LLVM 20.0.0git
InferAddressSpaces.cpp
Go to the documentation of this file.
1//===- InferAddressSpace.cpp - --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// CUDA C/C++ includes memory space designation as variable type qualifers (such
10// as __global__ and __shared__). Knowing the space of a memory access allows
11// CUDA compilers to emit faster PTX loads and stores. For example, a load from
12// shared memory can be translated to `ld.shared` which is roughly 10% faster
13// than a generic `ld` on an NVIDIA Tesla K40c.
14//
15// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16// compilers must infer the memory space of an address expression from
17// type-qualified variables.
18//
19// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21// places only type-qualified variables in specific address spaces, and then
22// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23// (so-called the generic address space) for other instructions to use.
24//
25// For example, the Clang translates the following CUDA code
26// __shared__ float a[10];
27// float v = a[i];
28// to
29// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31// %v = load float, float* %1 ; emits ld.f32
32// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33// redirected to %0 (the generic version of @a).
34//
35// The optimization implemented in this file propagates specific address spaces
36// from type-qualified variable declarations to its users. For example, it
37// optimizes the above IR to
38// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41// codegen is able to emit ld.shared.f32 for %v.
42//
43// Address space inference works in two steps. First, it uses a data-flow
44// analysis to infer as many generic pointers as possible to point to only one
45// specific address space. In the above example, it can prove that %1 only
46// points to addrspace(3). This algorithm was published in
47// CUDA: Compiling and optimizing for a GPU platform
48// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49// ICCS 2012
50//
51// Then, address space inference replaces all refinable generic pointers with
52// equivalent specific pointers.
53//
54// The major challenge of implementing this optimization is handling PHINodes,
55// which may create loops in the data flow graph. This brings two complications.
56//
57// First, the data flow analysis in Step 1 needs to be circular. For example,
58// %generic.input = addrspacecast float addrspace(3)* %input to float*
59// loop:
60// %y = phi [ %generic.input, %y2 ]
61// %y2 = getelementptr %y, 1
62// %v = load %y2
63// br ..., label %loop, ...
64// proving %y specific requires proving both %generic.input and %y2 specific,
65// but proving %y2 specific circles back to %y. To address this complication,
66// the data flow analysis operates on a lattice:
67// uninitialized > specific address spaces > generic.
68// All address expressions (our implementation only considers phi, bitcast,
69// addrspacecast, and getelementptr) start with the uninitialized address space.
70// The monotone transfer function moves the address space of a pointer down a
71// lattice path from uninitialized to specific and then to generic. A join
72// operation of two different specific address spaces pushes the expression down
73// to the generic address space. The analysis completes once it reaches a fixed
74// point.
75//
76// Second, IR rewriting in Step 2 also needs to be circular. For example,
77// converting %y to addrspace(3) requires the compiler to know the converted
78// %y2, but converting %y2 needs the converted %y. To address this complication,
79// we break these cycles using "poison" placeholders. When converting an
80// instruction `I` to a new address space, if its operand `Op` is not converted
81// yet, we let `I` temporarily use `poison` and fix all the uses later.
82// For instance, our algorithm first converts %y to
83// %y' = phi float addrspace(3)* [ %input, poison ]
84// Then, it converts %y2 to
85// %y2' = getelementptr %y', 1
86// Finally, it fixes the poison in %y' so that
87// %y' = phi float addrspace(3)* [ %input, %y2' ]
88//
89//===----------------------------------------------------------------------===//
90
92#include "llvm/ADT/ArrayRef.h"
93#include "llvm/ADT/DenseMap.h"
94#include "llvm/ADT/DenseSet.h"
95#include "llvm/ADT/SetVector.h"
100#include "llvm/IR/BasicBlock.h"
101#include "llvm/IR/Constant.h"
102#include "llvm/IR/Constants.h"
103#include "llvm/IR/Dominators.h"
104#include "llvm/IR/Function.h"
105#include "llvm/IR/IRBuilder.h"
106#include "llvm/IR/InstIterator.h"
107#include "llvm/IR/Instruction.h"
108#include "llvm/IR/Instructions.h"
110#include "llvm/IR/Intrinsics.h"
111#include "llvm/IR/LLVMContext.h"
112#include "llvm/IR/Operator.h"
113#include "llvm/IR/PassManager.h"
114#include "llvm/IR/Type.h"
115#include "llvm/IR/Use.h"
116#include "llvm/IR/User.h"
117#include "llvm/IR/Value.h"
118#include "llvm/IR/ValueHandle.h"
120#include "llvm/Pass.h"
121#include "llvm/Support/Casting.h"
123#include "llvm/Support/Debug.h"
129#include <cassert>
130#include <iterator>
131#include <limits>
132#include <utility>
133#include <vector>
134
135#define DEBUG_TYPE "infer-address-spaces"
136
137using namespace llvm;
138
140 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
141 cl::desc("The default address space is assumed as the flat address space. "
142 "This is mainly for test purpose."));
143
144static const unsigned UninitializedAddressSpace =
145 std::numeric_limits<unsigned>::max();
146
147namespace {
148
149using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
150// Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
151// the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
152// addrspace is inferred on the *use* of a pointer. This map is introduced to
153// infer addrspace from the addrspace predicate assumption built from assume
154// intrinsic. In that scenario, only specific uses (under valid assumption
155// context) could be inferred with a new addrspace.
156using PredicatedAddrSpaceMapTy =
158using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
159
160class InferAddressSpaces : public FunctionPass {
161 unsigned FlatAddrSpace = 0;
162
163public:
164 static char ID;
165
166 InferAddressSpaces()
167 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169 }
170 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172 }
173
174 void getAnalysisUsage(AnalysisUsage &AU) const override {
175 AU.setPreservesCFG();
179 }
180
181 bool runOnFunction(Function &F) override;
182};
183
184class InferAddressSpacesImpl {
185 AssumptionCache &AC;
186 Function *F = nullptr;
187 const DominatorTree *DT = nullptr;
188 const TargetTransformInfo *TTI = nullptr;
189 const DataLayout *DL = nullptr;
190
191 /// Target specific address space which uses of should be replaced if
192 /// possible.
