LLVM 22.0.0git
X86RegisterInfo.cpp
Go to the documentation of this file.
1//===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the X86 implementation of the TargetRegisterInfo class.
10// This file is responsible for the frame pointer elimination optimization
11// on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86RegisterInfo.h"
16#include "X86FrameLowering.h"
18#include "X86Subtarget.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallSet.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Type.h"
32#include "llvm/MC/MCContext.h"
37
38using namespace llvm;
39
40#define GET_REGINFO_TARGET_DESC
41#include "X86GenRegisterInfo.inc"
42
43static cl::opt<bool>
44EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
45 cl::desc("Enable use of a base pointer for complex stack frames"));
46
47static cl::opt<bool>
48 DisableRegAllocNDDHints("x86-disable-regalloc-hints-for-ndd", cl::Hidden,
49 cl::init(false),
50 cl::desc("Disable two address hints for register "
51 "allocation"));
52
54
56 : X86GenRegisterInfo((TT.isX86_64() ? X86::RIP : X86::EIP),
57 X86_MC::getDwarfRegFlavour(TT, false),
58 X86_MC::getDwarfRegFlavour(TT, true),
59 (TT.isX86_64() ? X86::RIP : X86::EIP)) {
61
62 // Cache some information.
63 Is64Bit = TT.isX86_64();
64 IsTarget64BitLP64 = Is64Bit && !TT.isX32();
65 IsWin64 = Is64Bit && TT.isOSWindows();
66 IsUEFI64 = Is64Bit && TT.isUEFI();
67
68 // Use a callee-saved register as the base pointer. These registers must
69 // not conflict with any ABI requirements. For example, in 32-bit mode PIC
70 // requires GOT in the EBX register before function calls via PLT GOT pointer.
71 if (Is64Bit) {
72 SlotSize = 8;
73 // This matches the simplified 32-bit pointer code in the data layout
74 // computation.
75 // FIXME: Should use the data layout?
76 bool Use64BitReg = !TT.isX32();
77 StackPtr = Use64BitReg ? X86::RSP : X86::ESP;
78 FramePtr = Use64BitReg ? X86::RBP : X86::EBP;
79 BasePtr = Use64BitReg ? X86::RBX : X86::EBX;
80 } else {
81 SlotSize = 4;
82 StackPtr = X86::ESP;
83 FramePtr = X86::EBP;
84 BasePtr = X86::ESI;
85 }
86}
87
90 unsigned Idx) const {
91 // The sub_8bit sub-register index is more constrained in 32-bit mode.
92 // It behaves just like the sub_8bit_hi index.
93 if (!Is64Bit && Idx == X86::sub_8bit)
94 Idx = X86::sub_8bit_hi;
95
96 // Forward to TableGen's default version.
97 return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
98}
99
102 const TargetRegisterClass *B,
103 unsigned SubIdx) const {
104 // The sub_8bit sub-register index is more constrained in 32-bit mode.
105 if (!Is64Bit && SubIdx == X86::sub_8bit) {
106 A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
107 if (!A)
108 return nullptr;
109 }
110 return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
111}
112
115 const MachineFunction &MF) const {
116 // Don't allow super-classes of GR8_NOREX. This class is only used after
117 // extracting sub_8bit_hi sub-registers. The H sub-registers cannot be copied
118 // to the full GR8 register class in 64-bit mode, so we cannot allow the
119 // reigster class inflation.
120 //
121 // The GR8_NOREX class is always used in a way that won't be constrained to a
122 // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
123 // full GR8 class.
124 if (RC == &X86::GR8_NOREXRegClass)
125 return RC;
126
127 // Keep using non-rex2 register class when APX feature (EGPR/NDD/NF) is not
128 // enabled for relocation.
130 return RC;
131
132 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
133
134 const TargetRegisterClass *Super = RC;
135 auto I = RC->superclasses().begin();
136 auto E = RC->superclasses().end();
137 do {
138 switch (Super->getID()) {
139 case X86::FR32RegClassID:
140 case X86::FR64RegClassID:
141 // If AVX-512 isn't supported we should only inflate to these classes.
142 if (!Subtarget.hasAVX512() &&
143 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
144 return Super;
145 break;
146 case X86::VR128RegClassID:
147 case X86::VR256RegClassID:
148 // If VLX isn't supported we should only inflate to these classes.
149 if (!Subtarget.hasVLX() &&
150 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
151 return Super;
152 break;
153 case X86::VR128XRegClassID:
154 case X86::VR256XRegClassID:
155 // If VLX isn't support we shouldn't inflate to these classes.
156 if (Subtarget.hasVLX() &&
157 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
158 return Super;
159 break;
160 case X86::FR32XRegClassID:
161 case X86::FR64XRegClassID:
162 // If AVX-512 isn't support we shouldn't inflate to these classes.
163 if (Subtarget.hasAVX512() &&
164 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
165 return Super;
166 break;
167 case X86::GR8RegClassID:
168 case X86::GR16RegClassID:
169 case X86::GR32RegClassID:
170 case X86::GR64RegClassID:
171 case X86::GR8_NOREX2RegClassID:
172 case X86::GR16_NOREX2RegClassID:
173 case X86::GR32_NOREX2RegClassID:
174 case X86::GR64_NOREX2RegClassID:
175 case X86::RFP32RegClassID:
176 case X86::RFP64RegClassID:
177 case X86::RFP80RegClassID:
178 case X86::VR512_0_15RegClassID:
179 case X86::VR512RegClassID:
180 // Don't return a super-class that would shrink the spill size.
181 // That can happen with the vector and float classes.
182 if (getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
183 return Super;
184 }
185 if (I != E) {
186 Super = getRegClass(*I);
187 ++I;
188 } else {
189 Super = nullptr;
190 }
191 } while (Super);
192 return RC;
193}
194
197 assert(Kind == 0 && "this should only be used for default cases");
198 if (IsTarget64BitLP64)
199 return &X86::GR64RegClass;
200 // If the target is 64bit but we have been told to use 32bit addresses,
201 // we can still use 64-bit register as long as we know the high bits
202 // are zeros.
203 // Reflect that in the returned register class.
