LLVM  9.0.0svn
ShrinkWrap.cpp
Go to the documentation of this file.
1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for safe point where the prologue and epilogue can be
10 // inserted.
11 // The safe point for the prologue (resp. epilogue) is called Save
12 // (resp. Restore).
13 // A point is safe for prologue (resp. epilogue) if and only if
14 // it 1) dominates (resp. post-dominates) all the frame related operations and
15 // between 2) two executions of the Save (resp. Restore) point there is an
16 // execution of the Restore (resp. Save) point.
17 //
18 // For instance, the following points are safe:
19 // for (int i = 0; i < 10; ++i) {
20 // Save
21 // ...
22 // Restore
23 // }
24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25 // And the following points are not:
26 // for (int i = 0; i < 10; ++i) {
27 // Save
28 // ...
29 // }
30 // for (int i = 0; i < 10; ++i) {
31 // ...
32 // Restore
33 // }
34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
35 //
36 // This pass also ensures that the safe points are 3) cheaper than the regular
37 // entry and exits blocks.
38 //
39 // Property #1 is ensured via the use of MachineDominatorTree and
40 // MachinePostDominatorTree.
41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42 // points must be in the same loop.
43 // Property #3 is ensured via the MachineBlockFrequencyInfo.
44 //
45 // If this pass found points matching all these properties, then
46 // MachineFrameInfo is updated with this information.
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/ADT/BitVector.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
74 #include "llvm/IR/Attributes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/MC/MCAsmInfo.h"
77 #include "llvm/Pass.h"
79 #include "llvm/Support/Debug.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <memory>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "shrink-wrap"
90 
91 STATISTIC(NumFunc, "Number of functions");
92 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
93 STATISTIC(NumCandidatesDropped,
94  "Number of shrink-wrapping candidates dropped because of frequency");
95 
97 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
98  cl::desc("enable the shrink-wrapping pass"));
99 
100 namespace {
101 
102 /// Class to determine where the safe point to insert the
103 /// prologue and epilogue are.
104 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
105 /// shrink-wrapping term for prologue/epilogue placement, this pass
106 /// does not rely on expensive data-flow analysis. Instead we use the
107 /// dominance properties and loop information to decide which point
108 /// are safe for such insertion.
109 class ShrinkWrap : public MachineFunctionPass {
110  /// Hold callee-saved information.
111  RegisterClassInfo RCI;
114 
115  /// Current safe point found for the prologue.
116  /// The prologue will be inserted before the first instruction
117  /// in this basic block.
118  MachineBasicBlock *Save;
119 
120  /// Current safe point found for the epilogue.
121  /// The epilogue will be inserted before the first terminator instruction
122  /// in this basic block.
123  MachineBasicBlock *Restore;
124 
125  /// Hold the information of the basic block frequency.
126  /// Use to check the profitability of the new points.
128 
129  /// Hold the loop information. Used to determine if Save and Restore
130  /// are in the same loop.
131  MachineLoopInfo *MLI;
132 
133  // Emit remarks.
134  MachineOptimizationRemarkEmitter *ORE = nullptr;
135 
136  /// Frequency of the Entry block.
137  uint64_t EntryFreq;
138 
139  /// Current opcode for frame setup.
140  unsigned FrameSetupOpcode;
141 
142  /// Current opcode for frame destroy.
143  unsigned FrameDestroyOpcode;
144 
145  /// Stack pointer register, used by llvm.{savestack,restorestack}
146  unsigned SP;
147 
148  /// Entry block.
149  const MachineBasicBlock *Entry;
150 
151  using SetOfRegs = SmallSetVector<unsigned, 16>;
152 
153  /// Registers that need to be saved for the current function.
154  mutable SetOfRegs CurrentCSRs;
155 
156  /// Current MachineFunction.
157  MachineFunction *MachineFunc;
158 
159  /// Check if \p MI uses or defines a callee-saved register or
160  /// a frame index. If this is the case, this means \p MI must happen
161  /// after Save and before Restore.
