9488 case X86::VSQRTPSZ256mbk:
9489 case X86::VSQRTPSZ256mbkz:
9490 case X86::VSQRTPSZ256mk:
9491 case X86::VSQRTPSZ256mkz:
9492 case X86::VSQRTPSZ256r:
9493 case X86::VSQRTPSZ256rk:
9494 case X86::VSQRTPSZ256rkz:
9495 case X86::VSQRTPSZm:
9496 case X86::VSQRTPSZmb:
9497 case X86::VSQRTPSZmbk:
9498 case X86::VSQRTPSZmbkz:
9499 case X86::VSQRTPSZmk:
9500 case X86::VSQRTPSZmkz:
9501 case X86::VSQRTPSZr:
9502 case X86::VSQRTPSZrb:
9503 case X86::VSQRTPSZrbk:
9504 case X86::VSQRTPSZrbkz:
9505 case X86::VSQRTPSZrk:
9506 case X86::VSQRTPSZrkz:
9507 case X86::VSQRTSDZm:
9508 case X86::VSQRTSDZm_Int:
9509 case X86::VSQRTSDZm_Intk:
9510 case X86::VSQRTSDZm_Intkz:
9511 case X86::VSQRTSDZr:
9512 case X86::VSQRTSDZr_Int:
9513 case X86::VSQRTSDZr_Intk:
9514 case X86::VSQRTSDZr_Intkz:
9515 case X86::VSQRTSDZrb_Int:
9516 case X86::VSQRTSDZrb_Intk:
9517 case X86::VSQRTSDZrb_Intkz:
9518 case X86::VSQRTSSZm:
9519 case X86::VSQRTSSZm_Int:
9520 case X86::VSQRTSSZm_Intk:
9521 case X86::VSQRTSSZm_Intkz:
9522 case X86::VSQRTSSZr:
9523 case X86::VSQRTSSZr_Int:
9524 case X86::VSQRTSSZr_Intk:
9525 case X86::VSQRTSSZr_Intkz:
9526 case X86::VSQRTSSZrb_Int:
9527 case X86::VSQRTSSZrb_Intk:
9528 case X86::VSQRTSSZrb_Intkz:
9529
9530 case X86::VGATHERDPDYrm:
9531 case X86::VGATHERDPDZ128rm:
9532 case X86::VGATHERDPDZ256rm:
9533 case X86::VGATHERDPDZrm:
9534 case X86::VGATHERDPDrm:
9535 case X86::VGATHERDPSYrm:
9536 case X86::VGATHERDPSZ128rm:
9537 case X86::VGATHERDPSZ256rm:
9538 case X86::VGATHERDPSZrm:
9539 case X86::VGATHERDPSrm:
9540 case X86::VGATHERPF0DPDm:
9541 case X86::VGATHERPF0DPSm:
9542 case X86::VGATHERPF0QPDm:
9543 case X86::VGATHERPF0QPSm:
9544 case X86::VGATHERPF1DPDm:
9545 case X86::VGATHERPF1DPSm:
9546 case X86::VGATHERPF1QPDm:
9547 case X86::VGATHERPF1QPSm:
9548 case X86::VGATHERQPDYrm:
9549 case X86::VGATHERQPDZ128rm:
9550 case X86::VGATHERQPDZ256rm:
9551 case X86::VGATHERQPDZrm:
9552 case X86::VGATHERQPDrm:
9553 case X86::VGATHERQPSYrm:
9554 case X86::VGATHERQPSZ128rm:
9555 case X86::VGATHERQPSZ256rm:
9556 case X86::VGATHERQPSZrm:
9557 case X86::VGATHERQPSrm:
9558 case X86::VPGATHERDDYrm:
9559 case X86::VPGATHERDDZ128rm:
9560 case X86::VPGATHERDDZ256rm:
9561 case X86::VPGATHERDDZrm:
9562 case X86::VPGATHERDDrm:
9563 case X86::VPGATHERDQYrm:
9564 case X86::VPGATHERDQZ128rm:
9565 case X86::VPGATHERDQZ256rm:
9566 case X86::VPGATHERDQZrm:
9567 case X86::VPGATHERDQrm:
9568 case X86::VPGATHERQDYrm:
9569 case X86::VPGATHERQDZ128rm:
9570 case X86::VPGATHERQDZ256rm:
9571 case X86::VPGATHERQDZrm:
9572 case X86::VPGATHERQDrm:
9573 case X86::VPGATHERQQYrm:
9574 case X86::VPGATHERQQZ128rm:
9575 case X86::VPGATHERQQZ256rm:
9576 case X86::VPGATHERQQZrm:
9577 case X86::VPGATHERQQrm:
9578 case X86::VSCATTERDPDZ128mr:
9579 case X86::VSCATTERDPDZ256mr:
9580 case X86::VSCATTERDPDZmr:
9581 case X86::VSCATTERDPSZ128mr:
9582 case X86::VSCATTERDPSZ256mr:
9583 case X86::VSCATTERDPSZmr:
9584 case X86::VSCATTERPF0DPDm:
9585 case X86::VSCATTERPF0DPSm:
9586 case X86::VSCATTERPF0QPDm:
9587 case X86::VSCATTERPF0QPSm:
9588 case X86::VSCATTERPF1DPDm:
9589 case X86::VSCATTERPF1DPSm:
9590 case X86::VSCATTERPF1QPDm:
9591 case X86::VSCATTERPF1QPSm:
9592 case X86::VSCATTERQPDZ128mr:
9593 case X86::VSCATTERQPDZ256mr:
9594 case X86::VSCATTERQPDZmr:
9595 case X86::VSCATTERQPSZ128mr:
9596 case X86::VSCATTERQPSZ256mr:
9597 case X86::VSCATTERQPSZmr:
9598 case X86::VPSCATTERDDZ128mr:
9599 case X86::VPSCATTERDDZ256mr:
9600 case X86::VPSCATTERDDZmr:
9601 case X86::VPSCATTERDQZ128mr:
9602 case X86::VPSCATTERDQZ256mr:
9603 case X86::VPSCATTERDQZmr:
9604 case X86::VPSCATTERQDZ128mr:
9605 case X86::VPSCATTERQDZ256mr:
9606 case X86::VPSCATTERQDZmr:
9607 case X86::VPSCATTERQQZ128mr:
9608 case X86::VPSCATTERQQZ256mr:
9609 case X86::VPSCATTERQQZmr:
9610 return true;
9611 }
9612}
9613
9615 const MachineRegisterInfo *MRI,
9616 const MachineInstr &DefMI,
9617 unsigned DefIdx,
9618 const MachineInstr &UseMI,
9619 unsigned UseIdx) const {
9620 return isHighLatencyDef(DefMI.getOpcode());
9621}
9622
9624 const MachineBasicBlock *MBB) const {
9625 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
9626 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
9627
9628 // Integer binary math/logic instructions have a third source operand:
9629 // the EFLAGS register. That operand must be both defined here and never
9630 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
9631 // not change anything because rearranging the operands could affect other
9632 // instructions that depend on the exact status flags (zero, sign, etc.)
9633 // that are set by using these particular operands with this operation.
