28#define DEBUG_TYPE "call-lowering"
32void CallLowering::anchor() {}
39 if (AttrFn(Attribute::SExt))
41 if (AttrFn(Attribute::ZExt))
43 if (AttrFn(Attribute::InReg))
45 if (AttrFn(Attribute::StructRet))
47 if (AttrFn(Attribute::Nest))
49 if (AttrFn(Attribute::ByVal))
51 if (AttrFn(Attribute::ByRef))
53 if (AttrFn(Attribute::Preallocated))
54 Flags.setPreallocated();
55 if (AttrFn(Attribute::InAlloca))
57 if (AttrFn(Attribute::Returned))
59 if (AttrFn(Attribute::SwiftSelf))
61 if (AttrFn(Attribute::SwiftAsync))
62 Flags.setSwiftAsync();
63 if (AttrFn(Attribute::SwiftError))
64 Flags.setSwiftError();
68 unsigned ArgIdx)
const {
71 return Call.paramHasAttr(ArgIdx, Attr);
80 return Call.hasRetAttr(Attr);
87 unsigned OpIdx)
const {
89 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
97 std::optional<PtrAuthInfo> PAI,
99 std::function<
unsigned()> GetCalleeReg)
const {
120 if (!
Info.CanLowerReturn) {
126 CanBeTailCalled =
false;
134 for (
const auto &Arg : CB.
args()) {
141 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
142 CanBeTailCalled =
false;
144 Info.OrigArgs.push_back(OrigArg);
155 CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
156 assert(isa<Function>(CalleeV));
159 if (
const Function *
F = dyn_cast<Function>(CalleeV)) {
160 if (
F->hasFnAttribute(Attribute::NonLazyBind)) {
167 }
else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
176 Align ReturnHintAlign;
180 if (!
Info.OrigRet.Ty->isVoidTy()) {
184 if (*Alignment >
Align(1)) {
185 ReturnHintAlignReg =
MRI.cloneVirtualRegister(ResRegs[0]);
186 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
187 ReturnHintAlign = *Alignment;
194 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
195 assert(
Info.CFIType->getType()->isIntegerTy(32) &&
"Invalid CFI type");
200 Info.CallConv = CallConv;
201 Info.SwiftErrorVReg = SwiftErrorVReg;
203 Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
205 Info.IsTailCall = CanBeTailCalled;
206 Info.IsVarArg = IsVarArg;
210 if (ReturnHintAlignReg && !
Info.LoweredTailCall) {
218template <
typename FuncInfoTy>
221 const FuncInfoTy &FuncInfo)
const {
222 auto &Flags = Arg.
Flags[0];
232 Align MemAlign =
DL.getABITypeAlign(Arg.
Ty);
233 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
238 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
240 ElementTy = FuncInfo.getParamByRefType(ParamIdx);
242 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
244 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
246 assert(ElementTy &&
"Must have byval, inalloca or preallocated type");
248 uint64_t MemSize =
DL.getTypeAllocSize(ElementTy);
250 Flags.setByRefSize(MemSize);
252 Flags.setByValSize(MemSize);
256 if (
auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
257 MemAlign = *ParamAlign;
258 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
259 MemAlign = *ParamAlign;
263 if (
auto ParamAlign =
265 MemAlign = *ParamAlign;
267 Flags.setMemAlign(MemAlign);
268 Flags.setOrigAlign(
DL.getABITypeAlign(Arg.
Ty));
272 if (Flags.isSwiftSelf())
273 Flags.setReturned(
false);
296 if (SplitVTs.
size() == 0)
299 if (SplitVTs.
size() == 1) {
309 assert(OrigArg.