204 return Is64Bit ? &X86::LOW32_ADDR_ACCESSRegClass : &X86::GR32RegClass;
205}
206
209 if (RC == &X86::CCRRegClass) {
210 if (Is64Bit)
211 return &X86::GR64RegClass;
212 else
213 return &X86::GR32RegClass;
214 }
215 return RC;
216}
217
218unsigned
220 MachineFunction &MF) const {
221 const X86FrameLowering *TFI = getFrameLowering(MF);
222
223 unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
224 switch (RC->getID()) {
225 default:
226 return 0;
227 case X86::GR32RegClassID:
228 return 4 - FPDiff;
229 case X86::GR64RegClassID:
230 return 12 - FPDiff;
231 case X86::VR128RegClassID:
232 return Is64Bit ? 10 : 4;
233 case X86::VR64RegClassID:
234 return 4;
235 }
236}
237
238const MCPhysReg *
240 assert(MF && "MachineFunction required");
241
242 const X86Subtarget &Subtarget = MF->getSubtarget<X86Subtarget>();
243 const Function &F = MF->getFunction();
244 bool HasSSE = Subtarget.hasSSE1();
245 bool HasAVX = Subtarget.hasAVX();
246 bool HasAVX512 = Subtarget.hasAVX512();
247 bool CallsEHReturn = MF->callsEHReturn();
248
249 CallingConv::ID CC = F.getCallingConv();
250
251 // If attribute NoCallerSavedRegisters exists then we set X86_INTR calling
252 // convention because it has the CSR list.
253 if (MF->getFunction().hasFnAttribute("no_caller_saved_registers"))
255
256 // If atribute specified, override the CSRs normally specified by the
257 // calling convention and use the empty set instead.
258 if (MF->getFunction().hasFnAttribute("no_callee_saved_registers"))
259 return CSR_NoRegs_SaveList;
260
261 switch (CC) {
262 case CallingConv::GHC:
264 return CSR_NoRegs_SaveList;
266 if (HasAVX)
267 return CSR_64_AllRegs_AVX_SaveList;
268 return CSR_64_AllRegs_SaveList;
270 return IsWin64 ? CSR_Win64_RT_MostRegs_SaveList
271 : CSR_64_RT_MostRegs_SaveList;
273 if (HasAVX)
274 return CSR_64_RT_AllRegs_AVX_SaveList;
275 return CSR_64_RT_AllRegs_SaveList;
277 return CSR_64_NoneRegs_SaveList;
279 if (Is64Bit)
280 return MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR() ?
281 CSR_64_CXX_TLS_Darwin_PE_SaveList : CSR_64_TLS_Darwin_SaveList;
282 break;
284 if (HasAVX512 && IsWin64)
285 return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
286 if (HasAVX512 && Is64Bit)
287 return CSR_64_Intel_OCL_BI_AVX512_SaveList;
288 if (HasAVX && IsWin64)
289 return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
290 if (HasAVX && Is64Bit)
291 return CSR_64_Intel_OCL_BI_AVX_SaveList;
292 if (!HasAVX && !IsWin64 && Is64Bit)
293 return CSR_64_Intel_OCL_BI_SaveList;
294 break;
295 }
297 if (Is64Bit) {
298 if (IsWin64) {
299 return (HasSSE ? CSR_Win64_RegCall_SaveList :
300 CSR_Win64_RegCall_NoSSE_SaveList);
301 } else {
302 return (HasSSE ? CSR_SysV64_RegCall_SaveList :
303 CSR_SysV64_RegCall_NoSSE_SaveList);
304 }
305 } else {
306 return (HasSSE ? CSR_32_RegCall_SaveList :
307 CSR_32_RegCall_NoSSE_SaveList);
308 }
310 assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
311 return (HasSSE ? CSR_Win32_CFGuard_Check_SaveList
312 : CSR_Win32_CFGuard_Check_NoSSE_SaveList);
314 if (Is64Bit)
315 return CSR_64_MostRegs_SaveList;
316 break;
318 if (!HasSSE)
319 return CSR_Win64_NoSSE_SaveList;
320 return CSR_Win64_SaveList;
322 if (!Is64Bit)
323 return CSR_32_SaveList;
324 return IsWin64 ? CSR_Win64_SwiftTail_SaveList : CSR_64_SwiftTail_SaveList;
326 if (CallsEHReturn)
327 return CSR_64EHRet_SaveList;
328 return CSR_64_SaveList;
330 if (Is64Bit) {
331 if (HasAVX512)
332 return CSR_64_AllRegs_AVX512_SaveList;
333 if (HasAVX)
334 return CSR_64_AllRegs_AVX_SaveList;
335 if (HasSSE)
336 return CSR_64_AllRegs_SaveList;
337 return CSR_64_AllRegs_NoSSE_SaveList;
338 } else {
339 if (HasAVX512)
340 return CSR_32_AllRegs_AVX512_SaveList;
341 if (HasAVX)
342 return CSR_32_AllRegs_AVX_SaveList;
343 if (HasSSE)
344 return CSR_32_AllRegs_SSE_SaveList;
345 return CSR_32_AllRegs_SaveList;
346 }
347 default:
348 break;
349 }
350
351 if (Is64Bit) {
352 bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
353 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
354 if (IsSwiftCC)
355 return IsWin64 ? CSR_Win64_SwiftError_SaveList
356 : CSR_64_SwiftError_SaveList;
357
358 if (IsWin64 || IsUEFI64)
359 return HasSSE ? CSR_Win64_SaveList : CSR_Win64_NoSSE_SaveList;
360 if (CallsEHReturn)
361 return CSR_64EHRet_SaveList;
362 return CSR_64_SaveList;
363 }
364
365 return CallsEHReturn ? CSR_32EHRet_SaveList : CSR_32_SaveList;
366}
367
368const MCPhysReg *
370 return Is64Bit ? CSR_IPRA_64_SaveList : CSR_IPRA_32_SaveList;
371}
372
374 const MachineFunction *MF) const {
375 assert(MF && "Invalid MachineFunction pointer.");
378 return CSR_64_CXX_TLS_Darwin_ViaCopy_SaveList;
379 return nullptr;
380}
381
382const uint32_t *
384 CallingConv::ID CC) const {
385 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
386 bool HasSSE = Subtarget.hasSSE1();
387 bool HasAVX = Subtarget.hasAVX();
388 bool HasAVX512 = Subtarget.hasAVX512();
389
390 switch (CC) {
391 case CallingConv::GHC:
393 return CSR_NoRegs_RegMask;
395 if (HasAVX)
396 return CSR_64_AllRegs_AVX_RegMask;
397 return CSR_64_AllRegs_RegMask;
399 return IsWin64 ? CSR_Win64_RT_MostRegs_RegMask : CSR_64_RT_MostRegs_RegMask;
401 if (HasAVX)
402 return CSR_64_RT_AllRegs_AVX_RegMask;