9634 const MachineOperand *FlagDef =
9635 Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
9636 assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?");
9637 if (FlagDef && !FlagDef->isDead())
9638 return false;
9639
9641}
9642
9643// TODO: There are many more machine instruction opcodes to match:
9644// 1. Other data types (integer, vectors)
9645// 2. Other math / logic operations (xor, or)
9646// 3. Other forms of the same operation (intrinsics and other variants)
9648 bool Invert) const {
9649 if (Invert)
9650 return false;
9651 switch (Inst.getOpcode()) {
9652 CASE_ND(ADD8rr)
9653 CASE_ND(ADD16rr)
9654 CASE_ND(ADD32rr)
9655 CASE_ND(ADD64rr)
9656 CASE_ND(AND8rr)
9657 CASE_ND(AND16rr)
9658 CASE_ND(AND32rr)
9659 CASE_ND(AND64rr)
9660 CASE_ND(OR8rr)
9661 CASE_ND(OR16rr)
9662 CASE_ND(OR32rr)
9663 CASE_ND(OR64rr)
9664 CASE_ND(XOR8rr)
9665 CASE_ND(XOR16rr)
9666 CASE_ND(XOR32rr)
9667 CASE_ND(XOR64rr)
9668 CASE_ND(IMUL16rr)
9669 CASE_ND(IMUL32rr)
9670 CASE_ND(IMUL64rr)
9671 case X86::PANDrr:
9672 case X86::PORrr:
9673 case X86::PXORrr:
9674 case X86::ANDPDrr:
9675 case X86::ANDPSrr:
9676 case X86::ORPDrr:
9677 case X86::ORPSrr:
9678 case X86::XORPDrr:
9679 case X86::XORPSrr:
9680 case X86::PADDBrr:
9681 case X86::PADDWrr:
9682 case X86::PADDDrr:
9683 case X86::PADDQrr:
9684 case X86::PMULLWrr:
9685 case X86::PMULLDrr:
9686 case X86::PMAXSBrr:
9687 case X86::PMAXSDrr:
9688 case X86::PMAXSWrr:
9689 case X86::PMAXUBrr:
9690 case X86::PMAXUDrr:
9691 case X86::PMAXUWrr:
9692 case X86::PMINSBrr:
9693 case X86::PMINSDrr:
9694 case X86::PMINSWrr:
9695 case X86::PMINUBrr:
9696 case X86::PMINUDrr:
9697 case X86::PMINUWrr:
9698 case X86::VPANDrr:
9699 case X86::VPANDYrr:
9700 case X86::VPANDDZ128rr:
9701 case X86::VPANDDZ256rr:
9702 case X86::VPANDDZrr:
9703 case X86::VPANDQZ128rr:
9704 case X86::VPANDQZ256rr:
9705 case X86::VPANDQZrr:
9706 case X86::VPORrr:
9707 case X86::VPORYrr:
9708 case X86::VPORDZ128rr:
9709 case X86::VPORDZ256rr:
9710 case X86::VPORDZrr:
9711 case X86::VPORQZ128rr:
9712 case X86::VPORQZ256rr:
9713 case X86::VPORQZrr:
9714 case X86::VPXORrr:
9715 case X86::VPXORYrr:
9716 case X86::VPXORDZ128rr:
9717 case X86::VPXORDZ256rr:
9718 case X86::VPXORDZrr:
9719 case X86::VPXORQZ128rr:
9720 case X86::VPXORQZ256rr:
9721 case X86::VPXORQZrr:
9722 case X86::VANDPDrr:
9723 case X86::VANDPSrr:
9724 case X86::VANDPDYrr:
9725 case X86::VANDPSYrr:
9726 case X86::VANDPDZ128rr:
9727 case X86::VANDPSZ128rr:
9728 case X86::VANDPDZ256rr:
9729 case X86::VANDPSZ256rr:
9730 case X86::VANDPDZrr:
9731 case X86::VANDPSZrr:
9732 case X86::VORPDrr:
9733 case X86::VORPSrr:
9734 case X86::VORPDYrr:
9735 case X86::VORPSYrr:
9736 case X86::VORPDZ128rr:
9737 case X86::VORPSZ128rr:
9738 case X86::VORPDZ256rr:
9739 case X86::VORPSZ256rr:
9740 case X86::VORPDZrr:
9741 case X86::VORPSZrr:
9742 case X86::VXORPDrr:
9743 case X86::VXORPSrr:
9744 case X86::VXORPDYrr:
9745 case X86::VXORPSYrr:
9746 case X86::VXORPDZ128rr:
9747 case X86::VXORPSZ128rr:
9748 case X86::VXORPDZ256rr:
9749 case X86::VXORPSZ256rr:
9750 case X86::VXORPDZrr:
9751 case X86::VXORPSZrr:
9752 case X86::KADDBrr:
9753 case X86::KADDWrr:
9754 case X86::KADDDrr:
9755 case X86::KADDQrr:
9756 case X86::KANDBrr:
9757 case X86::KANDWrr:
9758 case X86::KANDDrr:
9759 case X86::KANDQrr:
9760 case X86::KORBrr:
9761 case X86::KORWrr:
9762 case X86::KORDrr:
9763 case X86::KORQrr:
9764 case X86::KXORBrr:
9765 case X86::KXORWrr:
9766 case X86::KXORDrr:
9767 case X86::KXORQrr:
9768 case X86::VPADDBrr:
9769 case X86::VPADDWrr:
9770 case X86::VPADDDrr:
9771 case X86::VPADDQrr:
9772 case X86::VPADDBYrr:
9773 case X86::VPADDWYrr:
9774 case X86::VPADDDYrr:
9775 case X86::VPADDQYrr:
9776 case X86::VPADDBZ128rr:
9777 case X86::VPADDWZ128rr:
9778 case X86::VPADDDZ128rr:
9779 case X86::VPADDQZ128rr:
9780 case X86::VPADDBZ256rr:
9781 case X86::VPADDWZ256rr:
9782 case X86::VPADDDZ256rr:
9783 case X86::VPADDQZ256rr:
9784 case X86::VPADDBZrr:
9785 case X86::VPADDWZrr:
9786 case X86::VPADDDZrr:
9787 case X86::VPADDQZrr:
9788 case X86::VPMULLWrr:
9789 case X86::VPMULLWYrr:
9790 case X86::VPMULLWZ128rr:
9791 case X86::VPMULLWZ256rr:
9792 case X86::VPMULLWZrr:
9793 case X86::VPMULLDrr:
9794 case X86::VPMULLDYrr:
9795 case X86::VPMULLDZ128rr:
9796 case X86::VPMULLDZ256rr:
9797 case X86::VPMULLDZrr:
9798 case X86::VPMULLQZ128rr:
9799 case X86::VPMULLQZ256rr:
9800 case X86::VPMULLQZrr:
9801 case X86::VPMAXSBrr:
9802 case X86::VPMAXSBYrr:
9803 case X86::VPMAXSBZ128rr:
9804 case X86::VPMAXSBZ256rr:
9805 case X86::VPMAXSBZrr:
9806 case X86::VPMAXSDrr:
9807 case X86::VPMAXSDYrr:
9808 case X86::VPMAXSDZ128rr:
9809 case X86::VPMAXSDZ256rr:
9810 case X86::VPMAXSDZrr:
9811 case X86::VPMAXSQZ128rr:
9812 case X86::VPMAXSQZ256rr:
9813 case X86::VPMAXSQZrr:
9814 case X86::VPMAXSWrr:
9815 case X86::VPMAXSWYrr:
9816 case X86::VPMAXSWZ128rr:
9817 case X86::VPMAXSWZ256rr:
9818 case X86::VPMAXSWZrr:
9819 case X86::VPMAXUBrr:
9820 case X86::VPMAXUBYrr:
9821 case X86::VPMAXUBZ128rr:
9822 case X86::VPMAXUBZ256rr:
9823 case X86::VPMAXUBZrr:
9824 case X86::VPMAXUDrr:
9825 case X86::VPMAXUDYrr:
9826 case X86::VPMAXUDZ128rr:
9827 case X86::VPMAXUDZ256rr:
9828 case X86::VPMAXUDZrr:
9829 case X86::VPMAXUQZ128rr:
9830 case X86::VPMAXUQZ256rr:
9831 case X86::VPMAXUQZrr:
9832 case X86::VPMAXUWrr:
9833 case X86::VPMAXUWYrr:
9834 case X86::VPMAXUWZ128rr:
9835 case X86::VPMAXUWZ256rr:
9836 case X86::VPMAXUWZrr:
9837 case X86::VPMINSBrr:
9838 case X86::VPMINSBYrr:
9839 case X86::VPMINSBZ128rr:
9840 case X86::VPMINSBZ256rr:
9841 case X86::VPMINSBZrr:
9842 case X86::VPMINSDrr:
9843 case X86::VPMINSDYrr:
9844 case X86::VPMINSDZ128rr:
9845 case X86::VPMINSDZ256rr:
9846 case X86::VPMINSDZrr:
9847 case X86::VPMINSQZ128rr:
9848 case X86::VPMINSQZ256rr:
9849 case X86::VPMINSQZrr:
9850 case X86::VPMINSWrr:
9851 case X86::VPMINSWYrr:
9852 case X86::VPMINSWZ128rr:
9853 case X86::VPMINSWZ256rr:
9854 case X86::VPMINSWZrr:
9855 case X86::VPMINUBrr:
9856 case X86::VPMINUBYrr:
9857 case X86::VPMINUBZ128rr:
9858 case X86::VPMINUBZ256rr:
9859 case X86::VPMINUBZrr:
9860 case X86::VPMINUDrr:
9861 case X86::VPMINUDYrr:
9862 case X86::VPMINUDZ128rr:
9863 case X86::VPMINUDZ256rr:
9864 case X86::VPMINUDZrr:
9865 case X86::VPMINUQZ128rr:
9866 case X86::VPMINUQZ256rr:
9867 case X86::VPMINUQZrr:
9868 case X86::VPMINUWrr:
9869 case X86::VPMINUWYrr:
9870 case X86::VPMINUWZ128rr:
9871 case X86::VPMINUWZ256rr:
9872 case X86::VPMINUWZrr:
9873 // Normal min/max instructions are not commutative because of NaN and signed
9874 // zero semantics, but these are. Thus, there's no need to check for global
9875 // relaxed math; the instructions themselves have the properties we need.