193 unsigned FlatAddrSpace = 0;
194
195 // Try to update the address space of V. If V is updated, returns true and
196 // false otherwise.
197 bool updateAddressSpace(const Value &V,
198 ValueToAddrSpaceMapTy &InferredAddrSpace,
199 PredicatedAddrSpaceMapTy &PredicatedAS) const;
200
201 // Tries to infer the specific address space of each address expression in
202 // Postorder.
203 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
204 ValueToAddrSpaceMapTy &InferredAddrSpace,
205 PredicatedAddrSpaceMapTy &PredicatedAS) const;
206
207 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
208
209 Value *cloneInstructionWithNewAddressSpace(
210 Instruction *I, unsigned NewAddrSpace,
211 const ValueToValueMapTy &ValueWithNewAddrSpace,
212 const PredicatedAddrSpaceMapTy &PredicatedAS,
213 SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
214
215 void performPointerReplacement(
216 Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
217 SmallVectorImpl<Instruction *> &DeadInstructions) const;
218
219 // Changes the flat address expressions in function F to point to specific
220 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
221 // all flat expressions in the use-def graph of function F.
222 bool rewriteWithNewAddressSpaces(
223 ArrayRef<WeakTrackingVH> Postorder,
224 const ValueToAddrSpaceMapTy &InferredAddrSpace,
225 const PredicatedAddrSpaceMapTy &PredicatedAS) const;
226
227 void appendsFlatAddressExpressionToPostorderStack(
228 Value *V, PostorderStackTy &PostorderStack,
229 DenseSet<Value *> &Visited) const;
230
231 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
232 Value *NewV) const;
233 void collectRewritableIntrinsicOperands(IntrinsicInst *II,
234 PostorderStackTy &PostorderStack,
235 DenseSet<Value *> &Visited) const;
236
237 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
238
239 Value *cloneValueWithNewAddressSpace(
240 Value *V, unsigned NewAddrSpace,
241 const ValueToValueMapTy &ValueWithNewAddrSpace,
242 const PredicatedAddrSpaceMapTy &PredicatedAS,
243 SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
244 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
245
246 unsigned getPredicatedAddrSpace(const Value &PtrV,
247 const Value *UserCtx) const;
248
249public:
250 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
251 const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
252 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
253 bool run(Function &F);
254};
255
256} // end anonymous namespace
257
258char InferAddressSpaces::ID = 0;
259
260INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
261 false, false)
264INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
266
267static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
268 assert(Ty->isPtrOrPtrVectorTy());
269 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
270 return Ty->getWithNewType(NPT);
271}
272
273// Check whether that's no-op pointer bicast using a pair of
274// `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
275// different address spaces.
276static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
277 const TargetTransformInfo *TTI) {
278 assert(I2P->getOpcode() == Instruction::IntToPtr);
279 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
280 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
281 return false;
282 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
283 // no-op cast. Besides checking both of them are no-op casts, as the
284 // reinterpreted pointer may be used in other pointer arithmetic, we also
285 // need to double-check that through the target-specific hook. That ensures
286 // the underlying target also agrees that's a no-op address space cast and
287 // pointer bits are preserved.
288 // The current IR spec doesn't have clear rules on address space casts,
289 // especially a clear definition for pointer bits in non-default address
290 // spaces. It would be undefined if that pointer is dereferenced after an
291 // invalid reinterpret cast. Also, due to the unclearness for the meaning of
292 // bits in non-default address spaces in the current spec, the pointer
293 // arithmetic may also be undefined after invalid pointer reinterpret cast.
294 // However, as we confirm through the target hooks that it's a no-op
295 // addrspacecast, it doesn't matter since the bits should be the same.
296 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
297 unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
299 I2P->getOperand(0)->getType(), I2P->getType(),
300 DL) &&
302 P2I->getOperand(0)->getType(), P2I->getType(),
303 DL) &&
304 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
305}
306
307// Returns true if V is an address expression.
308// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
309// getelementptr operators.
310static bool isAddressExpression(const Value &V, const DataLayout &DL,
311 const TargetTransformInfo *TTI) {
312 const Operator *Op = dyn_cast<Operator>(&V);
313 if (!Op)
314 return false;
315
316 switch (Op->getOpcode()) {
317 case Instruction::PHI:
318 assert(Op->getType()->isPtrOrPtrVectorTy());
319 return true;
320 case Instruction::BitCast:
321 case Instruction::AddrSpaceCast:
322 case Instruction::GetElementPtr:
323 return true;
324 case Instruction::Select:
325 return Op->getType()->isPtrOrPtrVectorTy();
326 case Instruction::Call: {
327 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
328 return II && II->getIntrinsicID() == Intrinsic::ptrmask;
329 }
330 case Instruction::IntToPtr:
331 return isNoopPtrIntCastPair(Op, DL, TTI);
332 default:
333 // That value is an address expression if it has an assumed address space.
335 }
336}
337
338// Returns the pointer operands of V.
339//
340// Precondition: V is an address expression.
