LLVM 20.0.0git
LegalizationArtifactCombiner.h
Go to the documentation of this file.
1//===-- llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h -----*- C++ -*-//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file contains some helper functions which try to cleanup artifacts
9// such as G_TRUNCs/G_[ZSA]EXTENDS that were created during legalization to make
10// the types match. This file also contains some combines of merges that happens
11// at the end of the legalization.
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
15#define LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
16
28#include "llvm/IR/Constants.h"
30#include "llvm/Support/Debug.h"
31
32#define DEBUG_TYPE "legalizer"
33
34namespace llvm {
36 MachineIRBuilder &Builder;
38 const LegalizerInfo &LI;
40
41 static bool isArtifactCast(unsigned Opc) {
42 switch (Opc) {
43 case TargetOpcode::G_TRUNC:
44 case TargetOpcode::G_SEXT:
45 case TargetOpcode::G_ZEXT:
46 case TargetOpcode::G_ANYEXT:
47 return true;
48 default:
49 return false;
50 }
51 }
52
53public:
55 const LegalizerInfo &LI,
56 GISelKnownBits *KB = nullptr)
57 : Builder(B), MRI(MRI), LI(LI), KB(KB) {}
58
61 SmallVectorImpl<Register> &UpdatedDefs,
62 GISelObserverWrapper &Observer) {
63 using namespace llvm::MIPatternMatch;
64 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
65
66 Builder.setInstrAndDebugLoc(MI);
67 Register DstReg = MI.getOperand(0).getReg();
68 Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
69
70 // aext(trunc x) - > aext/copy/trunc x
71 Register TruncSrc;
72 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
73 LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
74 if (MRI.getType(DstReg) == MRI.getType(TruncSrc))
75 replaceRegOrBuildCopy(DstReg, TruncSrc, MRI, Builder, UpdatedDefs,
76 Observer);
77 else
78 Builder.buildAnyExtOrTrunc(DstReg, TruncSrc);
79 UpdatedDefs.push_back(DstReg);
80 markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
81 return true;
82 }
83
84 // aext([asz]ext x) -> [asz]ext x
85 Register ExtSrc;
86 MachineInstr *ExtMI;
87 if (mi_match(SrcReg, MRI,
88 m_all_of(m_MInstr(ExtMI), m_any_of(m_GAnyExt(m_Reg(ExtSrc)),
89 m_GSExt(m_Reg(ExtSrc)),
90 m_GZExt(m_Reg(ExtSrc)))))) {
91 Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
92 UpdatedDefs.push_back(DstReg);
93 markInstAndDefDead(MI, *ExtMI, DeadInsts);
94 return true;
95 }
96
97 // Try to fold aext(g_constant) when the larger constant type is legal.
98 auto *SrcMI = MRI.getVRegDef(SrcReg);
99 if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
100 const LLT DstTy = MRI.getType(DstReg);
101 if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
102 auto &CstVal = SrcMI->getOperand(1);
103 auto *MergedLocation = DILocation::getMergedLocation(
104 MI.getDebugLoc().get(), SrcMI->getDebugLoc().get());
105 // Set the debug location to the merged location of the SrcMI and the MI
106 // if the aext fold is successful.
107 Builder.setDebugLoc(MergedLocation);
108 Builder.buildConstant(
109 DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
110 UpdatedDefs.push_back(DstReg);
111 markInstAndDefDead(MI, *SrcMI, DeadInsts);
112 return true;
113 }
114 }
115 return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs, Observer);
116 }
117
120 SmallVectorImpl<Register> &UpdatedDefs,
121 GISelObserverWrapper &Observer) {
122 using namespace llvm::MIPatternMatch;
123 assert(MI.getOpcode() == TargetOpcode::G_ZEXT);
124
125 Builder.setInstrAndDebugLoc(MI);
126 Register DstReg = MI.getOperand(0).getReg();
127 Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
128
129 // zext(trunc x) - > and (aext/copy/trunc x), mask
130 // zext(sext x) -> and (sext x), mask
131 Register TruncSrc;
132 Register SextSrc;
133 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))) ||
134 mi_match(SrcReg, MRI, m_GSExt(m_Reg(SextSrc)))) {
135 LLT DstTy = MRI.getType(DstReg);
136 if (isInstUnsupported({TargetOpcode::G_AND, {DstTy}}) ||
137 isConstantUnsupported(DstTy))
138 return false;
139 LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
140 LLT SrcTy = MRI.getType(SrcReg);
142 if (SextSrc && (DstTy != MRI.getType(SextSrc)))
143 SextSrc = Builder.buildSExtOrTrunc(DstTy, SextSrc).getReg(0);
144 if (TruncSrc && (DstTy != MRI.getType(TruncSrc)))
145 TruncSrc = Builder.buildAnyExtOrTrunc(DstTy, TruncSrc).getReg(0);
146 APInt ExtMaskVal = MaskVal.zext(DstTy.getScalarSizeInBits());
147 Register AndSrc = SextSrc ? SextSrc : TruncSrc;
148 // Elide G_AND and mask constant if possible.
149 // The G_AND would also be removed by the post-legalize redundant_and
150 // combine, but in this very common case, eliding early and regardless of
151 // OptLevel results in significant compile-time and O0 code-size
152 // improvements. Inserting unnecessary instructions between boolean defs
153 // and uses hinders a lot of folding during ISel.
154 if (KB && (KB->getKnownZeroes(AndSrc) | ExtMaskVal).isAllOnes()) {
155 replaceRegOrBuildCopy(DstReg, AndSrc, MRI, Builder, UpdatedDefs,
156 Observer);
157 } else {
158 auto Mask = Builder.buildConstant(DstTy, ExtMaskVal);
159 Builder.buildAnd(DstReg, AndSrc, Mask);
160 }
161 markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
162 return true;
163 }
164
165 // zext(zext x) -> (zext x)
166 Register ZextSrc;
167 if (mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZextSrc)))) {
168 LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
169 Observer.changingInstr(MI);
170 MI.getOperand(1).setReg(ZextSrc);
171 Observer.changedInstr(MI);
172 UpdatedDefs.push_back(DstReg);
173 markDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
174 return true;
175 }
176
177 // Try to fold zext(g_constant) when the larger constant type is legal.
178 auto *SrcMI = MRI.getVRegDef(SrcReg);
179 if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
180 const LLT DstTy = MRI.getType(DstReg);
181 if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
182 auto &CstVal = SrcMI->getOperand(1);
183 Builder.buildConstant(
184 DstReg, CstVal.getCImm()->getValue().zext(DstTy.getSizeInBits()));
185 UpdatedDefs.push_back(DstReg);
186 markInstAndDefDead(MI, *SrcMI, DeadInsts);
187 return true;
188 }
189 }
190 return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs, Observer);
191 }
192
195 SmallVectorImpl<Register> &UpdatedDefs,
196 GISelObserverWrapper &Observer) {
197 using namespace llvm::MIPatternMatch;
198 assert(MI.getOpcode() == TargetOpcode::G_SEXT);
199
200 Builder.setInstrAndDebugLoc(MI);
201 Register DstReg = MI.getOperand(0).getReg();
202 Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
203
204 // sext(trunc x) - > (sext_inreg (aext/copy/trunc x), c)
205 Register TruncSrc;
206 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
207 LLT DstTy = MRI.getType(DstReg);
208 if (isInstUnsupported({TargetOpcode::G_SEXT_INREG, {DstTy}}))
209 return false;
210 LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
211 LLT SrcTy = MRI.getType(SrcReg);
212 uint64_t SizeInBits = SrcTy.getScalarSizeInBits();
213 if (DstTy != MRI.getType(TruncSrc))
214 TruncSrc = Builder.buildAnyExtOrTrunc(DstTy, TruncSrc).getReg(0);
215 // Elide G_SEXT_INREG if possible. This is similar to eliding G_AND in
216 // tryCombineZExt. Refer to the comment in tryCombineZExt for rationale.
217 if (KB && KB->computeNumSignBits(TruncSrc) >
218 DstTy.getScalarSizeInBits() - SizeInBits)
219 replaceRegOrBuildCopy(DstReg, TruncSrc, MRI, Builder, UpdatedDefs,
220 Observer);
221 else
222 Builder.buildSExtInReg(DstReg, TruncSrc, SizeInBits);
223 markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
224 return true;
225 }
226
227 // sext(zext x) -> (zext x)
228 // sext(sext x) -> (sext x)
229 Register ExtSrc;
230 MachineInstr *ExtMI;
231 if (mi_match(SrcReg, MRI,
232 m_all_of(m_MInstr(ExtMI), m_any_of(m_GZExt(m_Reg(ExtSrc)),
233 m_GSExt(m_Reg(ExtSrc)))))) {
234 LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI);
235 Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc});
236 UpdatedDefs.push_back(DstReg);
237 markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
238 return true;
239 }
240
241 // Try to fold sext(g_constant) when the larger constant type is legal.
242 auto *SrcMI = MRI.getVRegDef(SrcReg);
243 if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
244 const LLT DstTy = MRI.getType(DstReg);
245 if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
246 auto &CstVal = SrcMI->getOperand(1);
247 Builder.buildConstant(
248 DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits()));
249 UpdatedDefs.push_back(DstReg);
250 markInstAndDefDead(MI, *SrcMI, DeadInsts);
251 return true;
252 }
253 }
254
255 return tryFoldImplicitDef(MI, DeadInsts, UpdatedDefs, Observer);
256 }
257
260 SmallVectorImpl<Register> &UpdatedDefs,
261 GISelObserverWrapper &Observer) {
262 using namespace llvm::MIPatternMatch;
263 assert(MI.getOpcode() == TargetOpcode::G_TRUNC);
264
265 Builder.setInstr(MI);
266 Register DstReg = MI.getOperand(0).getReg();
267 const LLT DstTy = MRI.getType(DstReg);
268 Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
269
270 // Try to fold trunc(g_constant) when the smaller constant type is legal.