9876 case X86::MAXCPDrr:
9877 case X86::MAXCPSrr:
9878 case X86::MAXCSDrr:
9879 case X86::MAXCSSrr:
9880 case X86::MINCPDrr:
9881 case X86::MINCPSrr:
9882 case X86::MINCSDrr:
9883 case X86::MINCSSrr:
9884 case X86::VMAXCPDrr:
9885 case X86::VMAXCPSrr:
9886 case X86::VMAXCPDYrr:
9887 case X86::VMAXCPSYrr:
9888 case X86::VMAXCPDZ128rr:
9889 case X86::VMAXCPSZ128rr:
9890 case X86::VMAXCPDZ256rr:
9891 case X86::VMAXCPSZ256rr:
9892 case X86::VMAXCPDZrr:
9893 case X86::VMAXCPSZrr:
9894 case X86::VMAXCSDrr:
9895 case X86::VMAXCSSrr:
9896 case X86::VMAXCSDZrr:
9897 case X86::VMAXCSSZrr:
9898 case X86::VMINCPDrr:
9899 case X86::VMINCPSrr:
9900 case X86::VMINCPDYrr:
9901 case X86::VMINCPSYrr:
9902 case X86::VMINCPDZ128rr:
9903 case X86::VMINCPSZ128rr:
9904 case X86::VMINCPDZ256rr:
9905 case X86::VMINCPSZ256rr:
9906 case X86::VMINCPDZrr:
9907 case X86::VMINCPSZrr:
9908 case X86::VMINCSDrr:
9909 case X86::VMINCSSrr:
9910 case X86::VMINCSDZrr:
9911 case X86::VMINCSSZrr:
9912 case X86::VMAXCPHZ128rr:
9913 case X86::VMAXCPHZ256rr:
9914 case X86::VMAXCPHZrr:
9915 case X86::VMAXCSHZrr:
9916 case X86::VMINCPHZ128rr:
9917 case X86::VMINCPHZ256rr:
9918 case X86::VMINCPHZrr:
9919 case X86::VMINCSHZrr:
9920 return true;
9921 case X86::ADDPDrr:
9922 case X86::ADDPSrr:
9923 case X86::ADDSDrr:
9924 case X86::ADDSSrr:
9925 case X86::MULPDrr:
9926 case X86::MULPSrr:
9927 case X86::MULSDrr:
9928 case X86::MULSSrr:
9929 case X86::VADDPDrr:
9930 case X86::VADDPSrr:
9931 case X86::VADDPDYrr:
9932 case X86::VADDPSYrr:
9933 case X86::VADDPDZ128rr:
9934 case X86::VADDPSZ128rr:
9935 case X86::VADDPDZ256rr:
9936 case X86::VADDPSZ256rr:
9937 case X86::VADDPDZrr:
9938 case X86::VADDPSZrr:
9939 case X86::VADDSDrr:
9940 case X86::VADDSSrr:
9941 case X86::VADDSDZrr:
9942 case X86::VADDSSZrr:
9943 case X86::VMULPDrr:
9944 case X86::VMULPSrr:
9945 case X86::VMULPDYrr:
9946 case X86::VMULPSYrr:
9947 case X86::VMULPDZ128rr:
9948 case X86::VMULPSZ128rr:
9949 case X86::VMULPDZ256rr:
9950 case X86::VMULPSZ256rr:
9951 case X86::VMULPDZrr:
9952 case X86::VMULPSZrr:
9953 case X86::VMULSDrr:
9954 case X86::VMULSSrr:
9955 case X86::VMULSDZrr:
9956 case X86::VMULSSZrr:
9957 case X86::VADDPHZ128rr:
9958 case X86::VADDPHZ256rr:
9959 case X86::VADDPHZrr:
9960 case X86::VADDSHZrr:
9961 case X86::VMULPHZ128rr:
9962 case X86::VMULPHZ256rr:
9963 case X86::VMULPHZrr:
9964 case X86::VMULSHZrr:
9967 default:
9968 return false;
9969 }
9970}
9971
9972/// If \p DescribedReg overlaps with the MOVrr instruction's destination
9973/// register then, if possible, describe the value in terms of the source
9974/// register.
9975static std::optional<ParamLoadedValue>
9977 const TargetRegisterInfo *TRI) {
9978 Register DestReg = MI.getOperand(0).getReg();
9979 Register SrcReg = MI.getOperand(1).getReg();
9980
9981 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
9982
9983 // If the described register is the destination, just return the source.
9984 if (DestReg == DescribedReg)
9985 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
9986
9987 // If the described register is a sub-register of the destination register,
9988 // then pick out the source register's corresponding sub-register.
9989 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
9990 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
9991 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
9992 }
9993
9994 // The remaining case to consider is when the described register is a
9995 // super-register of the destination register. MOV8rr and MOV16rr does not
9996 // write to any of the other bytes in the register, meaning that we'd have to
9997 // describe the value using a combination of the source register and the
9998 // non-overlapping bits in the described register, which is not currently
9999 // possible.
10000 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
10001 !TRI->isSuperRegister(DestReg, DescribedReg))
10002 return std::nullopt;
10003
10004 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
10005 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
10006}
10007
10008std::optional<ParamLoadedValue>
10010 const MachineOperand *Op = nullptr;
10011 DIExpression *Expr = nullptr;
10012
10014
10015 switch (MI.getOpcode()) {
10016 case X86::LEA32r:
10017 case X86::LEA64r:
10018 case X86::LEA64_32r: {
10019 // We may need to describe a 64-bit parameter with a 32-bit LEA.
10020 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10021 return std::nullopt;
10022
10023 // Operand 4 could be global address. For now we do not support
10024 // such situation.
10025 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
10026 return std::nullopt;
10027
10028 const MachineOperand &Op1 = MI.getOperand(1);
10029 const MachineOperand &Op2 = MI.getOperand(3);
10030 assert(Op2.isReg() &&
10031 (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical()));
10032
10033 // Omit situations like:
10034 // %rsi = lea %rsi, 4, ...
10035 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
10036 Op2.getReg() == MI.getOperand(0).getReg())
10037 return std::nullopt;
10038 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
10039 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
10040 (Op2.getReg() != X86::NoRegister &&
10041 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
10042 return std::nullopt;
10043
10044 int64_t Coef = MI.getOperand(2).getImm();
10045 int64_t Offset = MI.getOperand(4).getImm();
10047
10048 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
10049 Op = &Op1;
10050 } else if (Op1.isFI())
10051 Op = &Op1;
10052
10053 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
10054 Ops.push_back(dwarf::DW_OP_constu);
10055 Ops.push_back(Coef + 1);
10056 Ops.push_back(dwarf::DW_OP_mul);
10057 } else {
10058 if (Op && Op2.getReg() != X86::NoRegister) {
10059 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
10060 if (dwarfReg < 0)
10061 return std::nullopt;
10062 else if (dwarfReg < 32) {
10063 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
10064 Ops.push_back(0);
10065 } else {
10066 Ops.push_back(dwarf::DW_OP_bregx);
10067 Ops.push_back(dwarfReg);
10068 Ops.push_back(0);
10069 }
10070 } else if (!Op) {
10071 assert(Op2.getReg() != X86::NoRegister);
10072 Op = &Op2;
10073 }
10074
10075 if (Coef > 1) {
10076 assert(Op2.getReg() != X86::NoRegister);
10077 Ops.push_back(dwarf::DW_OP_constu);
10078 Ops.push_back(Coef);
10079 Ops.push_back(dwarf::DW_OP_mul);
10080 }
10081
10082 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
10083 Op2.getReg() != X86::NoRegister) {
10084 Ops.push_back(dwarf::DW_OP_plus);
10085 }
10086 }
10087
10089 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
10090
10091 return ParamLoadedValue(*Op, Expr);
10092 }
10093 case X86::MOV8ri:
10094 case X86::MOV16ri:
10095 // TODO: Handle MOV8ri and MOV16ri.
10096 return std::nullopt;
10097 case X86::MOV32ri:
10098 case X86::MOV64ri:
10099 case X86::MOV64ri32:
10100 // MOV32ri may be used for producing zero-extended 32-bit immediates in
10101 // 64-bit parameters, so we need to consider super-registers.
10102 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10103 return std::nullopt;
10104 return ParamLoadedValue(MI.getOperand(1), Expr);
10105 case X86::MOV8rr:
10106 case X86::MOV16rr:
10107 case X86::MOV32rr:
10108 case X86::MOV64rr:
10109 return describeMOVrrLoadedValue(MI, Reg, TRI);
10110 case X86::XOR32rr: {
10111 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
10112 // super-registers.
10113 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
10114 return std::nullopt;
10115 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
10117 return std::nullopt;
10118 }
10119 case X86::MOVSX64rr32: {
10120 // We may need to describe the lower 32 bits of the MOVSX; for example, in
10121 // cases like this:
10122 //
10123 // $ebx = [...]
10124 // $rdi = MOVSX64rr32 $ebx
10125 // $esi = MOV32rr $edi
10126 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
10127 return std::nullopt;
10128
10129 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
10130
10131 // If the described register is the destination register we need to
10132 // sign-extend the source register from 32 bits. The other case we handle
10133 // is when the described register is the 32-bit sub-register of the
10134 // destination register, in case we just need to return the source
10135 // register.
10136 if (Reg == MI.getOperand(0).getReg())
10137 Expr = DIExpression::appendExt(Expr, 32, 64, true);
10138 else
10139 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
10140 "Unhandled sub-register case for MOVSX64rr32");
10141
10142 return ParamLoadedValue(MI.getOperand(1), Expr);
10143 }
10144 default:
10145 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
10147 }
10148}
10149
10150/// This is an architecture-specific helper function of reassociateOps.
10151/// Set special operand attributes for new instructions after reassociation.
10153 MachineInstr &OldMI2,
10154 MachineInstr &NewMI1,
10155 MachineInstr &NewMI2) const {
10156 // Integer instructions may define an implicit EFLAGS dest register operand.
