LLVM 22.0.0git
AArch64RegisterBankInfo.cpp
Go to the documentation of this file.
1//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the RegisterBankInfo class for
10/// AArch64.
11/// \todo This should be generated by TableGen.
12//===----------------------------------------------------------------------===//
13
15#include "AArch64RegisterInfo.h"
16#include "AArch64Subtarget.h"
18#include "llvm/ADT/STLExtras.h"
33#include "llvm/IR/IntrinsicsAArch64.h"
36#include <cassert>
37
38#define GET_TARGET_REGBANK_IMPL
39#include "AArch64GenRegisterBank.inc"
40
41// This file will be TableGen'ed at some point.
42#include "AArch64GenRegisterBankInfo.def"
43
44using namespace llvm;
45static const unsigned CustomMappingID = 1;
46
48 const TargetRegisterInfo &TRI) {
49 static llvm::once_flag InitializeRegisterBankFlag;
50
51 static auto InitializeRegisterBankOnce = [&]() {
52 // We have only one set of register banks, whatever the subtarget
53 // is. Therefore, the initialization of the RegBanks table should be
54 // done only once. Indeed the table of all register banks
55 // (AArch64::RegBanks) is unique in the compiler. At some point, it
56 // will get tablegen'ed and the whole constructor becomes empty.
57
58 const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
59 (void)RBGPR;
60 assert(&AArch64::GPRRegBank == &RBGPR &&
61 "The order in RegBanks is messed up");
62
63 const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
64 (void)RBFPR;
65 assert(&AArch64::FPRRegBank == &RBFPR &&
66 "The order in RegBanks is messed up");
67
68 const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
69 (void)RBCCR;
70 assert(&AArch64::CCRegBank == &RBCCR &&
71 "The order in RegBanks is messed up");
72
73 // The GPR register bank is fully defined by all the registers in
74 // GR64all + its subclasses.
75 assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
76 "Subclass not added?");
77 assert(getMaximumSize(RBGPR.getID()) == 128 &&
78 "GPRs should hold up to 128-bit");
79
80 // The FPR register bank is fully defined by all the registers in
81 // GR64all + its subclasses.
82 assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
83 "Subclass not added?");
84 assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
85 "Subclass not added?");
86 assert(getMaximumSize(RBFPR.getID()) == 512 &&
87 "FPRs should hold up to 512-bit via QQQQ sequence");
88
89 assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
90 "Class not added?");
91 assert(getMaximumSize(RBCCR.getID()) == 32 &&
92 "CCR should hold up to 32-bit");
93
94 // Check that the TableGen'ed like file is in sync we our expectations.
95 // First, the Idx.
98 "PartialMappingIdx's are incorrectly ordered");
102 "PartialMappingIdx's are incorrectly ordered");
103// Now, the content.
104// Check partial mapping.
105#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \
106 do { \
107 assert( \
108 checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
109 #Idx " is incorrectly initialized"); \
110 } while (false)
111
112 CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
113 CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
114 CHECK_PARTIALMAP(PMI_GPR128, 0, 128, RBGPR);
115 CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
116 CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
117 CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
118 CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
119 CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
120 CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);
121
122// Check value mapping.
123#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \
124 do { \
125 assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size, \
126 PartialMappingIdx::PMI_First##RBName, Size, \
127 Offset) && \
128 #RBName #Size " " #Offset " is incorrectly initialized"); \
129 } while (false)
130
131#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)
132
133 CHECK_VALUEMAP(GPR, 32);
134 CHECK_VALUEMAP(GPR, 64);
135 CHECK_VALUEMAP(GPR, 128);
136 CHECK_VALUEMAP(FPR, 16);
137 CHECK_VALUEMAP(FPR, 32);
138 CHECK_VALUEMAP(FPR, 64);
139 CHECK_VALUEMAP(FPR, 128);
140 CHECK_VALUEMAP(FPR, 256);
141 CHECK_VALUEMAP(FPR, 512);
142
143// Check the value mapping for 3-operands instructions where all the operands
144// map to the same value mapping.
145#define CHECK_VALUEMAP_3OPS(RBName, Size) \
146 do { \
147 CHECK_VALUEMAP_IMPL(RBName, Size, 0); \
148 CHECK_VALUEMAP_IMPL(RBName, Size, 1); \
149 CHECK_VALUEMAP_IMPL(RBName, Size, 2); \
150 } while (false)
151
152 CHECK_VALUEMAP_3OPS(GPR, 32);
153 CHECK_VALUEMAP_3OPS(GPR, 64);
154 CHECK_VALUEMAP_3OPS(GPR, 128);
160
161#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size) \
162 do { \
163 unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min; \
164 unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min; \
165 (void)PartialMapDstIdx; \
166 (void)PartialMapSrcIdx; \
167 const ValueMapping *Map = getCopyMapping(AArch64::RBNameDst##RegBankID, \
168 AArch64::RBNameSrc##RegBankID, \
169 TypeSize::getFixed(Size)); \
170 (void)Map; \
171 assert(Map[0].BreakDown == \
172 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
173 Map[0].NumBreakDowns == 1 && \
174 #RBNameDst #Size " Dst is incorrectly initialized"); \
175 assert(Map[1].BreakDown == \
176 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
177 Map[1].NumBreakDowns == 1 && \
178 #RBNameSrc #Size " Src is incorrectly initialized"); \
179 \
180 } while (false)
181
182 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
184 CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
190
191#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize) \
192 do { \
193 unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min; \
194 unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min; \
195 (void)PartialMapDstIdx; \
196 (void)PartialMapSrcIdx; \
197 const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize); \
198 (void)Map; \
199 assert(Map[0].BreakDown == \
200 &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
201 Map[0].NumBreakDowns == 1 && "FPR" #DstSize \
202 " Dst is incorrectly initialized"); \
203 assert(Map[1].BreakDown == \
204 &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
205 Map[1].NumBreakDowns == 1 && "FPR" #SrcSize \
206 " Src is incorrectly initialized"); \
207 \
208 } while (false)
209
210 CHECK_VALUEMAP_FPEXT(32, 16);
211 CHECK_VALUEMAP_FPEXT(64, 16);
212 CHECK_VALUEMAP_FPEXT(64, 32);
213 CHECK_VALUEMAP_FPEXT(128, 64);
214
215 assert(verify(TRI) && "Invalid register bank information");
216 };
217
218 llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
219}
220
222 const RegisterBank &B,
223 const TypeSize Size) const {
224 // What do we do with different size?