271 auto *SrcMI = MRI.getVRegDef(SrcReg);
272 if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) {
273 if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) {
274 auto &CstVal = SrcMI->getOperand(1);
275 Builder.buildConstant(
276 DstReg, CstVal.getCImm()->getValue().trunc(DstTy.getSizeInBits()));
277 UpdatedDefs.push_back(DstReg);
278 markInstAndDefDead(MI, *SrcMI, DeadInsts);
279 return true;
280 }
281 }
282
283 // Try to fold trunc(merge) to directly use the source of the merge.
284 // This gets rid of large, difficult to legalize, merges
285 if (auto *SrcMerge = dyn_cast<GMerge>(SrcMI)) {
286 const Register MergeSrcReg = SrcMerge->getSourceReg(0);
287 const LLT MergeSrcTy = MRI.getType(MergeSrcReg);
288
289 // We can only fold if the types are scalar
290 const unsigned DstSize = DstTy.getSizeInBits();
291 const unsigned MergeSrcSize = MergeSrcTy.getSizeInBits();
292 if (!DstTy.isScalar() || !MergeSrcTy.isScalar())
293 return false;
294
295 if (DstSize < MergeSrcSize) {
296 // When the merge source is larger than the destination, we can just
297 // truncate the merge source directly
298 if (isInstUnsupported({TargetOpcode::G_TRUNC, {DstTy, MergeSrcTy}}))
299 return false;
300
301 LLVM_DEBUG(dbgs() << "Combining G_TRUNC(G_MERGE_VALUES) to G_TRUNC: "
302 << MI);
303
304 Builder.buildTrunc(DstReg, MergeSrcReg);
305 UpdatedDefs.push_back(DstReg);
306 } else if (DstSize == MergeSrcSize) {
307 // If the sizes match we can simply try to replace the register
309 dbgs() << "Replacing G_TRUNC(G_MERGE_VALUES) with merge input: "
310 << MI);
311 replaceRegOrBuildCopy(DstReg, MergeSrcReg, MRI, Builder, UpdatedDefs,
312 Observer);
313 } else if (DstSize % MergeSrcSize == 0) {
314 // If the trunc size is a multiple of the merge source size we can use
315 // a smaller merge instead
316 if (isInstUnsupported(
317 {TargetOpcode::G_MERGE_VALUES, {DstTy, MergeSrcTy}}))
318 return false;
319
321 dbgs() << "Combining G_TRUNC(G_MERGE_VALUES) to G_MERGE_VALUES: "
322 << MI);
323
324 const unsigned NumSrcs = DstSize / MergeSrcSize;
325 assert(NumSrcs < SrcMI->getNumOperands() - 1 &&
326 "trunc(merge) should require less inputs than merge");
327 SmallVector<Register, 8> SrcRegs(NumSrcs);
328 for (unsigned i = 0; i < NumSrcs; ++i)
329 SrcRegs[i] = SrcMerge->getSourceReg(i);
330
331 Builder.buildMergeValues(DstReg, SrcRegs);
332 UpdatedDefs.push_back(DstReg);
333 } else {
334 // Unable to combine
335 return false;
336 }
337
338 markInstAndDefDead(MI, *SrcMerge, DeadInsts);
339 return true;
340 }
341
342 // trunc(trunc) -> trunc
343 Register TruncSrc;
344 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) {
345 // Always combine trunc(trunc) since the eventual resulting trunc must be
346 // legal anyway as it must be legal for all outputs of the consumer type
347 // set.
348 LLVM_DEBUG(dbgs() << ".. Combine G_TRUNC(G_TRUNC): " << MI);
349
350 Builder.buildTrunc(DstReg, TruncSrc);
351 UpdatedDefs.push_back(DstReg);
352 markInstAndDefDead(MI, *MRI.getVRegDef(TruncSrc), DeadInsts);
353 return true;
354 }
355
356 // trunc(ext x) -> x
357 ArtifactValueFinder Finder(MRI, Builder, LI);
358 if (Register FoundReg =
359 Finder.findValueFromDef(DstReg, 0, DstTy.getSizeInBits())) {
360 LLT FoundRegTy = MRI.getType(FoundReg);
361 if (DstTy == FoundRegTy) {
362 LLVM_DEBUG(dbgs() << ".. Combine G_TRUNC(G_[S,Z,ANY]EXT/G_TRUNC...): "
363 << MI);
364
365 replaceRegOrBuildCopy(DstReg, FoundReg, MRI, Builder, UpdatedDefs,
366 Observer);
367 UpdatedDefs.push_back(DstReg);
368 markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts);
369 return true;
370 }
371 }
372
373 return false;
374 }
375
376 /// Try to fold G_[ASZ]EXT (G_IMPLICIT_DEF).
379 SmallVectorImpl<Register> &UpdatedDefs,
380 GISelObserverWrapper &Observer) {
381 unsigned Opcode = MI.getOpcode();
382 assert(Opcode == TargetOpcode::G_ANYEXT || Opcode == TargetOpcode::G_ZEXT ||
383 Opcode == TargetOpcode::G_SEXT);
384
385 if (MachineInstr *DefMI = getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF,
386 MI.getOperand(1).getReg(), MRI)) {
387 Builder.setInstr(MI);
388 Register DstReg = MI.getOperand(0).getReg();
389 LLT DstTy = MRI.getType(DstReg);
390
391 if (Opcode == TargetOpcode::G_ANYEXT) {
392 // G_ANYEXT (G_IMPLICIT_DEF) -> G_IMPLICIT_DEF
393 if (!isInstLegal({TargetOpcode::G_IMPLICIT_DEF, {DstTy}}))
394 return false;
395 LLVM_DEBUG(dbgs() << ".. Combine G_ANYEXT(G_IMPLICIT_DEF): " << MI);
396 auto Impl = Builder.buildUndef(DstTy);
397 replaceRegOrBuildCopy(DstReg, Impl.getReg(0), MRI, Builder, UpdatedDefs,
398 Observer);
399 UpdatedDefs.push_back(DstReg);
400 } else {
401 // G_[SZ]EXT (G_IMPLICIT_DEF) -> G_CONSTANT 0 because the top
402 // bits will be 0 for G_ZEXT and 0/1 for the G_SEXT.
403 if (isConstantUnsupported(DstTy))
404 return false;
405 LLVM_DEBUG(dbgs() << ".. Combine G_[SZ]EXT(G_IMPLICIT_DEF): " << MI);
406 auto Cnst = Builder.buildConstant(DstTy, 0);
407 replaceRegOrBuildCopy(DstReg, Cnst.getReg(0), MRI, Builder, UpdatedDefs,
408 Observer);
409 UpdatedDefs.push_back(DstReg);
410 }
411
412 markInstAndDefDead(MI, *DefMI, DeadInsts);
413 return true;
414 }
415 return false;
416 }
417
420 SmallVectorImpl<Register> &UpdatedDefs) {
421
422 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
423
424 const unsigned CastOpc = CastMI.getOpcode();
425
426 if (!isArtifactCast(CastOpc))
427 return false;
428
429 const unsigned NumDefs = MI.getNumOperands() - 1;
430
431 const Register CastSrcReg = CastMI.getOperand(1).getReg();
432 const LLT CastSrcTy = MRI.getType(CastSrcReg);
433 const LLT DestTy = MRI.getType(MI.getOperand(0).getReg());
434 const LLT SrcTy = MRI.getType(MI.getOperand(NumDefs).getReg());
435
436 const unsigned CastSrcSize = CastSrcTy.getSizeInBits();
437 const unsigned DestSize = DestTy.getSizeInBits();
438
439 if (CastOpc == TargetOpcode::G_TRUNC) {
440 if (SrcTy.isVector() && SrcTy.getScalarType() == DestTy.getScalarType()) {
441 // %1:_(<4 x s8>) = G_TRUNC %0(<4 x s32>)
442 // %2:_(s8), %3:_(s8), %4:_(s8), %5:_(s8) = G_UNMERGE_VALUES %1
443 // =>
444 // %6:_(s32), %7:_(s32), %8:_(s32), %9:_(s32) = G_UNMERGE_VALUES %0
445 // %2:_(s8) = G_TRUNC %6
446 // %3:_(s8) = G_TRUNC %7
447 // %4:_(s8) = G_TRUNC %8
448 // %5:_(s8) = G_TRUNC %9
449
450 unsigned UnmergeNumElts =
451 DestTy.isVector() ? CastSrcTy.getNumElements() / NumDefs : 1;
452 LLT UnmergeTy = CastSrcTy.changeElementCount(
453 ElementCount::getFixed(UnmergeNumElts));
454 LLT SrcWideTy =
455 SrcTy.changeElementCount(ElementCount::getFixed(UnmergeNumElts));
456
457 if (isInstUnsupported(
458 {TargetOpcode::G_UNMERGE_VALUES, {UnmergeTy, CastSrcTy}}) ||
459 LI.getAction({TargetOpcode::G_TRUNC, {SrcWideTy, UnmergeTy}})
461 return false;
462
463 Builder.setInstr(MI);
464 auto NewUnmerge = Builder.buildUnmerge(UnmergeTy, CastSrcReg);
465
466 for (unsigned I = 0; I != NumDefs; ++I) {
467 Register DefReg = MI.getOperand(I).getReg();
468 UpdatedDefs.push_back(DefReg);
469 Builder.buildTrunc(DefReg, NewUnmerge.getReg(I));
470 }
471
472 markInstAndDefDead(MI, CastMI, DeadInsts);
473 return true;
474 }
475
476 if (CastSrcTy.isScalar() && SrcTy.isScalar() && !DestTy.isVector()) {
477 // %1:_(s16) = G_TRUNC %0(s32)
478 // %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %1
479 // =>
480 // %2:_(s8), %3:_(s8), %4:_(s8), %5:_(s8) = G_UNMERGE_VALUES %0
481
482 // Unmerge(trunc) can be combined if the trunc source size is a multiple
483 // of the unmerge destination size
484 if (CastSrcSize % DestSize != 0)
485 return false;
486
487 // Check if the new unmerge is supported
488 if (isInstUnsupported(
489 {TargetOpcode::G_UNMERGE_VALUES, {DestTy, CastSrcTy}}))
490 return false;
491
492 // Gather the original destination registers and create new ones for the
493 // unused bits
494 const unsigned NewNumDefs = CastSrcSize / DestSize;
495 SmallVector<Register, 8> DstRegs(NewNumDefs);
496 for (unsigned Idx = 0; Idx < NewNumDefs; ++Idx) {
497 if (Idx < NumDefs)
498 DstRegs[Idx] = MI.getOperand(Idx).getReg();
499 else
500 DstRegs[Idx] = MRI.createGenericVirtualRegister(DestTy);
501 }
502
503 // Build new unmerge
504 Builder.setInstr(MI);
505 Builder.buildUnmerge(DstRegs, CastSrcReg);
506 UpdatedDefs.append(DstRegs.begin(), DstRegs.begin() + NewNumDefs);
507 markInstAndDefDead(MI, CastMI, DeadInsts);
508 return true;
509 }
510 }
511
512 // TODO: support combines with other casts as well
513 return false;
514 }
515
516 static bool canFoldMergeOpcode(unsigned MergeOp, unsigned ConvertOp,
517 LLT OpTy, LLT DestTy) {
518 // Check if we found a definition that is like G_MERGE_VALUES.