10157 MachineOperand *OldFlagDef1 =
10158 OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10159 MachineOperand *OldFlagDef2 =
10160 OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10161
10162 assert(!OldFlagDef1 == !OldFlagDef2 &&
10163 "Unexpected instruction type for reassociation");
10164
10165 if (!OldFlagDef1 || !OldFlagDef2)
10166 return;
10167
10168 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
10169 "Must have dead EFLAGS operand in reassociable instruction");
10170
10171 MachineOperand *NewFlagDef1 =
10172 NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10173 MachineOperand *NewFlagDef2 =
10174 NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
10175
10176 assert(NewFlagDef1 && NewFlagDef2 &&
10177 "Unexpected operand in reassociable instruction");
10178
10179 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10180 // of this pass or other passes. The EFLAGS operands must be dead in these new
10181 // instructions because the EFLAGS operands in the original instructions must
10182 // be dead in order for reassociation to occur.
10183 NewFlagDef1->setIsDead();
10184 NewFlagDef2->setIsDead();
10185}
10186
10187std::pair<unsigned, unsigned>
10189 return std::make_pair(TF, 0u);
10190}
10191
10194 using namespace X86II;
10195 static const std::pair<unsigned, const char *> TargetFlags[] = {
10196 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
10197 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
10198 {MO_GOT, "x86-got"},
10199 {MO_GOTOFF, "x86-gotoff"},
10200 {MO_GOTPCREL, "x86-gotpcrel"},
10201 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"},
10202 {MO_PLT, "x86-plt"},
10203 {MO_TLSGD, "x86-tlsgd"},
10204 {MO_TLSLD, "x86-tlsld"},
10205 {MO_TLSLDM, "x86-tlsldm"},
10206 {MO_GOTTPOFF, "x86-gottpoff"},
10207 {MO_INDNTPOFF, "x86-indntpoff"},
10208 {MO_TPOFF, "x86-tpoff"},
10209 {MO_DTPOFF, "x86-dtpoff"},
10210 {MO_NTPOFF, "x86-ntpoff"},
10211 {MO_GOTNTPOFF, "x86-gotntpoff"},
10212 {MO_DLLIMPORT, "x86-dllimport"},
10213 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
10214 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
10215 {MO_TLVP, "x86-tlvp"},
10216 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
10217 {MO_SECREL, "x86-secrel"},
10218 {MO_COFFSTUB, "x86-coffstub"}};
10219 return ArrayRef(TargetFlags);
10220}
10221
10222namespace {
10223/// Create Global Base Reg pass. This initializes the PIC
10224/// global base register for x86-32.
10225struct CGBR : public MachineFunctionPass {
10226 static char ID;
10227 CGBR() : MachineFunctionPass(ID) {}
10228
10229 bool runOnMachineFunction(MachineFunction &MF) override {
10230 const X86TargetMachine *TM =
10231 static_cast<const X86TargetMachine *>(&MF.getTarget());
10232 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
10233
10234 // Only emit a global base reg in PIC mode.
10235 if (!TM->isPositionIndependent())
10236 return false;
10237
10239 Register GlobalBaseReg = X86FI->getGlobalBaseReg();
10240
10241 // If we didn't need a GlobalBaseReg, don't insert code.
10242 if (GlobalBaseReg == 0)
10243 return false;
10244
10245 // Insert the set of GlobalBaseReg into the first MBB of the function
10246 MachineBasicBlock &FirstMBB = MF.front();
10248 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
10250 const X86InstrInfo *TII = STI.getInstrInfo();
10251
10252 Register PC;
10253 if (STI.isPICStyleGOT())
10254 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
10255 else
10256 PC = GlobalBaseReg;
10257
10258 if (STI.is64Bit()) {
10259 if (TM->getCodeModel() == CodeModel::Large) {
10260 // In the large code model, we are aiming for this code, though the
10261 // register allocation may vary:
10262 // leaq .LN$pb(%rip), %rax
10263 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
10264 // addq %rcx, %rax
10265 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
10266 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10267 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
10268 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
10269 .addReg(X86::RIP)
10270 .addImm(0)
10271 .addReg(0)
10273 .addReg(0);
10274 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
10275 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
10276 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10278 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
10279 .addReg(PBReg, RegState::Kill)
10280 .addReg(GOTReg, RegState::Kill);
10281 } else {
10282 // In other code models, use a RIP-relative LEA to materialize the
10283 // GOT.
10284 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
10285 .addReg(X86::RIP)
10286 .addImm(0)
10287 .addReg(0)
10288 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
10289 .addReg(0);
10290 }
10291 } else {
10292 // Operand of MovePCtoStack is completely ignored by asm printer. It's
10293 // only used in JIT code emission as displacement to pc.
10294 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
10295
10296 // If we're using vanilla 'GOT' PIC style, we should use relative
10297 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10298 if (STI.isPICStyleGOT()) {
10299 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
10300 // %some_register
10301 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
10302 .addReg(PC)
10303 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10305 }
10306 }
10307
10308 return true;
10309 }
10310
10311 StringRef getPassName() const override {
10312 return "X86 PIC Global Base Reg Initialization";
10313 }
10314
10315 void getAnalysisUsage(AnalysisUsage &AU) const override {
10316 AU.setPreservesCFG();
10318 }
10319};
10320} // namespace
10321
10322char CGBR::ID = 0;
10324
10325namespace {
10326struct LDTLSCleanup : public MachineFunctionPass {
10327 static char ID;
10328 LDTLSCleanup() : MachineFunctionPass(ID) {}
10329
10330 bool runOnMachineFunction(MachineFunction &MF) override {
10331 if (skipFunction(MF.getFunction()))
10332 return false;
10333
10335 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
10336 // No point folding accesses if there isn't at least two.
10337 return false;
10338 }
10339
10341 &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
10342 return VisitNode(DT->getRootNode(), 0);
10343 }
10344
10345 // Visit the dominator subtree rooted at Node in pre-order.
10346 // If TLSBaseAddrReg is non-null, then use that to replace any
10347 // TLS_base_addr instructions. Otherwise, create the register
10348 // when the first such instruction is seen, and then use it
10349 // as we encounter more instructions.
10350 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
10351 MachineBasicBlock *BB = Node->getBlock();
10352 bool Changed = false;
10353
10354 // Traverse the current block.
10355 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
10356 ++I) {
10357 switch (I->getOpcode()) {
10358 case X86::TLS_base_addr32:
10359 case X86::TLS_base_addr64:
10360 if (TLSBaseAddrReg)
10361 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
10362 else
10363 I = SetRegister(*I, &TLSBaseAddrReg);
10364 Changed = true;
10365 break;
10366 default:
10367 break;
10368 }
10369 }
10370
10371 // Visit the children of this block in the dominator tree.
10372 for (auto &I : *Node) {
10373 Changed |= VisitNode(I, TLSBaseAddrReg);
10374 }
10375
10376 return Changed;
10377 }
10378
10379 // Replace the TLS_base_addr instruction I with a copy from
10380 // TLSBaseAddrReg, returning the new instruction.
10381 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
10382 unsigned TLSBaseAddrReg) {
10383 MachineFunction *MF = I.getParent()->getParent();
10384 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10385 const bool is64Bit = STI.is64Bit();
10386 const X86InstrInfo *TII = STI.getInstrInfo();
10387
10388 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10390 BuildMI(*I.getParent(), I, I.getDebugLoc(),
10391 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
10392 .addReg(TLSBaseAddrReg);
10393
10394 // Erase the TLS_base_addr instruction.
10395 I.eraseFromParent();
10396
10397 return Copy;
10398 }
10399
10400 // Create a virtual register in *TLSBaseAddrReg, and populate it by
10401 // inserting a copy instruction after I. Returns the new instruction.
10402 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
10403 MachineFunction *MF = I.getParent()->getParent();
10404 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
10405 const bool is64Bit = STI.is64Bit();
10406 const X86InstrInfo *TII = STI.getInstrInfo();
10407
10408 // Create a virtual register for the TLS base address.
10410 *TLSBaseAddrReg = RegInfo.createVirtualRegister(
10411 is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass);
10412
10413 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10414 MachineInstr *Next = I.getNextNode();
10415 MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(),
10416 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
10417 .addReg(is64Bit ? X86::RAX : X86::EAX);
10418
10419 return Copy;
10420 }
10421
10422 StringRef getPassName() const override {
10423 return "Local Dynamic TLS Access Clean-up";
10424 }
10425
10426 void getAnalysisUsage(AnalysisUsage &AU) const override {
10427 AU.setPreservesCFG();
10430 }
10431};
10432} // namespace
10433
10434char LDTLSCleanup::ID = 0;
10436 return new LDTLSCleanup();
10437}
10438
10439/// Constants defining how certain sequences should be outlined.
10440///
10441/// \p MachineOutlinerDefault implies that the function is called with a call
10442/// instruction, and a return must be emitted for the outlined function frame.
10443///
10444/// That is,
10445///
10446/// I1 OUTLINED_FUNCTION:
10447/// I2 --> call OUTLINED_FUNCTION I1
10448/// I3 I2
10449/// I3
10450/// ret
10451///
10452/// * Call construction overhead: 1 (call instruction)
10453/// * Frame construction overhead: 1 (return instruction)
10454///
10455/// \p MachineOutlinerTailCall implies that the function is being tail called.