225 // copy are same size.
226 // Will introduce other hooks for different size:
227 // * extract cost.
228 // * build_sequence cost.
229
230 // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
231 // FIXME: This should be deduced from the scheduling model.
232 if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
233 // FMOVXDr or FMOVWSr.
234 return 5;
235 if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
236 // FMOVDXr or FMOVSWr.
237 return 4;
238
240}
241
242const RegisterBank &
244 LLT Ty) const {
245 switch (RC.getID()) {
246 case AArch64::GPR64sponlyRegClassID:
247 return getRegBank(AArch64::GPRRegBankID);
248 default:
250 }
251}
252
255 const MachineInstr &MI) const {
256 const MachineFunction &MF = *MI.getParent()->getParent();
257 const TargetSubtargetInfo &STI = MF.getSubtarget();
258 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
259 const MachineRegisterInfo &MRI = MF.getRegInfo();
260
261 switch (MI.getOpcode()) {
262 case TargetOpcode::G_OR: {
263 // 32 and 64-bit or can be mapped on either FPR or
264 // GPR for the same cost.
265 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
266 if (Size != 32 && Size != 64)
267 break;
268
269 // If the instruction has any implicit-defs or uses,
270 // do not mess with it.
271 if (MI.getNumOperands() != 3)
272 break;
273 InstructionMappings AltMappings;
274 const InstructionMapping &GPRMapping = getInstructionMapping(
275 /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
276 /*NumOperands*/ 3);
277 const InstructionMapping &FPRMapping = getInstructionMapping(
278 /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
279 /*NumOperands*/ 3);
280
281 AltMappings.push_back(&GPRMapping);
282 AltMappings.push_back(&FPRMapping);
283 return AltMappings;
284 }
285 case TargetOpcode::G_BITCAST: {
286 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
287 if (Size != 32 && Size != 64)
288 break;
289
290 // If the instruction has any implicit-defs or uses,
291 // do not mess with it.
292 if (MI.getNumOperands() != 2)
293 break;
294
295 InstructionMappings AltMappings;
296 const InstructionMapping &GPRMapping = getInstructionMapping(
297 /*ID*/ 1, /*Cost*/ 1,
298 getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
299 /*NumOperands*/ 2);
300 const InstructionMapping &FPRMapping = getInstructionMapping(
301 /*ID*/ 2, /*Cost*/ 1,
302 getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
303 /*NumOperands*/ 2);
304 const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
305 /*ID*/ 3,
306 /*Cost*/
307 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
309 getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
310 /*NumOperands*/ 2);
311 const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
312 /*ID*/ 3,
313 /*Cost*/
314 copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank,
316 getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
317 /*NumOperands*/ 2);
318
319 AltMappings.push_back(&GPRMapping);
320 AltMappings.push_back(&FPRMapping);
321 AltMappings.push_back(&GPRToFPRMapping);
322 AltMappings.push_back(&FPRToGPRMapping);
323 return AltMappings;
324 }
325 case TargetOpcode::G_LOAD: {
326 TypeSize Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
327 if (Size != 64)
328 break;
329
330 // If the instruction has any implicit-defs or uses,
331 // do not mess with it.
332 if (MI.getNumOperands() != 2)
333 break;
334
335 InstructionMappings AltMappings;
336 const InstructionMapping &GPRMapping = getInstructionMapping(
337 /*ID*/ 1, /*Cost*/ 1,
340 // Addresses are GPR 64-bit.
342 /*NumOperands*/ 2);
343 const InstructionMapping &FPRMapping = getInstructionMapping(
344 /*ID*/ 2, /*Cost*/ 1,
347 // Addresses are GPR 64-bit.
349 /*NumOperands*/ 2);
350
351 AltMappings.push_back(&GPRMapping);
352 AltMappings.push_back(&FPRMapping);
353 return AltMappings;
354 }
355 default:
356 break;
357 }
359}
360
361void AArch64RegisterBankInfo::applyMappingImpl(
362 MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const {
363 MachineInstr &MI = OpdMapper.getMI();
364 MachineRegisterInfo &MRI = OpdMapper.getMRI();
365
366 switch (MI.getOpcode()) {
367 case TargetOpcode::G_OR:
368 case TargetOpcode::G_BITCAST:
369 case TargetOpcode::G_LOAD:
370 // Those ID must match getInstrAlternativeMappings.
371 assert((OpdMapper.getInstrMapping().getID() >= 1 &&
372 OpdMapper.getInstrMapping().getID() <= 4) &&
373 "Don't know how to handle that ID");
374 return applyDefaultMapping(OpdMapper);
375 case TargetOpcode::G_INSERT_VECTOR_ELT: {
376 // Extend smaller gpr operands to 32 bit.