Regs.size() == SplitVTs.
size() &&
"Regs / types mismatch");
312 OrigArg.
Ty, CallConv,
false,
DL);
313 for (
unsigned i = 0, e = SplitVTs.
size(); i < e; ++i) {
314 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
318 SplitArgs.
back().Flags[0].setInConsecutiveRegs();
321 SplitArgs.
back().Flags[0].setInConsecutiveRegsLast();
329 LLT LLTy =
MRI.getType(DstRegs[0]);
330 LLT PartLLT =
MRI.getType(SrcRegs[0]);
337 return B.buildConcatVectors(DstRegs[0], SrcRegs);
343 if (LCMTy != PartLLT) {
345 return B.buildDeleteTrailingVectorElements(
346 DstRegs[0],
B.buildMergeLikeInstr(LCMTy, SrcRegs));
351 UnmergeSrcReg = SrcRegs[0];
357 std::copy(DstRegs.
begin(), DstRegs.
end(), PadDstRegs.
begin());
360 for (
int I = DstRegs.
size();
I != NumDst; ++
I)
361 PadDstRegs[
I] =
MRI.createGenericVirtualRegister(LLTy);
363 if (PadDstRegs.
size() == 1)
364 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
365 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
377 if (PartLLT == LLTy) {
380 assert(OrigRegs[0] == Regs[0]);
386 B.buildBitcast(OrigRegs[0], Regs[0]);
396 OrigRegs.
size() == 1 && Regs.
size() == 1) {
399 LLT LocTy =
MRI.getType(SrcReg);
401 if (Flags.isSExt()) {
404 }
else if (Flags.isZExt()) {
410 LLT OrigTy =
MRI.getType(OrigRegs[0]);
413 B.buildIntToPtr(OrigRegs[0],
B.buildTrunc(IntPtrTy, SrcReg));
417 B.buildTrunc(OrigRegs[0], SrcReg);
423 LLT OrigTy =
MRI.getType(OrigRegs[0]);
427 B.buildMergeValues(OrigRegs[0], Regs);
429 auto Widened =
B.buildMergeLikeInstr(
LLT::scalar(SrcSize), Regs);
430 B.buildTrunc(OrigRegs[0], Widened);
449 CastRegs[0] =
B.buildBitcast(NewTy, Regs[0]).getReg(0);
463 CastRegs[
I++] =
B.buildBitcast(GCDTy, SrcReg).getReg(0);
476 LLT RealDstEltTy =
MRI.getType(OrigRegs[0]).getElementType();
480 if (DstEltTy == PartLLT) {
485 MRI.setType(Reg, RealDstEltTy);
488 B.buildBuildVector(OrigRegs[0], Regs);
499 B.buildMergeLikeInstr(ExtendedPartTy, Regs.
take_front(PartsPerElt));
503 MRI.setType(
Merge.getReg(0), RealDstEltTy);
508 B.buildBuildVector(OrigRegs[0], EltMerges);
516 if (NumElts == Regs.
size())
517 BuildVec =
B.buildBuildVector(BVType, Regs).getReg(0);
522 LLT SrcEltTy =
MRI.getType(Regs[0]);
524 LLT OriginalEltTy =
MRI.getType(OrigRegs[0]).getElementType();
535 auto Unmerge =
B.buildUnmerge(OriginalEltTy, R);
536 for (
unsigned K = 0; K < EltPerReg; ++K)
537 BVRegs.
push_back(
B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
542 if (BVRegs.
size() > NumElts) {
543 assert((BVRegs.
size() - NumElts) < EltPerReg);
546 BuildVec =
B.buildBuildVector(BVType, BVRegs).getReg(0);
548 B.buildTrunc(OrigRegs[0], BuildVec);
559 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
561 assert(SrcTy != PartTy &&
"identical part types shouldn't reach here");
568 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
576 for (
int i = 0, e = DstRegs.
size(); i != e; ++i)
577 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
587 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
592 if (GCDTy == PartTy) {
594 B.buildUnmerge(DstRegs, SrcReg);
604 auto Ext =
B.buildAnyExt(ExtTy, SrcReg);
605 B.buildUnmerge(DstRegs, Ext);
610 LLT DstTy =
MRI.getType(DstRegs[0]);
613 if (PartTy.
isVector() && LCMTy == PartTy) {
615 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
625 if (!LCMTy.
isVector() && CoveringSize != SrcSize) {
628 CoveringSize =
alignTo(SrcSize, DstSize);
630 UnmergeSrc =
B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).