10456/// A jump is emitted instead of a call, and the return is already present in
10457/// the outlined sequence. That is,
10458///
10459/// I1 OUTLINED_FUNCTION:
10460/// I2 --> jmp OUTLINED_FUNCTION I1
10461/// ret I2
10462/// ret
10463///
10464/// * Call construction overhead: 1 (jump instruction)
10465/// * Frame construction overhead: 0 (don't need to return)
10466///
10468
10469std::optional<outliner::OutlinedFunction>
10471 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
10472 unsigned SequenceSize = 0;
10473 for (auto &MI : RepeatedSequenceLocs[0]) {
10474 // FIXME: x86 doesn't implement getInstSizeInBytes, so
10475 // we can't tell the cost. Just assume each instruction
10476 // is one byte.
10477 if (MI.isDebugInstr() || MI.isKill())
10478 continue;
10479 SequenceSize += 1;
10480 }
10481
10482 // We check to see if CFI Instructions are present, and if they are
10483 // we find the number of CFI Instructions in the candidates.
10484 unsigned CFICount = 0;
10485 for (auto &I : RepeatedSequenceLocs[0]) {
10486 if (I.isCFIInstruction())
10487 CFICount++;
10488 }
10489
10490 // We compare the number of found CFI Instructions to the number of CFI
10491 // instructions in the parent function for each candidate. We must check this
10492 // since if we outline one of the CFI instructions in a function, we have to
10493 // outline them all for correctness. If we do not, the address offsets will be
10494 // incorrect between the two sections of the program.
10495 for (outliner::Candidate &C : RepeatedSequenceLocs) {
10496 std::vector<MCCFIInstruction> CFIInstructions =
10497 C.getMF()->getFrameInstructions();
10498
10499 if (CFICount > 0 && CFICount != CFIInstructions.size())
10500 return std::nullopt;
10501 }
10502
10503 // FIXME: Use real size in bytes for call and ret instructions.
10504 if (RepeatedSequenceLocs[0].back().isTerminator()) {
10505 for (outliner::Candidate &C : RepeatedSequenceLocs)
10506 C.setCallInfo(MachineOutlinerTailCall, 1);
10507
10508 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
10509 0, // Number of bytes to emit frame.
10510 MachineOutlinerTailCall // Type of frame.
10511 );
10512 }
10513
10514 if (CFICount > 0)
10515 return std::nullopt;
10516
10517 for (outliner::Candidate &C : RepeatedSequenceLocs)
10518 C.setCallInfo(MachineOutlinerDefault, 1);
10519
10520 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
10522}
10523
10525 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
10526 const Function &F = MF.getFunction();
10527
10528 // Does the function use a red zone? If it does, then we can't risk messing
10529 // with the stack.
10530 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
10531 // It could have a red zone. If it does, then we don't want to touch it.
10533 if (!X86FI || X86FI->getUsesRedZone())
10534 return false;
10535 }
10536
10537 // If we *don't* want to outline from things that could potentially be deduped
10538 // then return false.
10539 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
10540 return false;
10541
10542 // This function is viable for outlining, so return true.
10543 return true;
10544}
10545
10548 unsigned Flags) const {
10549 MachineInstr &MI = *MIT;
10550
10551 // Is this a terminator for a basic block?
10552 if (MI.isTerminator())
10553 // TargetInstrInfo::getOutliningType has already filtered out anything
10554 // that would break this, so we can allow it here.
10556
10557 // Don't outline anything that modifies or reads from the stack pointer.
10558 //
10559 // FIXME: There are instructions which are being manually built without
10560 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10561 // able to remove the extra checks once those are fixed up. For example,
10562 // sometimes we might get something like %rax = POP64r 1. This won't be
10563 // caught by modifiesRegister or readsRegister even though the instruction
10564 // really ought to be formed so that modifiesRegister/readsRegister would
10565 // catch it.
10566 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
10567 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
10568 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
10570
10571 // Outlined calls change the instruction pointer, so don't read from it.
10572 if (MI.readsRegister(X86::RIP, &RI) ||
10573 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
10574 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
10576
10577 // Don't outline CFI instructions.
10578 if (MI.isCFIInstruction())
10580
10582}
10583
10586 const outliner::OutlinedFunction &OF) const {
10587 // If we're a tail call, we already have a return, so don't do anything.
10589 return;
10590
10591 // We're a normal call, so our sequence doesn't have a return instruction.
10592 // Add it in.
10593 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64));
10594 MBB.insert(MBB.end(), retq);
10595}
10596
10600 // Is it a tail call?
10601 if (C.CallConstructionID == MachineOutlinerTailCall) {
10602 // Yes, just insert a JMP.
10603 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
10604 .addGlobalAddress(M.getNamedValue(MF.getName())));
10605 } else {
10606 // No, insert a call.
10607 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
10608 .addGlobalAddress(M.getNamedValue(MF.getName())));
10609 }
10610
10611 return It;
10612}
10613
10616 DebugLoc &DL,
10617 bool AllowSideEffects) const {
10618 const MachineFunction &MF = *MBB.getParent();
10619 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
10621
10622 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
10623 // FIXME: Should we ignore MMX registers?
10624 return;
10625
10626 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
10627 // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the
10628 // upper bits of a 64-bit register automagically.
10629 Reg = getX86SubSuperRegister(Reg, 32);
10630
10631 if (!AllowSideEffects)
10632 // XOR affects flags, so use a MOV instead.
10633 BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0);
10634 else
10635 BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg)
10636 .addReg(Reg, RegState::Undef)
10637 .addReg(Reg, RegState::Undef);
10638 } else if (X86::VR128RegClass.contains(Reg)) {
10639 // XMM#
10640 if (!ST.hasSSE1())
10641 return;
10642
10643 // PXOR is safe to use because it doesn't affect flags.
10644 BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg)
10645 .addReg(Reg, RegState::Undef)
10646 .addReg(Reg, RegState::Undef);
10647 } else if (X86::VR256RegClass.contains(Reg)) {
10648 // YMM#
10649 if (!ST.hasAVX())
10650 return;
10651
10652 // VPXOR is safe to use because it doesn't affect flags.
10653 BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg)
10654 .addReg(Reg, RegState::Undef)
10655 .addReg(Reg, RegState::Undef);
10656 } else if (X86::VR512RegClass.contains(Reg)) {
10657 // ZMM#
10658 if (!ST.hasAVX512())
10659 return;
10660
10661 // VPXORY is safe to use because it doesn't affect flags.
10662 BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg)
10663 .addReg(Reg, RegState::Undef)
10664 .addReg(Reg, RegState::Undef);
10665 } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) ||
10666 X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) ||
10667 X86::VK16RegClass.contains(Reg)) {
10668 if (!ST.hasVLX())
10669 return;
10670
10671 // KXOR is safe to use because it doesn't affect flags.
10672 unsigned Op = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
10673 BuildMI(MBB, Iter, DL, get(Op), Reg)
10674 .addReg(Reg, RegState::Undef)
10675 .addReg(Reg, RegState::Undef);
10676 }
10677}
10678
10680 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
10681 bool DoRegPressureReduce) const {
10682 unsigned Opc = Root.getOpcode();
10683 switch (Opc) {
10684 case X86::VPDPWSSDrr:
10685 case X86::VPDPWSSDrm:
10686 case X86::VPDPWSSDYrr:
10687 case X86::VPDPWSSDYrm: {
10688 if (!Subtarget.hasFastDPWSSD()) {
10690 return true;
10691 }
10692 break;
10693 }
10694 case X86::VPDPWSSDZ128r:
10695 case X86::VPDPWSSDZ128m:
10696 case X86::VPDPWSSDZ256r:
10697 case X86::VPDPWSSDZ256m:
10698 case X86::VPDPWSSDZr:
10699 case X86::VPDPWSSDZm: {
10700 if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) {
10702 return true;
10703 }
10704 break;
10705 }
10706 }
10708 Patterns, DoRegPressureReduce);
10709}
10710
10711static void
10715 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
10716 MachineFunction *MF = Root.getMF();
10718
10719 unsigned Opc = Root.getOpcode();
10720 unsigned AddOpc = 0;
10721 unsigned MaddOpc = 0;
10722 switch (Opc) {
10723 default:
10724 assert(false && "It should not reach here");
10725 break;
10726 // vpdpwssd xmm2,xmm3,xmm1
10727 // -->
10728 // vpmaddwd xmm3,xmm3,xmm1
10729 // vpaddd xmm2,xmm2,xmm3
10730 case X86::VPDPWSSDrr:
10731 MaddOpc = X86::VPMADDWDrr;
10732 AddOpc = X86::VPADDDrr;
10733 break;
10734 case X86::VPDPWSSDrm:
10735 MaddOpc = X86::VPMADDWDrm;
10736 AddOpc = X86::VPADDDrr;
10737 break;
10738 case X86::VPDPWSSDZ128r:
10739 MaddOpc = X86::VPMADDWDZ128rr;
10740 AddOpc = X86::VPADDDZ128rr;
10741 break;
10742 case X86::VPDPWSSDZ128m:
10743 MaddOpc = X86::VPMADDWDZ128rm;
10744 AddOpc = X86::VPADDDZ128rr;
10745 break;
10746 // vpdpwssd ymm2,ymm3,ymm1
10747 // -->
10748 // vpmaddwd ymm3,ymm3,ymm1
10749 // vpaddd ymm2,ymm2,ymm3
10750 case X86::VPDPWSSDYrr:
10751 MaddOpc = X86::VPMADDWDYrr;
10752 AddOpc = X86::VPADDDYrr;
10753 break;
10754 case X86::VPDPWSSDYrm:
10755 MaddOpc = X86::VPMADDWDYrm;
10756 AddOpc = X86::VPADDDYrr;
10757 break;
10758 case X86::VPDPWSSDZ256r:
10759 MaddOpc = X86::VPMADDWDZ256rr;
10760 AddOpc = X86::VPADDDZ256rr;
10761 break;
10762 case X86::VPDPWSSDZ256m:
10763 MaddOpc = X86::VPMADDWDZ256rm;
10764 AddOpc = X86::VPADDDZ256rr;
10765 break;
10766 // vpdpwssd zmm2,zmm3,zmm1
10767 // -->
10768 // vpmaddwd zmm3,zmm3,zmm1
10769 // vpaddd zmm2,zmm2,zmm3
10770 case X86::VPDPWSSDZr:
10771 MaddOpc = X86::VPMADDWDZrr;
10772 AddOpc = X86::VPADDDZrr;
10773 break;
10774 case X86::VPDPWSSDZm:
10775 MaddOpc = X86::VPMADDWDZrm;
10776 AddOpc = X86::VPADDDZrr;
10777 break;
10778 }
10779 // Create vpmaddwd.