377 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
378 auto Ext = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(2).getReg());
379 MRI.setRegBank(Ext.getReg(0), getRegBank(AArch64::GPRRegBankID));
380 MI.getOperand(2).setReg(Ext.getReg(0));
381 return applyDefaultMapping(OpdMapper);
382 }
383 case AArch64::G_DUP: {
384 // Extend smaller gpr to 32-bits
385 assert(MRI.getType(MI.getOperand(1).getReg()).getSizeInBits() < 32 &&
386 "Expected sources smaller than 32-bits");
387 Builder.setInsertPt(*MI.getParent(), MI.getIterator());
388
389 Register ConstReg;
390 auto ConstMI = MRI.getVRegDef(MI.getOperand(1).getReg());
391 if (ConstMI->getOpcode() == TargetOpcode::G_CONSTANT) {
392 auto CstVal = ConstMI->getOperand(1).getCImm()->getValue();
393 ConstReg =
394 Builder.buildConstant(LLT::scalar(32), CstVal.sext(32)).getReg(0);
395 } else {
396 ConstReg = Builder.buildAnyExt(LLT::scalar(32), MI.getOperand(1).getReg())
397 .getReg(0);
398 }
399 MRI.setRegBank(ConstReg, getRegBank(AArch64::GPRRegBankID));
400 MI.getOperand(1).setReg(ConstReg);
401 return applyDefaultMapping(OpdMapper);
402 }
403 default:
404 llvm_unreachable("Don't know how to handle that operation");
405 }
406}
407
409AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
410 const MachineInstr &MI) const {
411 const unsigned Opc = MI.getOpcode();
412 const MachineFunction &MF = *MI.getParent()->getParent();
413 const MachineRegisterInfo &MRI = MF.getRegInfo();
414
415 unsigned NumOperands = MI.getNumOperands();
416 assert(NumOperands <= 3 &&
417 "This code is for instructions with 3 or less operands");
418
419 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
420 TypeSize Size = Ty.getSizeInBits();
422
424
425#ifndef NDEBUG
426 // Make sure all the operands are using similar size and type.
427 // Should probably be checked by the machine verifier.
428 // This code won't catch cases where the number of lanes is
429 // different between the operands.
430 // If we want to go to that level of details, it is probably
431 // best to check that the types are the same, period.
432 // Currently, we just check that the register banks are the same
433 // for each types.
434 for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
435 LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
436 assert(
438 RBIdx, OpTy.getSizeInBits()) ==
440 "Operand has incompatible size");
441 bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
442 (void)OpIsFPR;
443 assert(IsFPR == OpIsFPR && "Operand has incompatible type");
444 }
445#endif // End NDEBUG.
446
448 getValueMapping(RBIdx, Size), NumOperands);
449}
450
451/// \returns true if a given intrinsic only uses and defines FPRs.
453 const MachineInstr &MI) {
454 // TODO: Add more intrinsics.
456 default:
457 return false;
458 case Intrinsic::aarch64_neon_uaddlv:
459 case Intrinsic::aarch64_neon_uaddv:
460 case Intrinsic::aarch64_neon_saddv:
461 case Intrinsic::aarch64_neon_umaxv:
462 case Intrinsic::aarch64_neon_smaxv:
463 case Intrinsic::aarch64_neon_uminv:
464 case Intrinsic::aarch64_neon_sminv:
465 case Intrinsic::aarch64_neon_faddv:
466 case Intrinsic::aarch64_neon_fmaxv:
467 case Intrinsic::aarch64_neon_fminv:
468 case Intrinsic::aarch64_neon_fmaxnmv:
469 case Intrinsic::aarch64_neon_fminnmv:
470 case Intrinsic::aarch64_neon_fmulx:
471 case Intrinsic::aarch64_neon_frecpe:
472 case Intrinsic::aarch64_neon_frecps:
473 case Intrinsic::aarch64_neon_frecpx:
474 case Intrinsic::aarch64_neon_frsqrte:
475 case Intrinsic::aarch64_neon_frsqrts:
476 case Intrinsic::aarch64_neon_facge:
477 case Intrinsic::aarch64_neon_facgt:
478 case Intrinsic::aarch64_neon_fabd:
479 case Intrinsic::aarch64_sisd_fabd:
480 case Intrinsic::aarch64_neon_sqrdmlah:
481 case Intrinsic::aarch64_neon_sqrdmlsh:
482 case Intrinsic::aarch64_neon_sqrdmulh:
483 case Intrinsic::aarch64_neon_sqadd:
484 case Intrinsic::aarch64_neon_sqsub:
485 case Intrinsic::aarch64_crypto_sha1h:
486 case Intrinsic::aarch64_crypto_sha1c:
487 case Intrinsic::aarch64_crypto_sha1p:
488 case Intrinsic::aarch64_crypto_sha1m:
489 return true;
490 case Intrinsic::aarch64_neon_saddlv: {
491 const LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
492 return SrcTy.getElementType().getSizeInBits() >= 16 &&
493 SrcTy.getElementCount().getFixedValue() >= 4;
494 }
495 }
496}
497
498bool AArch64RegisterBankInfo::isPHIWithFPConstraints(
499 const MachineInstr &MI, const MachineRegisterInfo &MRI,
500 const AArch64RegisterInfo &TRI, const unsigned Depth) const {
501 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
502 return false;
503
504 return any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
505 [&](const MachineInstr &UseMI) {
506 if (onlyUsesFP(UseMI, MRI, TRI, Depth + 1))
507 return true;
508 return isPHIWithFPConstraints(UseMI, MRI, TRI, Depth + 1);
509 });
510}
511
512bool AArch64RegisterBankInfo::hasFPConstraints(const MachineInstr &MI,
515 unsigned Depth) const {
516 unsigned Op = MI.getOpcode();
517 if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MRI, MI))
518 return true;
519
520 // Do we have an explicit floating point instruction?
522 return true;
523
524 // No. Check if we have a copy-like instruction. If we do, then we could
525 // still be fed by floating point instructions.
526 if (Op != TargetOpcode::COPY && !MI.isPHI() &&
528 return false;
529
530 // Check if we already know the register bank.
531 auto *RB = getRegBank(MI.getOperand(0).getReg(), MRI, TRI);
532 if (RB == &AArch64::FPRRegBank)
533 return true;
534 if (RB == &AArch64::GPRRegBank)
535 return false;
536
537 // We don't know anything.
538 //
539 // If we have a phi, we may be able to infer that it will be assigned a FPR
540 // based off of its inputs.