343 const TargetTransformInfo *TTI) {
344 const Operator &Op = cast<Operator>(V);
345 switch (Op.getOpcode()) {
346 case Instruction::PHI: {
347 auto IncomingValues = cast<PHINode>(Op).incoming_values();
348 return {IncomingValues.begin(), IncomingValues.end()};
349 }
350 case Instruction::BitCast:
351 case Instruction::AddrSpaceCast:
352 case Instruction::GetElementPtr:
353 return {Op.getOperand(0)};
354 case Instruction::Select:
355 return {Op.getOperand(1), Op.getOperand(2)};
356 case Instruction::Call: {
357 const IntrinsicInst &II = cast<IntrinsicInst>(Op);
358 assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
359 "unexpected intrinsic call");
360 return {II.getArgOperand(0)};
361 }
362 case Instruction::IntToPtr: {
364 auto *P2I = cast<Operator>(Op.getOperand(0));
365 return {P2I->getOperand(0)};
366 }
367 default:
368 llvm_unreachable("Unexpected instruction type.");
369 }
370}
371
372bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
373 Value *OldV,
374 Value *NewV) const {
375 Module *M = II->getParent()->getParent()->getParent();
376 Intrinsic::ID IID = II->getIntrinsicID();
377 switch (IID) {
378 case Intrinsic::objectsize:
379 case Intrinsic::masked_load: {
380 Type *DestTy = II->getType();
381 Type *SrcTy = NewV->getType();
382 Function *NewDecl =
383 Intrinsic::getOrInsertDeclaration(M, IID, {DestTy, SrcTy});
384 II->setArgOperand(0, NewV);
385 II->setCalledFunction(NewDecl);
386 return true;
387 }
388 case Intrinsic::ptrmask:
389 // This is handled as an address expression, not as a use memory operation.
390 return false;
391 case Intrinsic::masked_gather: {
392 Type *RetTy = II->getType();
393 Type *NewPtrTy = NewV->getType();
394 Function *NewDecl =
395 Intrinsic::getOrInsertDeclaration(M, IID, {RetTy, NewPtrTy});
396 II->setArgOperand(0, NewV);
397 II->setCalledFunction(NewDecl);
398 return true;
399 }
400 case Intrinsic::masked_store:
401 case Intrinsic::masked_scatter: {
402 Type *ValueTy = II->getOperand(0)->getType();
403 Type *NewPtrTy = NewV->getType();
405 M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
406 II->setArgOperand(1, NewV);
407 II->setCalledFunction(NewDecl);
408 return true;
409 }
410 case Intrinsic::prefetch:
411 case Intrinsic::is_constant: {
413 M, II->getIntrinsicID(), {NewV->getType()});
414 II->setArgOperand(0, NewV);
415 II->setCalledFunction(NewDecl);
416 return true;
417 }
418 case Intrinsic::fake_use: {
419 II->replaceUsesOfWith(OldV, NewV);
420 return true;
421 }
422 default: {
423 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
424 if (!Rewrite)
425 return false;
426 if (Rewrite != II)
427 II->replaceAllUsesWith(Rewrite);
428 return true;
429 }
430 }
431}
432
433void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
434 IntrinsicInst *II, PostorderStackTy &PostorderStack,
435 DenseSet<Value *> &Visited) const {
436 auto IID = II->getIntrinsicID();
437 switch (IID) {
438 case Intrinsic::ptrmask:
439 case Intrinsic::objectsize:
440 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
441 PostorderStack, Visited);
442 break;
443 case Intrinsic::is_constant: {
444 Value *Ptr = II->getArgOperand(0);
445 if (Ptr->getType()->isPtrOrPtrVectorTy()) {
446 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
447 Visited);
448 }
449
450 break;
451 }
452 case Intrinsic::masked_load:
453 case Intrinsic::masked_gather:
454 case Intrinsic::prefetch:
455 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
456 PostorderStack, Visited);
457 break;
458 case Intrinsic::masked_store:
459 case Intrinsic::masked_scatter:
460 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
461 PostorderStack, Visited);
462 break;
463 case Intrinsic::fake_use: {
464 for (Value *Op : II->operands()) {
465 if (Op->getType()->isPtrOrPtrVectorTy()) {
466 appendsFlatAddressExpressionToPostorderStack(Op, PostorderStack,
467 Visited);
468 }
469 }
470
471 break;
472 }
473 default:
474 SmallVector<int, 2> OpIndexes;
475 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
476 for (int Idx : OpIndexes) {
477 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
478 PostorderStack, Visited);
479 }
480 }
481 break;
482 }
483}
484
485// Returns all flat address expressions in function F. The elements are
486// If V is an unvisited flat address expression, appends V to PostorderStack
487// and marks it as visited.
488void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
489 Value *V, PostorderStackTy &PostorderStack,
490 DenseSet<Value *> &Visited) const {
491 assert(V->getType()->isPtrOrPtrVectorTy());
492
493 // Generic addressing expressions may be hidden in nested constant
494 // expressions.
495 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
496 // TODO: Look in non-address parts, like icmp operands.
497 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
498 PostorderStack.emplace_back(CE, false);
499
500 return;
501 }
502
503 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
504 isAddressExpression(*V, *DL, TTI)) {
505 if (Visited.insert(V).second) {
506 PostorderStack.emplace_back(V, false);
507
508 Operator *Op = cast<Operator>(V);
509 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
510 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
511 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
512 PostorderStack.emplace_back(CE, false);
513 }
514 }
515 }
516 }
517}
518
519// Returns all flat address expressions in function F. The elements are ordered
520// in postorder.
521std::vector<WeakTrackingVH>
522InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
523 // This function implements a non-recursive postorder traversal of a partial
524 // use-def graph of function F.
525 PostorderStackTy PostorderStack;
526 // The set of visited expressions.
527 DenseSet<Value *> Visited;
528
529 auto PushPtrOperand = [&](Value *Ptr) {
530 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
531 };
532
533 // Look at operations that may be interesting accelerate by moving to a known
534 // address space. We aim at generating after loads and stores, but pure
535 // addressing calculations may also be faster.
536 for (Instruction &I : instructions(F)) {
537 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
538 PushPtrOperand(GEP->getPointerOperand());
539 } else if (auto *LI = dyn_cast<LoadInst>(&I))
540 PushPtrOperand(LI->getPointerOperand());
541 else if (auto *SI = dyn_cast<StoreInst>(&I))
542 PushPtrOperand(SI->getPointerOperand());
543 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
544 PushPtrOperand(RMW->getPointerOperand());
545 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
546 PushPtrOperand(CmpX->getPointerOperand());
547 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
548 // For memset/memcpy/memmove, any pointer operand can be replaced.
549 PushPtrOperand(MI->getRawDest());
550
551 // Handle 2nd operand for memcpy/memmove.