162  bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
163 
164  const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
165  if (CurrentCSRs.empty()) {
166  BitVector SavedRegs;
167  const TargetFrameLowering *TFI =
168  MachineFunc->getSubtarget().getFrameLowering();
169 
170  TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
171 
172  for (int Reg = SavedRegs.find_first(); Reg != -1;
173  Reg = SavedRegs.find_next(Reg))
174  CurrentCSRs.insert((unsigned)Reg);
175  }
176  return CurrentCSRs;
177  }
178 
179  /// Update the Save and Restore points such that \p MBB is in
180  /// the region that is dominated by Save and post-dominated by Restore
181  /// and Save and Restore still match the safe point definition.
182  /// Such point may not exist and Save and/or Restore may be null after
183  /// this call.
184  void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
185 
186  /// Initialize the pass for \p MF.
187  void init(MachineFunction &MF) {
188  RCI.runOnMachineFunction(MF);
189  MDT = &getAnalysis<MachineDominatorTree>();
190  MPDT = &getAnalysis<MachinePostDominatorTree>();
191  Save = nullptr;
192  Restore = nullptr;
193  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
194  MLI = &getAnalysis<MachineLoopInfo>();
195  ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
196  EntryFreq = MBFI->getEntryFreq();
197  const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
198  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
199  FrameSetupOpcode = TII.getCallFrameSetupOpcode();
200  FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
202  Entry = &MF.front();
203  CurrentCSRs.clear();
204  MachineFunc = &MF;
205 
206  ++NumFunc;
207  }
208 
209  /// Check whether or not Save and Restore points are still interesting for
210  /// shrink-wrapping.
211  bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
212 
213  /// Check if shrink wrapping is enabled for this target and function.
214  static bool isShrinkWrapEnabled(const MachineFunction &MF);
215 
216 public:
217  static char ID;
218 
219  ShrinkWrap() : MachineFunctionPass(ID) {
221  }
222 
223  void getAnalysisUsage(AnalysisUsage &AU) const override {
224  AU.setPreservesAll();
231  }
232 
233  MachineFunctionProperties getRequiredProperties() const override {
236  }
237 
238  StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
239 
240  /// Perform the shrink-wrapping analysis and update
241  /// the MachineFrameInfo attached to \p MF with the results.
242  bool runOnMachineFunction(MachineFunction &MF) override;
243 };
244 
245 } // end anonymous namespace
246 
247 char ShrinkWrap::ID = 0;
248 
250 
251 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
257 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
258 
259 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
260  RegScavenger *RS) const {
261  if (MI.getOpcode() == FrameSetupOpcode ||
262  MI.getOpcode() == FrameDestroyOpcode) {
263  LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
264  return true;
265  }
266  for (const MachineOperand &MO : MI.operands()) {
267  bool UseOrDefCSR = false;
268  if (MO.isReg()) {
269  // Ignore instructions like DBG_VALUE which don't read/def the register.
270  if (!MO.isDef() && !MO.readsReg())
271  continue;
272  unsigned PhysReg = MO.getReg();
273  if (!PhysReg)
274  continue;
276  "Unallocated register?!");
277  // The stack pointer is not normally described as a callee-saved register
278  // in calling convention definitions, so we need to watch for it
279  // separately. An SP mentioned by a call instruction, we can ignore,
280  // though, as it's harmless and we do not want to effectively disable tail
281  // calls by forcing the restore point to post-dominate them.
282  UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
283  RCI.getLastCalleeSavedAlias(PhysReg);
284  } else if (MO.isRegMask()) {
285  // Check if this regmask clobbers any of the CSRs.
286  for (unsigned Reg : getCurrentCSRs(RS)) {
287  if (MO.clobbersPhysReg(Reg)) {
288  UseOrDefCSR = true;
289  break;
290  }
291  }
292  }
293  // Skip FrameIndex operands in DBG_VALUE instructions.
294  if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
295  LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
296  << MO.isFI() << "): " << MI << '\n');
297  return true;
298  }
299  }
300  return false;
301 }
302 
303 /// Helper function to find the immediate (post) dominator.
304 template <typename ListOfBBs, typename DominanceAnalysis>
305 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
306  DominanceAnalysis &Dom) {
307  MachineBasicBlock *IDom = &Block;
308  for (MachineBasicBlock *BB : BBs) {
309  IDom = Dom.findNearestCommonDominator(IDom, BB);
310  if (!IDom)
311  break;
312  }
313  if (IDom == &Block)
314  return nullptr;
315  return IDom;
316 }
317 
318 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
319  RegScavenger *RS) {
320  // Get rid of the easy cases first.