getReg(0);
634 Register Undef =
B.buildUndef(SrcTy).getReg(0);
636 for (
unsigned Size = SrcSize;
Size != CoveringSize;
Size += SrcSize)
638 UnmergeSrc =
B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
642 if (LCMTy.
isVector() && CoveringSize != SrcSize)
643 UnmergeSrc =
B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
645 B.buildUnmerge(DstRegs, UnmergeSrc);
657 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
F.getContext());
667 return TargetOpcode::G_SEXT;
669 return TargetOpcode::G_ZEXT;
670 return TargetOpcode::G_ANYEXT;
679 unsigned NumArgs = Args.size();
680 for (
unsigned i = 0; i != NumArgs; ++i) {
693 Args[i].Flags[0], CCInfo))
710 Args[i].Flags.clear();
712 for (
unsigned Part = 0; Part < NumParts; ++Part) {
717 Flags.setOrigAlign(
Align(1));
718 if (Part == NumParts - 1)
722 Args[i].Flags.push_back(Flags);
724 Args[i].Flags[Part], CCInfo)) {
745 const unsigned NumArgs = Args.size();
759 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
761 for (
unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
762 assert(j < ArgLocs.
size() &&
"Skipped too many arg locs");
764 assert(VA.
getValNo() == i &&
"Location doesn't correspond to current arg");
767 std::function<void()> Thunk;
769 Args[i],
ArrayRef(ArgLocs).slice(j), &Thunk);
771 DelayedOutgoingRegAssignments.emplace_back(Thunk);
774 j += (NumArgRegs - 1);
783 const LLT LocTy(LocVT);
784 const LLT ValTy(ValVT);
789 AllocaAddressSpace,
DL.getPointerSizeInBits(AllocaAddressSpace));
794 const unsigned NumParts = Args[i].Flags.size();
797 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
799 if (NumParts != 1 || NewLLT != OrigTy) {
802 Args[i].Regs.resize(NumParts);
808 Args[i].Regs[0] =
MRI.createGenericVirtualRegister(
PointerTy);
813 for (
unsigned Part = 0; Part < NumParts; ++Part)
814 Args[i].Regs[Part] =
MRI.createGenericVirtualRegister(NewLLT);
818 assert((j + (NumParts - 1)) < ArgLocs.
size() &&
819 "Too many regs for number of args");
824 assert(Args[i].OrigRegs.size() == 1);
829 bool IndirectParameterPassingHandled =
false;
831 for (
unsigned Part = 0; Part < NumParts; ++Part) {
833 "Only the first parameter should be processed when "
834 "handling indirect passing!");
835 Register ArgReg = Args[i].Regs[Part];
837 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
855 Align AlignmentForStored =
DL.getPrefTypeAlign(Args[i].Ty);
860 AlignmentForStored,
false);
866 MIRBuilder.
buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
870 ArgReg = PointerToStackReg;
871 IndirectParameterPassingHandled =
true;
874 if (VA.
isMemLoc() && !Flags.isByVal()) {
898 }
else if (VA.
isMemLoc() && Flags.isByVal()) {
899 assert(Args[i].Regs.size() == 1 &&
"didn't expect split byval pointer");
906 MIRBuilder.
buildCopy(Args[i].Regs[0], StackAddr);
911 uint64_t MemSize = Flags.getByValSize();
919 if (!Args[i].OrigValue) {
922 const LLT PtrTy =
MRI.getType(StackAddr);
926 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
929 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
933 DstMPO, DstAlign, SrcMPO, SrcAlign,
936 }
else if (i == 0 && !ThisReturnRegs.
empty() &&
943 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
953 Align Alignment =
DL.getABITypeAlign(Args[i].Ty);
960 MIRBuilder.
buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
963 IndirectParameterPassingHandled =
true;
966 if (IndirectParameterPassingHandled)
974 !IndirectParameterPassingHandled) {
978 LocTy, Args[i].Flags[0]);
983 for (
auto &Fn : DelayedOutgoingRegAssignments)
1002 unsigned NumValues = SplitVTs.