403 return CSR_64_RT_AllRegs_RegMask;
405 return CSR_64_NoneRegs_RegMask;
407 if (Is64Bit)
408 return CSR_64_TLS_Darwin_RegMask;
409 break;
411 if (HasAVX512 && IsWin64)
412 return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
413 if (HasAVX512 && Is64Bit)
414 return CSR_64_Intel_OCL_BI_AVX512_RegMask;
415 if (HasAVX && IsWin64)
416 return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
417 if (HasAVX && Is64Bit)
418 return CSR_64_Intel_OCL_BI_AVX_RegMask;
419 if (!HasAVX && !IsWin64 && Is64Bit)
420 return CSR_64_Intel_OCL_BI_RegMask;
421 break;
422 }
424 if (Is64Bit) {
425 if (IsWin64) {
426 return (HasSSE ? CSR_Win64_RegCall_RegMask :
427 CSR_Win64_RegCall_NoSSE_RegMask);
428 } else {
429 return (HasSSE ? CSR_SysV64_RegCall_RegMask :
430 CSR_SysV64_RegCall_NoSSE_RegMask);
431 }
432 } else {
433 return (HasSSE ? CSR_32_RegCall_RegMask :
434 CSR_32_RegCall_NoSSE_RegMask);
435 }
437 assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
438 return (HasSSE ? CSR_Win32_CFGuard_Check_RegMask
439 : CSR_Win32_CFGuard_Check_NoSSE_RegMask);
441 if (Is64Bit)
442 return CSR_64_MostRegs_RegMask;
443 break;
445 return CSR_Win64_RegMask;
447 if (!Is64Bit)
448 return CSR_32_RegMask;
449 return IsWin64 ? CSR_Win64_SwiftTail_RegMask : CSR_64_SwiftTail_RegMask;
451 return CSR_64_RegMask;
453 if (Is64Bit) {
454 if (HasAVX512)
455 return CSR_64_AllRegs_AVX512_RegMask;
456 if (HasAVX)
457 return CSR_64_AllRegs_AVX_RegMask;
458 if (HasSSE)
459 return CSR_64_AllRegs_RegMask;
460 return CSR_64_AllRegs_NoSSE_RegMask;
461 } else {
462 if (HasAVX512)
463 return CSR_32_AllRegs_AVX512_RegMask;
464 if (HasAVX)
465 return CSR_32_AllRegs_AVX_RegMask;
466 if (HasSSE)
467 return CSR_32_AllRegs_SSE_RegMask;
468 return CSR_32_AllRegs_RegMask;
469 }
470 default:
471 break;
472 }
473
474 // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
475 // callsEHReturn().
476 if (Is64Bit) {
477 const Function &F = MF.getFunction();
478 bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
479 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
480 if (IsSwiftCC)
481 return IsWin64 ? CSR_Win64_SwiftError_RegMask : CSR_64_SwiftError_RegMask;
482
483 return (IsWin64 || IsUEFI64) ? CSR_Win64_RegMask : CSR_64_RegMask;
484 }
485
486 return CSR_32_RegMask;
487}
488
489const uint32_t*
491 return CSR_NoRegs_RegMask;
492}
493
495 return CSR_64_TLS_Darwin_RegMask;
496}
497
499 BitVector Reserved(getNumRegs());
500 const X86FrameLowering *TFI = getFrameLowering(MF);
501
502 // Set the floating point control register as reserved.
503 Reserved.set(X86::FPCW);
504
505 // Set the floating point status register as reserved.
506 Reserved.set(X86::FPSW);
507
508 // Set the SIMD floating point control register as reserved.
509 Reserved.set(X86::MXCSR);
510
511 // Set the stack-pointer register and its aliases as reserved.
512 for (const MCPhysReg &SubReg : subregs_inclusive(X86::RSP))
513 Reserved.set(SubReg);
514
515 // Set the Shadow Stack Pointer as reserved.
516 Reserved.set(X86::SSP);
517
518 // Set the instruction pointer register and its aliases as reserved.
519 for (const MCPhysReg &SubReg : subregs_inclusive(X86::RIP))
520 Reserved.set(SubReg);
521
522 // Set the frame-pointer register and its aliases as reserved if needed.
523 if (TFI->hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF)) {
526 SMLoc(),
527 "Frame pointer clobbered by function invoke is not supported.");
528
529 for (const MCPhysReg &SubReg : subregs_inclusive(X86::RBP))
530 Reserved.set(SubReg);
531 }
532
533 // Set the base-pointer register and its aliases as reserved if needed.
534 if (hasBasePointer(MF)) {
537 "Stack realignment in presence of dynamic "
538 "allocas is not supported with "
539 "this calling convention.");
540
542 for (const MCPhysReg &SubReg : subregs_inclusive(BasePtr))
543 Reserved.set(SubReg);
544 }
545
546 // Mark the segment registers as reserved.
547 Reserved.set(X86::CS);
548 Reserved.set(X86::SS);
549 Reserved.set(X86::DS);
550 Reserved.set(X86::ES);
551 Reserved.set(X86::FS);
552 Reserved.set(X86::GS);
553
554 // Mark the floating point stack registers as reserved.
555 for (unsigned n = 0; n != 8; ++n)
556 Reserved.set(X86::ST0 + n);
557
558 // Reserve the registers that only exist in 64-bit mode.
559 if (!Is64Bit) {
560 // These 8-bit registers are part of the x86-64 extension even though their
561 // super-registers are old 32-bits.
562 Reserved.set(X86::SIL);
563 Reserved.set(X86::DIL);
564 Reserved.set(X86::BPL);
565 Reserved.set(X86::SPL);
566 Reserved.set(X86::SIH);
567 Reserved.set(X86::DIH);
568 Reserved.set(X86::BPH);
569 Reserved.set(X86::SPH);
570
571 for (unsigned n = 0; n != 8; ++n) {
572 // R8, R9, ...
573 for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
574 Reserved.set(*AI);
575
576 // XMM8, XMM9, ...
577 for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
578 Reserved.set(*AI);
579 }
580 }
581 if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasAVX512()) {
582 for (unsigned n = 0; n != 16; ++n) {
583 for (MCRegAliasIterator AI(X86::XMM16 + n, this, true); AI.isValid();
584 ++AI)
585 Reserved.set(*AI);
586 }
587 }
588
589 // Reserve the extended general purpose registers.