321  if (!Save)
322  Save = &MBB;
323  else
324  Save = MDT->findNearestCommonDominator(Save, &MBB);
325 
326  if (!Save) {
327  LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
328  return;
329  }
330 
331  if (!Restore)
332  Restore = &MBB;
333  else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
334  // means the block never returns. If that's the
335  // case, we don't want to call
336  // `findNearestCommonDominator`, which will
337  // return `Restore`.
338  Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
339  else
340  Restore = nullptr; // Abort, we can't find a restore point in this case.
341 
342  // Make sure we would be able to insert the restore code before the
343  // terminator.
344  if (Restore == &MBB) {
345  for (const MachineInstr &Terminator : MBB.terminators()) {
346  if (!useOrDefCSROrFI(Terminator, RS))
347  continue;
348  // One of the terminator needs to happen before the restore point.
349  if (MBB.succ_empty()) {
350  Restore = nullptr; // Abort, we can't find a restore point in this case.
351  break;
352  }
353  // Look for a restore point that post-dominates all the successors.
354  // The immediate post-dominator is what we are looking for.
355  Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
356  break;
357  }
358  }
359 
360  if (!Restore) {
361  LLVM_DEBUG(
362  dbgs() << "Restore point needs to be spanned on several blocks\n");
363  return;
364  }
365 
366  // Make sure Save and Restore are suitable for shrink-wrapping:
367  // 1. all path from Save needs to lead to Restore before exiting.
368  // 2. all path to Restore needs to go through Save from Entry.
369  // We achieve that by making sure that:
370  // A. Save dominates Restore.
371  // B. Restore post-dominates Save.
372  // C. Save and Restore are in the same loop.
373  bool SaveDominatesRestore = false;
374  bool RestorePostDominatesSave = false;
375  while (Save && Restore &&
376  (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
377  !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
378  // Post-dominance is not enough in loops to ensure that all uses/defs
379  // are after the prologue and before the epilogue at runtime.
380  // E.g.,
381  // while(1) {
382  // Save
383  // Restore
384  // if (...)
385  // break;
386  // use/def CSRs
387  // }
388  // All the uses/defs of CSRs are dominated by Save and post-dominated
389  // by Restore. However, the CSRs uses are still reachable after
390  // Restore and before Save are executed.
391  //
392  // For now, just push the restore/save points outside of loops.
393  // FIXME: Refine the criteria to still find interesting cases
394  // for loops.
395  MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
396  // Fix (A).
397  if (!SaveDominatesRestore) {
398  Save = MDT->findNearestCommonDominator(Save, Restore);
399  continue;
400  }
401  // Fix (B).
402  if (!RestorePostDominatesSave)
403  Restore = MPDT->findNearestCommonDominator(Restore, Save);
404 
405  // Fix (C).
406  if (Save && Restore &&
407  (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
408  if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
409  // Push Save outside of this loop if immediate dominator is different
410  // from save block. If immediate dominator is not different, bail out.
411  Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
412  if (!Save)
413  break;
414  } else {
415  // If the loop does not exit, there is no point in looking
416  // for a post-dominator outside the loop.
418  MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
419  // Push Restore outside of this loop.
420  // Look for the immediate post-dominator of the loop exits.
421  MachineBasicBlock *IPdom = Restore;
422  for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
423  IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
424  if (!IPdom)
425  break;
426  }
427  // If the immediate post-dominator is not in a less nested loop,
428  // then we are stuck in a program with an infinite loop.
429  // In that case, we will not find a safe point, hence, bail out.
430  if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
431  Restore = IPdom;
432  else {
433  Restore = nullptr;
434  break;
435  }
436  }
437  }
438  }
439 }
440 
442  StringRef RemarkName, StringRef RemarkMessage,
443  const DiagnosticLocation &Loc,
444  const MachineBasicBlock *MBB) {
445  ORE->emit([&]() {
446  return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
447  << RemarkMessage;
448  });
449 
450  LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
451  return false;
452 }
453 
454 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
455  if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
456  return false;
457 
458  LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
459 
460  init(MF);
461 
463  if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
464  // If MF is irreducible, a block may be in a loop without
465  // MachineLoopInfo reporting it. I.e., we may use the
466  // post-dominance property in loops, which lead to incorrect
467  // results. Moreover, we may miss that the prologue and
468  // epilogue are not in the same loop, leading to unbalanced
469  // construction/deconstruction of the stack frame.