552 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
553 PushPtrOperand(MTI->getRawSource());
554 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
555 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
556 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
557 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
558 PushPtrOperand(Cmp->getOperand(0));
559 PushPtrOperand(Cmp->getOperand(1));
560 }
561 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
562 PushPtrOperand(ASC->getPointerOperand());
563 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
564 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
565 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
566 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
567 if (auto *RV = RI->getReturnValue();
568 RV && RV->getType()->isPtrOrPtrVectorTy())
569 PushPtrOperand(RV);
570 }
571 }
572
573 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
574 while (!PostorderStack.empty()) {
575 Value *TopVal = PostorderStack.back().getPointer();
576 // If the operands of the expression on the top are already explored,
577 // adds that expression to the resultant postorder.
578 if (PostorderStack.back().getInt()) {
579 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
580 Postorder.push_back(TopVal);
581 PostorderStack.pop_back();
582 continue;
583 }
584 // Otherwise, adds its operands to the stack and explores them.
585 PostorderStack.back().setInt(true);
586 // Skip values with an assumed address space.
588 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
589 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
590 Visited);
591 }
592 }
593 }
594 return Postorder;
595}
596
597// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
598// of OperandUse.get() in the new address space. If the clone is not ready yet,
599// returns poison in the new address space as a placeholder.
601 const Use &OperandUse, unsigned NewAddrSpace,
602 const ValueToValueMapTy &ValueWithNewAddrSpace,
603 const PredicatedAddrSpaceMapTy &PredicatedAS,
604 SmallVectorImpl<const Use *> *PoisonUsesToFix) {
605 Value *Operand = OperandUse.get();
606
607 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
608
609 if (Constant *C = dyn_cast<Constant>(Operand))
610 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
611
612 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
613 return NewOperand;
614
615 Instruction *Inst = cast<Instruction>(OperandUse.getUser());
616 auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
617 if (I != PredicatedAS.end()) {
618 // Insert an addrspacecast on that operand before the user.
619 unsigned NewAS = I->second;
620 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
621 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
622 NewI->insertBefore(Inst);
623 NewI->setDebugLoc(Inst->getDebugLoc());
624 return NewI;
625 }
626
627 PoisonUsesToFix->push_back(&OperandUse);
628 return PoisonValue::get(NewPtrTy);
629}
630
631// Returns a clone of `I` with its operands converted to those specified in
632// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
633// operand whose address space needs to be modified might not exist in
634// ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
635// adds that operand use to PoisonUsesToFix so that caller can fix them later.
636//
637// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
638// from a pointer whose type already matches. Therefore, this function returns a
639// Value* instead of an Instruction*.
640//
641// This may also return nullptr in the case the instruction could not be
642// rewritten.
643Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
644 Instruction *I, unsigned NewAddrSpace,
645 const ValueToValueMapTy &ValueWithNewAddrSpace,
646 const PredicatedAddrSpaceMapTy &PredicatedAS,
647 SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
648 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
649
650 if (I->getOpcode() == Instruction::AddrSpaceCast) {
651 Value *Src = I->getOperand(0);
652 // Because `I` is flat, the source address space must be specific.
653 // Therefore, the inferred address space must be the source space, according
654 // to our algorithm.
655 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
656 if (Src->getType() != NewPtrType)
657 return new BitCastInst(Src, NewPtrType);
658 return Src;
659 }
660
661 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
662 // Technically the intrinsic ID is a pointer typed argument, so specially
663 // handle calls early.
664 assert(II->getIntrinsicID() == Intrinsic::ptrmask);
666 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
667 PredicatedAS, PoisonUsesToFix);
668 Value *Rewrite =
669 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
670 if (Rewrite) {
671 assert(Rewrite != II && "cannot modify this pointer operation in place");
672 return Rewrite;
673 }
674
675 return nullptr;
676 }
677
678 unsigned AS = TTI->getAssumedAddrSpace(I);
679 if (AS != UninitializedAddressSpace) {
680 // For the assumed address space, insert an `addrspacecast` to make that
681 // explicit.
682 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
683 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
684 NewI->insertAfter(I);
685 NewI->setDebugLoc(I->getDebugLoc());
686 return NewI;
687 }
688
689 // Computes the converted pointer operands.
690 SmallVector<Value *, 4> NewPointerOperands;
691 for (const Use &OperandUse : I->operands()) {
692 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
693 NewPointerOperands.push_back(nullptr);
694 else
696 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
697 PoisonUsesToFix));
698 }
699
700 switch (I->getOpcode()) {
701 case Instruction::BitCast:
702 return new BitCastInst(NewPointerOperands[0], NewPtrType);
703 case Instruction::PHI: {
704 assert(I->getType()->isPtrOrPtrVectorTy());
705 PHINode *PHI = cast<PHINode>(I);
706 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
707 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
708 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
709 NewPHI->addIncoming(NewPointerOperands[OperandNo],
710 PHI->getIncomingBlock(Index));
711 }
712 return NewPHI;
713 }
714 case Instruction::GetElementPtr: {
715 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
717 GEP->getSourceElementType(), NewPointerOperands[0],
718 SmallVector<Value *, 4>(GEP->indices()));
719 NewGEP->setIsInBounds(GEP->isInBounds());
720 return NewGEP;
721 }
722 case Instruction::Select:
723 assert(I->getType()->isPtrOrPtrVectorTy());
724 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
725 NewPointerOperands[2], "", nullptr, I);
726 case Instruction::IntToPtr: {
727 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
728 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
729 if (Src->getType() == NewPtrType)
730 return Src;
731
732 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
733 // source address space from a generic pointer source need to insert a cast
734 // back.
735 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
736 }
737 default:
738 llvm_unreachable("Unexpected opcode");
739 }
740}
741
742// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
743// constant expression `CE` with its operands replaced as specified in
744// ValueWithNewAddrSpace.
746 ConstantExpr *CE, unsigned NewAddrSpace,
747 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
748 const TargetTransformInfo *TTI) {
749 Type *TargetType =
750 CE->getType()->isPtrOrPtrVectorTy()
751 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
752 : CE->getType();
753
754 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
755 // Because CE is flat, the source address space must be specific.