590 if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasEGPR())
591 Reserved.set(X86::R16, X86::R31WH + 1);
592
594 for (MCRegAliasIterator AI(X86::R14, this, true); AI.isValid(); ++AI)
595 Reserved.set(*AI);
596 for (MCRegAliasIterator AI(X86::R15, this, true); AI.isValid(); ++AI)
597 Reserved.set(*AI);
598 }
599
600 assert(checkAllSuperRegsMarked(Reserved,
601 {X86::SIL, X86::DIL, X86::BPL, X86::SPL,
602 X86::SIH, X86::DIH, X86::BPH, X86::SPH}));
603 return Reserved;
604}
605
607 // All existing Intel CPUs that support AMX support AVX512 and all existing
608 // Intel CPUs that support APX support AMX. AVX512 implies AVX.
609 //
610 // We enumerate the registers in X86GenRegisterInfo.inc in this order:
611 //
612 // Registers before AVX512,
613 // AVX512 registers (X/YMM16-31, ZMM0-31, K registers)
614 // AMX registers (TMM)
615 // APX registers (R16-R31)
616 //
617 // and try to return the minimum number of registers supported by the target.
618 static_assert((X86::R15WH + 1 == X86::YMM0) && (X86::YMM15 + 1 == X86::K0) &&
619 (X86::K6_K7 + 1 == X86::TMMCFG) &&
620 (X86::TMM7 + 1 == X86::R16) &&
621 (X86::R31WH + 1 == X86::NUM_TARGET_REGS),
622 "Register number may be incorrect");
623
624 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
625 if (ST.hasEGPR())
626 return X86::NUM_TARGET_REGS;
627 if (ST.hasAMXTILE())
628 return X86::TMM7 + 1;
629 if (ST.hasAVX512())
630 return X86::K6_K7 + 1;
631 if (ST.hasAVX())
632 return X86::YMM15 + 1;
633 return X86::R15WH + 1;
634}
635
637 MCRegister Reg) const {
638 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
639 const TargetRegisterInfo &TRI = *ST.getRegisterInfo();
640 auto IsSubReg = [&](MCRegister RegA, MCRegister RegB) {
641 return TRI.isSuperOrSubRegisterEq(RegA, RegB);
642 };
643
644 if (!ST.is64Bit())
645 return llvm::any_of(
646 SmallVector<MCRegister>{X86::EAX, X86::ECX, X86::EDX},
647 [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }) ||
648 (ST.hasMMX() && X86::VR64RegClass.contains(Reg));
649
651
652 if (CC == CallingConv::X86_64_SysV && IsSubReg(X86::RAX, Reg))
653 return true;
654
655 if (llvm::any_of(
656 SmallVector<MCRegister>{X86::RDX, X86::RCX, X86::R8, X86::R9},
657 [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }))
658 return true;
659
660 if (CC != CallingConv::Win64 &&
661 llvm::any_of(SmallVector<MCRegister>{X86::RDI, X86::RSI},
662 [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }))
663 return true;
664
665 if (ST.hasSSE1() &&
666 llvm::any_of(SmallVector<MCRegister>{X86::XMM0, X86::XMM1, X86::XMM2,
667 X86::XMM3, X86::XMM4, X86::XMM5,
668 X86::XMM6, X86::XMM7},
669 [&](MCRegister &RegA) { return IsSubReg(RegA, Reg); }))
670 return true;
671
672 return X86GenRegisterInfo::isArgumentRegister(MF, Reg);
673}
674
676 MCRegister PhysReg) const {
677 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
678 const TargetRegisterInfo &TRI = *ST.getRegisterInfo();
679
680 // Stack pointer.
681 if (TRI.isSuperOrSubRegisterEq(X86::RSP, PhysReg))
682 return true;
683
684 // Don't use the frame pointer if it's being used.
685 const X86FrameLowering &TFI = *getFrameLowering(MF);
686 if (TFI.hasFP(MF) && TRI.isSuperOrSubRegisterEq(X86::RBP, PhysReg))
687 return true;
688
689 return X86GenRegisterInfo::isFixedRegister(MF, PhysReg);
690}
691
693 return RC->getID() == X86::TILERegClassID;
694}
695
697 // Check if the EFLAGS register is marked as live-out. This shouldn't happen,
698 // because the calling convention defines the EFLAGS register as NOT
699 // preserved.
700 //
701 // Unfortunatelly the EFLAGS show up as live-out after branch folding. Adding
702 // an assert to track this and clear the register afterwards to avoid
703 // unnecessary crashes during release builds.
704 assert(!(Mask[X86::EFLAGS / 32] & (1U << (X86::EFLAGS % 32))) &&
705 "EFLAGS are not live-out from a patchpoint.");
706
707 // Also clean other registers that don't need preserving (IP).
708 for (auto Reg : {X86::EFLAGS, X86::RIP, X86::EIP, X86::IP})
709 Mask[Reg / 32] &= ~(1U << (Reg % 32));
710}
711
712//===----------------------------------------------------------------------===//
713// Stack Frame Processing methods
714//===----------------------------------------------------------------------===//
715
716static bool CantUseSP(const MachineFrameInfo &MFI) {
717 return MFI.hasVarSizedObjects() || MFI.hasOpaqueSPAdjustment();
718}
719
722 // We have a virtual register to reference argument, and don't need base
723 // pointer.
724 if (X86FI->getStackPtrSaveMI() != nullptr)
725 return false;
726
727 if (X86FI->hasPreallocatedCall())
728 return true;
729
730 const MachineFrameInfo &MFI = MF.getFrameInfo();
731
733 return false;
734
735 // When we need stack realignment, we can't address the stack from the frame
736 // pointer. When we have dynamic allocas or stack-adjusting inline asm, we
737 // can't address variables from the stack pointer. MS inline asm can
738 // reference locals while also adjusting the stack pointer. When we can't
739 // use both the SP and the FP, we need a separate base pointer register.
740 bool CantUseFP = hasStackRealignment(MF);
741 return CantUseFP && CantUseSP(MFI);
742}
743
746 return false;
747
748 const MachineFrameInfo &MFI = MF.getFrameInfo();
749 const MachineRegisterInfo *MRI = &MF.getRegInfo();
750
751 // Stack realignment requires a frame pointer. If we already started
752 // register allocation with frame pointer elimination, it is too late now.
753 if (!MRI->canReserveReg(FramePtr))
754 return false;
755
756 // If a base pointer is necessary. Check that it isn't too late to reserve
757 // it.