470  return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
471  "Irreducible CFGs are not supported yet.",
472  MF.getFunction().getSubprogram(), &MF.front());
473  }
474 
476  std::unique_ptr<RegScavenger> RS(
477  TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
478 
479  for (MachineBasicBlock &MBB : MF) {
480  LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
481  << MBB.getName() << '\n');
482 
483  if (MBB.isEHFuncletEntry())
484  return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
485  "EH Funclets are not supported yet.",
486  MBB.front().getDebugLoc(), &MBB);
487 
488  if (MBB.isEHPad()) {
489  // Push the prologue and epilogue outside of
490  // the region that may throw by making sure
491  // that all the landing pads are at least at the
492  // boundary of the save and restore points.
493  // The problem with exceptions is that the throw
494  // is not properly modeled and in particular, a
495  // basic block can jump out from the middle.
496  updateSaveRestorePoints(MBB, RS.get());
497  if (!ArePointsInteresting()) {
498  LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
499  return false;
500  }
501  continue;
502  }
503 
504  for (const MachineInstr &MI : MBB) {
505  if (!useOrDefCSROrFI(MI, RS.get()))
506  continue;
507  // Save (resp. restore) point must dominate (resp. post dominate)
508  // MI. Look for the proper basic block for those.
509  updateSaveRestorePoints(MBB, RS.get());
510  // If we are at a point where we cannot improve the placement of
511  // save/restore instructions, just give up.
512  if (!ArePointsInteresting()) {
513  LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
514  return false;
515  }
516  // No need to look for other instructions, this basic block
517  // will already be part of the handled region.
518  break;
519  }
520  }
521  if (!ArePointsInteresting()) {
522  // If the points are not interesting at this point, then they must be null
523  // because it means we did not encounter any frame/CSR related code.
524  // Otherwise, we would have returned from the previous loop.
525  assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
526  LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
527  return false;
528  }
529 
530  LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
531  << '\n');
532 
533  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
534  do {
535  LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
536  << Save->getNumber() << ' ' << Save->getName() << ' '
537  << MBFI->getBlockFreq(Save).getFrequency()
538  << "\nRestore: " << Restore->getNumber() << ' '
539  << Restore->getName() << ' '
540  << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
541 
542  bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
543  if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
544  EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
545  ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
546  TFI->canUseAsEpilogue(*Restore)))
547  break;
548  LLVM_DEBUG(
549  dbgs() << "New points are too expensive or invalid for the target\n");
550  MachineBasicBlock *NewBB;
551  if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
552  Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
553  if (!Save)
554  break;
555  NewBB = Save;
556  } else {
557  // Restore is expensive.
558  Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
559  if (!Restore)
560  break;
561  NewBB = Restore;
562  }
563  updateSaveRestorePoints(*NewBB, RS.get());
564  } while (Save && Restore);
565 
566  if (!ArePointsInteresting()) {
567  ++NumCandidatesDropped;
568  return false;
569  }
570 
571  LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
572  << Save->getNumber() << ' ' << Save->getName()
573  << "\nRestore: " << Restore->getNumber() << ' '
574  << Restore->getName() << '\n');
575 
576  MachineFrameInfo &MFI = MF.getFrameInfo();
577  MFI.setSavePoint(Save);
578  MFI.setRestorePoint(Restore);
579  ++NumCandidates;
580  return false;
581 }
582 
583 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
585 
586  switch (EnableShrinkWrapOpt) {
587  case cl::BOU_UNSET:
588  return TFI->enableShrinkWrapping(MF) &&
589  // Windows with CFI has some limitations that make it impossible
590  // to use shrink-wrapping.
592  // Sanitizers look at the value of the stack at the location
593  // of the crash. Since a crash can happen anywhere, the
594  // frame must be lowered before anything else happen for the
595  // sanitizers to be able to get a correct stack frame.
596  !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
597  MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
598  MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
599  MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
600  // If EnableShrinkWrap is set, it takes precedence on whatever the
601  // target sets. The rational is that we assume we want to test
602  // something related to shrink-wrapping.
603  case cl::BOU_TRUE:
604  return true;
605  case cl::BOU_FALSE:
606  return false;
607  }
608  llvm_unreachable("Invalid shrink-wrapping state");
609 }
Pass interface - Implemented by all &#39;passes&#39;.