519 switch (MergeOp) {
520 default:
521 return false;
522 case TargetOpcode::G_BUILD_VECTOR:
523 case TargetOpcode::G_MERGE_VALUES:
524 // The convert operation that we will need to insert is
525 // going to convert the input of that type of instruction (scalar)
526 // to the destination type (DestTy).
527 // The conversion needs to stay in the same domain (scalar to scalar
528 // and vector to vector), so if we were to allow to fold the merge
529 // we would need to insert some bitcasts.
530 // E.g.,
531 // <2 x s16> = build_vector s16, s16
532 // <2 x s32> = zext <2 x s16>
533 // <2 x s16>, <2 x s16> = unmerge <2 x s32>
534 //
535 // As is the folding would produce:
536 // <2 x s16> = zext s16 <-- scalar to vector
537 // <2 x s16> = zext s16 <-- scalar to vector
538 // Which is invalid.
539 // Instead we would want to generate:
540 // s32 = zext s16
541 // <2 x s16> = bitcast s32
542 // s32 = zext s16
543 // <2 x s16> = bitcast s32
544 //
545 // That is not done yet.
546 if (ConvertOp == 0)
547 return true;
548 return !DestTy.isVector() && OpTy.isVector() &&
549 DestTy == OpTy.getElementType();
550 case TargetOpcode::G_CONCAT_VECTORS: {
551 if (ConvertOp == 0)
552 return true;
553 if (!DestTy.isVector())
554 return false;
555
556 const unsigned OpEltSize = OpTy.getElementType().getSizeInBits();
557
558 // Don't handle scalarization with a cast that isn't in the same
559 // direction as the vector cast. This could be handled, but it would
560 // require more intermediate unmerges.
561 if (ConvertOp == TargetOpcode::G_TRUNC)
562 return DestTy.getSizeInBits() <= OpEltSize;
563 return DestTy.getSizeInBits() >= OpEltSize;
564 }
565 }
566 }
567
568 /// Try to replace DstReg with SrcReg or build a COPY instruction
569 /// depending on the register constraints.
570 static void replaceRegOrBuildCopy(Register DstReg, Register SrcReg,
572 MachineIRBuilder &Builder,
573 SmallVectorImpl<Register> &UpdatedDefs,
574 GISelChangeObserver &Observer) {
575 if (!llvm::canReplaceReg(DstReg, SrcReg, MRI)) {
576 Builder.buildCopy(DstReg, SrcReg);
577 UpdatedDefs.push_back(DstReg);
578 return;
579 }
581 // Get the users and notify the observer before replacing.
582 for (auto &UseMI : MRI.use_instructions(DstReg)) {
583 UseMIs.push_back(&UseMI);
584 Observer.changingInstr(UseMI);
585 }
586 // Replace the registers.
587 MRI.replaceRegWith(DstReg, SrcReg);
588 UpdatedDefs.push_back(SrcReg);
589 // Notify the observer that we changed the instructions.
590 for (auto *UseMI : UseMIs)
591 Observer.changedInstr(*UseMI);
592 }
593
594 /// Return the operand index in \p MI that defines \p Def
595 static unsigned getDefIndex(const MachineInstr &MI, Register SearchDef) {
596 unsigned DefIdx = 0;
597 for (const MachineOperand &Def : MI.defs()) {
598 if (Def.getReg() == SearchDef)
599 break;
600 ++DefIdx;
601 }
602
603 return DefIdx;
604 }
605
606 /// This class provides utilities for finding source registers of specific
607 /// bit ranges in an artifact. The routines can look through the source
608 /// registers if they're other artifacts to try to find a non-artifact source
609 /// of a value.
612 MachineIRBuilder &MIB;
613 const LegalizerInfo &LI;
614
615 // Stores the best register found in the current query so far.
616 Register CurrentBest = Register();
617
618 /// Given an concat_vector op \p Concat and a start bit and size, try to
619 /// find the origin of the value defined by that start position and size.
620 ///
621 /// \returns a register with the requested size, or the current best
622 /// register found during the current query.
623 Register findValueFromConcat(GConcatVectors &Concat, unsigned StartBit,
624 unsigned Size) {
625 assert(Size > 0);
626
627 // Find the source operand that provides the bits requested.
628 Register Src1Reg = Concat.getSourceReg(0);
629 unsigned SrcSize = MRI.getType(Src1Reg).getSizeInBits();
630
631 // Operand index of the source that provides the start of the bit range.
632 unsigned StartSrcIdx = (StartBit / SrcSize) + 1;
633 // Offset into the source at which the bit range starts.
634 unsigned InRegOffset = StartBit % SrcSize;
635 // Check that the bits don't span multiple sources.
636 // FIXME: we might be able return multiple sources? Or create an
637 // appropriate concat to make it fit.
638 if (InRegOffset + Size > SrcSize)
639 return CurrentBest;
640
641 Register SrcReg = Concat.getReg(StartSrcIdx);
642 if (InRegOffset == 0 && Size == SrcSize) {
643 CurrentBest = SrcReg;
644 return findValueFromDefImpl(SrcReg, 0, Size);
645 }
646
647 return findValueFromDefImpl(SrcReg, InRegOffset, Size);
648 }
649
650 /// Given an build_vector op \p BV and a start bit and size, try to find
651 /// the origin of the value defined by that start position and size.
652 ///
653 /// \returns a register with the requested size, or the current best
654 /// register found during the current query.
655 Register findValueFromBuildVector(GBuildVector &BV, unsigned StartBit,
656 unsigned Size) {
657 assert(Size > 0);
658
659 // Find the source operand that provides the bits requested.
660 Register Src1Reg = BV.getSourceReg(0);
661 unsigned SrcSize = MRI.getType(Src1Reg).getSizeInBits();
662
663 // Operand index of the source that provides the start of the bit range.
664 unsigned StartSrcIdx = (StartBit / SrcSize) + 1;
665 // Offset into the source at which the bit range starts.
666 unsigned InRegOffset = StartBit % SrcSize;
667
668 if (InRegOffset != 0)
669 return CurrentBest; // Give up, bits don't start at a scalar source.
670 if (Size < SrcSize)
671 return CurrentBest; // Scalar source is too large for requested bits.
672
673 // If the bits cover multiple sources evenly, then create a new
674 // build_vector to synthesize the required size, if that's been requested.
675 if (Size > SrcSize) {
676 if (Size % SrcSize > 0)
677 return CurrentBest; // Isn't covered exactly by sources.
678
679 unsigned NumSrcsUsed = Size / SrcSize;
680 // If we're requesting all of the sources, just return this def.
681 if (NumSrcsUsed == BV.getNumSources())
682 return BV.getReg(0);
683
684 LLT SrcTy = MRI.getType(Src1Reg);
685 LLT NewBVTy = LLT::fixed_vector(NumSrcsUsed, SrcTy);
686
687 // Check if the resulting build vector would be legal.