541 if (!MI.isPHI() || Depth > MaxFPRSearchDepth)
542 return false;
543
544 return any_of(MI.explicit_uses(), [&](const MachineOperand &Op) {
545 return Op.isReg() &&
546 onlyDefinesFP(*MRI.getVRegDef(Op.getReg()), MRI, TRI, Depth + 1);
547 });
548}
549
550bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
553 unsigned Depth) const {
554 switch (MI.getOpcode()) {
555 case TargetOpcode::G_FPTOSI:
556 case TargetOpcode::G_FPTOUI:
557 case TargetOpcode::G_FPTOSI_SAT:
558 case TargetOpcode::G_FPTOUI_SAT:
559 case TargetOpcode::G_FCMP:
560 case TargetOpcode::G_LROUND:
561 case TargetOpcode::G_LLROUND:
562 return true;
563 case TargetOpcode::G_INTRINSIC:
565 case Intrinsic::aarch64_neon_fcvtas:
566 case Intrinsic::aarch64_neon_fcvtau:
567 case Intrinsic::aarch64_neon_fcvtzs:
568 case Intrinsic::aarch64_neon_fcvtzu:
569 case Intrinsic::aarch64_neon_fcvtms:
570 case Intrinsic::aarch64_neon_fcvtmu:
571 case Intrinsic::aarch64_neon_fcvtns:
572 case Intrinsic::aarch64_neon_fcvtnu:
573 case Intrinsic::aarch64_neon_fcvtps:
574 case Intrinsic::aarch64_neon_fcvtpu:
575 // Force FPR register bank for half types, as those types otherwise
576 // don't get legalized correctly resulting in fp16 <-> gpr32 COPY's.
577 return MRI.getType(MI.getOperand(2).getReg()) == LLT::float16();
578 default:
579 break;
580 }
581 break;
582 default:
583 break;
584 }
585 return hasFPConstraints(MI, MRI, TRI, Depth);
586}
587
588bool AArch64RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI,
591 unsigned Depth) const {
592 switch (MI.getOpcode()) {
593 case AArch64::G_DUP:
594 case TargetOpcode::G_SITOFP:
595 case TargetOpcode::G_UITOFP:
596 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
597 case TargetOpcode::G_INSERT_VECTOR_ELT:
598 case TargetOpcode::G_BUILD_VECTOR:
599 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
600 return true;
601 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
603 case Intrinsic::aarch64_neon_ld1x2:
604 case Intrinsic::aarch64_neon_ld1x3:
605 case Intrinsic::aarch64_neon_ld1x4:
606 case Intrinsic::aarch64_neon_ld2:
607 case Intrinsic::aarch64_neon_ld2lane:
608 case Intrinsic::aarch64_neon_ld2r:
609 case Intrinsic::aarch64_neon_ld3:
610 case Intrinsic::aarch64_neon_ld3lane:
611 case Intrinsic::aarch64_neon_ld3r:
612 case Intrinsic::aarch64_neon_ld4:
613 case Intrinsic::aarch64_neon_ld4lane:
614 case Intrinsic::aarch64_neon_ld4r:
615 return true;
616 default:
617 break;
618 }
619 break;
620 default:
621 break;
622 }
623 return hasFPConstraints(MI, MRI, TRI, Depth);
624}
625
626bool AArch64RegisterBankInfo::prefersFPUse(const MachineInstr &MI,
629 unsigned Depth) const {
630 switch (MI.getOpcode()) {
631 case TargetOpcode::G_SITOFP:
632 case TargetOpcode::G_UITOFP:
633 return MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() ==
634 MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
635 }
636 return onlyDefinesFP(MI, MRI, TRI, Depth);
637}
638
639bool AArch64RegisterBankInfo::isLoadFromFPType(const MachineInstr &MI) const {
640 // GMemOperation because we also want to match indexed loads.
641 auto *MemOp = cast<GMemOperation>(&MI);
642 const Value *LdVal = MemOp->getMMO().getValue();
643 if (!LdVal)
644 return false;
645
646 Type *EltTy = nullptr;
647 if (const GlobalValue *GV = dyn_cast<GlobalValue>(LdVal)) {
648 EltTy = GV->getValueType();
649 // Look at the first element of the struct to determine the type we are
650 // loading
651 while (StructType *StructEltTy = dyn_cast<StructType>(EltTy)) {
652 if (StructEltTy->getNumElements() == 0)
653 break;
654 EltTy = StructEltTy->getTypeAtIndex(0U);
655 }
656 // Look at the first element of the array to determine its type
657 if (isa<ArrayType>(EltTy))
658 EltTy = EltTy->getArrayElementType();
659 } else if (!isa<Constant>(LdVal)) {
660 // FIXME: grubbing around uses is pretty ugly, but with no more
661 // `getPointerElementType` there's not much else we can do.
662 for (const auto *LdUser : LdVal->users()) {
663 if (isa<LoadInst>(LdUser)) {
664 EltTy = LdUser->getType();
665 break;
666 }
667 if (isa<StoreInst>(LdUser) && LdUser->getOperand(1) == LdVal) {
668 EltTy = LdUser->getOperand(0)->getType();
669 break;
670 }
671 }
672 }
673 return EltTy && EltTy->isFPOrFPVectorTy();
674}
675
678 const unsigned Opc = MI.getOpcode();
679
680 // Try the default logic for non-generic instructions that are either copies
681 // or already have some operands assigned to banks.
682 if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
683 Opc == TargetOpcode::G_PHI) {
686 if (Mapping.isValid())
687 return Mapping;
688 }
689
690 const MachineFunction &MF = *MI.getParent()->getParent();
691 const MachineRegisterInfo &MRI = MF.getRegInfo();
694
695 switch (Opc) {
696 // G_{F|S|U}REM are not listed because they are not legal.
697 // Arithmetic ops.
698 case TargetOpcode::G_ADD:
699 case TargetOpcode::G_SUB:
700 case TargetOpcode::G_PTR_ADD:
701 case TargetOpcode::G_MUL:
702 case TargetOpcode::G_SDIV:
703 case TargetOpcode::G_UDIV:
704 // Bitwise ops.
705 case TargetOpcode::G_AND:
706 case TargetOpcode::G_OR:
707 case TargetOpcode::G_XOR:
708 // Floating point ops.