size();
1010 for (
unsigned I = 0;
I < NumValues; ++
I) {
1014 MRI.getType(VRegs[
I]),
1033 unsigned NumValues = SplitVTs.
size();
1035 unsigned AS =
DL.getAllocaAddrSpace();
1040 for (
unsigned I = 0;
I < NumValues; ++
I) {
1044 MRI.getType(VRegs[
I]),
1053 unsigned AS =
DL.getAllocaAddrSpace();
1054 DemoteReg =
MRI.createGenericVirtualRegister(
1068 DemoteArg.
Flags[0].setSRet();
1077 unsigned AS =
DL.getAllocaAddrSpace();
1087 DemoteArg.
Flags[0].setSRet();
1089 Info.OrigArgs.insert(
Info.OrigArgs.begin(), DemoteArg);
1090 Info.DemoteStackIndex = FI;
1091 Info.DemoteRegister = DemoteReg;
1097 for (
unsigned I = 0, E = Outs.
size();
I < E; ++
I) {
1116 for (
EVT VT : SplitVTs) {
1122 for (
unsigned I = 0;
I < NumParts; ++
I) {
1130 Type *ReturnType =
F.getReturnType();
1134 getReturnInfo(CallConv, ReturnType,
F.getAttributes(), SplitArgs,
1143 for (
unsigned i = 0; i < OutLocs.
size(); ++i) {
1144 const auto &ArgLoc = OutLocs[i];
1146 if (!ArgLoc.isRegLoc())
1157 <<
"... Call has an argument passed in a callee-saved register.\n");
1160 const ArgInfo &OutInfo = OutArgs[i];
1162 if (OutInfo.
Regs.size() > 1) {
1164 dbgs() <<
"... Cannot handle arguments in multiple registers.\n");
1172 if (!RegDef || RegDef->
getOpcode() != TargetOpcode::COPY) {
1175 <<
"... Parameter was not copied into a VReg, cannot tail call.\n");
1181 if (CopyRHS != PhysReg) {
1182 LLVM_DEBUG(
dbgs() <<
"... Callee-saved register was not copied into "
1183 "VReg, cannot tail call.\n");
1200 if (CallerCC == CalleeCC)
1204 CCState CCInfo1(CalleeCC,
Info.IsVarArg, MF, ArgLocs1,
F.getContext());
1209 CCState CCInfo2(CallerCC,
F.isVarArg(), MF, ArgLocs2,
F.getContext());
1215 if (ArgLocs1.
size() != ArgLocs2.
size())
1219 for (
unsigned i = 0, e = ArgLocs1.
size(); i < e; ++i) {
1248 if (ValVT != MVT::iPTR) {
1253 if (Flags.isPointer()) {
1264 unsigned AddrSpace = Flags.getPointerAddrSpace();
1284 const LLT PtrTy =
MRI.getType(DstPtr);
1288 MIRBuilder.
buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1293 unsigned MaxSizeBits) {
1297 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1300 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1301 if (MaxSizeBits <= ValTy.getSizeInBits())
1306 const LLT ValRegTy =
MRI.getType(ValReg);
1327 Register NewReg =
MRI.createGenericVirtualRegister(LocTy);
1332 Register NewReg =
MRI.createGenericVirtualRegister(LocTy);
1340void CallLowering::ValueAssigner::anchor() {}
1386 const LLT LocTy(LocVT);
1387 const LLT RegTy =
MRI.getType(ValVReg);
1394 auto Copy = MIRBuilder.
buildCopy(LocTy, PhysReg);
1395 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static void addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, const std::function< bool(Attribute::AttrKind)> &AttrFn)
Helper function which updates Flags when AttrFn returns true.
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, Register SrcReg, LLT SrcTy, LLT PartTy, unsigned ExtendOp=TargetOpcode::G_ANYEXT)
Create a sequence of instructions to expand the value in SrcReg (of type SrcTy) to the types in DstRe...
static MachineInstrBuilder mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, ArrayRef< Register > SrcRegs)
Pack values SrcRegs to cover the vector type result DstRegs.