758 if (CantUseSP(MFI))
759 return MRI->canReserveReg(BasePtr);
760 return true;
761}
762
765 return true;
766
767 return !Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
768}
769
770// tryOptimizeLEAtoMOV - helper function that tries to replace a LEA instruction
771// of the form 'lea (%esp), %ebx' --> 'mov %esp, %ebx'.
772// TODO: In this case we should be really trying first to entirely eliminate
773// this instruction which is a plain copy.
775 MachineInstr &MI = *II;
776 unsigned Opc = II->getOpcode();
777 // Check if this is a LEA of the form 'lea (%esp), %ebx'
778 if ((Opc != X86::LEA32r && Opc != X86::LEA64r && Opc != X86::LEA64_32r) ||
779 MI.getOperand(2).getImm() != 1 ||
780 MI.getOperand(3).getReg() != X86::NoRegister ||
781 MI.getOperand(4).getImm() != 0 ||
782 MI.getOperand(5).getReg() != X86::NoRegister)
783 return false;
784 Register BasePtr = MI.getOperand(1).getReg();
785 // In X32 mode, ensure the base-pointer is a 32-bit operand, so the LEA will
786 // be replaced with a 32-bit operand MOV which will zero extend the upper
787 // 32-bits of the super register.
788 if (Opc == X86::LEA64_32r)
789 BasePtr = getX86SubSuperRegister(BasePtr, 32);
790 Register NewDestReg = MI.getOperand(0).getReg();
791 const X86InstrInfo *TII =
792 MI.getParent()->getParent()->getSubtarget<X86Subtarget>().getInstrInfo();
793 TII->copyPhysReg(*MI.getParent(), II, MI.getDebugLoc(), NewDestReg, BasePtr,
794 MI.getOperand(1).isKill());
795 MI.eraseFromParent();
796 return true;
797}
798
800 switch (MI.getOpcode()) {
801 case X86::CATCHRET:
802 case X86::CLEANUPRET:
803 return true;
804 default:
805 return false;
806 }
807 llvm_unreachable("impossible");
808}
809
811 unsigned FIOperandNum,
812 Register BaseReg,
813 int FIOffset) const {
814 MachineInstr &MI = *II;
815 unsigned Opc = MI.getOpcode();
816 if (Opc == TargetOpcode::LOCAL_ESCAPE) {
817 MachineOperand &FI = MI.getOperand(FIOperandNum);
818 FI.ChangeToImmediate(FIOffset);
819 return;
820 }
821
822 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
823
824 // The frame index format for stackmaps and patchpoints is different from the
825 // X86 format. It only has a FI and an offset.
826 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
827 assert(BasePtr == FramePtr && "Expected the FP as base register");
828 int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
829 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
830 return;
831 }
832
833 if (MI.getOperand(FIOperandNum + 3).isImm()) {
834 // Offset is a 32-bit integer.
835 int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
836 int Offset = FIOffset + Imm;
837 assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
838 "Requesting 64-bit offset in 32-bit immediate!");
839 if (Offset != 0)
840 MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
841 } else {
842 // Offset is symbolic. This is extremely rare.
844 FIOffset + (uint64_t)MI.getOperand(FIOperandNum + 3).getOffset();
845 MI.getOperand(FIOperandNum + 3).setOffset(Offset);
846 }
847}
848
849bool
851 int SPAdj, unsigned FIOperandNum,
852 RegScavenger *RS) const {
853 MachineInstr &MI = *II;
854 MachineBasicBlock &MBB = *MI.getParent();
855 MachineFunction &MF = *MBB.getParent();
856 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
857 bool IsEHFuncletEpilogue = MBBI == MBB.end() ? false
859 const X86FrameLowering *TFI = getFrameLowering(MF);
860 int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
861
862 // Determine base register and offset.
863 int64_t FIOffset;
864 Register BasePtr;
865 if (MI.isReturn()) {
866 assert((!hasStackRealignment(MF) ||
867 MF.getFrameInfo().isFixedObjectIndex(FrameIndex)) &&
868 "Return instruction can only reference SP relative frame objects");
869 FIOffset =
870 TFI->getFrameIndexReferenceSP(MF, FrameIndex, BasePtr, 0).getFixed();
871 } else if (TFI->Is64Bit && (MBB.isEHFuncletEntry() || IsEHFuncletEpilogue)) {
872 FIOffset = TFI->getWin64EHFrameIndexRef(MF, FrameIndex, BasePtr);
873 } else {
874 FIOffset = TFI->getFrameIndexReference(MF, FrameIndex, BasePtr).getFixed();
875 }
876
877 // LOCAL_ESCAPE uses a single offset, with no register. It only works in the
878 // simple FP case, and doesn't work with stack realignment. On 32-bit, the
879 // offset is from the traditional base pointer location. On 64-bit, the
880 // offset is from the SP at the end of the prologue, not the FP location. This
881 // matches the behavior of llvm.frameaddress.
882 unsigned Opc = MI.getOpcode();
883 if (Opc == TargetOpcode::LOCAL_ESCAPE) {
884 MachineOperand &FI = MI.getOperand(FIOperandNum);
885 FI.ChangeToImmediate(FIOffset);
886 return false;
887 }
888
889 // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
890 // register as source operand, semantic is the same and destination is
891 // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
892 // Don't change BasePtr since it is used later for stack adjustment.
893 Register MachineBasePtr = BasePtr;
894 if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
895 MachineBasePtr = getX86SubSuperRegister(BasePtr, 64);
896
897 // This must be part of a four operand memory reference. Replace the
898 // FrameIndex with base register. Add an offset to the offset.
899 MI.getOperand(FIOperandNum).ChangeToRegister(MachineBasePtr, false);
900
901 if (BasePtr == StackPtr)
902 FIOffset += SPAdj;
903
904 // The frame index format for stackmaps and patchpoints is different from the
905 // X86 format. It only has a FI and an offset.
906 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
907 assert(BasePtr == FramePtr && "Expected the FP as base register");
908 int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
909 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
910 return false;
911 }
912
913 if (MI.getOperand(FIOperandNum+3).isImm()) {
914 const X86InstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
915 const DebugLoc &DL = MI.getDebugLoc();
916 int64_t Imm = MI.getOperand(FIOperandNum + 3).getImm();
917 int64_t Offset = FIOffset + Imm;
918 bool FitsIn32Bits = isInt<32>(Offset);
919 // If the offset will not fit in a 32-bit displacement, then for 64-bit
920 // targets, scavenge a register to hold it. Otherwise...
