LLVM 20.0.0git
AMDGPUPrintfRuntimeBinding.cpp
Go to the documentation of this file.
1//=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// \file
9//
10// The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11// later by the runtime.
12//
13// This pass traverses the functions in the module and converts
14// each call to printf to a sequence of operations that
15// store the following into the printf buffer:
16// - format string (passed as a module's metadata unique ID)
17// - bitwise copies of printf arguments
18// The backend passes will need to store metadata in the kernel
19//===----------------------------------------------------------------------===//
20
21#include "AMDGPU.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Module.h"
33
34using namespace llvm;
35
36#define DEBUG_TYPE "printfToRuntime"
37enum { DWORD_ALIGN = 4 };
38
39namespace {
40class AMDGPUPrintfRuntimeBinding final : public ModulePass {
41
42public:
43 static char ID;
44
45 explicit AMDGPUPrintfRuntimeBinding();
46
47private:
48 bool runOnModule(Module &M) override;
49};
50
51class AMDGPUPrintfRuntimeBindingImpl {
52public:
53 AMDGPUPrintfRuntimeBindingImpl() = default;
54 bool run(Module &M);
55
56private:
57 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
58 StringRef fmt, size_t num_ops) const;
59
60 bool lowerPrintfForGpu(Module &M);
61
62 const DataLayout *TD;
64};
65} // namespace
66
67char AMDGPUPrintfRuntimeBinding::ID = 0;
68
69INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
70 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
71 false, false)
74INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
75 "AMDGPU Printf lowering", false, false)
76
77char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
78
79namespace llvm {
81 return new AMDGPUPrintfRuntimeBinding();
82}
83} // namespace llvm
84
85AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding() : ModulePass(ID) {
87}
88
89void AMDGPUPrintfRuntimeBindingImpl::getConversionSpecifiers(
90 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
91 size_t NumOps) const {
92 // not all format characters are collected.
93 // At this time the format characters of interest
94 // are %p and %s, which use to know if we
95 // are either storing a literal string or a
96 // pointer to the printf buffer.
97 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
98 size_t CurFmtSpecifierIdx = 0;
99 size_t PrevFmtSpecifierIdx = 0;
100
101 while ((CurFmtSpecifierIdx = Fmt.find_first_of(
102 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
103 bool ArgDump = false;
104 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
105 CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
106 size_t pTag = CurFmt.find_last_of('%');
107 if (pTag != StringRef::npos) {
108 ArgDump = true;
109 while (pTag && CurFmt[--pTag] == '%') {
110 ArgDump = !ArgDump;
111 }
112 }
113
114 if (ArgDump)
115 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
116
117 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
118 }
119}
120
121static bool shouldPrintAsStr(char Specifier, Type *OpType) {
122 return Specifier == 's' && isa<PointerType>(OpType);
123}
124
126static_assert(NonLiteralStr.size() == 3);
127
129 StringRef S;
130 if (!getConstantStringInfo(V, S))
131 S = NonLiteralStr;
132
133 return S;
134}
135
136static void diagnoseInvalidFormatString(const CallBase *CI) {
137 DiagnosticInfoUnsupported UnsupportedFormatStr(
138 *CI->getParent()->getParent(),
139 "printf format string must be a trivially resolved constant string "
140 "global variable",
141 CI->getDebugLoc());
142 CI->getContext().diagnose(UnsupportedFormatStr);
143}
144
145bool AMDGPUPrintfRuntimeBindingImpl::lowerPrintfForGpu(Module &M) {
146 LLVMContext &Ctx = M.getContext();
147 IRBuilder<> Builder(Ctx);
148 Type *I32Ty = Type::getInt32Ty(Ctx);
149
150 // Instead of creating global variables, the printf format strings are
151 // extracted and passed as metadata. This avoids polluting llvm's symbol
152 // tables in this module. Metadata is going to be extracted by the backend
153 // passes and inserted into the OpenCL binary as appropriate.
154 NamedMDNode *metaD = M.getOrInsertNamedMetadata("llvm.printf.fmts");
155 unsigned UniqID = metaD->getNumOperands();
156
157 for (auto *CI : Printfs) {
158 unsigned NumOps = CI->arg_size();
159
160 SmallString<16> OpConvSpecifiers;
161 Value *Op = CI->getArgOperand(0);
162
163 StringRef FormatStr;
164 if (!getConstantStringInfo(Op, FormatStr)) {
165 Value *Stripped = Op->stripPointerCasts();
166 if (!isa<UndefValue>(Stripped) && !isa<ConstantPointerNull>(Stripped))
168 continue;
169 }
170
171 // We need this call to ascertain that we are printing a string or a
172 // pointer. It takes out the specifiers and fills up the first arg.