756 // Therefore, the inferred address space must be the source space according
757 // to our algorithm.
758 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
759 NewAddrSpace);
760 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
761 }
762
763 if (CE->getOpcode() == Instruction::BitCast) {
764 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
765 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
766 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
767 }
768
769 if (CE->getOpcode() == Instruction::IntToPtr) {
770 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
771 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
772 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
773 return ConstantExpr::getBitCast(Src, TargetType);
774 }
775
776 // Computes the operands of the new constant expression.
777 bool IsNew = false;
778 SmallVector<Constant *, 4> NewOperands;
779 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
780 Constant *Operand = CE->getOperand(Index);
781 // If the address space of `Operand` needs to be modified, the new operand
782 // with the new address space should already be in ValueWithNewAddrSpace
783 // because (1) the constant expressions we consider (i.e. addrspacecast,
784 // bitcast, and getelementptr) do not incur cycles in the data flow graph
785 // and (2) this function is called on constant expressions in postorder.
786 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
787 IsNew = true;
788 NewOperands.push_back(cast<Constant>(NewOperand));
789 continue;
790 }
791 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
793 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
794 IsNew = true;
795 NewOperands.push_back(cast<Constant>(NewOperand));
796 continue;
797 }
798 // Otherwise, reuses the old operand.
799 NewOperands.push_back(Operand);
800 }
801
802 // If !IsNew, we will replace the Value with itself. However, replaced values
803 // are assumed to wrapped in an addrspacecast cast later so drop it now.
804 if (!IsNew)
805 return nullptr;
806
807 if (CE->getOpcode() == Instruction::GetElementPtr) {
808 // Needs to specify the source type while constructing a getelementptr
809 // constant expression.
810 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
811 cast<GEPOperator>(CE)->getSourceElementType());
812 }
813
814 return CE->getWithOperands(NewOperands, TargetType);
815}
816
817// Returns a clone of the value `V`, with its operands replaced as specified in
818// ValueWithNewAddrSpace. This function is called on every flat address
819// expression whose address space needs to be modified, in postorder.
820//
821// See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
822Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
823 Value *V, unsigned NewAddrSpace,
824 const ValueToValueMapTy &ValueWithNewAddrSpace,
825 const PredicatedAddrSpaceMapTy &PredicatedAS,
826 SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
827 // All values in Postorder are flat address expressions.
828 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
829 isAddressExpression(*V, *DL, TTI));
830
831 if (Instruction *I = dyn_cast<Instruction>(V)) {
832 Value *NewV = cloneInstructionWithNewAddressSpace(
833 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
834 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
835 if (NewI->getParent() == nullptr) {
836 NewI->insertBefore(I);
837 NewI->takeName(I);
838 NewI->setDebugLoc(I->getDebugLoc());
839 }
840 }
841 return NewV;
842 }
843
845 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
846}
847
848// Defines the join operation on the address space lattice (see the file header
849// comments).
850unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
851 unsigned AS2) const {
852 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
853 return FlatAddrSpace;
854
855 if (AS1 == UninitializedAddressSpace)
856 return AS2;
857 if (AS2 == UninitializedAddressSpace)
858 return AS1;
859
860 // The join of two different specific address spaces is flat.
861 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
862}
863
864bool InferAddressSpacesImpl::run(Function &CurFn) {
865 F = &CurFn;
866 DL = &F->getDataLayout();
867
869 FlatAddrSpace = 0;
870
871 if (FlatAddrSpace == UninitializedAddressSpace) {
872 FlatAddrSpace = TTI->getFlatAddressSpace();
873 if (FlatAddrSpace == UninitializedAddressSpace)
874 return false;
875 }
876
877 // Collects all flat address expressions in postorder.
878 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F);
879
880 // Runs a data-flow analysis to refine the address spaces of every expression
881 // in Postorder.
882 ValueToAddrSpaceMapTy InferredAddrSpace;
883 PredicatedAddrSpaceMapTy PredicatedAS;
884 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
885
886 // Changes the address spaces of the flat address expressions who are inferred
887 // to point to a specific address space.
888 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace,
889 PredicatedAS);
890}
891
892// Constants need to be tracked through RAUW to handle cases with nested
893// constant expressions, so wrap values in WeakTrackingVH.
894void InferAddressSpacesImpl::inferAddressSpaces(
895 ArrayRef<WeakTrackingVH> Postorder,
896 ValueToAddrSpaceMapTy &InferredAddrSpace,
897 PredicatedAddrSpaceMapTy &PredicatedAS) const {
898 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
899 // Initially, all expressions are in the uninitialized address space.
900 for (Value *V : Postorder)
901 InferredAddrSpace[V] = UninitializedAddressSpace;
902
903 while (!Worklist.empty()) {
904 Value *V = Worklist.pop_back_val();
905
906 // Try to update the address space of the stack top according to the
907 // address spaces of its operands.
908 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
909 continue;
910
911 for (Value *User : V->users()) {
912 // Skip if User is already in the worklist.
913 if (Worklist.count(User))
914 continue;
915
916 auto Pos = InferredAddrSpace.find(User);
917 // Our algorithm only updates the address spaces of flat address
918 // expressions, which are those in InferredAddrSpace.
919 if (Pos == InferredAddrSpace.end())
920 continue;
921
922 // Function updateAddressSpace moves the address space down a lattice
923 // path. Therefore, nothing to do if User is already inferred as flat (the
924 // bottom element in the lattice).