921 if (Is64Bit && !FitsIn32Bits) {
922 assert(RS && "RegisterScavenger was NULL");
923
924 RS->enterBasicBlockEnd(MBB);
925 RS->backward(std::next(II));
926
927 Register ScratchReg = RS->scavengeRegisterBackwards(
928 X86::GR64RegClass, II, /*RestoreAfter=*/false, /*SPAdj=*/0,
929 /*AllowSpill=*/true);
930 assert(ScratchReg != 0 && "scratch reg was 0");
931 RS->setRegUsed(ScratchReg);
932
933 BuildMI(MBB, II, DL, TII->get(X86::MOV64ri), ScratchReg).addImm(Offset);
934
935 MI.getOperand(FIOperandNum + 3).setImm(0);
936 MI.getOperand(FIOperandNum + 2).setReg(ScratchReg);
937
938 return false;
939 }
940
941 // ... for 32-bit targets, this is a bug!
942 if (!Is64Bit && !FitsIn32Bits) {
943 MI.emitGenericError("64-bit offset calculated but target is 32-bit");
944 // Trap so that the instruction verification pass does not fail if run.
945 BuildMI(MBB, MBBI, DL, TII->get(X86::TRAP));
946 return false;
947 }
948
949 if (Offset != 0 || !tryOptimizeLEAtoMOV(II))
950 MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
951 } else {
952 // Offset is symbolic. This is extremely rare.
953 uint64_t Offset = FIOffset +
954 (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
955 MI.getOperand(FIOperandNum + 3).setOffset(Offset);
956 }
957 return false;
958}
959
962 const MachineFunction *MF = MBB.getParent();
963 const MachineRegisterInfo &MRI = MF->getRegInfo();
964 if (MF->callsEHReturn())
965 return 0;
966
967 if (MBBI == MBB.end())
968 return 0;
969
970 switch (MBBI->getOpcode()) {
971 default:
972 return 0;
973 case TargetOpcode::PATCHABLE_RET:
974 case X86::RET:
975 case X86::RET32:
976 case X86::RET64:
977 case X86::RETI32:
978 case X86::RETI64:
979 case X86::TCRETURNdi:
980 case X86::TCRETURNri:
981 case X86::TCRETURN_WIN64ri:
982 case X86::TCRETURN_HIPE32ri:
983 case X86::TCRETURNmi:
984 case X86::TCRETURNdi64:
985 case X86::TCRETURNri64:
986 case X86::TCRETURNri64_ImpCall:
987 case X86::TCRETURNmi64:
988 case X86::TCRETURN_WINmi64:
989 case X86::EH_RETURN:
990 case X86::EH_RETURN64: {
991 LiveRegUnits LRU(*this);
992 LRU.addLiveOuts(MBB);
993 LRU.stepBackward(*MBBI);
994
995 const TargetRegisterClass &RC =
996 Is64Bit ? X86::GR64_NOSPRegClass : X86::GR32_NOSPRegClass;
997 for (MCRegister Reg : RC) {
998 if (LRU.available(Reg) && !MRI.isReserved(Reg))
999 return Reg;
1000 }
1001 }
1002 }
1003
1004 return 0;
1005}
1006
1008 const X86FrameLowering *TFI = getFrameLowering(MF);
1009 return TFI->hasFP(MF) ? FramePtr : StackPtr;
1010}
1011
1014 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
1015 Register FrameReg = getFrameRegister(MF);
1016 if (Subtarget.isTarget64BitILP32())
1017 FrameReg = getX86SubSuperRegister(FrameReg, 32);
1018 return FrameReg;
1019}
1020
1023 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
1024 Register StackReg = getStackRegister();
1025 if (Subtarget.isTarget64BitILP32())
1026 StackReg = getX86SubSuperRegister(StackReg, 32);
1027 return StackReg;
1028}
1029
1031 const MachineRegisterInfo *MRI) {
1032 if (VRM->hasShape(VirtReg))
1033 return VRM->getShape(VirtReg);
1034
1035 const MachineOperand &Def = *MRI->def_begin(VirtReg);
1036 MachineInstr *MI = const_cast<MachineInstr *>(Def.getParent());
1037 unsigned OpCode = MI->getOpcode();
1038 switch (OpCode) {
1039 default:
1040 llvm_unreachable("Unexpected machine instruction on tile register!");
1041 break;
1042 case X86::COPY: {
1043 Register SrcReg = MI->getOperand(1).getReg();
1044 ShapeT Shape = getTileShape(SrcReg, VRM, MRI);
1045 VRM->assignVirt2Shape(VirtReg, Shape);
1046 return Shape;
1047 }
1048 // We only collect the tile shape that is defined.
1049 case X86::PTILELOADDV:
1050 case X86::PTILELOADDT1V:
1051 case X86::PTDPBSSDV:
1052 case X86::PTDPBSUDV:
1053 case X86::PTDPBUSDV:
1054 case X86::PTDPBUUDV:
1055 case X86::PTILEZEROV:
1056 case X86::PTDPBF16PSV:
1057 case X86::PTDPFP16PSV:
1058 case X86::PTCMMIMFP16PSV:
1059 case X86::PTCMMRLFP16PSV:
1060 case X86::PTILELOADDRSV:
1061 case X86::PTILELOADDRST1V:
1062 case X86::PTMMULTF32PSV:
1063 case X86::PTDPBF8PSV:
1064 case X86::PTDPBHF8PSV:
1065 case X86::PTDPHBF8PSV:
1066 case X86::PTDPHF8PSV: {
1067 MachineOperand &MO1 = MI->getOperand(1);
1068 MachineOperand &MO2 = MI->getOperand(2);
1069 ShapeT Shape(&MO1, &MO2, MRI);
1070 VRM->assignVirt2Shape(VirtReg, Shape);
1071 return Shape;
1072 }
1073 }
1074}
1075
1077 ArrayRef<MCPhysReg> Order,
1079 const MachineFunction &MF,
1080 const VirtRegMap *VRM,
1081 const LiveRegMatrix *Matrix) const {
1082 const MachineRegisterInfo *MRI = &MF.getRegInfo();
1083 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1084 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
1085 VirtReg, Order, Hints, MF, VRM, Matrix);
1086 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
1087 const TargetRegisterInfo &TRI = *ST.getRegisterInfo();
1088
1089 unsigned ID = RC.getID();
1090
1091 if (!VRM)
1092 return BaseImplRetVal;
1093
1094 if (ID != X86::TILERegClassID) {
1095 if (DisableRegAllocNDDHints || !ST.hasNDD() ||
1096 !TRI.isGeneralPurposeRegisterClass(&RC))
1097 return BaseImplRetVal;
1098
1099 // Add any two address hints after any copy hints.