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef< Register > OrigRegs, ArrayRef< Register > Regs, LLT LLTy, LLT PartLLT, const ISD::ArgFlagsTy Flags)
Create a sequence of instructions to combine pieces split into register typed values to the original ...
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy)
Check if we can use a basic COPY instruction between the two types.
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)
This file describes how to lower LLVM calls to machine code calls.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
Module.h This file contains the declarations for the Module class.
static unsigned NumFixedArgs
This file declares the MachineIRBuilder class.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file describes how to lower LLVM code to machine code.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
StringRef getValueAsString() const
Return the attribute's value as a string.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
CCState - This class holds information needed while lowering arguments and return values.
CallingConv::ID getCallingConv() const
LLVMContext & getContext() const
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
AttributeList getAttributes() const
Return the attributes for this call.
bool isTailCall() const
Tests if this call site is marked as a tail call.
void insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, const CallBase &CB, CallLoweringInfo &Info) const
For the call-base described by CB, insert the hidden sret ArgInfo to the OrigArgs field of Info.
void insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg, int FI) const
Load the returned value from the stack into virtual registers in VRegs.
bool checkReturnTypeForCallConv(MachineFunction &MF) const
Toplevel function to check the return type based on the target calling convention.
bool handleAssignments(ValueHandler &Handler, SmallVectorImpl< ArgInfo > &Args, CCState &CCState, SmallVectorImpl< CCValAssign > &ArgLocs, MachineIRBuilder &MIRBuilder, ArrayRef< Register > ThisReturnRegs={}) const
Use Handler to insert code to handle the argument/return values represented by Args.
bool resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl< ArgInfo > &InArgs, ValueAssigner &CalleeAssigner, ValueAssigner &CallerAssigner) const
void splitToValueTypes(const ArgInfo &OrigArgInfo, SmallVectorImpl< ArgInfo > &SplitArgs, const DataLayout &DL, CallingConv::ID CallConv, SmallVectorImpl< uint64_t > *Offsets=nullptr) const
Break OrigArgInfo into one or more pieces the calling convention can process, returned in SplitArgs.
virtual bool canLowerReturn(MachineFunction &MF, CallingConv::ID CallConv, SmallVectorImpl< BaseArgInfo > &Outs, bool IsVarArg) const
This hook must be implemented to check whether the return values described by Outs can fit into the r...
virtual bool isTypeIsValidForThisReturn(EVT Ty) const
For targets which support the "returned" parameter attribute, returns true if the given type is a val...
void insertSRetIncomingArgument(const Function &F, SmallVectorImpl< ArgInfo > &SplitArgs, Register &DemoteReg, MachineRegisterInfo &MRI, const DataLayout &DL) const
Insert the hidden sret ArgInfo to the beginning of SplitArgs.
ISD::ArgFlagsTy getAttributesForArgIdx(const CallBase &Call, unsigned ArgIdx) const
bool determineAndHandleAssignments(ValueHandler &Handler, ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, bool IsVarArg, ArrayRef< Register > ThisReturnRegs={}) const
Invoke ValueAssigner::assignArg on each of the given Args and then use Handler to move them to the as...
void insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg) const
Store the return value given by VRegs into stack starting at the offset specified in DemoteReg.
void addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, const AttributeList &Attrs, unsigned OpIdx) const
Adds flags to Flags based off of the attributes in Attrs.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ArgInfo > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
void getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs, SmallVectorImpl< BaseArgInfo > &Outs, const DataLayout &DL) const
Get the type and the ArgFlags for the split components of RetTy as returned by ComputeValueVTs.
bool determineAssignments(ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, CCState &CCInfo) const
Analyze the argument list in Args, using Assigner to populate CCInfo.
bool checkReturn(CCState &CCInfo, SmallVectorImpl< BaseArgInfo > &Outs, CCAssignFn *Fn) const
const TargetLowering * getTLI() const
Getter for generic TargetLowering class.
virtual bool lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const
This hook must be implemented to lower the given call instruction, including argument and return valu...
void setArgFlags(ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const
ISD::ArgFlagsTy getAttributesForReturn(const CallBase &Call) const
A parsed version of the target data layout string in and methods for querying it.
unsigned getAllocaAddrSpace() const
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
constexpr TypeSize getSizeInBytes() const
Returns the total size of the type in bytes, i.e.