925 if (Pos->second == FlatAddrSpace)
926 continue;
927
928 Worklist.insert(User);
929 }
930 }
931}
932
933unsigned
934InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr,
935 const Value *UserCtx) const {
936 const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx);
937 if (!UserCtxI)
939
940 const Value *StrippedPtr = Ptr.stripInBoundsOffsets();
941 for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) {
942 if (!AssumeVH)
943 continue;
944 CallInst *CI = cast<CallInst>(AssumeVH);
945 if (!isValidAssumeForContext(CI, UserCtxI, DT))
946 continue;
947
948 const Value *Ptr;
949 unsigned AS;
950 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
951 if (Ptr)
952 return AS;
953 }
954
956}
957
958bool InferAddressSpacesImpl::updateAddressSpace(
959 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
960 PredicatedAddrSpaceMapTy &PredicatedAS) const {
961 assert(InferredAddrSpace.count(&V));
962
963 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n');
964
965 // The new inferred address space equals the join of the address spaces
966 // of all its pointer operands.
967 unsigned NewAS = UninitializedAddressSpace;
968
969 const Operator &Op = cast<Operator>(V);
970 if (Op.getOpcode() == Instruction::Select) {
971 Value *Src0 = Op.getOperand(1);
972 Value *Src1 = Op.getOperand(2);
973
974 auto I = InferredAddrSpace.find(Src0);
975 unsigned Src0AS = (I != InferredAddrSpace.end())
976 ? I->second
977 : Src0->getType()->getPointerAddressSpace();
978
979 auto J = InferredAddrSpace.find(Src1);
980 unsigned Src1AS = (J != InferredAddrSpace.end())
981 ? J->second
982 : Src1->getType()->getPointerAddressSpace();
983
984 auto *C0 = dyn_cast<Constant>(Src0);
985 auto *C1 = dyn_cast<Constant>(Src1);
986
987 // If one of the inputs is a constant, we may be able to do a constant
988 // addrspacecast of it. Defer inferring the address space until the input
989 // address space is known.
990 if ((C1 && Src0AS == UninitializedAddressSpace) ||
991 (C0 && Src1AS == UninitializedAddressSpace))
992 return false;
993
994 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
995 NewAS = Src1AS;
996 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
997 NewAS = Src0AS;
998 else
999 NewAS = joinAddressSpaces(Src0AS, Src1AS);
1000 } else {
1001 unsigned AS = TTI->getAssumedAddrSpace(&V);
1002 if (AS != UninitializedAddressSpace) {
1003 // Use the assumed address space directly.
1004 NewAS = AS;
1005 } else {
1006 // Otherwise, infer the address space from its pointer operands.
1007 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
1008 auto I = InferredAddrSpace.find(PtrOperand);
1009 unsigned OperandAS;
1010 if (I == InferredAddrSpace.end()) {
1011 OperandAS = PtrOperand->getType()->getPointerAddressSpace();
1012 if (OperandAS == FlatAddrSpace) {
1013 // Check AC for assumption dominating V.
1014 unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V);
1015 if (AS != UninitializedAddressSpace) {
1017 << " deduce operand AS from the predicate addrspace "
1018 << AS << '\n');
1019 OperandAS = AS;
1020 // Record this use with the predicated AS.
1021 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
1022 }
1023 }
1024 } else
1025 OperandAS = I->second;
1026
1027 // join(flat, *) = flat. So we can break if NewAS is already flat.
1028 NewAS = joinAddressSpaces(NewAS, OperandAS);
1029 if (NewAS == FlatAddrSpace)
1030 break;
1031 }
1032 }
1033 }
1034
1035 unsigned OldAS = InferredAddrSpace.lookup(&V);
1036 assert(OldAS != FlatAddrSpace);
1037 if (OldAS == NewAS)
1038 return false;
1039
1040 // If any updates are made, grabs its users to the worklist because
1041 // their address spaces can also be possibly updated.
1042 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n');
1043 InferredAddrSpace[&V] = NewAS;
1044 return true;
1045}
1046
1047/// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal
1048/// with \p NewVal.
1049static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx,
1050 Value *OldVal, Value *NewVal) {
1051 Use &U = Inst->getOperandUse(OpIdx);
1052 if (U.get() == OldVal) {
1053 U.set(NewVal);
1054 return true;
1055 }
1056
1057 return false;
1058}
1059
1060template <typename InstrType>
1062 InstrType *MemInstr, unsigned AddrSpace,
1063 Value *OldV, Value *NewV) {
1064 if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) {
1065 return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(),
1066 OldV, NewV);
1067 }
1068
1069 return false;
1070}
1071
1072/// If \p OldV is used as the pointer operand of a compatible memory operation
1073/// \p Inst, replaces the pointer operand with NewV.
1074///
1075/// This covers memory instructions with a single pointer operand that can have
1076/// its address space changed by simply mutating the use to a new value.
1077///
1078/// \p returns true the user replacement was made.
1080 User *Inst, unsigned AddrSpace,
1081 Value *OldV, Value *NewV) {
1082 if (auto *LI = dyn_cast<LoadInst>(Inst))
1083 return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV);
1084
1085 if (auto *SI = dyn_cast<StoreInst>(Inst))
1086 return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV);
1087
1088 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1089 return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV);
1090
1091 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1092 return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV);
1093
1094 return false;
1095}
1096
1097/// Update memory intrinsic uses that require more complex processing than
1098/// simple memory instructions. These require re-mangling and may have multiple
1099/// pointer operands.
1101 Value *NewV) {
1102 IRBuilder<> B(MI);
1103 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1104 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1105 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1106
1107 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1108 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1109 false, // isVolatile
1110 TBAA, ScopeMD, NoAliasMD);
1111 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1112 Value *Src = MTI->getRawSource();
1113 Value *Dest = MTI->getRawDest();
1114
1115 // Be careful in case this is a self-to-self copy.
1116 if (Src == OldV)
1117 Src = NewV;
1118
1119 if (Dest == OldV)
1120 Dest = NewV;
1121
1122 if (isa<MemCpyInlineInst>(MTI)) {
1123 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1124 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1125 MTI->getSourceAlign(), MTI->getLength(),
1126 false, // isVolatile
1127 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1128 } else if (isa<MemCpyInst>(MTI)) {
1129 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1130 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1131 MTI->getLength(),
1132 false, // isVolatile
1133 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1134 } else {
1135 assert(isa<MemMoveInst>(MTI));
1136 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1137 MTI->getLength(),
1138 false, // isVolatile
1139 TBAA, ScopeMD, NoAliasMD);
1140 }
1141 } else
1142 llvm_unreachable("unhandled MemIntrinsic");
1143
1144 MI->eraseFromParent();
1145 return true;
1146}
1147
1148// \p returns true if it is OK to change the address space of constant \p C with
1149// a ConstantExpr addrspacecast.