10780 const TargetRegisterClass *RC =
10781 RegInfo.getRegClass(Root.getOperand(0).getReg());
10782 Register NewReg = RegInfo.createVirtualRegister(RC);
10783 MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root);
10784 Madd->setDesc(TII.get(MaddOpc));
10785 Madd->untieRegOperand(1);
10786 Madd->removeOperand(1);
10787 Madd->getOperand(0).setReg(NewReg);
10788 InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0));
10789 // Create vpaddd.
10790 Register DstReg = Root.getOperand(0).getReg();
10791 bool IsKill = Root.getOperand(1).isKill();
10792 MachineInstr *Add =
10793 BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg)
10794 .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill))
10795 .addReg(Madd->getOperand(0).getReg(), getKillRegState(true));
10796 InsInstrs.push_back(Madd);
10797 InsInstrs.push_back(Add);
10798 DelInstrs.push_back(&Root);
10799}
10800
10802 MachineInstr &Root, unsigned Pattern,
10805 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
10806 switch (Pattern) {
10807 default:
10808 // Reassociate instructions.
10810 DelInstrs, InstrIdxForVirtReg);
10811 return;
10813 genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs,
10814 InstrIdxForVirtReg);
10815 return;
10816 }
10817}
10818
10819// See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand().
10821 int FI) const {
10823 M.BaseType = X86AddressMode::FrameIndexBase;
10824 M.Base.FrameIndex = FI;
10825 M.getFullAddress(Ops);
10826}
10827
10828#define GET_INSTRINFO_HELPERS
10829#include "X86GenInstrInfo.inc"
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
MachineOutlinerClass
Constants defining how certain sequences should be outlined.
@ MachineOutlinerTailCall
Emit a save, restore, call, and return.
@ MachineOutlinerDefault
unsigned RegSize
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
Definition: InlineInfo.cpp:109
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc)
Expand a single-def pseudo instruction to a two-addr instruction with two undef reads of the register...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
unsigned const TargetRegisterInfo * TRI
Module.h This file contains the declarations for the Module class.
const char LLVMTargetMachineRef TM
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool IsDead
This file contains some templates that are useful if you are working with the STL at all.
Provides some synthesis utilities to produce sequences of values.
static SPCC::CondCodes GetOppositeBranchCondition(SPCC::CondCodes CC)
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
static bool is64Bit(const char *name)
#define GET_EGPR_IF_ENABLED(OPC)
#define FROM_TO(FROM, TO, IDX1, IDX2)
static bool isLEA(unsigned Opcode)
static void addOperands(MachineInstrBuilder &MIB, ArrayRef< MachineOperand > MOs, int PtrOffset=0)
static std::optional< ParamLoadedValue > describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, const TargetRegisterInfo *TRI)
If DescribedReg overlaps with the MOVrr instruction's destination register then, if possible,...
static cl::opt< unsigned > PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden)
static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI)
static bool isConvertibleLEA(MachineInstr *MI)
static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, const X86Subtarget &Subtarget)
static bool isAMXOpcode(unsigned Opc)
static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, Register Reg)
static void updateOperandRegConstraints(MachineFunction &MF, MachineInstr &NewMI, const TargetInstrInfo &TII)
static bool findRedundantFlagInstr(MachineInstr &CmpInstr, MachineInstr &CmpValDefInstr, const MachineRegisterInfo *MRI, MachineInstr **AndInstr, const TargetRegisterInfo *TRI, bool &NoSignFlag, bool &ClearsOverflowFlag)
static int getJumpTableIndexFromAddr(const MachineInstr &MI)
static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, unsigned NewWidth, unsigned *pNewMask=nullptr)
static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne)
static unsigned getNewOpcFromTable(ArrayRef< X86TableEntry > Table, unsigned Opc)
static unsigned getStoreRegOpcode(Register SrcReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI)
#define FOLD_BROADCAST(SIZE)
static cl::opt< unsigned > UndefRegClearance("undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(128), cl::Hidden)
#define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64)
static bool isTruncatedShiftCountForLEA(unsigned ShAmt)
Check whether the given shift count is appropriate can be represented by a LEA instruction.
static cl::opt< bool > ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden)
static SmallVector< MachineMemOperand *, 2 > extractLoadMMOs(ArrayRef< MachineMemOperand * > MMOs, MachineFunction &MF)
static MachineInstr * fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII)
static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx)
static bool canConvert2Copy(unsigned Opc)
static cl::opt< bool > NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions"), cl::Hidden)
static bool expandNOVLXStore(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &StoreDesc, const MCInstrDesc &ExtractDesc, unsigned SubIdx)
static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes)
static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, Register Reg)
Expand a single-def pseudo instruction to a two-addr instruction with two k0 reads.
#define VPERM_CASES_BROADCAST(Suffix)
static X86::CondCode isUseDefConvertible(const MachineInstr &MI)
Check whether the use can be converted to remove a comparison against zero.
static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc)
static unsigned getLoadRegOpcode(Register DestReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI)
static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII)
static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, bool ForLoadFold=false)
static MachineInstr * makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI)
#define GET_ND_IF_ENABLED(OPC)
static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, bool ForLoadFold=false)
Return true for all instructions that only update the first 32 or 64-bits of the destination register...
static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, const X86Subtarget &Subtarget)
static const uint16_t * lookupAVX512(unsigned opcode, unsigned domain, ArrayRef< uint16_t[4]> Table)
static unsigned getLoadStoreRegOpcode(Register Reg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI, bool Load)
#define VPERM_CASES(Suffix)
#define FROM_TO_SIZE(A, B, S)
static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2)
static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes)
static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, bool &ClearsOverflowFlag)
Check whether the definition can be converted to remove a comparison against zero.
static bool isHReg(unsigned Reg)
Test if the given register is a physical h register.
static MachineInstr * fuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef< MachineOperand > MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset=0)
static X86::CondCode getSwappedCondition(X86::CondCode CC)
Assuming the flags are set by MI(a,b), return the condition code if we modify the instructions such t...
static unsigned getCommutedVPERMV3Opcode(unsigned Opcode)
static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII)
static MachineBasicBlock * getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB)
static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF)
Check if LoadMI is a partial register load that we can't fold into MI because the latter uses content...
static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI)
static cl::opt< bool > PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden)
static bool expandNOVLXLoad(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &LoadDesc, const MCInstrDesc &BroadcastDesc, unsigned SubIdx)
#define CASE_ND(OP)
static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, unsigned SrcOpIdx2)
This determines which of three possible cases of a three source commute the source indexes correspond...
static bool isX87Reg(unsigned Reg)
Return true if the Reg is X87 register.
static void genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg)
static unsigned getTruncatedShiftCount(const MachineInstr &MI, unsigned ShiftAmtOperandIdx)
Check whether the shift count for a machine operand is non-zero.
static SmallVector< MachineMemOperand *, 2 > extractStoreMMOs(ArrayRef< MachineMemOperand * > MMOs, MachineFunction &MF)
static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, const TargetRegisterClass *RC, const X86Subtarget &STI)
static unsigned convertALUrr2ALUri(unsigned Opc)
Convert an ALUrr opcode to corresponding ALUri opcode.
static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI)
Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
static bool isCommutableVPERMV3Instruction(unsigned Opcode)
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:185
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:188
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:198
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:154
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:757
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:760
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:786
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:787
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:763
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:772
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:761
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:762
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:781
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:780
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:784
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:771
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:765
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:768
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:782
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:769
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:764
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:766
@ ICMP_EQ
equal
Definition: InstrTypes.h:778
@ ICMP_NE
not equal
Definition: InstrTypes.h:779
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:785
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:773
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:783
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:770
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:767
This is an important base class in LLVM.
Definition: Constant.h:41
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:417
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:370
DWARF expression.
static void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static DIExpression * appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed)
Append a zero- or sign-extension to Expr.