709 case TargetOpcode::G_FADD:
710 case TargetOpcode::G_FSUB:
711 case TargetOpcode::G_FMUL:
712 case TargetOpcode::G_FDIV:
713 case TargetOpcode::G_FMAXIMUM:
714 case TargetOpcode::G_FMINIMUM:
715 return getSameKindOfOperandsMapping(MI);
716 case TargetOpcode::G_FPEXT: {
717 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
718 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
720 DefaultMappingID, /*Cost*/ 1,
721 getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
722 /*NumOperands*/ 2);
723 }
724 // Shifts.
725 case TargetOpcode::G_SHL:
726 case TargetOpcode::G_LSHR:
727 case TargetOpcode::G_ASHR: {
728 LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
729 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
730 if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
733 return getSameKindOfOperandsMapping(MI);
734 }
735 case TargetOpcode::COPY: {
736 Register DstReg = MI.getOperand(0).getReg();
737 Register SrcReg = MI.getOperand(1).getReg();
738 // Check if one of the register is not a generic register.
739 if ((DstReg.isPhysical() || !MRI.getType(DstReg).isValid()) ||
740 (SrcReg.isPhysical() || !MRI.getType(SrcReg).isValid())) {
741 const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
742 const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
743 if (!DstRB)
744 DstRB = SrcRB;
745 else if (!SrcRB)
746 SrcRB = DstRB;
747 // If both RB are null that means both registers are generic.
748 // We shouldn't be here.
749 assert(DstRB && SrcRB && "Both RegBank were nullptr");
750 TypeSize Size = getSizeInBits(DstReg, MRI, TRI);
752 DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
753 getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
754 // We only care about the mapping of the destination.
755 /*NumOperands*/ 1);
756 }
757 // Both registers are generic, use G_BITCAST.
758 [[fallthrough]];
759 }
760 case TargetOpcode::G_BITCAST: {
761 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
762 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
763 TypeSize Size = DstTy.getSizeInBits();
764 bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
765 bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
766 const RegisterBank &DstRB =
767 DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
768 const RegisterBank &SrcRB =
769 SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
771 DefaultMappingID, copyCost(DstRB, SrcRB, Size),
772 getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
773 // We only care about the mapping of the destination for COPY.
774 /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
775 }
776 default:
777 break;
778 }
779
780 unsigned NumOperands = MI.getNumOperands();
781 unsigned MappingID = DefaultMappingID;
782
783 // Track the size and bank of each register. We don't do partial mappings.
784 SmallVector<unsigned, 4> OpSize(NumOperands);
785 SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
786 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
787 auto &MO = MI.getOperand(Idx);
788 if (!MO.isReg() || !MO.getReg())
789 continue;
790
791 LLT Ty = MRI.getType(MO.getReg());
792 if (!Ty.isValid())
793 continue;
794 OpSize[Idx] = Ty.getSizeInBits().getKnownMinValue();
795
796 // As a top-level guess, vectors including both scalable and non-scalable
797 // ones go in FPRs, scalars and pointers in GPRs.
798 // For floating-point instructions, scalars go in FPRs.
799 if (Ty.isVector())
800 OpRegBankIdx[Idx] = PMI_FirstFPR;
802 Ty.getSizeInBits() > 64)
803 OpRegBankIdx[Idx] = PMI_FirstFPR;
804 else
805 OpRegBankIdx[Idx] = PMI_FirstGPR;
806 }
807
808 unsigned Cost = 1;
809 // Some of the floating-point instructions have mixed GPR and FPR operands:
810 // fine-tune the computed mapping.
811 switch (Opc) {
812 case AArch64::G_DUP: {
813 Register ScalarReg = MI.getOperand(1).getReg();
814 LLT ScalarTy = MRI.getType(ScalarReg);
815 auto ScalarDef = MRI.getVRegDef(ScalarReg);
816 // We want to select dup(load) into LD1R.
817 if (ScalarDef->getOpcode() == TargetOpcode::G_LOAD)
818 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
819 // s8 is an exception for G_DUP, which we always want on gpr.
820 else if (ScalarTy.getSizeInBits() != 8 &&
821 (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
822 onlyDefinesFP(*ScalarDef, MRI, TRI)))
823 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
824 else {
825 if (ScalarTy.getSizeInBits() < 32 &&
826 getRegBank(ScalarReg, MRI, TRI) == &AArch64::GPRRegBank) {
827 // Calls applyMappingImpl()
828 MappingID = CustomMappingID;
829 }
830 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
831 }
832 break;
833 }
834 case TargetOpcode::G_TRUNC: {
835 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
836 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
837 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
838 break;
839 }
840 case TargetOpcode::G_SITOFP:
841 case TargetOpcode::G_UITOFP: {
842 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
843 break;
844 // Integer to FP conversions don't necessarily happen between GPR -> FPR
845 // regbanks. They can also be done within an FPR register.
846 Register SrcReg = MI.getOperand(1).getReg();
847 if (getRegBank(SrcReg, MRI, TRI) == &AArch64::FPRRegBank &&
848 MRI.getType(SrcReg).getSizeInBits() ==
849 MRI.getType(MI.getOperand(0).getReg()).getSizeInBits())
850 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
851 else
852 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
853 break;
854 }
855 case TargetOpcode::G_FPTOSI_SAT:
856 case TargetOpcode::G_FPTOUI_SAT: {
857 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
858 if (DstType.isVector())
859 break;
860 if (DstType == LLT::scalar(16)) {
861 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
862 break;
863 }
864 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
865 break;
866 }
867 case TargetOpcode::G_FPTOSI:
868 case TargetOpcode::G_FPTOUI:
869 case TargetOpcode::G_INTRINSIC_LRINT:
870 case TargetOpcode::G_INTRINSIC_LLRINT:
871 if (MRI.getType(MI.getOperand(0).getReg()).isVector())
872 break;
873 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
874 break;
875 case TargetOpcode::G_FCMP: {
876 // If the result is a vector, it must use a FPR.