688 LegalizeActionStep ActionStep =
689 LI.getAction({TargetOpcode::G_BUILD_VECTOR, {NewBVTy, SrcTy}});
690 if (ActionStep.Action != LegalizeActions::Legal)
691 return CurrentBest;
692
693 SmallVector<Register> NewSrcs;
694 for (unsigned SrcIdx = StartSrcIdx; SrcIdx < StartSrcIdx + NumSrcsUsed;
695 ++SrcIdx)
696 NewSrcs.push_back(BV.getReg(SrcIdx));
697 MIB.setInstrAndDebugLoc(BV);
698 return MIB.buildBuildVector(NewBVTy, NewSrcs).getReg(0);
699 }
700 // A single source is requested, just return it.
701 return BV.getReg(StartSrcIdx);
702 }
703
704 /// Given an G_INSERT op \p MI and a start bit and size, try to find
705 /// the origin of the value defined by that start position and size.
706 ///
707 /// \returns a register with the requested size, or the current best
708 /// register found during the current query.
709 Register findValueFromInsert(MachineInstr &MI, unsigned StartBit,
710 unsigned Size) {
711 assert(MI.getOpcode() == TargetOpcode::G_INSERT);
712 assert(Size > 0);
713
714 Register ContainerSrcReg = MI.getOperand(1).getReg();
715 Register InsertedReg = MI.getOperand(2).getReg();
716 LLT InsertedRegTy = MRI.getType(InsertedReg);
717 unsigned InsertOffset = MI.getOperand(3).getImm();
718
719 // There are 4 possible container/insertreg + requested bit-range layouts
720 // that the instruction and query could be representing.
721 // For: %_ = G_INSERT %CONTAINER, %INS, InsOff (abbrev. to 'IO')
722 // and a start bit 'SB', with size S, giving an end bit 'EB', we could
723 // have...
724 // Scenario A:
725 // --------------------------
726 // | INS | CONTAINER |
727 // --------------------------
728 // | |
729 // SB EB
730 //
731 // Scenario B:
732 // --------------------------
733 // | INS | CONTAINER |
734 // --------------------------
735 // | |
736 // SB EB
737 //
738 // Scenario C:
739 // --------------------------
740 // | CONTAINER | INS |
741 // --------------------------
742 // | |
743 // SB EB
744 //
745 // Scenario D:
746 // --------------------------
747 // | CONTAINER | INS |
748 // --------------------------
749 // | |
750 // SB EB
751 //
752 // So therefore, A and D are requesting data from the INS operand, while
753 // B and C are requesting from the container operand.
754
755 unsigned InsertedEndBit = InsertOffset + InsertedRegTy.getSizeInBits();
756 unsigned EndBit = StartBit + Size;
757 unsigned NewStartBit;
758 Register SrcRegToUse;
759 if (EndBit <= InsertOffset || InsertedEndBit <= StartBit) {
760 SrcRegToUse = ContainerSrcReg;
761 NewStartBit = StartBit;
762 return findValueFromDefImpl(SrcRegToUse, NewStartBit, Size);
763 }
764 if (InsertOffset <= StartBit && EndBit <= InsertedEndBit) {
765 SrcRegToUse = InsertedReg;
766 NewStartBit = StartBit - InsertOffset;
767 if (NewStartBit == 0 &&
768 Size == MRI.getType(SrcRegToUse).getSizeInBits())
769 CurrentBest = SrcRegToUse;
770 return findValueFromDefImpl(SrcRegToUse, NewStartBit, Size);
771 }
772 // The bit range spans both the inserted and container regions.
773 return Register();
774 }
775
776 /// Given an G_SEXT, G_ZEXT, G_ANYEXT op \p MI and a start bit and
777 /// size, try to find the origin of the value defined by that start
778 /// position and size.
779 ///
780 /// \returns a register with the requested size, or the current best
781 /// register found during the current query.
782 Register findValueFromExt(MachineInstr &MI, unsigned StartBit,
783 unsigned Size) {
784 assert(MI.getOpcode() == TargetOpcode::G_SEXT ||
785 MI.getOpcode() == TargetOpcode::G_ZEXT ||
786 MI.getOpcode() == TargetOpcode::G_ANYEXT);
787 assert(Size > 0);
788
789 Register SrcReg = MI.getOperand(1).getReg();
790 LLT SrcType = MRI.getType(SrcReg);
791 unsigned SrcSize = SrcType.getSizeInBits();
792
793 // Currently we don't go into vectors.
794 if (!SrcType.isScalar())
795 return CurrentBest;
796
797 if (StartBit + Size > SrcSize)
798 return CurrentBest;
799
800 if (StartBit == 0 && SrcType.getSizeInBits() == Size)
801 CurrentBest = SrcReg;
802 return findValueFromDefImpl(SrcReg, StartBit, Size);
803 }
804
805 /// Given an G_TRUNC op \p MI and a start bit and size, try to find
806 /// the origin of the value defined by that start position and size.
807 ///
808 /// \returns a register with the requested size, or the current best
809 /// register found during the current query.
810 Register findValueFromTrunc(MachineInstr &MI, unsigned StartBit,
811 unsigned Size) {
812 assert(MI.getOpcode() == TargetOpcode::G_TRUNC);
813 assert(Size > 0);
814
815 Register SrcReg = MI.getOperand(1).getReg();
816 LLT SrcType = MRI.getType(SrcReg);
817
818 // Currently we don't go into vectors.
819 if (!SrcType.isScalar())
820 return CurrentBest;
821
822 return findValueFromDefImpl(SrcReg, StartBit, Size);
823 }
824
825 /// Internal implementation for findValueFromDef(). findValueFromDef()
826 /// initializes some data like the CurrentBest register, which this method
827 /// and its callees rely upon.
828 Register findValueFromDefImpl(Register DefReg, unsigned StartBit,
829 unsigned Size) {
830 std::optional<DefinitionAndSourceRegister> DefSrcReg =
832 MachineInstr *Def = DefSrcReg->MI;
833 DefReg = DefSrcReg->Reg;
834 // If the instruction has a single def, then simply delegate the search.
835 // For unmerge however with multiple defs, we need to compute the offset
836 // into the source of the unmerge.
837 switch (Def->getOpcode()) {
838 case TargetOpcode::G_CONCAT_VECTORS:
839 return findValueFromConcat(cast<GConcatVectors>(*Def), StartBit, Size);
840 case TargetOpcode::G_UNMERGE_VALUES: {
841 unsigned DefStartBit = 0;
842 unsigned DefSize = MRI.getType(DefReg).getSizeInBits();
843 for (const auto &MO : Def->defs()) {
844 if (MO.getReg() == DefReg)
845 break;
846 DefStartBit += DefSize;
847 }
848 Register SrcReg = Def->getOperand(Def->getNumOperands() - 1).getReg();
849 Register SrcOriginReg =
850 findValueFromDefImpl(SrcReg, StartBit + DefStartBit, Size);
851 if (SrcOriginReg)
852 return SrcOriginReg;
853 // Failed to find a further value. If the StartBit and Size perfectly
854 // covered the requested DefReg, return that since it's better than
855 // nothing.
856 if (StartBit == 0 && Size == DefSize)
857 return DefReg;
858 return CurrentBest;
859 }
860 case TargetOpcode::G_BUILD_VECTOR:
861 return findValueFromBuildVector(cast<GBuildVector>(*Def), StartBit,
862 Size);
863 case TargetOpcode::G_INSERT:
864 return findValueFromInsert(*Def, StartBit, Size);
865 case TargetOpcode::G_TRUNC:
866 return findValueFromTrunc(*Def, StartBit, Size);
867 case TargetOpcode::G_SEXT:
868 case TargetOpcode::G_ZEXT:
869 case TargetOpcode::G_ANYEXT:
870 return findValueFromExt(*Def, StartBit, Size);
871 default:
872 return CurrentBest;
873 }
874 }
875
876 public:
878 const LegalizerInfo &Info)
879 : MRI(Mri), MIB(Builder), LI(Info) {}
880
881 /// Try to find a source of the value defined in the def \p DefReg, starting
882 /// at position \p StartBit with size \p Size.
883 /// \returns a register with the requested size, or an empty Register if no
884 /// better value could be found.
885 Register findValueFromDef(Register DefReg, unsigned StartBit,
886 unsigned Size) {
887 CurrentBest = Register();
888 Register FoundReg = findValueFromDefImpl(DefReg, StartBit, Size);
889 return FoundReg != DefReg ? FoundReg : Register();
890 }
891
892 /// Try to combine the defs of an unmerge \p MI by attempting to find
893 /// values that provides the bits for each def reg.
894 /// \returns true if all the defs of the unmerge have been made dead.
896 SmallVectorImpl<Register> &UpdatedDefs) {
897 unsigned NumDefs = MI.getNumDefs();
898 LLT DestTy = MRI.getType(MI.getReg(0));
899
900 SmallBitVector DeadDefs(NumDefs);
901 for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
902 Register DefReg = MI.getReg(DefIdx);
903 if (MRI.use_nodbg_empty(DefReg)) {
904 DeadDefs[DefIdx] = true;
905 continue;
906 }
907 Register FoundVal = findValueFromDef(DefReg, 0, DestTy.getSizeInBits());
908 if (!FoundVal)
909 continue;
910 if (MRI.getType(FoundVal) != DestTy)
911 continue;
912
913 replaceRegOrBuildCopy(DefReg, FoundVal, MRI, MIB, UpdatedDefs,
914 Observer);
915 // We only want to replace the uses, not the def of the old reg.