1150bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1151 unsigned NewAS) const {
1153
1154 unsigned SrcAS = C->getType()->getPointerAddressSpace();
1155 if (SrcAS == NewAS || isa<UndefValue>(C))
1156 return true;
1157
1158 // Prevent illegal casts between different non-flat address spaces.
1159 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1160 return false;
1161
1162 if (isa<ConstantPointerNull>(C))
1163 return true;
1164
1165 if (auto *Op = dyn_cast<Operator>(C)) {
1166 // If we already have a constant addrspacecast, it should be safe to cast it
1167 // off.
1168 if (Op->getOpcode() == Instruction::AddrSpaceCast)
1169 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1170 NewAS);
1171
1172 if (Op->getOpcode() == Instruction::IntToPtr &&
1173 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1174 return true;
1175 }
1176
1177 return false;
1178}
1179
1182 User *CurUser = I->getUser();
1183 ++I;
1184
1185 while (I != End && I->getUser() == CurUser)
1186 ++I;
1187
1188 return I;
1189}
1190
1191void InferAddressSpacesImpl::performPointerReplacement(
1192 Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
1193 SmallVectorImpl<Instruction *> &DeadInstructions) const {
1194
1195 User *CurUser = U.getUser();
1196
1197 unsigned AddrSpace = V->getType()->getPointerAddressSpace();
1198 if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV))
1199 return;
1200
1201 // Skip if the current user is the new value itself.
1202 if (CurUser == NewV)
1203 return;
1204
1205 auto *CurUserI = dyn_cast<Instruction>(CurUser);
1206 if (!CurUserI || CurUserI->getFunction() != F)
1207 return;
1208
1209 // Handle more complex cases like intrinsic that need to be remangled.
1210 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1211 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1212 return;
1213 }
1214
1215 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1216 if (rewriteIntrinsicOperands(II, V, NewV))
1217 return;
1218 }
1219
1220 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) {
1221 // If we can infer that both pointers are in the same addrspace,
1222 // transform e.g.
1223 // %cmp = icmp eq float* %p, %q
1224 // into
1225 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1226
1227 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1228 int SrcIdx = U.getOperandNo();
1229 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1230 Value *OtherSrc = Cmp->getOperand(OtherIdx);
1231
1232 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1233 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1234 Cmp->setOperand(OtherIdx, OtherNewV);
1235 Cmp->setOperand(SrcIdx, NewV);
1236 return;
1237 }
1238 }
1239
1240 // Even if the type mismatches, we can cast the constant.
1241 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1242 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1243 Cmp->setOperand(SrcIdx, NewV);
1244 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1245 KOtherSrc, NewV->getType()));
1246 return;
1247 }
1248 }
1249 }
1250
1251 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) {
1252 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1253 if (ASC->getDestAddressSpace() == NewAS) {
1254 ASC->replaceAllUsesWith(NewV);
1255 DeadInstructions.push_back(ASC);
1256 return;
1257 }
1258 }
1259
1260 // Otherwise, replaces the use with flat(NewV).
1261 if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1262 // Don't create a copy of the original addrspacecast.
1263 if (U == V && isa<AddrSpaceCastInst>(V))
1264 return;
1265
1266 // Insert the addrspacecast after NewV.
1267 BasicBlock::iterator InsertPos;
1268 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1269 InsertPos = std::next(NewVInst->getIterator());
1270 else
1271 InsertPos = std::next(VInst->getIterator());
1272
1273 while (isa<PHINode>(InsertPos))
1274 ++InsertPos;
1275 // This instruction may contain multiple uses of V, update them all.
1276 CurUser->replaceUsesOfWith(
1277 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1278 } else {
1279 CurUserI->replaceUsesOfWith(
1280 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType()));
1281 }
1282}
1283
1284bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1285 ArrayRef<WeakTrackingVH> Postorder,
1286 const ValueToAddrSpaceMapTy &InferredAddrSpace,
1287 const PredicatedAddrSpaceMapTy &PredicatedAS) const {
1288 // For each address expression to be modified, creates a clone of it with its
1289 // pointer operands converted to the new address space. Since the pointer
1290 // operands are converted, the clone is naturally in the new address space by
1291 // construction.
1292 ValueToValueMapTy ValueWithNewAddrSpace;
1293 SmallVector<const Use *, 32> PoisonUsesToFix;
1294 for (Value *V : Postorder) {
1295 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1296
1297 // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1298 // not even infer the value to have its original address space.
1299 if (NewAddrSpace == UninitializedAddressSpace)
1300 continue;
1301
1302 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1303 Value *New =
1304 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1305 PredicatedAS, &PoisonUsesToFix);
1306 if (New)
1307 ValueWithNewAddrSpace[V] = New;
1308 }
1309 }
1310
1311 if (ValueWithNewAddrSpace.empty())
1312 return false;
1313
1314 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1315 for (const Use *PoisonUse : PoisonUsesToFix) {
1316 User *V = PoisonUse->getUser();
1317 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1318 if (!NewV)
1319 continue;
1320
1321 unsigned OperandNo = PoisonUse->getOperandNo();
1322 assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1323 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1324 }
1325
1326 SmallVector<Instruction *, 16> DeadInstructions;
1327 ValueToValueMapTy VMap;
1329
1330 // Replaces the uses of the old address expressions with the new ones.