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Base class for the actual dominator tree node.
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:692
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:698
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:695
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:358
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveInterval & getInterval(Register Reg)
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
Definition: LivePhysRegs.h:52
void stepForward(const MachineInstr &MI, SmallVectorImpl< std::pair< MCPhysReg, const MachineOperand * > > &Clobbers)
Simulates liveness when stepping forward over an instruction(bundle).
void addLiveOuts(const MachineBasicBlock &MBB)
Adds all live-out registers of basic block MBB.
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
Definition: LiveInterval.h:408
void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
VarInfo & getVarInfo(Register Reg)
getVarInfo - Return the VarInfo structure for the specified VIRTUAL register.
bool usesWindowsCFI() const
Definition: MCAsmInfo.h:799
static MCCFIInstruction createAdjustCfaOffset(MCSymbol *L, int Adjustment, SMLoc Loc={})
.cfi_adjust_cfa_offset Same as .cfi_def_cfa_offset, but Offset is a relative value that is added/subt...
Definition: MCDwarf.h:564
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:184
void setOpcode(unsigned Op)
Definition: MCInst.h:197
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
unsigned getOpcode() const
Return the opcode number for this descriptor.
Definition: MCInstrDesc.h:230
unsigned char NumDefs
Definition: MCInstrDesc.h:207
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition: MCInstrDesc.h:85
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1541
Set of metadata that should be preserved when using BuildMI().
SimpleValueType SimpleTy
unsigned pred_size() const
MachineInstrBundleIterator< const MachineInstr > const_iterator
reverse_iterator rend()
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
MachineInstr * remove(MachineInstr *I)
Remove the unbundled instruction from the instruction list without deleting it.
LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, MCRegister Reg, const_iterator Before, unsigned Neighborhood=10) const
Return whether (physical) register Reg has been defined and not killed as of just before Before.
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< succ_iterator > successors()
reverse_iterator rbegin()
@ LQR_Dead
Register is known to be fully dead.
This class is a data container for one entry in a MachineConstantPool.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
union llvm::MachineConstantPoolEntry::@198 Val
The constant itself.
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineDomTreeNode * getRootNode() const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
bool needsFrameMoves() const
True if this function needs frame moves for debug or exceptions.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineConstantPool * getConstantPool()
getConstantPool - Return the constant pool object for the current function.
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
const MachineBasicBlock & front() const
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addDisp(const MachineOperand &Disp, int64_t off, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
Definition: MachineInstr.h:69
mop_iterator operands_begin()
Definition: MachineInstr.h:679
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:569
bool isSafeToMove(AAResults *AA, bool &SawStore) const
Return true if it is safe to move this instruction.
bool isImplicitDef() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:346
void dropDebugNumber()
Drop any variable location debugging information associated with this instruction.
Definition: MachineInstr.h:555
void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol)
Set a symbol that will be emitted just prior to the instruction itself.
void addImplicitDefUseOperands(MachineFunction &MF)
Add all implicit def and use operands to this instruction.
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
Definition: MachineInstr.h:396
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:572
void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr modifies (fully define or partially define) the specified register.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:566
void untieRegOperand(unsigned OpIdx)
Break any tie involving OpIdx.
void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
void eraseFromBundle()
Unlink 'this' from its basic block and delete it.
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
Definition: MachineInstr.h:815
void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
Replace all occurrences of FromReg with ToReg:SubIdx, properly composing subreg indices where necessa...
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:800
bool isIdenticalTo(const MachineInstr &Other, MICheckType Check=CheckDefs) const
Return true if this instruction is identical to Other.
const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
void setFlag(MIFlag Flag)
Set a MI flag.
Definition: MachineInstr.h:403
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:498
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
unsigned getNumDefs() const
Returns the total number of definitions.
Definition: MachineInstr.h:638
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setImplicit(bool Val=true)
void setImm(int64_t immVal)
int64_t getImm() const
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
void setIsDead(bool Val=true)
void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
void ChangeToRegister(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isDebug=false)
ChangeToRegister - Replace this operand with a new register operand of the specified value.
static MachineOperand CreateImm(int64_t Val)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned TargetFlags=0)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
int64_t getOffset() const
Return the offset from the symbol in this operand.
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
const TargetRegisterInfo * getTargetRegisterInfo() const
const TargetRegisterClass * constrainRegClass(Register Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
constrainRegClass - Constrain the register class of the specified virtual register to be a common sub...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:116
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:95
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:227
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:481
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:64
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
Definition: SlotIndexes.h:223
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
Definition: SlotIndexes.h:236
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Information about stack frame layout on the target.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
bool isPositionIndependent() const
CodeModel::Model getCodeModel() const
Returns the code model.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const
Return the size in bits of a register from class RC.
Provide an instruction scheduling machine model to CodeGen passes.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetFrameLowering * getFrameLowering() const
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static Type * getHalfTy(LLVMContext &C)
static Type * getDoubleTy(LLVMContext &C)
static Type * getFP128Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
LLVM Value Representation.
Definition: Value.h:74
bool has128ByteRedZone(const MachineFunction &MF) const
Return true if the function has a redzone (accessible bytes past the frame of the top of stack functi...
bool hasFP(const MachineFunction &MF) const override
hasFP - Return true if the specified function should have a dedicated frame pointer register.
void BuildCFI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const MCCFIInstruction &CFIInst, MachineInstr::MIFlag Flag=MachineInstr::NoFlags) const
Wraps up getting a CFI index and building a MachineInstr for it.
void getFrameIndexOperands(SmallVectorImpl< MachineOperand > &Ops, int FI) const override
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const override
Check if there exists an earlier instruction that operates on the same source operands and sets eflag...
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const override
bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const override
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Overrides the isSchedulingBoundary from Codegen/TargetInstrInfo.cpp to make it capable of identifying...
MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const override
const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const override
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
void replaceBranchWithTailCall(MachineBasicBlock &MBB, SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const override
void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const override
unsigned getGlobalBaseReg(MachineFunction *MF) const
getGlobalBaseReg - Return a virtual register initialized with the the global base register value.
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
bool canInsertSelect(const MachineBasicBlock &, ArrayRef< MachineOperand > Cond, Register, Register, Register, int &, int &, int &) const override
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DstReg, ArrayRef< MachineOperand > Cond, Register TrueReg, Register FalseReg) const override
unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=nullptr) const override
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override
Returns true iff the routine could find two commutable operands in the given machine instruction.
bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const override
static bool isDataInvariantLoad(MachineInstr &MI)
Returns true if the instruction has no behavior (specified or otherwise) that is based on the value l...
MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned CommuteOpIdx1, unsigned CommuteOpIdx2) const override
bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override
const X86RegisterInfo & getRegisterInfo() const
getRegisterInfo - TargetInstrInfo is a superset of MRegister info.
Definition: X86InstrInfo.h:211
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override
bool hasCommutePreference(MachineInstr &MI, bool &Commute) const override
Returns true if we have preference on the operands order in MI, the commute decision is returned in C...
bool hasLiveCondCodeDef(MachineInstr &MI) const
True if MI has a condition code def, e.g.
std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const override
bool canMakeTailCallConditional(SmallVectorImpl< MachineOperand > &Cond, const MachineInstr &TailCall) const override
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const override
MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override
convertToThreeAddress - This method must be implemented by targets that set the M_CONVERTIBLE_TO_3_AD...
X86InstrInfo(X86Subtarget &STI)
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
bool expandPostRAPseudo(MachineInstr &MI) const override
bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override
MCInst getNop() const override
Return the noop instruction to use for a noop.
bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const override
This is a used by the pre-regalloc scheduler to determine (in conjunction with areLoadsFromSameBasePt...
bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const override
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
Fold a load or store of the specified stack slot into the specified machine instruction for the speci...
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const override
void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg) const override
When getMachineCombinerPatterns() finds potential patterns, this function generates the instructions ...
bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const override
std::optional< ExtAddrMode > getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const override
Register isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
isStoreToStackSlotPostFE - Check for post-frame ptr elimination stack locations as well.
bool isUnconditionalTailCall(const MachineInstr &MI) const override
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
Register isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const override
isLoadFromStackSlotPostFE - Check for post-frame ptr elimination stack locations as well.
void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
bool setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const
int getSPAdjust(const MachineInstr &MI) const override
getSPAdjust - This returns the stack pointer adjustment made by this instruction.
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
outliner::InstrType getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const override
int getJumpTableIndex(const MachineInstr &MI) const override
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const override
This is an architecture-specific helper function of reassociateOps.
std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr &MI) const override
bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const override
isCoalescableExtInstr - Return true if the instruction is a "coalescable" extension instruction.
void loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Opc, Register Reg, int FrameIdx, bool isKill=false) const
bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned LEAOpcode, bool AllowSP, Register &NewSrc, bool &isKill, MachineOperand &ImplicitOp, LiveVariables *LV, LiveIntervals *LIS) const
Given an operand within a MachineInstr, insert preceding code to put it into the right format for a p...
bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const override
bool analyzeBranchPredicate(MachineBasicBlock &MBB, TargetInstrInfo::MachineBranchPredicate &MBP, bool AllowModify=false) const override
static bool isDataInvariant(MachineInstr &MI)
Returns true if the instruction has no behavior (specified or otherwise) that is based on the value o...
unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Inform the BreakFalseDeps pass how many idle instructions we would like before certain undef register...
void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
void buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects=true) const override
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
int64_t getFrameAdjustment(const MachineInstr &I) const
Returns the stack pointer adjustment that happens inside the frame setup..destroy sequence (e....