Definition: Pass.h:80
bool usesWindowsCFI() const
Definition: MCAsmInfo.h:583
void setSavePoint(MachineBasicBlock *NewSave)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual bool enableShrinkWrapping(const MachineFunction &MF) const
Returns true if the target will correctly handle shrink wrapping.
This class represents lattice values for constants.
Definition: AllocatorList.h:23
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:382
unsigned Reg
virtual const TargetLowering * getTargetLowering() const
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:320
STATISTIC(NumFunctions, "Total number of functions")
unsigned const TargetRegisterInfo * TRI
unsigned getCallFrameDestroyOpcode() const
iterator_range< succ_iterator > successors()
virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS=nullptr) const
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Emit an optimization remark.
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:50
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const HexagonInstrInfo * TII
virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const
Check whether or not the given MBB can be used as a epilogue for the target.
int find_first() const
find_first - Returns the index of the first set bit, -1 if none of the bits are set.
Definition: BitVector.h:331
int find_next(unsigned Prev) const
find_next - Returns the index of the next set bit following the "Prev" bit.
Definition: BitVector.h:339
This file contains the simple types necessary to represent the attributes associated with functions a...
iterator_range< iterator > terminators()
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted...
#define DEBUG_TYPE
Definition: ShrinkWrap.cpp:89
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they&#39;re not in a MachineFuncti...
virtual const TargetInstrInfo * getInstrInfo() const
MachineBasicBlock * findNearestCommonDominator(MachineBasicBlock *A, MachineBasicBlock *B)
findNearestCommonDominator - Find nearest common dominator basic block for basic block A and B...
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
TargetInstrInfo - Interface to description of machine instruction set.
===- MachineOptimizationRemarkEmitter.h - Opt Diagnostics -*- C++ -*-—===//
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:422
This file declares the machine register scavenger class.
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1507
static cl::opt< cl::boolOrDefault > EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, cl::desc("enable the shrink-wrapping pass"))
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const
getblockFreq - Return block frequency.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise)...
Represent the analysis usage information of a pass.
void runOnMachineFunction(const MachineFunction &MF)
runOnFunction - Prepare to answer questions about MF.
void initializeShrinkWrapPass(PassRegistry &)
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
const MachineBasicBlock & front() const
static MachineBasicBlock * FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, DominanceAnalysis &Dom)
Helper function to find the immediate (post) dominator.
Definition: ShrinkWrap.cpp:305
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, "Assign register bank of generic virtual registers", false, false) RegBankSelect
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:297
The optimization diagnostic interface.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
MachineOperand class - Representation of each machine instruction operand.
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:839
bool dominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const
Information about stack frame layout on the target.
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:47
const Function & getFunction() const
Return the LLVM function that this machine code represents.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
void setPreservesAll()
Set by analyses that do not transform their input at all.
MachineFunctionProperties & set(Property P)
TargetSubtargetInfo - Generic base class for all target subtargets.
Representation of each machine instruction.
Definition: MachineInstr.h:63
static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, StringRef RemarkName, StringRef RemarkMessage, const DiagnosticLocation &Loc, const MachineBasicBlock *MBB)
Definition: ShrinkWrap.cpp:441
static bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
bool isEHPad() const
Returns true if the block is a landing pad.
bool isEHFuncletEntry() const
Returns true if this is the entry block of an EH funclet.
virtual const TargetFrameLowering * getFrameLowering() const
virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const
Check whether or not the given MBB can be used as a prologue for the target.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
unsigned getLastCalleeSavedAlias(unsigned PhysReg) const
getLastCalleeSavedAlias - Returns the last callee saved register that overlaps PhysReg, or 0 if Reg doesn&#39;t overlap a CalleeSavedAliases.
Diagnostic information for missed-optimization remarks.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
aarch64 promote const
unsigned getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
IRTranslator LLVM IR MI
char & ShrinkWrapID
ShrinkWrap pass. Look for the best place to insert save and restore.
Definition: ShrinkWrap.cpp:249
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:48
#define LLVM_DEBUG(X)
Definition: Debug.h:122
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
Properties which a MachineFunction may have at a given point in time.
This file describes how to lower LLVM code to machine code.