916 Observer.changingInstr(MI);
917 MI.getOperand(DefIdx).setReg(DefReg);
918 Observer.changedInstr(MI);
919 DeadDefs[DefIdx] = true;
920 }
921 return DeadDefs.all();
922 }
923
925 unsigned &DefOperandIdx) {
926 if (Register Def = findValueFromDefImpl(Reg, 0, Size)) {
927 if (auto *Unmerge = dyn_cast<GUnmerge>(MRI.getVRegDef(Def))) {
928 DefOperandIdx =
929 Unmerge->findRegisterDefOperandIdx(Def, /*TRI=*/nullptr);
930 return Unmerge;
931 }
932 }
933 return nullptr;
934 }
935
936 // Check if sequence of elements from merge-like instruction is defined by
937 // another sequence of elements defined by unmerge. Most often this is the
938 // same sequence. Search for elements using findValueFromDefImpl.
939 bool isSequenceFromUnmerge(GMergeLikeInstr &MI, unsigned MergeStartIdx,
940 GUnmerge *Unmerge, unsigned UnmergeIdxStart,
941 unsigned NumElts, unsigned EltSize,
942 bool AllowUndef) {
943 assert(MergeStartIdx + NumElts <= MI.getNumSources());
944 for (unsigned i = MergeStartIdx; i < MergeStartIdx + NumElts; ++i) {
945 unsigned EltUnmergeIdx;
946 GUnmerge *EltUnmerge = findUnmergeThatDefinesReg(
947 MI.getSourceReg(i), EltSize, EltUnmergeIdx);
948 // Check if source i comes from the same Unmerge.
949 if (EltUnmerge == Unmerge) {
950 // Check that source i's def has same index in sequence in Unmerge.
951 if (i - MergeStartIdx != EltUnmergeIdx - UnmergeIdxStart)
952 return false;
953 } else if (!AllowUndef ||
954 MRI.getVRegDef(MI.getSourceReg(i))->getOpcode() !=
955 TargetOpcode::G_IMPLICIT_DEF)
956 return false;
957 }
958 return true;
959 }
960
963 SmallVectorImpl<Register> &UpdatedDefs,
964 GISelChangeObserver &Observer) {
965 Register Elt0 = MI.getSourceReg(0);
966 LLT EltTy = MRI.getType(Elt0);
967 unsigned EltSize = EltTy.getSizeInBits();
968
969 unsigned Elt0UnmergeIdx;
970 // Search for unmerge that will be candidate for combine.
971 auto *Unmerge = findUnmergeThatDefinesReg(Elt0, EltSize, Elt0UnmergeIdx);
972 if (!Unmerge)
973 return false;
974
975 unsigned NumMIElts = MI.getNumSources();
976 Register Dst = MI.getReg(0);
977 LLT DstTy = MRI.getType(Dst);
978 Register UnmergeSrc = Unmerge->getSourceReg();
979 LLT UnmergeSrcTy = MRI.getType(UnmergeSrc);
980
981 // Recognize copy of UnmergeSrc to Dst.
982 // Unmerge UnmergeSrc and reassemble it using merge-like opcode into Dst.
983 //
984 // %0:_(EltTy), %1, ... = G_UNMERGE_VALUES %UnmergeSrc:_(Ty)
985 // %Dst:_(Ty) = G_merge_like_opcode %0:_(EltTy), %1, ...
986 //
987 // %Dst:_(Ty) = COPY %UnmergeSrc:_(Ty)
988 if ((DstTy == UnmergeSrcTy) && (Elt0UnmergeIdx == 0)) {
989 if (!isSequenceFromUnmerge(MI, 0, Unmerge, 0, NumMIElts, EltSize,
990 /*AllowUndef=*/DstTy.isVector()))
991 return false;
992
993 replaceRegOrBuildCopy(Dst, UnmergeSrc, MRI, MIB, UpdatedDefs, Observer);
994 DeadInsts.push_back(&MI);
995 return true;
996 }
997
998 // Recognize UnmergeSrc that can be unmerged to DstTy directly.
999 // Types have to be either both vector or both non-vector types.
1000 // Merge-like opcodes are combined one at the time. First one creates new
1001 // unmerge, following should use the same unmerge (builder performs CSE).
1002 //
1003 // %0:_(EltTy), %1, %2, %3 = G_UNMERGE_VALUES %UnmergeSrc:_(UnmergeSrcTy)
1004 // %Dst:_(DstTy) = G_merge_like_opcode %0:_(EltTy), %1
1005 // %AnotherDst:_(DstTy) = G_merge_like_opcode %2:_(EltTy), %3
1006 //
1007 // %Dst:_(DstTy), %AnotherDst = G_UNMERGE_VALUES %UnmergeSrc
1008 if ((DstTy.isVector() == UnmergeSrcTy.isVector()) &&
1009 (Elt0UnmergeIdx % NumMIElts == 0) &&
1010 getCoverTy(UnmergeSrcTy, DstTy) == UnmergeSrcTy) {
1011 if (!isSequenceFromUnmerge(MI, 0, Unmerge, Elt0UnmergeIdx, NumMIElts,
1012 EltSize, false))
1013 return false;
1015 auto NewUnmerge = MIB.buildUnmerge(DstTy, Unmerge->getSourceReg());
1016 unsigned DstIdx = (Elt0UnmergeIdx * EltSize) / DstTy.getSizeInBits();
1017 replaceRegOrBuildCopy(Dst, NewUnmerge.getReg(DstIdx), MRI, MIB,
1018 UpdatedDefs, Observer);
1019 DeadInsts.push_back(&MI);
1020 return true;
1021 }
1022
1023 // Recognize when multiple unmerged sources with UnmergeSrcTy type
1024 // can be merged into Dst with DstTy type directly.
1025 // Types have to be either both vector or both non-vector types.
1026
1027 // %0:_(EltTy), %1 = G_UNMERGE_VALUES %UnmergeSrc:_(UnmergeSrcTy)
1028 // %2:_(EltTy), %3 = G_UNMERGE_VALUES %AnotherUnmergeSrc:_(UnmergeSrcTy)
1029 // %Dst:_(DstTy) = G_merge_like_opcode %0:_(EltTy), %1, %2, %3
1030 //
1031 // %Dst:_(DstTy) = G_merge_like_opcode %UnmergeSrc, %AnotherUnmergeSrc
1032
1033 if ((DstTy.isVector() == UnmergeSrcTy.isVector()) &&
1034 getCoverTy(DstTy, UnmergeSrcTy) == DstTy) {
1035 SmallVector<Register, 4> ConcatSources;
1036 unsigned NumElts = Unmerge->getNumDefs();
1037 for (unsigned i = 0; i < MI.getNumSources(); i += NumElts) {
1038 unsigned EltUnmergeIdx;
1039 auto *UnmergeI = findUnmergeThatDefinesReg(MI.getSourceReg(i),
1040 EltSize, EltUnmergeIdx);
1041 // All unmerges have to be the same size.
1042 if ((!UnmergeI) || (UnmergeI->getNumDefs() != NumElts) ||
1043 (EltUnmergeIdx != 0))
1044 return false;
1045 if (!isSequenceFromUnmerge(MI, i, UnmergeI, 0, NumElts, EltSize,
1046 false))
1047 return false;
1048 ConcatSources.push_back(UnmergeI->getSourceReg());
1049 }
1050
1052 MIB.buildMergeLikeInstr(Dst, ConcatSources);
1053 DeadInsts.push_back(&MI);
1054 return true;
1055 }
1056
1057 return false;
1058 }
1059 };
1060
1063 SmallVectorImpl<Register> &UpdatedDefs,
1064 GISelChangeObserver &Observer) {
1065 unsigned NumDefs = MI.getNumDefs();
1066 Register SrcReg = MI.getSourceReg();
1067 MachineInstr *SrcDef = getDefIgnoringCopies(SrcReg, MRI);
1068 if (!SrcDef)
1069 return false;
1070
1071 LLT OpTy = MRI.getType(SrcReg);
1072 LLT DestTy = MRI.getType(MI.getReg(0));
1073 unsigned SrcDefIdx = getDefIndex(*SrcDef, SrcReg);
1074
1075 Builder.setInstrAndDebugLoc(MI);
1076
1077 ArtifactValueFinder Finder(MRI, Builder, LI);
1078 if (Finder.tryCombineUnmergeDefs(MI, Observer, UpdatedDefs)) {
1079 markInstAndDefDead(MI, *SrcDef, DeadInsts, SrcDefIdx);
1080 return true;
1081 }
1082
1083 if (auto *SrcUnmerge = dyn_cast<GUnmerge>(SrcDef)) {
1084 // %0:_(<4 x s16>) = G_FOO
1085 // %1:_(<2 x s16>), %2:_(<2 x s16>) = G_UNMERGE_VALUES %0
1086 // %3:_(s16), %4:_(s16) = G_UNMERGE_VALUES %1
1087 //
1088 // %3:_(s16), %4:_(s16), %5:_(s16), %6:_(s16) = G_UNMERGE_VALUES %0
1089 Register SrcUnmergeSrc = SrcUnmerge->getSourceReg();
1090 LLT SrcUnmergeSrcTy = MRI.getType(SrcUnmergeSrc);
1091
1092 // If we need to decrease the number of vector elements in the result type
1093 // of an unmerge, this would involve the creation of an equivalent unmerge
1094 // to copy back to the original result registers.