Definition: X86InstrInfo.h:215
bool hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override
bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override
uint16_t getExecutionDomainCustom(const MachineInstr &MI) const
bool isHighLatencyDef(int opc) const override
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override
bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const override
foldImmediate - 'Reg' is known to be defined by a move immediate instruction, try to fold the immedia...
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override
unsigned getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const
Returns an adjusted FMA opcode that must be used in FMA instruction that performs the same computatio...
std::optional< outliner::OutlinedFunction > getOutliningCandidateInfo(std::vector< outliner::Candidate > &RepeatedSequenceLocs) const override
bool preservesZeroValueInReg(const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const override
unsigned getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const override
Inform the BreakFalseDeps pass how many idle instructions we would like before a partial register upd...
MachineInstr * optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, Register &FoldAsLoadDefReg, MachineInstr *&DefMI) const override
Try to remove the load by folding it to a register operand at the use.
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
unsigned getNumLocalDynamicTLSAccesses() const
bool canRealignStack(const MachineFunction &MF) const override
bool isPICStyleGOT() const
Definition: X86Subtarget.h:340
bool canUseCMOV() const
Definition: X86Subtarget.h:199
bool isTargetWin64() const
Definition: X86Subtarget.h:336
const X86InstrInfo * getInstrInfo() const override
Definition: X86Subtarget.h:129
bool hasAVX512() const
Definition: X86Subtarget.h:208
bool hasSSE41() const
Definition: X86Subtarget.h:204
bool hasSSE2() const
Definition: X86Subtarget.h:201
const X86RegisterInfo * getRegisterInfo() const override
Definition: X86Subtarget.h:139
bool hasAVX() const
Definition: X86Subtarget.h:206
const X86FrameLowering * getFrameLowering() const override
Definition: X86Subtarget.h:131
bool hasAVX2() const
Definition: X86Subtarget.h:207
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:353
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1554
@ OPERAND_MEMORY
Definition: MCInstrDesc.h:62
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ X86
Windows x64, Windows Itanium (IA-64)
Reg
All possible values of the reg field in the ModR/M byte.
bool isKMergeMasked(uint64_t TSFlags)
Definition: X86BaseInfo.h:1332
@ MO_GOT_ABSOLUTE_ADDRESS
MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a relocation of: SYMBOL_LABEL + [.
Definition: X86BaseInfo.h:383
@ MO_INDNTPOFF
MO_INDNTPOFF - On a symbol operand this indicates that the immediate is the absolute address of the G...
Definition: X86BaseInfo.h:448
@ MO_GOTNTPOFF
MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry w...
Definition: X86BaseInfo.h:472
@ MO_GOTTPOFF
MO_GOTTPOFF - On a symbol operand this indicates that the immediate is the offset of the GOT entry wi...
Definition: X86BaseInfo.h:441
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
Definition: X86BaseInfo.h:387
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
Definition: X86BaseInfo.h:403
bool canUseApxExtendedReg(const MCInstrDesc &Desc)
Definition: X86BaseInfo.h:1273
bool isPseudo(uint64_t TSFlags)
Definition: X86BaseInfo.h:900
bool isKMasked(uint64_t TSFlags)
Definition: X86BaseInfo.h:1327
int getMemoryOperandNo(uint64_t TSFlags)
Definition: X86BaseInfo.h:1024
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
Definition: X86BaseInfo.h:981
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
Definition: X86BaseInfo.h:841
@ SSEDomainShift
Execution domain for SSE instructions.
Definition: X86BaseInfo.h:827
CondCode getCondFromBranch(const MachineInstr &MI)
CondCode getCondFromCFCMov(const MachineInstr &MI)
@ LAST_VALID_COND
Definition: X86BaseInfo.h:94
CondCode getCondFromMI(const MachineInstr &MI)
Return the condition code of the instruction.
int getFirstAddrOperandIdx(const MachineInstr &MI)
Return the index of the instruction's first address operand, if it has a memory reference,...
@ AddrScaleAmt
Definition: X86BaseInfo.h:30
@ AddrSegmentReg
Definition: X86BaseInfo.h:34
@ AddrIndexReg
Definition: X86BaseInfo.h:31
@ AddrNumOperands
Definition: X86BaseInfo.h:36
unsigned getSwappedVCMPImm(unsigned Imm)
Get the VCMP immediate if the opcodes are swapped.
CondCode GetOppositeBranchCondition(CondCode CC)
GetOppositeBranchCondition - Return the inverse of the specified cond, e.g.
unsigned getSwappedVPCOMImm(unsigned Imm)
Get the VPCOM immediate if the opcodes are swapped.
bool isX87Instruction(MachineInstr &MI)
Check if the instruction is X87 instruction.
unsigned getNonNDVariant(unsigned Opc)
unsigned getVPCMPImmForCond(ISD::CondCode CC)
Get the VPCMP immediate for the given condition.
std::pair< CondCode, bool > getX86ConditionCode(CmpInst::Predicate Predicate)
Return a pair of condition code for the given predicate and whether the instruction operands should b...
CondCode getCondFromSETCC(const MachineInstr &MI)
unsigned getSwappedVPCMPImm(unsigned Imm)
Get the VPCMP immediate if the opcodes are swapped.
CondCode getCondFromCCMP(const MachineInstr &MI)
int getCCMPCondFlagsFromCondCode(CondCode CC)
int getCondSrcNoFromDesc(const MCInstrDesc &MCID)
Return the source operand # for condition code by MCID.
const Constant * getConstantFromPool(const MachineInstr &MI, unsigned OpNo)
Find any constant pool entry associated with a specific instruction operand.
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand=false, bool HasNDD=false)
Return a cmov opcode for the given register size in bytes, and operand type.
unsigned getNFVariant(unsigned Opc)
unsigned getVectorRegisterWidth(const MCOperandInfo &Info)
Get the width of the vector register operand.
CondCode getCondFromCMov(const MachineInstr &MI)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:385
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
static bool isMem(const MachineInstr &MI, unsigned Op)
Definition: X86InstrInfo.h:170
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition: Alignment.h:145
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
FunctionPass * createX86GlobalBaseRegPass()
This pass initializes a global base register for PIC on x86-32.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2067
unsigned getDeadRegState(bool B)
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
MaybeAlign getAlign(const Function &F, unsigned Index)
FunctionPass * createCleanupLocalDynamicTLSPass()
This pass combines multiple accesses to local-dynamic TLS variables so that the TLS base address for ...
const X86FoldTableEntry * lookupBroadcastFoldTable(unsigned RegOp, unsigned OpNum)
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
const X86InstrFMA3Group * getFMA3Group(unsigned Opcode, uint64_t TSFlags)
Returns a reference to a group of FMA3 opcodes to where the given Opcode is included.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
static const MachineInstrBuilder & addRegOffset(const MachineInstrBuilder &MIB, unsigned Reg, bool isKill, int Offset)
addRegOffset - This function is used to add a memory reference of the form [Reg + Offset],...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1736
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
const X86FoldTableEntry * lookupTwoAddrFoldTable(unsigned RegOp)
static const MachineInstrBuilder & addRegReg(const MachineInstrBuilder &MIB, unsigned Reg1, bool isKill1, unsigned Reg2, bool isKill2)
addRegReg - This function is used to add a memory reference of the form: [Reg + Reg].
static const MachineInstrBuilder & addOffset(const MachineInstrBuilder &MIB, int Offset)
unsigned getUndefRegState(bool B)
unsigned getRegState(const MachineOperand &RegOp)
Get all register state flags from machine operand RegOp.
unsigned getDefRegState(bool B)
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1954
@ Add
Sum of integers.
unsigned getKillRegState(bool B)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
@ DPWSSD
Definition: X86InstrInfo.h:32
const X86FoldTableEntry * lookupUnfoldTable(unsigned MemOp)
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
bool matchBroadcastSize(const X86FoldTableEntry &Entry, unsigned BroadcastBits)
const X86FoldTableEntry * lookupFoldTable(unsigned RegOp, unsigned OpNum)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Description of the encoding of one expression Op.
Extended Value Type.
Definition: ValueTypes.h:34
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:306
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162
std::vector< MachineInstr * > Kills
Kills - List of MachineInstruction's which are the last use of this virtual register (kill it) in the...
Definition: LiveVariables.h:90
static MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
X86AddressMode - This struct holds a generalized full x86 address mode.
This class is used to group {132, 213, 231} forms of FMA opcodes together.
unsigned get213Opcode() const
Returns the 213 form of FMA opcode.
unsigned get231Opcode() const
Returns the 231 form of FMA opcode.
bool isIntrinsic() const
Returns true iff the group of FMA opcodes holds intrinsic opcodes.
unsigned get132Opcode() const
Returns the 132 form of FMA opcode.
An individual sequence of instructions to be replaced with a call to an outlined function.
The information necessary to create an outlined function for some class of candidate.
unsigned FrameConstructionID
Target-defined identifier for constructing a frame for this function.