878 MRI.getType(MI.getOperand(0).getReg()).isVector() ? PMI_FirstFPR
879 : PMI_FirstGPR;
880 OpRegBankIdx = {Idx0,
881 /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
882 break;
883 }
884 case TargetOpcode::G_BITCAST:
885 // This is going to be a cross register bank copy and this is expensive.
886 if (OpRegBankIdx[0] != OpRegBankIdx[1])
887 Cost = copyCost(
888 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
889 *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
890 TypeSize::getFixed(OpSize[0]));
891 break;
892 case TargetOpcode::G_LOAD: {
893 // Loading in vector unit is slightly more expensive.
894 // This is actually only true for the LD1R and co instructions,
895 // but anyway for the fast mode this number does not matter and
896 // for the greedy mode the cost of the cross bank copy will
897 // offset this number.
898 // FIXME: Should be derived from the scheduling model.
899 if (OpRegBankIdx[0] != PMI_FirstGPR) {
900 Cost = 2;
901 break;
902 }
903
904 if (cast<GLoad>(MI).isAtomic()) {
905 // Atomics always use GPR destinations. Don't refine any further.
906 OpRegBankIdx[0] = PMI_FirstGPR;
907 break;
908 }
909
910 // Try to guess the type of the load from the MMO.
911 if (isLoadFromFPType(MI)) {
912 OpRegBankIdx[0] = PMI_FirstFPR;
913 break;
914 }
915
916 // Check if that load feeds fp instructions.
917 // In that case, we want the default mapping to be on FPR
918 // instead of blind map every scalar to GPR.
919 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
920 [&](const MachineInstr &UseMI) {
921 // If we have at least one direct or indirect use
922 // in a FP instruction,
923 // assume this was a floating point load in the IR. If it was
924 // not, we would have had a bitcast before reaching that
925 // instruction.
926 //
927 // Int->FP conversion operations are also captured in
928 // prefersFPUse().
929
930 if (isPHIWithFPConstraints(UseMI, MRI, TRI))
931 return true;
932
933 return onlyUsesFP(UseMI, MRI, TRI) ||
934 prefersFPUse(UseMI, MRI, TRI);
935 }))
936 OpRegBankIdx[0] = PMI_FirstFPR;
937 break;
938 }
939 case TargetOpcode::G_STORE:
940 // Check if that store is fed by fp instructions.
941 if (OpRegBankIdx[0] == PMI_FirstGPR) {
942 Register VReg = MI.getOperand(0).getReg();
943 if (!VReg)
944 break;
945 MachineInstr *DefMI = MRI.getVRegDef(VReg);
946 if (onlyDefinesFP(*DefMI, MRI, TRI))
947 OpRegBankIdx[0] = PMI_FirstFPR;
948 break;
949 }
950 break;
951 case TargetOpcode::G_INDEXED_STORE:
952 if (OpRegBankIdx[1] == PMI_FirstGPR) {
953 Register VReg = MI.getOperand(1).getReg();
954 if (!VReg)
955 break;
956 MachineInstr *DefMI = MRI.getVRegDef(VReg);
957 if (onlyDefinesFP(*DefMI, MRI, TRI))
958 OpRegBankIdx[1] = PMI_FirstFPR;
959 break;
960 }
961 break;
962 case TargetOpcode::G_INDEXED_SEXTLOAD:
963 case TargetOpcode::G_INDEXED_ZEXTLOAD:
964 // These should always be GPR.
965 OpRegBankIdx[0] = PMI_FirstGPR;
966 break;
967 case TargetOpcode::G_INDEXED_LOAD: {
968 if (isLoadFromFPType(MI))
969 OpRegBankIdx[0] = PMI_FirstFPR;
970 break;
971 }
972 case TargetOpcode::G_SELECT: {
973 // If the destination is FPR, preserve that.
974 if (OpRegBankIdx[0] != PMI_FirstGPR)
975 break;
976
977 // If we're taking in vectors, we have no choice but to put everything on
978 // FPRs, except for the condition. The condition must always be on a GPR.
979 LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
980 if (SrcTy.isVector()) {
982 break;
983 }
984
985 // Try to minimize the number of copies. If we have more floating point
986 // constrained values than not, then we'll put everything on FPR. Otherwise,
987 // everything has to be on GPR.
988 unsigned NumFP = 0;
989
990 // Check if the uses of the result always produce floating point values.
991 //
992 // For example:
993 //
994 // %z = G_SELECT %cond %x %y
995 // fpr = G_FOO %z ...
996 if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
997 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
998 ++NumFP;
999
1000 // Check if the defs of the source values always produce floating point
1001 // values.
1002 //
1003 // For example:
1004 //
1005 // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
1006 // %z = G_SELECT %cond %x %y
1007 //
1008 // Also check whether or not the sources have already been decided to be
1009 // FPR. Keep track of this.
1010 //
1011 // This doesn't check the condition, since it's just whatever is in NZCV.
1012 // This isn't passed explicitly in a register to fcsel/csel.
1013 for (unsigned Idx = 2; Idx < 4; ++Idx) {
1014 Register VReg = MI.getOperand(Idx).getReg();
1015 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1016 if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
1017 onlyDefinesFP(*DefMI, MRI, TRI))
1018 ++NumFP;
1019 }
1020
1021 // If we have more FP constraints than not, then move everything over to
1022 // FPR.
1023 if (NumFP >= 2)
1025
1026 break;
1027 }
1028 case TargetOpcode::G_UNMERGE_VALUES: {
1029 // If the first operand belongs to a FPR register bank, then make sure that
1030 // we preserve that.
1031 if (OpRegBankIdx[0] != PMI_FirstGPR)
1032 break;
1033
1034 LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
1035 // UNMERGE into scalars from a vector should always use FPR.
1036 // Likewise if any of the uses are FP instructions.
1037 if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
1038 any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
1039 [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
1040 // Set the register bank of every operand to FPR.