173 getConversionSpecifiers(OpConvSpecifiers, FormatStr, NumOps - 1);
174
175 // Add metadata for the string
176 std::string AStreamHolder;
177 raw_string_ostream Sizes(AStreamHolder);
178 int Sum = DWORD_ALIGN;
179 Sizes << CI->arg_size() - 1;
180 Sizes << ':';
181 for (unsigned ArgCount = 1;
182 ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size();
183 ArgCount++) {
184 Value *Arg = CI->getArgOperand(ArgCount);
185 Type *ArgType = Arg->getType();
186 unsigned ArgSize = TD->getTypeAllocSize(ArgType);
187 //
188 // ArgSize by design should be a multiple of DWORD_ALIGN,
189 // expand the arguments that do not follow this rule.
190 //
191 if (ArgSize % DWORD_ALIGN != 0) {
192 Type *ResType = Type::getInt32Ty(Ctx);
193 if (auto *VecType = dyn_cast<VectorType>(ArgType))
194 ResType = VectorType::get(ResType, VecType->getElementCount());
195 Builder.SetInsertPoint(CI);
196 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
197
198 if (ArgType->isFloatingPointTy()) {
199 Arg = Builder.CreateBitCast(
200 Arg,
201 IntegerType::getIntNTy(Ctx, ArgType->getPrimitiveSizeInBits()));
202 }
203
204 if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
205 OpConvSpecifiers[ArgCount - 1] == 'X' ||
206 OpConvSpecifiers[ArgCount - 1] == 'u' ||
207 OpConvSpecifiers[ArgCount - 1] == 'o')
208 Arg = Builder.CreateZExt(Arg, ResType);
209 else
210 Arg = Builder.CreateSExt(Arg, ResType);
211 ArgType = Arg->getType();
212 ArgSize = TD->getTypeAllocSize(ArgType);
213 CI->setOperand(ArgCount, Arg);
214 }
215 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
216 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
217 if (FpCons)
218 ArgSize = 4;
219 else {
220 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
221 if (FpExt && FpExt->getType()->isDoubleTy() &&
222 FpExt->getOperand(0)->getType()->isFloatTy())
223 ArgSize = 4;
224 }
225 }
226 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType))
227 ArgSize = alignTo(getAsConstantStr(Arg).size() + 1, 4);
228
229 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
230 << " for type: " << *ArgType << '\n');
231 Sizes << ArgSize << ':';
232 Sum += ArgSize;
233 }
234 LLVM_DEBUG(dbgs() << "Printf format string in source = " << FormatStr
235 << '\n');
236 for (char C : FormatStr) {
237 // Rest of the C escape sequences (e.g. \') are handled correctly
238 // by the MDParser
239 switch (C) {
240 case '\a':
241 Sizes << "\\a";
242 break;
243 case '\b':
244 Sizes << "\\b";
245 break;
246 case '\f':
247 Sizes << "\\f";
248 break;
249 case '\n':
250 Sizes << "\\n";
251 break;
252 case '\r':
253 Sizes << "\\r";
254 break;
255 case '\v':
256 Sizes << "\\v";
257 break;
258 case ':':
259 // ':' cannot be scanned by Flex, as it is defined as a delimiter
260 // Replace it with it's octal representation \72
261 Sizes << "\\72";
262 break;
263 default:
264 Sizes << C;
265 break;
266 }
267 }
268
269 // Insert the printf_alloc call
270 Builder.SetInsertPoint(CI);
271 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
272
274 Attribute::NoUnwind);
275
276 Type *SizetTy = Type::getInt32Ty(Ctx);
277
278 Type *Tys_alloc[1] = {SizetTy};
279 Type *I8Ty = Type::getInt8Ty(Ctx);
280 Type *I8Ptr = PointerType::get(I8Ty, 1);
281 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
282 FunctionCallee PrintfAllocFn =
283 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
284
285 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
286 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str();
287 MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
288
289 MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
290 metaD->addOperand(myMD);
291 Value *sumC = ConstantInt::get(SizetTy, Sum, false);
292 SmallVector<Value *, 1> alloc_args;
293 alloc_args.push_back(sumC);
294 CallInst *pcall = CallInst::Create(PrintfAllocFn, alloc_args,
295 "printf_alloc_fn", CI->getIterator());
296
297 //
298 // Insert code to split basicblock with a
299 // piece of hammock code.