1331 for (const WeakTrackingVH &WVH : Postorder) {
1332 assert(WVH && "value was unexpectedly deleted");
1333 Value *V = WVH;
1334 Value *NewV = ValueWithNewAddrSpace.lookup(V);
1335 if (NewV == nullptr)
1336 continue;
1337
1338 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
1339 << *NewV << '\n');
1340
1341 if (Constant *C = dyn_cast<Constant>(V)) {
1342 Constant *Replace =
1343 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1344 if (C != Replace) {
1345 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1346 << ": " << *Replace << '\n');
1347 SmallVector<User *, 16> WorkList;
1348 for (User *U : make_early_inc_range(C->users())) {
1349 if (auto *I = dyn_cast<Instruction>(U)) {
1350 if (I->getFunction() == F)
1351 I->replaceUsesOfWith(C, Replace);
1352 } else {
1353 WorkList.append(U->user_begin(), U->user_end());
1354 }
1355 }
1356 if (!WorkList.empty()) {
1357 VMap[C] = Replace;
1358 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1359 while (!WorkList.empty()) {
1360 User *U = WorkList.pop_back_val();
1361 if (auto *I = dyn_cast<Instruction>(U)) {
1362 if (I->getFunction() == F)
1363 VMapper.remapInstruction(*I);
1364 continue;
1365 }
1366 for (User *U2 : U->users())
1367 if (Visited.insert(U2).second)
1368 WorkList.push_back(U2);
1369 }
1370 }
1371 V = Replace;
1372 }
1373 }
1374
1375 Value::use_iterator I, E, Next;
1376 for (I = V->use_begin(), E = V->use_end(); I != E;) {
1377 Use &U = *I;
1378
1379 // Some users may see the same pointer operand in multiple operands. Skip
1380 // to the next instruction.
1381 I = skipToNextUser(I, E);
1382
1383 performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace,
1384 DeadInstructions);
1385 }
1386
1387 if (V->use_empty()) {
1388 if (Instruction *I = dyn_cast<Instruction>(V))
1389 DeadInstructions.push_back(I);
1390 }
1391 }
1392
1393 for (Instruction *I : DeadInstructions)
1395
1396 return true;
1397}
1398
1399bool InferAddressSpaces::runOnFunction(Function &F) {
1400 if (skipFunction(F))
1401 return false;
1402
1403 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1404 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1405 return InferAddressSpacesImpl(
1406 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1407 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1408 FlatAddrSpace)
1409 .run(F);
1410}
1411
1413 return new InferAddressSpaces(AddressSpace);
1414}
1415
1417 : FlatAddrSpace(UninitializedAddressSpace) {}
1419 : FlatAddrSpace(AddressSpace) {}
1420
1423 bool Changed =
1424 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1426 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1427 .run(F);
1428 if (Changed) {
1432 return PA;
1433 }
1434 return PreservedAnalyses::all();
1435}
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
bool End
Definition: ELF_riscv.cpp:480
Hexagon Common GEP
IRTranslator LLVM IR MI
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI, User *Inst, unsigned AddrSpace, Value *OldV, Value *NewV)
If OldV is used as the pointer operand of a compatible memory operation Inst, replaces the pointer op...
static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx, Value *OldVal, Value *NewVal)
Replace operand OpIdx in Inst, if the value is the same as OldVal with NewVal.
static cl::opt< bool > AssumeDefaultIsFlatAddressSpace("assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, cl::desc("The default address space is assumed as the flat address space. " "This is mainly for test purpose."))
static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, const TargetTransformInfo *TTI)
static bool isAddressExpression(const Value &V, const DataLayout &DL, const TargetTransformInfo *TTI)
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, Value *NewV)
Update memory intrinsic uses that require more complex processing than simple memory instructions.
Infer address spaces
static SmallVector< Value *, 2 > getPointerOperands(const Value &V, const DataLayout &DL, const TargetTransformInfo *TTI)
static Value * operandWithNewAddressSpaceOrCreatePoison(const Use &OperandUse, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, const PredicatedAddrSpaceMapTy &PredicatedAS, SmallVectorImpl< const Use * > *PoisonUsesToFix)
static Value * cloneConstantExprWithNewAddressSpace(ConstantExpr *CE, unsigned NewAddrSpace, const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, const TargetTransformInfo *TTI)
static Value::use_iterator skipToNextUser(Value::use_iterator I, Value::use_iterator End)
Infer address static false Type * getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace)
static bool replaceSimplePointerUse(const TargetTransformInfo &TTI, InstrType *MemInstr, unsigned AddrSpace, Value *OldV, Value *NewV)
#define DEBUG_TYPE
static const unsigned UninitializedAddressSpace
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
This pass exposes codegen information to IR-level passes.
This class represents a conversion between pointers from one address space to another.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:429
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:157
iterator begin() const
Definition: ArrayRef.h:156
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
This class represents a no-op cast from one type to another.
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:72
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1294
This class represents a function call, abstracting a target machine's calling convention.
static CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
static bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1108
static Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2333
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2321
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:956
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:471
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
Metadata node.
Definition: Metadata.h:1069
This is the common base class for memset/memcpy/memmove.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:32
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:42
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static unsigned getOperandNumForIncomingValue(unsigned i)
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:146
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
A vector that has set insertion semantics.
Definition: SetVector.h:57
bool empty() const
Definition: SmallVector.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Analysis pass providing the TargetTransformInfo.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getAssumedAddrSpace(const Value *V) const
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
User * getUser() const
Returns the User that contains this Use.
Definition: Use.h:72
Value * get() const
Definition: Use.h:66
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
const Use & getOperandUse(unsigned i) const
Definition: User.h:241
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:164
bool empty() const
Definition: ValueMap.h:139
Context for (re-)mapping values (and metadata).
Definition: ValueMapper.h:149
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
use_iterator_impl< Use > use_iterator
Definition: Value.h:353
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:204
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
InstrType
This represents what is and is not supported when finding similarity in Instructions.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:731
@ ReallyHidden
Definition: CommandLine.h:138
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:546
void initializeInferAddressSpacesPass(PassRegistry &)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:94
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:76
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
FunctionPass * createInferAddressSpacesPass(unsigned AddressSpace=~0u)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)