1041 for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
1042 Idx < NumOperands; ++Idx)
1043 OpRegBankIdx[Idx] = PMI_FirstFPR;
1044 }
1045 break;
1046 }
1047 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1048 // Destination and source need to be FPRs.
1049 OpRegBankIdx[0] = PMI_FirstFPR;
1050 OpRegBankIdx[1] = PMI_FirstFPR;
1051
1052 // Index needs to be a GPR.
1053 OpRegBankIdx[2] = PMI_FirstGPR;
1054 break;
1055 case TargetOpcode::G_INSERT_VECTOR_ELT:
1056 OpRegBankIdx[0] = PMI_FirstFPR;
1057 OpRegBankIdx[1] = PMI_FirstFPR;
1058
1059 // The element may be either a GPR or FPR. Preserve that behaviour.
1060 if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
1061 OpRegBankIdx[2] = PMI_FirstFPR;
1062 else {
1063 // If the type is i8/i16, and the regank will be GPR, then we change the
1064 // type to i32 in applyMappingImpl.
1065 LLT Ty = MRI.getType(MI.getOperand(2).getReg());
1066 if (Ty.getSizeInBits() == 8 || Ty.getSizeInBits() == 16) {
1067 // Calls applyMappingImpl()
1068 MappingID = CustomMappingID;
1069 }
1070 OpRegBankIdx[2] = PMI_FirstGPR;
1071 }
1072
1073 // Index needs to be a GPR.
1074 OpRegBankIdx[3] = PMI_FirstGPR;
1075 break;
1076 case TargetOpcode::G_EXTRACT: {
1077 // For s128 sources we have to use fpr unless we know otherwise.
1078 auto Src = MI.getOperand(1).getReg();
1079 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
1080 if (SrcTy.getSizeInBits() != 128)
1081 break;
1082 auto Idx = MRI.getRegClassOrNull(Src) == &AArch64::XSeqPairsClassRegClass
1083 ? PMI_FirstGPR
1084 : PMI_FirstFPR;
1085 OpRegBankIdx[0] = Idx;
1086 OpRegBankIdx[1] = Idx;
1087 break;
1088 }
1089 case TargetOpcode::G_BUILD_VECTOR: {
1090 // If the first source operand belongs to a FPR register bank, then make
1091 // sure that we preserve that.
1092 if (OpRegBankIdx[1] != PMI_FirstGPR)
1093 break;
1094 Register VReg = MI.getOperand(1).getReg();
1095 if (!VReg)
1096 break;
1097
1098 // Get the instruction that defined the source operand reg, and check if
1099 // it's a floating point operation. Or, if it's a type like s16 which
1100 // doesn't have a exact size gpr register class. The exception is if the
1101 // build_vector has all constant operands, which may be better to leave as
1102 // gpr without copies, so it can be matched in imported patterns.
1103 MachineInstr *DefMI = MRI.getVRegDef(VReg);
1104 unsigned DefOpc = DefMI->getOpcode();
1105 const LLT SrcTy = MRI.getType(VReg);
1106 if (all_of(MI.operands(), [&](const MachineOperand &Op) {
1107 return Op.isDef() || MRI.getVRegDef(Op.getReg())->getOpcode() ==
1108 TargetOpcode::G_CONSTANT;
1109 }))
1110 break;
1112 SrcTy.getSizeInBits() < 32 ||
1113 getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank) {
1114 // Have a floating point op.
1115 // Make sure every operand gets mapped to a FPR register class.
1116 unsigned NumOperands = MI.getNumOperands();
1117 for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
1118 OpRegBankIdx[Idx] = PMI_FirstFPR;
1119 }
1120 break;
1121 }
1122 case TargetOpcode::G_VECREDUCE_FADD:
1123 case TargetOpcode::G_VECREDUCE_FMUL:
1124 case TargetOpcode::G_VECREDUCE_FMAX:
1125 case TargetOpcode::G_VECREDUCE_FMIN:
1126 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1127 case TargetOpcode::G_VECREDUCE_FMINIMUM:
1128 case TargetOpcode::G_VECREDUCE_ADD:
1129 case TargetOpcode::G_VECREDUCE_MUL:
1130 case TargetOpcode::G_VECREDUCE_AND:
1131 case TargetOpcode::G_VECREDUCE_OR:
1132 case TargetOpcode::G_VECREDUCE_XOR:
1133 case TargetOpcode::G_VECREDUCE_SMAX:
1134 case TargetOpcode::G_VECREDUCE_SMIN:
1135 case TargetOpcode::G_VECREDUCE_UMAX:
1136 case TargetOpcode::G_VECREDUCE_UMIN:
1137 // Reductions produce a scalar value from a vector, the scalar should be on
1138 // FPR bank.
1139 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
1140 break;
1141 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1142 case TargetOpcode::G_VECREDUCE_SEQ_FMUL:
1143 // These reductions also take a scalar accumulator input.
1144 // Assign them FPR for now.
1145 OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR, PMI_FirstFPR};
1146 break;
1147 case TargetOpcode::G_INTRINSIC:
1148 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1149 switch (cast<GIntrinsic>(MI).getIntrinsicID()) {
1150 case Intrinsic::aarch64_neon_vcvtfxs2fp:
1151 case Intrinsic::aarch64_neon_vcvtfxu2fp:
1152 case Intrinsic::aarch64_neon_vcvtfp2fxs:
1153 case Intrinsic::aarch64_neon_vcvtfp2fxu:
1154 // Override these intrinsics, because they would have a partial
1155 // mapping. This is needed for 'half' types, which otherwise don't
1156 // get legalised correctly.
1157 OpRegBankIdx[0] = PMI_FirstFPR;
1158 OpRegBankIdx[2] = PMI_FirstFPR;
1159 // OpRegBankIdx[1] is the intrinsic ID.
1160 // OpRegBankIdx[3] is an integer immediate.
1161 break;
1162 default: {
1163 // Check if we know that the intrinsic has any constraints on its register
1164 // banks. If it does, then update the mapping accordingly.