300 // basicblock splits after buffer overflow check
301 //
302 ConstantPointerNull *zeroIntPtr =
303 ConstantPointerNull::get(PointerType::get(I8Ty, 1));
304 auto *cmp = cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
305 if (!CI->use_empty()) {
306 Value *result =
307 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
308 CI->replaceAllUsesWith(result);
309 }
310 SplitBlock(CI->getParent(), cmp);
311 Instruction *Brnch =
312 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
313 BasicBlock::iterator BrnchPoint = Brnch->getIterator();
314
315 Builder.SetInsertPoint(Brnch);
316
317 // store unique printf id in the buffer
318 //
320 I8Ty, pcall, ConstantInt::get(Ctx, APInt(32, 0)), "PrintBuffID",
321 BrnchPoint);
322
323 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
324 Value *id_gep_cast =
325 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", BrnchPoint);
326
327 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, BrnchPoint);
328
329 // 1st 4 bytes hold the printf_id
330 // the following GEP is the buffer pointer
331 BufferIdx = GetElementPtrInst::Create(I8Ty, pcall,
332 ConstantInt::get(Ctx, APInt(32, 4)),
333 "PrintBuffGep", BrnchPoint);
334
335 Type *Int32Ty = Type::getInt32Ty(Ctx);
336 for (unsigned ArgCount = 1;
337 ArgCount < CI->arg_size() && ArgCount <= OpConvSpecifiers.size();
338 ArgCount++) {
339 Value *Arg = CI->getArgOperand(ArgCount);
340 Type *ArgType = Arg->getType();
341 SmallVector<Value *, 32> WhatToStore;
342 if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) {
343 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
344 if (auto *FpCons = dyn_cast<ConstantFP>(Arg)) {
345 APFloat Val(FpCons->getValueAPF());
346 bool Lost = false;
347 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
348 &Lost);
349 Arg = ConstantFP::get(Ctx, Val);
350 } else if (auto *FpExt = dyn_cast<FPExtInst>(Arg)) {
351 if (FpExt->getType()->isDoubleTy() &&
352 FpExt->getOperand(0)->getType()->isFloatTy()) {
353 Arg = FpExt->getOperand(0);
354 }
355 }
356 }
357 WhatToStore.push_back(Arg);
358 } else if (isa<PointerType>(ArgType)) {
359 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
361 if (!S.empty()) {
362 const uint64_t ReadSize = 4;
363
364 DataExtractor Extractor(S, /*IsLittleEndian=*/true, 8);
366 while (Offset && Offset.tell() < S.size()) {
367 uint64_t ReadNow = std::min(ReadSize, S.size() - Offset.tell());
368 uint64_t ReadBytes = 0;
369 switch (ReadNow) {
370 default: llvm_unreachable("min(4, X) > 4?");
371 case 1:
372 ReadBytes = Extractor.getU8(Offset);
373 break;
374 case 2:
375 ReadBytes = Extractor.getU16(Offset);
376 break;
377 case 3:
378 ReadBytes = Extractor.getU24(Offset);
379 break;
380 case 4:
381 ReadBytes = Extractor.getU32(Offset);
382 break;
383 }
384
385 cantFail(Offset.takeError(),
386 "failed to read bytes from constant array");
387
388 APInt IntVal(8 * ReadSize, ReadBytes);
389
390 // TODO: Should not bothering aligning up.