1095 LegalizeActionStep ActionStep = LI.getAction(
1096 {TargetOpcode::G_UNMERGE_VALUES, {OpTy, SrcUnmergeSrcTy}});
1097 switch (ActionStep.Action) {
1099 if (!OpTy.isVector() || !LI.isLegal({TargetOpcode::G_UNMERGE_VALUES,
1100 {DestTy, SrcUnmergeSrcTy}}))
1101 return false;
1102 break;
1105 break;
1108 if (ActionStep.TypeIdx == 1)
1109 return false;
1110 break;
1111 default:
1112 return false;
1113 }
1114
1115 auto NewUnmerge = Builder.buildUnmerge(DestTy, SrcUnmergeSrc);
1116
1117 // TODO: Should we try to process out the other defs now? If the other
1118 // defs of the source unmerge are also unmerged, we end up with a separate
1119 // unmerge for each one.
1120 for (unsigned I = 0; I != NumDefs; ++I) {
1121 Register Def = MI.getReg(I);
1122 replaceRegOrBuildCopy(Def, NewUnmerge.getReg(SrcDefIdx * NumDefs + I),
1123 MRI, Builder, UpdatedDefs, Observer);
1124 }
1125
1126 markInstAndDefDead(MI, *SrcUnmerge, DeadInsts, SrcDefIdx);
1127 return true;
1128 }
1129
1130 MachineInstr *MergeI = SrcDef;
1131 unsigned ConvertOp = 0;
1132
1133 // Handle intermediate conversions
1134 unsigned SrcOp = SrcDef->getOpcode();
1135 if (isArtifactCast(SrcOp)) {
1136 ConvertOp = SrcOp;
1137 MergeI = getDefIgnoringCopies(SrcDef->getOperand(1).getReg(), MRI);
1138 }
1139
1140 if (!MergeI || !canFoldMergeOpcode(MergeI->getOpcode(),
1141 ConvertOp, OpTy, DestTy)) {
1142 // We might have a chance to combine later by trying to combine
1143 // unmerge(cast) first
1144 return tryFoldUnmergeCast(MI, *SrcDef, DeadInsts, UpdatedDefs);
1145 }
1146
1147 const unsigned NumMergeRegs = MergeI->getNumOperands() - 1;
1148
1149 if (NumMergeRegs < NumDefs) {
1150 if (NumDefs % NumMergeRegs != 0)
1151 return false;
1152
1153 Builder.setInstr(MI);
1154 // Transform to UNMERGEs, for example
1155 // %1 = G_MERGE_VALUES %4, %5
1156 // %9, %10, %11, %12 = G_UNMERGE_VALUES %1
1157 // to
1158 // %9, %10 = G_UNMERGE_VALUES %4
1159 // %11, %12 = G_UNMERGE_VALUES %5
1160
1161 const unsigned NewNumDefs = NumDefs / NumMergeRegs;
1162 for (unsigned Idx = 0; Idx < NumMergeRegs; ++Idx) {
1164 for (unsigned j = 0, DefIdx = Idx * NewNumDefs; j < NewNumDefs;
1165 ++j, ++DefIdx)
1166 DstRegs.push_back(MI.getReg(DefIdx));
1167
1168 if (ConvertOp) {
1169 LLT MergeDstTy = MRI.getType(SrcDef->getOperand(0).getReg());
1170
1171 // This is a vector that is being split and casted. Extract to the
1172 // element type, and do the conversion on the scalars (or smaller
1173 // vectors).
1174 LLT MergeEltTy = MergeDstTy.divide(NumMergeRegs);
1175
1176 // Handle split to smaller vectors, with conversions.
1177 // %2(<8 x s8>) = G_CONCAT_VECTORS %0(<4 x s8>), %1(<4 x s8>)
1178 // %3(<8 x s16>) = G_SEXT %2
1179 // %4(<2 x s16>), %5(<2 x s16>), %6(<2 x s16>), %7(<2 x s16>) =
1180 // G_UNMERGE_VALUES %3
1181 //
1182 // =>
1183 //
1184 // %8(<4 x s16>) = G_SEXT %0
1185 // %9(<4 x s16>) = G_SEXT %1
1186 // %4(<2 x s16>), %5(<2 x s16>) = G_UNMERGE_VALUES %8
1187 // %7(<2 x s16>), %7(<2 x s16>) = G_UNMERGE_VALUES %9
1188
1189 Register TmpReg = MRI.createGenericVirtualRegister(MergeEltTy);
1190 Builder.buildInstr(ConvertOp, {TmpReg},
1191 {MergeI->getOperand(Idx + 1).getReg()});
1192 Builder.buildUnmerge(DstRegs, TmpReg);
1193 } else {
1194 Builder.buildUnmerge(DstRegs, MergeI->getOperand(Idx + 1).getReg());
1195 }
1196 UpdatedDefs.append(DstRegs.begin(), DstRegs.end());
1197 }
1198
1199 } else if (NumMergeRegs > NumDefs) {
1200 if (ConvertOp != 0 || NumMergeRegs % NumDefs != 0)
1201 return false;
1202
1203 Builder.setInstr(MI);
1204 // Transform to MERGEs
1205 // %6 = G_MERGE_VALUES %17, %18, %19, %20
1206 // %7, %8 = G_UNMERGE_VALUES %6
1207 // to
1208 // %7 = G_MERGE_VALUES %17, %18
1209 // %8 = G_MERGE_VALUES %19, %20
1210
1211 const unsigned NumRegs = NumMergeRegs / NumDefs;
1212 for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) {
1214 for (unsigned j = 0, Idx = NumRegs * DefIdx + 1; j < NumRegs;
1215 ++j, ++Idx)
1216 Regs.push_back(MergeI->getOperand(Idx).getReg());
1217
1218 Register DefReg = MI.getReg(DefIdx);
1219 Builder.buildMergeLikeInstr(DefReg, Regs);
1220 UpdatedDefs.push_back(DefReg);
1221 }
1222
1223 } else {
1224 LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg());
1225
1226 if (!ConvertOp && DestTy != MergeSrcTy) {
1227 if (DestTy.isPointer())
1228 ConvertOp = TargetOpcode::G_INTTOPTR;
1229 else if (MergeSrcTy.isPointer())
1230 ConvertOp = TargetOpcode::G_PTRTOINT;
1231 else
1232 ConvertOp = TargetOpcode::G_BITCAST;
1233 }
1234
1235 if (ConvertOp) {
1236 Builder.setInstr(MI);
1237
1238 for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
1239 Register DefReg = MI.getOperand(Idx).getReg();
1240 Register MergeSrc = MergeI->getOperand(Idx + 1).getReg();
1241
1242 if (!MRI.use_empty(DefReg)) {
1243 Builder.buildInstr(ConvertOp, {DefReg}, {MergeSrc});
1244 UpdatedDefs.push_back(DefReg);
1245 }
1246 }
1247
1248 markInstAndDefDead(MI, *MergeI, DeadInsts);
1249 return true;
1250 }
1251
1252 assert(DestTy == MergeSrcTy &&
1253 "Bitcast and the other kinds of conversions should "
1254 "have happened earlier");
1255
1256 Builder.setInstr(MI);
1257 for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
1258 Register DstReg = MI.getOperand(Idx).getReg();
1259 Register SrcReg = MergeI->getOperand(Idx + 1).getReg();
1260 replaceRegOrBuildCopy(DstReg, SrcReg, MRI, Builder, UpdatedDefs,
1261 Observer);
1262 }
1263 }
1264
1265 markInstAndDefDead(MI, *MergeI, DeadInsts);
1266 return true;
1267 }
1268
1271 SmallVectorImpl<Register> &UpdatedDefs) {
1272 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT);
1273
1274 // Try to use the source registers from a G_MERGE_VALUES
1275 //
1276 // %2 = G_MERGE_VALUES %0, %1
1277 // %3 = G_EXTRACT %2, N
1278 // =>
1279 //
1280 // for N < %2.getSizeInBits() / 2
1281 // %3 = G_EXTRACT %0, N
1282 //
1283 // for N >= %2.getSizeInBits() / 2
1284 // %3 = G_EXTRACT %1, (N - %0.getSizeInBits()
1285
1286 Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg());
1287 MachineInstr *MergeI = MRI.getVRegDef(SrcReg);
1288 if (!MergeI || !isa<GMergeLikeInstr>(MergeI))
1289 return false;
1290
1291 Register DstReg = MI.getOperand(0).getReg();
1292 LLT DstTy = MRI.getType(DstReg);
1293 LLT SrcTy = MRI.getType(SrcReg);
1294
1295 // TODO: Do we need to check if the resulting extract is supported?
1296 unsigned ExtractDstSize = DstTy.getSizeInBits();
1297 unsigned Offset = MI.getOperand(2).getImm();
1298 unsigned NumMergeSrcs = MergeI->getNumOperands() - 1;
1299 unsigned MergeSrcSize = SrcTy.getSizeInBits() / NumMergeSrcs;
1300 unsigned MergeSrcIdx = Offset / MergeSrcSize;
1301
1302 // Compute the offset of the last bit the extract needs.
1303 unsigned EndMergeSrcIdx = (Offset + ExtractDstSize - 1) / MergeSrcSize;
1304
1305 // Can't handle the case where the extract spans multiple inputs.
1306 if (MergeSrcIdx != EndMergeSrcIdx)
1307 return false;
1308
1309 // TODO: We could modify MI in place in most cases.
1310 Builder.setInstr(MI);
1311 Builder.buildExtract(DstReg, MergeI->getOperand(MergeSrcIdx + 1).getReg(),
1312 Offset - MergeSrcIdx * MergeSrcSize);
1313 UpdatedDefs.push_back(DstReg);
1314 markInstAndDefDead(MI, *MergeI, DeadInsts);
1315 return true;
1316 }
1317
1318 /// Try to combine away MI.