1165 unsigned Idx = 0;
1166 if (onlyDefinesFP(MI, MRI, TRI))
1167 for (const auto &Op : MI.defs()) {
1168 if (Op.isReg())
1169 OpRegBankIdx[Idx] = PMI_FirstFPR;
1170 ++Idx;
1171 }
1172 else
1173 Idx += MI.getNumExplicitDefs();
1174
1175 if (onlyUsesFP(MI, MRI, TRI))
1176 for (const auto &Op : MI.explicit_uses()) {
1177 if (Op.isReg())
1178 OpRegBankIdx[Idx] = PMI_FirstFPR;
1179 ++Idx;
1180 }
1181 break;
1182 }
1183 }
1184 break;
1185 }
1186 case TargetOpcode::G_LROUND:
1187 case TargetOpcode::G_LLROUND: {
1188 // Source is always floating point and destination is always integer.
1189 OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
1190 break;
1191 }
1192 }
1193
1194 // Finally construct the computed mapping.
1195 SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
1196 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
1197 if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
1198 LLT Ty = MRI.getType(MI.getOperand(Idx).getReg());
1199 if (!Ty.isValid())
1200 continue;
1201 auto Mapping =
1202 getValueMapping(OpRegBankIdx[Idx], TypeSize::getFixed(OpSize[Idx]));
1203 if (!Mapping->isValid())
1205
1206 OpdsMapping[Idx] = Mapping;
1207 }
1208 }
1209
1210 return getInstructionMapping(MappingID, Cost, getOperandsMapping(OpdsMapping),
1211 NumOperands);
1212}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define CHECK_VALUEMAP(RBName, Size)
static bool isFPIntrinsic(const MachineRegisterInfo &MRI, const MachineInstr &MI)
#define CHECK_VALUEMAP_3OPS(RBName, Size)
static const unsigned CustomMappingID
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)
#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)
#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)
This file declares the targeting of the RegisterBankInfo class for AArch64.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
Implement a low-level type suitable for MachineInstr level instruction selection.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
ppc ctr loops verify
static const MCPhysReg FPR[]
FPR - The set of FP registers that should be allocated for arguments on Darwin and AIX.
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static unsigned getRegBankBaseIdxOffset(unsigned RBIdx, TypeSize Size)
static const RegisterBankInfo::ValueMapping * getCopyMapping(unsigned DstBankID, unsigned SrcBankID, TypeSize Size)
Get the pointer to the ValueMapping of the operands of a copy instruction from the SrcBankID register...
static bool checkPartialMappingIdx(PartialMappingIdx FirstAlias, PartialMappingIdx LastAlias, ArrayRef< PartialMappingIdx > Order)
static const RegisterBankInfo::PartialMapping PartMappings[]
static const RegisterBankInfo::ValueMapping * getFPExtMapping(unsigned DstSize, unsigned SrcSize)
Get the instruction mapping for G_FPEXT.
static const RegisterBankInfo::ValueMapping * getValueMapping(PartialMappingIdx RBIdx, TypeSize Size)
Get the pointer to the ValueMapping representing the RegisterBank at RBIdx with a size of Size.
static const RegisterBankInfo::ValueMapping ValMappings[]
InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const override
Get the alternative mappings for MI.
unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const override
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const override
Get a register bank that covers RC.
AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
const InstructionMapping & getInstrMapping(const MachineInstr &MI) const override
Get the mapping of the different operands of MI on the register bank.
const AArch64RegisterInfo * getRegisterInfo() const override
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
static constexpr LLT float16()
Get a 16-bit IEEE half value.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Helper class to build MachineInstr.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Helper class that represents how the value of an instruction may be mapped and what is the related co...
bool isValid() const
Check whether this object is valid.
virtual InstructionMappings getInstrAlternativeMappings(const MachineInstr &MI) const
Get the alternative mappings for MI.
const InstructionMapping & getInstructionMapping(unsigned ID, unsigned Cost, const ValueMapping *OperandsMapping, unsigned NumOperands) const
Method to get a uniquely generated InstructionMapping.
static void applyDefaultMapping(const OperandsMapper &OpdMapper)
Helper method to apply something that is like the default mapping.
const InstructionMapping & getInvalidInstructionMapping() const
Method to get a uniquely generated invalid InstructionMapping.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
unsigned getMaximumSize(unsigned RegBankID) const
Get the maximum size in bits that fits in the given register bank.
TypeSize getSizeInBits(Register Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const
Get the size in bits of Reg.
virtual const RegisterBank & getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const
Get a register bank that covers RC.
const ValueMapping * getOperandsMapping(Iterator Begin, Iterator End) const
Get the uniquely generated array of ValueMapping for the elements of between Begin and End.
static const unsigned DefaultMappingID
Identifier used when the related instruction mapping instance is generated by target independent code...
SmallVector< const InstructionMapping *, 4 > InstructionMappings
Convenient type to represent the alternatives for mapping an instruction.
virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B, TypeSize Size) const
Get the cost of a copy from B to A, or put differently, get the cost of A = COPY B.
const InstructionMapping & getInstrMappingImpl(const MachineInstr &MI) const
Try to get the mapping of MI.
This class implements the register bank concept.
LLVM_ABI bool covers(const TargetRegisterClass &RC) const
Check whether this register bank covers RC.
unsigned getID() const
Get the identifier of this register bank.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
unsigned getID() const
Return the register class ID number.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
Type * getArrayElementType() const
Definition Type.h:408
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
iterator_range< user_iterator > users()
Definition Value.h:426
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1727
InstructionCost Cost
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
bool isPreISelGenericOptimizationHint(unsigned Opcode)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1734
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
DWARFExpression::Operation Op
void call_once(once_flag &flag, Function &&F, Args &&... ArgList)
Execute the function specified as a parameter once.
Definition Threading.h:86
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isPreISelGenericFloatingPointOpcode(unsigned Opc)
Returns whether opcode Opc is a pre-isel generic floating-point opcode, having only floating-point op...
Definition Utils.cpp:1742
The llvm::once_flag structure.
Definition Threading.h:67