391 if (ReadNow < ReadSize)
392 IntVal = IntVal.zext(8 * ReadSize);
393
394 Type *IntTy = Type::getIntNTy(Ctx, IntVal.getBitWidth());
395 WhatToStore.push_back(ConstantInt::get(IntTy, IntVal));
396 }
397 } else {
398 // Empty string, give a hint to RT it is no NULL
399 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
400 WhatToStore.push_back(ANumV);
401 }
402 } else {
403 WhatToStore.push_back(Arg);
404 }
405 } else {
406 WhatToStore.push_back(Arg);
407 }
408 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
409 Value *TheBtCast = WhatToStore[I];
410 unsigned ArgSize = TD->getTypeAllocSize(TheBtCast->getType());
411 StoreInst *StBuff = new StoreInst(TheBtCast, BufferIdx, BrnchPoint);
412 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
413 << *StBuff << '\n');
414 (void)StBuff;
415 if (I + 1 == E && ArgCount + 1 == CI->arg_size())
416 break;
417 BufferIdx = GetElementPtrInst::Create(
418 I8Ty, BufferIdx, {ConstantInt::get(I32Ty, ArgSize)},
419 "PrintBuffNextPtr", BrnchPoint);
420 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
421 << *BufferIdx << '\n');
422 }
423 }
424 }
425
426 // erase the printf calls
427 for (auto *CI : Printfs)
428 CI->eraseFromParent();
429
430 Printfs.clear();
431 return true;
432}
433
434bool AMDGPUPrintfRuntimeBindingImpl::run(Module &M) {
435 Triple TT(M.getTargetTriple());
436 if (TT.getArch() == Triple::r600)
437 return false;
438
439 auto *PrintfFunction = M.getFunction("printf");
440 if (!PrintfFunction || !PrintfFunction->isDeclaration() ||
441 M.getModuleFlag("openmp"))
442 return false;
443
444 for (auto &U : PrintfFunction->uses()) {
445 if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
446 if (CI->isCallee(&U) && !CI->isNoBuiltin())
447 Printfs.push_back(CI);
448 }
449 }
450
451 if (Printfs.empty())
452 return false;
453
454 TD = &M.getDataLayout();
455
456 return lowerPrintfForGpu(M);
457}
458
459bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
460 return AMDGPUPrintfRuntimeBindingImpl().run(M);
461}
462
465 bool Changed = AMDGPUPrintfRuntimeBindingImpl().run(M);
466 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
467}
static void diagnoseInvalidFormatString(const CallBase *CI)
amdgpu printf runtime AMDGPU Printf lowering
constexpr StringLiteral NonLiteralStr("???")
static StringRef getAsConstantStr(Value *V)
amdgpu printf runtime binding
static bool shouldPrintAsStr(char Specifier, Type *OpType)
#define LLVM_DEBUG(...)
Definition: Debug.h:106
Module.h This file contains the declarations for the Module class.
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
This file contains some functions that are useful when dealing with strings.
Class for arbitrary precision integers.
Definition: APInt.h:78
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
This class represents a no-op cast from one type to another.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1120
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:271
const APFloat & getValueAPF() const
Definition: Constants.h:314
A constant pointer value that points to null.
Definition: Constants.h:552
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1826
This class represents an Operation in the Expression.
A class representing a position in a DataExtractor, as well as any error encountered during extractio...
Definition: DataExtractor.h:54
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Diagnostic information for unsupported feature in backend.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
This class represents an extension of floating point types.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:170
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:956
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:475
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
Metadata node.
Definition: Metadata.h:1069
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1543
A single uniqued string.
Definition: Metadata.h:720
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:606
ModulePass class - This class is used to implement unstructured interprocedural optimizations and ana...
Definition: Pass.h:251
virtual bool runOnModule(Module &M)=0
runOnModule - Virtual method overriden by subclasses to process the module being operated on.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A tuple of MDNodes.
Definition: Metadata.h:1731
unsigned getNumOperands() const
Definition: Metadata.cpp:1421
void addOperand(MDNode *M)
Definition: Metadata.cpp:1431
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
A wrapper around a string literal that serves as a proxy for constructing global tables of StringRefs...
Definition: StringRef.h:853
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:571
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
size_t find_last_of(char C, size_t From=npos) const
Find the last character in the string that is C, or npos if not found.
Definition: StringRef.h:400
size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition: StringRef.h:377
static constexpr size_t npos
Definition: StringRef.h:53
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:153
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static IntegerType * getInt8Ty(LLVMContext &C)
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:156
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:184
static IntegerType * getInt32Ty(LLVMContext &C)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:225
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Value * getOperand(unsigned i) const
Definition: User.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
char & AMDGPUPrintfRuntimeBindingID
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
ModulePass * createAMDGPUPrintfRuntimeBinding()
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
Definition: Error.h:756
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
void initializeAMDGPUPrintfRuntimeBindingPass(PassRegistry &)
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)