1100 SmallSet<unsigned, 4> TwoAddrHints;
1101
1102 auto TryAddNDDHint = [&](const MachineOperand &MO) {
1103 Register Reg = MO.getReg();
1104 Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
1105 if (PhysReg && !MRI->isReserved(PhysReg) && !is_contained(Hints, PhysReg))
1106 TwoAddrHints.insert(PhysReg);
1107 };
1108
1109 // NDD instructions is compressible when Op0 is allocated to the same
1110 // physic register as Op1 (or Op2 if it's commutable).
1111 for (auto &MO : MRI->reg_nodbg_operands(VirtReg)) {
1112 const MachineInstr &MI = *MO.getParent();
1113 if (!X86::getNonNDVariant(MI.getOpcode()))
1114 continue;
1115 unsigned OpIdx = MI.getOperandNo(&MO);
1116 if (OpIdx == 0) {
1117 assert(MI.getOperand(1).isReg());
1118 TryAddNDDHint(MI.getOperand(1));
1119 if (MI.isCommutable()) {
1120 assert(MI.getOperand(2).isReg());
1121 TryAddNDDHint(MI.getOperand(2));
1122 }
1123 } else if (OpIdx == 1) {
1124 TryAddNDDHint(MI.getOperand(0));
1125 } else if (MI.isCommutable() && OpIdx == 2) {
1126 TryAddNDDHint(MI.getOperand(0));
1127 }
1128 }
1129
1130 for (MCPhysReg OrderReg : Order)
1131 if (TwoAddrHints.count(OrderReg))
1132 Hints.push_back(OrderReg);
1133
1134 return BaseImplRetVal;
1135 }
1136
1137 ShapeT VirtShape = getTileShape(VirtReg, const_cast<VirtRegMap *>(VRM), MRI);
1138 auto AddHint = [&](MCPhysReg PhysReg) {
1139 Register VReg = Matrix->getOneVReg(PhysReg);
1140 if (VReg == MCRegister::NoRegister) { // Not allocated yet
1141 Hints.push_back(PhysReg);
1142 return;
1143 }
1144 ShapeT PhysShape = getTileShape(VReg, const_cast<VirtRegMap *>(VRM), MRI);
1145 if (PhysShape == VirtShape)
1146 Hints.push_back(PhysReg);
1147 };
1148
1149 SmallSet<MCPhysReg, 4> CopyHints(llvm::from_range, Hints);
1150 Hints.clear();
1151 for (auto Hint : CopyHints) {
1152 if (RC.contains(Hint) && !MRI->isReserved(Hint))
1153 AddHint(Hint);
1154 }
1155 for (MCPhysReg PhysReg : Order) {
1156 if (!CopyHints.count(PhysReg) && RC.contains(PhysReg) &&
1157 !MRI->isReserved(PhysReg))
1158 AddHint(PhysReg);
1159 }
1160
1161#define DEBUG_TYPE "tile-hint"
1162 LLVM_DEBUG({
1163 dbgs() << "Hints for virtual register " << format_hex(VirtReg, 8) << "\n";
1164 for (auto Hint : Hints) {
1165 dbgs() << "tmm" << Hint << ",";
1166 }
1167 dbgs() << "\n";
1168 });
1169#undef DEBUG_TYPE
1170
1171 return true;
1172}
1173
1175 const TargetRegisterClass *RC) const {
1176 switch (RC->getID()) {
1177 default:
1178 return RC;
1179 case X86::GR8RegClassID:
1180 return &X86::GR8_NOREX2RegClass;
1181 case X86::GR16RegClassID:
1182 return &X86::GR16_NOREX2RegClass;
1183 case X86::GR32RegClassID:
1184 return &X86::GR32_NOREX2RegClass;
1185 case X86::GR64RegClassID:
1186 return &X86::GR64_NOREX2RegClass;
1187 case X86::GR32_NOSPRegClassID:
1188 return &X86::GR32_NOREX2_NOSPRegClass;
1189 case X86::GR64_NOSPRegClassID:
1190 return &X86::GR64_NOREX2_NOSPRegClass;
1191 }
1192}
1193
1195 switch (RC->getID()) {
1196 default:
1197 return false;
1198 case X86::GR8_NOREX2RegClassID:
1199 case X86::GR16_NOREX2RegClassID:
1200 case X86::GR32_NOREX2RegClassID:
1201 case X86::GR64_NOREX2RegClassID:
1202 case X86::GR32_NOREX2_NOSPRegClassID:
1203 case X86::GR64_NOREX2_NOSPRegClassID:
1204 case X86::GR64_with_sub_16bit_in_GR16_NOREX2RegClassID:
1205 return true;
1206 }
1207}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
static const TargetRegisterClass * getRegClass(const MachineInstr &MI, Register Reg)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Live Register Matrix
static cl::opt< bool > EnableBasePointer("m68k-use-base-pointer", cl::Hidden, cl::init(true), cl::desc("Enable use of a base pointer for complex stack frames"))
static bool CantUseSP(const MachineFrameInfo &MFI)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
This file declares the machine register scavenger class.
This file contains some templates that are useful if you are working with the STL at all.
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
This file defines the SmallSet class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
cl::opt< bool > X86EnableAPXForRelocation
static cl::opt< bool > EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true), cl::desc("Enable use of a base pointer for complex stack frames"))
static bool tryOptimizeLEAtoMOV(MachineBasicBlock::iterator II)
static cl::opt< bool > DisableRegAllocNDDHints("x86-disable-regalloc-hints-for-ndd", cl::Hidden, cl::init(false), cl::desc("Disable two address hints for register " "allocation"))
static ShapeT getTileShape(Register VirtReg, VirtRegMap *VRM, const MachineRegisterInfo *MRI)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
iterator end() const
Definition ArrayRef.h:132
iterator begin() const
Definition ArrayRef.h:131
A debug info location.
Definition DebugLoc.h:124
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
A set of register units used to track register liveness.
bool available(MCRegister Reg) const
Returns true if no part of physical register Reg is live.