This is an important class for using LLVM in a threaded context.
Wrapper class representing physical registers. Should be passed by value.
bool isVector() const
Return true if this is a vector value type.
static MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV)
Build and insert Res = G_GLOBAL_VALUE GV.
std::optional< MachineInstrBuilder > materializePtrAdd(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value)
Materialize and insert Res = G_PTR_ADD Op0, (G_CONSTANT Value)
MachineInstrBuilder buildSExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_SEXT Op.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ZEXT Op.
MachineInstrBuilder buildAssertZExt(const DstOp &Res, const SrcOp &Op, unsigned Size)
Build and insert Res = G_ASSERT_ZEXT Op, Size.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildMemCpy(const SrcOp &DstPtr, const SrcOp &SrcPtr, const SrcOp &Size, MachineMemOperand &DstMMO, MachineMemOperand &SrcMMO)
MachineInstrBuilder buildAssertAlign(const DstOp &Res, const SrcOp &Op, Align AlignVal)
Build and insert Res = G_ASSERT_ALIGN Op, AlignVal.
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
const DataLayout & getDataLayout() const
MachineInstrBuilder buildAssertSExt(const DstOp &Res, const SrcOp &Op, unsigned Size)
Build and insert Res = G_ASSERT_SEXT Op, Size.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
MachineInstrBuilder buildPtrToInt(const DstOp &Dst, const SrcOp &Src)
Build and insert a G_PTRTOINT instruction.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Class to represent pointers.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
LLVM_READNONE LLT getCoverTy(LLT OrigTy, LLT TargetTy)
Return smallest type that covers both OrigTy and TargetTy and is multiple of TargetTy.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_READNONE LLT getGCDType(LLT OrigTy, LLT TargetTy)
Return a type where the total size is the greatest common divisor of OrigTy and TargetTy.
LLT getLLTForType(Type &Ty, const DataLayout &DL)
Construct a low-level type based on an LLVM type.
Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
const Value * OrigValue
Optionally track the original IR value for the argument.
SmallVector< Register, 4 > Regs
unsigned OrigArgIndex
Index original Function's argument.
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
SmallVector< ISD::ArgFlagsTy, 4 > Flags
void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA) override
Provides a default implementation for argument handling.
Register buildExtensionHint(const CCValAssign &VA, Register SrcReg, LLT NarrowTy)
Insert G_ASSERT_ZEXT/G_ASSERT_SEXT or other hint instruction based on VA, returning the new register ...
Argument handling is mostly uniform between the four places that make these decisions: function forma...
virtual bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State)
Wrap call to (typically tablegenerated CCAssignFn).
void copyArgumentMemory(const ArgInfo &Arg, Register DstPtr, Register SrcPtr, const MachinePointerInfo &DstPtrInfo, Align DstAlign, const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, CCValAssign &VA) const
Do a memory copy of MemSize bytes from SrcPtr to DstPtr.
virtual Register getStackAddress(uint64_t MemSize, int64_t Offset, MachinePointerInfo &MPO, ISD::ArgFlagsTy Flags)=0
Materialize a VReg containing the address of the specified stack-based object.
virtual LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const
Return the in-memory size to write for the argument at VA.
bool isIncomingArgumentHandler() const
Returns true if the handler is dealing with incoming arguments, i.e.
virtual void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, const MachinePointerInfo &MPO, const CCValAssign &VA)=0
The specified value has been assigned to a stack location.
Register extendRegister(Register ValReg, const CCValAssign &VA, unsigned MaxSizeBits=0)
Extend a register to the location type given in VA, capped at extending to at most MaxSize bits.
virtual unsigned assignCustomValue(ArgInfo &Arg, ArrayRef< CCValAssign > VAs, std::function< void()> *Thunk=nullptr)
Handle custom values, which may be passed into one or more of VAs.
virtual void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA)=0
The specified value has been assigned to a physical register, handle the appropriate COPY (either to ...
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.