1319 /// Returns true if it combined away the MI.
1320 /// Adds instructions that are dead as a result of the combine
1321 /// into DeadInsts, which can include MI.
1324 GISelObserverWrapper &WrapperObserver) {
1325 ArtifactValueFinder Finder(MRI, Builder, LI);
1326
1327 // This might be a recursive call, and we might have DeadInsts already
1328 // populated. To avoid bad things happening later with multiple vreg defs
1329 // etc, process the dead instructions now if any.
1330 if (!DeadInsts.empty())
1331 deleteMarkedDeadInsts(DeadInsts, WrapperObserver);
1332
1333 // Put here every vreg that was redefined in such a way that it's at least
1334 // possible that one (or more) of its users (immediate or COPY-separated)
1335 // could become artifact combinable with the new definition (or the
1336 // instruction reachable from it through a chain of copies if any).
1337 SmallVector<Register, 4> UpdatedDefs;
1338 bool Changed = false;
1339 switch (MI.getOpcode()) {
1340 default:
1341 return false;
1342 case TargetOpcode::G_ANYEXT:
1343 Changed = tryCombineAnyExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
1344 break;
1345 case TargetOpcode::G_ZEXT:
1346 Changed = tryCombineZExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
1347 break;
1348 case TargetOpcode::G_SEXT:
1349 Changed = tryCombineSExt(MI, DeadInsts, UpdatedDefs, WrapperObserver);
1350 break;
1351 case TargetOpcode::G_UNMERGE_VALUES:
1352 Changed = tryCombineUnmergeValues(cast<GUnmerge>(MI), DeadInsts,
1353 UpdatedDefs, WrapperObserver);
1354 break;
1355 case TargetOpcode::G_MERGE_VALUES:
1356 case TargetOpcode::G_BUILD_VECTOR:
1357 case TargetOpcode::G_CONCAT_VECTORS:
1358 // If any of the users of this merge are an unmerge, then add them to the
1359 // artifact worklist in case there's folding that can be done looking up.
1360 for (MachineInstr &U : MRI.use_instructions(MI.getOperand(0).getReg())) {
1361 if (U.getOpcode() == TargetOpcode::G_UNMERGE_VALUES ||
1362 U.getOpcode() == TargetOpcode::G_TRUNC) {
1363 UpdatedDefs.push_back(MI.getOperand(0).getReg());
1364 break;
1365 }
1366 }
1367 Changed = Finder.tryCombineMergeLike(cast<GMergeLikeInstr>(MI), DeadInsts,
1368 UpdatedDefs, WrapperObserver);
1369 break;
1370 case TargetOpcode::G_EXTRACT:
1371 Changed = tryCombineExtract(MI, DeadInsts, UpdatedDefs);
1372 break;
1373 case TargetOpcode::G_TRUNC:
1374 Changed = tryCombineTrunc(MI, DeadInsts, UpdatedDefs, WrapperObserver);
1375 if (!Changed) {
1376 // Try to combine truncates away even if they are legal. As all artifact
1377 // combines at the moment look only "up" the def-use chains, we achieve
1378 // that by throwing truncates' users (with look through copies) into the
1379 // ArtifactList again.
1380 UpdatedDefs.push_back(MI.getOperand(0).getReg());
1381 }
1382 break;
1383 }
1384 // If the main loop through the ArtifactList found at least one combinable
1385 // pair of artifacts, not only combine it away (as done above), but also
1386 // follow the def-use chain from there to combine everything that can be
1387 // combined within this def-use chain of artifacts.
1388 while (!UpdatedDefs.empty()) {
1389 Register NewDef = UpdatedDefs.pop_back_val();
1390 assert(NewDef.isVirtual() && "Unexpected redefinition of a physreg");
1391 for (MachineInstr &Use : MRI.use_instructions(NewDef)) {
1392 switch (Use.getOpcode()) {
1393 // Keep this list in sync with the list of all artifact combines.
1394 case TargetOpcode::G_ANYEXT:
1395 case TargetOpcode::G_ZEXT:
1396 case TargetOpcode::G_SEXT:
1397 case TargetOpcode::G_UNMERGE_VALUES:
1398 case TargetOpcode::G_EXTRACT:
1399 case TargetOpcode::G_TRUNC:
1400 case TargetOpcode::G_BUILD_VECTOR:
1401 // Adding Use to ArtifactList.
1402 WrapperObserver.changedInstr(Use);
1403 break;
1404 case TargetOpcode::G_ASSERT_SEXT:
1405 case TargetOpcode::G_ASSERT_ZEXT:
1406 case TargetOpcode::G_ASSERT_ALIGN:
1407 case TargetOpcode::COPY: {
1408 Register Copy = Use.getOperand(0).getReg();
1409 if (Copy.isVirtual())
1410 UpdatedDefs.push_back(Copy);
1411 break;
1412 }
1413 default:
1414 // If we do not have an artifact combine for the opcode, there is no
1415 // point in adding it to the ArtifactList as nothing interesting will
1416 // be done to it anyway.
1417 break;
1418 }
1419 }
1420 }
1421 return Changed;
1422 }
1423
1424private:
1425 static Register getArtifactSrcReg(const MachineInstr &MI) {
1426 switch (MI.getOpcode()) {
1427 case TargetOpcode::COPY:
1428 case TargetOpcode::G_TRUNC:
1429 case TargetOpcode::G_ZEXT:
1430 case TargetOpcode::G_ANYEXT:
1431 case TargetOpcode::G_SEXT:
1432 case TargetOpcode::G_EXTRACT:
1433 case TargetOpcode::G_ASSERT_SEXT:
1434 case TargetOpcode::G_ASSERT_ZEXT:
1435 case TargetOpcode::G_ASSERT_ALIGN:
1436 return MI.getOperand(1).getReg();
1437 case TargetOpcode::G_UNMERGE_VALUES:
1438 return MI.getOperand(MI.getNumOperands() - 1).getReg();
1439 default:
1440 llvm_unreachable("Not a legalization artifact happen");
1441 }
1442 }
1443
1444 /// Mark a def of one of MI's original operands, DefMI, as dead if changing MI
1445 /// (either by killing it or changing operands) results in DefMI being dead
1446 /// too. In-between COPYs or artifact-casts are also collected if they are
1447 /// dead.
1448 /// MI is not marked dead.
1449 void markDefDead(MachineInstr &MI, MachineInstr &DefMI,
1451 unsigned DefIdx = 0) {
1452 // Collect all the copy instructions that are made dead, due to deleting
1453 // this instruction. Collect all of them until the Trunc(DefMI).
1454 // Eg,
1455 // %1(s1) = G_TRUNC %0(s32)
1456 // %2(s1) = COPY %1(s1)
1457 // %3(s1) = COPY %2(s1)
1458 // %4(s32) = G_ANYEXT %3(s1)
1459 // In this case, we would have replaced %4 with a copy of %0,
1460 // and as a result, %3, %2, %1 are dead.
1461 MachineInstr *PrevMI = &MI;
1462 while (PrevMI != &DefMI) {
1463 Register PrevRegSrc = getArtifactSrcReg(*PrevMI);
1464
1465 MachineInstr *TmpDef = MRI.getVRegDef(PrevRegSrc);
1466 if (MRI.hasOneUse(PrevRegSrc)) {
1467 if (TmpDef != &DefMI) {
1468 assert((TmpDef->getOpcode() == TargetOpcode::COPY ||
1469 isArtifactCast(TmpDef->getOpcode()) ||
1471 "Expecting copy or artifact cast here");
1472
1473 DeadInsts.push_back(TmpDef);
1474 }
1475 } else
1476 break;
1477 PrevMI = TmpDef;
1478 }
1479
1480 if (PrevMI == &DefMI) {
1481 unsigned I = 0;
1482 bool IsDead = true;
1483 for (MachineOperand &Def : DefMI.defs()) {
1484 if (I != DefIdx) {
1485 if (!MRI.use_empty(Def.getReg())) {
1486 IsDead = false;
1487 break;
1488 }
1489 } else {
1490 if (!MRI.hasOneUse(DefMI.getOperand(DefIdx).getReg()))
1491 break;
1492 }
1493
1494 ++I;
1495 }
1496
1497 if (IsDead)
1498 DeadInsts.push_back(&DefMI);
1499 }
1500 }
1501
1502 /// Mark MI as dead. If a def of one of MI's operands, DefMI, would also be
1503 /// dead due to MI being killed, then mark DefMI as dead too.
1504 /// Some of the combines (extends(trunc)), try to walk through redundant
1505 /// copies in between the extends and the truncs, and this attempts to collect
1506 /// the in between copies if they're dead.
1507 void markInstAndDefDead(MachineInstr &MI, MachineInstr &DefMI,
1509 unsigned DefIdx = 0) {
1510 DeadInsts.push_back(&MI);
1511 markDefDead(MI, DefMI, DeadInsts, DefIdx);
1512 }
1513
1514 /// Erase the dead instructions in the list and call the observer hooks.
1515 /// Normally the Legalizer will deal with erasing instructions that have been
1516 /// marked dead. However, for the trunc(ext(x)) cases we can end up trying to
1517 /// process instructions which have been marked dead, but otherwise break the
1518 /// MIR by introducing multiple vreg defs. For those cases, allow the combines
1519 /// to explicitly delete the instructions before we run into trouble.