LLVM_ABI void stepBackward(const MachineInstr &MI)
Updates liveness when stepping backwards over the instruction MI.
LLVM_ABI void addLiveOuts(const MachineBasicBlock &MBB)
Adds registers living out of block MBB.
LLVM_ABI void reportError(SMLoc L, const Twine &Msg)
MCRegAliasIterator enumerates all registers aliasing Reg.
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
static constexpr unsigned NoRegister
Definition MCRegister.h:52
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
LLVM_ABI void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags=0)
ChangeToImmediate - Replace this operand with a new immediate operand of the specified value.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
Represents a location in source code.
Definition SMLoc.h:22
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition SmallSet.h:175
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
static StackOffset getFixed(int64_t Fixed)
Definition TypeSize.h:40
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
TargetOptions Options
LLVM_ABI bool FramePointerIsReserved(const MachineFunction &MF) const
FramePointerIsReserved - This returns true if the frame pointer must always either point to a new fra...
unsigned getID() const
Return the register class ID number.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
ArrayRef< unsigned > superclasses() const
Returns a list of super-classes.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual bool canRealignStack(const MachineFunction &MF) const
True if the stack can be realigned for the target.
virtual bool shouldRealignStack(const MachineFunction &MF) const
True if storage within the function requires the stack pointer to be aligned more than the normal cal...
virtual bool getRegAllocationHints(Register VirtReg, ArrayRef< MCPhysReg > Order, SmallVectorImpl< MCPhysReg > &Hints, const MachineFunction &MF, const VirtRegMap *VRM=nullptr, const LiveRegMatrix *Matrix=nullptr) const
Get a list of 'hint' registers that the register allocator should try first when allocating a physica...
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
bool hasShape(Register virtReg) const
Definition VirtRegMap.h:102
ShapeT getShape(Register virtReg) const
Definition VirtRegMap.h:106
MCRegister getPhys(Register virtReg) const
returns the physical register mapped to the specified virtual register
Definition VirtRegMap.h:91
void assignVirt2Shape(Register virtReg, ShapeT shape)
Definition VirtRegMap.h:111
StackOffset getFrameIndexReferenceSP(const MachineFunction &MF, int FI, Register &SPReg, int Adjustment) const
StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const override
getFrameIndexReference - This method should return the base register and offset used to reference a f...
bool Is64Bit
Is64Bit implies that x86_64 instructions are available.
int getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, Register &SPReg) const
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
MachineInstr * getStackPtrSaveMI() const
bool hasBasePointer(const MachineFunction &MF) const
const TargetRegisterClass * getPointerRegClass(unsigned Kind=0) const override
getPointerRegClass - Returns a TargetRegisterClass used for pointer values.
const MCPhysReg * getCalleeSavedRegsViaCopy(const MachineFunction *MF) const
bool canRealignStack(const MachineFunction &MF) const override
BitVector getReservedRegs(const MachineFunction &MF) const override
getReservedRegs - Returns a bitset indexed by physical register number indicating if a register is a ...
Register getPtrSizedFrameRegister(const MachineFunction &MF) const
bool shouldRealignStack(const MachineFunction &MF) const override
unsigned getNumSupportedRegs(const MachineFunction &MF) const override
Return the number of registers for the function.
const MCPhysReg * getIPRACSRegs(const MachineFunction *MF) const override
getIPRACSRegs - This API can be removed when rbp is safe to optimized out when IPRA is on.
Register getFrameRegister(const MachineFunction &MF) const override
unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI) const
findDeadCallerSavedReg - Return a caller-saved register that isn't live when it reaches the "return" ...
const uint32_t * getDarwinTLSCallPreservedMask() const
bool isTileRegisterClass(const TargetRegisterClass *RC) const
Return true if it is tile register class.
bool isNonRex2RegClass(const TargetRegisterClass *RC) const
const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const override
Register getPtrSizedStackRegister(const MachineFunction &MF) const
bool isArgumentRegister(const MachineFunction &MF, MCRegister Reg) const override
isArgumentReg - Returns true if Reg can be used as an argument to a function.
Register getStackRegister() const
const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &MF) const override
const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const override
getMatchingSuperRegClass - Return a subclass of the specified register class A so that each register ...
unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const override
const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const override
getCrossCopyRegClass - Returns a legal register class to copy a register in the specified class to or...
X86RegisterInfo(const Triple &TT)
const TargetRegisterClass * constrainRegClassToNonRex2(const TargetRegisterClass *RC) const
Register getBaseRegister() const
bool getRegAllocationHints(Register VirtReg, ArrayRef< MCPhysReg > Order, SmallVectorImpl< MCPhysReg > &Hints, const MachineFunction &MF, const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const override
void eliminateFrameIndex(MachineBasicBlock::iterator II, unsigned FIOperandNum, Register BaseReg, int FIOffset) const
const uint32_t * getNoPreservedMask() const override
bool isFixedRegister(const MachineFunction &MF, MCRegister PhysReg) const override
Returns true if PhysReg is a fixed register.
const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const override
const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const override
getCalleeSavedRegs - Return a null-terminated list of all of the callee-save registers on this target...
void adjustStackMapLiveOutMask(uint32_t *Mask) const override
bool hasSSE1() const
const X86TargetLowering * getTargetLowering() const override
bool isTarget64BitILP32() const
Is this x86_64 with the ILP32 programming model (x32 ABI)?
bool hasAVX512() const
bool hasAVX() const
bool supportSwiftError() const override
Return true if the target supports swifterror attribute.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ HiPE
Used by the High-Performance Erlang Compiler (HiPE).
Definition CallingConv.h:53
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
Definition CallingConv.h:82
@ PreserveMost
Used for runtime calls that preserves most registers.
Definition CallingConv.h:63
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ CXX_FAST_TLS
Used for access functions.
Definition CallingConv.h:72
@ X86_INTR
x86 hardware interrupt context.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition CallingConv.h:50
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
Definition CallingConv.h:47
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
Definition CallingConv.h:66
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
Definition CallingConv.h:90
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition CallingConv.h:87
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
void initLLVMToSEHAndCVRegMapping(MCRegisterInfo *MRI)
Define some predicates that are used for node matching.
unsigned getNonNDVariant(unsigned Opc)
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:165
MCRegister getX86SubSuperRegister(MCRegister Reg, unsigned Size, bool High=false)
constexpr from_range_t from_range
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
static bool isFuncletReturnInstr(const MachineInstr &MI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Definition Format.h:191
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897