1520 void deleteMarkedDeadInsts(SmallVectorImpl<MachineInstr *> &DeadInsts,
1521 GISelObserverWrapper &WrapperObserver) {
1522 for (auto *DeadMI : DeadInsts) {
1523 LLVM_DEBUG(dbgs() << *DeadMI << "Is dead, eagerly deleting\n");
1524 WrapperObserver.erasingInstr(*DeadMI);
1525 DeadMI->eraseFromParent();
1526 }
1527 DeadInsts.clear();
1528 }
1529
1530 /// Checks if the target legalizer info has specified anything about the
1531 /// instruction, or if unsupported.
1532 bool isInstUnsupported(const LegalityQuery &Query) const {
1533 using namespace LegalizeActions;
1534 auto Step = LI.getAction(Query);
1535 return Step.Action == Unsupported || Step.Action == NotFound;
1536 }
1537
1538 bool isInstLegal(const LegalityQuery &Query) const {
1539 return LI.getAction(Query).Action == LegalizeActions::Legal;
1540 }
1541
1542 bool isConstantUnsupported(LLT Ty) const {
1543 if (!Ty.isVector())
1544 return isInstUnsupported({TargetOpcode::G_CONSTANT, {Ty}});
1545
1546 LLT EltTy = Ty.getElementType();
1547 return isInstUnsupported({TargetOpcode::G_CONSTANT, {EltTy}}) ||
1548 isInstUnsupported({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}});
1549 }
1550
1551 /// Looks through copy instructions and returns the actual
1552 /// source register.
1553 Register lookThroughCopyInstrs(Register Reg) {
1555 return TmpReg.isValid() ? TmpReg : Reg;
1556 }
1557};
1558
1559} // namespace llvm
1560
1561#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZATIONARTIFACTCOMBINER_H
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Size
uint64_t Offset
Definition: ELF_riscv.cpp:478
This contains common code to allow clients to notify changes to machine instr.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
Interface for Targets to specify which operations they can successfully select and how the others sho...
#define I(x, y, z)
Definition: MD5.cpp:58
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
unsigned Reg
Promote Memory to Register
Definition: Mem2Reg.cpp:110
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool IsDead
This file implements the SmallBitVector class.
static constexpr int Concat[]
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:986
static DILocation * getMergedLocation(DILocation *LocA, DILocation *LocB)
When two instructions are combined into a single instruction we also need to combine the original loc...
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
Represents a G_BUILD_VECTOR.
Represents a G_CONCAT_VECTORS.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
unsigned computeNumSignBits(Register R, const APInt &DemandedElts, unsigned Depth=0)
APInt getKnownZeroes(Register R)
Simple wrapper observer that takes several observers, and calls each one for each event.
void changedInstr(MachineInstr &MI) override
This instruction was mutated in some way.
void changingInstr(MachineInstr &MI) override
This instruction is about to be mutated in some way.
void erasingInstr(MachineInstr &MI) override
An instruction is about to be erased.
Represents G_BUILD_VECTOR, G_CONCAT_VECTORS or G_MERGE_VALUES.
Register getSourceReg(unsigned I) const
Returns the I'th source register.
unsigned getNumSources() const
Returns the number of source registers.
Represents a G_UNMERGE_VALUES.
Register getReg(unsigned Idx) const
Access the Idx'th operand as a register and return it.
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:264
constexpr bool isScalar() const
Definition: LowLevelType.h:146
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
Definition: LowLevelType.h:159
constexpr bool isVector() const
Definition: LowLevelType.h:148
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
Definition: LowLevelType.h:190
constexpr bool isPointer() const
Definition: LowLevelType.h:149
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
Definition: LowLevelType.h:277
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
Definition: LowLevelType.h:227
constexpr LLT getScalarType() const
Definition: LowLevelType.h:205
constexpr LLT divide(int Factor) const
Return a type that is Factor times smaller.
Definition: LowLevelType.h:234
This class provides utilities for finding source registers of specific bit ranges in an artifact.
bool tryCombineUnmergeDefs(GUnmerge &MI, GISelChangeObserver &Observer, SmallVectorImpl< Register > &UpdatedDefs)
Try to combine the defs of an unmerge MI by attempting to find values that provides the bits for each...
bool isSequenceFromUnmerge(GMergeLikeInstr &MI, unsigned MergeStartIdx, GUnmerge *Unmerge, unsigned UnmergeIdxStart, unsigned NumElts, unsigned EltSize, bool AllowUndef)
Register findValueFromDef(Register DefReg, unsigned StartBit, unsigned Size)
Try to find a source of the value defined in the def DefReg, starting at position StartBit with size ...
GUnmerge * findUnmergeThatDefinesReg(Register Reg, unsigned Size, unsigned &DefOperandIdx)
bool tryCombineMergeLike(GMergeLikeInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelChangeObserver &Observer)
ArtifactValueFinder(MachineRegisterInfo &Mri, MachineIRBuilder &Builder, const LegalizerInfo &Info)
LegalizationArtifactCombiner(MachineIRBuilder &B, MachineRegisterInfo &MRI, const LegalizerInfo &LI, GISelKnownBits *KB=nullptr)
bool tryFoldUnmergeCast(MachineInstr &MI, MachineInstr &CastMI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs)
bool tryFoldImplicitDef(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelObserverWrapper &Observer)
Try to fold G_[ASZ]EXT (G_IMPLICIT_DEF).
bool tryCombineZExt(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelObserverWrapper &Observer)
bool tryCombineInstruction(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, GISelObserverWrapper &WrapperObserver)
Try to combine away MI.
bool tryCombineTrunc(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelObserverWrapper &Observer)
bool tryCombineSExt(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelObserverWrapper &Observer)
static bool canFoldMergeOpcode(unsigned MergeOp, unsigned ConvertOp, LLT OpTy, LLT DestTy)
static unsigned getDefIndex(const MachineInstr &MI, Register SearchDef)
Return the operand index in MI that defines Def.
static void replaceRegOrBuildCopy(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI, MachineIRBuilder &Builder, SmallVectorImpl< Register > &UpdatedDefs, GISelChangeObserver &Observer)
Try to replace DstReg with SrcReg or build a COPY instruction depending on the register constraints.
bool tryCombineUnmergeValues(GUnmerge &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelChangeObserver &Observer)
bool tryCombineExtract(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs)
bool tryCombineAnyExt(MachineInstr &MI, SmallVectorImpl< MachineInstr * > &DeadInsts, SmallVectorImpl< Register > &UpdatedDefs, GISelObserverWrapper &Observer)
LegalizeActionStep getAction(const LegalityQuery &Query) const
Determine what action should be taken to legalize the described instruction.
Helper class to build MachineInstr.
MachineInstrBuilder buildUndef(const DstOp &Res)
Build and insert Res = IMPLICIT_DEF.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1)
Build and insert Res = G_AND Op0, Op1.
MachineInstrBuilder buildAnyExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Res = COPY Op depending on the differing sizes of Res and Op.
MachineInstrBuilder buildSExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_SEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
void setInstr(MachineInstr &MI)
Set the insertion point to before MI.
MachineInstrBuilder buildBuildVector(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_BUILD_VECTOR Op0, ...
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
void setInstrAndDebugLoc(MachineInstr &MI)
Set the insertion point to before MI, and set the debug loc to MI's loc.
MachineInstrBuilder buildMergeValues(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ...
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
void setDebugLoc(const DebugLoc &DL)
Set the debug location to DL for all the next build instructions.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
MachineInstrBuilder buildSExtInReg(const DstOp &Res, const SrcOp &Op, int64_t ImmOp)
Build and insert Res = G_SEXT_INREG Op, ImmOp.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:575
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:578
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
MachineOperand class - Representation of each machine instruction operand.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:116
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool all() const
Returns true if all bits are set.
bool empty() const
Definition: SmallVector.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Unsupported
This operation is completely unsupported on the target.
@ NotFound
Sentinel value for when no action was found in the specified table.
@ FewerElements
The (vector) operation should be implemented by splitting it into sub-vectors where the operation is ...
Definition: LegalizerInfo.h:65
@ Legal
The operation is expected to be selectable directly by the target, and no transformation is necessary...
Definition: LegalizerInfo.h:47
@ Unsupported
This operation is completely unsupported on the target.
Definition: LegalizerInfo.h:91
@ Lower
The operation itself must be expressed in terms of simpler actions on this target.
Definition: LegalizerInfo.h:78
@ NarrowScalar
The operation should be synthesized from multiple instructions acting on a narrower scalar base-type.
Definition: LegalizerInfo.h:52
@ MoreElements
The (vector) operation should be implemented by widening the input vector and ignoring the lanes adde...
Definition: LegalizerInfo.h:71
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
Definition: Utils.cpp:630
MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
Definition: Utils.cpp:471
bool isPreISelGenericOptimizationHint(unsigned Opcode)
Definition: TargetOpcodes.h:42
bool canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI)
Check if DstReg can be replaced with SrcReg depending on the register constraints.
Definition: Utils.cpp:201
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
LLVM_READNONE LLT getCoverTy(LLT OrigTy, LLT TargetTy)
Return smallest type that covers both OrigTy and TargetTy and is multiple of TargetTy.
Definition: Utils.cpp:1224
std::optional< DefinitionAndSourceRegister > getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, and underlying value Register folding away any copies.
Definition: Utils.cpp:452
Register getSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the source register for Reg, folding away any trivial copies.
Definition: Utils.cpp:478
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
The result of a query.
LegalizeAction Action
The action to take or the final answer.
unsigned TypeIdx
If describing an action, the type index to change. Otherwise zero.